US2644849A - Preparation of cyclooctatriene - Google Patents
Preparation of cyclooctatriene Download PDFInfo
- Publication number
- US2644849A US2644849A US215625A US21562551A US2644849A US 2644849 A US2644849 A US 2644849A US 215625 A US215625 A US 215625A US 21562551 A US21562551 A US 21562551A US 2644849 A US2644849 A US 2644849A
- Authority
- US
- United States
- Prior art keywords
- cyclooctatriene
- cyclooctatetraene
- ether
- parts
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- ICPMUWPXCAVOOQ-UHFFFAOYSA-N cycloocta-1,3,5-triene Chemical compound C1CC=CC=CC=C1 ICPMUWPXCAVOOQ-UHFFFAOYSA-N 0.000 title claims description 20
- 238000002360 preparation method Methods 0.000 title description 3
- KDUIUFJBNGTBMD-VXMYFEMYSA-N cyclooctatetraene Chemical compound C1=C\C=C/C=C\C=C1 KDUIUFJBNGTBMD-VXMYFEMYSA-N 0.000 claims description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 239000002585 base Substances 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 229910052783 alkali metal Inorganic materials 0.000 claims description 6
- 150000001340 alkali metals Chemical class 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 35
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 12
- 229910052708 sodium Inorganic materials 0.000 description 12
- 239000011734 sodium Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 7
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- OJGMBLNIHDZDGS-UHFFFAOYSA-N N-Ethylaniline Chemical compound CCNC1=CC=CC=C1 OJGMBLNIHDZDGS-UHFFFAOYSA-N 0.000 description 6
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- LHNSMWDERKGLJK-DKPWQKSPSA-N cycloocta-1,3,6-triene Chemical compound C/1\C=C/C\C=C/C=C\1 LHNSMWDERKGLJK-DKPWQKSPSA-N 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- -1 aliphatic ethers Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 125000001477 organic nitrogen group Chemical group 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- RRKODOZNUZCUBN-CCAGOZQPSA-N (1z,3z)-cycloocta-1,3-diene Chemical compound C1CC\C=C/C=C\C1 RRKODOZNUZCUBN-CCAGOZQPSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methyl-N-phenylamine Natural products CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- HYDCVYJZTPHAQR-UHFFFAOYSA-N n-methylaniline Chemical compound [CH2]NC1=CC=CC=C1 HYDCVYJZTPHAQR-UHFFFAOYSA-N 0.000 description 1
- 238000003969 polarography Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/03—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
- C07C5/05—Partial hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/18—Systems containing only non-condensed rings with a ring being at least seven-membered
Definitions
- This invention relates to an improved process for preparing cyclooctatriene from cycloootatetraene.
- cyclooctatetraene was converted to cyclooctatriene by reaction with lithium in ethyl ether to form an alkali metal adduct of the hydrocarbon, and the latter reacted with methanol to form cyclooctatriene.
- the reported yield obtained by this method was only 39% of theory.
- Sodium reacts with cyclooctatetraene in ethanol or methanol to form mainly cyclooctadiene rather than cyclooctatriene.
- cyclooctatetraene is reduced at a temperature of 60 to -33 C. in liquid ammonia with sodium to cyclooctatriene in yields of about 65 to 70% of theory.
- cyclooctatetraene can be converted to cyclooctatriene in yields of 85 to more than 9il% of theory by reaction with an alkali metal and a primary or secondary nitrogen base (i. e., a primary or secondary amine, or an NH heterocyclic base, such as aniline, N methylaniline, N-ethylaniline, piperidine, and the like) in an ether as a reaction medium.
- a primary or secondary nitrogen base i. e., a primary or secondary amine, or an NH heterocyclic base, such as aniline, N methylaniline, N-ethylaniline, piperidine, and the like
- the result obtained according to this invention is especially surprising since, as distinguished from reduction of cyclooctatetraene, to cyclooctatriene with sodium in ammonia in the absence of an ether, such reaction does not occur with sodium in a primary or secondary amine in the absence of an ether.
- the amount in mols of the primary or secondary nitrogen base employed in the process is preferably in excess of the number of atomic equivalents of hydrogen theoretically required for hydrogenation to cyclooctatriene of the quantity of cyclooctatetraene undergoing reduction.
- th quantity of the nitrogen base amounts to two to four mols per mol of cyclooctatetraene.
- the amount of alkali metal used is likewise preferably slightly in excess of the amount theoretically required to reduce the cyclooctatetraene to cyclooctatriene, thus amounting to somewhat more than two atomic equivalents of alkali metal per mol of cyclooctatetraene.
- An excess of the order of 10% is generally suitable.
- the ether is preferably employed in an amount exceeding the quantity of nitrogen base and is sufiicient to maintain the liquid reagents in homogenous solution.
- Suitable amounts of the ether solvent range, for example, from two to four times the combined amount of nitrogen base and cyclooctatetraene.
- the preferred reaction temperature for th process of the invention is from 0 to 30 0., although somewhat higher or lower temperatures can be used.
- Suitable ethers for the present process are particularly the lower aliphatic ethers, especially diethyl ether and also heterocyclicethers such as dioxane and tetrahydrofuran; Other cyclic and acyclic ethers which are non-reactive toward the other components of the reaction mixture can also be used. Similarly, other primary or secondary nitrogen bases of the aliphatic, alicyclic. aromatic or heterocyclic series can replace those specifically mentioned above.
- the product obtained by the process of this invention is a mixture of the 1,3,5- and 1,3,6-isomers, the relative proportions of the two isomers in the product varying depending upon the extent of isomerization.
- Example 1 21 parts of cyclooctatetraene and 73 parts of N- ethylaniline were dissolved in 250 parts of absolute diethyl ether. The resulting solution was agitated at room temperature (about 25 C.) and 10 parts of metallic sodium were added in small pieces over a period of 2 hours. After agitating for an additional period of 2 hours, all of the sodium metal had undergone reaction. 250 parts of water were slowly added to the reaction mixture, and after separating the organic layer of the mixture from the aqueous layer thereof, the organic layer was washed with dilute hydrochloric acid to remove unreacted amines, then with water, and then dried over a water-absorbent salt (anhydrous magnesium sulfate).
- a water-absorbent salt anhydrous magnesium sulfate
- Ether was removed by distillation, yielding as a residue a. faintly yellow colored liquid amounting to 19.7 parts.
- the product was found by polarographic analysis to contain only 1.2% of unreacted cyclooctatetraene, the remainder being cyclooctatriene as indicated by absorption of 3 mols of hydrogen on catalytic hydrogenation.
- the ultraviolet absorption spectrum of this product indicated it to be a mixture of 1,3,5- and 1,3,6-cyclooctatriene.
- the yield of cyclooctatriene was 92% of theory.
- Example 2 10.1 parts of metallic sodium were added portionwise in small pieces to an agitated solution of 21 parts of cyclooctatetraene and 51 parts of piperidine in 250 parts of diethyl ether, while maintaining the mixture at room temperature (25 0.). After agitating for several hours at the aforesaid temperature until all of the sodium had undergone reaction, 250 parts of water were slowly added, and the reaction product isolated in the manner described in the preceding example. After evaporation of the ether, 18.1 parts of a light yellow residue were obtained, containing 3.3% of cyclooctatetraene, the remainder being a mixture of 135- and 1,3,6-cyclooctatriene as shown by absorption of 3 mols of hydrogen and the ultraviolet absorption spectrum. The yield of cyclooctatriene was 85% of theory.
- Example 3 the aliphatic, alicyclic, aromatic or heterocyclic series.
- ethers such as dioxane or tetrahydrofuran
- similar results are' obtained, but the reaction proceeds at a slower rate.
- equivalent amounts of potassium or lithium can be used to produce similar results.
- a process for the production of cyclooctatriene which comprises reacting cyclooctatetraene with an alkali metal and with at least 2 molecular equivalents of an organic nitrogen base having at least one hydrogen attached to the nitrogen thereof, in solution in an ether at a temperature not substantially exceeding 30 C.
- a process for the production of cyclooctatriene which comprises reacting 1 mol of cyclooctatetraene with at least two atomic equivalents of metallic sodium and at least two mols of an organic nitrogen base having at least one hydrogen attached to the nitrogen thereof, in solution in an ether, at a temperature from 0 to 30 C.
- a process for the production of cyclooctatriene which comprises reacting 1 mol of cyclooctatetraene with 2 to 2.2 atomic equivalents of metallic sodium and 2 to 4 mols of N-ethylaniline in ethyl ether solution at a temperature of 0 to 30 C.
- a process for the production of cyclooctatriene which comprises reacting 1 mol of cyclooctatetraene with 2 to 2.2 atomic equivalents of metallic sodium and 2 to 4 mols of piperidine in ethyl ether solution at a temperature of 0 to 30 C.
- a process for the production of cyclooctatrlene which comprises reacting 1 mol of cyclooctatetraene with 2 to 2.2 atomic equivalents of metallic sodium and 2 to 4 mols of aniline in ethyl ether solution at a temperature of 0 to 30 C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrogenated Pyridines (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
Patented July 7, 1953 PREPARATION OF CYCLOOCTATRIEN E Louis E. Craig, Washington, N. J., and Irma J. Ressa, Easton, Pa.,assignors to General Aniline & Film Corporation, New York, N. Y., a corporation. of Delaware No Drawing. Application March 14, 1951,
SerialNo. 215,625
Claims. 1 This invention relates to an improved process for preparing cyclooctatriene from cycloootatetraene.
Heretofore, cyclooctatetraene was converted to cyclooctatriene by reaction with lithium in ethyl ether to form an alkali metal adduct of the hydrocarbon, and the latter reacted with methanol to form cyclooctatriene. The reported yield obtained by this method was only 39% of theory. Sodium reacts with cyclooctatetraene in ethanol or methanol to form mainly cyclooctadiene rather than cyclooctatriene. In copending application Serial No. 187,674 of September 29, 1950, of L. E. Craig, cyclooctatetraene is reduced at a temperature of 60 to -33 C. in liquid ammonia with sodium to cyclooctatriene in yields of about 65 to 70% of theory.
We have now discovered that cyclooctatetraene can be converted to cyclooctatriene in yields of 85 to more than 9il% of theory by reaction with an alkali metal and a primary or secondary nitrogen base (i. e., a primary or secondary amine, or an NH heterocyclic base, such as aniline, N methylaniline, N-ethylaniline, piperidine, and the like) in an ether as a reaction medium.
The result obtained according to this invention is especially surprising since, as distinguished from reduction of cyclooctatetraene, to cyclooctatriene with sodium in ammonia in the absence of an ether, such reaction does not occur with sodium in a primary or secondary amine in the absence of an ether.
It is accordingly an object of this invention to provide an improved process for the preparation of cyclooctatriene from cyclooctatetraene, affording substantially higher yields than thos heretofore obtained.
The amount in mols of the primary or secondary nitrogen base employed in the process is preferably in excess of the number of atomic equivalents of hydrogen theoretically required for hydrogenation to cyclooctatriene of the quantity of cyclooctatetraene undergoing reduction. In general, th quantity of the nitrogen base amounts to two to four mols per mol of cyclooctatetraene. The amount of alkali metal used is likewise preferably slightly in excess of the amount theoretically required to reduce the cyclooctatetraene to cyclooctatriene, thus amounting to somewhat more than two atomic equivalents of alkali metal per mol of cyclooctatetraene. An excess of the order of 10% is generally suitable. The ether is preferably employed in an amount exceeding the quantity of nitrogen base and is sufiicient to maintain the liquid reagents in homogenous solution.
Suitable amounts of the ether solvent range, for example, from two to four times the combined amount of nitrogen base and cyclooctatetraene. The preferred reaction temperature for th process of the invention is from 0 to 30 0., although somewhat higher or lower temperatures can be used.
Suitable ethers for the present process are particularly the lower aliphatic ethers, especially diethyl ether and also heterocyclicethers such as dioxane and tetrahydrofuran; Other cyclic and acyclic ethers which are non-reactive toward the other components of the reaction mixture can also be used. Similarly, other primary or secondary nitrogen bases of the aliphatic, alicyclic. aromatic or heterocyclic series can replace those specifically mentioned above.
Since it has been found that 1,3,6-cyclooctatriene is isomerized by alkaline reagents to the corresponding 1,3,5-isomer, the product obtained by the process of this invention is a mixture of the 1,3,5- and 1,3,6-isomers, the relative proportions of the two isomers in the product varying depending upon the extent of isomerization.
The process of our invention is illustrated in the following examples, wherein parts are by weight.
Example 1 21 parts of cyclooctatetraene and 73 parts of N- ethylaniline were dissolved in 250 parts of absolute diethyl ether. The resulting solution was agitated at room temperature (about 25 C.) and 10 parts of metallic sodium were added in small pieces over a period of 2 hours. After agitating for an additional period of 2 hours, all of the sodium metal had undergone reaction. 250 parts of water were slowly added to the reaction mixture, and after separating the organic layer of the mixture from the aqueous layer thereof, the organic layer was washed with dilute hydrochloric acid to remove unreacted amines, then with water, and then dried over a water-absorbent salt (anhydrous magnesium sulfate). Ether was removed by distillation, yielding as a residue a. faintly yellow colored liquid amounting to 19.7 parts. The product was found by polarographic analysis to contain only 1.2% of unreacted cyclooctatetraene, the remainder being cyclooctatriene as indicated by absorption of 3 mols of hydrogen on catalytic hydrogenation. The ultraviolet absorption spectrum of this product indicated it to be a mixture of 1,3,5- and 1,3,6-cyclooctatriene. The yield of cyclooctatriene was 92% of theory.
Example 2 10.1 parts of metallic sodium were added portionwise in small pieces to an agitated solution of 21 parts of cyclooctatetraene and 51 parts of piperidine in 250 parts of diethyl ether, while maintaining the mixture at room temperature (25 0.). After agitating for several hours at the aforesaid temperature until all of the sodium had undergone reaction, 250 parts of water were slowly added, and the reaction product isolated in the manner described in the preceding example. After evaporation of the ether, 18.1 parts of a light yellow residue were obtained, containing 3.3% of cyclooctatetraene, the remainder being a mixture of 135- and 1,3,6-cyclooctatriene as shown by absorption of 3 mols of hydrogen and the ultraviolet absorption spectrum. The yield of cyclooctatriene was 85% of theory.
Example 3 the aliphatic, alicyclic, aromatic or heterocyclic series. When other ethers are employed, such as dioxane or tetrahydrofuran, similar results are' obtained, but the reaction proceeds at a slower rate. Instead of sodium, equivalent amounts of potassium or lithium can be used to produce similar results.
Other variations and modifications which will be obvious to those skilled in the art can be used in the foregoing procedures without departing from the scope or spirit of the invention.
We claim: 1. A process for the production of cyclooctatriene, which comprises reacting cyclooctatetraene with an alkali metal and with at least 2 molecular equivalents of an organic nitrogen base having at least one hydrogen attached to the nitrogen thereof, in solution in an ether at a temperature not substantially exceeding 30 C.
2. A process for the production of cyclooctatriene, which comprises reacting 1 mol of cyclooctatetraene with at least two atomic equivalents of metallic sodium and at least two mols of an organic nitrogen base having at least one hydrogen attached to the nitrogen thereof, in solution in an ether, at a temperature from 0 to 30 C.
3. A process for the production of cyclooctatriene, which comprises reacting 1 mol of cyclooctatetraene with 2 to 2.2 atomic equivalents of metallic sodium and 2 to 4 mols of N-ethylaniline in ethyl ether solution at a temperature of 0 to 30 C.
4. A process for the production of cyclooctatriene, which comprises reacting 1 mol of cyclooctatetraene with 2 to 2.2 atomic equivalents of metallic sodium and 2 to 4 mols of piperidine in ethyl ether solution at a temperature of 0 to 30 C.
5. A process for the production of cyclooctatrlene,which comprises reacting 1 mol of cyclooctatetraene with 2 to 2.2 atomic equivalents of metallic sodium and 2 to 4 mols of aniline in ethyl ether solution at a temperature of 0 to 30 C.
LOUIS E. CRAIG. IRMA J. RESSA.
References Cited in the file Of this patent UNITED STATES PATENTS Number Name Date 2,594,889 Elofson Apr. 29, 1952 OTHER REFERENCES Ziegler et al., Justus Liebigs Annalen der chemie, vol. 567, 1950, p. 41 (publication date March 31, 1950; article received October 28, 1949).
Craig, Chemical Reviews, vol. 49, No. 1, p. 121, August 1951.
Claims (1)
1. A PROCESS FOR THE PRODUCTION OF CYCLOOCTATRIENE, WHICH COMPRISES REACTING CYCLOOCTATETRAENE WITH AN ALKALI METAL AND WITH AT LEAST 2 MOLECULAR EQUIVALENTS OF AN ORGANIC NITROGEN BASE HAVING AT LEAST ONE HYDROGEN ATTACHED TO THE NITROGEN THEREOF, IN SOLUTION IN AN ETHER AT A TEMPERATURE NOT SUBSTANTIALLY EXCEEDING 30* C.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US215625A US2644849A (en) | 1951-03-14 | 1951-03-14 | Preparation of cyclooctatriene |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US215625A US2644849A (en) | 1951-03-14 | 1951-03-14 | Preparation of cyclooctatriene |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2644849A true US2644849A (en) | 1953-07-07 |
Family
ID=22803735
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US215625A Expired - Lifetime US2644849A (en) | 1951-03-14 | 1951-03-14 | Preparation of cyclooctatriene |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2644849A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1034626B (en) * | 1956-10-19 | 1958-07-24 | Basf Ag | Process for the preparation of cyclooctatriene (1, 3, 6) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2594889A (en) * | 1949-12-31 | 1952-04-29 | Gen Aniline & Film Corp | Synthesis of cyclooctadiene-1, 5 |
-
1951
- 1951-03-14 US US215625A patent/US2644849A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2594889A (en) * | 1949-12-31 | 1952-04-29 | Gen Aniline & Film Corp | Synthesis of cyclooctadiene-1, 5 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1034626B (en) * | 1956-10-19 | 1958-07-24 | Basf Ag | Process for the preparation of cyclooctatriene (1, 3, 6) |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2680756A (en) | Dicyclopentadienyliron and process of making the same | |
| US2109401A (en) | Aminoalkyl-sulphonic acids and process of preparing them | |
| US2644849A (en) | Preparation of cyclooctatriene | |
| US3009958A (en) | Hydroquinonyl derivatives and their synthesis | |
| Lutz et al. | Substituted-Amino Ketones and Alcohols Related to 4, 4′-Dichlorobenzoin | |
| US2714117A (en) | Production of acetoacetic acid amides | |
| US2374340A (en) | Preparation of hexamethylene diisocyanate | |
| US2264400A (en) | Crotylidene diureas and process for | |
| US2016521A (en) | Condensation product of the cya | |
| US2806036A (en) | Process for preparation of | |
| US2719871A (en) | Preparation of ditolylpropane | |
| US2932667A (en) | Preparation of monothiooxamides | |
| US2772278A (en) | Manufacture of sulfenamides | |
| US2119493A (en) | Reacting hydrocarbons with alkali metals | |
| US3914252A (en) | Preparation of N-iodocompounds | |
| US2915550A (en) | Method for preparing alkylene glycol dicarbamates | |
| US2501865A (en) | Pentaerythritol | |
| US2917545A (en) | Preparation of n-substituted hydrazine derivatives | |
| DE10016802C1 (en) | Process for the preparation of alkali metal monohydridoboronates and aluminates and their use | |
| US2251996A (en) | Process for making anesthetic bases and intermediates | |
| US2094467A (en) | Production of new thio ethers | |
| US2816925A (en) | Diamines | |
| US2681934A (en) | Substituted diphenylalkylamines | |
| US2855420A (en) | Isocyanates and process of preparing same | |
| US3444236A (en) | Preparation of cyanophenols by dehydration of hydroxybenzaldoximes with phosgene |