US2690409A - Binary coating of refractory metals - Google Patents
Binary coating of refractory metals Download PDFInfo
- Publication number
- US2690409A US2690409A US103632A US10363249A US2690409A US 2690409 A US2690409 A US 2690409A US 103632 A US103632 A US 103632A US 10363249 A US10363249 A US 10363249A US 2690409 A US2690409 A US 2690409A
- Authority
- US
- United States
- Prior art keywords
- coating
- molybdenum
- silicon
- metal
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title description 55
- 239000011248 coating agent Substances 0.000 title description 49
- 239000003870 refractory metal Substances 0.000 title description 17
- 229910052750 molybdenum Inorganic materials 0.000 claims description 26
- 239000011733 molybdenum Substances 0.000 claims description 26
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 11
- 230000007797 corrosion Effects 0.000 claims description 9
- 238000005260 corrosion Methods 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 6
- 238000005121 nitriding Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 9
- 229910052726 zirconium Inorganic materials 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000010953 base metal Substances 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 150000002736 metal compounds Chemical class 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000005255 carburizing Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- CGWDABYOHPEOAD-VIFPVBQESA-N (2r)-2-[(4-fluorophenoxy)methyl]oxirane Chemical compound C1=CC(F)=CC=C1OC[C@@H]1OC1 CGWDABYOHPEOAD-VIFPVBQESA-N 0.000 description 1
- AXTGDCSMTYGJND-UHFFFAOYSA-N 1-dodecylazepan-2-one Chemical compound CCCCCCCCCCCCN1CCCCCC1=O AXTGDCSMTYGJND-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 241000428533 Rhis Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- -1 `lnitane Chemical compound 0.000 description 1
- CECABOMBVQNBEC-UHFFFAOYSA-K aluminium iodide Chemical compound I[Al](I)I CECABOMBVQNBEC-UHFFFAOYSA-K 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002751 molybdenum Chemical class 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- AIFMYMZGQVTROK-UHFFFAOYSA-N silicon tetrabromide Chemical compound Br[Si](Br)(Br)Br AIFMYMZGQVTROK-UHFFFAOYSA-N 0.000 description 1
- JHGCXUUFRJCMON-UHFFFAOYSA-J silicon(4+);tetraiodide Chemical compound [Si+4].[I-].[I-].[I-].[I-] JHGCXUUFRJCMON-UHFFFAOYSA-J 0.000 description 1
- XUIMIQQOPSSXEZ-NJFSPNSNSA-N silicon-30 atom Chemical compound [30Si] XUIMIQQOPSSXEZ-NJFSPNSNSA-N 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 229940035339 tri-chlor Drugs 0.000 description 1
- IBOKZQNMFSHYNQ-UHFFFAOYSA-N tribromosilane Chemical compound Br[SiH](Br)Br IBOKZQNMFSHYNQ-UHFFFAOYSA-N 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- LSWWNKUULMMMIL-UHFFFAOYSA-J zirconium(iv) bromide Chemical compound Br[Zr](Br)(Br)Br LSWWNKUULMMMIL-UHFFFAOYSA-J 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9335—Product by special process
- Y10S428/938—Vapor deposition or gas diffusion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12576—Boride, carbide or nitride component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12674—Ge- or Si-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/12743—Next to refractory [Group IVB, VB, or VIB] metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
Definitions
- the present invention relates to a method of coating refractory metal articles to enhance their resistance to high temperature and corrosive atmospheres.
- the present invention specifically relates to the manufacture of coated refractory metal turbine buckets for use in jet turbines and the like.
- Turbo-jet engines or the like are usually provided with an axial ow turbine operated by exhaust gases which drive a blower furnishing air to the burners.
- Such turbines operate at extremely high temperatures, and one of the major difiiculties encountered in the manufacture of jet turbines has been the provision of suitable material for bucket blades which can withstand the effect of such high temperatures.
- the turbine bucket will normally be exposed to temperatures in the range of from 1600 to 2000 F. and the bucket must have sufiicient strength, toughness, creep resistance, and resistance to the corrosive atmosphere present to enable the bucket to operate efficiently without deformation or corrosion.
- articles produced by the present invention may be employed under conditions of higher temperature and lower stress than exist in a gas turbine bucket.
- One such application occurs in nozzle diaphragm vanes in gas turbines which must withstand very severe conditions of temperature and thermal shock 'but at a relatively lower stress.
- molybdenum One refractory metal which exhibits excellent properties of strength, toughness and creep resistance at elevated temperatures is molybdenum.
- metallic molybdenum itself cannot be used.
- the trioxide of molybdenum which is formed under the oxidizing conditions present in the turbine, sublimes at a temperature of about 1463 F. at an extremely rapid rate. This phenomenon gives rise to a characteristic smoking when bodies of molybdenum are heated to tempera-tures above 1463" F., resulting in the complete disappearance of the molybdenum within a matter of minutes.
- Another refractory metal which might be used for turbine bucket bodies is tungsten, even though it has a relatively high density.
- Another object of the present invention is to provide a method for coating refractory metals which yields a rm bond to the refractory surface and makes it impervious to the effects of operation under conditions of high stress and high temperatures.
- a further object of the invention is to provide a coated molybdenum article, such as a turbine bucket, capable of operation within a turbine engine for extended periods of time without deteroration.
- the refractory metal is coated with a metal selected from the group consisting of silicon, aluminum, and zirconium and the coating is subsequentlyreacted with another element to produce a binary coating.
- the coating and reaction steps may be carried out concurrently, or the refractory metal may be given a primary coat of silicon, aluminum or zirconium and subsequently reacted with the second element, which is preferably selected from the group consisting of the elements in groups III, IV or V of the periodic table.
- the element which is to be reacted with the primary coating is one whose ionic size is close enough to the ionic size of the primary metal coating to allow the elements to be mutually soluble with each other in the solid state, and thus increase the rate of intermetallic compound formation.
- Such intermetallic compounds per se or the compounds formed with the base metal then have a size which approximates the atomic spacing in the lattice of the base metal.
- the primary coating inherently leaves microscopic voids, tunnels or weak spots in the surface of the article, thus decreasing its ability to withstand corrosion.
- the reaction with the second element depends primarily upon the spacing in the crystal lattice of the primary coating.
- the secondary element may be titanium, zirconium, boron, aluminum, nitrogen, or carbon.
- a primary coat of this metal may be further reacted with zirconium, titanium, chromium, boron, tin, and nickel.
- zirconium is used as the primary coat, the subsequent reaction may be carried out with aluminum, boron, carbon, silicon, titanium, and nitrogen.
- the compounds resulting from the reaction of the second named elements with the primary coating are complex intermetallic compounds which exhibit the property of forming an eX- tremely firm bond to the surface of the refractory metal. It is believed that this rm bond results from the closure of voids in the atomic lattice of 'the-base metal, but the present invention is in no way limited to the correctness of the given theory.
- the coating process of the present invention may be most conveniently carried out in a vapor phase deposition system of the type described in a copending application Serial No. 98,272, led June 10, 1949 by myself and Robert A. Kempe.
- a decomposable compound preferably a halide
- the coating metal is carried into a reaction zone in a stream of hydrogen and therein decomposedto form a layer of substantially pure metal on the surfaces of the refractory metal.
- Deposition of thecoating metal compound as discussed in this previous application, vis-the result of several factors. Some of the compound is probably decomposed vby the high temperatures,on the order of 1600 to 2300 F. present in the coating Zone.
- Another portion of 'the decomposable coating compound is reducedby the presence of the hydrogen atmosphere in which the compound is introduced.
- Another reaction which -occurs is the metathetical reaction between the coating metal compound and the -molybdenum wherein the coating metal is deposited on the molybdenum with ⁇ the rformation of a volatile molybdenum compound in the-exchange reaction.
- the decom'posable compoundlemployed in the primary coating step is preferably a halide, for example silicon tetrachloride, trichlor silane, silicon-tetrabromide, tribromo silane, silicon tetraiodide, aluminum chloride, valuminum bromide, aluminum iodide, vzirconium chloride, zirconium bromide, or zirconium iodide.
- a halide for example silicon tetrachloride, trichlor silane, silicon-tetrabromide, tribromo silane, silicon tetraiodide, aluminum chloride, valuminum bromide, aluminum iodide, vzirconium chloride, zirconium bromide, or zirconium iodide.
- the coating metal compound may be introduced into the 'heated reaction AZone Vby merely passing a stream of hydrogen gas through a liquid pool of the compound so -that vapors thereof are carried by the hydrogen into the reaction zone.
- the hydrogen ⁇ gas v may be passed ⁇ over a heated source ofthe c'ompound'in powder vform 'to carry it' into'th'e reaction zone.
- a decomposable compound capable of yielding the second element is introduced into thereac'tion zone either prior to, during, or after the deposition of the primary coating.
- a decomposable compound capable of yielding the second element is introduced into thereac'tion zone either prior to, during, or after the deposition of the primary coating.
- typical decomposable compounds which may be used in this connection are titanium tetrachloride, titanium tetrabromide, chromium chloride, nickel chloride, boron chloride, and tinchloride.
- a carburiz'ing gas is introduced into the reaction zone.
- carburizing gas usuch as -natural gas, lcarbon monoxide, ethane, propane, ⁇ lnitane, and benzene maybe used, or the carburizing operation may be carried out in carburizing packs, or in liquid baths.
- ammonia gas Vis preferably introduced into the reaction chamber to react .with'the primaryscoating.
- ammonia gas various decomposable cyanides may be employed.
- the reaction conditions in the coating Zone include temperatures from 1600u to 2300 F. and preferably from 1700 to 2l00 F. and reaction times ranging from 4 to 24 hours depending upon the vpenetration required. Normally, the depth of the primary coating will -be on the'order of about 0.0003 to about 0.003 inch.
- the nextlayer is probably a molybdenumsiliccn compound having a relatively high silicon content, possibly MoSiZ while the innermost layer producedby "the coating process is essentially a molybdenum-'silicon compound having a high molybdenum concentration, such as MozSi together with solid solutions of molybdenum and silicon.
- the coating process is essentially a molybdenum-'silicon compound having a high molybdenum concentration, such as MozSi together with solid solutions of molybdenum and silicon.
- rhis type of structure is one whichis stable at high temperatures, and provides an excellent intimate bond with the .-molybdenum base.
- the reaction with 'the Ysecond element of the type mentioned above enhances'the properties of the coating by filling up the microscopic voids and Weak spots, resultingin a substantial increase in stability andresistance to high temperature oxidation.
- Figure 1 is aow sheet showing in'generalthe various stages of the coating process.
- Figure v2 is a drawing of a iphotomicrograph taken as a magnication of 500K showing the crystal structure of a molybdenum article coated in .accordance with the ⁇ present invention.
- Reference numeralV I0 denotes a'supply of purging gas, which is preferably an inert gas such as nitrogen, argon, neon,'he1ium or the like which is passed .into apurication zone I I where moisture and Vother contaminantsare removed.
- the purication zone II may consist of a supply ⁇ of liquid sulfuric ⁇ acid through whichthe purging gas 'is bubbled.
- v'The ⁇ purified gas is next introduced into a heated 'furnace IZWhichsurrounds a Vfurnace tube I3, control of .the gas owing into the furnace'tube being .controlled by ⁇ means of a valve I4.
- a plurality of boats L5 Y which carry 'a number of turbine buckets I6 or other article's composed of a refractory metal such as .-.molybdenum- These articles are ⁇ normally preshaped into their 'desired form, and Worked at temperatures below the recrystallization temperature Aof the metal, to enhance its physical properties.
- the temperature of the furnace I2 is regulated between 1600 and 2?00o F., with .1700to 2100o F. being a preferred range.
- a supply of hydrogen gas I1 is provided for introduction into thefurnacetube I3.
- the hydrogen gas is dehydrated andpurined by means of various desiccants such ⁇ asjfor example, packed columns of silica gel, calcium chloride, 'or liquid sulfuric acid in a puriiication stage I8.
- the owofthe hydrogen gas into the furnacetube I3 is vcontrolled by ⁇ 'means Vof a valve vI9.
- is also providedto act asa lcarryingmedium'for the coating compounds.
- ⁇ A source of the primary coating-compound A normally a decomposablehalide, kis maintained in Va zone 22.
- a source of a compound, -B, of .the Ysecond ⁇ reactive element which may be one of the metals given previously, or a carburizing or nitriding gas is indicated at zone 23.
- Flow into the zones 22 and 23 is regulated by means of the respective valves 2li and 25 while flow of hydrogen gas containing the coating compounds is regulated by means of the valves 23 and 21 at the exit of stages 22 and 23.
- either of the coating compounds may be introduced separately into the reaction zone or the introduction ⁇ of both compounds may be made simultaneously.
- the furnace tube I3 is purged by means of the purging gas I9 to rid the furnace chamber of moisture and oxygen or other undesirable contaminants.
- the hydrogen and the coating metal compound which it carries is introduced into the furnace tube i3, Where it contacts the molybdenum article I6 for periods of time ranging from 4 to 24 hours. Excess hydrogen is vented from the furnace tube by means of tube 23.
- the molybdenum articles I6 are maintained in the furnace tubes I3 until a coating having a thickness of approximately .0093 to .093 inch is produced on the article.
- FIG 2 there is shown a drawing of a photomicrograph oi a molybdenum turbine bucket produced by simultaneous vapor deposition of silicon and titanium for a period of eight hours at a temperature of 2000 F.
- the body of the article consists of rather large crystals of molybdenum 29 having an overlying layer of silicon 30.
- a layer 3l of indeterminate composition which is probably a complex mixture of molybdenum, titanium and silicon in the form of various intermetallic compounds.
- the uppermost layer 32 is a mixture of titanium and silicon compounds of these two elements. This structure has been found capable of withstanding operation in a gas turbine operating at temperatures estimated at 1600" to 1800 F. for periods in excess of 100 hours without apparent deterioration.
- the coatings produced in accordance with this invention are integrally bonded to the base metal and cannot be stripped mechanically from the body metal, as is the case of coatings applied by electroplating or dipping. Further, the coatings are inert with respect to the molybdenum base metal and show no evidences of reaction with the base metal after the original deposition.
- vapor phase deposition processes described herein have complete throwing power i. e., a uniform coating can be deposited over the entire surface of the article regardless of corners, grooves or other irregularities in the surface of the article. This is not true of other types of coating procedures.
- a molybdenum body having a corrosion resistant outer layer of nitrided silicon thereon.
- the method of providing a molybdenum body with a corrosion resistant coating comprises depositing on the surface of said body a layer consisting essentially of an element selected from the group consisting of silicon and zirconium, and reacting the selected element in said layer with a different element selected from the group consisting of silicon, zirconium, titanium, boron, aluminum and nitrogen to form a binary coating on said body, said coating being integrally bonded to the molybdenum ⁇ body.
- a molybdenum body having an outer corrosion resistant coating thereon consisting essentially of the reaction product of an element selected from the group consisting of silicon and zirconium with a different element selected from the group consisting of silicon, zirconium, titanium, boron, aluminum and nitrogen, said coating being integrally bonded to the molybdenum body.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
Description
Sept. 28, 1954 E WAlNER 2,690,409
BINARY COATING F REFRACTORY METALS Filed July 8, 1949 Patented Sept. 28, 1954 BINARY COATING OF REFRACTORY METALS Eugene Waner, Cleveland, Ohio, assignor to Thompson Products, Inc., Cleveland, Ohio, a
corporation of Ohio Application July 8, 1949, Serial No. 103,632
(Cl. 14S-31.5)
4 Claims.
The present invention relates to a method of coating refractory metal articles to enhance their resistance to high temperature and corrosive atmospheres. The present invention specifically relates to the manufacture of coated refractory metal turbine buckets for use in jet turbines and the like.
Turbo-jet engines or the like are usually provided with an axial ow turbine operated by exhaust gases which drive a blower furnishing air to the burners. Such turbines operate at extremely high temperatures, and one of the major difiiculties encountered in the manufacture of jet turbines has been the provision of suitable material for bucket blades which can withstand the effect of such high temperatures. The turbine bucket will normally be exposed to temperatures in the range of from 1600 to 2000 F. and the bucket must have sufiicient strength, toughness, creep resistance, and resistance to the corrosive atmosphere present to enable the bucket to operate efficiently without deformation or corrosion.
In addition to turbine buckets, articles produced by the present invention may be employed under conditions of higher temperature and lower stress than exist in a gas turbine bucket. One such application occurs in nozzle diaphragm vanes in gas turbines which must withstand very severe conditions of temperature and thermal shock 'but at a relatively lower stress.
One refractory metal which exhibits excellent properties of strength, toughness and creep resistance at elevated temperatures is molybdenum. However, metallic molybdenum itself cannot be used. The trioxide of molybdenum, which is formed under the oxidizing conditions present in the turbine, sublimes at a temperature of about 1463 F. at an extremely rapid rate. This phenomenon gives rise to a characteristic smoking when bodies of molybdenum are heated to tempera-tures above 1463" F., resulting in the complete disappearance of the molybdenum within a matter of minutes. Another refractory metal which might be used for turbine bucket bodies is tungsten, even though it has a relatively high density.
To overcome this difficulty, I have herein provided a process for coating refractory metal such as molybdenum to provide thereon a tough, corrosion-resistant coating impervious to the eect of oxygen and other gases.
It is then an object of the present invention to provide a method for coating refractory metals such as molybdenum to provide an extremely corrosion resistant surface thereon.
Another object of the present invention is to provide a method for coating refractory metals which yields a rm bond to the refractory surface and makes it impervious to the effects of operation under conditions of high stress and high temperatures.
A further object of the invention is to provide a coated molybdenum article, such as a turbine bucket, capable of operation within a turbine engine for extended periods of time without deteroration.
In the process of the present invention, the refractory metal is coated with a metal selected from the group consisting of silicon, aluminum, and zirconium and the coating is subsequentlyreacted with another element to produce a binary coating. The coating and reaction steps may be carried out concurrently, or the refractory metal may be given a primary coat of silicon, aluminum or zirconium and subsequently reacted with the second element, which is preferably selected from the group consisting of the elements in groups III, IV or V of the periodic table.
The element which is to be reacted with the primary coating is one whose ionic size is close enough to the ionic size of the primary metal coating to allow the elements to be mutually soluble with each other in the solid state, and thus increase the rate of intermetallic compound formation. Such intermetallic compounds per se or the compounds formed with the base metal then have a size which approximates the atomic spacing in the lattice of the base metal. The primary coating inherently leaves microscopic voids, tunnels or weak spots in the surface of the article, thus decreasing its ability to withstand corrosion. By reacting the primary coating with a second element of the type menticned, it is believed that the voids in the atomic spacing of the single metal are iilled by the reaction with the second element, thus making the layer much less permeable. The reaction with the second element depends primarily upon the spacing in the crystal lattice of the primary coating. Where the primary coating is silicon, the secondary element may be titanium, zirconium, boron, aluminum, nitrogen, or carbon. In the case of aluminum, a primary coat of this metal may be further reacted with zirconium, titanium, chromium, boron, tin, and nickel. Where zirconium is used as the primary coat, the subsequent reaction may be carried out with aluminum, boron, carbon, silicon, titanium, and nitrogen.
The compounds resulting from the reaction of the second named elements with the primary coating are complex intermetallic compounds Which exhibit the property of forming an eX- tremely firm bond to the surface of the refractory metal. It is believed that this rm bond results from the closure of voids in the atomic lattice of 'the-base metal, but the present invention is in no way limited to the correctness of the given theory.
The coating process of the present invention may be most conveniently carried out in a vapor phase deposition system of the type described in a copending application Serial No. 98,272, led June 10, 1949 by myself and Robert A. Kempe. In that application, there is described a Amethod for coating refractory metals wherein a decomposable compound, preferably a halide, of the coating metal is carried into a reaction zone in a stream of hydrogen and therein decomposedto form a layer of substantially pure metal on the surfaces of the refractory metal. Deposition of thecoating metal compound, as discussed in this previous application, vis-the result of several factors. Some of the compound is probably decomposed vby the high temperatures,on the order of 1600 to 2300 F. present in the coating Zone. Another portion of 'the decomposable coating compound is reducedby the presence of the hydrogen atmosphere in which the compound is introduced. Another reaction which -occurs is the metathetical reaction between the coating metal compound and the -molybdenum wherein the coating metal is deposited on the molybdenum with `the rformation of a volatile molybdenum compound in the-exchange reaction.
The decom'posable compoundlemployed in the primary coating step is preferably a halide, for example silicon tetrachloride, trichlor silane, silicon-tetrabromide, tribromo silane, silicon tetraiodide, aluminum chloride, valuminum bromide, aluminum iodide, vzirconium chloride, zirconium bromide, or zirconium iodide. vWhere the coating metal compound exists `normally in the liquid state, vas is in the case-of silicon tetrachloride, the coating metal compound may be introduced into the 'heated reaction AZone Vby merely passing a stream of hydrogen gas through a liquid pool of the compound so -that vapors thereof are carried by the hydrogen into the reaction zone. Where the coating metal compound `is normally solid, the hydrogen `gas vmay be passed `over a heated source ofthe c'ompound'in powder vform 'to carry it' into'th'e reaction zone.
lIn reacting the primary coating with the'second element, a decomposable compound capable of yielding the second element is introduced into thereac'tion zone either prior to, during, or after the deposition of the primary coating. vTypical decomposable compounds which may be used in this connection are titanium tetrachloride, titanium tetrabromide, chromium chloride, nickel chloride, boron chloride, and tinchloride. Where thepri'mary metallic 'coating is to be carburized, i. e., reacted with carbon, a carburiz'ing gas is introduced into the reaction zone. Any common carburizing gas usuch as -natural gas, lcarbon monoxide, ethane, propane, `lnitane, and benzene maybe used, or the carburizing operation may be carried out in carburizing packs, or in liquid baths.
Where the primary coating is to .be nitrided, i. e., reacted with nitrogen, ammonia gas Vis preferably introduced into the reaction chamber to react .with'the primaryscoating. In addition to 4 ammonia gas, various decomposable cyanides may be employed.
The reaction conditions in the coating Zone include temperatures from 1600u to 2300 F. and preferably from 1700 to 2l00 F. and reaction times ranging from 4 to 24 hours depending upon the vpenetration required. Normally, the depth of the primary coating will -be on the'order of about 0.0003 to about 0.003 inch.
AWhere silicon is used as the primary coating metal, vthe ,outermost layer is substantially pure silicon, the nextlayer is probably a molybdenumsiliccn compound having a relatively high silicon content, possibly MoSiZ while the innermost layer producedby "the coating process is essentially a molybdenum-'silicon compound having a high molybdenum concentration, such as MozSi together with solid solutions of molybdenum and silicon. rhis type of structure is one whichis stable at high temperatures, and provides an excellent intimate bond with the .-molybdenum base. The reaction with 'the Ysecond element of the type mentioned above enhances'the properties of the coating by filling up the microscopic voids and Weak spots, resultingin a substantial increase in stability andresistance to high temperature oxidation.
VA further description of the present invention will .be made in connection with the attached sheet of drawings in which:
Figure 1 is aow sheet showing in'generalthe various stages of the coating process; and
Figure v2 is a drawing of a iphotomicrograph taken as a magnication of 500K showing the crystal structure of a molybdenum article coated in .accordance with the `present invention.
As'shown on the drawings:
Reference numeralV I0 denotes a'supply of purging gas, which is preferably an inert gas such as nitrogen, argon, neon,'he1ium or the like which is passed .into apurication zone I I where moisture and Vother contaminantsare removed. The purication zone II may consist of a supply `of liquid sulfuric `acid through whichthe purging gas 'is bubbled. v'The `purified gas is next introduced into a heated 'furnace IZWhichsurrounds a Vfurnace tube I3, control of .the gas owing into the furnace'tube being .controlled by `means of a valve I4.
Disposed Vwithin the Vfurnace tube I3 are a plurality of boats L5 Ywhich carry 'a number of turbine buckets I6 or other article's composed of a refractory metal such as .-.molybdenum- These articles are `normally preshaped into their 'desired form, and Worked at temperatures below the recrystallization temperature Aof the metal, to enhance its physical properties. The temperature of the furnace I2 is regulated between 1600 and 2?00o F., with .1700to 2100o F. being a preferred range.
A supply of hydrogen gas I1 is provided for introduction into thefurnacetube I3. VPrior to its introduction into the furnace tube I3, the hydrogen gas is dehydrated andpurined by means of various desiccants such `asjfor example, packed columns of silica gel, calcium chloride, 'or liquid sulfuric acid in a puriiication stage I8. The owofthe hydrogen gas into the furnacetube I3 .is vcontrolled by `'means Vof a valve vI9. .A secondfsource of hydrogen gas 20 and its purication stage 2| is also providedto act asa lcarryingmedium'for the coating compounds. `A source of the primary coating-compound A, normally a decomposablehalide, kis maintained in Va zone 22. A source of a compound, -B, of .the Ysecond `reactive element which may be one of the metals given previously, or a carburizing or nitriding gas is indicated at zone 23. Flow into the zones 22 and 23 is regulated by means of the respective valves 2li and 25 while flow of hydrogen gas containing the coating compounds is regulated by means of the valves 23 and 21 at the exit of stages 22 and 23. In this arrangement, either of the coating compounds may be introduced separately into the reaction zone or the introduction `of both compounds may be made simultaneously.
Initially, the furnace tube I3 is purged by means of the purging gas I9 to rid the furnace chamber of moisture and oxygen or other undesirable contaminants. Thereupon, the hydrogen and the coating metal compound which it carries is introduced into the furnace tube i3, Where it contacts the molybdenum article I6 for periods of time ranging from 4 to 24 hours. Excess hydrogen is vented from the furnace tube by means of tube 23. The molybdenum articles I6 are maintained in the furnace tubes I3 until a coating having a thickness of approximately .0093 to .093 inch is produced on the article.
In Figure 2, there is shown a drawing of a photomicrograph oi a molybdenum turbine bucket produced by simultaneous vapor deposition of silicon and titanium for a period of eight hours at a temperature of 2000 F. As illustrated in that drawing, the body of the article consists of rather large crystals of molybdenum 29 having an overlying layer of silicon 30. Immediately above the silicon layer 30 is a layer 3l of indeterminate composition, which is probably a complex mixture of molybdenum, titanium and silicon in the form of various intermetallic compounds. The uppermost layer 32 is a mixture of titanium and silicon compounds of these two elements. This structure has been found capable of withstanding operation in a gas turbine operating at temperatures estimated at 1600" to 1800 F. for periods in excess of 100 hours without apparent deterioration.
From the foregoing, it will be appreciated that I have herein provided a process for coating refractory metals which are in themselves incapable of withstanding the corrosive effect encountered in the operation of a gas turbine.
The coatings produced in accordance with this invention are integrally bonded to the base metal and cannot be stripped mechanically from the body metal, as is the case of coatings applied by electroplating or dipping. Further, the coatings are inert with respect to the molybdenum base metal and show no evidences of reaction with the base metal after the original deposition.
The vapor phase deposition processes described herein have complete throwing power i. e., a uniform coating can be deposited over the entire surface of the article regardless of corners, grooves or other irregularities in the surface of the article. This is not true of other types of coating procedures.
It will be understood that modifications and variations may be effected without departing from the scope of the novel concepts of the present invention.
I claim as my invention:
1. The method of providing a corrosion resistant surface on a molybdenum article which comprises depositing a layer of silicon on said article, and nitriding the silicon layer.
2. A molybdenum body having a corrosion resistant outer layer of nitrided silicon thereon.
3. The method of providing a molybdenum body with a corrosion resistant coating, which comprises depositing on the surface of said body a layer consisting essentially of an element selected from the group consisting of silicon and zirconium, and reacting the selected element in said layer with a different element selected from the group consisting of silicon, zirconium, titanium, boron, aluminum and nitrogen to form a binary coating on said body, said coating being integrally bonded to the molybdenum` body.
4. A molybdenum body having an outer corrosion resistant coating thereon consisting essentially of the reaction product of an element selected from the group consisting of silicon and zirconium with a different element selected from the group consisting of silicon, zirconium, titanium, boron, aluminum and nitrogen, said coating being integrally bonded to the molybdenum body.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 1,551,333 Schroter et al. Aug. 25, 1925 1,929,252 Morris -1 Oct. 3, 1933 2,096,924 Schwartzkopf Oct. 26, 1937 2,235,504 Rennie Mar. 18, 1941 2,294,562 Kingston Sept. 1, 1942 FOREIGN PATENTS Number Country Date 842,981 France June 22, 1939 OTHER REFERENCES Metals Handbook, 1939 edition, pages 1054, 1055, 1074, 1090. Published in 1939 by the American Society for Metals.
Claims (1)
1. THE METHOD OF PROVIDING A CORROSION RESISTANT SURFACE ON A MOLYBDENUM ARTICLE WHICH COMPRISES DEPOSITING A LAYER OF SILICON ON SAID ARTICLE, AND NITRIDING THE SILICON LAYER.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US103632A US2690409A (en) | 1949-07-08 | 1949-07-08 | Binary coating of refractory metals |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US103632A US2690409A (en) | 1949-07-08 | 1949-07-08 | Binary coating of refractory metals |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2690409A true US2690409A (en) | 1954-09-28 |
Family
ID=22296193
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US103632A Expired - Lifetime US2690409A (en) | 1949-07-08 | 1949-07-08 | Binary coating of refractory metals |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2690409A (en) |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2763920A (en) * | 1951-03-06 | 1956-09-25 | Thompson Prod Inc | Corrosion and impact-resistant article |
| US2763919A (en) * | 1950-07-28 | 1956-09-25 | Thompson Prod Inc | Coated refractory body |
| US2772985A (en) * | 1951-08-08 | 1956-12-04 | Thompson Prod Inc | Coating of molybdenum with binary coatings containing aluminum |
| US2788289A (en) * | 1951-06-29 | 1957-04-09 | Climax Molybdenum Co | Method of forming protective coatings for molybdenum and molybdenum-base alloys |
| US2788290A (en) * | 1954-09-17 | 1957-04-09 | Climax Molybdenum Co | Method of forming a protective coating on a molybdenum-base article |
| US2823151A (en) * | 1953-10-14 | 1958-02-11 | Fansteel Metallurgical Corp | Highly refractive molybdenum bodies |
| US2855328A (en) * | 1951-07-24 | 1958-10-07 | Long Roger Alden | Process for coating metal base with silicon and heating to form metalsilicon surfacelayer |
| US2854739A (en) * | 1954-07-29 | 1958-10-07 | Thompson Prod Inc | Multiple coated molybdenum base article |
| US2865088A (en) * | 1952-10-16 | 1958-12-23 | Fansteel Metallurgical Corp | Refractory metal bodies |
| US2870527A (en) * | 1953-01-15 | 1959-01-27 | Fansteel Metallurgical Corp | Refractory metal bodies and method of making same |
| US2924004A (en) * | 1960-02-09 | Refractory metal bodies | ||
| US2971251A (en) * | 1954-07-01 | 1961-02-14 | Philips Corp | Semi-conductive device |
| US2993678A (en) * | 1955-07-21 | 1961-07-25 | Gen Electric | Coated molybdenum article |
| US3029162A (en) * | 1959-05-21 | 1962-04-10 | Chromalloy Corp | Process for the production of metallic borides on the surface of metals |
| US3045333A (en) * | 1951-10-18 | 1962-07-24 | Rem Cru Titanium Inc | Titanium coated article |
| US3069288A (en) * | 1959-08-06 | 1962-12-18 | Gen Electric | Self-repairing coatings for metal |
| US3081530A (en) * | 1960-08-03 | 1963-03-19 | Union Carbide Corp | Coated columbium |
| US3092899A (en) * | 1958-03-31 | 1963-06-11 | Gen Motors Corp | Multilayered composite metal article |
| US3153581A (en) * | 1960-11-21 | 1964-10-20 | Tektronix Inc | Large area connection for semiconductors and method of making |
| US3156978A (en) * | 1953-02-16 | 1964-11-17 | Gen Motors Corp | Joining titanium and titanium-base alloys to high melting metals |
| US3317356A (en) * | 1964-03-31 | 1967-05-02 | Texas Instruments Inc | Process for applying a protective coat of silicon carbide to refractory metals |
| US3492102A (en) * | 1966-03-16 | 1970-01-27 | United Aircraft Corp | Refractory metal articles protected from atmospheric contamination at elevated temperatures by surface coatings |
| US4293619A (en) * | 1979-06-11 | 1981-10-06 | The United States Of America As Represented By The United States Department Of Energy | Silicon-nitride and metal composite |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1551333A (en) * | 1925-08-25 | Tool and die | ||
| US1929252A (en) * | 1931-12-09 | 1933-10-03 | Moore Drop Forging Company | Nitrided ferrous article |
| US2096924A (en) * | 1932-07-22 | 1937-10-26 | Schwarzkopf Paul | Composite structural product and method of making the same |
| FR842981A (en) * | 1937-09-06 | 1939-06-22 | Lorenz C Ag | Method of applying deposits with high heat-insulating radiation power and low secondary electron emission power, in particular in electron discharge tubes |
| US2235504A (en) * | 1939-04-19 | 1941-03-18 | Westinghouse Electric & Mfg Co | Ignitron starter |
| US2294562A (en) * | 1939-07-15 | 1942-09-01 | Hygrade Syivania Corp | Carbonized steel strip and method of making same |
-
1949
- 1949-07-08 US US103632A patent/US2690409A/en not_active Expired - Lifetime
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1551333A (en) * | 1925-08-25 | Tool and die | ||
| US1929252A (en) * | 1931-12-09 | 1933-10-03 | Moore Drop Forging Company | Nitrided ferrous article |
| US2096924A (en) * | 1932-07-22 | 1937-10-26 | Schwarzkopf Paul | Composite structural product and method of making the same |
| FR842981A (en) * | 1937-09-06 | 1939-06-22 | Lorenz C Ag | Method of applying deposits with high heat-insulating radiation power and low secondary electron emission power, in particular in electron discharge tubes |
| US2235504A (en) * | 1939-04-19 | 1941-03-18 | Westinghouse Electric & Mfg Co | Ignitron starter |
| US2294562A (en) * | 1939-07-15 | 1942-09-01 | Hygrade Syivania Corp | Carbonized steel strip and method of making same |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2924004A (en) * | 1960-02-09 | Refractory metal bodies | ||
| US2763919A (en) * | 1950-07-28 | 1956-09-25 | Thompson Prod Inc | Coated refractory body |
| US2763920A (en) * | 1951-03-06 | 1956-09-25 | Thompson Prod Inc | Corrosion and impact-resistant article |
| US2788289A (en) * | 1951-06-29 | 1957-04-09 | Climax Molybdenum Co | Method of forming protective coatings for molybdenum and molybdenum-base alloys |
| US2855328A (en) * | 1951-07-24 | 1958-10-07 | Long Roger Alden | Process for coating metal base with silicon and heating to form metalsilicon surfacelayer |
| US2772985A (en) * | 1951-08-08 | 1956-12-04 | Thompson Prod Inc | Coating of molybdenum with binary coatings containing aluminum |
| US3045333A (en) * | 1951-10-18 | 1962-07-24 | Rem Cru Titanium Inc | Titanium coated article |
| US2865088A (en) * | 1952-10-16 | 1958-12-23 | Fansteel Metallurgical Corp | Refractory metal bodies |
| US2870527A (en) * | 1953-01-15 | 1959-01-27 | Fansteel Metallurgical Corp | Refractory metal bodies and method of making same |
| US3156978A (en) * | 1953-02-16 | 1964-11-17 | Gen Motors Corp | Joining titanium and titanium-base alloys to high melting metals |
| US2823151A (en) * | 1953-10-14 | 1958-02-11 | Fansteel Metallurgical Corp | Highly refractive molybdenum bodies |
| US2971251A (en) * | 1954-07-01 | 1961-02-14 | Philips Corp | Semi-conductive device |
| US2854739A (en) * | 1954-07-29 | 1958-10-07 | Thompson Prod Inc | Multiple coated molybdenum base article |
| US2788290A (en) * | 1954-09-17 | 1957-04-09 | Climax Molybdenum Co | Method of forming a protective coating on a molybdenum-base article |
| US2993678A (en) * | 1955-07-21 | 1961-07-25 | Gen Electric | Coated molybdenum article |
| US3092899A (en) * | 1958-03-31 | 1963-06-11 | Gen Motors Corp | Multilayered composite metal article |
| US3029162A (en) * | 1959-05-21 | 1962-04-10 | Chromalloy Corp | Process for the production of metallic borides on the surface of metals |
| US3069288A (en) * | 1959-08-06 | 1962-12-18 | Gen Electric | Self-repairing coatings for metal |
| US3081530A (en) * | 1960-08-03 | 1963-03-19 | Union Carbide Corp | Coated columbium |
| US3153581A (en) * | 1960-11-21 | 1964-10-20 | Tektronix Inc | Large area connection for semiconductors and method of making |
| US3317356A (en) * | 1964-03-31 | 1967-05-02 | Texas Instruments Inc | Process for applying a protective coat of silicon carbide to refractory metals |
| US3492102A (en) * | 1966-03-16 | 1970-01-27 | United Aircraft Corp | Refractory metal articles protected from atmospheric contamination at elevated temperatures by surface coatings |
| US4293619A (en) * | 1979-06-11 | 1981-10-06 | The United States Of America As Represented By The United States Department Of Energy | Silicon-nitride and metal composite |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2690409A (en) | Binary coating of refractory metals | |
| US2772985A (en) | Coating of molybdenum with binary coatings containing aluminum | |
| US4080486A (en) | Coating system for superalloys | |
| US3771976A (en) | Metal carbonitride-coated article and method of producing same | |
| US3486927A (en) | Process for depositing a protective aluminum coating on metal articles | |
| GB2167773A (en) | Improvements in or relating to coating processes | |
| US2685543A (en) | Production of chromium carbide surfaced wear resistant ferrous bodies | |
| US3061462A (en) | Metallic diffusion processes | |
| US4024294A (en) | Protective coatings for superalloys | |
| US4427720A (en) | Vapor phase process for the deposition of a protective metal coating on a metallic piece | |
| US3637320A (en) | Coating for assembly of parts | |
| Squillace et al. | The control of the composition and structure of aluminide layers formed by vapour aluminising | |
| PT85716B (en) | PRODUCTION OF ARTICLES OF CERAMIC AND CERAMIC-METAL COMPOSITES WITH SURFACE COATING | |
| US3117846A (en) | Multi layer difusion coatings and method of applying the same | |
| GB982766A (en) | Process and apparatus for decomposing gaseous metal compounds | |
| US3290126A (en) | Protectively coated nickel or cobalt articles and process of making | |
| US3307964A (en) | Process of forming protective coatings on columbium and tantalum using a fluidized bed | |
| US3222212A (en) | Process for chromizing | |
| US3012902A (en) | Process of reacting a vaporous metal with a glass surface | |
| US2665998A (en) | Method of preparing highly refractory bodies | |
| US3597172A (en) | Alloys having an aluminum-diffused surface layer | |
| US2354163A (en) | Lining for hydrocarbon treating apparatus | |
| US3264135A (en) | Method of coating carbonaceous base to prevent oxidation destruction and coated base | |
| US2894320A (en) | Coating uranium from carbonyls | |
| US2875090A (en) | Methods of forming superficial diffusion alloys on metal pieces and especially refractory metal pieces |