US2148331A - Method and composition for coating iron and steel articles - Google Patents
Method and composition for coating iron and steel articles Download PDFInfo
- Publication number
- US2148331A US2148331A US127808A US12780837A US2148331A US 2148331 A US2148331 A US 2148331A US 127808 A US127808 A US 127808A US 12780837 A US12780837 A US 12780837A US 2148331 A US2148331 A US 2148331A
- Authority
- US
- United States
- Prior art keywords
- bath
- alkali
- coloring
- solution
- articles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title description 23
- 238000000576 coating method Methods 0.000 title description 14
- 239000011248 coating agent Substances 0.000 title description 13
- 229910000831 Steel Inorganic materials 0.000 title description 12
- 229910052742 iron Inorganic materials 0.000 title description 12
- 239000010959 steel Substances 0.000 title description 12
- 238000000034 method Methods 0.000 title description 7
- 239000000203 mixture Substances 0.000 title description 4
- 239000000243 solution Substances 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 239000003513 alkali Substances 0.000 description 23
- 238000004040 coloring Methods 0.000 description 23
- 239000000126 substance Substances 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000007800 oxidant agent Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 230000001172 regenerating effect Effects 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 235000011121 sodium hydroxide Nutrition 0.000 description 5
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 4
- 240000007817 Olea europaea Species 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- -1 ferrous metals Chemical class 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 230000003113 alkalizing effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002506 iron compounds Chemical class 0.000 description 2
- 159000000014 iron salts Chemical class 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- XKZCXMNMUMGDJG-AWEZNQCLSA-N (2s)-3-[(6-acetylnaphthalen-2-yl)amino]-2-aminopropanoic acid Chemical compound C1=C(NC[C@H](N)C(O)=O)C=CC2=CC(C(=O)C)=CC=C21 XKZCXMNMUMGDJG-AWEZNQCLSA-N 0.000 description 1
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 1
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920002253 Tannate Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- YEESUBCSWGVPCE-UHFFFAOYSA-N azanylidyneoxidanium iron(2+) pentacyanide Chemical compound [Fe++].[C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.N#[O+] YEESUBCSWGVPCE-UHFFFAOYSA-N 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229960004887 ferric hydroxide Drugs 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 229960002460 nitroprusside Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000021110 pickles Nutrition 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- MNWBNISUBARLIT-UHFFFAOYSA-N sodium cyanide Chemical compound [Na+].N#[C-] MNWBNISUBARLIT-UHFFFAOYSA-N 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/60—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
- C23C22/62—Treatment of iron or alloys based thereon
Definitions
- This invention relates to methods and com-- positions for suriace'treating iron and steel articles with an. aqueous solution containing an alkali 'and'an oxidizing agent, for coloring or 10 coating the articles by chemical action on the surface thereof, and has for its principal objects the development of a very simple and economical aqueoussolution for coating or coloring'ierrous metals chemically,'and a definitemethod of control of the solution during plant operation.-
- This invention has for other objects to avoid a large number of the following dis advantages which have rendered'prior expedients along this line unsatisfactory:
- the prior coatings have been defective in durability or appearance, being non-adherent or subject to chipping,'cracking, scaling, peeling or powdering off, ipr imable to withstand stamping, shaping or rolling operations, or non-rust resisting, or the coating has been dull orlacking beauty and depth, or not permanent, or subject to discoloring with timer
- the prior processes have been expensive in the cost to color a unit area, requiring costly equipment or electric set-up and power, or difficult or complicated, requiring more than one operation to complete the work such'as spraying, baking, plating or hand sponging or requiring expert and skilled labor, or being incapable of coloring large quantities in baskets, or yield- .fing non-uniform resultsor altering dimensions or affecting hardness and elasticity of-articles particularly special steels being treated.
- the baths employed heretofore have required 40 expensive chemicals or high temperatures or molten salts or inflammable materials; or have been dltllcult to prepare or may decompose on standing idle, or have short life in operation, or leave a scum or-tacky or greasy surface on 46 the article or attack the surfacesuch. as by etching the polish, or deposit oxides of metals electronegative'to iron thusdecreasing rust resistance, or generate excessive carbonaceous material which interferes with operation, or the so bath will not work on common grades of iron orsteel.
- alkali to be used according to'the present invention, we have found that 30 we can use any-water soluble, non-volatile alkali or combination of alkalies, such as, for example,
- sodium hydrom'de, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium borate or sodium phosphate are given in an illustrative and not in a limiting sense.
- oxidizing agent for our purposes we have found that we can use any material which will form an oxidizing radical 40 or substance on the bath, such. as for example,
- the 'revivifying, activating or regenerating agents which we have: found to be suitable for our purpose are for example a cyanide, tartrate, bitartrate or tannate, or any other substance 50 capable of forming complex ions with that type of iron compounds shown to act as poisons or with the coloring or coating action in the coloring bath, and hence the examplesare given in an illustrative and not in a umiunc u oesreescandcan inactive due to the'presence orthelmdesirable' form or compound of the iron which has come into the solution mm the articles previously The temperature fmm'105 to 180 be attained, it n,
- this inert salt may vary from O'to 00% oi the total weight oi the bath.
- the iron or steel articles are immersed in the bath for aperiod of fl've'seconds to thirty minutes, on the depth of coating desired, and the character or the iron or steel being treated.
- Ai'tercoatingadeflniteamountotmetalitis sometimes desirable to add a small amount of example, about 0.5% additionbyweightotthebath,toenablethebathto continue; to function satisfactorily for the'coat ing.-
- This addition permits a further definite amount ofmetal tobe coated. after which a furaddition or either activating salts or make materials must be added. This process can continued practicallyindeflnitely, thus permitting continuous operation of the bath.
- the bath can be varied over a broad range and still yield-satisfactory coatthe concentrations or the various ctlnponents'of the bath, except the activating salts, can.
- caustic soda plus nitrite immediately before enrinse in cold water, dip in an acid pickle, ,rinse in cold water, dip .in a cold or hot 10% solution of caustic soda or a cold or hot solution containing grams per liter of coloring salts (alkali plus oxidizing agent), the ratio of alkali-to oxidizing agent being the same as in the coloring bath.
- coloring salts alkali plus oxidizing agent
- Method of surface treating ferrous metal articles which comprises subjecting them to surface contact with a relatively concentrated aqueous solution containing an alkali and an oxidizing agent and having a specific gravity within the range of 1.30 to 1.60 measured at 120 C., while maintaining said treating solution at a temperature of from 105 C. to C., whereby chemical action takes place on'the surface of said articles,
- Method of surface treating ferrous metal articles which comprises subjecting them to surface'contact with a relatively concentrated aquesolution containing an alkali and an oxidising agent having a specific gravity within the 1 to 1.00 measured at 120 C. while solution at a temperature of to 180 (2., whereby chemicalastion surface of said articles, and action '01 products resulting from such operation and attendant upon the adof plain water, by adding to said solution to make up wa losses due to evaporatiom a relatively dilute aqueous solution of the order of 101, 0: at least one substance of the group consisting of alkalis, oxidizing agents, and activating agents'which chemically convert such products into substances harmless to the treating powers of the relatively concentrated solution.
- Method oi surface treating ferrous metal articles which comprises subjecting them to surface contact with a relatively concentrated aqueous solution containing an alkali and an oxidizing agent and having a speciiic gravity within the range of 1.30 to 1.60 measured at 120 0.,
- Bath for surface treating ferrous metal articles comprising a relatively concentrated aqueous solution containing an alkali and an oxidizing agent and having a specific gravity within the range of 1.30 to 1.00 measured at C., and adapted to act chemically on said articles when maintained at a temperature of from 105 C.
- a pre-dip bath comprising a relatively dilute aqueous solution of the order of 10% of at least one of the chemical constituents of the treating bath, and adapted to receive said ferrous metal articles in advance of treatment and thereby prevent drops of plain water from clinging to the articles and being carried into the treating bath, said pre-dip bath also being adapted to make up evaporation losses from said treating bath and thereby avoid necessity of plain water for that Purpose, and consequent in hibition of the action of the relatively concen-- trated treating bath.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
Description
Patented F 1 939 'uN 'rEo STATES,
PATENT OFFICE] No Ilrawlmr. Application February 25, 1937, Serial No. 127,808
5 Claims. (01. Lia-a5)- This application is in part a continuation of our copending application of the same title, Serial No. 926 filed January 8th, 1935. By this reference thereto, the entire disclosure thereof is .:5 hereby incorporated herein.
This invention relates to methods and com-- positions for suriace'treating iron and steel articles with an. aqueous solution containing an alkali 'and'an oxidizing agent, for coloring or 10 coating the articles by chemical action on the surface thereof, and has for its principal objects the development of a very simple and economical aqueoussolution for coating or coloring'ierrous metals chemically,'and a definitemethod of control of the solution during plant operation.- This invention has for other objects to avoid a large number of the following dis advantages which have rendered'prior expedients along this line unsatisfactory:
The prior coatings have been defective in durability or appearance, being non-adherent or subject to chipping,'cracking, scaling, peeling or powdering off, ipr imable to withstand stamping, shaping or rolling operations, or non-rust resisting, or the coating has been dull orlacking beauty and depth, or not permanent, or subject to discoloring with timer The prior processes have been expensive in the cost to color a unit area, requiring costly equipment or electric set-up and power, or difficult or complicated, requiring more than one operation to complete the work such'as spraying, baking, plating or hand sponging or requiring expert and skilled labor, or being incapable of coloring large quantities in baskets, or yield- .fing non-uniform resultsor altering dimensions or affecting hardness and elasticity of-articles particularly special steels being treated.
The baths employed heretofore have required 40 expensive chemicals or high temperatures or molten salts or inflammable materials; or have been dltllcult to prepare or may decompose on standing idle, or have short life in operation, or leave a scum or-tacky or greasy surface on 46 the article or attack the surfacesuch. as by etching the polish, or deposit oxides of metals electronegative'to iron thusdecreasing rust resistance, or generate excessive carbonaceous material which interferes with operation, or the so bath will not work on common grades of iron orsteel.
or all these 'dlsadvsirltaesbf as prior ex pedlents along this line, perhaps the greatest or most diillcult to-master is that the solution ceases to motion properly after a comparatively small interfere number of articles of. ferrous metals have been coated or colored, even before the oxygen or color supplying content of the bath has been exhausted. "This we have found to be due to the presence of some formsor compounds of iron 5 resulting from previous operation. Such forms or compounds are frequently formed when plain water is added to replace evaporation losses, and they are generally colloidal in nature. a
It is therefore a particular object of the pres- 10 e'ntinvention to avoid the formation of such undesirable forms or compounds of iron resulting from previous operation, so as to prevent them. from interfering with the'further operation.
We attain long life for our coloring bath by 15 application of one or more of the following conditions: Q
(1) .Control of the original composition of the solution or bath, including the optional use of inert water soluble and alkali soluble chemicals 2 in place of a considerableproportion of the alkali. (2) Control of the temperature of operation, including the optional use'of special ranges'for. different color effects. l
(3) Addition of make up water ;to replace 5 evaporation losses in the form of a relatively dilute aqueous solution of alkali or oxidizing agent, or both.
With regard to the alkali to be used according to'the present invention, we have found that 30 we can use any-water soluble, non-volatile alkali or combination of alkalies, such as, for example,
sodium hydrom'de, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium borate or sodium phosphate. These 35 examples are given in an illustrative and not in a limiting sense.
with regard to the oxidizing agent for our purposes we have found that we can use any material which will form an oxidizing radical 40 or substance on the bath, such. as for example,
a chlorate, nitrate, nitrite, ,oxide, nitrophenol,
chromate, nitroprusside of any metal or element,
but preferably the alkali metals, although the examples are given in an illustrative and not all inalimitlngsense. V The 'revivifying, activating or regenerating agents which we have: found to be suitable for our purpose are for example a cyanide, tartrate, bitartrate or tannate, or any other substance 50 capable of forming complex ions with that type of iron compounds shown to act as poisons or with the coloring or coating action in the coloring bath, and hence the examplesare given in an illustrative and not in a umiunc u oesreescandcan inactive due to the'presence orthelmdesirable' form or compound of the iron which has come into the solution mm the articles previously The temperature fmm'105 to 180 be attained, it n,
adding to the treating solution into:- and alkali soluble salts such as, for example, sodium chlo- The following is an example indicating the composition 01' our bath:
Alkali 0.3 to a 16s., preferably 3 lbs.
Oxidising agent 0.004 lb. to 10 lbs, preferably wsteruhs.
V ings.- l'br eaample,
81113, for
to function. The concentration of this inert salt may vary from O'to 00% oi the total weight oi the bath. The iron or steel articles are immersed in the bath for aperiod of fl've'seconds to thirty minutes, on the depth of coating desired, and the character or the iron or steel being treated.
Ai'tercoatingadeflniteamountotmetalitis sometimes desirable to add a small amount of example, about 0.5% additionbyweightotthebath,toenablethebathto continue; to function satisfactorily for the'coat ing.- This addition permits a further definite amount ofmetal tobe coated. after which a furaddition or either activating salts or make materials must be added. This process can continued practicallyindeflnitely, thus permitting continuous operation of the bath. There are definite limits to-the amount'ot activaflng' salts-which can be added to the bath-at'any 7 one time in order for the same to function-properly. I
'Ihecompoaition o! the bath can be varied over a broad range and still yield-satisfactory coatthe concentrations or the various ctlnponents'of the bath, except the activating salts, can. be
by evaporation during operaoitm though not always lost its adoring powers: To restore the coloring powers,
atently potassium chloride. etc. in order to atbriei'timein-p tions, while before .cated. Thereis'anap it was to either raise the operating temperature. or to add a regenerating agent. On caremlinvestigation of this phenomenon taking plat when water is added to this type of bath,
it was learned that, the water added reacts with the insoluble ironsalts present (which were formed during previous coloring action of the bath O11 iron and steel the cause of the bath to become pomoned and stop its coloring action. The formation of this,
colloidal. iron compound was shown by the fol lowing experimentz- A bath consisting of caustic soda, sodium nitrite, and water was operated without resort to regenerating agents. Aiter coloring a large amount of steel articles it was decided to filter the solution through asbestos in order to free it from a heavy insoluble green sludge consistingoi the iron salts formed during coloring operations. Although the filtrate was perfectly clear and practically colorless, the washings of e green iron salt sludge, obtained by pouring 'coldwater over the filter funnel containing the sludge, were a rich red brown color. These s on standing afew minutes yielded a fluocculant red brown precipitate suspended in a colorless solution, very similar to the characteristic red brown precipitate often observed when a colloidal solution of ferric hydroxide breaks up into like constituents.
As a result of these observations a series of tests were made with a bath composed of an alkali, water, and nitrite. This bath was operfated without using regenerating agents, and the losses due to dragout of bath by the work'and to evaporation were replaced from time to time by a .weak solution of alkali plus nitrite. Using this manner of replacing bath losses, it was possible to obtain perfectly. satisfactory-coloring results,-
and a long litei'rom the bath. If plain water were used toreplace bath --in above tests, the solution would have a veryshort life. This fact has been proven innumerable times in both laboratory experiments and in plant scale operathis particular discovery we had found it necessary to'add a regenerating agent from time to time to prolong the lii'e.oi' the bath. 7 v
. The following table gives the data which was taken in experiments supporting the above statements. Noregenerating'age'nt was used in these experiments, and bath losses-were replaced by a 10% solution of alkali phis'nltrite:
Operating ual NaOH who, Hi0. mum a"; 3:5 3m
(min) colored Grains Grant Gram "G.
no 10 v 240 {140-156 5 0 Good. no (lo-a0) zao 111- 46 5 a Good. itsv 10 too 5133-15! sas Good. 10 10 .aoo z-m- .s cm.
' The amounts given in the column oi square feet of steel colored size oiv bath obtainable.
represent amounts colored in given and are not the maximum as operating conditions. or the bath to those indipreqabiywider'algeot practicallyallthe factors involved. 2.
Notonlydowerccosnisethetactthatthe colloidal type oi.- iron compound. To 1 this lattertcompound or perhaps its reaction with the normal constituents of the bath we attribute.
addition of plain water to this type of bath is. harmful to its coloring action, but also we appreciate the fact that in entering articles to be colored into the bath, the former should not have plain water on them but preferably should be dipped in a dilute solutionof caustic. soda, or
caustic soda plus nitrite, immediately before enrinse in cold water, dip in an acid pickle, ,rinse in cold water, dip .in a cold or hot 10% solution of caustic soda or a cold or hot solution containing grams per liter of coloring salts (alkali plus oxidizing agent), the ratio of alkali-to oxidizing agent being the same as in the coloring bath. Now, without rinsing, enter into the coloring bath at the proper operating temperature which may range from to 165 C. for approximately five minutes. Remove from bath, rinse, and dry. Articles can often times be colored satisfactorily even when entered into bath without any preliminary treatment.
Thus wehave made an improvement in the operation of a ferrous metal coloring bath such that regular and continuous coloring operation can be attained without the use of regenerating agents, the bath being operated substantially as above described, and resulting in a prolonged life of same. i I
We have also discovered the detrimental action of plain water added to a used coloring bath composed of alkali, oxidizing agent and water, and the remedy for same, namely addition of a relatively dilute solution of alkali, or alkali plus oxidizing agent to the bath in place of water. 7
restrict ourselves to the above listed inert water I soluble chemicals nor to the amounts used as experience has shown that a wide list; of these can be used with equally satisfactory results.
- By increasing theconcentration of chemicals in the bath andincreasing-the operating temperature, an interesting and valuable new coating on iron and steel is obtained. This coating.
is an .olive green etching on the surface of the metal. It is very adherent and will absorb unvarnish, due to the etched nature of the coating. This type of surface results in greater protection of the steel from rusting elements for it acts as an ideal and strong bond between the metal and any lacquer, paint, or varnish put over it. Also, as it is'capable of absorbing more oil due to the etched nature of the coating, a .better rust' protection is afforded whenthe colored article is oiled.
The following is an example showing the conditions required to obtain this olive green coating on steel or'lron: v
' wratin N aO'H NaN 0; H O temperapg Color ture I o Grams Grams Grams 0. Min.
750 250 600 156-225 5 Olive green.
In general we may say that to get the olive "green coating, a high concentration of chemicals in solution is necessary, but the operating temperature and coloring time may. vary over a very .wide range.
Our work to determine the effect of varying concentrations of oxidizing agent shows that even lower concentrations can be used and still ob tain coloring action from the bath. The following data was taken from our experiments along these lines:
. Operat- Rfi NaOH NaNO; 11,0 ing teingg? NaCN Color on steel perature Grams Gram Grams C'. Min. Gram: '1 250 0.6 800 5. I 0 Gray etch. 2 250 2 300 140 ls 0 Gray, a 260 5 300 140 o 0 Black.
4 250 so 300 143 L 0, Do. 5 140 560 240 a 0 Do. o 140 560 240 155 54 '5 Rich blue. 1
We have also found 1t to be possible to replace We claim:.
a considerable proportion of the alkali in the type of bath outlined herelnbefore by inert water soluble chemicals without harming the coloring powers of the bath. The following data was taken during experimentsalong these lines:
For economical reasons or otherwise it may be "advisable to replace part of the alkali with an inert chemical and for these reasons we made the aboveexperiments and disclosures. We do not 1. Method of surface treating ferrous metal articles, which comprises subjecting them to surface contact with a relatively concentrated aqueous solution containing an alkali and an oxidizing agent and having a specific gravity within the range of 1.30 to 1.60 measured at 120 C., while maintaining said treating solution at a temperature of from 105 C. to C., whereby chemical action takes place on'the surface of said articles,
.. usually large amounts ,of oil, lacquer, paint, or
and avoiding inhibiting action of products resulting from such operation and attendant upon the addition of plain water to said concentrated solution; by adding to said treating solution to make up. water losses due to evaporation, a relatively dilute aqueous solution of the order or10'% of at least one of the substances of the group named above as constituents of said relatively concentrated solution.
2. Method of surface treating ferrous metal articles, which comprises subjecting them to surface'contact with a relatively concentrated aquesolution containing an alkali and an oxidising agent having a specific gravity within the 1 to 1.00 measured at 120 C. while solution at a temperature of to 180 (2., whereby chemicalastion surface of said articles, and action '01 products resulting from such operation and attendant upon the adof plain water, by adding to said solution to make up wa losses due to evaporatiom a relatively dilute aqueous solution of the order of 101, 0: at least one substance of the group consisting of alkalis, oxidizing agents, and activating agents'which chemically convert such products into substances harmless to the treating powers of the relatively concentrated solution.
3. Method oi surface treating ferrous metal articles, which comprises subjecting them to surface contact with a relatively concentrated aqueous solution containing an alkali and an oxidizing agent and having a speciiic gravity within the range of 1.30 to 1.60 measured at 120 0.,
dition of plain water to-said concentrated solution, by adding to said treating solution to make up water losses due to evaporation, a relatively dilute solution of the order of 10% of at least one oi the constituents of said relatively concentrated solution.
4. llethod'of mm treating ferrous metal articles,toproduceanolivegreenetchingon their surfaces, which comprises suhiectingthem tosurfacecontactwithan ammiss'olutioncontainingacausticalkaliandanalklllmetalni: trate,-the weight of alkali and oxidizing agent beinginexoess oftheweightoiwater,andmaintaining the temperature of said treating solution between 156 and 225 C. whereby chemical action takes place on the surface of said articles. simultaneously etching and coloring the same.
' 5. Bath for surface treating ferrous metal articles, comprising a relatively concentrated aqueous solution containing an alkali and an oxidizing agent and having a specific gravity within the range of 1.30 to 1.00 measured at C., and adapted to act chemically on said articles when maintained at a temperature of from 105 C. to 180 C., but which would become ineiiicient due to inhibition oi iron ions accumulating from said action if and when plain water were added thereto to make up'evaporation losses, in combination with a pre-dip bath comprising a relatively dilute aqueous solution of the order of 10% of at least one of the chemical constituents of the treating bath, and adapted to receive said ferrous metal articles in advance of treatment and thereby prevent drops of plain water from clinging to the articles and being carried into the treating bath, said pre-dip bath also being adapted to make up evaporation losses from said treating bath and thereby avoid necessity of plain water for that Purpose, and consequent in hibition of the action of the relatively concen-- trated treating bath.
MARK WEISBERG. LOUIS CORMAN.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US127808A US2148331A (en) | 1937-02-25 | 1937-02-25 | Method and composition for coating iron and steel articles |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US127808A US2148331A (en) | 1937-02-25 | 1937-02-25 | Method and composition for coating iron and steel articles |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2148331A true US2148331A (en) | 1939-02-21 |
Family
ID=22432052
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US127808A Expired - Lifetime US2148331A (en) | 1937-02-25 | 1937-02-25 | Method and composition for coating iron and steel articles |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2148331A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2431728A (en) * | 1942-04-29 | 1947-12-02 | Despo Mfg Co Ltd | Treatment of ferrous metals to improve resistance to rusting |
| US2458073A (en) * | 1944-01-06 | 1949-01-04 | Parker Appliance Co | Coating magnesium and magnesium alloys |
| US2863791A (en) * | 1955-04-08 | 1958-12-09 | Montedison Spa | Production of oxalate coatings on iron and steel |
| US2864732A (en) * | 1953-10-05 | 1958-12-16 | Battelle Development Corp | Method of coating titanium articles and product thereof |
| US2961351A (en) * | 1952-12-06 | 1960-11-22 | Westinghouse Electric Corp | Coated arc welding electrode wire |
| US6231686B1 (en) | 1997-11-10 | 2001-05-15 | Ltv Steel Company, Inc. | Formability of metal having a zinc layer |
| US20030205298A1 (en) * | 2002-05-03 | 2003-11-06 | Block William V. | Metal coloring process and solutions therefor |
| US20040250748A1 (en) * | 1999-05-24 | 2004-12-16 | Ravenscroft Keith N. | Composition and method for metal coloring process |
| US20060014042A1 (en) * | 2004-07-15 | 2006-01-19 | Block William V | Hybrid metal oxide/organometallic conversion coating for ferrous metals |
| US7964044B1 (en) | 2003-10-29 | 2011-06-21 | Birchwood Laboratories, Inc. | Ferrous metal magnetite coating processes and reagents |
| US12497684B2 (en) | 2021-07-28 | 2025-12-16 | Birchwood Laboratories Llc | Methods and compositions for forming magnetite coatings on ferrous metals |
-
1937
- 1937-02-25 US US127808A patent/US2148331A/en not_active Expired - Lifetime
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2431728A (en) * | 1942-04-29 | 1947-12-02 | Despo Mfg Co Ltd | Treatment of ferrous metals to improve resistance to rusting |
| US2458073A (en) * | 1944-01-06 | 1949-01-04 | Parker Appliance Co | Coating magnesium and magnesium alloys |
| US2961351A (en) * | 1952-12-06 | 1960-11-22 | Westinghouse Electric Corp | Coated arc welding electrode wire |
| US2864732A (en) * | 1953-10-05 | 1958-12-16 | Battelle Development Corp | Method of coating titanium articles and product thereof |
| US2863791A (en) * | 1955-04-08 | 1958-12-09 | Montedison Spa | Production of oxalate coatings on iron and steel |
| US6231686B1 (en) | 1997-11-10 | 2001-05-15 | Ltv Steel Company, Inc. | Formability of metal having a zinc layer |
| US20040250748A1 (en) * | 1999-05-24 | 2004-12-16 | Ravenscroft Keith N. | Composition and method for metal coloring process |
| US20030205298A1 (en) * | 2002-05-03 | 2003-11-06 | Block William V. | Metal coloring process and solutions therefor |
| US6899956B2 (en) * | 2002-05-03 | 2005-05-31 | Birchwood Laboratories, Inc. | Metal coloring process and solutions therefor |
| US7964044B1 (en) | 2003-10-29 | 2011-06-21 | Birchwood Laboratories, Inc. | Ferrous metal magnetite coating processes and reagents |
| US20060014042A1 (en) * | 2004-07-15 | 2006-01-19 | Block William V | Hybrid metal oxide/organometallic conversion coating for ferrous metals |
| US7144599B2 (en) | 2004-07-15 | 2006-12-05 | Birchwood Laboratories, Inc. | Hybrid metal oxide/organometallic conversion coating for ferrous metals |
| US7481872B1 (en) | 2004-07-15 | 2009-01-27 | Birchwood Laboratories, Inc. | Process for making bath composition for converting surface of ferrous metal to mixed oxides and organometallic compounds of aluminum and iron |
| US7625439B1 (en) | 2004-07-15 | 2009-12-01 | Birchwood Laboratories, Inc. | Bath composition for converting surface of ferrous metal to mixed oxides and organometallic compounds of aluminum and iron |
| US12497684B2 (en) | 2021-07-28 | 2025-12-16 | Birchwood Laboratories Llc | Methods and compositions for forming magnetite coatings on ferrous metals |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2077450A (en) | Method and composition for coating iron and steel articles | |
| US2148331A (en) | Method and composition for coating iron and steel articles | |
| JPH0459392B2 (en) | ||
| EP0038122A1 (en) | Forming corrosion-resistant coatings upon the surfaces of metals, especially zinc | |
| US2577887A (en) | Activation of oxalate metal coating compositions | |
| US2293716A (en) | Metal treating solution | |
| US4950339A (en) | Process of forming phosphate coatings on metals | |
| GB2179680A (en) | Method of forming phosphate coatings on zinc | |
| US2702768A (en) | Ferrous surface coating process using alkali metal phosphates and hydroxylamines | |
| US2657156A (en) | Phosphate coating composition and process | |
| US2653861A (en) | Etching aluminum using hexahydroxyheptanoic acid as a modifier | |
| US3895969A (en) | Composition and process for inhibiting corrosion of non-ferrous metal surfaced articles and providing surface for synthetic resin coating compositions | |
| US4483887A (en) | Metal plating iron-containing substrates | |
| US3338755A (en) | Production of phosphate coatings on metals | |
| US2316811A (en) | Method of coating ferrous metal surfaces with water insoluble metallic phosphates | |
| US2548419A (en) | Method for production of lustrous zinc | |
| US3615892A (en) | Composition and method for black coating on metals | |
| US2463496A (en) | Accelerating phosphate coating with indigoid compounds | |
| US2791525A (en) | Composition for and method of forming oxalate coatings on ferrous metal surfaces | |
| US2431728A (en) | Treatment of ferrous metals to improve resistance to rusting | |
| US2617749A (en) | Activation of oxalate metal coating compositions | |
| US2557509A (en) | Composition and process for protecting ferrous metals from rusting in moist air | |
| NO128168B (en) | ||
| US3756864A (en) | Cyanuric acid as a scale reducing agent in coating of zinc surfaces | |
| US2314887A (en) | Method of coating metal and material |