US2176348A - Manufacture of mellitic acid - Google Patents
Manufacture of mellitic acid Download PDFInfo
- Publication number
- US2176348A US2176348A US135061A US13506137A US2176348A US 2176348 A US2176348 A US 2176348A US 135061 A US135061 A US 135061A US 13506137 A US13506137 A US 13506137A US 2176348 A US2176348 A US 2176348A
- Authority
- US
- United States
- Prior art keywords
- acid
- mellitic acid
- mellitic
- coke
- permanganate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 title description 106
- 238000004519 manufacturing process Methods 0.000 title description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 33
- 239000000463 material Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 27
- 239000000571 coke Substances 0.000 description 27
- 239000000203 mixture Substances 0.000 description 27
- 229910017604 nitric acid Inorganic materials 0.000 description 25
- 239000002253 acid Substances 0.000 description 24
- 229910002804 graphite Inorganic materials 0.000 description 22
- 239000010439 graphite Substances 0.000 description 22
- 239000000243 solution Substances 0.000 description 19
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 18
- 239000000706 filtrate Substances 0.000 description 18
- 239000003245 coal Substances 0.000 description 17
- 239000003610 charcoal Substances 0.000 description 15
- 230000001590 oxidative effect Effects 0.000 description 15
- 238000009835 boiling Methods 0.000 description 14
- 239000006229 carbon black Substances 0.000 description 14
- 235000019241 carbon black Nutrition 0.000 description 14
- 239000011304 carbon pitch Substances 0.000 description 14
- 239000003054 catalyst Substances 0.000 description 12
- 239000012286 potassium permanganate Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 229910052783 alkali metal Inorganic materials 0.000 description 10
- 150000001340 alkali metals Chemical class 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000010992 reflux Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 8
- 150000003863 ammonium salts Chemical class 0.000 description 7
- 239000003575 carbonaceous material Substances 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 5
- 239000012670 alkaline solution Substances 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 235000019253 formic acid Nutrition 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 239000001117 sulphuric acid Substances 0.000 description 5
- 235000011149 sulphuric acid Nutrition 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 150000004702 methyl esters Chemical class 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 159000000007 calcium salts Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- WQEVDHBJGNOKKO-UHFFFAOYSA-K vanadic acid Chemical compound O[V](O)(O)=O WQEVDHBJGNOKKO-UHFFFAOYSA-K 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 159000000009 barium salts Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical class [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 239000011287 low-temperature tar Substances 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/27—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with oxides of nitrogen or nitrogen-containing mineral acids
Definitions
- My invention relates to a process for the proterial may be treated to produce mellitic acid of duction of mellitic acid, and more especially to a a high quality and with a good yield.
- process for manufacturing mellitic acid from carmy process consists of refluxing a carbonaceous bonaceous material, and has for its object to promaterial with an excess of an oxidizing acid such vide a simple, eillcient and inexpensive method as fuming nitric acid, with or without the pres- 5 by which mellitic acid may be produced.
- carbonaceous material is used herein to prolonged boiling, say, for a period of two weeks, mean coal, coke, charcoal, graphite, carbon the whole mixture is evaporated to dryness and blacks, and pitch. the residue then oxidized by boiling for a con-
- Various reagents have heretofore been used by siderable period of time, say one week, with an 10 other workers to oxidize carbonaceous materials excess of an oxidizing salt, in an alkaline solution to mellitic acid, such as alkaline permanganate, such as alkaline permanganate, and then filtersodium hypochlorite, fuming nitric acid with ing.
- mellitic acid such as alkaline permanganate, such as alkaline permanganate
- filtersodium hypochlorite fuming nitric acid with ing.
- a high yield of mellitic acid of excellent potassium chlorate, concentrated sulphuric acid, quality may be recovered from the filtrate.
- an oxidizing salt'dper 100 gram mellitic acid may be obtained from carbonaceous material material by first treating the material for a suitable period of time with a suitable oxidizing Total acids Am i Mellitic acid acid, with or without the presence of a catalyst, ff 1113 331? gfggfig fi followed by oxidation with an oxidizing salt such as alkaline permanganate.
- Mellitic acid obtained by following my method is pure, of excel- 700 O.Edenborn c01 2 5% lent quality, and the yield is high.
- fgg g f gygggg g- 55 The principal object of my invention is to graph te 23.7 80.0 19.1
- Figure 1 is a diagrammatic side elevation of a vessel suitable for use in boiling certain mixtures.
- Figure 2 is a diagrammatic side elevation of a three-compartment cell suitable for use in this process.
- FIG. 1 of the drawing there is shown an apparatus which can be conveniently used for boiling the mixture during a certain phase of the process.
- the apparatus consists of an iron vessel ill with a removable water-cooled lid ii, through which lid a shaft i2 with a paddle adjacent the bottom of the vessel passes.
- This stirring device is driven by a suitable prime mover, not shown.
- a tube i l passes through the cover H, and a cover i5 is fitted over the outer end of the tube. Through this tube materials may be introduced into the iron vessel from time to time.
- Figure 2 represents a three-compartment cell comprising a vessel it of non-conducting material divided into three cells by porous membranes H, 118, preferably made of parchment.
- a platinum anode i9 is placed in compartment A. This is called the anodic compartment.
- This compartment may be provided with a cooling coil of non-conducting material such as glass which will not affect or be affected by the liquid in the anodic compartment.
- a hollow cathode 20 formed from copper and having pipes 2i and 22 through which cooling water is circulated, is placed. This compartment is known as the cathodic compartment.
- the anode and the cathode are connected to a suitable source of direct current electricity.
- the compartment B is referred to as the middle compartment.
- This apparatus is more particularly described and claimed in the copending application of Henry C. Howard, Ser. No. 135,038 filed April 5, 1937. The following examples illustrate the invention.
- Example I Coke was formed by heating Edenborn coal to approximately 1000 C. One hundred grams of the coke (200 mesh), together with 1500 cc. fuming nitric acid (sp. gr. 1.5) to which 0.24 gram ammonium vanadate was added, where refiuxed for 14 days in an ordinary Pyrex flask with a refiux condenser. Then the whole was evaporated to dryness in a steam bath under a vacuum of approximately 20 mm. of mercury. The
- anodic compartments were emptied and refilled with distilled water twice during each 24 hours of the electrolysis.
- the combined anodic solutions were evaporated to about 300 cc. and the mellitic acid was precipitated as the ammonium salt by adding the concentrated anodic solution to 1500 cc. of a well cooled solution of ammonium hydroxide (sp. gr. 0.9).
- An insoluble precipitate was formed which was found to be pure ammonium mellitate free from oxalic acid or any other impurities.
- the yield of the dried salt was 35. grams. Ai'ter drying for 48 hours over sulphuric acid under a vacuum of about 20 mm. of mercury, the salt had the approximate composition or a hexahydrate. To obtain the free acid, the ammonium mellitate was added to 1000 cc. of distilled water containing 50 grams of potassium hydroxide and 12 cc. formic acid. The mixture was electrolyzed as described above. The dried residue obtained from the evaporated anodic solutions consisted of 22.5 grams of analytically pure mellitic acid.
- Example II One hundred grams of triphenylene (9-10 benzophenanthrene) was added to 1 liters of nitric acid (sp. gr. 1.5) and refluxed for a period of two weeks. The whole was then evaporated to dryness over a steam bath under a vacuum of about 20 mm. of mercury. To the residue, 200 grams of potassium hydroxide dissolved in 3 liters of water was added and the mixture boiled with constant stirring for one week in an iron vessel having a water-cooled lid and an agitator in the vessel (see Figure 1). From time to time during the week, 800 grams of potassium permanganate was added at a rate such that the liquid always showed a purple color. The excess of potassium permanganate was destroyed by adding sodium formats (I-ICOONa).
- the MnO2 was filtered ofi and washed.
- the filtrate contained the mellitic acid as a potassium salt.
- the filtrate was then concentrated by evaporation at atmospheric pressure over a steam bath to a volume of about 1 liter.
- the filtrate was then placed in the middle compartment of a three-compartment cell with a parchment membrane separating the compartments (see Figure 2).
- about 50 cc. of formic acid was added to the alkaline filtrate.
- the anodic and cathodic compartments were filled with distilled water. Electrolysis was conducted for 4 days with a current not exceeding 4 amps. at 110 volts.
- the cathodic and anodic compartments were emptied and refilled with distilled water twice during each 24 hours.
- Example III Five hundred grams Clairton coke (-200 mesh) was refluxed for a total period of 3 weeks with 5500 cc. nitric acid (sp. gr. 1.5) and 300 cc. nitric acid (sp. gr. 1.6). The nitric acid was added in portions. First 3000 cc. nitric acid (sp. gr. 1.5) was added. After boiling for a little more than a week, the volume of the nitric acid had de- The creased very much, but the color of the mixture was still the initial black. Then 300 cc. of nitric acid (sp. gr. 1.6) was added and boiling continued for 3 days more. The color still remained black.
- Example IV One thousand grams of 200 mesh Fairmont coke was oxidized with 3 liters of nitric acid (sp. gr. 1.5) and 0.5 gram vanadic .acid as catalyst at a temperature between (SO-70 C. for one week. The mixture was then cooled and the insolubles were filtered off. The insolubles were dried and then added to 15 liters. of water containing 500 grams of potassium hydroxide. The mixture was placed in an iron vessel provided with a'doublewalled water-cooled lid and with a stirrer reaching into the vessel, as described in the previous examples. After the solution was brought to boil, 11,000 grams of solid potassium permanganate was added within 3 days. After that time the color was discharged. The manganese dioxide was filtered off and the mellitic acid recovered as in the previous examples. The yield was 150 grams.
- the alkaline filtrate is evaporated to dryness and treated with an excess of dimethyl sulphate at room temperature for several days. In this manner, the neutral methyl ester of mellitic acid is formed and the alkali hydroxide is changed to a sulphate.
- the inorganic matter from the coke mainly silica, is also present in this mixture.
- the ester the whole mixture is treated with water and the excess dimethyl sulphate is decomposed by adding a bicarbonate.
- the insoluble material consisting of silica and ester is filtered off and the ester is obtained by extraction with alcohol or acetone.
- the ester may be purified by recrystallization from a mixture of methyl alcohol and water.
- a mixture of methyl alcohol and sulphuric acid may be employed.
- the well dried evaporation residue from the alkaline filtrate is suspended in a definite volume of methyl alcohol and to this is added carefully about half that volume of concentrated sulphuric acid containing copper sulphate as catalyst. After heating the mixture for one hour at 125 C., it is poured into water when silica and ester separate. The ester is obtained by extraction as above.
- a catalyst it may or may not be desirable to use a catalyst depending upon the conditions of the oxidation. If a large excess of nitric acid is used, the catalyst is of no advantage. If the amount of nitric acid is greatly reduced, the catalyst may be of importance by speeding up the oxidation with nitric acid. However, the yields of mellitic acid are the same whether a catalyst is used or not. But the amount of permanganate required in the second stage may be reduced by using a catalyst in the first stage, if the nitric acid is not present in large excess. I have also determined that the temperature to which the carbonaceous material is subjected before treatment has an effect on the yield of mellitic acid.
- mellitic acid from a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch, the steps which consist of heating the material, refluxing the material with an excess of an oxidizing acid, evaporating the mixture to dryness, dissolving the residue in an aqueous solution of a metallic hydroxide, boiling the solution with an excess of an alkali metal permanganate, filtering the mixture, and recovering the mellitic acid through the barium salt.
- mellitic acid from a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch
- steps comprising heating the material with nitric acid, filtering the insolubles, drying the insolubles and then treating the insolubles with a solution of an alkali metal hydroxide and an alkali metal permanganate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
O 17, 1939- B. JUETTNER MANUFACTURE OF MELLITIC ACID Filed April 5, 1937 lNVENTOR Berna rd Jue-tfner MM; M
M5 ATTORNEYS Patented Oct. 11, 1939 2,176,348
UNITED STATES PATENT OFFICE MANUFACTURE OF MELLITIC ACID Bernard Juettner, Pittsburgh, Pa., assignor to Carnegie Institute of Technology, Pittsburgh, Pa a corporation of Pennsylvania Application April 5, 1937, Serial No. 135,061
14 Claims. (Cl. 260-515) My invention relates to a process for the proterial may be treated to produce mellitic acid of duction of mellitic acid, and more especially to a a high quality and with a good yield. In general, process for manufacturing mellitic acid from carmy process consists of refluxing a carbonaceous bonaceous material, and has for its object to promaterial with an excess of an oxidizing acid such vide a simple, eillcient and inexpensive method as fuming nitric acid, with or without the pres- 5 by which mellitic acid may be produced. The ence of a catalyst such as vanadic acid. After term "carbonaceous material" is used herein to prolonged boiling, say, for a period of two weeks, mean coal, coke, charcoal, graphite, carbon the whole mixture is evaporated to dryness and blacks, and pitch. the residue then oxidized by boiling for a con- Various reagents have heretofore been used by siderable period of time, say one week, with an 10 other workers to oxidize carbonaceous materials excess of an oxidizing salt, in an alkaline solution to mellitic acid, such as alkaline permanganate, such as alkaline permanganate, and then filtersodium hypochlorite, fuming nitric acid with ing. A high yield of mellitic acid of excellent potassium chlorate, concentrated sulphuric acid, quality may be recovered from the filtrate.
concentrated nitric acid, sodium chlorate and With high temperature cokes and especially 15 osmium tetroxide, anodic oxidation, fuming graphite, the superiority of the nitric acidnitric acid with vanadium catalyst. The yields alkaline permanganate oxidation is best illusof the pure acid were extremely small and in trated. After boiling Acheson graphite (200 most cases only crude products were obtained. mesh) with fuming nitric acid and ammonium The best yields were reported by H. Meyer and vanadate for two weeks, no visible change had 20 coworkers who oxidized carbonaceous material taken place. The material had still the appearfrom various sources by refluxing with fuming ance of graphite. But on subsequent treatment nitric acid and 0.2% vanadic acid. The crude with alkaline permanganate, the graphite was mellitic acid was converted into the ammonium oxidized to mellitic acid. Graphite not presalt and purified through the copper salt. Their oxidized with nitric acid was not perceptibly yields are based on the crude ammonium salt. attacked by alkaline permanganate. I
The yield of the pure acid is not given, but from The new procedure using fuming nitric acid experiments I have conducted following their and ammonium vanadate was applied to 700 C.
procedure, I am forced to conclude that the yields and 1000 C. cokes. Here the nitric acid oxidation were small. I have also found that their proproceeded much further than with graphite and cedure using only fuming nitric acid and vanaintermediate compounds were formed which, on dium catalyst even for a prodonged oxidation subsequent alkaline permanganate oxidation, period of two weeks was wholly ineffective with yielded mellitic acid. In all cases, a complete high temperature cokes from various coals. The conversion of the carbon to CO2, mellitic acid and oxidati n st p d t t formation of high acids forming soluble ammonium salts was 35 molecular intermediate compoundseffected. The 1000 C. coke produced almost I amjaware also that attempts have been made exclusively c0; and mellitic acid while the 700 0.
to 5 carbonaceous matPflaI by the use of coke produced CO2,me1litic acid, and acids formalkahne oxidation This ing soluble ammonium salts. In no case was cedure resulted mamly m oxalic acid being graphitic acid, nor any other intermediate oxida- 40 formed wtih very little mellitic acid, when low tion product of larger molecular size than mellitlc temperature cokes were employed as the start acid, to d in the final product.
ing material. When high temperature cokes were employed as the starting material, it was Yields of mew-tic acid M the treatment with found that alkaline permanganate had extremely nitric acid and a catalyst followed by treat 45 little effect.
I have found that a very satisfactory yield of ment an oxidizing salt'dper 100 gram mellitic acid may be obtained from carbonaceous material material by first treating the material for a suitable period of time with a suitable oxidizing Total acids Am i Mellitic acid acid, with or without the presence of a catalyst, ff 1113 331? gfggfig fi followed by oxidation with an oxidizing salt such as alkaline permanganate. Mellitic acid obtained by following my method is pure, of excel- 700 O.Edenborn c01 2 5% lent quality, and the yield is high. fgg g f gygggg g- 55 The principal object of my invention is to graph te 23.7 80.0 19.1
provide a process by which carbonaceou ma- The mellitic acid was identified by analysis and by preparing the neutral methyl ester.
In the practice of my invention, the apparatus illustrated in the accompanying drawing may be employed. In the drawing:
Figure 1 is a diagrammatic side elevation of a vessel suitable for use in boiling certain mixtures; and
Figure 2 is a diagrammatic side elevation of a three-compartment cell suitable for use in this process.
In Figure 1 of the drawing, there is shown an apparatus which can be conveniently used for boiling the mixture during a certain phase of the process. The apparatus consists of an iron vessel ill with a removable water-cooled lid ii, through which lid a shaft i2 with a paddle adjacent the bottom of the vessel passes. This stirring device is driven by a suitable prime mover, not shown. A tube i l passes through the cover H, and a cover i5 is fitted over the outer end of the tube. Through this tube materials may be introduced into the iron vessel from time to time.
Figure 2 represents a three-compartment cell comprising a vessel it of non-conducting material divided into three cells by porous membranes H, 118, preferably made of parchment. In compartment A, a platinum anode i9 is placed. This is called the anodic compartment. This compartment may be provided with a cooling coil of non-conducting material such as glass which will not affect or be affected by the liquid in the anodic compartment. In compartment C, a hollow cathode 20, formed from copper and having pipes 2i and 22 through which cooling water is circulated, is placed. This compartment is known as the cathodic compartment. The anode and the cathode are connected to a suitable source of direct current electricity. The compartment B is referred to as the middle compartment. This apparatus is more particularly described and claimed in the copending application of Henry C. Howard, Ser. No. 135,038 filed April 5, 1937. The following examples illustrate the invention.
Example I Coke was formed by heating Edenborn coal to approximately 1000 C. One hundred grams of the coke (200 mesh), together with 1500 cc. fuming nitric acid (sp. gr. 1.5) to which 0.24 gram ammonium vanadate was added, where refiuxed for 14 days in an ordinary Pyrex flask with a refiux condenser. Then the whole was evaporated to dryness in a steam bath under a vacuum of approximately 20 mm. of mercury. The
, solid residue was dissolved in about 3 liters of water containing 200 grams of potassium hydroxide and transferred to an iron vessel provided with a double-walled, water-cooled lid with an efficient stirrer in the vessel (see Figure 1) The solution was brought to a boil and sufficient excess potassium permanganate was introduced from time to time so that the color remained purple during the seven days of boiling. During that time, less than 50 grams of potassium permanganate was used. The excess potassium permanganate was destroyed with formic acid. The manganese dioxide was filtered ed and thoroughly washed. The filtrate was concentrated.-
and placed in the middle cell of a three-compartment cell with parchment membranes separating the three-compartment cell (see Figure 2). The anodic and cathodic compartments were eavaasa filled with distilled water. To obtain good conduction, about 50 cc. formic acid was added to the alkaline filtrate. After electrolysis for four days with a current not exceeding 4 amp. at volts, the acids were found to have migrated to the anode compartment. The cathodic .and
, anodic compartments were emptied and refilled with distilled water twice during each 24 hours of the electrolysis. The combined anodic solutions were evaporated to about 300 cc. and the mellitic acid was precipitated as the ammonium salt by adding the concentrated anodic solution to 1500 cc. of a well cooled solution of ammonium hydroxide (sp. gr. 0.9). An insoluble precipitate was formed which was found to be pure ammonium mellitate free from oxalic acid or any other impurities.
The yield of the dried salt was 35. grams. Ai'ter drying for 48 hours over sulphuric acid under a vacuum of about 20 mm. of mercury, the salt had the approximate composition or a hexahydrate. To obtain the free acid, the ammonium mellitate was added to 1000 cc. of distilled water containing 50 grams of potassium hydroxide and 12 cc. formic acid. The mixture was electrolyzed as described above. The dried residue obtained from the evaporated anodic solutions consisted of 22.5 grams of analytically pure mellitic acid.
Example II One hundred grams of triphenylene (9-10 benzophenanthrene) was added to 1 liters of nitric acid (sp. gr. 1.5) and refluxed for a period of two weeks. The whole was then evaporated to dryness over a steam bath under a vacuum of about 20 mm. of mercury. To the residue, 200 grams of potassium hydroxide dissolved in 3 liters of water was added and the mixture boiled with constant stirring for one week in an iron vessel having a water-cooled lid and an agitator in the vessel (see Figure 1). From time to time during the week, 800 grams of potassium permanganate was added at a rate such that the liquid always showed a purple color. The excess of potassium permanganate was destroyed by adding sodium formats (I-ICOONa). The MnO2 was filtered ofi and washed. The filtrate contained the mellitic acid as a potassium salt. The filtrate was then concentrated by evaporation at atmospheric pressure over a steam bath to a volume of about 1 liter. The filtrate was then placed in the middle compartment of a three-compartment cell with a parchment membrane separating the compartments (see Figure 2). To obtain good conduction, about 50 cc. of formic acid was added to the alkaline filtrate. The anodic and cathodic compartments were filled with distilled water. Electrolysis was conducted for 4 days with a current not exceeding 4 amps. at 110 volts. The cathodic and anodic compartments were emptied and refilled with distilled water twice during each 24 hours.
The combined anodic solutions obtained above were converted to mellitic acid through the ammonium salt as described in Example I. yield was 67.2 grams.
Example III Five hundred grams Clairton coke (-200 mesh) was refluxed for a total period of 3 weeks with 5500 cc. nitric acid (sp. gr. 1.5) and 300 cc. nitric acid (sp. gr. 1.6). The nitric acid was added in portions. First 3000 cc. nitric acid (sp. gr. 1.5) was added. After boiling for a little more than a week, the volume of the nitric acid had de- The creased very much, but the color of the mixture was still the initial black. Then 300 cc. of nitric acid (sp. gr. 1.6) was added and boiling continued for 3 days more. The color still remained black.
.An attempt was made to filter off the insolubles.
This, however, did not work due to the colloidal nature of the reaction products. Therefore, the oxidation was continued by adding, first 2000 cc. of nitric acid (sp. gr. 1.5) and later 500 cc. of nitric acid (sp. gr. 1.5). After about a week of further refluxing, the color had changed from black to light brown. It was allowed to cool and the insolubles were separated by sedimentation and filtration. In this case filtration was not difiicult. The insolubles were then dried and further oxidized with alkaline potassium permanganate. Less than 100 grams of potassium permanganate were used during 6 days. The excess potassium permanganate was destroyed with formic acid. The manganese dioxide was filtered off and washed. The filtrate contained the mellitic acid as a potassium salt. The filtrate was treated as was the filtrate in Example I. The yield of mellitic acid was 71.4 grams.
Example IV One thousand grams of 200 mesh Fairmont coke was oxidized with 3 liters of nitric acid (sp. gr. 1.5) and 0.5 gram vanadic .acid as catalyst at a temperature between (SO-70 C. for one week. The mixture was then cooled and the insolubles were filtered off. The insolubles were dried and then added to 15 liters. of water containing 500 grams of potassium hydroxide. The mixture was placed in an iron vessel provided with a'doublewalled water-cooled lid and with a stirrer reaching into the vessel, as described in the previous examples. After the solution was brought to boil, 11,000 grams of solid potassium permanganate was added within 3 days. After that time the color was discharged. The manganese dioxide was filtered off and the mellitic acid recovered as in the previous examples. The yield was 150 grams.
It is possible to recover the mellitic acid from the alkaline filtrate as obtained, for instance, in Example I, through the barium or calcium salt.
' -The alkaline filtrate is made just slightly acidic,
for instance with hydrochloric or nitric or acetic acid, and treated with a soluble barium or calcium salt. The insoluble barium or calcium mellitate is formed. This is filtered off and treated with a sufiicient amount of dilute sulphuric acid and the insoluble barium or calcium sulphates, separated by filtration, and the mellitic acid recovered by evaporation of the filtrate.
It is also possible to recover the mellitic acid from the alkaline filtrate as the neutral methyl ester. The alkaline filtrate is evaporated to dryness and treated with an excess of dimethyl sulphate at room temperature for several days. In this manner, the neutral methyl ester of mellitic acid is formed and the alkali hydroxide is changed to a sulphate. The inorganic matter from the coke, mainly silica, is also present in this mixture. To obtain the ester, the whole mixture is treated with water and the excess dimethyl sulphate is decomposed by adding a bicarbonate. The insoluble material consisting of silica and ester is filtered off and the ester is obtained by extraction with alcohol or acetone. The ester may be purified by recrystallization from a mixture of methyl alcohol and water.
Instead of using dimethyl sulphate for preparing the ester, a mixture of methyl alcohol and sulphuric acid may be employed. The well dried evaporation residue from the alkaline filtrate is suspended in a definite volume of methyl alcohol and to this is added carefully about half that volume of concentrated sulphuric acid containing copper sulphate as catalyst. After heating the mixture for one hour at 125 C., it is poured into water when silica and ester separate. The ester is obtained by extraction as above.
In this method the inconvenient and lengthy operation of decomposing the excess dimethyl sulphate is avoided.
The following table shows the yields in grams of mellitic acid per 100 grams of the following matfiigials (pulverized to approximately 200 mes Heated at Pittsburgh coal".
Cellulose (cotton). Acheson graphite. Natural graphite. Activated charcoal Pitch from low-temperature tar 9-l0-bcnzophenantbrene Petroleum coke The effect of heat treating the carbonaceous material before subjecting it to the process which I have invented is shown in the above table.
It may or may not be desirable to use a catalyst depending upon the conditions of the oxidation. If a large excess of nitric acid is used, the catalyst is of no advantage. If the amount of nitric acid is greatly reduced, the catalyst may be of importance by speeding up the oxidation with nitric acid. However, the yields of mellitic acid are the same whether a catalyst is used or not. But the amount of permanganate required in the second stage may be reduced by using a catalyst in the first stage, if the nitric acid is not present in large excess. I have also determined that the temperature to which the carbonaceous material is subjected before treatment has an effect on the yield of mellitic acid. For example, I have found that in general better results are obtained if the coke is formed at a temperature of not less than 700 C. I have also determined that if the time of treatment with nitric acid is increased, the amount of potassium permanganate needed will be decreased. The most economical process must be ascertained experimentally for each type of carbonaceous material. These data can be readily obtained following the teachings of my invention.
It is evident that by the process which I have invented, mellitic acid can be produced in any desirable quantities in an economical and expeditious manner.
While I have specifically described the pre-- ferred embodiment of my invention, it is to be understood that the invention may be otherwise practiced within the scope of the following claims.
I claim:
1. In the process of making mellitic acid, the steps which consist of treating a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch with nitric acid and vanadic acid followed by a treatment with an alkali metal permanganate in an alkaline solution.
2. In the process of making mellitic acid, the steps which consist of treating a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch with nitric acid and a catalyzer followed by a treatment with an alkali metal, permanganate in an alkaline solution.
3. In the process of making mellitic-acid from a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch, the steps which consist of heating the material, refluxing the material with an excess of an oxidizing acid, evaporating the mixture to dryness, dissolving the residue in an aqueous solution of a metallic hydroxide, boiling the solution with an excess of an alkali metal permanganate, filtering the mixture, separating the acids, and recovering the mellitic acid through the ammonium salt.
4. In the process of making mellitic acid from a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch, the steps which consist of heating the material, refluxing the material with an excess of an oxidizing acid, evaporating the mixture to dryness, dissolving the residue in an aqueous solution of potassium hydroxide, boiling the solution with an excess of potassium permanganate, filtering the mixture, separating the acids, and recovering the mellitic acid through the ammonium salt.
5. In the process of making mellitic acid from a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch, the steps which consist of heating the material, refluxing the material with an excess of an oxidizing acid, evaporating the mixture to dryness, dissolving the residue in an aqueous solution of a metallic hydroxide, boiling the solution with an excess of an alkali metal permanganate, filtering the mixture, and recovering the mellitic acid through the barium salt.
6. In the process of making mellitic acid from a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch, the steps which consist of heating the material, refluxing the material with an excess of an oxidizing acid, evaporating the mixture to dryness, dissolving the residue in an aqueous solution of a metallic hydroxide, boiling the solution with an excess of an alkali metal permanganate in an alkaline medium, filtering the mixture, and recovering the mellitic acid through the calcium salt.
7. In the process of making mellitic acid from a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch, the steps which consist of heating the material, refluxing the material with an excess of an oxidizing acid, evaporating the mixture to dryness, dissolving the residue in an aqueous solution of a metallic hydroxide, boiling the solution with an excess of an alkali metal permanganate, filtering the mixture, and recovering the mellitic acid through neutral methyl ester.
8. In the process of making mellitic acid, the steps which consist of treating a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch with nitric acid followed by a treatment with potassium permanganate in an alkaline solution of potassium hydroxide.
9. In the process of making mellitic acid from a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch, the steps which consist of refluxing the material with an excess of an oxidizing acid, evaporating the mixture to dryness, dissolving the residue in an aqueous solution of a metallic hydroxide, boiling the solution with an excess of an oxidizing salt in an alkaline medium, destroying the excess of the oxidizing salt with an organic acid, filtering the mixture, concentrating the filtrate, placing the filtrate in the middle compartment of a three-compartment cell, the compartment being separated by a permeable neutral membrane, passing a current of electricity through the cell, collecting the anodic solution and evaporating it to a reduced bulk, adding the reduced bulk to a solution of ammonium hydroxide, adding the precipitate to water, electrolyzing the mixture in a three-compartment cell as above and drying the residue.
10. In the process of making mellitic acid by treating a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks and pitch, with an oxidizing acid, the step of treating the substance thus formed with a solution of an alkali metal permanganate and an alkali metal hydroxide.
11. In the process of making mellitic acid by treating a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch with fuming nitric acid, the step of treating the substance thus formed with an alkali metal permanganate in an alkaline solution.
12. In the process of making mellitic acid by treating a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch with nitric acid, the step of treating the insoluble residue thus formed with a solution of an alkali metal hydroxide and an alkali metal permanganate.
13. In the process of making mellitic acid by treating a material selected from the group consisting of coal, coke, charcoal, graphite, carbon black, and pitch by an oxidizing acid, the steps of drying the residue and then treating the residue with .a solution of an alkali metal hydroxide and an alkali meal permanganate.
14. In the process of making mellitic acid from a material selected from the group consisting of coal, coke, charcoal, graphite, carbon blacks, and pitch, the steps comprising heating the material with nitric acid, filtering the insolubles, drying the insolubles and then treating the insolubles with a solution of an alkali metal hydroxide and an alkali metal permanganate.
BERNARD J UE'I'I'NER.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US135061A US2176348A (en) | 1937-04-05 | 1937-04-05 | Manufacture of mellitic acid |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US135061A US2176348A (en) | 1937-04-05 | 1937-04-05 | Manufacture of mellitic acid |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2176348A true US2176348A (en) | 1939-10-17 |
Family
ID=22466345
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US135061A Expired - Lifetime US2176348A (en) | 1937-04-05 | 1937-04-05 | Manufacture of mellitic acid |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2176348A (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2461740A (en) * | 1947-10-02 | 1949-02-15 | Carnegie Inst Of Technology | Process of making organic acids from carbonaceous material |
| US2555410A (en) * | 1948-06-29 | 1951-06-05 | Carnegie Inst Of Technology | Process of making organic acids from carbonaceous material |
| US2568965A (en) * | 1947-05-26 | 1951-09-25 | Gulf Research Development Co | Coal acid esters as synthetic lubricants |
| US2640075A (en) * | 1950-04-01 | 1953-05-26 | Directie Staatsmijnen Nl | Manufacture of polycarboxylic acids |
| US2673216A (en) * | 1950-03-28 | 1954-03-23 | Directie Staatsmijnen Nl | Production of aromatic polycarboxylic acids |
| US2726262A (en) * | 1950-08-24 | 1955-12-06 | Bergwerksverband Gmbh | Process for the preparation and purification of monocyclic aromatic polycarboxylic acids or mixtures thereof |
| US2838429A (en) * | 1954-06-28 | 1958-06-10 | Sanders Charlie Asa | Electrolyte for storage batteries and process for producing the same |
| US2991189A (en) * | 1957-01-11 | 1961-07-04 | Dow Chemical Co | Method of coating a substrate with coal acids and article produced thereby |
| US3337617A (en) * | 1962-05-01 | 1967-08-22 | Exxon Research Engineering Co | Manufacture of aromatic polycarboxylic acids |
| US3350443A (en) * | 1962-08-09 | 1967-10-31 | Schlegel Jurgen | Process for producing pyromellitic acid and mellophanic acid |
| US4194297A (en) * | 1977-12-27 | 1980-03-25 | Western Electric Company, Incorporated | Method and apparatus for generating a controllably exposed vapor body for heating articles |
| US4238186A (en) * | 1978-12-04 | 1980-12-09 | Western Electric Company, Inc. | Methods and apparatus for heating articles selectively exposed to a generated vapor through a volume controllable vapor barrier |
| US4345098A (en) * | 1978-03-06 | 1982-08-17 | Occidental Research Corporation | Process for producing benzene carboxylic acid salts and their acids |
| US4375553A (en) * | 1981-09-28 | 1983-03-01 | Occidental Research Corporation | Process for producing benzene carboxylic acid salts from aromatic materials |
| US9623371B1 (en) | 2015-09-28 | 2017-04-18 | Savannah River Nuclear Solutions, Llc | Low temperature vapor phase digestion of graphite |
-
1937
- 1937-04-05 US US135061A patent/US2176348A/en not_active Expired - Lifetime
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2568965A (en) * | 1947-05-26 | 1951-09-25 | Gulf Research Development Co | Coal acid esters as synthetic lubricants |
| US2461740A (en) * | 1947-10-02 | 1949-02-15 | Carnegie Inst Of Technology | Process of making organic acids from carbonaceous material |
| US2555410A (en) * | 1948-06-29 | 1951-06-05 | Carnegie Inst Of Technology | Process of making organic acids from carbonaceous material |
| US2673216A (en) * | 1950-03-28 | 1954-03-23 | Directie Staatsmijnen Nl | Production of aromatic polycarboxylic acids |
| US2640075A (en) * | 1950-04-01 | 1953-05-26 | Directie Staatsmijnen Nl | Manufacture of polycarboxylic acids |
| US2726262A (en) * | 1950-08-24 | 1955-12-06 | Bergwerksverband Gmbh | Process for the preparation and purification of monocyclic aromatic polycarboxylic acids or mixtures thereof |
| US2838429A (en) * | 1954-06-28 | 1958-06-10 | Sanders Charlie Asa | Electrolyte for storage batteries and process for producing the same |
| US2991189A (en) * | 1957-01-11 | 1961-07-04 | Dow Chemical Co | Method of coating a substrate with coal acids and article produced thereby |
| US3337617A (en) * | 1962-05-01 | 1967-08-22 | Exxon Research Engineering Co | Manufacture of aromatic polycarboxylic acids |
| US3350443A (en) * | 1962-08-09 | 1967-10-31 | Schlegel Jurgen | Process for producing pyromellitic acid and mellophanic acid |
| US4194297A (en) * | 1977-12-27 | 1980-03-25 | Western Electric Company, Incorporated | Method and apparatus for generating a controllably exposed vapor body for heating articles |
| US4345098A (en) * | 1978-03-06 | 1982-08-17 | Occidental Research Corporation | Process for producing benzene carboxylic acid salts and their acids |
| US4238186A (en) * | 1978-12-04 | 1980-12-09 | Western Electric Company, Inc. | Methods and apparatus for heating articles selectively exposed to a generated vapor through a volume controllable vapor barrier |
| US4375553A (en) * | 1981-09-28 | 1983-03-01 | Occidental Research Corporation | Process for producing benzene carboxylic acid salts from aromatic materials |
| US9623371B1 (en) | 2015-09-28 | 2017-04-18 | Savannah River Nuclear Solutions, Llc | Low temperature vapor phase digestion of graphite |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2176348A (en) | Manufacture of mellitic acid | |
| US3642657A (en) | Production of active carbons from aromatic carboxylic acids petroleum coke acid or from porous carbons | |
| US2201050A (en) | Process for producing carbonaceous material | |
| US2606148A (en) | Process for electrolytic preparation of vanadium oxide | |
| DE2713401C3 (en) | Process for the production of anhydrous magnesium chloride | |
| US2224814A (en) | Electrolytic production of metals | |
| US2250204A (en) | Manufacture of mellitic acid | |
| US986180A (en) | Process of extracting vanadium from its ores. | |
| US1785270A (en) | Process of preparing petrolatum and the like and product obtained thereby | |
| Willard et al. | The electrolytic oxidation of iodine and of iodic acid | |
| US2176343A (en) | Process for the separation and purification of organic acids | |
| JPH06183715A (en) | Production of activated carbon | |
| US4149879A (en) | Recovery of mercury and caustic values from caustic sludges | |
| JPS6256215B2 (en) | ||
| US3790456A (en) | Method of extracting and recovering chromium values from chromite ore | |
| US1591712A (en) | Purification of anthraquinone | |
| US1173346A (en) | Method for the manufacture of chlorates and perchlorates of alkali metals. | |
| US4814495A (en) | Method for the preparation of hydroxybenzoic acid | |
| US1729428A (en) | Producing alkali-earth metal oxides | |
| GB484136A (en) | Improvements in or relating to methods for the production of pure magnesium compounds, more particularly magnesium oxide | |
| US2759957A (en) | Refining of glyceride oils | |
| US2216757A (en) | Alkali activation of black liquor | |
| US1051984A (en) | Process for extracting iodin, chlorin, potassium hydroxid, and other useful products from the ash of seaweeds or other marine forms of algæ. | |
| US2142670A (en) | Purification of aqueous caustic solutions | |
| US1596363A (en) | Manufacture of oxide pigments |