US2547065A - Fluid cooled core for electromagnetic apparatus - Google Patents
Fluid cooled core for electromagnetic apparatus Download PDFInfo
- Publication number
- US2547065A US2547065A US783086A US78308647A US2547065A US 2547065 A US2547065 A US 2547065A US 783086 A US783086 A US 783086A US 78308647 A US78308647 A US 78308647A US 2547065 A US2547065 A US 2547065A
- Authority
- US
- United States
- Prior art keywords
- cooling
- core
- fluid cooled
- laminations
- electromagnetic apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title description 7
- 238000001816 cooling Methods 0.000 description 17
- 238000003475 lamination Methods 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000012809 cooling fluid Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/245—Magnetic cores made from sheets, e.g. grain-oriented
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/10—Liquid cooling
Definitions
- the present invention relates, as indicated, to a fluid cooled core for electro-magnetic apparatus and is well adapted to cooling cores of transformers, particularly laminated cores of transformers for high frequency current. It is adaptable to cores of many sizes but primarily to cores of the type known as E-shaped cores.
- Maximum loading of a transformer is usually limited by the temperature to which its insulation is submitted. When this insulation reaches a certain maximum temperature, application of power must be discontinued to provide a period in which excess heat in the core can be transferred therefrom by conduction or radiation. Such heating is particularly serious at high frequencies and requires that the apparatus be either loaded to only a part of its desired capacity or loaded for only a part of the time. This results in large, costly and cumbersome apparatus for continuous use.
- the chief object of this invention has been to provide improved fluid means for cooling laminations of such apparatus.
- a further object has been to provide cooling means which can be readily assembled with the laminations when the core is constructed.
- An additional object has been to provide means for uniformly distributing the cooling elect of the cooling means.
- Another object has been to provide a laminated core for electromagnetic apparatus which can be constructed inexpensively and which occupies a greatly reduced space.
- Another object of the invention is the provision of a cooling lamination for an E-shaped magnetic core which includes a hollow center leg having 'shownbeing of the rectangular type.
- Fig.,2 is a sectional view Fig. 1.
- Fig.v 3 is an elevational view of a modied fluid cooled lamination embodying the present invention for ltransformer having E-shaped cores.
- Fig. 4 is an end plan view of Fig. 3. Referring now to Fig. 1 and Fig. 2, the core a taken on line 2-2 0i.'
- the core shown comprises three groups of lthin iron laminations I0, II and I2 separated by hollow copper plate-like chambers I4 and I5 of limited thickness which replace other groups of iron laminations and which themselves are of the same general form as the iron laminations.
- the core shown comprises a generally U-shaped member I'I with a straight bar or keeper I8 to complete the magnetic circuit although it may take any conventional shape.
- the hollow cooling plates are usually constructed of sheet copper having a thickness of the order of one thirty-second of an inch with a space therebetween usually of the order of one-eighth of an inch or less for circulation of the cooling fluid which is usually water, oil, or other liquid or may be a gas.
- the cooling chambers I4 and I5 are held in rm heat conducting contact with the groups of iron laminations I0, II and I2 by bolts such as 20 passing entirely through the stack of laminations.
- bolts such as 20 passing entirely through the stack of laminations.
- spacers such as 22 are inserted between the sheets of each chamber, usually near bolts 20. These spacers and the bolts are so located as not to interfere with a free circulation of the cooling fluid in each chamber.
- each cooling plate comprises an inlet 24, an outlet 25 and a ilexible hose 26 connecting the U-shaped member and keeper I8.
- This construction permits the keeper to be moved out of position so that the core can be readily inserted into the coils or windings with which it cooperates.
- Figs, 3 and 4 illustrate a hollow cooling plate or chamberfor use in cooling an E-shaped core.
- the cooling iiuid enters through inlet 30 and by means of baffles 3
- , 32 and 33 which lie generally centrally in each leg, is forced to ow through all legs of the E before leaving Vtheplatc ythrough outlet ⁇ 34.
- , 32 and 33 which lie generally centrally in each leg, is forced to ow through all legs of the E before leaving Vtheplatc ythrough outlet ⁇ 34.
- , 32 and 33 which lie generally centrally in each leg, is forced to ow through all legs of the E before leaving Vtheplatc ythrough outlet ⁇ 34.
- baiil'es are usually lmade of 'suicientthickness -to serve
- a two-piece core for electromagnetic appak.riatus having a main winding-receiving portion having .at least .a pair of legs and a keeper portion yin abutment with the ends of said legs to provide a flux path therebetween, said portions eachzcomprising in combination a group of magnetic lairninations, a heat-conducting member lying lin contact with each group of laniinations,
- each .of Vsaid .heat-conducting members comprising a Vgenerally hollow metallic member conforming generally with the laminations, and means interconnecting the interior of said conducting member associated with :said winding-receiving vportieri and the .interior :of said conductingmembei' lassociated with the keeper portion.
- JAMES iB. y REFERENCES -CITED The following references :are .of record vin the file lof this patent:
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Heat Treatment Of Articles (AREA)
Description
April 3, 1951 J. B. wADHAMs 2,547,065
FLUID COOLED CORE FOR ELECTROMAGNETIC APPARATUS Filed OCT.. 50, 1.9147
I N VEN TOR.
Patented Apr. 3, 1951 FLUID COOLED COREv FOR ELECTRO- MAGNETIC APPARATUS James B. Wadhams, Warrensville Heights, Ohio, assignor to The Ohio Crankshaft Company,
Cleveland, Ohio Application October 30, 1947, Serial No. '783,086 3 claims. (ci. 175-356) The present invention relates, as indicated, to a fluid cooled core for electro-magnetic apparatus and is well adapted to cooling cores of transformers, particularly laminated cores of transformers for high frequency current. It is adaptable to cores of many sizes but primarily to cores of the type known as E-shaped cores.
Maximum loading of a transformer, for instance, is usually limited by the temperature to which its insulation is submitted. When this insulation reaches a certain maximum temperature, application of power must be discontinued to provide a period in which excess heat in the core can be transferred therefrom by conduction or radiation. Such heating is particularly serious at high frequencies and requires that the apparatus be either loaded to only a part of its desired capacity or loaded for only a part of the time. This results in large, costly and cumbersome apparatus for continuous use.
To reduce the size and cost oi electro-magnetic apparatus having laminated cores and to increase convenience of use of such apparatus, artificial means for cooling the laminations is extremely desirable. Hollow laminations water lled in which the water is circulated in one end and out the other have heretofore been proposed for this purpose. However, with the E-shaped cores, there is provided a discontinuous path for the flow of water and dimculty has been experienced with the formation of dead pockets in the cooling lamination, particularly at the end of the center leg of the E-shaped core where poor circulation of the water was obtained and steam pockets tended to form. The present invention eliminates dead pockets in the ow of the cooling medium from one end of the laminations to the other and, in particular, forces a flow of water up one side of the center leg of the cooling lamination and down the other side.
Accordingly, the chief object of this invention has been to provide improved fluid means for cooling laminations of such apparatus. A further object has been to provide cooling means which can be readily assembled with the laminations when the core is constructed. An additional object has been to provide means for uniformly distributing the cooling elect of the cooling means. Another object has been to provide a laminated core for electromagnetic apparatus which can be constructed inexpensively and which occupies a greatly reduced space.
Another object of the invention is the provision of a cooling lamination for an E-shaped magnetic core which includes a hollow center leg having 'shownbeing of the rectangular type.
Fig.,2 is a sectional view Fig. 1. I
Fig.v 3 is an elevational view of a modied fluid cooled lamination embodying the present invention for ltransformer having E-shaped cores.
Fig. 4 is an end plan view of Fig. 3. Referring now to Fig. 1 and Fig. 2, the core a taken on line 2-2 0i.'
shown comprises three groups of lthin iron laminations I0, II and I2 separated by hollow copper plate-like chambers I4 and I5 of limited thickness which replace other groups of iron laminations and which themselves are of the same general form as the iron laminations. The core shown comprises a generally U-shaped member I'I with a straight bar or keeper I8 to complete the magnetic circuit although it may take any conventional shape. The hollow cooling plates are usually constructed of sheet copper having a thickness of the order of one thirty-second of an inch with a space therebetween usually of the order of one-eighth of an inch or less for circulation of the cooling fluid which is usually water, oil, or other liquid or may be a gas. The cooling chambers I4 and I5 are held in rm heat conducting contact with the groups of iron laminations I0, II and I2 by bolts such as 20 passing entirely through the stack of laminations. To resist the pressure applied by the bolts and to prevent the chambers from collapsing under this pressure, spacers such as 22 are inserted between the sheets of each chamber, usually near bolts 20. These spacers and the bolts are so located as not to interfere with a free circulation of the cooling fluid in each chamber.
The uid circuit through each cooling plate comprises an inlet 24, an outlet 25 and a ilexible hose 26 connecting the U-shaped member and keeper I8. This construction permits the keeper to be moved out of position so that the core can be readily inserted into the coils or windings with which it cooperates.
Figs, 3 and 4 illustrate a hollow cooling plate or chamberfor use in cooling an E-shaped core. As indicated by the arrows, the cooling iiuid enters through inlet 30 and by means of baffles 3|, 32 and 33 which lie generally centrally in each leg, is forced to ow through all legs of the E before leaving Vtheplatc ythrough outlet `34. 'These baiil'es are usually lmade of 'suicientthickness -to serve as spacers between opposite walls of the chamber to resist pressure applied in effecting the assembly of the core by bolts passing .through tubular thimbles 35.
It will be apparent to those skilled in the art that changes can be made :in the construction of the apparatus herein disclosed without departing from the scope of the following claims, which claims are for the purpose ofdening thoseiplts of the invention which differ from earlier contributions to the art.
What I claim is: v A `core forV electromagnetic Vapparatus .com-- fpri-sed of l-a plurality of lstacked magneticallypermeable laminaticns each havingiabasesection defined by -a first edge and -a -sec'ond edge and vthree parallel leg sections iextending 'from the rst edge in spaced, `parallel relationship and l having ends remote from'said vlfirst edge, a cool- `Ving 4llamina'timi "identically `shaped 'to Vsaid mag- "netic `lan-iinations and `interposed ltherebetween and having corresponding edges, said `coolinglamination being comprised of fa :pair of spaced side 'members interconnected at their edges by fan edge member and "together defining la 4hollow interior, means for circulating cooling 'duid V'Itlflrough said pooling lamination, and la partition member extending in .the vhollow interior, from the `second edge intermediate the-edges oi said :center leg substantially -to but spaced 'from lth'e end foi said center 'leg vsection whereby Acooling fluid circulated through said cooling lamination must :traverse substantially the entire "length of said center leg.
2. The combination of claim 1 wherein said other legs have partitions extending from said second edge in the hollow interior substantially to but spaced from the ends thereof, and coolingwate'rf inlet ports located adjacent the ends of said second edge, whereby cooling fluid circulated 'in all three legs must travel the .length of `each leg'twice and dead .pockets are eliminated.
3. A two-piece core for electromagnetic appak.riatus having a main winding-receiving portion having .at least .a pair of legs and a keeper portion yin abutment with the ends of said legs to provide a flux path therebetween, said portions eachzcomprising in combination a group of magnetic lairninations, a heat-conducting member lying lin contact with each group of laniinations,
each .of Vsaid .heat-conducting members comprising a Vgenerally hollow metallic member conforming generally with the laminations, and means interconnecting the interior of said conducting member associated with :said winding-receiving vportieri and the .interior :of said conductingmembei' lassociated with the keeper portion. JAMES iB. y REFERENCES -CITED The following references :are .of record vin the file lof this patent:
UNITED STATES PATENTS
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US783086A US2547065A (en) | 1947-10-30 | 1947-10-30 | Fluid cooled core for electromagnetic apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US783086A US2547065A (en) | 1947-10-30 | 1947-10-30 | Fluid cooled core for electromagnetic apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2547065A true US2547065A (en) | 1951-04-03 |
Family
ID=25128122
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US783086A Expired - Lifetime US2547065A (en) | 1947-10-30 | 1947-10-30 | Fluid cooled core for electromagnetic apparatus |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2547065A (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2769962A (en) * | 1952-08-22 | 1956-11-06 | British Thomson Houston Co Ltd | Cooling means for laminated magnetic cores |
| US3144627A (en) * | 1960-07-05 | 1964-08-11 | Weldex Division Of Metal Craft | Welding transformer with colled core |
| US3183461A (en) * | 1962-02-05 | 1965-05-11 | Westinghouse Electric Corp | Magnetic core structure with cooling passages therein |
| US3437965A (en) * | 1963-12-27 | 1969-04-08 | Ogallala Electronics Mfg Inc | Heat exchange apparatus for cooling electromagnetic devices |
| US4438692A (en) * | 1980-11-07 | 1984-03-27 | Hitachi, Ltd. | Printing apparatus with cooling of hammer printing coils |
| FR2548822A1 (en) * | 1983-07-08 | 1985-01-11 | Saphymo Stel | Device for cooling an electric coil with iron magnetic core and inductor or transformer equipped with such a device |
| US4739825A (en) * | 1986-01-14 | 1988-04-26 | General Electric Company | Apparatus for cooling the core of a liquid cooled transformer |
| US4862956A (en) * | 1986-01-14 | 1989-09-05 | General Electric Company | Apparatus and method for cooling the core of a liquid cooled transformer |
| WO1990008390A1 (en) * | 1989-01-13 | 1990-07-26 | Sundstrand Corporation | Inductor transformer cooling apparatus |
| US5097241A (en) * | 1989-12-29 | 1992-03-17 | Sundstrand Corporation | Cooling apparatus for windings |
| US5313037A (en) * | 1991-10-18 | 1994-05-17 | The Boeing Company | High power induction work coil for small strip susceptors |
| GB2420913A (en) * | 2004-12-03 | 2006-06-07 | Bombardier Transp Gmbh | Transformer assembly including a cooling arrangement |
| WO2011004067A1 (en) * | 2009-07-07 | 2011-01-13 | Salomaeki Jarkko | Inductive component equipped with a liquid cooling and a method for manufacturing an inductive component |
| WO2011004068A1 (en) * | 2009-07-07 | 2011-01-13 | Salomaeki Jarkko | Liquid cooling arrangement of an inductive component and a method for manufacturing an inductive component |
| EP1644945A4 (en) * | 2003-06-25 | 2012-06-13 | Cymer Inc | Method and apparatus for cooling magnetic circuit elements |
| CN105097209A (en) * | 2014-04-25 | 2015-11-25 | 台达电子企业管理(上海)有限公司 | Magnetic element |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US513420A (en) * | 1894-01-23 | Method of cooling the iron of transformers | ||
| US834148A (en) * | 1905-10-19 | 1906-10-23 | Bullock Electric Mfg Co | Transformer. |
| US1331896A (en) * | 1920-02-24 | Transformer | ||
| GB166613A (en) * | 1920-11-04 | 1921-07-28 | Hackbridge Cable Company Ltd | Improvements relating to electric transformers |
| US1394044A (en) * | 1919-03-25 | 1921-10-18 | Gen Electric | Water-cooled transformer |
| US1789229A (en) * | 1929-03-09 | 1931-01-13 | Wired Radio Inc | Inductance coil |
| US1819481A (en) * | 1928-07-12 | 1931-08-18 | Thordarson Electric Mfg Compan | Machine for cutting magnetic circuit lamine |
| US2128086A (en) * | 1938-08-23 | Welding transformeb |
-
1947
- 1947-10-30 US US783086A patent/US2547065A/en not_active Expired - Lifetime
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US513420A (en) * | 1894-01-23 | Method of cooling the iron of transformers | ||
| US1331896A (en) * | 1920-02-24 | Transformer | ||
| US2128086A (en) * | 1938-08-23 | Welding transformeb | ||
| US834148A (en) * | 1905-10-19 | 1906-10-23 | Bullock Electric Mfg Co | Transformer. |
| US1394044A (en) * | 1919-03-25 | 1921-10-18 | Gen Electric | Water-cooled transformer |
| GB166613A (en) * | 1920-11-04 | 1921-07-28 | Hackbridge Cable Company Ltd | Improvements relating to electric transformers |
| US1819481A (en) * | 1928-07-12 | 1931-08-18 | Thordarson Electric Mfg Compan | Machine for cutting magnetic circuit lamine |
| US1789229A (en) * | 1929-03-09 | 1931-01-13 | Wired Radio Inc | Inductance coil |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2769962A (en) * | 1952-08-22 | 1956-11-06 | British Thomson Houston Co Ltd | Cooling means for laminated magnetic cores |
| US3144627A (en) * | 1960-07-05 | 1964-08-11 | Weldex Division Of Metal Craft | Welding transformer with colled core |
| US3183461A (en) * | 1962-02-05 | 1965-05-11 | Westinghouse Electric Corp | Magnetic core structure with cooling passages therein |
| US3437965A (en) * | 1963-12-27 | 1969-04-08 | Ogallala Electronics Mfg Inc | Heat exchange apparatus for cooling electromagnetic devices |
| US4438692A (en) * | 1980-11-07 | 1984-03-27 | Hitachi, Ltd. | Printing apparatus with cooling of hammer printing coils |
| FR2548822A1 (en) * | 1983-07-08 | 1985-01-11 | Saphymo Stel | Device for cooling an electric coil with iron magnetic core and inductor or transformer equipped with such a device |
| US4739825A (en) * | 1986-01-14 | 1988-04-26 | General Electric Company | Apparatus for cooling the core of a liquid cooled transformer |
| US4862956A (en) * | 1986-01-14 | 1989-09-05 | General Electric Company | Apparatus and method for cooling the core of a liquid cooled transformer |
| WO1990008390A1 (en) * | 1989-01-13 | 1990-07-26 | Sundstrand Corporation | Inductor transformer cooling apparatus |
| US4956626A (en) * | 1989-01-13 | 1990-09-11 | Sundstrand Corporation | Inductor transformer cooling apparatus |
| US5097241A (en) * | 1989-12-29 | 1992-03-17 | Sundstrand Corporation | Cooling apparatus for windings |
| USRE36787E (en) * | 1991-10-18 | 2000-07-25 | The Boeing Company | High power induction work coil for small strip susceptors |
| US5313037A (en) * | 1991-10-18 | 1994-05-17 | The Boeing Company | High power induction work coil for small strip susceptors |
| EP1644945A4 (en) * | 2003-06-25 | 2012-06-13 | Cymer Inc | Method and apparatus for cooling magnetic circuit elements |
| GB2420913A (en) * | 2004-12-03 | 2006-06-07 | Bombardier Transp Gmbh | Transformer assembly including a cooling arrangement |
| US20120133467A1 (en) * | 2009-07-07 | 2012-05-31 | Salomaeki Jarkko | Inductive component equipped with a liquid cooling and a method for manufacturing an inductive component |
| CN102473507A (en) * | 2009-07-07 | 2012-05-23 | 亚尔科·萨洛迈基 | Liquid cooling device for an induction component and method for manufacturing the induction component |
| CN102473506A (en) * | 2009-07-07 | 2012-05-23 | 亚尔科·萨洛迈基 | Induction assembly equipped with liquid cooling and method for manufacturing the induction assembly |
| WO2011004068A1 (en) * | 2009-07-07 | 2011-01-13 | Salomaeki Jarkko | Liquid cooling arrangement of an inductive component and a method for manufacturing an inductive component |
| WO2011004067A1 (en) * | 2009-07-07 | 2011-01-13 | Salomaeki Jarkko | Inductive component equipped with a liquid cooling and a method for manufacturing an inductive component |
| US8928442B2 (en) * | 2009-07-07 | 2015-01-06 | Earl Energy, LLC | Inductive component equipped with a liquid cooling and a method for manufacturing an inductive component |
| US9251947B2 (en) | 2009-07-07 | 2016-02-02 | Flexgen Power Systems, Inc. | Liquid cooling arrangement of an inductive component and a method for manufacturing an inductive component |
| CN105097209A (en) * | 2014-04-25 | 2015-11-25 | 台达电子企业管理(上海)有限公司 | Magnetic element |
| US9953758B2 (en) | 2014-04-25 | 2018-04-24 | Delta Electronics (Shanghai) Co., Ltd. | Magnetic element |
| CN105097209B (en) * | 2014-04-25 | 2018-06-26 | 台达电子企业管理(上海)有限公司 | Magnetic element |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2547065A (en) | Fluid cooled core for electromagnetic apparatus | |
| US5508672A (en) | Stationary induction apparatus | |
| US2181899A (en) | Transformer | |
| US3183460A (en) | Electrical inductive apparatus having coolant ducts in insulation | |
| US4956626A (en) | Inductor transformer cooling apparatus | |
| US10060682B2 (en) | Fluid-cooled wound strip structure | |
| US3183461A (en) | Magnetic core structure with cooling passages therein | |
| US3548354A (en) | Transformer having ventilating passages | |
| US3287677A (en) | High frequency transformer core comprised of magnetic fluid | |
| CN205789465U (en) | A kind of embedding Combined flat board transformer | |
| US2547045A (en) | Means for cooling magnetic cores of electrical apparatus | |
| US2339625A (en) | Electric apparatus | |
| US1546885A (en) | Transformer core | |
| US2769962A (en) | Cooling means for laminated magnetic cores | |
| US3349357A (en) | Transformer core reinforcing plate | |
| US2782386A (en) | High-frequency transformer construction | |
| CN218886958U (en) | High-power low-loss quenching transformer | |
| ATE48336T1 (en) | DISTRIBUTION TRANSFORMER WITH WOUND MAGNETIC CIRCUIT. | |
| US3260209A (en) | Electromagnetic pump | |
| US2267955A (en) | Transformer | |
| JPH07335447A (en) | Transformer | |
| US3045195A (en) | Induction apparatus | |
| CN113205947A (en) | Corrugated heat dissipation device of oil-immersed transformer | |
| US3967226A (en) | Electrical inductive apparatus having magnetic shielding cores and a gapped main core structure | |
| CN212209159U (en) | An oil-immersed transformer with heat dissipation structure |