US2599385A - Solid stick corrosion inhibitors and a process for preventing corrosion of oil and gas well equipment - Google Patents
Solid stick corrosion inhibitors and a process for preventing corrosion of oil and gas well equipment Download PDFInfo
- Publication number
- US2599385A US2599385A US235906A US23590651A US2599385A US 2599385 A US2599385 A US 2599385A US 235906 A US235906 A US 235906A US 23590651 A US23590651 A US 23590651A US 2599385 A US2599385 A US 2599385A
- Authority
- US
- United States
- Prior art keywords
- parts
- wax
- oil
- stick
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003112 inhibitor Substances 0.000 title description 16
- 238000005260 corrosion Methods 0.000 title description 11
- 230000007797 corrosion Effects 0.000 title description 11
- 239000007787 solid Substances 0.000 title description 4
- 238000000034 method Methods 0.000 title description 2
- 239000001993 wax Substances 0.000 description 20
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 14
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 12
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 11
- 238000007127 saponification reaction Methods 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 8
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 239000012184 mineral wax Substances 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 6
- OURRXQUGYQRVML-AREMUKBSSA-N [4-[(2s)-3-amino-1-(isoquinolin-6-ylamino)-1-oxopropan-2-yl]phenyl]methyl 2,4-dimethylbenzoate Chemical compound CC1=CC(C)=CC=C1C(=O)OCC1=CC=C([C@@H](CN)C(=O)NC=2C=C3C=CN=CC3=CC=2)C=C1 OURRXQUGYQRVML-AREMUKBSSA-N 0.000 description 5
- 150000002462 imidazolines Chemical class 0.000 description 5
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 150000002431 hydrogen Chemical group 0.000 description 4
- 239000004200 microcrystalline wax Substances 0.000 description 4
- 235000019808 microcrystalline wax Nutrition 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920000768 polyamine Polymers 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 239000003784 tall oil Substances 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- QULUVEPNTKJBMR-KTKRTIGZSA-N 2-[(z)-octadec-9-enyl]-4,5-dihydro-1h-imidazole Chemical compound CCCCCCCC\C=C/CCCCCCCCC1=NCCN1 QULUVEPNTKJBMR-KTKRTIGZSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229960001124 trientine Drugs 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- BTXXTMOWISPQSJ-UHFFFAOYSA-N 4,4,4-trifluorobutan-2-one Chemical compound CC(=O)CC(F)(F)F BTXXTMOWISPQSJ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- BQACOLQNOUYJCE-FYZZASKESA-N Abietic acid Natural products CC(C)C1=CC2=CC[C@]3(C)[C@](C)(CCC[C@@]3(C)C(=O)O)[C@H]2CC1 BQACOLQNOUYJCE-FYZZASKESA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N Glycerol trioctadecanoate Natural products CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- RSWGJHLUYNHPMX-ONCXSQPRSA-N abietic acid Chemical compound C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C(O)=O RSWGJHLUYNHPMX-ONCXSQPRSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 1
- 125000005608 naphthenic acid group Chemical group 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 229920000333 poly(propyleneimine) Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/08—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
- C23F11/10—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
- C23F11/14—Nitrogen-containing compounds
- C23F11/149—Heterocyclic compounds containing nitrogen as hetero atom
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S507/00—Earth boring, well treating, and oil field chemistry
- Y10S507/902—Controlled release agent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S507/00—Earth boring, well treating, and oil field chemistry
- Y10S507/939—Corrosion inhibitor
Definitions
- This invention relates to improved, products for the inhibition of corrosion of oil and gas well equipment, and more particularly to a corrosion inhibitor in the form of a solid, weighted stick which may be introduced into the well and allowed to fall to the bottom where it disintegrates, becomes dissolved or dispersed in the fluid and is brought by it into contact with the metal surfaces of the well.
- weighted stick inhibitors may be successfully prepared using imidazoline inhibitors of the type described in said application Serial No. 154,824 and in Patent Re. 23,227, granted May 9, 1950, conventional weighting materials such as lead oxide, powdered lead, barium sulfate, barium oxide, or other dense, comminuted materials with a vehicle consisting of an oxidized mineral Wax having a saponification value between about 50 and about 180, and a hardness, as determined by needle penetration (100 gr. weight, 5 secs.) of less than 50 mm.
- the oxidized wax has a saponification value between 80 and 170 and needle penetration value between 5 and 20.
- Products with saponification values below 50 are inadequately compatible with the imidazoline constituent to produce sticks of satisfactory physical properties.
- Oxidized waxes with saponification values above about 180 are too soft or tacky to give a product of satisfactory physical properties.
- While eminentl satisfactory products can be formed from the three components outlined above, in proper proportions, which are from 20 to 65 parts of the imidazoline inhibitor to 80 to 35 parts of the oxidized wax with an amount of weighting material to give the desired density, for example, 125 parts of litharge to give a product of density of about 2.0 or 60 parts of litharge to give a density of about 1.5 (about theminimum feasible) addition of a polymeric material which adds toughness to the compositions, as, for example, polyethylene, cellulose esters or ethers, or the like, in minor proportions, for example, from 10 to 20% of such a material, based upon the total of the constituents of the stick excluding the weighting material, is in some cases advantageous.
- the underlying discovery upon which the invention is based is that the properly selected oxidized mineral waxes have physical properties and compatibility with, or solvent power for, the imidazoline inhibitors such that a weighted stick of correct physical properties is obtainable without the use of additional vehicle components.
- oxidized mineral waxes are known materials. They are prepared, usually, by blowing air through molten mineral wax at a temperature of about 220 to 330 F., usually with the use of a catalyst such as-potassium permanganate, cobalt salts, manganese or iron soaps or other oxidation catalyst for a, period of time sufiicient to raise the saponification value to the required level. Any of the available mineral waxes may be used to produce these oxidized products, including paraffin Wax, microcrystalline wax produced from lubricating oil fractions, and high melting point microcrystalline waxes obtained from crude oil or tank bottoms. The waxes which are oxidized need not be completely oil free.
- the socalled petrolatums may be used providing the oil content is not so high as to give an oxidized product having a needle penetration gr. weight, 5 secs.) of more than 50 mm.
- the oxidized wax may be one of relatively high saponification number which is cut back with unoxidized mineral wax, providing the amount of unoxidized wax which is included does not reduce the saponification value of the mixed wax below 50 and advantageously not below '70.
- Typical useful oxidized mineral waxes are one having a melting point of 185 F., needle penetration (100/5) of 6 mm., color NPA of 6, saponification value 55 and acid value 20 obtained by conventional blowing of a microcrystalline wax having a melting point of 195 F. obtained from tank bottoms.
- Another useful product produced from the same microcrystalline wax has a melting point of 182 F., needle penetration (100/5). of 8 mm., color NPA of 8, saponification value 85, and acid value 35.
- Another useful product produced by blowing an oily parafiin of F. melting point has a melting point of 144 F., a needle penetration (100/5) of 35 mm., saponification value and acid value 54.
- the inhibitors which are included in the weighted stick inhibitors of the present invention are known and have been used on a considerable scale for corrosion inhibition, particularly in oil and gas wells. They are described in the said Patent Re. 23,227. They are substituted imidazolines which may be represented by the generic formulae:
- B is hydrogen, methyl or ethyl, at least three occurrences of B being hydrogen
- D represents a divalent, non-amino organic radical containing less than 25 carbon atoms, composed of elements from the group consisting of C, H, O, and N
- D represents a divalent organic radical containing less than 25 carbon atoms, composed of elements from the group consisting of C, H, O, and N, and containing at least one amino group
- R. is a member of the class consisting of hydrogen and aliphatic and cycloaliphatic hydrocarbon radicals, with the proviso that at least one occurrence of R contains 8 to 32 carbon atoms.
- Such products are obtained by condensation of monocarbo-xy acids and polyamines, which polyamines contain at least one primary amino group and a secondary amino group or another primary amino group separated from the first primary amino group by two carbon atoms, in particular such amines as ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, the high boiling polyamines remaining when the reaction mixture used for the production of tetraethylene pentamine is distilled, polypropylene amines and polybutylene amines, in which the required amino groups described above are present, and the like.
- Typical useful imidazoline inhibitors are the products obtained by heating 815 parts of commercial stearin with 585 parts of tetraethylene pentamine for three hours at 290 C., the product obtained by heating 815 parts of commercial tall oil with 310 parts of triethylene tetramine for three hours at 280 C. and the product obtained by heating 775 parts of commercial rosin with 400 parts of the polyamino residue resulting from the distillation of tetraethylene pentamine from the reaction mixture in which it is produced for three hours at 280 C.
- inhibitors may be used as such or they may be used in the form of salts, as, for example, the salts of monocarboxy detergent-forming acids, such as the salts of higher fatty acids, abietic acid, rosin, naphthenic acids and the like, or in the form of amides obtained by amidification of the imidazolines with monocarboxy acids of the same type.
- salts of monocarboxy detergent-forming acids such as the salts of higher fatty acids, abietic acid, rosin, naphthenic acids and the like
- amides obtained by amidification of the imidazolines with monocarboxy acids of the same type.
- Example I parts of the imidazoline obtained from commercial rosin and the high boiling polyamine as described above are melted together with 50 parts of Wax Ester oxidized wax at 200 C. When a homogeneous mass is obtained the mixture is cooled to 150 C. and 125 parts of litharge are added, and stirred in until it is evenly dispersed.
- the mixture is then cast into cylinders 1 /2" in diameter and 18" long to produce a stick with a density of about 2.0.
- Example II 25 parts of the same imidazoline from rosin, 25 parts of the imidazoline from stearic acid and tetraethylene pentamine described above and 50 parts of Wax Ester 60 oxidized wax are melted together as in Example I and after cooling to 150 C., parts of finely divided barium sulfate are stirred in until evenly dispersed. The mixture is then cast as in Example I to produce a stick with a density of about 1.5.
- Example III 50 parts of the imidazoline from stearic acid and tetraethylene pentamine as described above are melted together with 50 parts of Crown 36 oxidized wax, and then 60 parts of litharge are added at 150 C. after which the product is handled as in Example I to give a stick with a density of about 1.5.
- Example IV 20 parts of the imidazoline from rosin described above, 40 parts of Wax Ester 60 oxidized wax and 40 parts of Crown 36 oxidized wax are melted together and 130 parts of finely divided lead are stirred in after which the product is handled as g in Example I to give a stick of density of about 2.2.
- Example VI 50 parts of the imidazoline from rosin described above and 50 parts of Crown 23 oxidized wax are melted together and to them are added parts of litharge, after which the product is handled as in Example I to give a stick with a density of about 2.0.
- Example VII 50 parts of the imidazoline from tall oil described above, 35 parts of Crown 36 oxidized wax and 15 parts of Ethocel (ethyl cellulose) are melted together as in Example I and 129 parts of finely divided litharge added as in Example I.
- the stick finally obtained has a density of about 2.0.
- Example VIII 65 parts of the imidazoline from tall oil described above and 35 parts of Wax Ester 60 oxidized wax are melted together and to the mixture is added 125 parts of finely divided litharge as in Example I.
- the resulting stick has a density of about 2.0.
- Example X C 50 parts of the abietate of the imidazoline from rosin described above and 50 parts of Crown 36 oxidized wax are melted together as in Example I and then 125 parts of finely divided litharge are added. The stick obtained has a density of about 2.0.
- Example XI 50 parts of 2-oleyl imidazoline (from oleic acid and ethylene diamine) and 50 parts of Wax Ester 60 oxidized wax are melted together and to the mixture is added 125 parts of finely divided litharge as in Example I. The resulting stick has a density of about 2.0.
- Example XII 50 parts of 2-heptadecyl, l-aminoethyl imidazoline (from stearic acid and diethylene triamine) and 50 parts of Crown 36 oxidized wax are melted together and to the mixture is added 125 parts of finely divided litharge as in Example I.
- the resulting stick has a density of about 2.0.
- Example XIII 50 parts of the oleic acid amide of 2-oleyl imidazoline and 50 parts of Crown 36 oxidized Wax are melted together and to the mixture is added 125 parts of finely divided litharge as in Example I.
- the stick obtained has a density of about 2.0.
- a high-melting solid stick-form corrosion inhibitor for oil and gas well equipment having a specific gravity in excess of 1.5 and having the composition: (a) finely divided weighting material; (b) a substituted imidazoline selected from the class of materials having the formula Ncn2 N-CB RG ⁇ RC ⁇ N- 132 N- B: H I
- N- B? R DR in which B is hydrogen, methyl or ethyl, at least three occurrences of B being hydrogen, and in which D represents a divalent, nonamino organic radical containing less than 25 carbon atoms, composed of elements from the group consisting of C, H, O, and N; D represents a divalent organic radical containing less than 25 carbon atoms, composed of elements from the group consisting of C, H, O, and N, and containing at least one amino group; and R is a member of the class consisting of hydrogen and aliphatic and cycloaliphatic hydrocarbon radicals, with the proviso that at least one occur rence of R contains 8 to 32 carbon atoms; and (c) an oxidizedmineral wax having a saponification value between 50 and 180, and a hardness (needle penetration, 100 gm. weight, 5 secs.) of less than 50 mm.; ingredients (b)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Description
Patented June 3, 1952 T E S SOLID STICK CORROSION INHIBITORS AND A PROCESS FOR PREVENTING CORRO- SION OF OIL AND GAS WELL EQUIPMENT N Drawing. Application July 9, 1951, Serial No. 235,906
1 Claim. (or. 252-855) This invention relates to improved, products for the inhibition of corrosion of oil and gas well equipment, and more particularly to a corrosion inhibitor in the form of a solid, weighted stick which may be introduced into the well and allowed to fall to the bottom where it disintegrates, becomes dissolved or dispersed in the fluid and is brought by it into contact with the metal surfaces of the well.
In our prior application Serial No. 154,824, filed April 8, 1950, we have described the problems involved in providing a suitable weighted stick inhibitor and have there described a special type of three-component vehicle which we have found may be used successfully with weighting material and inhibitor to produce a stick of high specific gravity adapted for corrosion inhibition in certain types of wells where introduction of a corrosion inhibitor in liquid form or in conventional low density (e. g., specific gravity about 1.0) stick form is impractical. We have also there described the conditions under which inhibitors in weighted stick form are advantageously used and the characteristics which they must have for commercial utility.
We have now found that weighted stick inhibitors may be successfully prepared using imidazoline inhibitors of the type described in said application Serial No. 154,824 and in Patent Re. 23,227, granted May 9, 1950, conventional weighting materials such as lead oxide, powdered lead, barium sulfate, barium oxide, or other dense, comminuted materials with a vehicle consisting of an oxidized mineral Wax having a saponification value between about 50 and about 180, and a hardness, as determined by needle penetration (100 gr. weight, 5 secs.) of less than 50 mm. Advantageously, the oxidized wax has a saponification value between 80 and 170 and needle penetration value between 5 and 20. Products with saponification values below 50 are inadequately compatible with the imidazoline constituent to produce sticks of satisfactory physical properties. Oxidized waxes with saponification values above about 180 are too soft or tacky to give a product of satisfactory physical properties.
While eminentl satisfactory products can be formed from the three components outlined above, in proper proportions, which are from 20 to 65 parts of the imidazoline inhibitor to 80 to 35 parts of the oxidized wax with an amount of weighting material to give the desired density, for example, 125 parts of litharge to give a product of density of about 2.0 or 60 parts of litharge to give a density of about 1.5 (about theminimum feasible) addition of a polymeric material which adds toughness to the compositions, as, for example, polyethylene, cellulose esters or ethers, or the like, in minor proportions, for example, from 10 to 20% of such a material, based upon the total of the constituents of the stick excluding the weighting material, is in some cases advantageous.
The underlying discovery upon which the invention is based is that the properly selected oxidized mineral waxes have physical properties and compatibility with, or solvent power for, the imidazoline inhibitors such that a weighted stick of correct physical properties is obtainable without the use of additional vehicle components.
These oxidized mineral waxes are known materials. They are prepared, usually, by blowing air through molten mineral wax at a temperature of about 220 to 330 F., usually with the use of a catalyst such as-potassium permanganate, cobalt salts, manganese or iron soaps or other oxidation catalyst for a, period of time sufiicient to raise the saponification value to the required level. Any of the available mineral waxes may be used to produce these oxidized products, including paraffin Wax, microcrystalline wax produced from lubricating oil fractions, and high melting point microcrystalline waxes obtained from crude oil or tank bottoms. The waxes which are oxidized need not be completely oil free. Thus, the socalled petrolatums may be used providing the oil content is not so high as to give an oxidized product having a needle penetration gr. weight, 5 secs.) of more than 50 mm. Furthermore, the oxidized wax may be one of relatively high saponification number which is cut back with unoxidized mineral wax, providing the amount of unoxidized wax which is included does not reduce the saponification value of the mixed wax below 50 and advantageously not below '70.
Typical useful oxidized mineral waxes are one having a melting point of 185 F., needle penetration (100/5) of 6 mm., color NPA of 6, saponification value 55 and acid value 20 obtained by conventional blowing of a microcrystalline wax having a melting point of 195 F. obtained from tank bottoms. Another useful product produced from the same microcrystalline wax has a melting point of 182 F., needle penetration (100/5). of 8 mm., color NPA of 8, saponification value 85, and acid value 35. Another useful product produced by blowing an oily parafiin of F. melting point, has a melting point of 144 F., a needle penetration (100/5) of 35 mm., saponification value and acid value 54.
For convenience, in the examples which follow these three products will be designated Crown 23, Crown 36, and Wax Ester 60, the trade-marks under which they are commercially available, respectively.
The inhibitors which are included in the weighted stick inhibitors of the present invention are known and have been used on a considerable scale for corrosion inhibition, particularly in oil and gas wells. They are described in the said Patent Re. 23,227. They are substituted imidazolines which may be represented by the generic formulae:
in which B is hydrogen, methyl or ethyl, at least three occurrences of B being hydrogen, and in which D represents a divalent, non-amino organic radical containing less than 25 carbon atoms, composed of elements from the group consisting of C, H, O, and N; D represents a divalent organic radical containing less than 25 carbon atoms, composed of elements from the group consisting of C, H, O, and N, and containing at least one amino group; and R. is a member of the class consisting of hydrogen and aliphatic and cycloaliphatic hydrocarbon radicals, with the proviso that at least one occurrence of R contains 8 to 32 carbon atoms.
Such products are obtained by condensation of monocarbo-xy acids and polyamines, which polyamines contain at least one primary amino group and a secondary amino group or another primary amino group separated from the first primary amino group by two carbon atoms, in particular such amines as ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, the high boiling polyamines remaining when the reaction mixture used for the production of tetraethylene pentamine is distilled, polypropylene amines and polybutylene amines, in which the required amino groups described above are present, and the like. Typical useful imidazoline inhibitors are the products obtained by heating 815 parts of commercial stearin with 585 parts of tetraethylene pentamine for three hours at 290 C., the product obtained by heating 815 parts of commercial tall oil with 310 parts of triethylene tetramine for three hours at 280 C. and the product obtained by heating 775 parts of commercial rosin with 400 parts of the polyamino residue resulting from the distillation of tetraethylene pentamine from the reaction mixture in which it is produced for three hours at 280 C. These inhibitors may be used as such or they may be used in the form of salts, as, for example, the salts of monocarboxy detergent-forming acids, such as the salts of higher fatty acids, abietic acid, rosin, naphthenic acids and the like, or in the form of amides obtained by amidification of the imidazolines with monocarboxy acids of the same type.
The following examples illustrate typical products of the invention.
Example I parts of the imidazoline obtained from commercial rosin and the high boiling polyamine as described above are melted together with 50 parts of Wax Ester oxidized wax at 200 C. When a homogeneous mass is obtained the mixture is cooled to 150 C. and 125 parts of litharge are added, and stirred in until it is evenly dispersed.
The mixture is then cast into cylinders 1 /2" in diameter and 18" long to produce a stick with a density of about 2.0.
Example II 25 parts of the same imidazoline from rosin, 25 parts of the imidazoline from stearic acid and tetraethylene pentamine described above and 50 parts of Wax Ester 60 oxidized wax are melted together as in Example I and after cooling to 150 C., parts of finely divided barium sulfate are stirred in until evenly dispersed. The mixture is then cast as in Example I to produce a stick with a density of about 1.5.
Example III- 50 parts of the imidazoline from stearic acid and tetraethylene pentamine as described above are melted together with 50 parts of Crown 36 oxidized wax, and then 60 parts of litharge are added at 150 C. after which the product is handled as in Example I to give a stick with a density of about 1.5.
Example IV 20 parts of the imidazoline from rosin described above, 40 parts of Wax Ester 60 oxidized wax and 40 parts of Crown 36 oxidized wax are melted together and 130 parts of finely divided lead are stirred in after which the product is handled as g in Example I to give a stick of density of about 2.2.
Example VI 50 parts of the imidazoline from rosin described above and 50 parts of Crown 23 oxidized wax are melted together and to them are added parts of litharge, after which the product is handled as in Example I to give a stick with a density of about 2.0.
Example VII 50 parts of the imidazoline from tall oil described above, 35 parts of Crown 36 oxidized wax and 15 parts of Ethocel (ethyl cellulose) are melted together as in Example I and 129 parts of finely divided litharge added as in Example I. The stick finally obtained has a density of about 2.0.
Example VIII 65 parts of the imidazoline from tall oil described above and 35 parts of Wax Ester 60 oxidized wax are melted together and to the mixture is added 125 parts of finely divided litharge as in Example I. The resulting stick has a density of about 2.0.
Ewample IX Example X C 50 parts of the abietate of the imidazoline from rosin described above and 50 parts of Crown 36 oxidized wax are melted together as in Example I and then 125 parts of finely divided litharge are added. The stick obtained has a density of about 2.0.
Example XI 50 parts of 2-oleyl imidazoline (from oleic acid and ethylene diamine) and 50 parts of Wax Ester 60 oxidized wax are melted together and to the mixture is added 125 parts of finely divided litharge as in Example I. The resulting stick has a density of about 2.0.
Example XII 50 parts of 2-heptadecyl, l-aminoethyl imidazoline (from stearic acid and diethylene triamine) and 50 parts of Crown 36 oxidized wax are melted together and to the mixture is added 125 parts of finely divided litharge as in Example I. The resulting stick has a density of about 2.0.
Example XIII 50 parts of the oleic acid amide of 2-oleyl imidazoline and 50 parts of Crown 36 oxidized Wax are melted together and to the mixture is added 125 parts of finely divided litharge as in Example I. The stick obtained has a density of about 2.0.
As has been noted above,,in place of the specific imidazolines of the foregoing examples may be used other corrosion inhibiting imidazolines as described in said Re. 23,227 and in our said application Serial No. 154,824.
We claim:
A high-melting solid stick-form corrosion inhibitor for oil and gas well equipment having a specific gravity in excess of 1.5 and having the composition: (a) finely divided weighting material; (b) a substituted imidazoline selected from the class of materials having the formula Ncn2 N-CB RG\ RC\ N- 132 N- B: H I
N'CB2 N-CB2 RC l RC\ \N 13, N- B? R DR in which B is hydrogen, methyl or ethyl, at least three occurrences of B being hydrogen, and in which D represents a divalent, nonamino organic radical containing less than 25 carbon atoms, composed of elements from the group consisting of C, H, O, and N; D represents a divalent organic radical containing less than 25 carbon atoms, composed of elements from the group consisting of C, H, O, and N, and containing at least one amino group; and R is a member of the class consisting of hydrogen and aliphatic and cycloaliphatic hydrocarbon radicals, with the proviso that at least one occur rence of R contains 8 to 32 carbon atoms; and (c) an oxidizedmineral wax having a saponification value between 50 and 180, and a hardness (needle penetration, 100 gm. weight, 5 secs.) of less than 50 mm.; ingredients (b) and (c) being present in relative proportions of 20 to parts of (b) to to 35 parts of (0).
WILLIAM F. GROSS. CHARLES C. ROGERS, JR.
REFERENCES CITED UNITED STATES PATENTS Name Date Blair et al. I May 9, 1950 Number Re. 23,227
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US235906A US2599385A (en) | 1951-07-09 | 1951-07-09 | Solid stick corrosion inhibitors and a process for preventing corrosion of oil and gas well equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US235906A US2599385A (en) | 1951-07-09 | 1951-07-09 | Solid stick corrosion inhibitors and a process for preventing corrosion of oil and gas well equipment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2599385A true US2599385A (en) | 1952-06-03 |
Family
ID=22887348
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US235906A Expired - Lifetime US2599385A (en) | 1951-07-09 | 1951-07-09 | Solid stick corrosion inhibitors and a process for preventing corrosion of oil and gas well equipment |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2599385A (en) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2674756A (en) * | 1952-04-07 | 1954-04-13 | Atlantic Refining Co | Plug for removing paraffin accumulating in oil conduits |
| US2756211A (en) * | 1956-07-24 | jones | ||
| US2795560A (en) * | 1952-12-31 | 1957-06-11 | Exxon Research Engineering Co | Preventing pipe line corrosion |
| US2805202A (en) * | 1955-09-30 | 1957-09-03 | Texas Co | Stick corrosion inhibitors |
| US2824059A (en) * | 1954-02-08 | 1958-02-18 | Nat Aluminate Corp | Corrosion inhibitor composition and method of preventing corrosion |
| US2836557A (en) * | 1954-05-17 | 1958-05-27 | Cities Service Res & Dev Co | Method of inhibiting corrosion of metals |
| US2851415A (en) * | 1954-05-17 | 1958-09-09 | Cities Service Res & Dev Co | Method of inhibiting corrosion of metals |
| US2865817A (en) * | 1956-08-17 | 1958-12-23 | Nat Aluminate Corp | Coke quenching liquids |
| US2914475A (en) * | 1956-05-10 | 1959-11-24 | Sun Oil Co | Protecting ferrous metals from corrosion |
| US2952635A (en) * | 1957-03-29 | 1960-09-13 | Geigy Chem Corp | Process for preventing corrosion of ferrous metals and composition therefor |
| US2978410A (en) * | 1957-11-27 | 1961-04-04 | Union Oil Co | Corrosion-resistant grease |
| DE1105685B (en) * | 1954-08-11 | 1961-04-27 | Basf Ag | Agent for protecting metal surfaces against stress corrosion |
| DE1264209B (en) * | 1954-02-05 | 1968-03-21 | Petrolite Corp | Anti-corrosive agents |
| US3531409A (en) * | 1967-01-06 | 1970-09-29 | Petrolite Corp | Solid solutions of corrosion inhibitors for use in treating oil wells |
| DE2846977A1 (en) * | 1977-10-31 | 1979-05-10 | Exxon Research Engineering Co | SALTWATER SAFE CORROSION INHIBITORS |
| JPS5690982A (en) * | 1979-12-24 | 1981-07-23 | Nippon Steel Corp | Restraining method for corrosion of steel material against solution containing sour gas |
| US10669470B2 (en) | 2017-05-23 | 2020-06-02 | Ecolab Usa Inc. | Dilution skid and injection system for solid/high viscosity liquid chemicals |
| US10717918B2 (en) | 2017-05-23 | 2020-07-21 | Ecolab Usa Inc. | Injection system for controlled delivery of solid oil field chemicals |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USRE23227E (en) * | 1950-05-09 | Processes fob preventing corrosion |
-
1951
- 1951-07-09 US US235906A patent/US2599385A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USRE23227E (en) * | 1950-05-09 | Processes fob preventing corrosion |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2756211A (en) * | 1956-07-24 | jones | ||
| US2674756A (en) * | 1952-04-07 | 1954-04-13 | Atlantic Refining Co | Plug for removing paraffin accumulating in oil conduits |
| US2795560A (en) * | 1952-12-31 | 1957-06-11 | Exxon Research Engineering Co | Preventing pipe line corrosion |
| DE1264209B (en) * | 1954-02-05 | 1968-03-21 | Petrolite Corp | Anti-corrosive agents |
| US2824059A (en) * | 1954-02-08 | 1958-02-18 | Nat Aluminate Corp | Corrosion inhibitor composition and method of preventing corrosion |
| US2851415A (en) * | 1954-05-17 | 1958-09-09 | Cities Service Res & Dev Co | Method of inhibiting corrosion of metals |
| US2836557A (en) * | 1954-05-17 | 1958-05-27 | Cities Service Res & Dev Co | Method of inhibiting corrosion of metals |
| DE1105685B (en) * | 1954-08-11 | 1961-04-27 | Basf Ag | Agent for protecting metal surfaces against stress corrosion |
| US2805202A (en) * | 1955-09-30 | 1957-09-03 | Texas Co | Stick corrosion inhibitors |
| US2914475A (en) * | 1956-05-10 | 1959-11-24 | Sun Oil Co | Protecting ferrous metals from corrosion |
| US2865817A (en) * | 1956-08-17 | 1958-12-23 | Nat Aluminate Corp | Coke quenching liquids |
| US2952635A (en) * | 1957-03-29 | 1960-09-13 | Geigy Chem Corp | Process for preventing corrosion of ferrous metals and composition therefor |
| US2978410A (en) * | 1957-11-27 | 1961-04-04 | Union Oil Co | Corrosion-resistant grease |
| US3531409A (en) * | 1967-01-06 | 1970-09-29 | Petrolite Corp | Solid solutions of corrosion inhibitors for use in treating oil wells |
| DE2846977A1 (en) * | 1977-10-31 | 1979-05-10 | Exxon Research Engineering Co | SALTWATER SAFE CORROSION INHIBITORS |
| JPS5690982A (en) * | 1979-12-24 | 1981-07-23 | Nippon Steel Corp | Restraining method for corrosion of steel material against solution containing sour gas |
| US10669470B2 (en) | 2017-05-23 | 2020-06-02 | Ecolab Usa Inc. | Dilution skid and injection system for solid/high viscosity liquid chemicals |
| US10717918B2 (en) | 2017-05-23 | 2020-07-21 | Ecolab Usa Inc. | Injection system for controlled delivery of solid oil field chemicals |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2599385A (en) | Solid stick corrosion inhibitors and a process for preventing corrosion of oil and gas well equipment | |
| US2490744A (en) | Antirust agent | |
| DE2744178C2 (en) | Dicarboxylic acid ester acids and their use | |
| US2830019A (en) | Additive for mineral oil | |
| US3062631A (en) | Inhibiting corrosion | |
| US2594286A (en) | Grease and grease base | |
| US2599384A (en) | Solid stick corrosion inhibitors and a process for preventing corrosion of oil and gas well equipment | |
| US2312082A (en) | Color stabilizer for oils | |
| US2824059A (en) | Corrosion inhibitor composition and method of preventing corrosion | |
| US1319129A (en) | Henry matthew wells | |
| US2941943A (en) | Method of inhibiting corrosion | |
| US2128523A (en) | Composition for use in prevention of corrosion of metal surfaces | |
| US3003960A (en) | Glycine amic acids in turbine oil | |
| US2742498A (en) | Amidic acids | |
| US2840600A (en) | Nu-substituted trimethylene diamine-n'alkanoic acids, salts, and esters | |
| US2943054A (en) | Shear stable barium 12-hydroxy stearate grease containing a boron ester compound | |
| US2742432A (en) | Mineral oil lubricating compositions | |
| US2920040A (en) | Process for inhibiting corrosion of ferrous metals by oil well fluid | |
| US2816842A (en) | Rust preventive compositions | |
| US2865817A (en) | Coke quenching liquids | |
| US2317666A (en) | Lubrication composition | |
| US3269999A (en) | Corrosion inhibitors from amine residue | |
| US3047495A (en) | Corrosion inhibitors and methods of preparation and use thereof | |
| US2626240A (en) | Noncorrosive soluble oil containing active sulfur | |
| US2356863A (en) | Coating composition |