US2206634A - Process for the production of radioactive substances - Google Patents
Process for the production of radioactive substances Download PDFInfo
- Publication number
- US2206634A US2206634A US43462A US4346235A US2206634A US 2206634 A US2206634 A US 2206634A US 43462 A US43462 A US 43462A US 4346235 A US4346235 A US 4346235A US 2206634 A US2206634 A US 2206634A
- Authority
- US
- United States
- Prior art keywords
- activity
- neutrons
- period
- found
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 22
- 230000008569 process Effects 0.000 title description 13
- 238000004519 manufacturing process Methods 0.000 title description 7
- 239000000941 radioactive substance Substances 0.000 title description 5
- 230000000694 effects Effects 0.000 description 111
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 61
- 239000000126 substance Substances 0.000 description 30
- 230000002285 radioactive effect Effects 0.000 description 21
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 16
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- 239000001257 hydrogen Substances 0.000 description 15
- 239000002244 precipitate Substances 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 229910052790 beryllium Inorganic materials 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000004913 activation Effects 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 8
- 239000011133 lead Substances 0.000 description 8
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 8
- 239000004411 aluminium Substances 0.000 description 7
- 229910052787 antimony Inorganic materials 0.000 description 7
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 229910052702 rhenium Inorganic materials 0.000 description 7
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- PBHRBFFOJOXGPU-UHFFFAOYSA-N cadmium Chemical compound [Cd].[Cd] PBHRBFFOJOXGPU-UHFFFAOYSA-N 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052793 cadmium Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 238000007705 chemical test Methods 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- 239000011669 selenium Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical class [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910052704 radon Inorganic materials 0.000 description 3
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 229910052716 thallium Inorganic materials 0.000 description 3
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910052776 Thorium Inorganic materials 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- ZGSDJMADBJCNPN-UHFFFAOYSA-N [S-][NH3+] Chemical compound [S-][NH3+] ZGSDJMADBJCNPN-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M lithium hydroxide Inorganic materials [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 235000011147 magnesium chloride Nutrition 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 235000010269 sulphur dioxide Nutrition 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 1
- UKUVVAMSXXBMRX-UHFFFAOYSA-N 2,4,5-trithia-1,3-diarsabicyclo[1.1.1]pentane Chemical compound S1[As]2S[As]1S2 UKUVVAMSXXBMRX-UHFFFAOYSA-N 0.000 description 1
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229910021612 Silver iodide Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical compound [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 229940075613 gadolinium oxide Drugs 0.000 description 1
- 229910001938 gadolinium oxide Inorganic materials 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- 229940044658 gallium nitrate Drugs 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000002371 helium Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- SIXIBASSFIFHDK-UHFFFAOYSA-N indium(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[In+3].[In+3] SIXIBASSFIFHDK-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- WMYQWKBTZSMKLH-UHFFFAOYSA-N mercury sulfo cyanate Chemical compound [Hg].S(=O)(=O)(O)OC#N WMYQWKBTZSMKLH-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- HZEBHPIOVYHPMT-UHFFFAOYSA-N polonium atom Chemical compound [Po] HZEBHPIOVYHPMT-UHFFFAOYSA-N 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- XLROVYAPLOFLNU-UHFFFAOYSA-N protactinium atom Chemical compound [Pa] XLROVYAPLOFLNU-UHFFFAOYSA-N 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 description 1
- 229940045105 silver iodide Drugs 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- YPMOSINXXHVZIL-UHFFFAOYSA-N sulfanylideneantimony Chemical compound [Sb]=S YPMOSINXXHVZIL-UHFFFAOYSA-N 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical class [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- -1 zinc mercury sulphocyanate Chemical compound 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21H—OBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
- G21H5/00—Applications of radiation from radioactive sources or arrangements therefor, not otherwise provided for
- G21H5/02—Applications of radiation from radioactive sources or arrangements therefor, not otherwise provided for as tracers
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S376/00—Induced nuclear reactions: processes, systems, and elements
- Y10S376/90—Particular material or material shapes for fission reactors
- Y10S376/904—Moderator, reflector, or coolant materials
Definitions
- This invention relates to the production of isotopes of elements from other isotopes of the same or difierent elements by reaction with neutrons, and especially to the production of artificial radio activity by formation of unstable isotopes.
- the radio-active elements by disintegration or break down occurring in their nuclei are spontaneously converted into various isotopes of other elements.
- the radio-active element uranium may be converted into lead of atomic weight 206, while the element thorium may be converted into a different isotope of atomic weight 208.
- isotopes of various elements could be converted into other isotopes of the same or difierent elements by bombardment with alpha particles, diplons, protons or gamma rays of very high energy, and that the isotopes thus produced may be unstable so as to decompose with features similar to those of the naturally radio-active bodies. That is to say, radio-active isotopes may, in this way, be artificially produced.
- a more specific object of the invention is to provide a method and apparatus for artificially producing radio-active substances with efiiciency such that their cost may be brought below that of natural radio-active materials.
- Our invention is based upon the use of neutrons instead of charged particles for the bombardment and transformation of the isotopes.
- Neutrons when produced in any ordinary manner e. g., by the action of radon on beryllium or of polonium on beryllium or by bombardment of atomic nuclei with artificially accelerated particles, might have a very wide range of energies but high average energy. These energies range up to several million volts. It is necessary, therefore, if the greatest efficiency of reaction is to be attained, to reduce by artificial means the energy of these neutrons. We describe below a method for slowing down fast neutrons.
- the absorption of the slow neutrons results in the emission of a relatively strong gamma-radiation with energy corresponding to the binding energy of the neutron. This gives a reliable source of very hard gamma rays, even harder than the naturally produced gamma rays, e. g., from radium.
- the materials which have been found best suited to this purpose are those containing hydrogen (including all its isotopes, but the light isotope which predominates in natural occurrence being most eihcient) and especially water and the hydrocarbons, such as paraffin for example.
- Other materials as for example beryllium, carbon, silicon, lead, show this effect to a lesser degree.
- the first important effect is probably the reduction of the energy of the faster neutrons by impact and the efliclency of hydrogen for this purpose is probably due to the low mass of the hydrogen nucleus.
- the nucleus because almost the entire mass is represented by the nucleus, it will be understood that the impact for slowing down may be, and for reasons of economy ordinarily will be, with atoms, '1. e., combined nuclei.
- the second probable effect is the scattering and reflection of the neutrons.
- Hydrogen is so much more effective than any of the other elements for reducing the energy of neutrons that it will ordinarily be used. It must not be overlooked, however, that theelements having a lesser effect offer possibilities for control of the neutron energy. Where neutrons of initially lower energy are used or where their use requires a higher energy than in the re: "ti ms with which we are here especially concerne the less effective elements may be used singly or combined with elements of different energy reducing power.
- the density of the energy reducing or scattering substance has alsobeen found to be an important factor. This follows, likewise, from the theoretical explanation given above. If the energy reduction and scattering of the neutrons is due to impact with atomic nuclei, the probable frequency of such impacts will be directly dependent upon the number of atoms in a given space. For this reason such substances ordinarily should be used in liquid or solid (i. e., nongaseous) form and, so far as is practicable, substances will be chosen having as high as possible a proportion of hydrogen in the molecule. Here again, the gaseous state under various pressures, and substances having less hydrogen offer the possibility for accurate control if less than the maximum slowing of neutrons is desirable.
- a cylindrical paraflin block I0 is provided with a hole ll into which is inserted a source of neutrons, e. g., a tube containing radon and beryllium.
- a source of neutrons e. g., a tube containing radon and beryllium.
- the material being irradiated is placed above the source on the paraflin block as shown at I! and is covered by a second paraffin block l3 having a central opening l4 to accommodate the material being irradiated.
- the block I may be, for example, about 24 centimeters in diameter and about 14 centimeters in height with the neutron source about 2 centimeters under the upper surface. It will be observed that these dimensions give radial thickness of the material surrounding the neutron source approximately equal to the mean free path in the substance of the high energy neutrons.
- the substances to be irradiated are soluble in or can be suspended in water or a hydrocarbon or other energy reducing or dispersing substance, etc., may be formed and the substances irradiated therein by immersing the neutron source directly into the solution etc. (See Figure 2.)
- the hydrogen which serves to reduce the energy of the neutrons may also be in chemical combination with the substance being irradiated.
- Figure 2 is a diagrammatic illustration of a neutron irradiating device in which the substance being irradiated is dissolved or dispersed in the energy reducing or dispersing material.
- a suitable vessel 20 is provided for holding the solution or dispersion 2
- any other source of neutrons may be used, as for example neutron tubes as-developed by Oliphant and as more recently developed by laboratories of the General Electric Company and the Westinghouse Electric and Manufacturing Company or cyclatrons as developed by Lawrence.
- deuteron oxide dashed water
- deuterons accelerated in an electric field produced by a grid tube.
- the deuteron nucleus is disintegrated with the emission of neutrons.
- the apparatus can be endlessly modifled, the essential being the combination of the energy reducing substance near the substance being irradiated, and a suitable source of neutron radiation.
- Hydrogen-No activity could be detected either in water or in paramn irradiated in a large can of water with 500 millicuries Rn+Be for several days.
- Beryllium-Metallic beryllium (purity 99%), strongly irradiated with slow neutrons, showed only an extremely weak activity possibly due to impurities. Owing to the very strong activation of several elements when irradiated under water, impurities might easily be misleading.
- Fluorine-Both activities of this element (periods 9 seconds and 40 seconds are not sensitive to hydrogen containing substances.
- Magnesium-Pure magnesium oxide especially tested by us in order to ensure that it was aluminium free, was irradiated under water. The substance was kept at some distance frpm the source in order to prevent the activation of the periods not sensitiveto water. A new very weak activity with a period of about 10 minutes was found. As this period coincides with the 10- minute period of aluminum, which is known to be due to Mg (see aluminium), it is very likely that it is due to the same isotope formed by the capture of a neutron by Mg present in an amount of 11% in ordinary magnesium.
- the IO-second period is insensitive to water.
- AZuminium.--Aluminium irradiated in water shows a'fairly strong new activity decaying with a period of 2-3 minutes (measured with an ionization chamber). Irradiated outside of water, this activity is extremely weak. As the period of the new activity coincides with the 2- minute period of silicon, which is due to Al, we assume that this activity is also due to the same isotope formed by capture of a neutron from AI.
- the second period of aluminium has been.
- Silicon.-We have determined with the ionization chamber the short period of this element, finding it to be 2-3 minutes. This activity is insensitive to water.
- ChZorine.-Chlorine irradiated under water showed a new period of 35 minutes measured electrometrically.
- the process of absorption is accompanied by emission of -rays.
- Manganese.'1'he activity with short period (345 minutes) is insensitive to water.
- the activity with longer period (2-5 hours measured in the ionization chamber) is strongly enhanced by water.
- Half-value thickness of p-rays measured electrometrically is 0-14 gin/cm. Al; the disintegration is accompanied by -rays.
- the 2-5-hour product is known to be an isotope of manganese. In order to get new evidence in favour of the fact that the active product is really an isotope of manganese, we first concentrated the activity obtained in irradiated manganese permanganate by a precipitation of maganese carbonate.
- the carbonate containing the activity was then dissolved in hydrochloric acid, and large amounts of chromium, vanadium and iron salts were added to the solution. Afterwards the manganese was separated once again as dioxide, with nitric acid and sodium chlorate. The manganese precipitate carried the activity, while the fractions containing chromium, vanadium and iron were found to be inactive.
- Copper.-Both induced activities of this element are strongly enhanced by water. Copper absorbs the slow neutrons with a half-value thickness of about 3 gm./cm. this absorption is accompanied by a weak -y-radiation.
- Irradiated metallic copper was dissolved in hydrochloric acid, and small quantities of cobalt, nickel and zinc salts were added. Copper sulphide was precipitated from the acid solution and found to be active. The precipitates of the zinc, cobalt activity of chromium is and nickel sulphides, obtained by neutralizing the solution and adding ammonium sulphide, were 4 sulphide in inactive. As the time employed for this test was rather long, the test refers only to the longer period. The carrier of this activity can then be assumed to be an isotope of copper.
- Zinc The activity of the short period of zinc is not enhanced by water. The longer period was measured electrometrically and found to be 10 hours.
- the carrier of this activity has been investigated by means of the following test: irradiated metallic zinc was dissolved in hydrochloric acid, and a small quantity of copper. nickel'and cobalt salts added. Copper was precipitated partially by reduction on small traces of undissolved metallic zinc and partially as ihez -acid solution. The collected copper wa fiiongly active. Neutralizing the solution andadding ammonium sulphide, the other elements were precipitated and found to be inactive.
- Gallium The 20-minute period (measured electrometrically) is not very sensitive to water. Half-value thickness of the corresponding p-rays is 0.17 gm./cm. Al. The carrier of this activity is probably an isotope of gallium.
- Bromine-Both 'activities of this element are sensitive to water.
- the periods have been measured electrometrically; they are 18 minutes and 4-2 hours.
- the half-value thickness of the 'y-rays is for both activities 0-12 gm./cm. A1, and both are accompanied by 'y-rays.
- Yttrium.Strongly irradiated yttrium oxide showed only a very weak activity possibly due to impurities.
- Yttrium absorbs very intensively the slow neutrons (half-value thickness 6:0.015 gmJcmF). This absorption is accompanied by 'vays- .40.
- Zirconium.Strongly irradiated zirconium nitrate showed only a very weak activity probably'due to impurities.
- Rhodium The short-period activity is sensitive to water. Period and half-value thickness of the p-rays have been determined electrometrically (44 seconds; 0-15 gm./cm. Al). We also made a more accurate measurement in the ionization chamber of the longer period and found it to be 3-9 minutes. The activity is accompanied by a weak 'y-radiation. Rhodium absorbs fairly strongly the slow neutrons (half-value thickness 0-3 gm./om. the absorption probably corresponds to the formation of the active isotopes.
- Cadmium-Cadmium irradiation under different conditions showed several weak activities with various periods not yet identified.
- Indium The activity induced in indium shows three periods: The shortest period (13 secconds) has an activity highly sensitive to water. Also the second period (54 minutes, measured electrometrically) is very sensitive to water. Magnetic deflection experiments show that the corresponding electrons are negative; their halfvalue thickness is 0-045 gin/cm. A1. A still longer period of some hours is recorded by Szilard and Chalmers; this last activity is either insensitive to water or is only moderately sensitive.
- Tin.-Tin strongly irradiated under water showed no activity.
- Antimony.-.-We have found an induced activity in this element, decaying with a period of 2-5 days; the-activation is'sensitive to hydrogenated substances.
- the half-value thickness for the emitted p-rays is 0-09 gm./cm. Al.
- the following chemical test indicates that the carrier of this activity is probably an isotope of antimony.
- the antimony sulphide was then dissolved again; indium was added to the solution and antimony separated as a sulphide in a moderately acid solution; the solution was neutralized and indium precipitated and found to be inactive.
- To a new solution of the antimony We added tellurium and iodine and separated the first by reduction and the second as a silver iodide. Both were inactive.
- TeZZurium Shows a weak activity sensitive to water; the period resulted 45 minutes.
- Iodinc. -Period and half-value thickness of the B-rays were determined electrometrically: period 25 minutes; half-value thickness 0-11 gm./cm. Al. The activation is moderately sensitive to water.
- TantaZum --Only a dubious activity was found after 12 hours irradiation under water with 500 millicuries.
- Tungsten.-Metallic tungsten was irradiated under water and showed an activity decaying with a period of about 1 day.
- Iridium-The activity induced in this element is strongly sensitive to water. Period and half-value thickness ofthe p-rays have been measured in the ionization chamber; period 19 hours, half-value thickness 0-12 gm./cm. Al. To the strong activation of iridium corresponds a strong absorption of-the slow neutrons; halfvalue thickness 0-3 gm./cm. the absorption is accompanied by the emission of 'y-rays.
- Uranium.-We have also studied the influence of hydrogenated substances on the induced activities of this element. (Periods 15 seconds, 40 seconds, 13 minutes, 100 minutes.) The result was that while the activities corresponding to the first, third and fourth period are slightly increased by water, no increase was found for the activity corresponding to the 40-second period.
- the precipitation of the activity with a sulphide was repeated, precipitating several metals (silver, copper, lead, mercury); the acidity of the solution (hydrochloric acid) was about 20%; sometimes slightly varied in order to facilitate the precipitation of the sulphide of the metal used.
- the yield in activity of the precipitate was generally good-about 50%and varied according to the conditions of the precipitation.
- the process for the production of radioactive isotopes which comprises generating neutrons having a high average electron voltage, slowing down and scattering said neutrons by projecting them through a screen of an element of the class consisting of hydrogen, helium, beryllium, carbon, silicon and lead which screen is of such thickness that the neutrons are slowed down to an average energy of not more than a few hundred electron volts, then passing said neutrons into a mass of an element of the groups having atomic numbers 11, 12, 13, 14, 17, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, 72, 74, '75, 77, 78, 79 and 92, and thereby producing from the latter element a radio-active isotope capable of emitting beta rays.
- radio-active isotopes which comprises generating neutrons having a high average energy, slowing down said neutrons so that they have an average energy of not more than a few hundred electron volts by projecting them' through an energy-reducing screen of an element of the class consisting of hydrogen, helium, beryllium, carbon, silicon and lead, and passing said neutrons of reduced energy into a mass of ,an element of the group having atomic numbers 11, 12, 13, 14, 17, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, '72, 74, 75, 77, '78,-79 and 92 to thereby produce from the latter element a radio-active isotope capable of emitting beta rays.
- the process of producing radio-active isotopes which comprises, generating neutrons having a high average energy, slowing down said neutrons so that they have an average energy of not more than a few hundred electron volts by projecting them through a hydrocarbon, and passing said neutrons of reducedenergy into a mass of an element of the group having atomic numbers 11, 12, 13, 14, 17, 19, 23, 25, 29, 31, 33, 34, 35, 43, 4'7, 48, 49, 51, 52, 53, 56:64, 72, 74, 75, '77, 78, '79 and 92 to thereby produce from said latter element a radio-active isotope capable of emitting beta rays.
- radio-active isotopes which comprises, generating neutrons having a high average energy, slowing down said neutrons so that they have an average energy of not more than a few hundred electron volts by projecting them through paramn, and passing said neutrons of reduced energy into a mass of an element of the group having atomic numbers 11, 12, 13, 14, 1'7, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, 72, 74, 75, 7'7, 78, 79 and 92 to thereby produce from the latter element a radio-active isotope capable of emitting beta rays.
- the process of producing radio-active isotopes which comprises, generating neutrons having a high average energy, slowing down said neutrons so that they have an average energy of not more than a few hundred electron volts by projecting them through water, and passing said neutrons of reduced energy into a mass of an element of the group having atomic numbers 11, 12, 13, 14, 1'7, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, 72, '74, '75, '77, '78, '79 and 92 to thereby produce from the latter element a radio-active isotope capable of emitting beta rays.
- the process of producing a radio-active isotope from an element of the group having atomic numbers 11, 12, 13, 14, 17, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, 72, 74, 75, 77, 78, 79 and 92, comprising the steps distributing the element throughout an energy-reducing screen of an element of the class consisting of hydrogen, helium, beryllium, carbon, silicon and lead, generating neutrons having a high average energy, and projecting the high-energy neutrons through said energy-reducing screen to slow down the neutrons to an average energy of not more than a few hundred electron volts and thereby produce from said first element by the reaction of the neutrons of reduced energy a radioactive isotope capable of emitting beta rays.
- the process of producing a radio-active isotope from an element of the group having atomic numbers 11, 12, 13, 14, 17, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, 72, 74, 75, 77, '78, 79 and 92, comprising the steps distributing the element throughout an energy-reducing screen of an element of the class consisting of hydrogen, helium, beryllium, carbon, silicon and lead, generating at a point substantially surrounded by said screen neutrons having a high average energy, and projecting the high-energy neutrons through said energy-reducing screen to slow down the neutrons to an average energy of not more than a few hundred electron volts and thereby produce from said first element by the reaction of the neutrons of reduced energy a radio-active isotope capable of emitting beta rays.
- EMILIO SEGRE ENRICO FERMI. EDOARDO AMALDI. BRUNO PONTECORVO. FRANCO RASETII.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
1 2, 194%. E. FERMI ET AL 26,634 PROCESS FOR THE PRODUCTION OF RADIOACTIVE SUBSTANCES Filed oc-t. s, 19:55
I NVENT 0 RS Patented July 2, 1940 UNITED STATES PROCESS FOR- THE PRODUCTION OF RADIOACTIVE SUBSTANCES Enrico Fermi, Edoardo Amaldi, Bruno Pontccorvo, Franco Rasetti, and Emilio Segre, Rome,
Italy, assignors to New York, N. Y.,
G. M. Giannini & 00., Inc., a corporation of New York Application October 3, 1935, Serial No. 43,462
, In Italy October 26, 1 934 7 Claims.
This invention relates to the production of isotopes of elements from other isotopes of the same or difierent elements by reaction with neutrons, and especially to the production of artificial radio activity by formation of unstable isotopes.
It has been known for many years that, although each chemical element has always the same atomic number or charge, it may exist in different forms having different atomic weights. These forms of the elements are referred to as isotopes.
It has also been known that the radio-active elements, by disintegration or break down occurring in their nuclei are spontaneously converted into various isotopes of other elements. Thus, for example, the radio-active element uranium may be converted into lead of atomic weight 206, while the element thorium may be converted into a different isotope of atomic weight 208.
It has long been known that such spontaneous disintegration of radio-active elements is accompanied by emission of alpha, beta, and gamma rays, that is to say, of the helium nucleus, electrons, and electromagnetic radiation of extremely short wave length.
In more recent years it has been demonstrated that isotopes of various elements could be converted into other isotopes of the same or difierent elements by bombardment with alpha particles, diplons, protons or gamma rays of very high energy, and that the isotopes thus produced may be unstable so as to decompose with features similar to those of the naturally radio-active bodies. That is to say, radio-active isotopes may, in this way, be artificially produced.
Accordingly, it is an object of the present invention to provide a method and apparatus by which nuclear reactions can be carried on with high efficiency and with the heavier as well as with the lighter elements. A more specific object of the invention is to provide a method and apparatus for artificially producing radio-active substances with efiiciency such that their cost may be brought below that of natural radio-active materials.
Our invention is based upon the use of neutrons instead of charged particles for the bombardment and transformation of the isotopes.
All of the prior work on nuclear reactions has been done with high energy particles and every effort has been bent toward increasing the energy of the particles as the means of extending and making more efficient the nuclear reactions. We have now discovered that effort in this direption is sound only when charged particles are used which require tremendous energy to break through the potential barrier surrounding the nucleus; and that if, instead of charged particles, neutrons are used for the nuclear reactions, the greatest efficiencies are in some cases attained with low energy or slow neutrons, e. g., of the order of a few hundred electron volts, or even much less down to a small fraction of an electron volt.
Neutrons when produced in any ordinary manner, e. g., by the action of radon on beryllium or of polonium on beryllium or by bombardment of atomic nuclei with artificially accelerated particles, might have a very wide range of energies but high average energy. These energies range up to several million volts. It is necessary, therefore, if the greatest efficiency of reaction is to be attained, to reduce by artificial means the energy of these neutrons. We describe below a method for slowing down fast neutrons.
We have demonstrated that the absorption of slow neutrons is anomalously large as compared with that of the faster or higher energy neutrons. The simplest explanation for most cases is to admit that the neutron is captured by the nucleus with formation of an isotope heavier by one mass unit. If this heavier isotope is unstable a strong induced radio-activity may be expected. This occurs-for example, with silver and iridium which go over into radio-active isotopes. In other cases it is found that no activation, or at least no strong activation, follows an anomalously large absorption- This is the case with many elements, e. g., yttrium and cadmium. In these cases the formation of a stable nucleus upon the capture of the neutrons is to be expected.
In some cases the absorption of the slow neutrons results in the emission of a relatively strong gamma-radiation with energy corresponding to the binding energy of the neutron. This gives a reliable source of very hard gamma rays, even harder than the naturally produced gamma rays, e. g., from radium.
In view of these considerations it is obviously desirable to convert as many as possible of the available neutrons into the slow or low energy condition in which they may be readily captured by the nuclei of the substance being reacted. We have found that it is possible to achieve the desired results by passing the neutron radiation against or through a screen of a suitable material.
The materials which have been found best suited to this purpose are those containing hydrogen (including all its isotopes, but the light isotope which predominates in natural occurrence being most eihcient) and especially water and the hydrocarbons, such as paraffin for example. Other materials, as for example beryllium, carbon, silicon, lead, show this effect to a lesser degree. Other materials, of which iron is an example, do not produce a similar effect to any practical extent, probably because of a relatively large absorption of the neutrons when their energy is reduced.
The increase in activity of the neutrons by such substances is apparently due to two eifects both resulting from collisions of the neutrons. In the first place it is readily shown that an impact of a neutron against a proton reduces, on the average, the neutron energy by a factor l/e. From this it follows that ten impacts reduce the energy to about l of its original value. Assuming the initial energy to be 4-10 electron volts, the energy after ten impacts would be about 200 electron volts and 20 impacts would reduce the energy of the neutron down to a value corresponding to thermal agitation. Thus the first important effect is probably the reduction of the energy of the faster neutrons by impact and the efliclency of hydrogen for this purpose is probably due to the low mass of the hydrogen nucleus. Although we refer to the nucleus, because almost the entire mass is represented by the nucleus, it will be understood that the impact for slowing down may be, and for reasons of economy ordinarily will be, with atoms, '1. e., combined nuclei.
The second probable effect is the scattering and reflection of the neutrons.
Hydrogen is so much more effective than any of the other elements for reducing the energy of neutrons that it will ordinarily be used. It must not be overlooked, however, that theelements having a lesser effect offer possibilities for control of the neutron energy. Where neutrons of initially lower energy are used or where their use requires a higher energy than in the re: "ti ms with which we are here especially concerne the less effective elements may be used singly or combined with elements of different energy reducing power.
The density of the energy reducing or scattering substance has alsobeen found to be an important factor. This follows, likewise, from the theoretical explanation given above. If the energy reduction and scattering of the neutrons is due to impact with atomic nuclei, the probable frequency of such impacts will be directly dependent upon the number of atoms in a given space. For this reason such substances ordinarily should be used in liquid or solid (i. e., nongaseous) form and, so far as is practicable, substances will be chosen having as high as possible a proportion of hydrogen in the molecule. Here again, the gaseous state under various pressures, and substances having less hydrogen offer the possibility for accurate control if less than the maximum slowing of neutrons is desirable.
It will be readily understood from what has been said above that the greatest effect is attained if the source of neutrons and the substance being irradiated are both surrounded by the energy reducing and scattering material. This could easily be accomplished in many cases by immersing the neutron source in a solution or emulsion of the substance being bombarded. We have illustrated diagrammatically in Figures 1 and 2 arrangements by which this may be accomplished.
In Figure 1 a cylindrical paraflin block I0 is provided with a hole ll into which is inserted a source of neutrons, e. g., a tube containing radon and beryllium. The material being irradiated is placed above the source on the paraflin block as shown at I! and is covered by a second paraffin block l3 having a central opening l4 to accommodate the material being irradiated. For the treatment of small amounts of materials the block I may be, for example, about 24 centimeters in diameter and about 14 centimeters in height with the neutron source about 2 centimeters under the upper surface. It will be observed that these dimensions give radial thickness of the material surrounding the neutron source approximately equal to the mean free path in the substance of the high energy neutrons.
Where the substances to be irradiated are soluble in or can be suspended in water or a hydrocarbon or other energy reducing or dispersing substance, etc., may be formed and the substances irradiated therein by immersing the neutron source directly into the solution etc. (See Figure 2.)
The hydrogen which serves to reduce the energy of the neutrons may also be in chemical combination with the substance being irradiated.
Figure 2 is a diagrammatic illustration of a neutron irradiating device in which the substance being irradiated is dissolved or dispersed in the energy reducing or dispersing material. A suitable vessel 20 is provided for holding the solution or dispersion 2| and into this is immersed the neutron source 22.
Instead of the radon beryllium source, any other source of neutrons may be used, as for example neutron tubes as-developed by Oliphant and as more recently developed by laboratories of the General Electric Company and the Westinghouse Electric and Manufacturing Company or cyclatrons as developed by Lawrence. In such tubes deuteron oxide (heavy water), which may be separated by known methods from naturally occurring water, is bombarded with deuterons accelerated in an electric field produced by a grid tube. The deuteron nucleus is disintegrated with the emission of neutrons.
Obviously the apparatus can be endlessly modifled, the essential being the combination of the energy reducing substance near the substance being irradiated, and a suitable source of neutron radiation.
In the following we have tabulated the results of various irradiations which we have carried out:
1. Hydrogen-No activity could be detected either in water or in paramn irradiated in a large can of water with 500 millicuries Rn+Be for several days.
3. Lithium.-Lithium hydroxide was found to be inactive after irradiation with slow neutrons (14 hours, 400 millicuries) Although lithium remains inactive, it strongly absorbs the slow neutrons; half=value thickness 6:6.05 gm./cm. This absorption is not accompanied by a 'y-radiation. It was shown independently by Chadwick and Goldhaber" and by us that when the slow Nature, vol. 135, p. 65 (1935).
neutrons are absorbed, heavy charged particles are emitted. According to Chadwick and Goldhaber, the nuclear process is represented by the following reaction,
4. Beryllium-Metallic beryllium (purity 99%), strongly irradiated with slow neutrons, showed only an extremely weak activity possibly due to impurities. Owing to the very strong activation of several elements when irradiated under water, impurities might easily be misleading.
5. Boron.--Metallic boron irradiated 14 hours under water with 500 millicuries was found inactive. Boron has the highest absorption coefficient as yet found for slow neutrons, 6:0.004 gm./cm. corresponding to a cross-section of about 3.10" cm. No v-rays have been found to accompany this absorption: instead of a 'y-radiation in this case as well as for lithium, a-particles are emitted, as was shown by Chadwick and Goldhaber (Nature, vol. 135, 1935, p. 65) and by us. This effect can be easily detected by the strong discharge in an ionization chamber filled with boron trifiuoride surrounded by paraflin and irradiated with a Po-l-Be neutron source. Screening the ionization chamber with a thin cadmium foil in order to absorb the slow neutrons, reduces considerably the ionization current. The same effect was observed with the ionization chamber filled with air, some boron being spread on its floor. The emission of (Ir-particles was also detected with a small ionization chamber connected to a linear amplifier, either spreading some boron on its walls or filling it with boron trifiuoride. In order to explain these phenomena we have proposed the nuclear reaction,
6. Carbon-No activity; see hydrogen.
7. Nitrogen.-Ammonium nitrate irradiated 12 hours with 600 millicuries under water showed no activity.
8. Oxygen-No activity; see hydrogen.
9. Fluorine-Both activities of this element (periods 9 seconds and 40 seconds are not sensitive to hydrogen containing substances.
11. Sodium.-This element has two activities: one of these (period l seconds) is not sensitive to hydrogen-containing substances. A very weak activity with a long period was reported by Bjerge and Westcott. As this activity is strongly enhanced by water, we were able to measure its periods with reasonable accuracy and found it to be 15 hours. Owing to the theoretical importance of this activity, we compared very carefully its decay curve with that of the long period of aluminium in order to check their identity. For a chemical investigation of the active substance we irradiated pure sodium carbonate. We dissolved the irradiated substance in hydrochloric acid and added aluminum and magnesium chlorides. A precipitate of the hydroxides of the latter elements obtained by adding ammonia, was found inactive. Afterwards we added some sodium fluoride to the solution, and precipitated the fluorine as barium fluoride; this precipitate was also found inactive. The solution containing the original sodium was then evaporated and ignited gently, in order to eliminate neon, where an active isotope of this element would have been formed. The activity was found in the dried sodium salt. We conclude that the active product is an isotope of sodium, Na. The same isotope was produced by us last year by bombarding magnesium or aluminum with neutrons. *Na has also been produced recently in considerable amounts and studied very completely by Lawrence bombarding several elements with artificially aecelerated particles.
12. Magnesium-Pure magnesium oxide, especially tested by us in order to ensure that it was aluminium free, was irradiated under water. The substance was kept at some distance frpm the source in order to prevent the activation of the periods not sensitiveto water. A new very weak activity with a period of about 10 minutes was found. As this period coincides with the 10- minute period of aluminum, which is known to be due to Mg (see aluminium), it is very likely that it is due to the same isotope formed by the capture of a neutron by Mg present in an amount of 11% in ordinary magnesium.
The IO-second period is insensitive to water.
13. AZuminium.--Aluminium irradiated in water shows a'fairly strong new activity decaying with a period of 2-3 minutes (measured with an ionization chamber). Irradiated outside of water, this activity is extremely weak. As the period of the new activity coincides with the 2- minute period of silicon, which is due to Al, we assume that this activity is also due to the same isotope formed by capture of a neutron from AI.
The second period of aluminium has been.
measured with the ionization chamber and found to be 10 minutes instead of 12. This activity is insensitive to water. A chemical separation of the carrier of this activity has been performed. Irradiated metallic aluminium was dissolved in a caustic soda solution and magnesium chloride was added. The precipitate of magnesium hydroxide carried the 10-minute activity. We assume that the active isotope is "Mg formed according to the reaction,
14. Silicon.-We have determined with the ionization chamber the short period of this element, finding it to be 2-3 minutes. This activity is insensitive to water.
Besides this activity, we found a new, longer period of some hours in fused silica irradiated in water. This activity is very weak and very sensitive to water. We think probably that its carrier is Si which is obtained by irradiated phosphorus and has a period of 2-4 hours. Si could be formed by capture of a neutron from Si present in an amount of 3%.
15. Ph0sph0rus.-The short-period activity of this element (2-3 minutes) is not enhanced by water. Curie, Joliot and Preiswerk ascribe this period to Al. A chemical test in favour of this hypothesis is the following: we irradiated phosphoric acid, neutralized the solution with sodium carbonate, and added aluminium chloride; the activity was found to be concentrated in the precipitated aluminium.
We have observed, with the aid of the ionization chamber, the decay-curve of the longer period of phosphorus. Its period is 2-4 hours instead of 3 as given before. We have also measured, with the ionization chamber, the half-value thickness of the corresponding p-rays and found it to be 0-15 gm./cm. Al.
16. SuZphur.-We have determined in the ionization chamber the period of phosphorus extracted from irradiated sulphur. We found: period 14 days, half-value thickness of the 3-rays 0/10 gm./cm. Al.
17. ChZorine.-Chlorine irradiated under water showed a new period of 35 minutes measured electrometrically.
Chlorine absorbs fairly strongly the slow neutrons (half-value thickness 6:0.3 gm./cm.
The process of absorption is accompanied by emission of -rays.
19. Potassium-We have found in irradiated potassium an induced activity strongly sensitive to water, decaying with a period of 16 hours. A chemical investigation of the carrier of the activity, performed by the same method described for sodium, excluded the elements Cl, A, Ca. We conclude therefrom that the activity is probably carried by an isotope of potassium. According to v. Hevesy, this isotope is to be identified with a K, that was obtained by him by neutron bombardment of scandium, and has the same decay period.
20. Calcium.No activity was found in calcium fluoride irradiated 14 hours in water with a 600 millicuries source. A very weak activity sensitive to water has been demonstrated. 23. Vanadium.-The decay of the activity induced in vanadium has been measured in the ionization chamber with the following results: half-value period 3-75 minutes; half-value thickness of the p-rays 017 gm./cm. Al. The p-rays are accompanied by a 'y-radiation. The activation of vanadium is strongly sensitive to hydro,- genated substances.
24. Chromium.--The insensitive to water.
25. Manganese.'1'he activity with short period (345 minutes) is insensitive to water. On the other hand, the activity with longer period (2-5 hours measured in the ionization chamber) is strongly enhanced by water. Half-value thickness of p-rays measured electrometrically is 0-14 gin/cm. Al; the disintegration is accompanied by -rays. The 2-5-hour product is known to be an isotope of manganese. In order to get new evidence in favour of the fact that the active product is really an isotope of manganese, we first concentrated the activity obtained in irradiated manganese permanganate by a precipitation of maganese carbonate. The carbonate containing the activity was then dissolved in hydrochloric acid, and large amounts of chromium, vanadium and iron salts were added to the solution. Afterwards the manganese was separated once again as dioxide, with nitric acid and sodium chlorate. The manganese precipitate carried the activity, while the fractions containing chromium, vanadium and iron were found to be inactive.
26. Iron-The activity of this element (period 2-5 hours) is insensitive to water. Half-value thickness for the absorption of slow neutrons 8 gm./cm.
27. Cobalt-This element absorbs fairly strongly the slow neutrons; half-value thickness 0-7 gin/cm}. The absorption is accompanied by the emission of a -radiation.
28. NickeL-Strongly irradiated nickel showed only a dubious trace of activity.
29. Copper.-Both induced activities of this element (periods 5 minutes, measured electrometrically, and 10 hours) are strongly enhanced by water. Copper absorbs the slow neutrons with a half-value thickness of about 3 gm./cm. this absorption is accompanied by a weak -y-radiation.
Irradiated metallic copper was dissolved in hydrochloric acid, and small quantities of cobalt, nickel and zinc salts were added. Copper sulphide was precipitated from the acid solution and found to be active. The precipitates of the zinc, cobalt activity of chromium is and nickel sulphides, obtained by neutralizing the solution and adding ammonium sulphide, were 4 sulphide in inactive. As the time employed for this test was rather long, the test refers only to the longer period. The carrier of this activity can then be assumed to be an isotope of copper.
30. Zinc.The activity of the short period of zinc is not enhanced by water. The longer period was measured electrometrically and found to be 10 hours. The carrier of this activity has been investigated by means of the following test: irradiated metallic zinc was dissolved in hydrochloric acid, and a small quantity of copper. nickel'and cobalt salts added. Copper was precipitated partially by reduction on small traces of undissolved metallic zinc and partially as ihez -acid solution. The collected copper wa fiiongly active. Neutralizing the solution andadding ammonium sulphide, the other elements were precipitated and found to be inactive.
31. Gallium.The 20-minute period (measured electrometrically) is not very sensitive to water. Half-value thickness of the corresponding p-rays is 0.17 gm./cm. Al. The carrier of this activity is probably an isotope of gallium. In order to test this point, we irradiated gallium nitrate and afterwards added to the solution traces of copper and zinc. Copper was separated as a metallic deposit on zinc powder and zinc as zinc mercury sulphocyanate after adding mercury sulphocyanate. Both elements were found to be inactive.
Besides this 20-minute activity, we have also found, irradiating under water, a new activity which is accompanied by a rather strong 'y-radiation; it decays with a period of 23 hours (measured electrometrically) 33. Arsenic.--'I'he activity of this element is strongly sensitive to water. We have measured electrometrically its period (26. hours) and its half-value thickness of the p-rays (0. 16 gm./cm. Al).
34. Selenium.-The activity of this element (period 35 minutes) is sensitive to water. Irradiated selenious anhydride was dissolved in 30% hydrochloric acid and some arsenious anhydride added to the solution. We precipitated metallic selenium by reduction with gaseous sulphurous anhydride, and found it strongly active. We precipitated metallic selenium by reduction with gaseous sulphurous anhydride, and found it strongly active. We precipitated from the solution arsenic sulphide and found it inactive. This test seems to rule out also germanium, and we conclude that the activity is due to an isotope of selenium. J
35. Bromine-Both 'activities of this element are sensitive to water. The periods have been measured electrometrically; they are 18 minutes and 4-2 hours. The half-value thickness of the 'y-rays is for both activities 0-12 gm./cm. A1, and both are accompanied by 'y-rays.
38. Strontium. 0 activity was found after a long and strong irradiation under water.
39. Yttrium.Strongly irradiated yttrium oxide showed only a very weak activity possibly due to impurities. Yttrium absorbs very intensively the slow neutrons (half-value thickness 6:0.015 gmJcmF). This absorption is accompanied by 'vays- .40. Zirconium.Strongly irradiated zirconium nitrate showed only a very weak activity probably'due to impurities.
- 41. Ni0bium.-The same as zirconium.
43. Rhodium.-The short-period activity is sensitive to water. Period and half-value thickness of the p-rays have been determined electrometrically (44 seconds; 0-15 gm./cm. Al). We also made a more accurate measurement in the ionization chamber of the longer period and found it to be 3-9 minutes. The activity is accompanied by a weak 'y-radiation. Rhodium absorbs fairly strongly the slow neutrons (half-value thickness 0-3 gm./om. the absorption probably corresponds to the formation of the active isotopes.
46. Palladium.-Also the activities of this element are sensitive to water. We find at least two periods: a short one of about a quarter of an hour and one of about 12 hours.
4'7. Sz'Zver.--The two periods have been redetermined with the ionization chamber. They are 22 seconds and 2-3 minutes. They are both very sensitive to Water. To the strong activation of this element corresponds a considerable absorption for slow neutrons (half-value thickness 6:1-2 gm./cm.
We added palladium nitrate and rhodium chloride to a solution of irradiated silver nitrate. Adding hydrochloric acid, we precipitated silver which was found active. From the filtered solution we precipitated palladium with dimethylglioxime and rhodium by reduction. Both were inactive. This test is valid only for the longer period, owing to the time employed, and shows that the carrier of the activity is probably an isotope of silver.
48. Cadmium-Cadmium irradiation under different conditions showed several weak activities with various periods not yet identified. Cadmium absorbs with great intensity the slow neutrons. (Half-value thickness 0-013 gm./cm. The corresponding cross-section is the largest as yet found for slow neutrons (a=10 cm. The absorption is accompanied by an intensive 'ydadiation and probably corresponds to the transformation of a stable isotope of cadmium into another stable isotope of the same element.
49. Indium.-The activity induced in indium shows three periods: The shortest period (13 secconds) has an activity highly sensitive to water. Also the second period (54 minutes, measured electrometrically) is very sensitive to water. Magnetic deflection experiments show that the corresponding electrons are negative; their halfvalue thickness is 0-045 gin/cm. A1. A still longer period of some hours is recorded by Szilard and Chalmers; this last activity is either insensitive to water or is only moderately sensitive.
Chemical tests have been made in order to identify the carriers of the last two activities. To a solution of irradiated indium nitrate, silver was added and precipitated as silver chloride; the precipitate was inactive. Afterwards we added to the solution tin, antimony and cadmium and precipitated them as sulphides with sulphuretted hydrogen. The acidity of the solution must be adjusted in such a way as to leave the indium in solution while precipitating the other metals. This precipitate also was inactive; neutralizing the solution, we precipitated the indium sulphide which carried the activity.
Corresponding to the strong activation of indium, it is found that this element has a considerable absorption power for the slow neutrons: half-value thickness 6:0-3 gm./cm.
50. Tin.-Tin strongly irradiated under water showed no activity.
51. Antimony.-.-We have found an induced activity in this element, decaying with a period of 2-5 days; the-activation is'sensitive to hydrogenated substances. The half-value thickness for the emitted p-rays is 0-09 gm./cm. Al. The following chemical test indicates that the carrier of this activity is probably an isotope of antimony. We dissolved metallic irradiated antimony in aqua regia and added some tin to the solution; after separation of tin as a sulphide according to Clarke, we found the activity in a precipitate of sulphide of antimony. The antimony sulphide was then dissolved again; indium was added to the solution and antimony separated as a sulphide in a moderately acid solution; the solution was neutralized and indium precipitated and found to be inactive. To a new solution of the antimony We added tellurium and iodine and separated the first by reduction and the second as a silver iodide. Both were inactive.
52. TeZZurium.Shows a weak activity sensitive to water; the period resulted 45 minutes.
53. Iodinc. -Period and half-value thickness of the B-rays were determined electrometrically: period 25 minutes; half-value thickness 0-11 gm./cm. Al. The activation is moderately sensitive to water.
56. Barnum-A new activity sensitive to water with a period of minutes has been found. The following chemical test is in favour of the assumption that the carrier of this activity is an isotope of barium. We dissolved irradiated barium hydroxide in hydrochloric acid, and added a small quantity of sodium chloride and precipitated barium sulphate. The activity was carried by the precipitate; we evaporated the solution and found the residual sodium to be inactive.
57. Lanthanum.-No activity was found after strong irradiation under water.
58. Cerium.Same as lanthanum.
59. 'Praseodymium.-The short-period activity (5 minutes) is insensitive to water. Irradiating under water we have found a new water-sensitive activity decaying with a period of 19 hours; half-value thickness of the corresponding B-rays 0-12 gm./cm. Al (both measured electrometrically).
'72. Hafnium v. Hevesy has found an activity having a long period of several months which is sensitive to water.
64. GadoZinium.--We irradiated under water a very pure sample of gadolinium oxide. We found an activity, decaying with a period of 8 hours.
'73. TantaZum.--Only a dubious activity was found after 12 hours irradiation under water with 500 millicuries.
74. Tungsten.-Metallic tungsten was irradiated under water and showed an activity decaying with a period of about 1 day.
We irradiated tungstic anhydride, dissolved it in caustic soda and then added and separated tantalum pentoxide which was found to be inactive. To the tungstic solution we added a nitric rhenium solution and precipitated the tungstic anhydride adding hydrochloric acid. The precipitate carried the activity, while the rhenium, precipitated from the filtrate as sulphide, was inactive. As we have no hafnium, we have made the following experiment in order to exclude an isotope of this element as carrier of the activity. From a solution of irradiated tungstic anhydride in ammonia, we precipitated zirconium hydroxide. The precipitate was inactive. We conclude that the activity of tungsten is probably due to an isotope of this element. L
75. Rhenium.-We irradiated. pure metallic rhenium under water; its activity is enhanced by water and decays with a period of about 20 trons is 012 gm./cm. Al. The activity is probably carried by an isotope of rhenium. Irradiated rhenium was dissolved in nitric acid; we added tantalum and tungsten and separated them as tantalum pentoxide and tungstic anhydride. Both were inactive, while rhenium conserved the activity.-
77. Iridium-The activity induced in this element is strongly sensitive to water. Period and half-value thickness ofthe p-rays have been measured in the ionization chamber; period 19 hours, half-value thickness 0-12 gm./cm. Al. To the strong activation of iridium corresponds a strong absorption of-the slow neutrons; halfvalue thickness 0-3 gm./cm. the absorption is accompanied by the emission of 'y-rays.
78. Platinum very pure metallic platinum 7 irradiated under water showed an activity decaying with a period of about 5-0 minutes.
79. G0ld.-The activity of this element is sensitive to water; itsperiod has been measured electrometrlcally and is 2-7 days. The p-rays were magnetically deflected and found to be negative. They have a very small penetrating power: half-value thickness 0-04 gm./cm. Al.
Strong -radiation is omitted during bombardf ment with slow neutrons.
80. Mercury.--No activity was found after strong irradiation. This element absorbs intensely the slow neutrons, half-value thickness 0-2 gm./cm. 'y-rays are emitted during the absorption.
81. Thallium.No activity was found after strong irradiation.
82. Lead.'1he same as thallium.
83. Bismuth-The same as thallium.
90. Thorium.-The l-minute and 24-minute (measured electrometrically) periods are scarcely sensitive to water.
92. Uranium.-We have also studied the influence of hydrogenated substances on the induced activities of this element. (Periods 15 seconds, 40 seconds, 13 minutes, 100 minutes.) The result was that while the activities corresponding to the first, third and fourth period are slightly increased by water, no increase was found for the activity corresponding to the 40-second period.
Chemical evidence seems to indicate that the carriers of. the 13- and the IOU-minute activities were not isotopes of any of the known heaviest elements, and that they were probably due to transuranic elements.
The precipitation of the activity with a sulphide was repeated, precipitating several metals (silver, copper, lead, mercury); the acidity of the solution (hydrochloric acid) was about 20%; sometimes slightly varied in order to facilitate the precipitation of the sulphide of the metal used. The yield in activity of the precipitate was generally good-about 50%and varied according to the conditions of the precipitation.
2,206,634 hours. The half-value thickness of the eleczirconium phosphate was inactive. After the separation of zirconium we precipitated a sulphide from the filtered solution, and collected the activity in the sulphide from the filtered solution, and collected the activity in the sulphide with the usual yield. According to von Grosse and Agruss, this reaction must be considered a proof by the non-identity of the carrier of the activity with a protoactinium isotope. The 15-second, 13-minute and IOU-minute activities are probably chain products, with atomic number 92, 93 and 94 respectively and atomic weight 239.
From the above tabulation it is apparent that the increase in activities by the hydrogen containing substances, etc., is particularly applicable to those nuclear reactions in which the neutron is captured with the formation of a heavier isotope of the same element; and the present invention makes possible numerous reactions of this type which could not be appregiably carried out without the use of our invenion.
With these procedures the isotopes produced by the nuclear reactions are ordinarily mixed with other substances, although in much higher concentrations than was heretofore possible. We have utilized for the separation of these isotopes and especially of the radio-active isotopes the method of Szilard and Chalmers (Nature, vol. 134, page 462, 1934) and extended their procedure to cover other cases. examples and theoretical discussion of our invention are set forth in our publications: Fermi, Amaldi, DAgostino, Rasetti, Segre, Proc. Roy Soc.,- A, vol. 146, p. 483 (1934); A, vol. 149, p. 522; Fermi, Amaldi, Pontecorvo, Rasetti, Ric. Scient.,"vol. 2, p. 380 (1934); Fermi, Pontecorvo, Rasetti, Ric. Scient., vol. 2, p. 380 (1934); Amaldi, D'Agostino, Segre, Ric. Scient., vol. 2, p. 381 (1934); Amaldi, DAgostino, Fermi, Pontecorvo, Rasetti, Segre, Ric. Scient., vol. 2, p. 467 (1934); vol. 1, p. 123 (1935).
Claims directed to the broad method of producing radio-active substances by a neutron reaction and to beta-emissive substances so produced are being presented in the'copending application Serial No. 57,325 to Enrico Fermi, filed January 2, 1936.
Although we have herein described our invention in detail and specified particular examples of apparatus and processes and various modifications thereof, and have proposed various theoretical explanations, it is to be understood that these are not binding nor exhaustive but are intended rather for the assistance of others skilled in the art to enable them more easily to apply our invention under widely varying. conditions encountered in actual practice and to change and modify the particular embodiments and examples herein described as may be necessary or desirable under such varying conditions. The theoretical statements and explanations are, of course, not conclusive and our invention'is in no way dependent upon their correctness. We have found them helpful and give them for the aid of others, but our invention will be equally useful if it should prove that our theoretical conclusions are not altogether correct.
We claim:
1. The process for the production of radioactive isotopes, which comprises generating neutrons having a high average electron voltage, slowing down and scattering said neutrons by projecting them through a screen of an element of the class consisting of hydrogen, helium, beryllium, carbon, silicon and lead which screen is of such thickness that the neutrons are slowed down to an average energy of not more than a few hundred electron volts, then passing said neutrons into a mass of an element of the groups having atomic numbers 11, 12, 13, 14, 17, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, 72, 74, '75, 77, 78, 79 and 92, and thereby producing from the latter element a radio-active isotope capable of emitting beta rays.
2. The process of producing radio-active isotopes which comprises generating neutrons having a high average energy, slowing down said neutrons so that they have an average energy of not more than a few hundred electron volts by projecting them' through an energy-reducing screen of an element of the class consisting of hydrogen, helium, beryllium, carbon, silicon and lead, and passing said neutrons of reduced energy into a mass of ,an element of the group having atomic numbers 11, 12, 13, 14, 17, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, '72, 74, 75, 77, '78,-79 and 92 to thereby produce from the latter element a radio-active isotope capable of emitting beta rays.
3. The process of producing radio-active isotopes which comprises, generating neutrons having a high average energy, slowing down said neutrons so that they have an average energy of not more than a few hundred electron volts by projecting them through a hydrocarbon, and passing said neutrons of reducedenergy into a mass of an element of the group having atomic numbers 11, 12, 13, 14, 17, 19, 23, 25, 29, 31, 33, 34, 35, 43, 4'7, 48, 49, 51, 52, 53, 56:64, 72, 74, 75, '77, 78, '79 and 92 to thereby produce from said latter element a radio-active isotope capable of emitting beta rays.
4. The process of producing radio-active isotopes which comprises, generating neutrons having a high average energy, slowing down said neutrons so that they have an average energy of not more than a few hundred electron volts by projecting them through paramn, and passing said neutrons of reduced energy into a mass of an element of the group having atomic numbers 11, 12, 13, 14, 1'7, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, 72, 74, 75, 7'7, 78, 79 and 92 to thereby produce from the latter element a radio-active isotope capable of emitting beta rays.
5. The process of producing radio-active isotopes which comprises, generating neutrons having a high average energy, slowing down said neutrons so that they have an average energy of not more than a few hundred electron volts by projecting them through water, and passing said neutrons of reduced energy into a mass of an element of the group having atomic numbers 11, 12, 13, 14, 1'7, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, 72, '74, '75, '77, '78, '79 and 92 to thereby produce from the latter element a radio-active isotope capable of emitting beta rays.
6. The process of producing a radio-active isotope from an element of the group having atomic numbers 11, 12, 13, 14, 17, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, 72, 74, 75, 77, 78, 79 and 92, comprising the steps distributing the element throughout an energy-reducing screen of an element of the class consisting of hydrogen, helium, beryllium, carbon, silicon and lead, generating neutrons having a high average energy, and projecting the high-energy neutrons through said energy-reducing screen to slow down the neutrons to an average energy of not more than a few hundred electron volts and thereby produce from said first element by the reaction of the neutrons of reduced energy a radioactive isotope capable of emitting beta rays.
7. The process of producing a radio-active isotope from an element of the group having atomic numbers 11, 12, 13, 14, 17, 19, 23, 25, 29, 31, 33, 34, 35, 43, 47, 48, 49, 51, 52, 53, 56, 64, 72, 74, 75, 77, '78, 79 and 92, comprising the steps distributing the element throughout an energy-reducing screen of an element of the class consisting of hydrogen, helium, beryllium, carbon, silicon and lead, generating at a point substantially surrounded by said screen neutrons having a high average energy, and projecting the high-energy neutrons through said energy-reducing screen to slow down the neutrons to an average energy of not more than a few hundred electron volts and thereby produce from said first element by the reaction of the neutrons of reduced energy a radio-active isotope capable of emitting beta rays.
EMILIO SEGRE. ENRICO FERMI. EDOARDO AMALDI. BRUNO PONTECORVO. FRANCO RASETII.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT2206634X | 1934-10-26 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2206634A true US2206634A (en) | 1940-07-02 |
Family
ID=11435257
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US43462A Expired - Lifetime US2206634A (en) | 1934-10-26 | 1935-10-03 | Process for the production of radioactive substances |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2206634A (en) |
Cited By (98)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2423240A (en) * | 1938-01-15 | 1947-07-01 | Klinghoffer Stefan | Method for retaining the radioactivity of liquids intended for injections |
| US2476810A (en) * | 1945-04-10 | 1949-07-19 | Shell Dev | Method and apparatus for radiological measurements |
| US2477776A (en) * | 1946-07-24 | 1949-08-02 | Sun Chemical Corp | Printing ink and method of using same |
| US2491320A (en) * | 1944-07-27 | 1949-12-13 | Philip G Koontz | Neutron detector and method of making same |
| US2500223A (en) * | 1946-12-19 | 1950-03-14 | Westinghouse Electric Corp | Artificial atomic disintegration |
| US2501174A (en) * | 1945-07-12 | 1950-03-21 | Texas Co | Radioactive measuring |
| US2504585A (en) * | 1945-01-26 | 1950-04-18 | Atomic Energy Commission | Cyclotron target |
| US2509344A (en) * | 1947-05-05 | 1950-05-30 | Texas Co | Thickness measurement |
| US2517469A (en) * | 1945-11-02 | 1950-08-01 | Richard W Dodson | Method and apparatus for measuring alpha particle radiation |
| US2532874A (en) * | 1945-12-13 | 1950-12-05 | Herbert L Anderson | Detection apparatus |
| US2533966A (en) * | 1945-08-06 | 1950-12-12 | Jr Gordon Simmons | Method and apparatus for separating isotopes |
| US2554316A (en) * | 1945-05-01 | 1951-05-22 | Allen F Reid | Production of radioactive halogens |
| US2556768A (en) * | 1945-10-16 | 1951-06-12 | Joseph L Mckibben | Neutron detector |
| US2559259A (en) * | 1946-05-16 | 1951-07-03 | John R Raper | Method of making a source of beta rays |
| US2573069A (en) * | 1945-05-22 | 1951-10-30 | Emilio G Segre | Method and apparatus for measuring strong alpha emitters |
| US2579243A (en) * | 1945-04-13 | 1951-12-18 | Allen F Reid | Method for the production of radioactive isotopes |
| US2597535A (en) * | 1946-07-23 | 1952-05-20 | Atomic Energy Commission | Radioactive assay apparatus |
| US2603755A (en) * | 1948-07-10 | 1952-07-15 | Ment Jack De | Radioative photographic articles |
| US2653076A (en) * | 1946-10-07 | 1953-09-22 | Waldo E Cohn | Preparation of carrier-free radioactive phosphorus values |
| US2659046A (en) * | 1948-10-19 | 1953-11-10 | Arps Jan Jacob | Geophysical exploration using radioactive material |
| US2670443A (en) * | 1951-02-28 | 1954-02-23 | Tracerlab Inc | Radiation beam forming unit |
| US2680201A (en) * | 1950-06-05 | 1954-06-01 | Serge A Scherbatskoy | Neutron well logging |
| US2708656A (en) * | 1944-12-19 | 1955-05-17 | Fermi Enrico | Neutronic reactor |
| US2714668A (en) * | 1945-02-06 | 1955-08-02 | Walter H Zinn | Radiation responsive device |
| US2716705A (en) * | 1945-03-27 | 1955-08-30 | Walter H Zinn | Radiation shield |
| US2728867A (en) * | 1945-07-03 | 1955-12-27 | Volney C Wilson | Generation of power |
| US2733355A (en) * | 1956-01-31 | Thermal neutron measuring | ||
| US2736696A (en) * | 1945-08-29 | 1956-02-28 | Eugene P Wigner | Reactor |
| US2743226A (en) * | 1949-08-16 | 1956-04-24 | Henry W Newson | Apparatus for the bombardment of samples with fast neutrons |
| US2750144A (en) * | 1953-06-22 | 1956-06-12 | Richard C Beckwith | Methods and apparatus for controllably dispensing moisture bearing ingredients |
| US2751506A (en) * | 1953-12-29 | 1956-06-19 | Exxon Research Engineering Co | Wear test method |
| US2751505A (en) * | 1948-12-29 | 1956-06-19 | Herbert L Anderson | Neutronic reactor device |
| US2769916A (en) * | 1952-10-02 | 1956-11-06 | Gulf Research Development Co | Coincidence-type slow neutron detector |
| US2769915A (en) * | 1952-10-02 | 1956-11-06 | Gulf Research Development Co | Epithermal neutron detector |
| US2773823A (en) * | 1945-05-22 | 1956-12-11 | John J Goett | Safety device for a neutronic reactor |
| US2778730A (en) * | 1944-09-29 | 1957-01-22 | Frank H Spedding | Plutonium alloy and method of separating it from uranium |
| US2780595A (en) * | 1944-05-04 | 1957-02-05 | Fermi Enrico | Test exponential pile |
| US2781309A (en) * | 1945-11-02 | 1957-02-12 | Joseph S Levinger | Radiation system |
| US2785046A (en) * | 1944-09-29 | 1957-03-12 | Thomas A Butler | Separation of uranium from other metals by hydriding |
| US2785315A (en) * | 1952-03-11 | 1957-03-12 | Schlumberger Well Surv Corp | Nuclear well logging |
| US2785951A (en) * | 1944-01-26 | 1957-03-19 | Stanley G Thompson | Bismuth phosphate process for the separation of plutonium from aqueous solutions |
| US2786146A (en) * | 1953-05-22 | 1957-03-19 | Alsacienne Constr Meca | Device for measuring displacement of conductors inside electric cable sheath |
| US2793309A (en) * | 1946-10-31 | 1957-05-21 | Jr John A Simpson | Neutron proportional counter |
| US2796529A (en) * | 1948-08-23 | 1957-06-18 | Morrison Philip | Radiation shield |
| US2799553A (en) * | 1943-03-09 | 1957-07-16 | Stanley G Thompson | Phosphate method for separation of radioactive elements |
| US2810689A (en) * | 1945-11-06 | 1957-10-22 | Eugene P Wigner | Fluid moderated reactor |
| US2815321A (en) * | 1945-11-13 | 1957-12-03 | Eugene P Wigner | Isotope conversion device |
| US2816860A (en) * | 1945-04-14 | 1957-12-17 | Volney C Wilson | Means for controlling a nuclear reactor |
| US2824056A (en) * | 1945-10-11 | 1958-02-18 | Miles C Leverett | Reactor unloading |
| US2830944A (en) * | 1945-08-28 | 1958-04-15 | Eugene P Wigner | Neutronic reactor |
| US2831750A (en) * | 1944-11-03 | 1958-04-22 | Glenn T Seaborg | Separating protoactinium with manganese dioxide |
| US2832793A (en) * | 1944-11-30 | 1958-04-29 | Robert B Duffield | Process for separation of heavy metals |
| US2843543A (en) * | 1945-10-19 | 1958-07-15 | Robert F Christy | Neutronic reactor |
| US2845544A (en) * | 1945-08-11 | 1958-07-29 | Glenn T Seaborg | Neutron measuring method and apparatus |
| US2850447A (en) * | 1945-11-02 | 1958-09-02 | Leo A Ohlinger | Neutronic reactor |
| US2851410A (en) * | 1945-05-28 | 1958-09-09 | Harcourt C Vernon | Neutronic reactor construction |
| US2853624A (en) * | 1945-05-22 | 1958-09-23 | Eugene P Wigner | Radiation shielding device |
| US2856336A (en) * | 1945-06-04 | 1958-10-14 | Herbert E Metcalf | Neutronic reactor control |
| US2860093A (en) * | 1945-11-13 | 1958-11-11 | Eugene P Wigner | Isotope conversion device and method |
| US2863062A (en) * | 1946-06-10 | 1958-12-02 | William J Sturm | Method of measuring the integrated energy output of a neutronic chain reactor |
| US2868992A (en) * | 1945-02-12 | 1959-01-13 | George S Monk | Reactor viewing apparatus |
| US2868817A (en) * | 1944-11-30 | 1959-01-13 | Herbert A Potratz | Plutonium-cupferron complex and method of removing plutonium from solution |
| US2871251A (en) * | 1944-11-30 | 1959-01-27 | John W Gofman | Process for the separation of heavy metals |
| US2872401A (en) * | 1946-05-08 | 1959-02-03 | Eugene P Wigner | Jacketed fuel element |
| US2872402A (en) * | 1947-03-31 | 1959-02-03 | Chester L Ura | Method of preparation of material for neutron bombardment |
| US2874107A (en) * | 1946-05-08 | 1959-02-17 | Leo A Ohlinger | Device for treating materials |
| US2887357A (en) * | 1944-11-03 | 1959-05-19 | Glenn T Seaborg | Dry fluorine separation method |
| US2908621A (en) * | 1945-12-11 | 1959-10-13 | Segre Emilio | Producing energy and radioactive fission products |
| US2910418A (en) * | 1945-01-23 | 1959-10-27 | Edward C Creutz | Neutronic reactor |
| US2928948A (en) * | 1955-05-23 | 1960-03-15 | Herman I Silversher | Laminar ray resistant materials |
| US2931762A (en) * | 1945-05-12 | 1960-04-05 | Fermi Enrico | Neutronic reactor |
| US2933369A (en) * | 1944-09-28 | 1960-04-19 | David M Ritter | Concentration of pu using oxalate type carrier |
| US2951023A (en) * | 1945-06-12 | 1960-08-30 | Glenn T Seaborg | Method of producing u233 |
| US2953510A (en) * | 1944-11-30 | 1960-09-20 | Herbert L Anderson | Neutronic reactor |
| US2961392A (en) * | 1945-08-28 | 1960-11-22 | Eugene P Wigner | Neutronic reactors |
| US2986508A (en) * | 1945-10-11 | 1961-05-30 | Harcourt C Vernon | Neutronic reactor structure |
| US2990354A (en) * | 1945-03-24 | 1961-06-27 | Herbert L Anderson | Nuclear fission chain reacting system |
| US2991236A (en) * | 1945-04-18 | 1961-07-04 | Harcourt C Vernon | Separating liquid moderator from a slurry type reactor |
| US2992175A (en) * | 1944-09-02 | 1961-07-11 | Lyle B Borst | Neutronic reactor shielding |
| US3014054A (en) * | 1959-08-19 | 1961-12-19 | California Research Corp | Radioactive tracers |
| US3034008A (en) * | 1957-12-12 | 1962-05-08 | Schlumberger Well Surv Corp | Radiation-responsive apparatus |
| US3037924A (en) * | 1945-07-30 | 1962-06-05 | Edward C Creutz | Jacketed body |
| US3052613A (en) * | 1945-08-29 | 1962-09-04 | Eugene P Wigner | Method and apparatus for conducting a nuclear chain reaction |
| US3079317A (en) * | 1949-04-29 | 1963-02-26 | Glenn H Jenks | Production of tritium |
| US3150055A (en) * | 1945-12-11 | 1964-09-22 | Herbert E Metcalf | Reactor |
| US3161462A (en) * | 1949-02-07 | 1964-12-15 | Glen T Seaborg | Element 96 and compositions thereof |
| US3162578A (en) * | 1945-03-10 | 1964-12-22 | Allen Abbott | Reactor and apparatus for control thereof |
| US3190804A (en) * | 1945-12-27 | 1965-06-22 | Glenn T Seaborg | Method for producing, separating, and purifying plutonium |
| US3222521A (en) * | 1959-10-17 | 1965-12-07 | Interatom | Method and apparatus for measuring fissionable isotope concentration |
| US3284309A (en) * | 1943-07-27 | 1966-11-08 | Eger V Murphree | Nuclear power generating apparatus |
| US3284305A (en) * | 1947-06-02 | 1966-11-08 | Exxon Research Engineering Co | Process of producing energy by nuclear fission |
| US3375371A (en) * | 1964-05-18 | 1968-03-26 | Nuclear Materials & Equipment | Method of and apparatus for determination of nuclear poison |
| US3475607A (en) * | 1966-07-27 | 1969-10-28 | Us Army | Method for measuring doses of ionizing radiations |
| US3515871A (en) * | 1966-12-21 | 1970-06-02 | Atlantic Richfield Co | Radioactive borehole logging method and apparatus whereby elements of interest are determined by generating gamma rays having a predetermined critical energy such that they are resonantly scattered by said elements |
| US20030095915A1 (en) * | 2001-09-14 | 2003-05-22 | Han Hyon Soo | Method for distillation of sulfur for the preparing radioactive phosphorous nuclide |
| DE19914887B4 (en) * | 1999-03-19 | 2004-04-29 | Miyama Kogyo K.K., Soka | tread |
| WO2008030212A3 (en) * | 2005-06-29 | 2008-09-04 | Univ Houston | Miniature neutron generator for active nuclear materials detection |
| US11315699B2 (en) | 2010-09-22 | 2022-04-26 | Siemens Medical Solutions Usa, Inc. | Composition of matter comprising a radioisotope composition |
-
1935
- 1935-10-03 US US43462A patent/US2206634A/en not_active Expired - Lifetime
Cited By (101)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2733355A (en) * | 1956-01-31 | Thermal neutron measuring | ||
| US2423240A (en) * | 1938-01-15 | 1947-07-01 | Klinghoffer Stefan | Method for retaining the radioactivity of liquids intended for injections |
| US2799553A (en) * | 1943-03-09 | 1957-07-16 | Stanley G Thompson | Phosphate method for separation of radioactive elements |
| US3284309A (en) * | 1943-07-27 | 1966-11-08 | Eger V Murphree | Nuclear power generating apparatus |
| US2785951A (en) * | 1944-01-26 | 1957-03-19 | Stanley G Thompson | Bismuth phosphate process for the separation of plutonium from aqueous solutions |
| US2780595A (en) * | 1944-05-04 | 1957-02-05 | Fermi Enrico | Test exponential pile |
| US2491320A (en) * | 1944-07-27 | 1949-12-13 | Philip G Koontz | Neutron detector and method of making same |
| US2992175A (en) * | 1944-09-02 | 1961-07-11 | Lyle B Borst | Neutronic reactor shielding |
| US2933369A (en) * | 1944-09-28 | 1960-04-19 | David M Ritter | Concentration of pu using oxalate type carrier |
| US2785046A (en) * | 1944-09-29 | 1957-03-12 | Thomas A Butler | Separation of uranium from other metals by hydriding |
| US2778730A (en) * | 1944-09-29 | 1957-01-22 | Frank H Spedding | Plutonium alloy and method of separating it from uranium |
| US2831750A (en) * | 1944-11-03 | 1958-04-22 | Glenn T Seaborg | Separating protoactinium with manganese dioxide |
| US2887357A (en) * | 1944-11-03 | 1959-05-19 | Glenn T Seaborg | Dry fluorine separation method |
| US2868817A (en) * | 1944-11-30 | 1959-01-13 | Herbert A Potratz | Plutonium-cupferron complex and method of removing plutonium from solution |
| US2832793A (en) * | 1944-11-30 | 1958-04-29 | Robert B Duffield | Process for separation of heavy metals |
| US2871251A (en) * | 1944-11-30 | 1959-01-27 | John W Gofman | Process for the separation of heavy metals |
| US2953510A (en) * | 1944-11-30 | 1960-09-20 | Herbert L Anderson | Neutronic reactor |
| US2708656A (en) * | 1944-12-19 | 1955-05-17 | Fermi Enrico | Neutronic reactor |
| US2910418A (en) * | 1945-01-23 | 1959-10-27 | Edward C Creutz | Neutronic reactor |
| US2504585A (en) * | 1945-01-26 | 1950-04-18 | Atomic Energy Commission | Cyclotron target |
| US2714668A (en) * | 1945-02-06 | 1955-08-02 | Walter H Zinn | Radiation responsive device |
| US2868992A (en) * | 1945-02-12 | 1959-01-13 | George S Monk | Reactor viewing apparatus |
| US3162578A (en) * | 1945-03-10 | 1964-12-22 | Allen Abbott | Reactor and apparatus for control thereof |
| US2990354A (en) * | 1945-03-24 | 1961-06-27 | Herbert L Anderson | Nuclear fission chain reacting system |
| US2716705A (en) * | 1945-03-27 | 1955-08-30 | Walter H Zinn | Radiation shield |
| US2476810A (en) * | 1945-04-10 | 1949-07-19 | Shell Dev | Method and apparatus for radiological measurements |
| US2579243A (en) * | 1945-04-13 | 1951-12-18 | Allen F Reid | Method for the production of radioactive isotopes |
| US2816860A (en) * | 1945-04-14 | 1957-12-17 | Volney C Wilson | Means for controlling a nuclear reactor |
| US2991236A (en) * | 1945-04-18 | 1961-07-04 | Harcourt C Vernon | Separating liquid moderator from a slurry type reactor |
| US2554316A (en) * | 1945-05-01 | 1951-05-22 | Allen F Reid | Production of radioactive halogens |
| US2931762A (en) * | 1945-05-12 | 1960-04-05 | Fermi Enrico | Neutronic reactor |
| US2853624A (en) * | 1945-05-22 | 1958-09-23 | Eugene P Wigner | Radiation shielding device |
| US2773823A (en) * | 1945-05-22 | 1956-12-11 | John J Goett | Safety device for a neutronic reactor |
| US2573069A (en) * | 1945-05-22 | 1951-10-30 | Emilio G Segre | Method and apparatus for measuring strong alpha emitters |
| US2851410A (en) * | 1945-05-28 | 1958-09-09 | Harcourt C Vernon | Neutronic reactor construction |
| US2856336A (en) * | 1945-06-04 | 1958-10-14 | Herbert E Metcalf | Neutronic reactor control |
| US2951023A (en) * | 1945-06-12 | 1960-08-30 | Glenn T Seaborg | Method of producing u233 |
| US2728867A (en) * | 1945-07-03 | 1955-12-27 | Volney C Wilson | Generation of power |
| US2501174A (en) * | 1945-07-12 | 1950-03-21 | Texas Co | Radioactive measuring |
| US3037924A (en) * | 1945-07-30 | 1962-06-05 | Edward C Creutz | Jacketed body |
| US2533966A (en) * | 1945-08-06 | 1950-12-12 | Jr Gordon Simmons | Method and apparatus for separating isotopes |
| US2845544A (en) * | 1945-08-11 | 1958-07-29 | Glenn T Seaborg | Neutron measuring method and apparatus |
| US2830944A (en) * | 1945-08-28 | 1958-04-15 | Eugene P Wigner | Neutronic reactor |
| US2961392A (en) * | 1945-08-28 | 1960-11-22 | Eugene P Wigner | Neutronic reactors |
| US3052613A (en) * | 1945-08-29 | 1962-09-04 | Eugene P Wigner | Method and apparatus for conducting a nuclear chain reaction |
| US2736696A (en) * | 1945-08-29 | 1956-02-28 | Eugene P Wigner | Reactor |
| US2986508A (en) * | 1945-10-11 | 1961-05-30 | Harcourt C Vernon | Neutronic reactor structure |
| US2824056A (en) * | 1945-10-11 | 1958-02-18 | Miles C Leverett | Reactor unloading |
| US2556768A (en) * | 1945-10-16 | 1951-06-12 | Joseph L Mckibben | Neutron detector |
| US2843543A (en) * | 1945-10-19 | 1958-07-15 | Robert F Christy | Neutronic reactor |
| US2517469A (en) * | 1945-11-02 | 1950-08-01 | Richard W Dodson | Method and apparatus for measuring alpha particle radiation |
| US2781309A (en) * | 1945-11-02 | 1957-02-12 | Joseph S Levinger | Radiation system |
| US2850447A (en) * | 1945-11-02 | 1958-09-02 | Leo A Ohlinger | Neutronic reactor |
| US2810689A (en) * | 1945-11-06 | 1957-10-22 | Eugene P Wigner | Fluid moderated reactor |
| US2815321A (en) * | 1945-11-13 | 1957-12-03 | Eugene P Wigner | Isotope conversion device |
| US2860093A (en) * | 1945-11-13 | 1958-11-11 | Eugene P Wigner | Isotope conversion device and method |
| US3150055A (en) * | 1945-12-11 | 1964-09-22 | Herbert E Metcalf | Reactor |
| US2908621A (en) * | 1945-12-11 | 1959-10-13 | Segre Emilio | Producing energy and radioactive fission products |
| US2532874A (en) * | 1945-12-13 | 1950-12-05 | Herbert L Anderson | Detection apparatus |
| US3190804A (en) * | 1945-12-27 | 1965-06-22 | Glenn T Seaborg | Method for producing, separating, and purifying plutonium |
| US2872401A (en) * | 1946-05-08 | 1959-02-03 | Eugene P Wigner | Jacketed fuel element |
| US2874107A (en) * | 1946-05-08 | 1959-02-17 | Leo A Ohlinger | Device for treating materials |
| US2559259A (en) * | 1946-05-16 | 1951-07-03 | John R Raper | Method of making a source of beta rays |
| US2863062A (en) * | 1946-06-10 | 1958-12-02 | William J Sturm | Method of measuring the integrated energy output of a neutronic chain reactor |
| US2597535A (en) * | 1946-07-23 | 1952-05-20 | Atomic Energy Commission | Radioactive assay apparatus |
| US2477776A (en) * | 1946-07-24 | 1949-08-02 | Sun Chemical Corp | Printing ink and method of using same |
| US2653076A (en) * | 1946-10-07 | 1953-09-22 | Waldo E Cohn | Preparation of carrier-free radioactive phosphorus values |
| US2793309A (en) * | 1946-10-31 | 1957-05-21 | Jr John A Simpson | Neutron proportional counter |
| US2500223A (en) * | 1946-12-19 | 1950-03-14 | Westinghouse Electric Corp | Artificial atomic disintegration |
| US2872402A (en) * | 1947-03-31 | 1959-02-03 | Chester L Ura | Method of preparation of material for neutron bombardment |
| US2509344A (en) * | 1947-05-05 | 1950-05-30 | Texas Co | Thickness measurement |
| US3284305A (en) * | 1947-06-02 | 1966-11-08 | Exxon Research Engineering Co | Process of producing energy by nuclear fission |
| US2603755A (en) * | 1948-07-10 | 1952-07-15 | Ment Jack De | Radioative photographic articles |
| US2796529A (en) * | 1948-08-23 | 1957-06-18 | Morrison Philip | Radiation shield |
| US2659046A (en) * | 1948-10-19 | 1953-11-10 | Arps Jan Jacob | Geophysical exploration using radioactive material |
| US2751505A (en) * | 1948-12-29 | 1956-06-19 | Herbert L Anderson | Neutronic reactor device |
| US3161462A (en) * | 1949-02-07 | 1964-12-15 | Glen T Seaborg | Element 96 and compositions thereof |
| US3079317A (en) * | 1949-04-29 | 1963-02-26 | Glenn H Jenks | Production of tritium |
| US2743226A (en) * | 1949-08-16 | 1956-04-24 | Henry W Newson | Apparatus for the bombardment of samples with fast neutrons |
| US2680201A (en) * | 1950-06-05 | 1954-06-01 | Serge A Scherbatskoy | Neutron well logging |
| US2670443A (en) * | 1951-02-28 | 1954-02-23 | Tracerlab Inc | Radiation beam forming unit |
| US2785315A (en) * | 1952-03-11 | 1957-03-12 | Schlumberger Well Surv Corp | Nuclear well logging |
| US2769916A (en) * | 1952-10-02 | 1956-11-06 | Gulf Research Development Co | Coincidence-type slow neutron detector |
| US2769915A (en) * | 1952-10-02 | 1956-11-06 | Gulf Research Development Co | Epithermal neutron detector |
| US2786146A (en) * | 1953-05-22 | 1957-03-19 | Alsacienne Constr Meca | Device for measuring displacement of conductors inside electric cable sheath |
| US2750144A (en) * | 1953-06-22 | 1956-06-12 | Richard C Beckwith | Methods and apparatus for controllably dispensing moisture bearing ingredients |
| US2751506A (en) * | 1953-12-29 | 1956-06-19 | Exxon Research Engineering Co | Wear test method |
| US2928948A (en) * | 1955-05-23 | 1960-03-15 | Herman I Silversher | Laminar ray resistant materials |
| US3034008A (en) * | 1957-12-12 | 1962-05-08 | Schlumberger Well Surv Corp | Radiation-responsive apparatus |
| US3014054A (en) * | 1959-08-19 | 1961-12-19 | California Research Corp | Radioactive tracers |
| US3222521A (en) * | 1959-10-17 | 1965-12-07 | Interatom | Method and apparatus for measuring fissionable isotope concentration |
| US3375371A (en) * | 1964-05-18 | 1968-03-26 | Nuclear Materials & Equipment | Method of and apparatus for determination of nuclear poison |
| US3475607A (en) * | 1966-07-27 | 1969-10-28 | Us Army | Method for measuring doses of ionizing radiations |
| US3515871A (en) * | 1966-12-21 | 1970-06-02 | Atlantic Richfield Co | Radioactive borehole logging method and apparatus whereby elements of interest are determined by generating gamma rays having a predetermined critical energy such that they are resonantly scattered by said elements |
| DE19914887B4 (en) * | 1999-03-19 | 2004-04-29 | Miyama Kogyo K.K., Soka | tread |
| US20030095915A1 (en) * | 2001-09-14 | 2003-05-22 | Han Hyon Soo | Method for distillation of sulfur for the preparing radioactive phosphorous nuclide |
| US7266173B2 (en) * | 2001-09-14 | 2007-09-04 | Korea Atomic Energy Research Institute | Method for distillation of sulfur for the preparing radioactive phosphorous nuclide |
| WO2008030212A3 (en) * | 2005-06-29 | 2008-09-04 | Univ Houston | Miniature neutron generator for active nuclear materials detection |
| US20100193685A1 (en) * | 2005-06-29 | 2010-08-05 | University Of Houston | Miniature Neutron Generator for Active Nuclear Materials Detection |
| US11315699B2 (en) | 2010-09-22 | 2022-04-26 | Siemens Medical Solutions Usa, Inc. | Composition of matter comprising a radioisotope composition |
| US11387011B2 (en) * | 2010-09-22 | 2022-07-12 | Siemens Medical Solutions Usa, Inc. | Compact radioisotope generator |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2206634A (en) | Process for the production of radioactive substances | |
| Mann et al. | Radioactivity and its Measurement | |
| Turner | Nuclear fission | |
| Alvarez | The capture of orbital electrons by nuclei | |
| Broda et al. | The technical applications of radioactivity | |
| Michel et al. | Mass Assignments by Isotope Separation | |
| Irvine Jr et al. | Cyclotron Targets: Preparation and Radiochemical Separation. III. Na22 | |
| Turkevich et al. | Radiochemical Studies on the Fission of Th 232 with Li+ D Neutrons | |
| Golchert et al. | Excitation functions for 3He induced nuclear reactions in Cu | |
| Kraus et al. | Radioactive isotopes of palladium and silver from palladium | |
| Carlson et al. | Fragmentation of the Excited Parent Ions,[CH3Kr82]+ and [CH3O18]—, Following the β—Decay of CH3Br82 and the β+ Decay of CH3F18 | |
| Crasemann et al. | Properties of Radioactive Re 189 | |
| Horiuti et al. | Reaction of Heavy Water with Metallic Sodium | |
| Kormicki et al. | Excited states of the 155Gd nucleus | |
| Neumann et al. | A Possible Isomeric State of RaE | |
| Petrzhak et al. | Spontaneous fission of nuclei | |
| Kolar et al. | Isomeric cross-section ratios for 14· 6 MeV neutron induced reactions | |
| Hollander | Nuclear transmutations using accelerated carbon ions | |
| Weil | Beta-Ray Spectra of Arsenic, Rubidium, and Krypton | |
| Fermi et al. | Process for the production of radioactive substances | |
| Casella | RADIOCHEMICAL STUDIES OF SOME LOW AND MEDIUM ENERGY NUCLEAR REACTIONS PRODUCED BY ACCELERATED TRITONS, DEUTERONS AND PROTONS. | |
| Seaborg et al. | An Introduction to Nuclear Chemistry: Lecture Series, May 19 to July 16, 1942 | |
| Oliphant et al. | Radioactivity and sub-atomic phenomena | |
| De Jesus et al. | The Search for 92Ru and 64Ge | |
| Vesely | Hyperfine Interactions and the Chemical Shift |