US2270717A - Process of transferring heat - Google Patents
Process of transferring heat Download PDFInfo
- Publication number
- US2270717A US2270717A US336592A US33659240A US2270717A US 2270717 A US2270717 A US 2270717A US 336592 A US336592 A US 336592A US 33659240 A US33659240 A US 33659240A US 2270717 A US2270717 A US 2270717A
- Authority
- US
- United States
- Prior art keywords
- oil
- oils
- temperatures
- heat transfer
- new type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 13
- 239000003921 oil Substances 0.000 description 48
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 14
- 238000009835 boiling Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 239000012530 fluid Substances 0.000 description 7
- 230000005484 gravity Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229940097789 heavy mineral oil Drugs 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- -1 reduction of flash Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
Definitions
- This invention has to do with the art of heating and heat transfer. It is concerned with those processes wherein a fluid medium, circulated under pressure, is heated in one portion of a cycle and utilized to deliver heat in another portion of the cycle, the whole object of the process being to deliver heat to apparatus isolated from the furnace or other means wherein the fluid medium is heated.
- Commercial systems of this type commonly utilize a heavy mineral oil fraction as the fiuid'heat transfer medium.
- This invention is specifically directed to such processes using oil as a heat transfer medium.
- the object of this invention is to provide such a process which is free from the hazards, disadvantages, and costs coincident to the degradation of the oil used as a fluid heat transfer medium.
- the equipment utilized in such processes is well known and consists of a fired furnace or other type of heater in which the oil, circulating conly not higher than about 550" F. to about 6002?;
- the hot oil is circulated to the point whereheat is to be applied, e. g., to the jacket of a kettle in which some reaction or process is conducted, and is then returned to the furnace.
- the principafrequirement 35 5 the phenomenon of decomposition referred to herein is of the same nature as thermal crack ing of hydrocarbon, the heat transfer oils are called upon to withstand the temperatures to which they are exposed for periods ranging into 10 years rather than hours or minutes as in cracking.
- This invention i s based upon the discovery that the selection of oils upon. the basis of high flash point is entirely erroneous, and that the use of m oils of entirely different characteristics,-as described rein, leads to entirely unexpected results an benefits in a manner contrary to the prior teaching of the art.
- This invention is based upon the use of a high 2.0 temperature refractory oil of a low gravity, of
- the refractory nature of the new type fluid heat transfer medium is well demonstrated by its superiority in use, as demonstrated by the following comparison of new and old type oils after each has been heated at 650 F. for a period of five hours under apressure sufiicient to prevent substantial vaporization.
- the new type oil having a viscosity so much lower than the old that very material savings in pumping costs are possible.
- the oils of the new type are higher in specific heat than the oils heretofore used.
- oils of the new type may be defined as oils which do not form material amounts of fixed gases when exposed for substantial lengths of time to elevated temperatures. For example, they may be tested for such gas formation by being heated -to and held at temperatures in the range GOO-700 F. in a vessel connected with a condenser, and the fixed gas noncondensible at atmospheric pressure and temperature, so formed can be collected and measured. Comparative data from such a test, carried out on an old type and a new type oil follows:
- these new oils may be deflnedas oils which are substantially resistant to thermal decomposition, as evidenced by formation of normally non-condensible gaseous products, upon prolonged exposure to temperatures within the range GOO-700 F-
- thermal decomposition of hydrocarbons that results obtained from comparatively short exposure to active cracking temperatures may be obtained also by much longer exposure to much lower temperatures. Consequently, to
- Oils of the new type may also be defined by means of physical characteristics, the most outstanding of which is that for a given gravity, they are possessed of viscosities and boiling ranges substantially lower than those normally associated with naturally occurring mineral. oil fractions of similar gravity.
- a less highly indicative characteristic of such oils is their aniline point, a chemical characteristic, defined as the lowest temperature at which the oil is completely miscible with an equal volume of aniline.
- aniline point a chemical characteristic, defined as the lowest temperature at which the oil is completely miscible with an equal volume of aniline.
- a typical oil of the old type has an aniline number of 115 C.
- a typical oil of the new type has an aniline number of 68 C.
- the useful characteristics of oils of the new type with which this invention is concerned will be associated with aniline points of C. or less.
- Oils at present preferred for the uses above outlined will, in general fall within the range of properties outlined below:
- the method of applying heat at temperatures ranging from 600 F. to around 700 F. comprising continuously circulating a fluid heat transfer medium in a closed cycle, applying heat to said medium in one portion of said cycle and removing useful heat from it at another portion of the cycle, in which the fiuid heat transfer medium is a cracked mineral oil fraction, substantially resistant to thermal decomposition, as evidenced by formation of normally non-condensible gaseous products, upon prolonged exposure to temperatures within the range GOO-700 F. conforming .to the following specification:
- the method of applying heat at temperatures ranging from'600 F. to around 700'F. comprising continuously circulating a fluid heat transfer medium in a closed cycle, applying heat -to said medium in one portion of said cycle and removing useful heat from another portion of the cycle, in which the fluid heat transfer medium is a cracked mineral oil fraction of gas oil nature, having an initial boiling point of at least 575 F., and substantially resistant to thermal decomposition, as evidenced by formation of normally non-condensible gaseous products upon prolonged exposure to temperatures within the range 600-700 F., and a viscosity not greater than of the order of about 250 seconds Saybolt Universal at 100 F.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
tinuously, is heated to a high temperature, usual- Patented Jan. 20, 1942 UNITED STATES PROCESS OF TRANSFERRING HEAT Vladimir L. Shipp, New York, and John Happel, Brooklyn, N. Y., asslgnors to Socony-Vacuum Oil Company, Incorporated, New York, N. Y., a corporation of New York No Drawing. Application May 22, 1940, Serial N0. 336,592
3 Claims.
This invention has to do with the art of heating and heat transfer. It is concerned with those processes wherein a fluid medium, circulated under pressure, is heated in one portion of a cycle and utilized to deliver heat in another portion of the cycle, the whole object of the process being to deliver heat to apparatus isolated from the furnace or other means wherein the fluid medium is heated. Commercial systems of this type commonly utilize a heavy mineral oil fraction as the fiuid'heat transfer medium. This invention is specifically directed to such processes using oil as a heat transfer medium.
This application is a continuation in part of our copending application Serial No. 211,698, flled June 3, 1938.
The object of this invention is to provide such a process which is free from the hazards, disadvantages, and costs coincident to the degradation of the oil used as a fluid heat transfer medium.
The equipment utilized in such processes is well known and consists of a fired furnace or other type of heater in which the oil, circulating conly not higher than about 550" F. to about 6002?; The hot oil is circulated to the point whereheat is to be applied, e. g., to the jacket of a kettle in which some reaction or process is conducted, and is then returned to the furnace.
In general, such systems have used a very heavy oil, the oil preferred heretofore being the best grade Pennsylvania on parafflnic type lubricating oil of high flash point, known to the trade as cylinder stock. heretofore thought necessary'for the oil was the possession of a high flash point believed to indicate freedom from fire iiisk. Such systems, using the oil heretofore recommended as best,
have encountered difllculties inoperation, which, 40
while not serious atylow temperatures in well I designed apparatus, become crucial at higher temperatures and/or with poor design. A very important difficulty is that of a great tendency 21) oil nature.
The principafrequirement 35 5 the phenomenon of decomposition referred to herein is of the same nature as thermal crack ing of hydrocarbon, the heat transfer oils are called upon to withstand the temperatures to which they are exposed for periods ranging into 10 years rather than hours or minutes as in cracking. I
This inventioni s based upon the discovery that the selection of oils upon. the basis of high flash point is entirely erroneous, and that the use of m oils of entirely different characteristics,-as described rein, leads to entirely unexpected results an benefits in a manner contrary to the prior teaching of the art.
This invention is based upon the use of a high 2.0 temperature refractory oil of a low gravity, of
narrow boiling range, but not capable of pro- ,iiucing a substantial amount of vapors at the temperature of operation, of low viscosity, and
of a gas oil nature rather than of a lubricating Such a material will have a flash point materially lower than the material heretofore used.
To contrast one such new material with that heretofore used, the following tabulation shows comparative data on a typical old-style material and a typical new material.
TABLE I Old type New type Gravit A, P. I 24.2 19.3 Flash Q, C.) F. 590 310 Fire F 690 360 Vise. Saybolt Universal I 100 F .seconds 79 At 210 F do 221 Per cent distilled oilt 400 F 0 0 At 500 F 0 0 Such oils may be obtained conveniently as disof the oil to deteriorate and become possessed of 45 tillates from residual oil produced by cracking a lower flash point, and hence more susceptible to ignition and more dangerous to use. Another important difficulty is the appearanceof coke,
carbonaceous impurities, and sludge in such oils under use, the deposit of which greatly decreases 60 the heat transfer capacity of the apparatus, and which necessitates continuous straining during use and promotes clogging, burning, coking, and erosion of apparatus. Another dimculty is the tendency of such oils, in use, to liberate hydrocarbon gases. avoided by following the teaching of this invention;
Eurther, present demands for extension of the 5 all cases, however, they may be described as ma- All of these disadvantages may be terials of a gas oil nature derived from hydrocarbon stocks which have been subjected to cracking, or, more shortly, as cracked mineral oil fractions having certain physical characterfield of the process to temperatures of about 60 istics.
The refractory nature of the new type fluid heat transfer medium is well demonstrated by its superiority in use, as demonstrated by the following comparison of new and old type oils after each has been heated at 650 F. for a period of five hours under apressure sufiicient to prevent substantial vaporization.
Note that the old type oil has suffered serious degradation resulting in the formation of light, low boiling material (per cent distilled off) sufiicient to materially increase the hazard attendant upon its use. It also has over three times as much carbon and sludgy material.
Of great importance is the difference in viscosity of the oils of old and new type, the new type oil having a viscosity so much lower than the old that very material savings in pumping costs are possible. Of additional interest is the fact that the oils of the new type are higher in specific heat than the oils heretofore used.
The advantages claimed for the new type of oil are capable of complete substantiation based upon actual use. In commercial operation it has been found that savings due to power and increased heat transfer efficiency amounted to 25 and that, rather than forming sludge, the new type oil was actually dissolving and freeing and removing from the system sludge and coke deposited therein by the former oil. Also, oils of the new type, after twenty months continued use, show no appreciable changes in gravity, viscosity, color, presence of lower boiling materials,- or of. sludge originating from the oil.
The oils of the new type may be defined as oils which do not form material amounts of fixed gases when exposed for substantial lengths of time to elevated temperatures. For example, they may be tested for such gas formation by being heated -to and held at temperatures in the range GOO-700 F. in a vessel connected with a condenser, and the fixed gas noncondensible at atmospheric pressure and temperature, so formed can be collected and measured. Comparative data from such a test, carried out on an old type and a new type oil follows:
From this it may be observed that these new oils may be deflnedas oils which are substantially resistant to thermal decomposition, as evidenced by formation of normally non-condensible gaseous products, upon prolonged exposure to temperatures within the range GOO-700 F- In this connection, it may be re-' markedthat it is quite definitely established in the art of thermal decomposition of hydrocarbons that results obtained from comparatively short exposure to active cracking temperatures may be obtained also by much longer exposure to much lower temperatures. Consequently, to
those skilled in the art, the above noted evolu- I tion of measurable quantities of gas in the above old oil at temperatures above 600 F. is a reaction of the same character as that giving sludge, coke, reduction of flash, gas evolution, and similar degradation in the old oil when exposed for periods of months and years to temperatures around 500-550 F.
Oils of the new type may also be defined by means of physical characteristics, the most outstanding of which is that for a given gravity, they are possessed of viscosities and boiling ranges substantially lower than those normally associated with naturally occurring mineral. oil fractions of similar gravity.
A less highly indicative characteristic of such oils is their aniline point, a chemical characteristic, defined as the lowest temperature at which the oil is completely miscible with an equal volume of aniline. For comparison, a typical oil of the old type has an aniline number of 115 C., while a typical oil of the new type has an aniline number of 68 C. In general, the useful characteristics of oils of the new type with which this invention is concerned will be associated with aniline points of C. or less.
Oils at present preferred for the uses above outlined will, in general fall within the range of properties outlined below:
TABLE IV Gravity A. P. I 0 to 30 Initial boiling point, "F 5'75 to 850 Viscosity at F. (seconds S. U. V.) 60 to 250 Aniline point 80 C. or lower.
The initial boiling point of such oils should be suinciently high so that no generation of vapors under the conditions obtaining in the heating system will occur, and to this end, this property must be correlated somewhat with intended use. For most present conditions, an initial boiling point of about 575 F. (A. S. T. M. method) will be sufficient, although for use at higher temperatures, this should be correspondingly higher. 7
We claim:
1. The method of applying heat at temperatures ranging from 600 F. to around 700 F. comprising continuously circulating a fluid heat transfer medium in a closed cycle, applying heat to said medium in one portion of said cycle and removing useful heat from it at another portion of the cycle, in which the fiuid heat transfer medium is a cracked mineral oil fraction, substantially resistant to thermal decomposition, as evidenced by formation of normally non-condensible gaseous products, upon prolonged exposure to temperatures within the range GOO-700 F. conforming .to the following specification:
Gravity A. P. 1..-; 0 to 30 Initial boiling point, F 575 to 850 Viscosity at 100 seconds Saybolt Universal 60 to 250 Aniline point 80 C. or lower.
2. The method of applying heat at temperatures ranging from 600 F. to around 700 F. comtransfer medium in a closed cycle, applying heat to said medium in one portion of said cycle and removing useful heat from it at another portion posure to temperatures within the range 600-700 F., having an initial boiling point of at least 575 F., and a viscosity not greater than about 250 seconds Saybolt Universal at 100 F.-
3. The method of applying heat at temperatures ranging from'600 F. to around 700'F. comprising continuously circulating a fluid heat transfer medium in a closed cycle, applying heat -to said medium in one portion of said cycle and removing useful heat from another portion of the cycle, in which the fluid heat transfer medium is a cracked mineral oil fraction of gas oil nature, having an initial boiling point of at least 575 F., and substantially resistant to thermal decomposition, as evidenced by formation of normally non-condensible gaseous products upon prolonged exposure to temperatures within the range 600-700 F., and a viscosity not greater than of the order of about 250 seconds Saybolt Universal at 100 F.
VLADIMIR L. SHIPP. JOHN HAPPEL.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US336592A US2270717A (en) | 1940-05-22 | 1940-05-22 | Process of transferring heat |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US336592A US2270717A (en) | 1940-05-22 | 1940-05-22 | Process of transferring heat |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2270717A true US2270717A (en) | 1942-01-20 |
Family
ID=23316788
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US336592A Expired - Lifetime US2270717A (en) | 1940-05-22 | 1940-05-22 | Process of transferring heat |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2270717A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2497929A (en) * | 1946-10-24 | 1950-02-21 | Standard Oil Dev Co | Method of transferring heat by a hydrocarbon medium |
| US3161692A (en) * | 1961-10-10 | 1964-12-15 | Socony Mobil Oil Co Inc | Preparation of 1, 1, 3-trimethyl-3-phenylindanes and heat transfer fluids and lubricants therefrom |
-
1940
- 1940-05-22 US US336592A patent/US2270717A/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2497929A (en) * | 1946-10-24 | 1950-02-21 | Standard Oil Dev Co | Method of transferring heat by a hydrocarbon medium |
| US3161692A (en) * | 1961-10-10 | 1964-12-15 | Socony Mobil Oil Co Inc | Preparation of 1, 1, 3-trimethyl-3-phenylindanes and heat transfer fluids and lubricants therefrom |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3687840A (en) | Delayed coking of pyrolysis fuel oils | |
| Henderson et al. | Physical upgrading of heavy crude oils by the application of heat | |
| NO126380B (en) | ||
| EP0144181A1 (en) | Inhibition of coke deposition | |
| US2270717A (en) | Process of transferring heat | |
| US2179080A (en) | Coking of hydrocarbon oils | |
| US2282602A (en) | Process for the conversion of hydrocarbons | |
| US2057441A (en) | Method of burning coke from heater tubes | |
| McAfee | The Improvement of High Boiling Petroleum Oils, and the Manufacture of Gasoline as a By-product There from, by the Action of Aluminum Chloride. | |
| US3272721A (en) | Process for desulfurizing and coking high sulfur content coal | |
| US2428666A (en) | Catalytic conversion of hydrocarbons | |
| US2199841A (en) | Method of treating hydrocarbon mixtures | |
| US1864686A (en) | Process of cracking and coking | |
| US1836051A (en) | Shale distillation | |
| US1867823A (en) | Process of forming coke from mineral hydrocarbons | |
| US2316931A (en) | Continuous process for cracking and polymerizing petroleum oils | |
| US2358912A (en) | Conversion of hydrocarbons | |
| US2472669A (en) | Preventing coke formation in preheater tubes | |
| US2938852A (en) | Coking process | |
| SU448650A3 (en) | Method for producing needle coke | |
| GB1578896A (en) | Thermal cracking of hydrocarbons | |
| US1391569A (en) | Process for the cracking of hydrocarbon oils and the like | |
| USRE18896E (en) | black | |
| US1934001A (en) | Production of hydrocarbon products | |
| US2223524A (en) | Method of refining mineral oil |