US2237011A - Simultaneous production of magnesium and low carbon ferroalloys - Google Patents
Simultaneous production of magnesium and low carbon ferroalloys Download PDFInfo
- Publication number
- US2237011A US2237011A US304153A US30415339A US2237011A US 2237011 A US2237011 A US 2237011A US 304153 A US304153 A US 304153A US 30415339 A US30415339 A US 30415339A US 2237011 A US2237011 A US 2237011A
- Authority
- US
- United States
- Prior art keywords
- magnesium
- silicon
- low carbon
- simultaneous production
- ferro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title description 11
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title description 11
- 229910052799 carbon Inorganic materials 0.000 title description 10
- 229910052749 magnesium Inorganic materials 0.000 title description 10
- 239000011777 magnesium Substances 0.000 title description 10
- 229910001021 Ferroalloy Inorganic materials 0.000 title description 5
- 238000004519 manufacturing process Methods 0.000 title description 4
- 229910052710 silicon Inorganic materials 0.000 description 14
- 239000010703 silicon Substances 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 235000001055 magnesium Nutrition 0.000 description 9
- 229940091250 magnesium supplement Drugs 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910000616 Ferromanganese Inorganic materials 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 229910000604 Ferrochrome Inorganic materials 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/20—Obtaining alkaline earth metals or magnesium
- C22B26/22—Obtaining magnesium
Definitions
- the oxyde of magnesium can be reduced by silicon or carbon or else by compounds of silicon or carbon such as s'ilicides or carbides respectively under conditions to yield metallic magnesium.
- The/reaction requires temperatures of more than 1200 centigrades and must take place in vacuum or in a reducing atmosphere.
- Object of the present application is a process which allows the simultaneous production 'of magnesium metal and ferroalloys, low in carbon, as for instance. ferro-chromium, ferro-manganese etc. It has been ascertained by thorough experiments that neither manganese nor chromium react with the oxyde of magnesium at the temperature in question. Thus the reduction of the oxyde of magnesium by silicon, as such known, can be carried out in a manner that allows'the utilisation of alloys of ferro-chromiumsilicon, ferro-manganese-silicon etc. as reducing agents. It is known that carbon in alloys of l.
- retro-chromium and ferro-manganese is displaced by silicon so f. i. an alloy containing about 30% of silicon does,not contain more than, at most, 0.5% of carbon. The same is true in the case of ferro-manganese.
- ferrochromium-silicon or ferro-manganese-silicon as reducing agents is as follows: oxyde of magnesi furnace, heated from outside, which may also be constructed as a rotary furnace. Alternatively the furnace can also be an electric arcor tubeor -muille-furnace fitted with electrical internal heaters -'(graphite or carbon resistance).
- the residue is removed from the furnace and is molten by adding suitable fluxes in an electric furnace, the. slags formed are poured away after having separated from metal, and the metal, still containing some percent of silicon is refined as required.
- the ferro-chromium orferro-manganese of low carbon and silicon contents thus obtained represents a marketable I product of high value.
- the reduction of the oxyde of magnesium by silicon can be carried out also in an electric arc furnace allowing to heat the mixture by radiating heat up to the temperature of reduction.
- the residue of the reaction is heated directly by means of the arc, adding fluxes such as silica, fluorspar etc. if necessary.
- the residue melts and by this the ferro-chromium or the ferromanganese is separated from the slags.
- the process may also be carried out in a high frequency furnace working with the silicon containing ferroalloy in a molten state.
- ferro-chromium-silicon instead of ferro-chromium-silicon or ferromanganese-silicon also other alloys may be used in the same manner.
- the residue of the reaction can be subjected to a mechanical or electromagnetic process of separation in order to obtainthe ferroalloy separate from the other components.
- a process for the recovery of a binary ferroalloy and of magnesium from a ternary Ierro silicon alloy and a magnesia containing material which process comprises the steps oi reacting the magnesia containing material with aternary terro silicon 'alloy selected from the group consisting of ferro man'ganese-silicon' and termchromium-silicon, and removing the magnesium, and separating the binary Ierroalloy from the silica containing slag.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Silicon Compounds (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Patented Apr. 1, 1941 SIMULTANEOUS PRODUCTION OF MAGNE- SIUM AND LOW CARBON FEKROALLOYS Ernst A. Pokorny, London, England, assignor to "ElectrometaP Societe Anonyme, of Luxemburg No Drawing. Application November 13, 1939,
Serial No. 304,153
4 Claims.
It is known that the oxyde of magnesium can be reduced by silicon or carbon or else by compounds of silicon or carbon such as s'ilicides or carbides respectively under conditions to yield metallic magnesium. The/reaction requires temperatures of more than 1200 centigrades and must take place in vacuum or in a reducing atmosphere.
Under these conditions of working the question of apparatus and the building material used is very diflicult to solve.
when working in the molten state, temperatures of more than 1700 centigrades are required for melting and even then the degree of liquidity obtained is not yet satisfactory for continuous technical working, because the slags containing oxyde of magnesium are, it is known, hard to liquefy.
On the other hand, when working in a sphere of temperatures at which the reacting materials are not yet molten, the reaction requires still temperatures of at least 1250 centigrades. As
the reacting materials must not come into cone,
tactwith the combustion gases, but, on the other hand, internal heating by metallic or carbon resistance is not applicable because the heaters are destroyed by the metallic vapors, it is necessary to work in enclosed reaction chambers heated from outside. This, however, puts a maximum strain on the constructing materials in question,
so that the wear of the apparatus is very great, which in turn greatly increases the production cost by repairs required.
In order to render the process economical it is,
therefore, necessary to modify it in a manner that by-products of high value can be obtained, the utilisation of which covers part of the cost.
Object of the present application is a process which allows the simultaneous production 'of magnesium metal and ferroalloys, low in carbon, as for instance. ferro-chromium, ferro-manganese etc. It has been ascertained by thorough experiments that neither manganese nor chromium react with the oxyde of magnesium at the temperature in question. Thus the reduction of the oxyde of magnesium by silicon, as such known, can be carried out in a manner that allows'the utilisation of alloys of ferro-chromiumsilicon, ferro-manganese-silicon etc. as reducing agents. It is known that carbon in alloys of l.
retro-chromium and ferro-manganese is displaced by silicon so f. i. an alloy containing about 30% of silicon does,not contain more than, at most, 0.5% of carbon. The same is true in the case of ferro-manganese.
The working process of utilisation of ferrochromium-silicon or ferro-manganese-silicon as reducing agents is as follows: oxyde of magnesi furnace, heated from outside, which may also be constructed as a rotary furnace. Alternatively the furnace can also be an electric arcor tubeor -muille-furnace fitted with electrical internal heaters -'(graphite or carbon resistance).
As soon as the reaction is "finished and the magnesium-metal-vapours formed, havebeen removed from the reaction chamber or have condensed in it, the residue is removed from the furnace and is molten by adding suitable fluxes in an electric furnace, the. slags formed are poured away after having separated from metal, and the metal, still containing some percent of silicon is refined as required. The ferro-chromium orferro-manganese of low carbon and silicon contents thus obtained represents a marketable I product of high value.
The reduction of the oxyde of magnesium by silicon can be carried out also in an electric arc furnace allowing to heat the mixture by radiating heat up to the temperature of reduction. In this case, after the reduction has been completed, the residue of the reaction is heated directly by means of the arc, adding fluxes such as silica, fluorspar etc. if necessary. The residue melts and by this the ferro-chromium or the ferromanganese is separated from the slags.
.The process may also be carried out in a high frequency furnace working with the silicon containing ferroalloy in a molten state.
Instead of ferro-chromium-silicon or ferromanganese-silicon also other alloys may be used in the same manner.
The residue of the reaction can be subjected to a mechanical or electromagnetic process of separation in order to obtainthe ferroalloy separate from the other components.
Having now particularly describedand ascertained the nature of the said invention and in what manner the same is to be performed I declare that what I claim is:
1. A process for the recovery of a binary ferroalloy and of magnesium from a ternary Ierro silicon alloy and a magnesia containing material which process comprises the steps oi reacting the magnesia containing material with aternary terro silicon 'alloy selected from the group consisting of ferro man'ganese-silicon' and termchromium-silicon, and removing the magnesium, and separating the binary Ierroalloy from the silica containing slag. J
a 1 2. A process as claimed in claim 1, in which the
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US304153A US2237011A (en) | 1939-11-13 | 1939-11-13 | Simultaneous production of magnesium and low carbon ferroalloys |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US304153A US2237011A (en) | 1939-11-13 | 1939-11-13 | Simultaneous production of magnesium and low carbon ferroalloys |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2237011A true US2237011A (en) | 1941-04-01 |
Family
ID=23175297
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US304153A Expired - Lifetime US2237011A (en) | 1939-11-13 | 1939-11-13 | Simultaneous production of magnesium and low carbon ferroalloys |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2237011A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2527723A (en) * | 1946-05-28 | 1950-10-31 | North Carolina Magnesium Dev C | Recovery of values from aluminum scrap |
| US3290142A (en) * | 1964-01-10 | 1966-12-06 | Pfizer & Co C | Process of preparing a reactive iron additive |
| US3427152A (en) * | 1965-12-09 | 1969-02-11 | Exxon Research Engineering Co | Production of magnesium by thermal treatment of magnesium oxide utilizing countercurrently flowing hot inert gas |
| US3979206A (en) * | 1974-02-18 | 1976-09-07 | Billiton Research B.V. | Process for the preparation of magnesium |
-
1939
- 1939-11-13 US US304153A patent/US2237011A/en not_active Expired - Lifetime
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2527723A (en) * | 1946-05-28 | 1950-10-31 | North Carolina Magnesium Dev C | Recovery of values from aluminum scrap |
| US3290142A (en) * | 1964-01-10 | 1966-12-06 | Pfizer & Co C | Process of preparing a reactive iron additive |
| US3427152A (en) * | 1965-12-09 | 1969-02-11 | Exxon Research Engineering Co | Production of magnesium by thermal treatment of magnesium oxide utilizing countercurrently flowing hot inert gas |
| US3979206A (en) * | 1974-02-18 | 1976-09-07 | Billiton Research B.V. | Process for the preparation of magnesium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2548897A (en) | Process for melting hafnium, zirconium, and titanium metals | |
| US11230751B2 (en) | Processes for producing low nitrogen metallic chromium and chromium-containing alloys and the resulting products | |
| US2237011A (en) | Simultaneous production of magnesium and low carbon ferroalloys | |
| JP6620781B2 (en) | Dust smelting reduction method and reuse method | |
| US1934263A (en) | Refractory | |
| US4795491A (en) | Premelted synthetic slag for ladle desulfurizing molten steel | |
| CN103691913B (en) | The manufacture method of 1Mn18Cr18N hollow steel ingot | |
| US2203214A (en) | Method of making alloys | |
| US2126825A (en) | Recovery of metals from ores | |
| US2238160A (en) | Method of making nickel-chromium alloys | |
| US1530359A (en) | Crucible for exothermic and like reactions | |
| WO1983001462A1 (en) | Process of refining ferrochromium metal | |
| CN113430398A (en) | JCr 98-grade chromium metal containing vanadium element and preparation method thereof | |
| US2458651A (en) | Processes for producing low carbon chromium steels | |
| US1432289A (en) | Method of reducing metals and making alloys | |
| US3834899A (en) | Method of manufacturing low-carbon ferrochromium | |
| US1925916A (en) | Process of producing alloys | |
| US1525047A (en) | Alloy and method for producing same | |
| US490961A (en) | Process of producing metallic alloys | |
| US1520240A (en) | Reduction of metals | |
| US2096317A (en) | Method of utilizing stainless steel scrap | |
| US1853544A (en) | Process of making silicon steel from silicon scrap | |
| US2110573A (en) | Treatment of alumina-magnesiachromite ore | |
| US3063831A (en) | Method of making titaniumcontaining alloys | |
| US2759084A (en) | Welding composition for depositing soft iron |