US2491694A - Process of desulfurizing spent nickel-aluminum catalysts - Google Patents
Process of desulfurizing spent nickel-aluminum catalysts Download PDFInfo
- Publication number
- US2491694A US2491694A US570794A US57079444A US2491694A US 2491694 A US2491694 A US 2491694A US 570794 A US570794 A US 570794A US 57079444 A US57079444 A US 57079444A US 2491694 A US2491694 A US 2491694A
- Authority
- US
- United States
- Prior art keywords
- nickel
- catalyst
- spent
- granules
- catalysts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title description 56
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 title description 17
- 238000000034 method Methods 0.000 title description 15
- 230000003009 desulfurizing effect Effects 0.000 title description 2
- 239000008187 granular material Substances 0.000 description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 23
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 19
- 229910017604 nitric acid Inorganic materials 0.000 description 19
- 229910000838 Al alloy Inorganic materials 0.000 description 16
- 229910052759 nickel Inorganic materials 0.000 description 11
- 230000007420 reactivation Effects 0.000 description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 10
- 229910052717 sulfur Inorganic materials 0.000 description 10
- 239000011593 sulfur Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 235000011121 sodium hydroxide Nutrition 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- 230000002035 prolonged effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- YYCNOHYMCOXPPJ-UHFFFAOYSA-N alumane;nickel Chemical class [AlH3].[Ni] YYCNOHYMCOXPPJ-UHFFFAOYSA-N 0.000 description 3
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 3
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000286904 Leptothecata Species 0.000 description 1
- RDFYLEVYNJBTGY-UHFFFAOYSA-N [Ni++].O[N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O Chemical compound [Ni++].O[N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O RDFYLEVYNJBTGY-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
- B01J23/94—Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S502/00—Catalyst, solid sorbent, or support therefor: product or process of making
- Y10S502/515—Specific contaminant removal
- Y10S502/517—Sulfur or sulfur compound removal
Definitions
- This invention relates to the reactivation of spent nickel alloy catalysts, and more particularly to the reactivation of spent nickel-aluminum alloy catalysts by treatment with dilute aqueous nitric acid.
- nickel catalysts lose their efficiency after a few weeks of operation. Numerous methods have been proposed for reactivating such spent nickel catalysts (Berkman, Morrell and Eglofi, Catalysis, pages 296 to 299, Reinhold Publishing Corporation, 1940). In a like manner, nickel-alloy catalysts, after protracted periods of use, become relatively inactive. Moreover, methods which have been proposed for the reactivation of ordinary nickel or supported nickel catalysts are found to be entirely unsatisfactory for the reactivation of nickelaluminum alloy catalysts.
- reactivation procedures which involve dissolving the nickel and precipitating the same as an insoluble nickel compound, followed by reducing such compound to metallic nickel are, of course, inoperative as methods for producing reactivated nickelaluminum alloy catalysts.
- spent nickel-aluminum alloy catalysts are not reactivated by treatment with strong caustic soda.
- An object of this invention is to provide a simple, effective, and inexpensive method for reactivating spent nickel-aluminum alloy catalysts. Other objects will appear hereinafter.
- the nickel-aluminum alloy catalysts which are employed in the practice of this invention are prepared in general by treating granules (2 to 4 mesh) of nickel-aluminum alloy with caustic soda, thereby dissolving the surface aluminum and leaving an active surface of nickel over an unchanged alloy core. After this catalyst has been used for a period of weeks in the hydrogenation of organic substances containing minute traces of sulfur compound (as, for example, in the hydrogenation of benzene to cyclohexane), the cat alyst becomes deactivated due to the formation of an enamel-like coating, about 0.015 to 0.020 inch thick, covering the surface of each granule.
- This coating is imperviousto caustic soda solution, which precludes the activation of the alloy by the method above described for the initial activation of the surface of the catalyst. While the nature of this enamel-like coating is not fully understood, the evidence seems to indicate that it is a composition comprising nickel sulfide and aluminum oxide. v
- nitric acid 8 to 23% concentration.
- Nitric acid which is not sufficiently dilute has an oxidizing action, and the resulting solution contains nickel sulfate. This oxidizing action is especially undesirable, because nickel sulfate (unlike nickel nitrate) is not readily recovered in the form of catalytically active nickel.
- nitric acid of the proper concentration is employed, the sulfur in the coating on the spent catalyst granules is liberated in the form of hydrogen sulfide, which is easily expelled from the nitric acid mixtures.
- concentration of the nitric acid is so controlled as to give a reasonable rate of removal of coating on the catalyst granule without producing free sulfur, or nickel sulfate in the nitric acid solution.
- This optimum concentration of nitric acid for the accomplishment of this purpose is from 15% to 21%.
- the temperature should be about to 105 0., preferably about to C.
- the reactivation of nickel-aluminum alloy catalysts is preferably conducted in a reaction vessel which is equipped with a means for vigorous mechanical agitation (such as stirring), since the removal of the insoluble coating from the surface of the granules is assisted by abrasion.
- a means for vigorous mechanical agitation such as stirring
- Example. Into a reaction vessel equipped with a mechanical stirrer is introduced 1669 parts by weight of water and 1000 parts of spent nickel alloy catalyst. The mixture is stirred, and small portions (10 parts each) of 95% nitric acid are added, sufiiclently slowly to avoid loss by foaming, until the totaladded quantity is 350 parts.
- the mixture is stirred, and small portions (10 parts each) of 95% nitric acid are added, sufiiclently slowly to avoid loss by foaming, until the totaladded quantity is 350 parts.
- aqueous phase contains nitric acid of about 15% to 19% concentration.
- the temperature is maintained at 95 to 100 C.
- the stirring is continued, and from time to time samples of the catalyst granules are removed and tested by determining whether or not they liberate hydrogen from a 0.1 normal sodium hydroxide solution at 25 0. If the granules do not liberate hydrogen freely, the reactivation process is continued.
- the reaction mixture is cooled down to 60 C. and the liquid portion of the, mixture is withdrawn and pumped to a nickel recovery unit, since it contains small amounts of; nickel nitrate.
- the granules remaining in the reaction vessel are then washed with distilled water and are dried at 150 C. for 6 hours.
- the resulting dry material is screened to 2 to 4 mesh. The fines from this operation are melted to form ingots of alloy which can be crushed andscreened to theproper size for reuse.
- nitric acid-nickel nitrate solution which is, withdrawn from the reaction vessel as stated above, is heated to a temperature of 65 0., and sufiicient dry sodium carbonate is-added at the rate of 20 parts per minute, to raise the pH to 7.5,. After the precipitation is complete the slurry thus obtained is Washed 4 times with distilled water (16,600 parts for each wash). The precipitate is, then filtered. and dried at 150 C. for 24 hours. A high quality, recoverednickel catalyst is thus obtained. Thisis set aside to be used for purposes not requiring the use of nickelaluminum alloy catalyst.
- the reactivated nickel-aluminum alloy catalyst maybe employed in the hydrogenation of organic substances generally, and is particularly effective in the hydrogenation of aromatic hydrocarbons to the cycloaliphatic hydrocarbons as in the con- Version of benzene to cyclohexane.
- a process for reactivatin spent granular nickel-aluminum alloy catalysts, which have become deactivated through prolonged use and formation of a sulfur-containing film thereon which. comprises subjecting the said spent catalysts to the action of dilute aqueous nitric acid having a concentration of 15% to 21% at a ternperature of about 95 to 100 0., with vigorous mechanical agitation, continuing the said treat-- ment with the said dilute aqueous nitric acid until.
- the sulfur has been expelled from the catalystas hydrogen sulfide and the catalyst granules are suificiently reactivated that hydrogen is liberated when a sample of granules of the catalystis tested with 0.1 normal aqueous sodium hydroxide solution at 25 0., thereupon stopping the Said reactivation treatment, and recovering the resultant reactivated catalyst granules from the reaction'mixture.
- a process for reac-tivating spent granular nickel-aluminum alloy catalysts which have be: come deactivated, through prolonged use and formation of a sulfur-containing film thereon, in the form of granules of about 2 to 4 mesh which comprises subjecting the said spent catalysts to the action of dilute aqueous nitric acid having a concentration of 15% to 21% of a temperature of about 95 to 100 0., With vigorous mechanical agitation, continuing the said treat: ment with the said dilute aqueous nitric acid; until the sulfur has been expelled from the cata: lyst as hydrogen sulfide and the catalyst granules are sufliciently reactivated that hydrogen is liberated when a sample of granules of the catalyst is tested with 0.1 normal aqueous sodium hydroxide solution at 25 0., thereupon stopping the said reactivation treatment, and recovering. the resultant reactivated the reaction mixture.
- a process for reactivating spent granular nickel-aluminum alloy catalysts, which have be-s come deactivated through prolonged used and formation of a sulfur-containing film thereon, which comprises vigorously agitating granules of the said spent catalyst with water, while. gradu has been expelled from the mixture as hydrogensulfide and the catalyst granules are sufficiently. reactivated that hydrogen is liberated when a sample of granules of the catalyst is tested with. 0.1 normal aqueous sodium 25 0., thereupon stopping treatment, and recovering the said reactivation the resultant, reacti-j vated granules of catalyst from the reactions.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Description
Patented Dec. 20, 1949 l PROCESS OF DESULFURIZING SPENT NICKEL-ALUNHNUM CATALYSTS Alvin B. Stiles, Charleston, W. Va., assignor to E. I. du Pont de Nemours & Company, Wilmington, Del., a corporation of Delaware No Drawing. Application December 30, 1944, Serial No. 570,794
Claims. 1
This invention relates to the reactivation of spent nickel alloy catalysts, and more particularly to the reactivation of spent nickel-aluminum alloy catalysts by treatment with dilute aqueous nitric acid.
It has long been known that, in hydrogenation reactions accompanied by the formation of small amounts of hydrogen sulfide, nickel catalysts lose their efficiency after a few weeks of operation. Numerous methods have been proposed for reactivating such spent nickel catalysts (Berkman, Morrell and Eglofi, Catalysis, pages 296 to 299, Reinhold Publishing Corporation, 1940). In a like manner, nickel-alloy catalysts, after protracted periods of use, become relatively inactive. Moreover, methods which have been proposed for the reactivation of ordinary nickel or supported nickel catalysts are found to be entirely unsatisfactory for the reactivation of nickelaluminum alloy catalysts. For example, reactivation procedures which involve dissolving the nickel and precipitating the same as an insoluble nickel compound, followed by reducing such compound to metallic nickel are, of course, inoperative as methods for producing reactivated nickelaluminum alloy catalysts. Also, spent nickel-aluminum alloy catalysts are not reactivated by treatment with strong caustic soda.
An object of this invention is to provide a simple, effective, and inexpensive method for reactivating spent nickel-aluminum alloy catalysts. Other objects will appear hereinafter.
These objects are accomplished in accordance with the invention by treating spent nickel-aluminum alloy catalysts with dilute nitric acid, preferably of 8 to 23% concentration, whereby the spent catalyst is converted into a reactivated nickel-aluminum alloy catalyst having an activity which is substantially as great as the activity of the original catalyst.
The nickel-aluminum alloy catalysts which are employed in the practice of this invention are prepared in general by treating granules (2 to 4 mesh) of nickel-aluminum alloy with caustic soda, thereby dissolving the surface aluminum and leaving an active surface of nickel over an unchanged alloy core. After this catalyst has been used for a period of weeks in the hydrogenation of organic substances containing minute traces of sulfur compound (as, for example, in the hydrogenation of benzene to cyclohexane), the cat alyst becomes deactivated due to the formation of an enamel-like coating, about 0.015 to 0.020 inch thick, covering the surface of each granule. This coating is imperviousto caustic soda solution, which precludes the activation of the alloy by the method above described for the initial activation of the surface of the catalyst. While the nature of this enamel-like coating is not fully understood, the evidence seems to indicate that it is a composition comprising nickel sulfide and aluminum oxide. v
In the activation of this spent nickel-aluminum alloy catalyst it is preferable to employ nitric acid of 8 to 23% concentration. During the treatment of the catalyst with nitric acid of this concentration a small amount of nickel is unavoidably brought into solution. It is, of course, desirable that such loss of nickel be kept at a minimum. Nitric acid which is not sufficiently dilute has an oxidizing action, and the resulting solution contains nickel sulfate. This oxidizing action is especially undesirable, because nickel sulfate (unlike nickel nitrate) is not readily recovered in the form of catalytically active nickel. If nitric acid of the proper concentration is employed, the sulfur in the coating on the spent catalyst granules is liberated in the form of hydrogen sulfide, which is easily expelled from the nitric acid mixtures. Generally, according to the invention, the concentration of the nitric acid is so controlled as to give a reasonable rate of removal of coating on the catalyst granule without producing free sulfur, or nickel sulfate in the nitric acid solution. Thus, there is a critical optimum range of nitric acid concentration which gives rise to high quality reactivated nickel-aluminum alloy catalysts while simultaneously producing as a byproduct recoverable nickel which can be obtained readily in catalytically active form. This optimum concentration of nitric acid for the accomplishment of this purpose, according to the invention, is from 15% to 21%. The temperature should be about to 105 0., preferably about to C.
The reactivation of nickel-aluminum alloy catalysts, in accordance with this invention, is preferably conducted in a reaction vessel which is equipped with a means for vigorous mechanical agitation (such as stirring), since the removal of the insoluble coating from the surface of the granules is assisted by abrasion. The invention is illustrated further by means of the following example.
Example.--Into a reaction vessel equipped with a mechanical stirrer is introduced 1669 parts by weight of water and 1000 parts of spent nickel alloy catalyst. The mixture is stirred, and small portions (10 parts each) of 95% nitric acid are added, sufiiclently slowly to avoid loss by foaming, until the totaladded quantity is 350 parts. The
aqueous phase contains nitric acid of about 15% to 19% concentration. As the reaction proceeds, the temperature is maintained at 95 to 100 C. The stirring is continued, and from time to time samples of the catalyst granules are removed and tested by determining whether or not they liberate hydrogen from a 0.1 normal sodium hydroxide solution at 25 0. If the granules do not liberate hydrogen freely, the reactivation process is continued. When it is found that the granules have been satisfactorily reactivated, as determined by this test, the reaction mixture is cooled down to 60 C. and the liquid portion of the, mixture is withdrawn and pumped to a nickel recovery unit, since it contains small amounts of; nickel nitrate. The granules remaining in the reaction vessel are then washed with distilled water and are dried at 150 C. for 6 hours. The resulting dry material is screened to 2 to 4 mesh. The fines from this operation are melted to form ingots of alloy which can be crushed andscreened to theproper size for reuse.
jjThe nitric acid-nickel nitrate solution, which is, withdrawn from the reaction vessel as stated above, is heated to a temperature of 65 0., and sufiicient dry sodium carbonate is-added at the rate of 20 parts per minute, to raise the pH to 7.5,. After the precipitation is complete the slurry thus obtained is Washed 4 times with distilled water (16,600 parts for each wash). The precipitate is, then filtered. and dried at 150 C. for 24 hours. A high quality, recoverednickel catalyst is thus obtained. Thisis set aside to be used for purposes not requiring the use of nickelaluminum alloy catalyst.
It will be understood that is illustrative only and is not intended to limit the invention in any way. While the catalyst described in the example is preferably of. about 2 to 4 mesh grain size it will be appreciated that th method is also applicable tocatalysts of larger or smaller grain size.
The reactivated nickel-aluminum alloy catalyst maybe employed in the hydrogenation of organic substances generally, and is particularly effective in the hydrogenation of aromatic hydrocarbons to the cycloaliphatic hydrocarbons as in the con- Version of benzene to cyclohexane.
Since many different embodiments of the invention may be made without departing from the. spirit and scope thereof it is to be understood that we do not limit ourselves except as set forth in the following claims.
Iclaim:
l. A process for reactivating spent granular nickel-aluminum alloy catalysts, which; have become deactivated through prolonged use and formation of a sulfur-containing film thereon.v which comprises subjecting the said spent cata-,
lysts to the action of dilute aqueous nitric, acid having a concentration of 15% to 21% at a tern: perature of 80 to.105 ing reaction until the from the catalyst as catalyst granulesare sufiiciently reactivated that hydrogen is liberated 2. A process for reactivating spent granular nickel-aluminum alloy catalysts, which have beprolonged use and for-- come deactivated through mation of a sulfur-containingfilm thereon, which the above example 0., continuing the resulta sulfur has been expelled; hydrogen sulfide; and the;
when a sample of granules of the catalyst is tested with 0.1 normal aqueous: 0., thereupon comprises subjecting the said spent catalysts to the action of dilute aqueous nitric acid having a concentration of 15% to 21% at a temperature of about to 0., continuing the said treatment with the said dilute aqueous nitric acid until the sulfur has been, expelled from the catalyst as hydrogen sulfide and the catalyst granules are sufficiently reactivated that hydrogen is liberated when a sample of granules of the catalyst is tested with 0.1 normal aqueous sodium hydroxide solution at 25 0., thereupon stopping the said reactivation treatment, and recovering the resultant reactivated catalyst granules from the reaction mixture.
3.,A process for reactivatin spent granular nickel-aluminum alloy catalysts, which have become deactivated through prolonged use and formation of a sulfur-containing film thereon, which. comprises subjecting the said spent catalysts to the action of dilute aqueous nitric acid having a concentration of 15% to 21% at a ternperature of about 95 to 100 0., with vigorous mechanical agitation, continuing the said treat-- ment with the said dilute aqueous nitric acid until. the sulfur has been expelled from the catalystas hydrogen sulfide and the catalyst granules are suificiently reactivated that hydrogen is liberated when a sample of granules of the catalystis tested with 0.1 normal aqueous sodium hydroxide solution at 25 0., thereupon stopping the Said reactivation treatment, and recovering the resultant reactivated catalyst granules from the reaction'mixture.
4. A process for reac-tivating spent granular nickel-aluminum alloy catalysts, which have be: come deactivated, through prolonged use and formation of a sulfur-containing film thereon, in the form of granules of about 2 to 4 mesh which comprises subjecting the said spent catalysts to the action of dilute aqueous nitric acid having a concentration of 15% to 21% of a temperature of about 95 to 100 0., With vigorous mechanical agitation, continuing the said treat: ment with the said dilute aqueous nitric acid; until the sulfur has been expelled from the cata: lyst as hydrogen sulfide and the catalyst granules are sufliciently reactivated that hydrogen is liberated when a sample of granules of the catalyst is tested with 0.1 normal aqueous sodium hydroxide solution at 25 0., thereupon stopping the said reactivation treatment, and recovering. the resultant reactivated the reaction mixture.
5. A process for reactivating spent granular nickel-aluminum alloy catalysts, which have be-s come deactivated through prolonged used and formation of a sulfur-containing film thereon, which comprises vigorously agitating granules of the said spent catalyst with water, while. gradu has been expelled from the mixture as hydrogensulfide and the catalyst granules are sufficiently. reactivated that hydrogen is liberated whena sample of granules of the catalyst is tested with. 0.1 normal aqueous sodium 25 0., thereupon stopping treatment, and recovering the said reactivation the resultant, reacti-j vated granules of catalyst from the reactions.
mixture. ALVIN B. STILES (References on following page) catalyst granules from;
hydroxide solution at,-
REFERENCES CITED FOREIGN PATENTS The following references are of record in the Number Country Date file of this patent: 282,112 Great Britain Dec. 13, 192'? 481,927 Germany May 24, 1924 UNITED STATES PATENTS OTHER REFERENCES Number Name Date 1,640,668 Prudhomme Aug. 30, 1927 Ephraim, Inorg. Chem, 4th ed. (1933), p. 2,139,602 Raney Dec. 6, 1938 530.
2,373,501 Peterson Apr. 10, 1945 Mellor, Modern Inorg. Chem, (1939), p. 66. 2,381,659 Frey Aug. 7, 1945 2,391,283 Weber Dec. 18, 1945
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US570794A US2491694A (en) | 1944-12-30 | 1944-12-30 | Process of desulfurizing spent nickel-aluminum catalysts |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US570794A US2491694A (en) | 1944-12-30 | 1944-12-30 | Process of desulfurizing spent nickel-aluminum catalysts |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2491694A true US2491694A (en) | 1949-12-20 |
Family
ID=24281077
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US570794A Expired - Lifetime US2491694A (en) | 1944-12-30 | 1944-12-30 | Process of desulfurizing spent nickel-aluminum catalysts |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2491694A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3173882A (en) * | 1961-11-20 | 1965-03-16 | Sinclair Research Inc | Removing metal contaminants from silica-based cracking catalysts |
| US4592829A (en) * | 1984-12-26 | 1986-06-03 | Exxon Research And Engineering Co. | Desulfurization of hydrocarbons |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1640668A (en) * | 1925-01-20 | 1927-08-30 | Int Des Procedes Prudhomme Soc | Process for the regeneration of metal catalysts contaminated by sulphur |
| GB282112A (en) * | 1926-12-13 | 1929-04-15 | Ig Farbenindustrie Ag | Manufacture of finely porous metals |
| DE481927C (en) * | 1929-09-04 | Gewerkschaft Kohlenbenzin | Process for the recovery of metallic catalysts poisoned by sulfur | |
| US2139602A (en) * | 1935-06-17 | 1938-12-06 | Raney Murray | Method of reclaiming catalytic material from spent catalytic material |
| US2373501A (en) * | 1942-04-18 | 1945-04-10 | Du Pont | Preparation of cyclohexane |
| US2381659A (en) * | 1941-12-18 | 1945-08-07 | Phillips Petroleum Co | Regeneration of catalytic material |
| US2391283A (en) * | 1942-04-11 | 1945-12-18 | Du Pont | Process for the hydrogenation of benzene |
-
1944
- 1944-12-30 US US570794A patent/US2491694A/en not_active Expired - Lifetime
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE481927C (en) * | 1929-09-04 | Gewerkschaft Kohlenbenzin | Process for the recovery of metallic catalysts poisoned by sulfur | |
| US1640668A (en) * | 1925-01-20 | 1927-08-30 | Int Des Procedes Prudhomme Soc | Process for the regeneration of metal catalysts contaminated by sulphur |
| GB282112A (en) * | 1926-12-13 | 1929-04-15 | Ig Farbenindustrie Ag | Manufacture of finely porous metals |
| US2139602A (en) * | 1935-06-17 | 1938-12-06 | Raney Murray | Method of reclaiming catalytic material from spent catalytic material |
| US2381659A (en) * | 1941-12-18 | 1945-08-07 | Phillips Petroleum Co | Regeneration of catalytic material |
| US2391283A (en) * | 1942-04-11 | 1945-12-18 | Du Pont | Process for the hydrogenation of benzene |
| US2373501A (en) * | 1942-04-18 | 1945-04-10 | Du Pont | Preparation of cyclohexane |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3173882A (en) * | 1961-11-20 | 1965-03-16 | Sinclair Research Inc | Removing metal contaminants from silica-based cracking catalysts |
| US4592829A (en) * | 1984-12-26 | 1986-06-03 | Exxon Research And Engineering Co. | Desulfurization of hydrocarbons |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3235515A (en) | Method of preparing a hydrogenation catalyst composition consisting of the oxides of zirconium and an iron group metal | |
| US2696475A (en) | Method of preparation of supported nickel, cobalt, or copper catalysts | |
| US2635080A (en) | Reactivating a supported platinum catalyst | |
| US2878180A (en) | Hydrofining process and catalyst thereof | |
| US2611749A (en) | Preparation of an alumina-platinumcombined halogen catalyst | |
| US3060133A (en) | Production and regeneration of platinum carrier catalysts for the synthesis of hydroxylamine from nitric oxide and hydrogen | |
| JPH0375218B2 (en) | ||
| US2456633A (en) | Catalyst preparation | |
| US2950260A (en) | Process of activating nickel-aluminum catalysts | |
| US2274634A (en) | Catalytic conversion process | |
| US2945757A (en) | Recovery of noble metals from catalytic composites | |
| US3761425A (en) | Process for preparing sulfided platinum on carbon catalysts | |
| US3816337A (en) | Process for preparing a catalytic cobalt carbonyl reaction product | |
| US2865866A (en) | Spheroidal alumina | |
| US2491694A (en) | Process of desulfurizing spent nickel-aluminum catalysts | |
| IL43680A (en) | Preparation of cyclohexanone and/or cyclohexanol | |
| US2575403A (en) | Catalytic hydrogenation of acetophenone to phenyl methyl carbinol | |
| US2636863A (en) | Manufacture of alumina-platinum catalysts | |
| US2013066A (en) | Hydrocarbon decomposition and catalyst therefor | |
| US2941954A (en) | Activation of hydrogenation catalysts | |
| US2267735A (en) | Manufacture of catalysts | |
| US2444509A (en) | Composition of matter | |
| US2794056A (en) | Catalyst reactivation in the hydrogenation of phenol to cyclohexanol | |
| US2437051A (en) | Hydrogenation of carbon monoxide | |
| US2412600A (en) | Catalysis of hydrocarbons by gel-type catalysts |