US2428801A - Process for the prevention of foaming in steam boilers - Google Patents
Process for the prevention of foaming in steam boilers Download PDFInfo
- Publication number
- US2428801A US2428801A US436494A US43649442A US2428801A US 2428801 A US2428801 A US 2428801A US 436494 A US436494 A US 436494A US 43649442 A US43649442 A US 43649442A US 2428801 A US2428801 A US 2428801A
- Authority
- US
- United States
- Prior art keywords
- steam
- foaming
- water
- priming
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005187 foaming Methods 0.000 title description 18
- 238000000034 method Methods 0.000 title description 13
- 230000002265 prevention Effects 0.000 title description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 230000037452 priming Effects 0.000 description 20
- 125000002252 acyl group Chemical group 0.000 description 11
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- 239000006260 foam Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000002253 acid Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 150000004665 fatty acids Chemical class 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 235000021355 Stearic acid Nutrition 0.000 description 6
- 230000003254 anti-foaming effect Effects 0.000 description 6
- GLUUGHFHXGJENI-UHFFFAOYSA-N diethylenediamine Natural products C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 6
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 6
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 6
- 229960003506 piperazine hexahydrate Drugs 0.000 description 6
- AVRVZRUEXIEGMP-UHFFFAOYSA-N piperazine;hexahydrate Chemical compound O.O.O.O.O.O.C1CNCCN1 AVRVZRUEXIEGMP-UHFFFAOYSA-N 0.000 description 6
- 150000004885 piperazines Chemical class 0.000 description 6
- 229960004274 stearic acid Drugs 0.000 description 6
- 239000008117 stearic acid Substances 0.000 description 6
- -1 aromatic carboxylic acids Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229960005141 piperazine Drugs 0.000 description 5
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 4
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 3
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 3
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 3
- 239000012346 acetyl chloride Substances 0.000 description 3
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 3
- 239000004359 castor oil Substances 0.000 description 3
- 235000019438 castor oil Nutrition 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 3
- 125000005456 glyceride group Chemical group 0.000 description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- GGZZISOUXJHYOY-UHFFFAOYSA-N 8-amino-4-hydroxynaphthalene-2-sulfonic acid Chemical compound C1=C(S(O)(=O)=O)C=C2C(N)=CC=CC2=C1O GGZZISOUXJHYOY-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004326 stimulated echo acquisition mode for imaging Methods 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01B—BOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
- B01B1/00—Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
- B01B1/02—Preventing foaming
- B01B1/04—Preventing foaming by chemical means
Definitions
- the present invention relates to antiioaming compositions which are used in steam boilers and similar steam generators, evaporators. etc.,- to overcome the tendency of the water therein to foam and hence to bring about the priming of the steam generator or the like.
- One of the objects of the present invention relates to a liquid suitable for the generation of steam in steam generators and comprising water containing dissolved therein a very small quantity of" an acyl derivative of piperazine.
- acyl derivatives of piperazine are characterized by having a high molecular weight
- acyl derivatives of piperazine which are of a high order of efficiency when used as an antifoaming and antipriming agent in steam generators.
- acyl derivatives of piperazine must, however, be of high molecular weight and should possess certain limiting characteristics as regards molecular size, as hereinafter more fully discussed.
- the materials of this invention may be broad ly described as mono ordiacyl derivatives of piperazine, wherein the acyl groups are derived from aliphatic carboxylic acids, aromatic carboxylic acids or arylsulfonic acids. These compounds, for the purposes of discussion, may conveniently be represented by the probable structural formula:
- X is the hydrocarbon radical of an aliphatic carboxylic acid which may contain one or more double bonds and may contain hydroxyl groups, that is, XCO is the acyl radical of an aliphatic or hydroxyaliphatic acid; and Z is hydrogen: or the acyl radical of an aliphatic carboxylic acid, an aromatic carboxylic acid, or an arylsulfonic acid.
- the group consisting of monoecyl pipera'zines, in which the single acyl radical is derived from a high-molecular-weight fatty acid.
- the total number of carbon atoms in the derivative should be at least about 24, that is, the fatty acid a'cyl radical should contain at least about 20 carbon atoms.
- An example of a compound falling in this group is the product resulting from the condensation of about one moi of erucic acid and one mol of plperazine'.
- Example 3 A mixture of 8.1 grams (0.03 mol) of the stearicacid of Example 2 and 5.8 grams (0.03 mol) of piperazine hexahydrate was heated carefully to expel water and then stirred 2 hours at 150-160' G. Then 2.36 grams (0.03 mol) of acetyl chloride was added and allowed to react 15 minutes. when cool, the product was a brown wax.
- bers of this group would include acetylstearyl-- piperazine and butyrylerucylpiperazine.
- the fourth group consists of diacyl piperazines in which one acyl radical is derived from a fatty acid and the other acyl radical is that of anaromatic carboxylic or an arylsulfonic acid.
- the fatty acid acyl radical should contain at least about 16 carbon atoms, regardless of the size of the other acyl radical.
- high molecular weight? derivative as used in the claims refers to compounds in M acid and acetyl chloride in turn; (7) stearic acid and benzoyl chloride in turn: (8) stearic acid and p-toluenesulfonyl chloride in turn; (9) oleic acid and acetyl chloride in turn; and (10) erucic acid.
- glyceride depending upon the conditions chosen for the process.
- the invention should-not be limited, therefore, by the following examples, which are merely intended to illustrate some satisfactory procedures for preparing a few of the materials within the scope of the present invention.
- the product was a dark brown wax.
- Emample 5..-8.1 grams (0.03 mol) of the stearic acid of Example 2, 5.8 grams (0.03 mol) of piperazine hexahydrate, and 5.7 grams (0.03 mol) of p-toluenesulfonyl chloride were condensed by the same procedure .as outlined in Example 3. When cool. the product was a dark brown wax.
- the products hereinabove described while not ordinarily considered as soluble in water to any great extent, may be suitably dispersed in water or emulsified therewith, so that effective amounts thereof may be introduced and be present in the water within the steam generator under operating conditions.
- the emulsifying or dispersing agent used must, however, be of a kind that does not cause foaming, either by itself or by its decompoper gallon'of this type of condensation product will suppress foam in a boiler for from 15 to 20 minutes.
- the antifoaming compositions may be dispersed or physically mixed with, say, sodium carbonate I orsome other material used for treating the boiler water and pumped with the feed water into the boiler by means of either an injector or a feed water pump.
- the compounds may also be dissolved in suitable organic water-miscible solvents such as alcqhols, ethers, ketones, etc. and introduced in small measured amounts into the feed water entering the boiler.
- chanical measuring devices which will periodically or continuously inject the required dosage may be used, so that the introduction will be more or less in proportion to the steam consumption to which the steam generator is subjected.
- Another manner of introducing the antifoaming compounds is to form an emulsion thereof in water and then feed said emulsion either directly into the boiler or the.
- a quantity of a high-molecular-weight monoacyi derivative of piperazine sufficient to substantially inhibit priming and foaming, said derivative coni taining at least about 24 carbon atoms.
- Process of minimizing the production of foam in and the priming of steam generators operating under superatmospheric pressure conditions which comprises incorporating with a water therein containing an amount of tbtal solids tending to produce foaming and priming a quantity of a fatty acid diacyl derivative of piperazine suflicient to substantially inhibit priming and foaming, said derivative containing at least about 34 carbon atoms where the acyl groups are substantially equal and at least about 22 carbon atoms where the radicals are widely different.
- Process of minimizing the production of foam in and the priming of steam generators operating under superatmospheric pressure conditions which comprises incorporating with a water therein containing an amount of total solids tending to produce foaming and priming a quantity of a diacyl derivative of piperazine, at least one acyl group being derived from the group consisting of the aromatic carboxylic and aryisulfonic acids, and the other acyl group containing at least about 16 carbon atoms, said quantity of diacyl derivative being suflicient to substantially inhibit priming and foaming.
- Process of minimizing the production of foam in and the priming of steam generators operating under superatmospheric'pressure conditions which comprises incorporating with a water therein containing an amount of total solids tending to produce foaming and priming a quantity of dipalmitylpiperazine', said quantity being sufficient to substantially inhibit priming and foaming.
- Process of minimizing the production of foam in and the priming of steam generators operating under superatmospheri'c pressure conditions which comprises incorporating with a water therein containing an amount of total solids tending to produce foaming and priming a quantity of acetylstearylpiperazine, said quantity being suflicient to substantially inhibit priming and foaming.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
Patented Oct. 14, 1947 S PATENT OFFICE PROCESS FOR, THE PREVENTION or" FOAMING IN STEAM nomnas Arthur L. Jacoby, Western Springs, 111., assignor to National Aluminate Corporation, Chicago, 111., a corporation of Delaware No Drawing. Application March 27, 1942,
- SerialNo. 436,494
The present invention relates to antiioaming compositions which are used in steam boilers and similar steam generators, evaporators. etc.,- to overcome the tendency of the water therein to foam and hence to bring about the priming of the steam generator or the like.
One of the objects of the present invention relates to a liquid suitable for the generation of steam in steam generators and comprising water containing dissolved therein a very small quantity of" an acyl derivative of piperazine.
These acyl derivatives of piperazine are characterized by having a high molecular weight;
andwhen water containing these materials is heated to the boiling point in a steam boiler or other generator, being thereby evaporated, the concentration of solids therein will not bring about excessive foaming and the resulting priming. These compounds, moreover, are substantially nonvolatile with the steam and stable, so
that they will be retained by the water and neither they nor their decomposition products will appear in the steam and the resulting condensation products thereof.
It is well known in the operation of steam boilers-such as in electric power plants, railroad locomotives and the like, or in evaporators, that the water therein, even though initially it shows very little tendency to foam, will, when the amount of total solids therein approaches a relatively high concentration, develop a very decided tendency to foam. When this occurs, considerable quantities of, water are physically carried out of the boilers or evaporators with the steam, thus appearing in the steam lines and in the eventual condensate. Such priming has many disadvantages because it tends to contaminate the steam lines, to plug or corrodethe valves, and under serious conditions may even impair the cylinders and piston rods of the steam engines, or. the impeller blades of turbines in which the steam is used for the generation of power, Attempts have been made in the past to control this foaming, either by excessive blowdown of the boilers or by the injection thereinto of such materials as castor oil, tallow, and the like. While these fatty materials have some small degree of eillciency, they are, on the other hand, quite deficient in that they introduce new difllculties which, in some instances, are worse than the conditions they are intended to cure. In the first place, these fatty acids or glycerides are unstable under the conditions existing in the boilers, particularly as the pressure and temperature increase, the high temperatures leading to 6 Claims. ((51. 252-321) v 2 rapid decomposition of the glycerides, which, if anything, will tend to increase the foaming and priming difllculties. Furthermore, in many instances certain of the decomposition products thus produced, or sometimes even the materials themselves, have a definite volatility with steam and will, therefore, steam-distill out of' the boilers, thus/appearing in the steam and in the condensate. This, of course, is also very undesirable. Furthermore; such types of antifoaming agents usually have to be employed in relatively large quantities, adding not only to the expense but also to the inconvenience of operating the steam generators; and those which have a tendency to decompose do so quite rapidly, and hence their effectiveness is of short duration, which therefore necessitates the continual charging into the boilers or other 'steam generators of definite amounts of these older antifoaming agents. Moreover, such antifo'aming agents are difficult to use because the amounts in which they are efllcacious are very critical, and any overdosage usually aggravates the 'difilculty instead of curing it Applicant has now discovered, however, that thereis a series of compounds, which may be broadly designated as acyl derivatives of piperazine, which are of a high order of efficiency when used as an antifoaming and antipriming agent in steam generators. These acyl derivatives of piperazine must, however, be of high molecular weight and should possess certain limiting characteristics as regards molecular size, as hereinafter more fully discussed.
The materials of this invention may be broad ly described as mono ordiacyl derivatives of piperazine, wherein the acyl groups are derived from aliphatic carboxylic acids, aromatic carboxylic acids or arylsulfonic acids. These compounds, for the purposes of discussion, may conveniently be represented by the probable structural formula:
in which X is the hydrocarbon radical of an ali phatic carboxylic acid which may contain one or more double bonds and may contain hydroxyl groups, that is, XCO is the acyl radical of an aliphatic or hydroxyaliphatic acid; and Z is hydrogen: or the acyl radical of an aliphatic carboxylic acid, an aromatic carboxylic acid, or an arylsulfonic acid.
- It is to be understood that the formulas recited in theclaims are probable in that the formulas given are believed to he possessed bythe compoundsdisclosed, or whose method of preparation is disclosed in this specification.
Certain limitations as to the molecular size or the materials are known to exist, and for the sake of convenience, these will be discussed by reference to four classifications into which the materials of the invention may be grouped.
' First, there is'the group consisting of monoecyl pipera'zines, in which the single acyl radical is derived from a high-molecular-weight fatty acid. In this group, the total number of carbon atoms in the derivative should be at least about 24, that is, the fatty acid a'cyl radical should contain at least about 20 carbon atoms. An example of a compound falling in this group is the product resulting from the condensation of about one moi of erucic acid and one mol of plperazine'. Second, there is a group consisting'of diacyi piperazines, in which both acyl groups are de- I I Third, there isa group consisting of diacyl plperazines in which both acyl-groups are derived from fatty acids, but where the two groups differ widely from each other in respectto the number of carbon atoms in each. In this group, the total number of carbon atoms in' the derivative must be at least about 22. Some examples of mem- C. for about 3 hours. when cool, the product was a tan wax.
'Erample-zefiommercial stearic acid, having a mean molecular weight of about 269, was employed in this preparation. 16 grams (0.06 mol) .of the acid and 5.8 grams (0.03 mol) of piperazine hexahydrate were mixed and heated carefully to expel the most of the water. Then the mixture was stirred 2.5 hours at 150-160 C. When cool, the product was a brown wax.
Example 3.--A mixture of 8.1 grams (0.03 mol) of the stearicacid of Example 2 and 5.8 grams (0.03 mol) of piperazine hexahydrate was heated carefully to expel water and then stirred 2 hours at 150-160' G. Then 2.36 grams (0.03 mol) of acetyl chloride was added and allowed to react 15 minutes. when cool, the product was a brown wax.
bers of this group would include acetylstearyl-- piperazine and butyrylerucylpiperazine.
The fourth group consists of diacyl piperazines in which one acyl radical is derived from a fatty acid and the other acyl radical is that of anaromatic carboxylic or an arylsulfonic acid. In this group, the fatty acid acyl radical should contain at least about 16 carbon atoms, regardless of the size of the other acyl radical.
The term high molecular weight? derivative as used in the claims refers to compounds in M acid and acetyl chloride in turn; (7) stearic acid and benzoyl chloride in turn: (8) stearic acid and p-toluenesulfonyl chloride in turn; (9) oleic acid and acetyl chloride in turn; and (10) erucic acid.
It is possible to eflect acylation of piperazine by the use of an acid, the corresponding acid halide, and even the ester of the acid, as for.
example, glyceride, depending upon the conditions chosen for the process. The invention should-not be limited, therefore, by the following examples, which are merely intended to illustrate some satisfactory procedures for preparing a few of the materials within the scope of the present invention.
Erample 1.-A mixture of" 5.8 grams (0.03
'mol) of piperazine hexahydrate and 15.4 grams.
(0.06-mo1) of palmitic acid was heated carefully until most of the water had been expelled and irothing ceased. Then it was stirred at USO-160 which the number of carbon atoms corresponds Example 4.-8.1 grams (0.03 mol) of the stearic acid of Example 2, 5.8 grams (0.03 mol) of piperazine hexahydrate, and 4.2 grams (0.03-mol) of benzoyl chloride were condensed by the same .procedure as outlined in Example 3. When cool,
the product was a dark brown wax.
Emample 5..-8.1 grams (0.03 mol) of the stearic acid of Example 2, 5.8 grams (0.03 mol) of piperazine hexahydrate, and 5.7 grams (0.03 mol) of p-toluenesulfonyl chloride were condensed by the same procedure .as outlined in Example 3. When cool. the product was a dark brown wax.
Examlple 6.--A mixture of 3.7 grams (0.019 mol) of piperazine hexahydrate and'6.5 grams (0.019 mol) of erucic acid was heated carefully to expel water and then stirred at 150-160 C. for 2.5 hours. When cool, the product was a clear, brown waxy material. 7 a
The products hereinabove described, while not ordinarily considered as soluble in water to any great extent, may be suitably dispersed in water or emulsified therewith, so that effective amounts thereof may be introduced and be present in the water within the steam generator under operating conditions. The emulsifying or dispersing agent used must, however, be of a kind that does not cause foaming, either by itself or by its decompoper gallon'of this type of condensation product will suppress foam in a boiler for from 15 to 20 minutes. Comparing this with the efllcacy of castor oil used on the order of M grain per gallon, which will suppress the foam for only about 30 seconds to one minute, it is obvious that if one were to use castor oil it would have to be almost continuously fed into the boiler, with the unavoidable accumulation in the boiler of a lot of soap produced by the reaction of the liberated fatty acids with the alkali present in the water, which would only aggravate the problem. The acyl Gallon and even less can be used. The process is particularly effective at pressures of about pounds per square inch. v
The introduction of the antifoaming compounds of the present invention into the boiler may be accomplished in a number of ways. Thus,
the antifoaming compositions may be dispersed or physically mixed with, say, sodium carbonate I orsome other material used for treating the boiler water and pumped with the feed water into the boiler by means of either an injector or a feed water pump. The compounds may also be dissolved in suitable organic water-miscible solvents such as alcqhols, ethers, ketones, etc. and introduced in small measured amounts into the feed water entering the boiler. chanical measuring devices which will periodically or continuously inject the required dosage may be used, so that the introduction will be more or less in proportion to the steam consumption to which the steam generator is subjected. Another manner of introducing the antifoaming compounds is to form an emulsion thereof in water and then feed said emulsion either directly into the boiler or the. feed water lines leading to it. The invention therefore is not to be limited by the manner of introduction of the -,antifoaming composition but rather is to be construed in the terms of the hereunto appended solids tending to prdduce foaming and priming Suitable meof the 'antifoaming compounds into the feed water. V
a quantity of a high-molecular-weight monoacyi derivative of piperazine sufficient to substantially inhibit priming and foaming, said derivative coni taining at least about 24 carbon atoms.
2. Process of minimizing the production of foam in and the priming of steam generators operating under superatmospheric pressure conditions which comprises incorporating with a water therein containing an amount of tbtal solids tending to produce foaming and priming a quantity of a fatty acid diacyl derivative of piperazine suflicient to substantially inhibit priming and foaming, said derivative containing at least about 34 carbon atoms where the acyl groups are substantially equal and at least about 22 carbon atoms where the radicals are widely different.
3. Process of minimizing the production of foam in and the priming of steam generators operating under superatmospheric pressure conditions which comprises incorporating with a water therein containing an amount of total solids tending to produce foaming and priming a quantity of a diacyl derivative of piperazine, at least one acyl group being derived from the group consisting of the aromatic carboxylic and aryisulfonic acids, and the other acyl group containing at least about 16 carbon atoms, said quantity of diacyl derivative being suflicient to substantially inhibit priming and foaming.
.4. Process of minimizing the production of foam in and the priming of steam generators operating under superatmospheric'pressure conditions which comprises incorporating with a water therein containing an amount of total solids tending to produce foaming and priming a quantity of dipalmitylpiperazine', said quantity being sufficient to substantially inhibit priming and foaming.-
5. Process of minimizing the production of foam in and the priming of steam generators operating under superatmospheri'c pressure conditions which comprises incorporating with a water therein containing an amount of total solids tending to produce foaming and priming a quantity of acetylstearylpiperazine, said quantity being suflicient to substantially inhibit priming and foaming.
6; Process of minimizing the production of foam in and the priming of steam generators operating under superatmospheric pressure. conditions which comprises incorporating with a water therein containing an amount of total solids tending to produce foaming and priming afquantity of monoerucylpiperazine, said quanmy being sufficient to substantially inhibit prim-' ing and foaming.
ARTHUR L. JACOBY.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 2,074,380 Fiett Mar. 22, 1937 1,892,857 Spellmeyer Jan. 8, 1933 2,262,357 De Groote et a1. Nov. 11, 1941 2,304,805 Denman Dec. 15, 1942 2,328,551
Gunderson Sept. 7, 1943
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US436494A US2428801A (en) | 1942-03-27 | 1942-03-27 | Process for the prevention of foaming in steam boilers |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US436494A US2428801A (en) | 1942-03-27 | 1942-03-27 | Process for the prevention of foaming in steam boilers |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2428801A true US2428801A (en) | 1947-10-14 |
Family
ID=23732626
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US436494A Expired - Lifetime US2428801A (en) | 1942-03-27 | 1942-03-27 | Process for the prevention of foaming in steam boilers |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2428801A (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1892857A (en) * | 1931-12-15 | 1933-01-03 | Erwin F Spellmeyer | Composition for preventing boiler priming or frothing |
| US2074380A (en) * | 1935-03-08 | 1937-03-23 | Nat Aniline & Chem Co Inc | Antifoaming agents |
| US2262357A (en) * | 1940-06-27 | 1941-11-11 | Petrolite Corp | Process for breaking petroleum emulsions |
| US2304805A (en) * | 1938-03-01 | 1942-12-15 | Dearborn Chemicals Co | Method of treating waters including boiler waters and compositions therefor |
| US2328551A (en) * | 1940-04-22 | 1943-09-07 | Dearborn Chemicals Co | Method of conditioning water |
-
1942
- 1942-03-27 US US436494A patent/US2428801A/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1892857A (en) * | 1931-12-15 | 1933-01-03 | Erwin F Spellmeyer | Composition for preventing boiler priming or frothing |
| US2074380A (en) * | 1935-03-08 | 1937-03-23 | Nat Aniline & Chem Co Inc | Antifoaming agents |
| US2304805A (en) * | 1938-03-01 | 1942-12-15 | Dearborn Chemicals Co | Method of treating waters including boiler waters and compositions therefor |
| US2328551A (en) * | 1940-04-22 | 1943-09-07 | Dearborn Chemicals Co | Method of conditioning water |
| US2262357A (en) * | 1940-06-27 | 1941-11-11 | Petrolite Corp | Process for breaking petroleum emulsions |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2575276A (en) | Process of minimizing foam production in steam generation | |
| US2701239A (en) | Steam generation and compositions for inhibiting foaming | |
| US2575298A (en) | Steam generation and compositions for inhibiting foaming | |
| US4162143A (en) | Emulsifier blend and aqueous fuel oil emulsions | |
| US2380166A (en) | Emulsions | |
| US4251229A (en) | Stabilized fuel slurry | |
| US3615290A (en) | Emulsified hydrocarbon fuel | |
| US2636038A (en) | Surface active agents | |
| US2164431A (en) | Production of etherg suitable as dis | |
| US2588343A (en) | Inhibiting foaming in steam generators | |
| US3320212A (en) | alpha-sulfocarboxylic esters of oxyalkylated polyphenols | |
| US2428801A (en) | Process for the prevention of foaming in steam boilers | |
| US2580922A (en) | Prevention of foaming in steam generation | |
| US2428776A (en) | Prevention of foaming in steam boilers | |
| US2588344A (en) | Prevention of foaming in steam generation | |
| US2609344A (en) | Prevention of foaming in steam generation | |
| US2717881A (en) | Inhibition of foaming in steam generators | |
| US2580880A (en) | Prevention of foaming in steam generation | |
| US3004923A (en) | Process and compositions for inhibiting and preventing the foaming of aqueous systems | |
| US2868734A (en) | Liquid defoaming composition | |
| US2875156A (en) | Inhibition of foaming in steam generation | |
| US4219434A (en) | Hydraulic fluid compositions based on mixed glycol ether-glycol boric acid esters | |
| US2449656A (en) | Process of minimizing the production of foam in steam generators | |
| US2588345A (en) | Prevention of foaming in steam generation | |
| US2428775A (en) | Product and process for the prevention of foaming in steam boilers |