US2530738A - Method of coating metal surfaces - Google Patents
Method of coating metal surfaces Download PDFInfo
- Publication number
- US2530738A US2530738A US726435A US72643547A US2530738A US 2530738 A US2530738 A US 2530738A US 726435 A US726435 A US 726435A US 72643547 A US72643547 A US 72643547A US 2530738 A US2530738 A US 2530738A
- Authority
- US
- United States
- Prior art keywords
- vinyl chloride
- organosol
- coating
- weight
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title description 17
- 239000011248 coating agent Substances 0.000 title description 16
- 229910052751 metal Inorganic materials 0.000 title description 14
- 239000002184 metal Substances 0.000 title description 14
- 238000000034 method Methods 0.000 title description 10
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 24
- 239000007788 liquid Substances 0.000 description 22
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- -1 alkyl phthalates Chemical class 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 12
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 6
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 6
- 239000002987 primer (paints) Substances 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000008096 xylene Substances 0.000 description 5
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- 239000004014 plasticizer Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- OZXIZRZFGJZWBF-UHFFFAOYSA-N 1,3,5-trimethyl-2-(2,4,6-trimethylphenoxy)benzene Chemical compound CC1=CC(C)=CC(C)=C1OC1=C(C)C=C(C)C=C1C OZXIZRZFGJZWBF-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- SHOJXDKTYKFBRD-UHFFFAOYSA-N mesityl oxide Natural products CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- WOYWLLHHWAMFCB-UHFFFAOYSA-N 2-ethylhexyl acetate Chemical compound CCCCC(CC)COC(C)=O WOYWLLHHWAMFCB-UHFFFAOYSA-N 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- 239000004803 Di-2ethylhexylphthalate Substances 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 229940043232 butyl acetate Drugs 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000005008 organosol coating Substances 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000004018 waxing Methods 0.000 description 2
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 241000276489 Merlangius merlangus Species 0.000 description 1
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003800 Staudinger reaction Methods 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- CMCJNODIWQEOAI-UHFFFAOYSA-N bis(2-butoxyethyl)phthalate Chemical compound CCCCOCCOC(=O)C1=CC=CC=C1C(=O)OCCOCCCC CMCJNODIWQEOAI-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- IEPRKVQEAMIZSS-AATRIKPKSA-N diethyl fumarate Chemical compound CCOC(=O)\C=C\C(=O)OCC IEPRKVQEAMIZSS-AATRIKPKSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- VAPILSUCBNPFBS-UHFFFAOYSA-L disodium 2-oxido-5-[[4-[(4-sulfophenyl)diazenyl]phenyl]diazenyl]benzoate Chemical compound [Na+].[Na+].Oc1ccc(cc1C([O-])=O)N=Nc1ccc(cc1)N=Nc1ccc(cc1)S([O-])(=O)=O VAPILSUCBNPFBS-UHFFFAOYSA-L 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- TZMFJUDUGYTVRY-UHFFFAOYSA-N ethyl methyl diketone Natural products CCC(=O)C(C)=O TZMFJUDUGYTVRY-UHFFFAOYSA-N 0.000 description 1
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- UHOKSCJSTAHBSO-UHFFFAOYSA-N indanthrone blue Chemical compound C1=CC=C2C(=O)C3=CC=C4NC5=C6C(=O)C7=CC=CC=C7C(=O)C6=CC=C5NC4=C3C(=O)C2=C1 UHOKSCJSTAHBSO-UHFFFAOYSA-N 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005012 oleoresinous Substances 0.000 description 1
- 239000001053 orange pigment Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- KNXVOGGZOFOROK-UHFFFAOYSA-N trimagnesium;dioxido(oxo)silane;hydroxy-oxido-oxosilane Chemical compound [Mg+2].[Mg+2].[Mg+2].O[Si]([O-])=O.O[Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O KNXVOGGZOFOROK-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/12—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
Definitions
- This invention pertains to an improved technique in applying decorative and protective coatings to metal surfaces.
- the purpose of the sanding surfacer is to fill all cracks or irregularities in the metal. A smooth surface is then obtained by sanding.
- This sanding surfacer and primer usually comprises an alkyd resin or oleoresinous vehicle heavily loaded with fillers, such as Whiting, asbestine minerals, diatomaceous earth, or other siliceous minerals.
- This sanding surfacer sets up to a cheesy film of poor cohesive properties and the film, in consequence, is very readily lacquer, properly formulated for durability and strength, the primer or sanding surfacer remains as a vulnerable point in the coating system.
- One object of the present invention is to obtain a smooth, glossy finish on metals, wherein sanding is required to smooth out surface irregularities, without weakening the overall protective coating. Another object is to provide a composition which serves both as the sanding surfacer and the final coating.
- organosols Such suspensions are hereinafter termed organosols.
- the liquid components of an organosol comprise liquids of two types.
- the first type which is present as a minor constituent, comprises liquids having solvating power for the vinyl chloride resins
- solvating liquids include ketones, alkyl phthalates and other esters.
- the second type of liquid which is present in major amount is a hydrocarbon of either the aromatic or aliphatic series. The hydrocarbons serve asdiluents, but the greater ability of aromatic hydrocarbons to swell the vinyl chloride resin should.
- the organosols will be formulated within the range, together with pigments and fillers as desired:
- Vinyl chloride resin 25 to 45 solvating liquid plasticizer, ester, or
- the organosol is spread over the metal surface by spraying, dipping, roller coating or other suitable means, and baked at temperatures not exceeding 250 F.
- the volatile hydrocarbons and solvating liquids are removed and the resin is only partially solvated or fused.
- the film existing on the metal at this stage is non-homogeneous and it has poor cohesion, toughness and strength.
- the film is very readily abraded with sandpaper or other abrasives, and it may be rubbed to a smooth surface with a minimum of eflort.
- the film After sanding, the film is baked at a temperature above 300 F., preferably at 350 to 400 F. This final baking completes the solvation or fusion of the film to a homogeneous state. In this form, the film is homogeneous, tough, strong and hard and very resistant to abrasion.
- the solvating liquids In achieving the final fusion of the resin, it is desirable that some of the solvating liquids still be present, and this necessitates that all or a substantial portion, say 25 to of the solvating liquid, be composed of liquids which are substantially non-volatile at 250 F. at atmospheric pressures.
- This portion of the solvating liquid usually comprises the ester plasticizer which is normally included to give desired flexibility to the final coating.
- the surface of the film is often fiat or non-reflective as a result of the sanding.
- Th surface of the film may be burnished or made glossy by various procedures.
- One of these procedures involves rubb ng the film with a polishing compound followed, if desired, by a waxing operation.
- a top coating of an organosol may be applied to the sanded surface, omitting the preliminary baking and carrying out the baking in one stage at temperatures of 300 to 400 F. When baked in this manner coatings deposited from organosols develop a moderately glossy finish.
- Another method of developing a glossy finish on the sanded organosol coating is to spray the film with an active solvent for the resinous binder, such as mesityl oxide or isophorone, followed by a brief bake at 300 to 400 F.
- a final method invoives depositing a film of a more soluble vinyl resin from solution in an organ c solvent and then baking. This latter procedure develops a substantially higher gloss than applying a top coating from an organosol.
- the treatments involving polishing and waxing should be carried out after the sanded film has received its final bake, but the other treatments may be carried out immediately after the sanding operation as baking is required with each of these operations. ments give better results if carried out after the sanded film has been baked at temperatures of 300 to 400 F.
- the organosols employed in the practice of this invention may be prepared by charging the ingredients in any order to a pebble mill or other grindng apparatus and thoroughly dispersing the resin by grinding for from 24 to 48 hours. Best results are obtained if the grinding operation is carried out at temperatures below about 50 to 60 C.
- the vinyl chloride resins employed in the organosols are preferably those which have been prepared by the emulsion polymerization of vinyl chloride, or the emulsion copolymerization of vinyl chloride with another monomer, and isolating the vinyl chloride resins in finely divided form by coagulation of the emulsion.
- the vinyl chloride comprises at least 80% by weight of the copolymer.
- Monomers which may be copolymerized with vinyl chloride include vinyl acetate, vinyl propionate, methyl acrylate, ethyl acrylate, acrylonitrile, dimethyl .fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate and vinylidene chloride. All of such vinyl chloride resins are characterized by relative insolubility in organic solvents and form at most only dilute solutions, say 5% to by weight in acetone or methyl ethyl ketone.
- Plasticizers employed in this invention may be any of the typical esters used with vinyl chloride resins, such as those disclosed by M. C. Reed, Industrial and Engineering Chemistry, vol. 35, page 896 (1943).
- the solvating liquid may also include a ketone, such as acetone, ethyl ketone, dipropyl ketone, methyl isobutyl ketone, mesityl oxide, isophorone,
- a ketone such as acetone, ethyl ketone, dipropyl ketone, methyl isobutyl ketone, mesityl oxide, isophorone,
- a fluid organosol was discharged from the mill and diluted with a mixture of isophorone (20% by weight) and a petroleum naphtha of high flash point (balance) until the viscosity of the organosol was 18 seconds measured in a Ford viscos meter with a No. 4 tip.
- Two steel panels were then coated and baked for 30 minutes with a primer coating of the following compositions:
- Methyl isobutyl ketone 40 Methyl amyl ketone, 10% Toluene, 40 Xylene, 10%
- the lacquered panel presented a smooth, glossy, enamel-like appearance after baking, and such a finish was imparted to the unlacquered panel in a conventional manner, using a rubbing compound and a polishing wax.
- This organosol was diluted with a thinner in the amount of 30% by weight of the organosol.
- the thinner was composed of a by weight solution of a copolymer of vinyl chloride 86%, vinyl acetate 14%, average molecular weight about 6,000, in a mixture of isophorone by weight) and a petroleum naphtha of high flash point (balance).
- a steel panel was then coated with a baked primer as a described in Example 1.
- the organosol was then sprayed on to the primed panel. Unlike the organosol coating described in the previous example, this coating could be airdried for long periods without cracking.
- the coating was air-dried for minutes and then partially fused by baking at 250 F. for 10 minutes. After cooling the coating was sanded to a smooth surface with No. 400 sandpaper using water lubrication.
- EXANIPLE 3 An organosol of the following composition was prepared, as described in Example 1:
- the sanded and lacquered coating was then baked for 30 minutes at 350 F.
- the coated panel after baking had a smooth, glossy surface.
- the adhesion of the coating to the metal was quite adequate, but was not quite as strong as obtained in the previous examples in which the panels had been precoated with a baked primer.
- Process for forming a smooth coating on metallic articles having surface irregularities which comprises applying to the metal surface at room temperature a fluid suspension of 25 to 45 parts of a finely divided vinyl chloride resin containing from to polymerized vinyl chloride in a non-solvent mixture composed of 31 to 65 parts of a liquid hydrocarbon of the group consisting of xylene and toluene and 5 to 29 parts of a solvating liquid atleast 25% by weight of said solvating liquid being composed of an ester plasticiger for: inyl chloride resins and the balance of said; solvating liquid being selected from the group consisting of acetone, diipropyl ketone, methyl isobutyl ketone, mesityl oxide, isophogone, acetonyl acetone, pentaned-ione-ZA, ethyl acetate, isopropyl acetate, butylacetate, methyl a nyl acetate, 2-ethy1-butyl acetate, 2-
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Paints Or Removers (AREA)
Description
Patented Nov. 21, 1950 METHOD OF COATING METAL summons Clayton I. Spessard, Pittsburgh, Pa., assignor, by
mesne assignments, to Union Carbide and Carbon Corporation, a corporation of New York No Drawing. Application February 4, 1947, Serial No. 726,435
1 Claim.
This invention pertains to an improved technique in applying decorative and protective coatings to metal surfaces.
In coating metal surfaces, for instance, automobile bodies, a smooth, glossy finish of high depth is desired. However, the surface of fabricated metal articles often contains roughened areas which may be caused by scratches, marred sections, joints, weld lines, pitting or surface irregularities in the metal. It is now conventional practice to apply what is termed a sanding surfacer to automobile bodies prior to the deposition of the finish or top coating.
The purpose of the sanding surfacer" is to fill all cracks or irregularities in the metal. A smooth surface is then obtained by sanding.
. This sanding surfacer and primer usually comprises an alkyd resin or oleoresinous vehicle heavily loaded with fillers, such as Whiting, asbestine minerals, diatomaceous earth, or other siliceous minerals. This sanding surfacer sets up to a cheesy film of poor cohesive properties and the film, in consequence, is very readily lacquer, properly formulated for durability and strength, the primer or sanding surfacer remains as a vulnerable point in the coating system.
One object of the present invention is to obtain a smooth, glossy finish on metals, wherein sanding is required to smooth out surface irregularities, without weakening the overall protective coating. Another object is to provide a composition which serves both as the sanding surfacer and the final coating.
These objects are accomplished through the proper application of finely divided vinyl chloride resins suspended in organic liquids. Such suspensions are hereinafter termed organosols. The liquid components of an organosol comprise liquids of two types. The first type, which is present as a minor constituent, comprises liquids having solvating power for the vinyl chloride resins Such solvating liquids include ketones, alkyl phthalates and other esters. The second type of liquid which is present in major amount, is a hydrocarbon of either the aromatic or aliphatic series. The hydrocarbons serve asdiluents, but the greater ability of aromatic hydrocarbons to swell the vinyl chloride resin should.
be recognized. In general, more of the solvating liquids are required in the suspending media when aliphatic hydrocarbons, rather than aromatic hydrocarbons, are employed as the diluents. When blends of aromatic and aliphatic hydrocarbons are employed as diluents, the amount of the solvating liquid in the suspending media should be adjusted in accordance with the ratio of aliphatic to aromatic hydrocarbons in the blend. For each combination of solvating liquid and diluent there will be found an optimum ratio of solvating liquid to diluent at which the organosol will have a minimum viscosity. In general the organosols will be formulated within the range, together with pigments and fillers as desired:
Parts by weight Vinyl chloride resin 25 to 45 solvating liquid (plasticizer, ester, or
ketone, or mixtures thereof) 5 to 29 Diluent (hydrocarbon) 31 to In practicing this invention, the organosol is spread over the metal surface by spraying, dipping, roller coating or other suitable means, and baked at temperatures not exceeding 250 F. As a result of this treatment, the volatile hydrocarbons and solvating liquids are removed and the resin is only partially solvated or fused. As a result, the film existing on the metal at this stage is non-homogeneous and it has poor cohesion, toughness and strength. In this gelled but not completely fused condition, the film is very readily abraded with sandpaper or other abrasives, and it may be rubbed to a smooth surface with a minimum of eflort. After sanding, the film is baked at a temperature above 300 F., preferably at 350 to 400 F. This final baking completes the solvation or fusion of the film to a homogeneous state. In this form, the film is homogeneous, tough, strong and hard and very resistant to abrasion.
In achieving the final fusion of the resin, it is desirable that some of the solvating liquids still be present, and this necessitates that all or a substantial portion, say 25 to of the solvating liquid, be composed of liquids which are substantially non-volatile at 250 F. at atmospheric pressures. This portion of the solvating liquid usually comprises the ester plasticizer which is normally included to give desired flexibility to the final coating.
Although the physical properties of the fused film are excellent, the surface of the film is often fiat or non-reflective as a result of the sanding. Th surface of the film may be burnished or made glossy by various procedures. One of these procedures involves rubb ng the film with a polishing compound followed, if desired, by a waxing operation. Also a top coating of an organosol may be applied to the sanded surface, omitting the preliminary baking and carrying out the baking in one stage at temperatures of 300 to 400 F. When baked in this manner coatings deposited from organosols develop a moderately glossy finish. Another method of developing a glossy finish on the sanded organosol coating is to spray the film with an active solvent for the resinous binder, such as mesityl oxide or isophorone, followed by a brief bake at 300 to 400 F. A final method invoives depositing a film of a more soluble vinyl resin from solution in an organ c solvent and then baking. This latter procedure develops a substantially higher gloss than applying a top coating from an organosol.
The treatments involving polishing and waxing should be carried out after the sanded film has received its final bake, but the other treatments may be carried out immediately after the sanding operation as baking is required with each of these operations. ments give better results if carried out after the sanded film has been baked at temperatures of 300 to 400 F.
The organosols employed in the practice of this invention may be prepared by charging the ingredients in any order to a pebble mill or other grindng apparatus and thoroughly dispersing the resin by grinding for from 24 to 48 hours. Best results are obtained if the grinding operation is carried out at temperatures below about 50 to 60 C.
The vinyl chloride resins employed in the organosols are preferably those which have been prepared by the emulsion polymerization of vinyl chloride, or the emulsion copolymerization of vinyl chloride with another monomer, and isolating the vinyl chloride resins in finely divided form by coagulation of the emulsion. In the case of the copolymers, the vinyl chloride comprises at least 80% by weight of the copolymer. Monomers which may be copolymerized with vinyl chloride include vinyl acetate, vinyl propionate, methyl acrylate, ethyl acrylate, acrylonitrile, dimethyl .fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate and vinylidene chloride. All of such vinyl chloride resins are characterized by relative insolubility in organic solvents and form at most only dilute solutions, say 5% to by weight in acetone or methyl ethyl ketone.
As noted previously, a plasticizer is usually included in the organosol constituting part or all of the solvating liquid. Plasticizers employed in this invention may be any of the typical esters used with vinyl chloride resins, such as those disclosed by M. C. Reed, Industrial and Engineering Chemistry, vol. 35, page 896 (1943).
The solvating liquid may also include a ketone, such as acetone, ethyl ketone, dipropyl ketone, methyl isobutyl ketone, mesityl oxide, isophorone,
acetonyl acetone and pentanedione 2-4 or an glycol.
The preparation of organosols is more fully discussed in my application Serial No. 524,911, filed March 3, 1944, entitled Vinyl Resin Suspen- SiOIIS, now Patent No. 2,427,513, and. in applica- I-lowever, these latter treat- 4 tion Serial No. 542,432, filed June 27, 1944, by G. M. Powell and T. E. Mullen, entitled Vinyl Resin Suspensions, now Patent No. 2,431,078, and assigned to the same assignee as the present application.
The following examples Will serve to illustrate this invention:
EXAMPLE 1 The following ingredients Were charged to a small pebble mill and ground for 48 hours:
Organosol Per cent by weight Emulsion copolymer of vinyl chloride, 96%, vinyl acetate, 4%, average molecular weight by Staudingers method, about 23,000 35.3
Di-2-ethylhexyl phthalate 7.1 Carbanthrene red 1.7 Cadmium red 2.7 2-ethylhexyl acetate 7.9 Xylene 45.3
At the end of the grinding period a fluid organosol was discharged from the mill and diluted with a mixture of isophorone (20% by weight) and a petroleum naphtha of high flash point (balance) until the viscosity of the organosol was 18 seconds measured in a Ford viscos meter with a No. 4 tip. Two steel panels were then coated and baked for 30 minutes with a primer coating of the following compositions:
Primer Percent by weight Chrome orange pigment 25.3
Copolymer of vinyl chloride, 87%, vinyl acetate, 13%, average molecular weight about 10,000 14.8 Dibutoxyethyl phthalate 3.9 Solvent thinner n 56.0
Methyl isobutyl ketone, 40 Methyl amyl ketone, 10% Toluene, 40 Xylene, 10%
Overlacquer Percent by weight Copolymer of vinyl chloride, 90%, vinyl acetate, 10%, average molecular weight about 16,000 5.0 Methyl ethyl ketone 26.0 Methyl isobutyl ketone 32.5 Isophorone 3.5 Toluene 29.5 Xylene 3.5
Both panels were then placed in an oven at 350 F. for 30 minutes. The lacquered panel presented a smooth, glossy, enamel-like appearance after baking, and such a finish was imparted to the unlacquered panel in a conventional manner, using a rubbing compound and a polishing wax.
EXAMPLE 2 An organosol of the following composition was prepared as described in Example 1:
Organosol Percent by weight Emulsion copolymer of vinyl chloride, 96%, vinyl acetate, 4%, average molecular This organosol was diluted with a thinner in the amount of 30% by weight of the organosol. The thinner was composed of a by weight solution of a copolymer of vinyl chloride 86%, vinyl acetate 14%, average molecular weight about 6,000, in a mixture of isophorone by weight) and a petroleum naphtha of high flash point (balance).
A steel panel was then coated with a baked primer as a described in Example 1. The organosol was then sprayed on to the primed panel. Unlike the organosol coating described in the previous example, this coating could be airdried for long periods without cracking. The coating was air-dried for minutes and then partially fused by baking at 250 F. for 10 minutes. After cooling the coating was sanded to a smooth surface with No. 400 sandpaper using water lubrication.
The sanded coating was then sprayed with an overlacquer of the following composition:
Overlacquer Percent by weight Copolymer of vinyl chloride, 87%, vinyl acetate, 13%, average molecular weight The sanded and lacquered panel was placed in an oven at 350 F. for 30 minutes. The coated panel exhibited excellent gloss, smoothness and depth of finish.
EXANIPLE 3 An organosol of the following composition was prepared, as described in Example 1:
6 Organosol Percent by weight Emulsion copolymer of vinyl chloride, 96%,
vinyl acetate 4%, average molecular 0 weight about 23,000 29.8
Di-2-ethylhexyl phthalate 5.9 Indanthrene blue 1.5 Carbanthrene yellow 0. 1 Lead titanate 0.6 Methyl isobutyl ketone- 1.9 2-ethylhexyl acetate 7.4 Xylene 52.8
One hundred (100) parts by weight of the organosol were blended with parts of a solution of a vinyl resin noteworthy for its adherence to metals. The solution had the following composition:
Solution Percent by weight Copolymer vinyl chloride, 86%, vinyl acetate, 13%, maleic acid, 1%, average molecular weight 10,000 15.0 Methyl isobutyl ketone 21.0 Xylene 64.0
Overlacquer Percent by weight Copolymer of vinyl chloride, 87%, vinyl acetate, 13%, average molecular weight 10,- 000 10.0 Copolymer of vinyl chloride, 86%, vinyl acetate, 14%, average molecular weight 6,000 6.6 Methyl isobutyl ketone 41.7 Toluene 41.7
The sanded and lacquered coating was then baked for 30 minutes at 350 F. The coated panel after baking had a smooth, glossy surface. The adhesion of the coating to the metal was quite adequate, but was not quite as strong as obtained in the previous examples in which the panels had been precoated with a baked primer.
Modifications of the invention other than as described in the previous example are included within the scope of the invention as defined in the appended claim.
I claim:
Process for forming a smooth coating on metallic articles having surface irregularities which comprises applying to the metal surface at room temperature a fluid suspension of 25 to 45 parts of a finely divided vinyl chloride resin containing from to polymerized vinyl chloride in a non-solvent mixture composed of 31 to 65 parts of a liquid hydrocarbon of the group consisting of xylene and toluene and 5 to 29 parts of a solvating liquid atleast 25% by weight of said solvating liquid being composed of an ester plasticiger for: inyl chloride resins and the balance of said; solvating liquid being selected from the group consisting of acetone, diipropyl ketone, methyl isobutyl ketone, mesityl oxide, isophogone, acetonyl acetone, pentaned-ione-ZA, ethyl acetate, isopropyl acetate, butylacetate, methyl a nyl acetate, 2-ethy1-butyl acetate, 2-ethy1hexyl aeetate, methoxyethyl acetate, ethoxyethyl acetate, diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate, forming a non-homogeneous easily abraded film err said metal surface by baking the applied suspension at a temperature not exceeding about 259 F- nd t er y on y pa ia ly us n t finely-div ded r s n, me han cal y a g d film to. obtain. a smo th surface thereon, a
thereaf er ak n sai film at, a. temper ure of 3 to- 4 .0. F- to, vform a s rio h tou h nd ad e nt c ating on sa m t surface- CLAYTON 1. SPESSARD.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED. SIAT PATENTS Number Name DBJ 1,904,417 Crystler Apr. 18, 1932 1,912,372 Jacobson et a1. June 6, 1933 2,245,708 Patton June 17, 1941 15 2,270,662 Raney Jan. 20, 1942 2,279,771 Austin; Apr. 14, 1942 2,427,513, spessard fl -1 Sept. 16,1 1 947 2,431,078 Powell a ---i-r Nov, 18,1947
Certificate of Correction Patent No. 2,530,738 November 21, 1950 CLAYTON 1. SPESSARD It is hereby certified that error appeers in the printed specification of the above numbered patent requiring correctlon as follows:
Column 3, line 66, for the word methyl read ethyl;
and that the said Letters Patent should be read as corrected above, so that the same may conform to the record of the case in the Patent Ofiice. Signed and sealed this 23rd day of January, A. D. 1951.
THOMAS F. MURPHY,
Assistant C'ommz'ssz'oner of Patents.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US726435A US2530738A (en) | 1947-02-04 | 1947-02-04 | Method of coating metal surfaces |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US726435A US2530738A (en) | 1947-02-04 | 1947-02-04 | Method of coating metal surfaces |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2530738A true US2530738A (en) | 1950-11-21 |
Family
ID=24918588
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US726435A Expired - Lifetime US2530738A (en) | 1947-02-04 | 1947-02-04 | Method of coating metal surfaces |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2530738A (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2597625A (en) * | 1949-07-01 | 1952-05-20 | Cellophane Sa | Process for applying moistureproof coating to regenerated cellulose |
| US2628208A (en) * | 1951-06-18 | 1953-02-10 | Serge A Loukomsky | Coating compositions |
| US2646414A (en) * | 1952-03-13 | 1953-07-21 | Kendall & Co | Polyvinyl chloride polymer dispersion |
| US2851372A (en) * | 1956-08-14 | 1958-09-09 | Sun Steel Company | Coated metal sheet and method of making the same |
| US2979416A (en) * | 1958-04-29 | 1961-04-11 | Magna Bond Inc | Method for sealing eroded articles and thixotropic composition therefor |
| US2980642A (en) * | 1958-01-16 | 1961-04-18 | Armstrong Cork Co | Color stable lacquer comprising vinyl chloride resin and 1, 3-butylene adipate |
| US3009895A (en) * | 1956-12-31 | 1961-11-21 | Monsanto Chemicals | Compatible blends of two or more interpolymers that follow the slocombewesp rule of azeotropic line clarity and solutions thereof |
| US3438800A (en) * | 1965-10-13 | 1969-04-15 | Celanese Coatings Co | Synthetic enamel coating process |
| US3502608A (en) * | 1966-10-07 | 1970-03-24 | Nippon Zeon Co | Vinyl chloride copolymeric paint solutions in aromatic hydrocarbons |
| US3931431A (en) * | 1973-01-18 | 1976-01-06 | Giorgi Lewis A | Photographs coated with a protective and finishing layer |
| US3950571A (en) * | 1972-08-11 | 1976-04-13 | Mcbride La Vaughn R | Method for rehabilitating scored and marred surfaces |
| US3989860A (en) * | 1974-07-22 | 1976-11-02 | Xerox Corporation | Repair technique for photoreceptors |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1904417A (en) * | 1931-10-21 | 1933-04-18 | Jones Dabney Co | Finishing process |
| US1912372A (en) * | 1929-06-12 | 1933-06-06 | Du Pont | Method of coating and article produced thereby |
| US2245708A (en) * | 1938-03-09 | 1941-06-17 | Carbide & Carbon Chem Corp | Coating process |
| US2270662A (en) * | 1939-01-19 | 1942-01-20 | Anchor Hocking Glass Corp | Coated steel article |
| US2279771A (en) * | 1940-04-19 | 1942-04-14 | Du Pont | Coating process |
| US2427513A (en) * | 1944-03-03 | 1947-09-16 | Carbide & Carbon Chem Corp | Process of dispersing copolymer of vinyl chloride and vinyl acetate in a ketone and hydrocarbon dispersant |
| US2431078A (en) * | 1944-06-27 | 1947-11-18 | Carbide And Carbon Chemicais C | Vinyl resin suspensions |
-
1947
- 1947-02-04 US US726435A patent/US2530738A/en not_active Expired - Lifetime
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1912372A (en) * | 1929-06-12 | 1933-06-06 | Du Pont | Method of coating and article produced thereby |
| US1904417A (en) * | 1931-10-21 | 1933-04-18 | Jones Dabney Co | Finishing process |
| US2245708A (en) * | 1938-03-09 | 1941-06-17 | Carbide & Carbon Chem Corp | Coating process |
| US2270662A (en) * | 1939-01-19 | 1942-01-20 | Anchor Hocking Glass Corp | Coated steel article |
| US2279771A (en) * | 1940-04-19 | 1942-04-14 | Du Pont | Coating process |
| US2427513A (en) * | 1944-03-03 | 1947-09-16 | Carbide & Carbon Chem Corp | Process of dispersing copolymer of vinyl chloride and vinyl acetate in a ketone and hydrocarbon dispersant |
| US2431078A (en) * | 1944-06-27 | 1947-11-18 | Carbide And Carbon Chemicais C | Vinyl resin suspensions |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2597625A (en) * | 1949-07-01 | 1952-05-20 | Cellophane Sa | Process for applying moistureproof coating to regenerated cellulose |
| US2628208A (en) * | 1951-06-18 | 1953-02-10 | Serge A Loukomsky | Coating compositions |
| US2646414A (en) * | 1952-03-13 | 1953-07-21 | Kendall & Co | Polyvinyl chloride polymer dispersion |
| US2851372A (en) * | 1956-08-14 | 1958-09-09 | Sun Steel Company | Coated metal sheet and method of making the same |
| US3009895A (en) * | 1956-12-31 | 1961-11-21 | Monsanto Chemicals | Compatible blends of two or more interpolymers that follow the slocombewesp rule of azeotropic line clarity and solutions thereof |
| US2980642A (en) * | 1958-01-16 | 1961-04-18 | Armstrong Cork Co | Color stable lacquer comprising vinyl chloride resin and 1, 3-butylene adipate |
| US2979416A (en) * | 1958-04-29 | 1961-04-11 | Magna Bond Inc | Method for sealing eroded articles and thixotropic composition therefor |
| US3438800A (en) * | 1965-10-13 | 1969-04-15 | Celanese Coatings Co | Synthetic enamel coating process |
| US3502608A (en) * | 1966-10-07 | 1970-03-24 | Nippon Zeon Co | Vinyl chloride copolymeric paint solutions in aromatic hydrocarbons |
| US3950571A (en) * | 1972-08-11 | 1976-04-13 | Mcbride La Vaughn R | Method for rehabilitating scored and marred surfaces |
| US3931431A (en) * | 1973-01-18 | 1976-01-06 | Giorgi Lewis A | Photographs coated with a protective and finishing layer |
| US3989860A (en) * | 1974-07-22 | 1976-11-02 | Xerox Corporation | Repair technique for photoreceptors |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA1051291A (en) | Method for coating and product | |
| US2530738A (en) | Method of coating metal surfaces | |
| JP2869443B2 (en) | Top coating composition | |
| US3057812A (en) | Coating compositions comprising a resinous copolymer having a reduced viscosity of 0.2 to 0.8 and a second order transition temperature of 45 deg. c. to 125 deg. c. | |
| CA2278285C (en) | Aqueous metallic coating composition and method for forming topcoat | |
| US3674734A (en) | Thermosetting acrylic enamel | |
| US3526532A (en) | Metal article coated with acrylic or vinyl primer and hydrofluorocarbon topcoat | |
| US4226901A (en) | Method for metallic finish coating | |
| US2956902A (en) | Primer coating composition containing a polymer predominately of vinyl acetate | |
| US4371667A (en) | Baking lacquer | |
| JP2008528727A (en) | Polyvinylidene fluoride coating for metal substrates | |
| US4007306A (en) | Method of applying aqueous coating compositions | |
| US4871591A (en) | Finish coating method | |
| CA2126558C (en) | Isophorone-free fluorocarbon coating composition | |
| US2940872A (en) | Method of coating metal and article produced thereby | |
| US3069291A (en) | Primer composition for adhesion of methyl methacrylate lacquer to metal, process and article produced thereby | |
| JP3837776B2 (en) | Curable resin composition and coating method using the same | |
| US3696063A (en) | Thermosetting reflow resins of copolymers of alkyl methacrylates | |
| JPH01252676A (en) | Chipping-resistant paint composition | |
| JP2009275170A (en) | Method for producing vinyl polymer, coating containing the vinyl polymer, and method for forming coated film using the coating | |
| JP4119014B2 (en) | Top coating composition and method for forming coating film thereof | |
| JPH078972B2 (en) | Thermosetting solvent type coating composition | |
| US4065425A (en) | Process for the preparation of non-aqueous dispersion coatings | |
| JPH0978010A (en) | Thermosetting powder coating composition | |
| JPH078974B2 (en) | Thermosetting solvent type coating composition |