US2311593A - Method of treating hydrocarbons - Google Patents
Method of treating hydrocarbons Download PDFInfo
- Publication number
- US2311593A US2311593A US368932A US36893240A US2311593A US 2311593 A US2311593 A US 2311593A US 368932 A US368932 A US 368932A US 36893240 A US36893240 A US 36893240A US 2311593 A US2311593 A US 2311593A
- Authority
- US
- United States
- Prior art keywords
- gasoline
- sodium hydroxide
- particles
- mercaptans
- alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 11
- 229930195733 hydrocarbon Natural products 0.000 title description 7
- 150000002430 hydrocarbons Chemical class 0.000 title description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 36
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 12
- 239000003513 alkali Substances 0.000 description 12
- 239000003921 oil Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical class [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 9
- 239000005864 Sulphur Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000006079 antiknock agent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G19/00—Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
Definitions
- This invention has to do with the removal of mercaptans and hydrogen sulphide from petroleum hydrocarbon fractions. These compounds are objectionable, as such, and must be removed or converted to innocuous compounds.
- the customary process has been conversion to unobjectionable disulphides, but, in gasoline to be leaded, these reduce the efliciency of the antiknock agent.
- Increasing attention has been drawn to processes which remove rather than convert mercaptans. Attention has been given processes using solid alkalies, without as yet any particularly acceptable commercial process having been developed.
- This invention has for its object the provision of an efficient and economical method for the removal of sulphur compounds from hydrocarbon oil fractions by the use of solid alkali.
- Anhydrous sodium hydroxide is capable of removing quantitatively mercaptans from petroleum oils provided sufiicient time is allowed for completing the reaction.
- the surface area of sodium hydroxide required to sweeten the above sample of gasoline should be by interpolation approximately 200 sq. cm.
- the theoretical quantity of sodium hydroxide required to sweeten the above sample of gasoline is 0.0113 per cent weight on the gasoline.
- the specific gravity of this gasoline was 0.751 at 60 F. while the specific gravity of sodium hydroxide is 2.13. Therefore, the depth of penetration of mercaptides into the sodium hydroxide during the 30 minute contact period was 0.000024 cm.
- the maximum diameter of such particles should not be over 0.000048 cm. if the gasoline must besweetened in 30 minutes or less.
- Gasoline containing mercaptans is brought in contact with the finely divided particles of anhydrous sodium hydroxide by agitating or filtering, depending whether the reagent is in a finely divided form or deposited in thin layers.
- the treated gasoline is freed from suspended particles of mercaptides by washing it with water or by bringing it in contact with adsor tive substances, such as clay.
- adsor tive substances such as clay.
- the use of water for removing the mercaptides is possible because the rate of hydrolysis is slow. However, excessive contact time of gasoline containing the mercaptides and water should be avoided.
- That method of removing sulphur constituents such as elemental sulphur. hydrogen sulphide and mercaptans from hydrocarbon oil fractions comprising contacting said oil with solid anhydrous alkali particles oi colloidal sizes.
- That method of removing sulphur constituents such as elemental sulphur, hydrogen sulphide and mercaptans from hydrocarbon oils comprising the steps of mechanically dispersing solid anhydrous alkali to particles oi. colloidal dimensions in said oil and separating the resulting reaction products from the oil.
- first method of removing sulphur constituents such as elemental sulphur, hydrogen sulphide and mercaptans from hydrocarbon oils comprising the steps of mechanically dispersing solid anhydrous alkali to particles of colloidal dimension, ranging from about 0.0000001 cm. to about 0.00001 cm. in diameter, in said oil and stgparatin'g the resulting reaction products from e oil.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
Patented Feb. 1 6, 1 943 IVIETHOD' OF TREATING HYDROCARBONS Vladimir A. Kalichevsky, Eugene T. Scare, and 1 Kenne th F. Hayden, Woodbury, N. J., assignors to Socuny-Vacuum Oil Company, Incorporated, New York, N. Y., a corporation of New York No Drawing. Application December 6, 1940, Serial No. 368,932
3 Claims.
This invention has to do with the removal of mercaptans and hydrogen sulphide from petroleum hydrocarbon fractions. These compounds are objectionable, as such, and must be removed or converted to innocuous compounds. The customary process has been conversion to unobjectionable disulphides, but, in gasoline to be leaded, these reduce the efliciency of the antiknock agent. Increasing attention has been drawn to processes which remove rather than convert mercaptans. Attention has been given processes using solid alkalies, without as yet any particularly acceptable commercial process having been developed.
This invention has for its object the provision of an efficient and economical method for the removal of sulphur compounds from hydrocarbon oil fractions by the use of solid alkali.
Anhydrous sodium hydroxide is capable of removing quantitatively mercaptans from petroleum oils provided sufiicient time is allowed for completing the reaction. With some gasolines plant operation, the surface area of sodium hydroxide required to sweeten the above sample of gasoline should be by interpolation approximately 200 sq. cm. The theoretical quantity of sodium hydroxide required to sweeten the above sample of gasoline is 0.0113 per cent weight on the gasoline. The specific gravity of this gasoline was 0.751 at 60 F. while the specific gravity of sodium hydroxide is 2.13. Therefore, the depth of penetration of mercaptides into the sodium hydroxide during the 30 minute contact period was 0.000024 cm. Considering particles of spherical type the maximum diameter of such particles should not be over 0.000048 cm. if the gasoline must besweetened in 30 minutes or less.
- The above figure is an approximation of the be somewhat greater or less than that shown containing higher mercaptans from two to twenty-four hours of continuous agitation may be necessary to sweeten the gasoline, depending on the state of subdivision of the reagent. In addition, the surface of the sodium hydroxide particles is quickly coated with the adsorbed layer of mercaptides, thus preventing further reaction. For this reason, the quantity of sodium hydroxide required to sweeten the gasoline is much greater than theoretical. We have found that .both the time of the reaction and the quantity of sodium hydroxide required for sweetening gasoline depends primarily on the surface of sodium hydroxide exposed to gasoline rather than on the total quantity of sodium hydroxide resent. This may be visualized from the following experimental data.
Relation of surface area of sodium hydroxide particles to the time required to completely sweeten a 120 cc. sample of cracked gasoline Mixing Surface area, Sqtime Minutes sweetening of the above sample of gasoline was accompanied with a reduction of its mercaptan sulfur content from 0.0092 to 0.0002 per cent by weight. Considering that minutes time of contact is within practical limits for above.
1. Colloidal mills.
2. Electric are.
3. Deposition of thin layers of solid anhydrous alkali on inert materials possessing high surface areasu 4. Spraying molten anhydrous alkali into gasoline.
Gasoline containing mercaptans is brought in contact with the finely divided particles of anhydrous sodium hydroxide by agitating or filtering, depending whether the reagent is in a finely divided form or deposited in thin layers.
The treated gasoline is freed from suspended particles of mercaptides by washing it with water or by bringing it in contact with adsor tive substances, such as clay. The use of water for removing the mercaptides is possible because the rate of hydrolysis is slow. However, excessive contact time of gasoline containing the mercaptides and water should be avoided.
Similar methodsare also applicable for treating gasoline with anhydrous potassium hydroxide which is best suited for the removal of elementary sulfur, i. e. for treating corrosive gasolines.
These methods have the advantage or presenting the reagent to the reaction in the form of a surface so extended that the reaction products do not mask of! any useful portion of the reagent, which feature has nullified the results of previous attempts to use solid anhydrous alkalies in larger states of subdivision such as 20-100 mesh. They also avoid a common failing of another proposed alternative method of utilizing solid alkalies, viz., that of utilizing a common solvent such as alcohol, wherein a solution of alkali in alcohol would be added to the hydrocarbon resulting in the precipitation therein of alkali particles of sub-colloidal or molecular dimension, but also obscuring and obstructing the reaction by the presence of the mutual solvent and'necessitating the later removal of that mutual solvent.
The named methods of securing dispersions of solids in liquids by mechanical means are known and require no explanation.
Any solid anhydrous alkali of properly reactive characteristics may be used, the usual and pre- {gr-red ones being sodium and potassium hydrox- We claim:
1. That method of removing sulphur constituents such as elemental sulphur. hydrogen sulphide and mercaptans from hydrocarbon oil fractions comprising contacting said oil with solid anhydrous alkali particles oi colloidal sizes.
2. That method of removing sulphur constituents such as elemental sulphur, hydrogen sulphide and mercaptans from hydrocarbon oils comprising the steps of mechanically dispersing solid anhydrous alkali to particles oi. colloidal dimensions in said oil and separating the resulting reaction products from the oil.
3. "first method of removing sulphur constituents such as elemental sulphur, hydrogen sulphide and mercaptans from hydrocarbon oils comprising the steps of mechanically dispersing solid anhydrous alkali to particles of colloidal dimension, ranging from about 0.0000001 cm. to about 0.00001 cm. in diameter, in said oil and stgparatin'g the resulting reaction products from e oil.
VLADIMIR A, KALICHEVSKY.
EUGENE T. BCAFE.
mum F. HAYDEN.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US368932A US2311593A (en) | 1940-12-06 | 1940-12-06 | Method of treating hydrocarbons |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US368932A US2311593A (en) | 1940-12-06 | 1940-12-06 | Method of treating hydrocarbons |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2311593A true US2311593A (en) | 1943-02-16 |
Family
ID=23453349
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US368932A Expired - Lifetime US2311593A (en) | 1940-12-06 | 1940-12-06 | Method of treating hydrocarbons |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2311593A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2420544A (en) * | 1943-05-15 | 1947-05-13 | Standard Oil Dev Co | Process for the removal of mercaptans from petroleum naphtha |
| US2596175A (en) * | 1948-10-28 | 1952-05-13 | Texaco Development Corp | Treating hydrocarbons with alkali metal hydroxides |
| US2623008A (en) * | 1949-12-20 | 1952-12-23 | Phillips Petroleum Co | Treatment of sour hydrocarbons with caustic solutions |
| US3128155A (en) * | 1960-07-26 | 1964-04-07 | Exxon Research Engineering Co | Desulfurization process |
| US3185641A (en) * | 1961-12-15 | 1965-05-25 | Continental Oil Co | Removal of elemental sulfur from hydrocarbons |
| US3533763A (en) * | 1967-01-23 | 1970-10-13 | Ashland Oil Inc | Process for drying,clarifying and stabilizing hydrocarbon liquids |
| US3658694A (en) * | 1969-12-22 | 1972-04-25 | Phillips Petroleum Co | Method for treating fluid hydrocarbons containing sulfur and other impurities in a solid reagent hydrocarbon treater and separator |
-
1940
- 1940-12-06 US US368932A patent/US2311593A/en not_active Expired - Lifetime
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2420544A (en) * | 1943-05-15 | 1947-05-13 | Standard Oil Dev Co | Process for the removal of mercaptans from petroleum naphtha |
| US2596175A (en) * | 1948-10-28 | 1952-05-13 | Texaco Development Corp | Treating hydrocarbons with alkali metal hydroxides |
| US2623008A (en) * | 1949-12-20 | 1952-12-23 | Phillips Petroleum Co | Treatment of sour hydrocarbons with caustic solutions |
| US3128155A (en) * | 1960-07-26 | 1964-04-07 | Exxon Research Engineering Co | Desulfurization process |
| US3185641A (en) * | 1961-12-15 | 1965-05-25 | Continental Oil Co | Removal of elemental sulfur from hydrocarbons |
| US3533763A (en) * | 1967-01-23 | 1970-10-13 | Ashland Oil Inc | Process for drying,clarifying and stabilizing hydrocarbon liquids |
| US3658694A (en) * | 1969-12-22 | 1972-04-25 | Phillips Petroleum Co | Method for treating fluid hydrocarbons containing sulfur and other impurities in a solid reagent hydrocarbon treater and separator |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2552399A (en) | Treating petroleum distillates | |
| US2311593A (en) | Method of treating hydrocarbons | |
| US2740749A (en) | Regeneration of aqueous caustic-mercaptide solutions with oxygen and a liquid hydrocarbon | |
| US2320106A (en) | Purification of oil | |
| US2970105A (en) | Treatment of hydrocarbon oils | |
| US1904381A (en) | Refining of hydrocarbon oils | |
| US2037792A (en) | Treatment of hydrocarbon oils | |
| US2563369A (en) | Refining fuel oil | |
| US2315766A (en) | Solutizer process for the removal of mercaptans | |
| US2031972A (en) | Sweetening process | |
| US2345449A (en) | Treatment of hydrocarbon oils | |
| US2902442A (en) | Process for reforming porphyrin metallo complexes from heavy oils | |
| US1687992A (en) | Refining of hydrocarbon oils | |
| US2759873A (en) | Sweetening of hydrocarbon oils with raw clay followed by copper sweetening | |
| US2112313A (en) | Process for reducing organic acidity in mineral oils | |
| US2725339A (en) | Solid caustic treatment of hydrocarbons | |
| US2915461A (en) | Multi-stage sweetening process employing an alkaline hypochlorite solution | |
| US2208591A (en) | Process of refining petroleum distillates | |
| US2515141A (en) | Regeneration of caustic solutions | |
| US1920270A (en) | Refining and purification of hydrocarbon oils | |
| US1982120A (en) | Desulphurizing recovered petroleum phenols | |
| US2243824A (en) | Treatment of hydrocarbon oils | |
| US2768929A (en) | Refining of sulfur bearing mineral oils with dialkylpolysulfide | |
| US2758058A (en) | Desulfurizing mineral oil using an unsaturated nitrile with or without caustic | |
| US2871187A (en) | Doctor sweetening process using sulfur |