US2683088A - Soft bibulous sheet - Google Patents
Soft bibulous sheet Download PDFInfo
- Publication number
- US2683088A US2683088A US292719A US29271952A US2683088A US 2683088 A US2683088 A US 2683088A US 292719 A US292719 A US 292719A US 29271952 A US29271952 A US 29271952A US 2683088 A US2683088 A US 2683088A
- Authority
- US
- United States
- Prior art keywords
- adduct
- acids
- paper
- water
- stock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002253 acid Substances 0.000 claims description 31
- 150000007513 acids Chemical class 0.000 claims description 22
- 239000000835 fiber Substances 0.000 claims description 22
- 150000001408 amides Chemical class 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 10
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 9
- 239000000194 fatty acid Substances 0.000 claims description 9
- 229930195729 fatty acid Natural products 0.000 claims description 9
- 150000004665 fatty acids Chemical class 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 239000000123 paper Substances 0.000 description 33
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- 125000002947 alkylene group Chemical group 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000003784 tall oil Substances 0.000 description 10
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 8
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 6
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Chemical class O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 125000002091 cationic group Chemical group 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Chemical class OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 6
- -1 hydroxyalkyl amide Chemical class 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002655 kraft paper Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 3
- BTXXTMOWISPQSJ-UHFFFAOYSA-N 4,4,4-trifluorobutan-2-one Chemical class CC(=O)CC(F)(F)F BTXXTMOWISPQSJ-UHFFFAOYSA-N 0.000 description 3
- BQACOLQNOUYJCE-FYZZASKESA-N Abietic acid Natural products CC(C)C1=CC2=CC[C@]3(C)[C@](C)(CCC[C@@]3(C)C(=O)O)[C@H]2CC1 BQACOLQNOUYJCE-FYZZASKESA-N 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000007900 aqueous suspension Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- BLFRQYKZFKYQLO-UHFFFAOYSA-N 4-aminobutan-1-ol Chemical compound NCCCCO BLFRQYKZFKYQLO-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 150000001470 diamides Chemical class 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical class OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- JXSJBGJIGXNWCI-UHFFFAOYSA-N diethyl 2-[(dimethoxyphosphorothioyl)thio]succinate Chemical compound CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC JXSJBGJIGXNWCI-UHFFFAOYSA-N 0.000 description 1
- 230000000447 dimerizing effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N hydroxylamine group Chemical group NO AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229940101532 meted Drugs 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229940061319 ovide Drugs 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/62—Rosin; Derivatives thereof
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/03—Non-macromolecular organic compounds
- D21H17/05—Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
- D21H17/07—Nitrogen-containing compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/22—Agents rendering paper porous, absorbent or bulky
Definitions
- the present invention relates to bibulous cellulosic paper and paper tissues of .improved softness and to a method for the manufacture therefor. More particularly, the present invention relates to a process for the manufacture of bibulous paper and paper tissues of improved softness by a process wherein a substantially non-ionic water-dispersible, water-insoluble alkylene oxide adduct of a hydroxyalkyl amide of a carboxylic acid of 14-22 carbon atoms is added to a stock of cellulosic fibers in aqueous suspension and said adduct is adsorbed by the fibers.
- the invention includes the use of these adducts in conjunction with hydrophilic, cationic wetstrength resins, and further includes the formation of bibulous paper and paper tissues from the adduct-treated fibers with or without the wet-strength resins.
- soft bibulous paperand tissues of the type described can be prepared by forming a stock of cellulosic resins.
- fibers in the ordinary way, adding to the stock a very small proportion, for example from 0.1% to 5% of a water-dispersible, water-insoluble alkylene oxide adduct of a hydroxyalkyl amide of a carboxylic acid having between about 14 and about 22 carbon atoms, aging the stock for a few minutes until adsorption of the adduct by the fibers is substantially complete, sheeting the stock at an appropriate basis weight, and drying the water-laid sheet.
- a very small proportion for example from 0.1% to 5% of a water-dispersible, water-insoluble alkylene oxide adduct of a hydroxyalkyl amide of a carboxylic acid having between about 14 and about 22 carbon atoms
- Cellulosic fibers in aqueous suspension are negatively charged, and in the past it has been generally believed that such fibers are substantive only to positively charged or cationic particles.
- the amide adducts of the present invention are almost if not entirely nonionic in nature. The reason why these adducts are substantively adsorbed in so rapid a manner by cellulosic fibers is therefore unknown, and I do not wish to be limited. to any particular theory.
- the fibers possess substantially unimpaired substantivity for cationic, hydrophilic, wet strength It has been found that after the fibers have been treated with a small proportion of the adduct within the range specified above, and while still in aqueous suspension, they may be treated with a small proportion of a cationic, hydrophilic, wet strength resinous colloid and then sheeted and cured at an elevated temperature in accordance with appropriate practice to develop the properties of the particular wet strength .resin used. A paper of substantially v the expected wet strength is thereby obtained.
- Alpha pulp may also be formed into bibulous sheets of improved softness, according to the present invention, as well as the inherently soft pulps prepared by cooking cellulosic chips and bleaching and degrading the fibers by the use of sodium hypochlorite.
- the benefits of the present invention extend to bibulous papers and tissues prepared from any of the commercial papermakers cellulosic pulps.
- Adducts suitable for the practice of the present invention may be produced by known means by a variety of processes. Preferably, they will be prepared by a two-step process in which a hydroxyalkyl amide is formed by the reaction of a hydroxyalkylamine with an appropriate acid, followed by reaction of the amide with an alkylene oxide such as propylene oxide or butylene oxide. Ethylene oxide is preferred.
- the acid is agitated with a slight excess of a primary or secondary hydroxylamine at about 200 C. until the calculated amount of water has evolved. Any excess or unreac-ted amine remaining in the reaction mixture is then stripped off. The residue is reacted with the alkylene oxide at about 120 C.
- Any fatty acid, saturated or unsaturated, containing about 14-22 carbon atoms may be used in pure form or admixed with similar acids. Acids of this type are represented by such monobasic acids as coconut, palmitic, linoleic, linolenic, oleie and stearic acids and by abietic acid and rosin acids. Since mixtures may be used, both refined and crude tall oil fall within this class, crude tall oil consisting of about 40%-60% of fatty acids, %-10% of unsaponifiables, chiefly,
- lignins and sterols and the balance abietic and other rosin acids.
- Refined tall oil is crude tall oil from which most of the unsaponifiables and frequently a part of the abietic and other rosin acids have been removed. Since crude tall oil constitutes the most readily available source of fatty acids and yields results substantially equal to the results obtained by the use of the less readily available types of acid mentioned, crude tall oil is the raw material of choice for the practice of the present invention.
- the preferred acids are those selected from the group of acids consisting of the fatty acids and rosin acids of about 14 to about 22 carbon atoms.
- hydroxyalkylamines used in the synthesis described above are the short-chain amines having a chain length not in "excess of 4 carbon atcms, for example, 4-aminobutanol, 4,4- iminodibutanol and 2,2-iminodiethanol. Generally, however, superior results are obtained by the use of the readily available mono and diethanolamines. By the use of these amines, as described above, suitable substituted amides may readily be prepared.
- the amount of alkylene oxide reacted should be at least sufficient to form an adduct which is freely dispersible when gently agitated with ten times its weight of water at 20 0., forming a stable, cloudy dispersion therein.
- insufficient alkylene oxide should be used to form an adduct which is freely watersoluble, that is, which forms a clear, transparent mixture with ten times its weight of water at 20 C.
- the minimum amounts of the alkylene oxide is about 3.5 mols and the maximum about 10 mols. Beyond this limit, water-soluble adducts form which exhibit reduced capacity to soften.
- the disubstituted amides of these acids considerably more alkylene oxide is necessary, and in the case of the tetrasubstituted diamides of the dicarboxylic fatty acids a larger amount still.
- the exact amount of oxide needed varies with the character of the acid selected, and the number of hydrcxyalkyl groups present. As a result, no numerical limit can be set to the amount of the alkylene oxide required in every instance.
- the minimum proportion of the alkylene oxide which should be reacted is the proportion which is just sufficient to permit the amide to form a stable dispersion in water, and in this range, the softening action of the compound is at its peak while minimizing consumption of the more costly oxide.
- the use of more alkylene oxide usually confers no added benefit.
- the amide-ethylene oxide condensates prepared as described above are viscous pastes or waxy solids, and it is therefore advantageous to use them as 5% or more dilute, water dispersions thereof.
- a noticeable degree of: softening results. when as little as 0.1% of the adduct is added, based on the weight. of the dry fibers.
- the improvement in softness continues rapidly through the range of roughly 0.5% toi.5%.
- the addition of further amounts of the adduct' causes'an additional degree of softening, but this generally is less than proportional to the additional amount added. Beyond 4%, the improvement-effected is slight, and the maximum proportion of amide which. can beused to advantage in most instances is about 5%, based on the weight of the fibers. As a result, it is preferred to add about 0.5% to 1.5% of the adduct.
- the consistency of the stock during addition of. the adduct should be at a normal value hethe stock is stirred gently to distribute the adduct rapidly and uniformly therethrough. Thereafter, the stock is aged. ,In numerous instances,
- the pH of the stock is not critical as adsorption of the adducts takes. place with the stock at any pH between about 2 and 9. Somewhat better results are obtained, however, when the stock is on the acid side, particularly between pH 4 and 6. Asa result, the choice of pH will depend primarily on other considerations such as the character of. the stock andits tendency to foam,- and the. presenceor absence of Wet'strength resins and pH sensitive fillers and colorants... A paper having a pH. of as high asabout 8.0 may be obtained, permitting the incorporation of acidsensitive fillers and. colorants into the stock, together with those wet strength resins: which are rapidly adsorbed under alkaline conditions. A suitable'wet.
- strength resin of this type may be formed by the reaction of ammonium with epichlorohydrin'as disclosed and claimed in 00- pending application Serial No. 277,741 filed on March- 20, 1952 by J. H. Daniel, Jr., et a1.
- the adduct treated fibers need only be dried, as the adducts of the present invention are not benefitted by subjecting them tocuring...conditions. .
- Thewaterlaid sheets will therefore be dried at about 200 F. as is normal; the
- the temperature and duration of the drying should be such as will develop the wet strength properties of the resin. While this varies with the specific wet strength resin employed, good results with ordinary paper are generally obtained when the resin is cured at 200 F. to 260 F. for 025 to 3.minutes. With very light weight papers and tissues the time is reduced, decreasing to about 1 second in the case of facial tissues.
- Example 1 1350 parts (4 mols) of crude tall oil (Arizona Crude Tall Oil III, Acid No. 168) containing 48% During addition..
- ance abietic acid and resin acids was mixed with 4.4 mols (280 parts) of technical monoethanolamine and charged into a reaction vessel equipped with an agitator, distilling column, and reflux condenser. The temperature of the mixture was raised to the point at which water evolution began, and then slowly raised to about 200 C. and maintained atthat temperature until no more water distilled. The heating was then continued for one additional hour at that temperature, the total reaction time being about 6.5 hours. Stirring was continued throughout. Vacuum was applied and excess monoethanolamine was distilled from the product. The product was a viscous syrup. On titration with 0.1 N-sodium hydroxide solution, the product was found to contain less than 3% acid, calculated as abietic acid.
- a series of adducts were prepared as follows.
- the amide prepared above was charged into a reaction flask, together with 20 parts (5 mol percent of 40% aqueous sodium hydroxide solution as catalyst.
- the reaction flask was fitted with a stirrer, an ice-water-cooled con-
- the amide was heated to C. and ethylene oxide gas passed in at such a rate as maintained, a slow rate of reflux, the reflux condenser being opened to atmospheric pressure. During the addition, the temperature fluctuated up to C.
- the flask was wei hed from time to time to determine the amount of ethylene oxide adsorbed, and samples periodically withdrawn. The products were dark,
- the adducts prepared contained the following amounts of combined ethylene oxide:
- a stock of northern bleached kraft pulp stocks were prepared by 'beatingxthe pulp to a green freeness of 475 cc. and diluting the stock to 0.6%
- the pH of the stock was then adjusted to 4.5 by the use of dilute sulfuric acid and divided into aliquots. One aliquot was retained as control. To the other aliquots were added a"10% aqueous dispersion of a'dductAabove in the amounts shown. The amounts shown rep resent the weight of the'addu'ct' as such, based and their tensile strength in pounds per inch determined in their long direction, in their short direction, and the results averaged. The results were then corrected to a 25 x 47-500 basis weight. The results are shown in the table which follows. Three series of tests are shown, each with its own control, indicating performance of the tests at different times with separately prepared batches of the northern kraft stock.
- Example 2 A stock was prepared by beating northern unbleached kraft pulp to a Green freeness of 525 cc., diluting the slurry thus obtained to 0.6% consistency and adjusting the pH to 4.5 with hydrochloric acid. The slurry was divided into four aliquots. One aliquot was retained as control. To the second aliquot was added 1% of adduct A above, as a 10% water dispersion. To the third aliquot was added 1% of the adduct, and after minutes, 1% of the cationic hydrophilic melamine-formaldehyde colloid prepared according to Example 1 of U. S. Patent No. 2,345,543, followed by aging for minutes. The percentages are based on the weight of thefibers. The fourth aliquot was treated only with melamine colloid as described. Handsheets were formed from all four aliquots as in Example 1, and their dry tensile 1 Estimated. after standing in water 1 hour.
- a sheet according to claim 1 wherein the amide is a hydroxyethyl amide.
- a sheet according to claim 2, wherein the adduct is an ethylene oxide adduct.
- a sheet according to claim 3, wherein the mixture of acids is the mixture of acids present in crude tall oil.
- a soft bibulous sheet of felted cellulosic fibers having uniformly adsorbed thereon between about 0.1% and 5.0% of their Weight of a waterdispersible water-insoluble alkylene oxide adduct of a short chain hydroxyalkyl amide of anacid selected from the group of fatty acids and rosin acids of 14 to 22 carbon atoms and mixtures thereof, and between about 0.1% and 4% of its weight of cured cationic hydrophilic wet strength resin.
- a sheet according to claim 6, wherein the mixture of acids is the mixture of acids present in crude tall oil.
- wet strength resin is a melamine-formaldehyde Wet strength resin.
Landscapes
- Paper (AREA)
Description
Patented July 6, 1954 UNITED sr r- NT orslcs sor'r BIBULOUS SHEET N Drawing. Application June 10, 1952,
Serial No. 292,719
8 Claims.
The present invention relates to bibulous cellulosic paper and paper tissues of .improved softness and to a method for the manufacture therefor. More particularly, the present invention relates to a process for the manufacture of bibulous paper and paper tissues of improved softness by a process wherein a substantially non-ionic water-dispersible, water-insoluble alkylene oxide adduct of a hydroxyalkyl amide of a carboxylic acid of 14-22 carbon atoms is added to a stock of cellulosic fibers in aqueous suspension and said adduct is adsorbed by the fibers. The invention includes the use of these adducts in conjunction with hydrophilic, cationic wetstrength resins, and further includes the formation of bibulous paper and paper tissues from the adduct-treated fibers with or without the wet-strength resins.
The manufacture of soft paper, and particularly personal bibulous tissues, of the type of expendable facial cleansing tissues, is an important rapidly growing specialty of the paper industry. These papers are characterized by their freedom from harshness, lack of odor, open texture, high absorbency for water and body fluids, and particularly by their softnessand physical limpness. In these respects, the personal tissues approximate, or even excel, the best grades of plain woven cotton towelling or handkerchief stock. 7
The problem of producing papers and paper tissues having the characteristics mentioned is a difficult one, as evidenced by the fact that many distinct procedures have been suggested for attaining this result. The papers and tissues produced by these processes, however, while frequently of considerable merit, are characterized by their high cost, whichrefiects the cost of the special pulps frequently employed, the cost of the special reagents utilized, and the additional labor and equipment usually required.
It is a particular object of the present invention to devise a method for manufacturing tissues of the type described from ordinary papermakers pulp or ordinary papermaking equipment, without the use of extra labor, spe cial machines, or costly reagents.
The discovery has now been made that soft bibulous paperand tissues of the type described can be prepared by forming a stock of cellulosic resins.
fibers in the ordinary way, adding to the stock a very small proportion, for example from 0.1% to 5% of a water-dispersible, water-insoluble alkylene oxide adduct of a hydroxyalkyl amide of a carboxylic acid having between about 14 and about 22 carbon atoms, aging the stock for a few minutes until adsorption of the adduct by the fibers is substantially complete, sheeting the stock at an appropriate basis weight, and drying the water-laid sheet.
Cellulosic fibers in aqueous suspension are negatively charged, and in the past it has been generally believed that such fibers are substantive only to positively charged or cationic particles. The amide adducts of the present invention, however, are almost if not entirely nonionic in nature. The reason why these adducts are substantively adsorbed in so rapid a manner by cellulosic fibers is therefore unknown, and I do not wish to be limited. to any particular theory.
The further discovery has been made that after adsorption of the above-described substantially non-ionic adducts by the fibers is complete, the fibers possess substantially unimpaired substantivity for cationic, hydrophilic, wet strength It has been found that after the fibers have been treated with a small proportion of the adduct within the range specified above, and while still in aqueous suspension, they may be treated with a small proportion of a cationic, hydrophilic, wet strength resinous colloid and then sheeted and cured at an elevated temperature in accordance with appropriate practice to develop the properties of the particular wet strength .resin used. A paper of substantially v the expected wet strength is thereby obtained.
. negatived, resulting in the formation of a paper of satisfactory wet strength which is even softer a ,9 than normal paper having substantially no wet strength at all.
The mechanism by which the amide adducts referred to reduce the harshness of cellulosic sheets is not understood, and again I do not wish to be limited to any particular theory. It is believed, however, that the action of these adducts is to interfere in some manner with the mutual adhesiveness of the fibers or the fiberto-fiber bonding which occurs when ordinary untreated cellulosic fibers are sheeted and dried. Thus, when the adducts of the present invention are employed, the fibers in the dry paper sheets appear to retain considerable freedom of movement causing the sheet to be apparently soft to the touch.
That the action of these compounds is not merely a lubricating one is proved by the fact that the softness of the sheet is not impaired when the adduct is extracted or leached from the sheet by the use of a suitable solvent, for example ethanol, as may be readily done.
Cellulosic papers and tissues prepared by the use of these adducts alone, in the absence of wetstrength resin, find use as facial tissues, toilet paper, blotting paper, diaper fillers, and paper intended for similar applications. Paper produced by the use of these adducts, followed by treatment with a wet-strength resin, find use as paper napkins, paper towels, and paper towelling.
Marked improvements have been obtained by the use of the present invention on papers made both from the widely available bleached and unbleached northern kraft pulps. Alpha pulp may also be formed into bibulous sheets of improved softness, according to the present invention, as well as the inherently soft pulps prepared by cooking cellulosic chips and bleaching and degrading the fibers by the use of sodium hypochlorite. Thus it appears that the benefits of the present invention extend to bibulous papers and tissues prepared from any of the commercial papermakers cellulosic pulps.
Adducts suitable for the practice of the present invention may be produced by known means by a variety of processes. Preferably, they will be prepared by a two-step process in which a hydroxyalkyl amide is formed by the reaction of a hydroxyalkylamine with an appropriate acid, followed by reaction of the amide with an alkylene oxide such as propylene oxide or butylene oxide. Ethylene oxide is preferred. In the first step, the acid is agitated with a slight excess of a primary or secondary hydroxylamine at about 200 C. until the calculated amount of water has evolved. Any excess or unreac-ted amine remaining in the reaction mixture is then stripped off. The residue is reacted with the alkylene oxide at about 120 C. in the presence of strong aqueous sodium hydroxide as catalyst, until the desired amount of the oxide has combined. A similar method is disclosed and claimed in copending application Serial No. 177,776 filed on August 4, 1950, by J. J. Carnes et al. now abandoned.
Any fatty acid, saturated or unsaturated, containing about 14-22 carbon atoms may be used in pure form or admixed with similar acids. Acids of this type are represented by such monobasic acids as coconut, palmitic, linoleic, linolenic, oleie and stearic acids and by abietic acid and rosin acids. Since mixtures may be used, both refined and crude tall oil fall within this class, crude tall oil consisting of about 40%-60% of fatty acids, %-10% of unsaponifiables, chiefly,
lignins and sterols, and the balance abietic and other rosin acids. Refined tall oil is crude tall oil from which most of the unsaponifiables and frequently a part of the abietic and other rosin acids have been removed. Since crude tall oil constitutes the most readily available source of fatty acids and yields results substantially equal to the results obtained by the use of the less readily available types of acid mentioned, crude tall oil is the raw material of choice for the practice of the present invention. In general, the preferred acids are those selected from the group of acids consisting of the fatty acids and rosin acids of about 14 to about 22 carbon atoms.
In addition certain of the higher di or poly basic acids formed by dimerizing or polymerizing one or more of the unsaturated monobasic acids of the class described have given comparable results. The cost of these acids, however, is prohibitively high, and therefore these acids fall outside the preferred group of acids set forth above.
The hydroxyalkylamines used in the synthesis described above are the short-chain amines having a chain length not in "excess of 4 carbon atcms, for example, 4-aminobutanol, 4,4- iminodibutanol and 2,2-iminodiethanol. Generally, however, superior results are obtained by the use of the readily available mono and diethanolamines. By the use of these amines, as described above, suitable substituted amides may readily be prepared.
The amount of alkylene oxide reacted should be at least sufficient to form an adduct which is freely dispersible when gently agitated with ten times its weight of water at 20 0., forming a stable, cloudy dispersion therein. At the other extreme, insufficient alkylene oxide should be used to form an adduct which is freely watersoluble, that is, which forms a clear, transparent mixture with ten times its weight of water at 20 C.
In the case of the mono substituted amides of monocarboxylic fatty acids, the minimum amounts of the alkylene oxide is about 3.5 mols and the maximum about 10 mols. Beyond this limit, water-soluble adducts form which exhibit reduced capacity to soften. In the case of the disubstituted amides of these acids considerably more alkylene oxide is necessary, and in the case of the tetrasubstituted diamides of the dicarboxylic fatty acids a larger amount still. In each instance the exact amount of oxide needed varies with the character of the acid selected, and the number of hydrcxyalkyl groups present. As a result, no numerical limit can be set to the amount of the alkylene oxide required in every instance.
For best results, the minimum proportion of the alkylene oxide which should be reacted is the proportion which is just sufficient to permit the amide to form a stable dispersion in water, and in this range, the softening action of the compound is at its peak while minimizing consumption of the more costly oxide. The use of more alkylene oxide usually confers no added benefit. When sunicient alkylene oxide is used to form an adduct which is freely soluble in water, forming a clear solution therewith, a paper of considerably reduced softness results.
The amide-ethylene oxide condensates prepared as described above are viscous pastes or waxy solids, and it is therefore advantageous to use them as 5% or more dilute, water dispersions thereof.
tween about 0.5% and 5.0%.
A noticeable degree of: softening results. when as little as 0.1% of the adduct is added, based on the weight. of the dry fibers. The improvement in softness continues rapidly through the range of roughly 0.5% toi.5%. The addition of further amounts of the adduct' causes'an additional degree of softening, but this generally is less than proportional to the additional amount added. Beyond 4%, the improvement-effected is slight, and the maximum proportion of amide which. can beused to advantage in most instances is about 5%, based on the weight of the fibers. As a result, it is preferred to add about 0.5% to 1.5% of the adduct.
The consistency of the stock during addition of. the adduct should be at a normal value hethe stock is stirred gently to distribute the adduct rapidly and uniformly therethrough. Thereafter, the stock is aged. ,In numerous instances,
depending on the character of the pulp and the adduct, a few seconds are 'sufiicient for this purpose whereas in other instances, -15 minutes should be allowed. For maximum efilciency the aging should be extended until adsorption of the added adduct is substantially complete, any unadsorbed adduct being wasted with the white water withoutbenefit to the paper.
The pH of the stock is not critical as adsorption of the adducts takes. place with the stock at any pH between about 2 and 9. Somewhat better results are obtained, however, when the stock is on the acid side, particularly between pH 4 and 6. Asa result, the choice of pH will depend primarily on other considerations such as the character of. the stock andits tendency to foam,- and the. presenceor absence of Wet'strength resins and pH sensitive fillers and colorants... A paper having a pH. of as high asabout 8.0 may be obtained, permitting the incorporation of acidsensitive fillers and. colorants into the stock, together with those wet strength resins: which are rapidly adsorbed under alkaline conditions. A suitable'wet. strength resin of this type may be formed by the reaction of ammonium with epichlorohydrin'as disclosed and claimed in 00- pending application Serial No. 277,741 filed on March- 20, 1952 by J. H. Daniel, Jr., et a1.
After sheetin the adduct treated fibers need only be dried, as the adducts of the present invention are not benefitted by subjecting them tocuring...conditions. .Thewaterlaid sheets will therefore be dried at about 200 F. as is normal; the
duration of the drying depending principally on the basis weight of the sheet. Where, however, a thermosetting wet strength resin has been added, the temperature and duration of the drying should be such as will develop the wet strength properties of the resin. While this varies with the specific wet strength resin employed, good results with ordinary paper are generally obtained when the resin is cured at 200 F. to 260 F. for 025 to 3.minutes. With very light weight papers and tissues the time is reduced, decreasing to about 1 second in the case of facial tissues.
The invention has been fully disclosed above and will be illustrated by the following examples which constitute preferred embodiments thereof, without being limitations thereon. Parts are by Weight unless otherwise noted.
Example 1 1350 parts (4 mols) of crude tall oil (Arizona Crude Tall Oil III, Acid No. 168) containing 48% During addition..
denser and a gas inlet tube.
ance abietic acid and resin acids, was mixed with 4.4 mols (280 parts) of technical monoethanolamine and charged into a reaction vessel equipped with an agitator, distilling column, and reflux condenser. The temperature of the mixture was raised to the point at which water evolution began, and then slowly raised to about 200 C. and maintained atthat temperature until no more water distilled. The heating was then continued for one additional hour at that temperature, the total reaction time being about 6.5 hours. Stirring was continued throughout. Vacuum was applied and excess monoethanolamine was distilled from the product. The product was a viscous syrup. On titration with 0.1 N-sodium hydroxide solution, the product was found to contain less than 3% acid, calculated as abietic acid.
From this amide a series of adducts were prepared as follows. The amide prepared above was charged into a reaction flask, together with 20 parts (5 mol percent of 40% aqueous sodium hydroxide solution as catalyst. The reaction flask was fitted with a stirrer, an ice-water-cooled con- The amide was heated to C. and ethylene oxide gas passed in at such a rate as maintained, a slow rate of reflux, the reflux condenser being opened to atmospheric pressure. During the addition, the temperature fluctuated up to C. The flask was wei hed from time to time to determine the amount of ethylene oxide adsorbed, and samples periodically withdrawn. The products were dark,
green-brown liquids, easily miscible with water and, forming a stable cloudy dispersion therewith. The adducts prepared contained the following amounts of combined ethylene oxide:
Adduct: Ethylene oxide A mols 3.7
C do 8.0
D do 10.0
A stock of northern bleached kraft pulp stocks were prepared by 'beatingxthe pulp to a green freeness of 475 cc. and diluting the stock to 0.6%
consistency. The pH of the stock was then adjusted to 4.5 by the use of dilute sulfuric acid and divided into aliquots. One aliquot was retained as control. To the other aliquots were added a"10% aqueous dispersion of a'dductAabove in the amounts shown. The amounts shown rep resent the weight of the'addu'ct' as such, based and their tensile strength in pounds per inch determined in their long direction, in their short direction, and the results averaged. The results were then corrected to a 25 x 47-500 basis weight. The results are shown in the table which follows. Three series of tests are shown, each with its own control, indicating performance of the tests at different times with separately prepared batches of the northern kraft stock.
Adducts Added Dry l lsljigtrcngth,
Test Amt Direction Average Desig. per; gg O een 1'- Short Long Found meted Control. None 49. 3 28. 4 31. 0 29. 7 28. 4 1 l 0. 5 3. 7 45. 8 19. 8 25. 6 22. 7 23. 3 3. 7 46. 2 18. 8 21. 2 20. 0 20. 3 3.7 47.1 14.4 15.6 15.0 15.0
Example 2 A stock was prepared by beating northern unbleached kraft pulp to a Green freeness of 525 cc., diluting the slurry thus obtained to 0.6% consistency and adjusting the pH to 4.5 with hydrochloric acid. The slurry was divided into four aliquots. One aliquot was retained as control. To the second aliquot was added 1% of adduct A above, as a 10% water dispersion. To the third aliquot was added 1% of the adduct, and after minutes, 1% of the cationic hydrophilic melamine-formaldehyde colloid prepared according to Example 1 of U. S. Patent No. 2,345,543, followed by aging for minutes. The percentages are based on the weight of thefibers. The fourth aliquot was treated only with melamine colloid as described. Handsheets were formed from all four aliquots as in Example 1, and their dry tensile 1 Estimated. after standing in water 1 hour.
I claim: 1. A soft bibulous sheet of felted cellulosic fibers having uniformly adsorbed thereon between 0.1% and 5.0% of their weight of a water-dispersible,
water-insoluble alkylene oxide adduct of a short chain hydroxyalkyl amide of an acid selected from thegroup of fatty acids and rosin acids of about 14 to 22 carbon atoms and mixtures thereof.
2. A sheet according to claim 1 wherein the amide is a hydroxyethyl amide.
3. A sheet according to claim 2, wherein the adduct is an ethylene oxide adduct.
4. A sheet according to claim 3, wherein the mixture of acids is the mixture of acids present in crude tall oil.
5. A soft bibulous sheet of felted cellulosic fibers having uniformly adsorbed thereon between about 0.1% and 5.0% of their Weight of a waterdispersible water-insoluble alkylene oxide adduct of a short chain hydroxyalkyl amide of anacid selected from the group of fatty acids and rosin acids of 14 to 22 carbon atoms and mixtures thereof, and between about 0.1% and 4% of its weight of cured cationic hydrophilic wet strength resin.
6. A sheet according to claim 5, wherein the adduct is an ethylene ovide adduct.
7. A sheet according to claim 6, wherein the mixture of acids is the mixture of acids present in crude tall oil.
8. A sheet according to claim 7, wherein the wet strength resin is a melamine-formaldehyde Wet strength resin.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date Re. 21,530 Kritchevsky Aug. 13, 1940 2,325,302 Britt July 27, 1943 2,338,602 Schur Jan. 4, 1944 2,343,090 Smith Feb. 29, 1944 2,373,690 Kenda Apr. 17, 1945 2,387,429 Cate Oct. 23, 1945 2,400,544 Kline May 21, 1946 2,402,160 Heritage June 18, 1946 2,487,899 Sherman Nov. 15, 1949 2,510,284 Haggard June 6, 1950 2,601,671 Wilson et a1. June 24, 1952 I FOREIGN PATENTS Number Country Date 467,571 Great Britain June16, 1937 OTHER REFERENCES Boehm, Paper Trade J., May 2, 1940, pages -38.
Miskel, Paper Trade J June 29, 1944, page 27.
Claims (1)
1. A SOFT BIBULOUS SHEET OF FELTED CELLULOSIC FIBERS HAVING UNIFORMLY ABSORBED THEREON BETWEEN 0.1% AND 5.0% OF THEIR WEIGHT OF A WATER-DISPERSIBLE, WATER-INSOLUBLE ALKYLENE OXIDE ADDUCT OF A SHORT CHAIN HYDROXYALKYL AMIDE OF AN ACID SELECTED FROM THE GROUP OF FATTY ACIDS AND ROSIN ACIDS OF ABOUT 14 TO 22 CARBON ATOMS AND MIXTURES THEREOF.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US292719A US2683088A (en) | 1952-06-10 | 1952-06-10 | Soft bibulous sheet |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US292719A US2683088A (en) | 1952-06-10 | 1952-06-10 | Soft bibulous sheet |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2683088A true US2683088A (en) | 1954-07-06 |
Family
ID=23125907
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US292719A Expired - Lifetime US2683088A (en) | 1952-06-10 | 1952-06-10 | Soft bibulous sheet |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2683088A (en) |
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2772967A (en) * | 1954-06-28 | 1956-12-04 | American Cyanamid Co | Sized paper |
| US3255007A (en) * | 1963-03-19 | 1966-06-07 | Keuffel & Esser Co | Diazotype reproduction materials |
| WO1982000485A1 (en) * | 1980-08-07 | 1982-02-18 | Y Lim | Method for producing a high quality,water absorbent,cellulosic sheet having high surface-perceived softness |
| US5217576A (en) * | 1991-11-01 | 1993-06-08 | Dean Van Phan | Soft absorbent tissue paper with high temporary wet strength |
| US5223096A (en) * | 1991-11-01 | 1993-06-29 | Procter & Gamble Company | Soft absorbent tissue paper with high permanent wet strength |
| US5240562A (en) * | 1992-10-27 | 1993-08-31 | Procter & Gamble Company | Paper products containing a chemical softening composition |
| US5262007A (en) * | 1992-04-09 | 1993-11-16 | Procter & Gamble Company | Soft absorbent tissue paper containing a biodegradable quaternized amine-ester softening compound and a temporary wet strength resin |
| US5264082A (en) * | 1992-04-09 | 1993-11-23 | Procter & Gamble Company | Soft absorbent tissue paper containing a biodegradable quaternized amine-ester softening compound and a permanent wet strength resin |
| US5279767A (en) * | 1992-10-27 | 1994-01-18 | The Procter & Gamble Company | Chemical softening composition useful in fibrous cellulosic materials |
| US5312522A (en) * | 1993-01-14 | 1994-05-17 | Procter & Gamble Company | Paper products containing a biodegradable chemical softening composition |
| US5336373A (en) * | 1992-12-29 | 1994-08-09 | Scott Paper Company | Method for making a strong, bulky, absorbent paper sheet using restrained can drying |
| US5397435A (en) * | 1993-10-22 | 1995-03-14 | Procter & Gamble Company | Multi-ply facial tissue paper product comprising chemical softening compositions and binder materials |
| US5405501A (en) * | 1993-06-30 | 1995-04-11 | The Procter & Gamble Company | Multi-layered tissue paper web comprising chemical softening compositions and binder materials and process for making the same |
| US5415737A (en) * | 1994-09-20 | 1995-05-16 | The Procter & Gamble Company | Paper products containing a biodegradable vegetable oil based chemical softening composition |
| US5427696A (en) * | 1992-04-09 | 1995-06-27 | The Procter & Gamble Company | Biodegradable chemical softening composition useful in fibrous cellulosic materials |
| US5437766A (en) * | 1993-10-22 | 1995-08-01 | The Procter & Gamble Company | Multi-ply facial tissue paper product comprising biodegradable chemical softening compositions and binder materials |
| US5474689A (en) * | 1992-10-27 | 1995-12-12 | The Procter & Gamble Company | Waterless self-emulsifiable chemical softening composition useful in fibrous cellulosic materials |
| US5487813A (en) * | 1994-12-02 | 1996-01-30 | The Procter & Gamble Company | Strong and soft creped tissue paper and process for making the same by use of biodegradable crepe facilitating compositions |
| US5510000A (en) * | 1994-09-20 | 1996-04-23 | The Procter & Gamble Company | Paper products containing a vegetable oil based chemical softening composition |
| US5538595A (en) * | 1995-05-17 | 1996-07-23 | The Proctor & Gamble Company | Chemically softened tissue paper products containing a ploysiloxane and an ester-functional ammonium compound |
| US5543067A (en) * | 1992-10-27 | 1996-08-06 | The Procter & Gamble Company | Waterless self-emulsiviable biodegradable chemical softening composition useful in fibrous cellulosic materials |
| US5573637A (en) * | 1994-12-19 | 1996-11-12 | The Procter & Gamble Company | Tissue paper product comprising a quaternary ammonium compound, a polysiloxane compound and binder materials |
| US5575891A (en) * | 1995-01-31 | 1996-11-19 | The Procter & Gamble Company | Soft tissue paper containing an oil and a polyhydroxy compound |
| US5635028A (en) * | 1995-04-19 | 1997-06-03 | The Procter & Gamble Company | Process for making soft creped tissue paper and product therefrom |
| US5698076A (en) * | 1996-08-21 | 1997-12-16 | The Procter & Gamble Company | Tissue paper containing a vegetable oil based quaternary ammonium compound |
| US5766159A (en) * | 1995-07-06 | 1998-06-16 | International Paper Company | Personal hygiene articles for absorbing fluids |
| US5846380A (en) * | 1995-06-28 | 1998-12-08 | The Procter & Gamble Company | Creped tissue paper exhibiting unique combination of physical attributes |
| US5981044A (en) * | 1993-06-30 | 1999-11-09 | The Procter & Gamble Company | Multi-layered tissue paper web comprising biodegradable chemical softening compositions and binder materials and process for making the same |
| US20030070776A1 (en) * | 1995-07-17 | 2003-04-17 | Rayonier Inc. | Wet-laid absorbent pulp sheet suitable for immediate conversion into an absorbent product |
| US7919667B1 (en) | 1994-01-21 | 2011-04-05 | Rayonier Trs Holdings Inc. | Absorbent products and methods of preparation thereof |
| WO2018061318A1 (en) * | 2016-09-29 | 2018-04-05 | 大王製紙株式会社 | Process for producing thin paper |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB467571A (en) * | 1935-12-16 | 1937-06-16 | Ig Farbenindustrie Ag | Improvements in the manufacture and production of condensation products |
| USRE21530E (en) * | 1940-08-13 | Acid substituted hydroxy alkylr- | ||
| US2325302A (en) * | 1938-11-03 | 1943-07-27 | Scott Paper Co | High-wet-strength paper |
| US2338602A (en) * | 1939-12-04 | 1944-01-04 | Reconstruction Finance Corp | Fabrication of wet-strengthened papers |
| US2343090A (en) * | 1940-08-03 | 1944-02-29 | Du Pont | Treatment of textiles and composition useful therefor |
| US2373690A (en) * | 1942-04-24 | 1945-04-17 | Kenda Paul | Process for producing artificial lumber |
| US2387429A (en) * | 1940-10-21 | 1945-10-23 | Kelco Co | Glassine paper |
| US2400544A (en) * | 1944-10-24 | 1946-05-21 | Western Union Telegraph Co | Conductive paper |
| US2402160A (en) * | 1940-05-13 | 1946-06-18 | Wood Conversion Co | Manufacture of bituminous fiber and fiber products |
| US2487899A (en) * | 1945-05-10 | 1949-11-15 | Nopco Chem Co | Process of wax sizing papermaking fibers using a cationic surface active agent |
| US2510284A (en) * | 1948-12-18 | 1950-06-06 | Hercules Powder Co Ltd | Ethylene oxide condensates of ethanol rosin amines |
| US2601671A (en) * | 1946-10-23 | 1952-06-24 | American Cyanamid Co | Resin-impregnated leather board |
-
1952
- 1952-06-10 US US292719A patent/US2683088A/en not_active Expired - Lifetime
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USRE21530E (en) * | 1940-08-13 | Acid substituted hydroxy alkylr- | ||
| GB467571A (en) * | 1935-12-16 | 1937-06-16 | Ig Farbenindustrie Ag | Improvements in the manufacture and production of condensation products |
| US2325302A (en) * | 1938-11-03 | 1943-07-27 | Scott Paper Co | High-wet-strength paper |
| US2338602A (en) * | 1939-12-04 | 1944-01-04 | Reconstruction Finance Corp | Fabrication of wet-strengthened papers |
| US2402160A (en) * | 1940-05-13 | 1946-06-18 | Wood Conversion Co | Manufacture of bituminous fiber and fiber products |
| US2343090A (en) * | 1940-08-03 | 1944-02-29 | Du Pont | Treatment of textiles and composition useful therefor |
| US2387429A (en) * | 1940-10-21 | 1945-10-23 | Kelco Co | Glassine paper |
| US2373690A (en) * | 1942-04-24 | 1945-04-17 | Kenda Paul | Process for producing artificial lumber |
| US2400544A (en) * | 1944-10-24 | 1946-05-21 | Western Union Telegraph Co | Conductive paper |
| US2487899A (en) * | 1945-05-10 | 1949-11-15 | Nopco Chem Co | Process of wax sizing papermaking fibers using a cationic surface active agent |
| US2601671A (en) * | 1946-10-23 | 1952-06-24 | American Cyanamid Co | Resin-impregnated leather board |
| US2510284A (en) * | 1948-12-18 | 1950-06-06 | Hercules Powder Co Ltd | Ethylene oxide condensates of ethanol rosin amines |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2772967A (en) * | 1954-06-28 | 1956-12-04 | American Cyanamid Co | Sized paper |
| US3255007A (en) * | 1963-03-19 | 1966-06-07 | Keuffel & Esser Co | Diazotype reproduction materials |
| WO1982000485A1 (en) * | 1980-08-07 | 1982-02-18 | Y Lim | Method for producing a high quality,water absorbent,cellulosic sheet having high surface-perceived softness |
| US5217576A (en) * | 1991-11-01 | 1993-06-08 | Dean Van Phan | Soft absorbent tissue paper with high temporary wet strength |
| US5223096A (en) * | 1991-11-01 | 1993-06-29 | Procter & Gamble Company | Soft absorbent tissue paper with high permanent wet strength |
| US5427696A (en) * | 1992-04-09 | 1995-06-27 | The Procter & Gamble Company | Biodegradable chemical softening composition useful in fibrous cellulosic materials |
| US5262007A (en) * | 1992-04-09 | 1993-11-16 | Procter & Gamble Company | Soft absorbent tissue paper containing a biodegradable quaternized amine-ester softening compound and a temporary wet strength resin |
| US5264082A (en) * | 1992-04-09 | 1993-11-23 | Procter & Gamble Company | Soft absorbent tissue paper containing a biodegradable quaternized amine-ester softening compound and a permanent wet strength resin |
| US5474689A (en) * | 1992-10-27 | 1995-12-12 | The Procter & Gamble Company | Waterless self-emulsifiable chemical softening composition useful in fibrous cellulosic materials |
| US5240562A (en) * | 1992-10-27 | 1993-08-31 | Procter & Gamble Company | Paper products containing a chemical softening composition |
| US5543067A (en) * | 1992-10-27 | 1996-08-06 | The Procter & Gamble Company | Waterless self-emulsiviable biodegradable chemical softening composition useful in fibrous cellulosic materials |
| US5279767A (en) * | 1992-10-27 | 1994-01-18 | The Procter & Gamble Company | Chemical softening composition useful in fibrous cellulosic materials |
| US5336373A (en) * | 1992-12-29 | 1994-08-09 | Scott Paper Company | Method for making a strong, bulky, absorbent paper sheet using restrained can drying |
| US5312522A (en) * | 1993-01-14 | 1994-05-17 | Procter & Gamble Company | Paper products containing a biodegradable chemical softening composition |
| US5981044A (en) * | 1993-06-30 | 1999-11-09 | The Procter & Gamble Company | Multi-layered tissue paper web comprising biodegradable chemical softening compositions and binder materials and process for making the same |
| US5405501A (en) * | 1993-06-30 | 1995-04-11 | The Procter & Gamble Company | Multi-layered tissue paper web comprising chemical softening compositions and binder materials and process for making the same |
| US5437766A (en) * | 1993-10-22 | 1995-08-01 | The Procter & Gamble Company | Multi-ply facial tissue paper product comprising biodegradable chemical softening compositions and binder materials |
| US5397435A (en) * | 1993-10-22 | 1995-03-14 | Procter & Gamble Company | Multi-ply facial tissue paper product comprising chemical softening compositions and binder materials |
| US20110209839A1 (en) * | 1994-01-21 | 2011-09-01 | Phyllis Leithem | Method for making absorbent products |
| US7919667B1 (en) | 1994-01-21 | 2011-04-05 | Rayonier Trs Holdings Inc. | Absorbent products and methods of preparation thereof |
| US8497410B2 (en) | 1994-01-21 | 2013-07-30 | Rayonier Trs Holdings Inc. | Method for making absorbent products |
| US8247641B2 (en) | 1994-01-21 | 2012-08-21 | Rayonier Trs Holdings Inc. | Absorbent products and methods of preparation thereof |
| US5510000A (en) * | 1994-09-20 | 1996-04-23 | The Procter & Gamble Company | Paper products containing a vegetable oil based chemical softening composition |
| US5415737A (en) * | 1994-09-20 | 1995-05-16 | The Procter & Gamble Company | Paper products containing a biodegradable vegetable oil based chemical softening composition |
| US5487813A (en) * | 1994-12-02 | 1996-01-30 | The Procter & Gamble Company | Strong and soft creped tissue paper and process for making the same by use of biodegradable crepe facilitating compositions |
| US5573637A (en) * | 1994-12-19 | 1996-11-12 | The Procter & Gamble Company | Tissue paper product comprising a quaternary ammonium compound, a polysiloxane compound and binder materials |
| US5575891A (en) * | 1995-01-31 | 1996-11-19 | The Procter & Gamble Company | Soft tissue paper containing an oil and a polyhydroxy compound |
| US5635028A (en) * | 1995-04-19 | 1997-06-03 | The Procter & Gamble Company | Process for making soft creped tissue paper and product therefrom |
| US5538595A (en) * | 1995-05-17 | 1996-07-23 | The Proctor & Gamble Company | Chemically softened tissue paper products containing a ploysiloxane and an ester-functional ammonium compound |
| US5846380A (en) * | 1995-06-28 | 1998-12-08 | The Procter & Gamble Company | Creped tissue paper exhibiting unique combination of physical attributes |
| US5766159A (en) * | 1995-07-06 | 1998-06-16 | International Paper Company | Personal hygiene articles for absorbing fluids |
| US6063982A (en) * | 1995-07-06 | 2000-05-16 | International Paper Company (From Thomas L. Wiesemann And John J. Shoemaker Jr.) | Personal hygiene articles for absorbing fluids |
| US20030070776A1 (en) * | 1995-07-17 | 2003-04-17 | Rayonier Inc. | Wet-laid absorbent pulp sheet suitable for immediate conversion into an absorbent product |
| US5698076A (en) * | 1996-08-21 | 1997-12-16 | The Procter & Gamble Company | Tissue paper containing a vegetable oil based quaternary ammonium compound |
| WO2018061318A1 (en) * | 2016-09-29 | 2018-04-05 | 大王製紙株式会社 | Process for producing thin paper |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2683088A (en) | Soft bibulous sheet | |
| US3844880A (en) | Sequential addition of a cationic debonder, resin and deposition aid to a cellulosic fibrous slurry | |
| US3755220A (en) | Cellulosic sheet material having a thermosetting resin bonder and a surfactant debonder and method for producing same | |
| CA2145198C (en) | Crosslinked cellulose products and method for their preparation | |
| US2683087A (en) | Absorbent cellulosic products | |
| DE1546369C3 (en) | Process for making paper, paperboard and the like with improved wet strength. Eliminated from: 1177824 | |
| US2628918A (en) | Sizing agents | |
| US2698793A (en) | Sized paper comprising a polymerized alkylenimine | |
| US3875097A (en) | Ionic vinylamide polymer latex and manufacture of paper therewith | |
| FI101091B (en) | Coating of paper | |
| NZ210852A (en) | Modified colophony resins and use for sizing paper | |
| EP0250131A2 (en) | Epoxidized polyalkyleneamineamide wet strength resin | |
| US2694629A (en) | Production of sized alkaline paper | |
| EP0016623A1 (en) | Water-soluble polymers containing quaternary ammonium groups, a process for their production and their use in improving the wet strength of cellulosic substrates | |
| GB2200104A (en) | Aqueous suspensions of calcium-containing fillers | |
| CA1043511A (en) | Method of sizing paper | |
| US2772969A (en) | Sizing of paper with fatty acid polyalkylenepolyamine compositions | |
| US20070078233A1 (en) | Temporary wet strength resin for paper applications | |
| US2694630A (en) | Sized waterlaid glass fiber products and process of preparing the same | |
| US3874994A (en) | Process of making paper where an ionic vinylamide polymer latex is added to the furnish to improve dry strength of the paper | |
| US2683089A (en) | Bibulous sheet | |
| US3875098A (en) | Ionic vinylamide polymer latex and manufacture of paper therewith | |
| US4452934A (en) | Aminoplast resin compositions | |
| US2758026A (en) | Sized waterlaid glass fiber products and process of preparing the same | |
| US2801169A (en) | Method of sizing paper with the condensation product of a long chain alkylamine withmethylenebisacrylamide |