US2521217A - Electrolyzing indium oxide in fused caustic electrolyte - Google Patents
Electrolyzing indium oxide in fused caustic electrolyte Download PDFInfo
- Publication number
- US2521217A US2521217A US627014A US62701445A US2521217A US 2521217 A US2521217 A US 2521217A US 627014 A US627014 A US 627014A US 62701445 A US62701445 A US 62701445A US 2521217 A US2521217 A US 2521217A
- Authority
- US
- United States
- Prior art keywords
- indium
- metal
- electrolyte
- indium oxide
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003792 electrolyte Substances 0.000 title claims description 21
- 229910003437 indium oxide Inorganic materials 0.000 title claims description 21
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 title claims description 20
- 239000003518 caustics Substances 0.000 title description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 74
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 38
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 229910052738 indium Inorganic materials 0.000 claims description 26
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 5
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 5
- 229910001948 sodium oxide Inorganic materials 0.000 claims description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 229910052725 zinc Inorganic materials 0.000 description 12
- 239000011701 zinc Substances 0.000 description 12
- 238000005868 electrolysis reaction Methods 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 9
- 229910052708 sodium Inorganic materials 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 229910000846 In alloy Inorganic materials 0.000 description 6
- RLIUKKHIBMHFOK-UHFFFAOYSA-N indium sodium Chemical compound [Na].[In] RLIUKKHIBMHFOK-UHFFFAOYSA-N 0.000 description 5
- IGUXCTSQIGAGSV-UHFFFAOYSA-K indium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[In+3] IGUXCTSQIGAGSV-UHFFFAOYSA-K 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003513 alkali Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 101100348017 Drosophila melanogaster Nazo gene Proteins 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 241001236294 Hebe Species 0.000 description 1
- 229910000528 Na alloy Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- ZMFWDTJZHRDHNW-UHFFFAOYSA-N indium;trihydrate Chemical compound O.O.O.[In] ZMFWDTJZHRDHNW-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/34—Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
Definitions
- This invention relates to electrolysis ofindium ina fused caustic electrolyte.
- the principal object of the invention is to provide a simple, efiicient process for recovering indium from indium material by electrolysis employing a fused caustic electrolyte. More particularly, the object of the invention is to provide a simple and eflicient process for electrolyzing indium oxide obtained by the practice of the Heberlein (co-inventor of this application) and Udin process disclosed in their copending applicatio Serial No, 622,022, filed October 12, 1945. Other objects of the invention will be in part obvious and in part pointed out hereinafter.
- the invention accordingly consists of the novel processes and steps of processes, specificembodiinents of which are described hereinafter by way of example and in accordance'with which we now prefer to practice the invention.
- indium oxide is reduced to metal by electrolysis in fused caustic alkali. such as sodium hydroxide.
- the electrolysis is preferably performed in a steel vessel serving as cathode and which may be heated externally.
- the anode is suspended in the center, preferably, and consists or a steel strip about thick by 4" wide and about 6" long.
- the reduced indium metal collects 'as a molten pool at the bottom of the vessel and can be tapped periodically through an outlet provided for this purpose.
- the temperature of the fused caustic sodaindium oxide bath should preferably be about 800 F. and during the electrolysis the tempera ture range should be maintained at about the 7 Claims. (01.20971) tained should be about 2.5 to 7 .amperes pert square inch of anode surface.- H
- I Indium oxide is periodically stirred into the 1 electrolyte during the run.
- iron orsteel is highly resistant to the corrosive attack of fused caustic soda
- the electrolyte dissolves a" considerable amount of both the anode and the cathode.
- sodium oxide (NazO) tends to build up. This material does not melt-"below its sublimation temperature of 1275 C. (232'7 F.). It reacts very slowly with water or steam at the operating temperature of the cell and for this reason it can not be readily reconverted to sodium hydroxide during the elec-*' trolysis.
- the caustic soda slag, together with the dross obtained by the above treatment with caustic soda, watuand niter for the elimination'of zinc and iron, arecombined with thespent electrolyte. This material is then leached in hot water to separate the insoluble In(OH)3, indium hydroxide,
- the metallic indium prills While the metallic prills are combined with the metal produced in the electrolytic cell, the indium oxide is returned to the operation for recovering indium and other values by combining it with the water leach residue to be supplied to the neutral leach,
- the electrolyte mixture of sodium hydroxidesodium oxide containing up to 3% iron and up to approximately 7 indium upon removal from the cell was .then leached in hot water to separate the, insoluble indium hydroxide In(OI-I)3 and metallic indium prills.
- the metallic prills were combined with the metal produced in the elecdisclosed in the said copending application of Max F. W. Heberlein and Harry Udin.
- This indium hydroxide contains also other impurities such as iron and zinc, together with copper and About 18 5 kgs. of commercial sodium hydroxide flakes were melted down in a steel vessel of about '1 xl-":x1.2" depth serving. as a cathode which may be heated externally.
- This quantity oi austic soda. gives. a. bath. d pth of appr x 1 0,inches. Aboutlfikgs. of indium oxide (1221203.)- contain'ing a littleZnO are added to the molten bath and the, temperature of. the fused caustic soda-indium. oxide bath is, adjusted toabout. 8 003 A steel. strip. anode was then inserted in he molten, bath. The steel anode. consisted of. a strip. about, A thichand 4-" wide- Itwas. submerged in the center of the cell to about i 4 inches from, the bottom. Current of 400. am-
- the metal taped from the cell was remelted in a gas-fired steel kettle for a final refining treatment.
- Spectrographic analysis of the metal tapped from the cell is shown in the following:
- Example 1 temperature of the fused caustic soda-indium oxide bath is adjusted in each cell to about 809 F.
- a steel strip of the dimensions given in Example 1 was inserted in each cell in the manner described in Example 1.
- Electroylsis was conducted employing a current of about 400 amperes and a current density of about 7 amperes per square inch of anode surface. The operation was conducted for 48 hours in substantially the same manner as that in Example 1 and the results are shown in the following metal balance:
- the process which essentially comprises, electrolyzing indium oxide (InzOs) containing iron as impurity dissolved in molten sodium hydroxide at a temperature of about 750-850 F. to produce impure indium metal, thereby building up the content of sodium oxide and iron in the electrolyte, and recovering said impure indium metal.
- indium oxide InzOs
- iron as impurity dissolved in molten sodium hydroxide
- the process which essentially comprises electrolyzing indium oxide (InzOa) dissolved in molten sodium hydroxide to form a sodium-indium alloy, maintaining the temperature of the bath at a point where the alloy collects as a molten mass, adding water to said alloy, and removing a dross containing sodium hydroxide.
- indium oxide InzOa
- the process which essentially comprises electrolyzing indium oxide (InzOs) dissolved in molten caustic soda to form a sodium-indium alloy containing small amounts of sodium, iron and zinc, adding Water to the alloy, removing a dross containing sodium hydroxide, treating the resultant metal after removal of the sodium hydroxide with niter, sodium hydroxide and water to form a dross containing iron and zinc and removing the last-mentioned dross.
- InzOs indium oxide
- the process which essentially comprises electrolyzing indium oxide (InzOs) containing iron and zinc as impurities dissolved in molten sodium hydroxide at a temperature of about 750-850 F. to form a pool of impure indium metal containing sodium, iron and zinc, removing spent electrolyte when the iron content thereof reaches about 3%, oxidizing sodium, iron and zinc contained in the impure metal, removing such oxidized metals from said indium metal, and recovering indium values from the spent electrolyte and said oxidized metals.
- InzOs indium oxide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Description
. Sept. 5, 1950 Solid 5 M. F. W. HEBE'RLEIN ETAL- ELECTROLYZING INDIUM OXIDE IN FUSED CAUSTIC ELECTROLYTE Filed Nov. 6, 1945 Fused Sodiuh Hydrox (Na OH) Ele-crrolysis (Fe. Elech odes) I J J,
F eni Elech olyie Jr Indium Mei'cll (WifhNcL,
ide
Fzn efc) (No In 0 No OH, N0 O,Fe,Zn dc l ionsand Mefallic' In Prflls KeH'le Refininq Wafer Leach (Hoi' Wc|feF) Mew H'c I No In O2,Nc| OH) separolror A In Finns Fe,Zn erc. ions 1 Merollic In PriHs CoKe Soluiion In (OH)3 Refined M r l Discard In Rerurn +0 Nurrcl Leach of Heberle'm Uclin Process Max Kai INVENTORS.
MAX F. W. HEBERLEIN Y NEVIN R. BIERLV.'
Patented Sept. 5, 1?50 iii? ELECTROLY ZING-IND OXIDE IN FUSED QAUSTIC ELECTROLYTE 'Max F. W. Heberlein, Rahway, and Nevin R. Bierly, Avenel, N. J .,fassignors to The American Metal Company, Limited, New corporation of New York York, N. Y., a
Application November 6, 1945; Serial No. 627,014
Y This invention relates to electrolysis ofindium ina fused caustic electrolyte.
.- We have found that the usual methods em ployed for the reduction of other metal oxides are not satisfactory when applied to indium recovery. Tests with several carbonaceous reducing agents gave varying low yields as compared with yields of the process herein described.
The principal object of the invention is to provide a simple, efiicient process for recovering indium from indium material by electrolysis employing a fused caustic electrolyte. More particularly, the object of the invention is to provide a simple and eflicient process for electrolyzing indium oxide obtained by the practice of the Heberlein (co-inventor of this application) and Udin process disclosed in their copending applicatio Serial No, 622,022, filed October 12, 1945. Other objects of the invention will be in part obvious and in part pointed out hereinafter.
The invention accordingly consists of the novel processes and steps of processes, specificembodiinents of which are described hereinafter by way of example and in accordance'with which we now prefer to practice the invention.
In accordance with our invention, indium oxide is reduced to metal by electrolysis in fused caustic alkali. such as sodium hydroxide. Our method-has the particular advantage that it may be practised with substantially little or no metal losses. The electrolysis is preferably performed in a steel vessel serving as cathode and which may be heated externally. The anode is suspended in the center, preferably, and consists or a steel strip about thick by 4" wide and about 6" long. The reduced indium metal collects 'as a molten pool at the bottom of the vessel and can be tapped periodically through an outlet provided for this purpose.
The operation of the electrolysis is conducted in the following manner in accordance with our invention. A flow sheet forming part of the application shows the steps employed.
Sodium hydroxide flakes are melted down in the steel vessel, whereupon the indium oxide (111203) is added to the mass. Electrolysis is conducted with a current of about 400 amperes. Under this condition, about 300 grams of indium oxide (InzOa) are consumed per hour, the indium being liberated to the molten pool at the bottom of the cell as mentioned.
The temperature of the fused caustic sodaindium oxide bath should preferably be about 800 F. and during the electrolysis the tempera ture range should be maintained at about the 7 Claims. (01.20971) tained should be about 2.5 to 7 .amperes pert square inch of anode surface.- H
In the operation of'electrolysis, very little ex-i ternal heating is necessary becausemost of the heat required to keep the electrolyte molten once':
it is brought within the heating range is supplied by the electric current.
I Indium oxide is periodically stirred into the 1 electrolyte during the run. Although iron orsteel is highly resistant to the corrosive attack of fused caustic soda, the electrolyte dissolves a" considerable amount of both the anode and the cathode. During the electrolysis, sodium oxide (NazO) tends to build up. This material does not melt-"below its sublimation temperature of 1275 C. (232'7 F.). It reacts very slowly with water or steam at the operating temperature of the cell and for this reason it can not be readily reconverted to sodium hydroxide during the elec-*' trolysis. For this reason it is considered preferable to discard the electrolyte every 48 hours, employing the above-sized apparatus, and to con-- tinue with a new batch of sodium hydroxide. The discarded electrolyte mixture of sodium hydroxide and sodium oxide was found to contain up to about 3% iron and up to approximately 7 indium.
Since the indium oxide is dissolved in the caustic soda as Nazolnzos, or NaInOz, metallic so-' dium is deposited at the cathode and IiiaOa must be liberated at the anode. The reduction of the InzOa is then brought about according to the following equation:
Some metallic sodium escapes this reaction, al-
. timony, thallium and bismuth, and the balance indium. This material is melteddown in the kettle and the sodium is removed completely by pouring water onto the surface of the molten metal. Caustic soda forms and is skimmed off, Themetal is then heated to about'600 F. and; treated with caustic soda, watenandniter for:
order of 750-850 1. The current density main;
the elimination of zinc and iron. Copper and a portion of tin are also removed with this treatment.
The caustic soda slag, together with the dross obtained by the above treatment with caustic soda, watuand niter for the elimination'of zinc and iron, arecombined with thespent electrolyte. This material is then leached in hot water to separate the insoluble In(OH)3, indium hydroxide,
and the metallic indium prills. While the metallic prills are combined with the metal produced in the electrolytic cell, the indium oxide is returned to the operation for recovering indium and other values by combining it with the water leach residue to be supplied to the neutral leach,
4 was removed and replaced by a batch of 18.5 kgs'. of fresh fused sodium hydroxide.
The electrolyte mixture of sodium hydroxidesodium oxide containing up to 3% iron and up to approximately 7 indium upon removal from the cell was .then leached in hot water to separate the, insoluble indium hydroxide In(OI-I)3 and metallic indium prills. The metallic prills were combined with the metal produced in the elecdisclosed in the said copending application of Max F. W. Heberlein and Harry Udin. This indium hydroxide contains also other impurities such as iron and zinc, together with copper and About 18 5 kgs. of commercial sodium hydroxide flakes were melted down in a steel vessel of about '1 xl-":x1.2" depth serving. as a cathode which may be heated externally. This quantity oi austic soda. gives. a. bath. d pth of appr x 1 0,inches. Aboutlfikgs. of indium oxide (1221203.)- contain'ing a littleZnO are added to the molten bath and the, temperature of. the fused caustic soda-indium. oxide bath is, adjusted toabout. 8 003 A steel. strip. anode was then inserted in he molten, bath. The steel anode. consisted of. a strip. about, A thichand 4-" wide- Itwas. submerged in the center of the cell to about i 4 inches from, the bottom. Current of 400. am-
peres. was. used, giving acruiren-t density. of about. 'l amperes, per square inch; anode surface. The. fimpera'tureof thebath was maintainedat about. 7 50 85 0? E. Theinitial. cell voltage was. approxl mately volts. After about 48 hoursit. increased to nearly 7.5 volts. Most of the heat required to keep the eleotrolytemolten was. supplied by the current. About, 1.50. grams. of, indium oxide; 1112.03). were. added every half hour. Larger quantities tended to thicken the. electrolyte too; much. forsmcoth operation. inthe, particular apparatus. employed, Under this. condition! about, 300 grams ImlQa, were consumedper. hour... reduced. indium. metal, an alloy of indium and sodium. melting, at. 725,- '0 FL, collected asZ a. moltcnpool 'inthebottom and'was tapped periodi callyfroman outlet provided. for "that purpose.
Durin 'the'ccurse of. the electrolysis, sodium oxid (NazO). which does not meltbelow the. sub! limation temperature of 127.5 C. (2327..F.),.CQ1{- lects in thecell. Ltreacts very slowly with. water. at, the operating temperaturesof the: celland "f r; thisreason it was not convertedjto. caus ic sodaduring. the electrolysis... At the end. off-eyery (hours the electrolyte, which. had. built.- urpa wtainquantity ofironandsodiunr oxide.
trolytic cell, the indium hydroxide being returned to the operation by combining it with the residue resulting from the acid leach of the water leach residue as described in the copending application of Max F. W. Heberlein and Harry Udin, Serial No. 622,022, filed October 12, 1945. following shows the metal balance of a run of The 48 hours using the single cell operation described:
Kgs. InzOs charged to cell 14.0 In content of charge 11.2 In-content of spent electrolyte 2.1 Metal tapped from cell 9.0 Loss 0.1
The metal taped from the cell was remelted in a gas-fired steel kettle for a final refining treatment. Spectrographic analysis of the metal tapped from the cell is shown in the following:
Pb .05% Zn High 0.5% Sn- 114% Tl Trace Sb Trace Cd .0059! Cu .005-;02'% Na High 1.0% Fe; -.02-.04'% In Balance Bi Trace This material is melted in the kettle and .the sodium is removed completely by water poured onto the surface of the molten metal. A viscous caustic soda slag forms and can be easily skimmed on. The metal is then heated to about '60'0 F. and treated with caustic soda, water and niter (Na'NOzg) for the elimination of zinc and iron as oxides. Atypical assay of the refined metal shows" the following impurities:
Trace The kettle dross; resulting from the above is. combinedwithhot -spent electrolyte and leached in hot water.. The residue consistingmostly of indium hydroxide is returned to the neutral leachvopcration ofthe Heberlein and- Udin proc essv mentioned above- Example 2 About 18.5 kgs. of commercial sodium .hydroxride. flakes. were charged into each of two steel cells connected electrolytically in series-,, thedimensionsof. the. cells. being substantially those mentioned iniExample 1. To each ofthe molten bathsin. these cellsnvas. added 1.5 kgs...of. indium" oxide. (11120;) contam'im;alittle ZnO and the.
temperature of the fused caustic soda-indium oxide bath is adjusted in each cell to about 809 F. A steel strip of the dimensions given in Example 1 was inserted in each cell in the manner described in Example 1. Electroylsis was conducted employing a current of about 400 amperes and a current density of about 7 amperes per square inch of anode surface. The operation was conducted for 48 hours in substantially the same manner as that in Example 1 and the results are shown in the following metal balance:
Kgs.
InzOs charged to cell 27.8
In-content of charge 22.2
In-content of spent electrolyte 5.8
Metal tapped from 2 cells 16.3
Loss 0.1
We claim:
1. The process which essentially comprises, electrolyzing indium oxide (InzOs) containing iron as impurity dissolved in molten sodium hydroxide at a temperature of about 750-850 F. to produce impure indium metal, thereby building up the content of sodium oxide and iron in the electrolyte, and recovering said impure indium metal.
2. The process which essentially comprises electrolyzing indium oxide (InzOa) dissolved in molten caustic alkali to form a sodium-indium alloy, maintaining the temperature of the bath at a point where the alloy collects as a molten mass, removing the alloy, and recovering the indium.
3. The process which essentially comprises electrolyzing indium oxide (In2Os) dissolved in molten sodium hydroxide to form a sodium-indium alloy, using as electrodes a metal of a high melting point, maintaining the temperature of the bath at a point where the alloy collects as a molten mass, removing the alloy, and recovering the indium.
4. The process which essentially comprises electrolyzing indium oxide (InzOa) dissolved in molten caustic alkali to form a sodium-indium alloy, using steel electrodes, maintaining the temperature of the bath at 750-850 F., removing the alloy, and recovering the indium.
5. The process which essentially comprises electrolyzing indium oxide (InzOa) dissolved in molten sodium hydroxide to form a sodium-indium alloy, maintaining the temperature of the bath at a point where the alloy collects as a molten mass, adding water to said alloy, and removing a dross containing sodium hydroxide.
6. The process which essentially comprises electrolyzing indium oxide (InzOs) dissolved in molten caustic soda to form a sodium-indium alloy containing small amounts of sodium, iron and zinc, adding Water to the alloy, removing a dross containing sodium hydroxide, treating the resultant metal after removal of the sodium hydroxide with niter, sodium hydroxide and water to form a dross containing iron and zinc and removing the last-mentioned dross.
7. The process which essentially comprises electrolyzing indium oxide (InzOs) containing iron and zinc as impurities dissolved in molten sodium hydroxide at a temperature of about 750-850 F. to form a pool of impure indium metal containing sodium, iron and zinc, removing spent electrolyte when the iron content thereof reaches about 3%, oxidizing sodium, iron and zinc contained in the impure metal, removing such oxidized metals from said indium metal, and recovering indium values from the spent electrolyte and said oxidized metals.
MAX F. W. I-lIEBERLEIN. NEVIN R. BIERLY.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 785,962 Lyons et al. Mar. 28, 1905 1,338,279 Blumenberg Apr. 27, 1928 2,238,437 Zischkau Apr. 15, 1941 2,241,438 Zischkau et al. May 13, 1941 2,384,610 Doran et al. Sept. 11, 1945 FOREIGN PATENTS Number Country Date 163,812 France Aug. 18, 1884 OTHER REFERENCES Comptes Rendus, vol. 190 (1930), pages 925- 927.
Metal Finishing, July 1944, page 406.
Transactions of The Electrochemical Society, vol. (1944), pages 223, 224.
Claims (1)
1. THE PROCESS WHICH ESSENTIALLY COMPRISES, ELECTROLYZING INDIUM OXIDE (IN2O3) CONTAINING IRON AS IMPURITY DISSOLVED IN MOLTEN SODIUM HYDROXIDE AT A TEMPERATURE OF ABOUT 750-850* F. TO PRODUCE IMPURE INDIUM METAL, THEREBY BUILDING UP THE CONTENT OF SODIUM OXIDE AND IRON IN THE ELECTROLYTE, AND RECOVERING SAID IMPURE INDIUM METAL.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US627014A US2521217A (en) | 1945-11-06 | 1945-11-06 | Electrolyzing indium oxide in fused caustic electrolyte |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US627014A US2521217A (en) | 1945-11-06 | 1945-11-06 | Electrolyzing indium oxide in fused caustic electrolyte |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2521217A true US2521217A (en) | 1950-09-05 |
Family
ID=24512814
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US627014A Expired - Lifetime US2521217A (en) | 1945-11-06 | 1945-11-06 | Electrolyzing indium oxide in fused caustic electrolyte |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2521217A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2829093A (en) * | 1954-04-28 | 1958-04-01 | Broken Hill Ass Smelter | Treatment of lead |
| US2845387A (en) * | 1955-11-01 | 1958-07-29 | Philco Corp | Method of electrodepositing metals |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US785962A (en) * | 1903-09-16 | 1905-03-28 | John A Lyons | Production of boron by electrolysis. |
| US1338279A (en) * | 1917-02-23 | 1920-04-27 | Frieda Blumenberg | Composition of matter and process of making the same |
| US2238437A (en) * | 1940-03-09 | 1941-04-15 | American Smelting Refining | Process for recovering indium |
| US2241438A (en) * | 1940-07-12 | 1941-05-13 | American Smelting Refining | Recovering indium |
| US2384610A (en) * | 1940-05-08 | 1945-09-11 | Anaconda Copper Mining Co | Recovery of indium |
-
1945
- 1945-11-06 US US627014A patent/US2521217A/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US785962A (en) * | 1903-09-16 | 1905-03-28 | John A Lyons | Production of boron by electrolysis. |
| US1338279A (en) * | 1917-02-23 | 1920-04-27 | Frieda Blumenberg | Composition of matter and process of making the same |
| US2238437A (en) * | 1940-03-09 | 1941-04-15 | American Smelting Refining | Process for recovering indium |
| US2384610A (en) * | 1940-05-08 | 1945-09-11 | Anaconda Copper Mining Co | Recovery of indium |
| US2241438A (en) * | 1940-07-12 | 1941-05-13 | American Smelting Refining | Recovering indium |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2829093A (en) * | 1954-04-28 | 1958-04-01 | Broken Hill Ass Smelter | Treatment of lead |
| US2845387A (en) * | 1955-11-01 | 1958-07-29 | Philco Corp | Method of electrodepositing metals |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Fray | Emerging molten salt technologies for metals production | |
| US20180245177A1 (en) | Optimized ore processing using molten salts for leaching and thermal energy source | |
| CN108138343B (en) | Metal refining method utilizing electrolytic reduction and electrolytic refining processes | |
| US3219561A (en) | Dual cell refining of silicon and germanium | |
| US5827347A (en) | Process for the recovery of lead from spent batteries | |
| US4292147A (en) | Zinc chloride electrolysis | |
| US2320773A (en) | Electrodeposition of manganese | |
| US5372684A (en) | Process for the direct electrochemical refining of copper scrap | |
| US1913929A (en) | Process and furnace for remelting and fining crude metals | |
| US2521217A (en) | Electrolyzing indium oxide in fused caustic electrolyte | |
| JP2642230B2 (en) | Manufacturing method of high purity tin | |
| CN104746105A (en) | Device and method for separating antimony-containing alloy | |
| US2119936A (en) | Method of recovering pure copper from scrap and residues | |
| US2598777A (en) | Recovering gallium from metallic aluminum | |
| US1842028A (en) | Method of recovering lead-tin alloys | |
| GB2548378A (en) | Electrochemical reduction of spent nuclear fuel at high temperatures | |
| US1967053A (en) | Method of refining lead bismuth alloy | |
| US2319887A (en) | Hydrometallurgical process for the recovery of tin | |
| US2200139A (en) | Process for recovery of metals from alloys and metallurgical residues | |
| US1920819A (en) | Electrolytic refining of brass | |
| US2023424A (en) | Metallurgy | |
| Barbin | Electrolytic production of metallic cadmium and cadmium–sodium alloys in alkali melts | |
| SU988892A1 (en) | Method for leaching polymetallic zinc-bearing materials | |
| US3666444A (en) | Electrowinning of beryllium | |
| Gruzensky et al. | A Survey of the Literature on the Extractive Metallurgy and Electrolytic Refining of Bismuth |