US20240035222A1 - Door-in-door closure assembly for a laundry appliance - Google Patents
Door-in-door closure assembly for a laundry appliance Download PDFInfo
- Publication number
- US20240035222A1 US20240035222A1 US17/874,759 US202217874759A US2024035222A1 US 20240035222 A1 US20240035222 A1 US 20240035222A1 US 202217874759 A US202217874759 A US 202217874759A US 2024035222 A1 US2024035222 A1 US 2024035222A1
- Authority
- US
- United States
- Prior art keywords
- door
- wash unit
- appliance
- laundry
- tub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/26—Casings; Tubs
- D06F37/28—Doors; Security means therefor
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F25/00—Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/20—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
- D06F37/22—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a horizontal axis
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/26—Casings; Tubs
- D06F37/266—Gaskets mounted between tub and casing around the loading opening
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F39/00—Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00
- D06F39/12—Casings; Tubs
- D06F39/14—Doors or covers; Securing means therefor
Definitions
- the present disclosure relates generally to laundry appliances and more particularly to a door-in-door closure assembly for a front-load washer and dryer combination appliance.
- Laundry appliances i.e., laundry machines, washing machines, and dryers
- Laundry appliances are prolific in both residential and commercial settings.
- Traditionally separate washer and dryer machines have been used in tandem to clean and dry laundry.
- washer and dryer combination appliances where a single machine performs both the washing and drying functions, thereby eliminating the need for two separate machines.
- There are a number of different names used to describe washer and dryer combination appliances including without limitation, “washer/dryer combos” and “all-in-one washer dryers.” While these appliances save space compared to separate washer and dryer machines, combining the washing and drying functions into a single appliance presents a number of engineering challenges.
- washer and dryer combination appliances have a front-load appliance configuration, where the washer and dryer combination appliance includes an appliance housing with a front appliance opening.
- a drum is positioned in and is rotatable with respect to the appliance housing.
- the drum typically has a front end with a drum opening that provides access to a laundry compartment inside the drum.
- a motor housed within the appliance housing rotates the drum.
- laundry repeatedly tumbles into water in the lower part of the drum and is then lifted back out of the water as the drum rotates. This action can generate considerable vibration and thumping.
- the drum is therefore suspended within the appliance housing so that this vibration and thumping can be absorbed.
- a large rubber bellows is used to provide a dynamic seal between the drum opening and the appliance door. This large rubber bellows can accommodate large movements of the drum relative to the appliance housing and therefore provides good sealing during a washing cycle.
- large rubber bellows do not typically provide good fire containment capabilities.
- the washer and dryer combination appliance described herein does not have a rubber bellows, so alternative door designs had to be developed for this particular application.
- a laundry appliance which includes an appliance housing with a front appliance opening, a wash unit tub that is supported within the appliance by a suspension system that permits relative movement between the wash unit tub and the appliance housing, and a drum that is positioned in and rotatable with respect to the wash unit tub.
- the drum includes a laundry compartment and a drum opening that provides access to the laundry compartment.
- the wash unit tub includes a front ring, a rear tub wall, and a tub sidewall that extends from the front ring to the rear tub wall.
- the front ring of the wash unit tub includes a laundry compartment opening that is positioned in at least partial alignment with the front appliance opening and the drum opening to provide access to the laundry compartment inside the drum.
- the laundry appliance has a door-in-door configuration and therefore has a door assembly with an outer door and an inner door.
- the outer door is pivotally coupled to the appliance housing by an outer door hinge assembly and serves primarily aesthetic purposes as it can be seen from outside the laundry appliance.
- the inner door is pivotally coupled to the wash unit tub by an inner door hinge assembly and serves primarily function purposes, including sealing the laundry compartment opening.
- a door seal may be mounted to the wash unit tub. The door seal extends around the laundry compartment opening and is configured to contact and form a fluid-tight seal against the inner door when the inner door is closed.
- the inner door hinge assembly includes a hinge leaf that is mounted to the wash unit tub, a pivoting track that is pivotally coupled to the hinge leaf by a hinge pin, and a slide that is mounted to the inner door.
- the slide is coupled to the pivoting track in a manner that permits lateral movement between the slide and the track.
- a telescopic attachment assembly couples the inner door to the outer door so that the inner and outer doors swing (i.e., articulate) together between open and closed positions while still permitting the inner door to move and oscillate with the wash unit tub, and relative to the outer door, when the inner and outer doors are in the closed position.
- the telescopic attachment assembly comprises a coupler that is mounted to the outer door and includes a hemispherical flange.
- An opposing hemispherical socket in the inner door receives the hemispherical flange of the coupler in a sliding fit.
- the inner and outer doors are coupled together by the telescopic attachment assembly and swing together between open and closed positions, but the inner door remains free to move and oscillate with the wash unit tub, and relative to the outer door, when the inner and outer doors are in the closed position.
- the door-in-door closure design described herein eliminates a bellow-type door seal and therefore solves the fire containment and odor problems that can arise with bellow-type door seals.
- the combination of the inner door hinge assembly and the telescopic attachment assembly allows the inner and outer doors to move (i.e., swing together) while still allowing the inner door to move and oscillate with the wash unit tub during tumbling (i.e., during rotation of the drum in the washing and/or drying cycles) when the inner and outer doors are closed. This means that improved fluid sealing and fire containment performance can be achieved without requiring a user to separately open and close two separate doors.
- FIG. 1 is a front perspective view of an exemplary laundry appliance that has been constructed in accordance with the present disclosure, which has an inner door and an outer door that are illustrated in closed positions in FIG. 1 ;
- FIG. 2 is another front perspective view of the exemplary laundry appliance shown in FIG. 1 , but illustrates the inner and outer doors in open positions;
- FIG. 3 is an exploded rear perspective view of an exemplary inner door hinge assembly of the exemplary laundry appliance shown in FIG. 1 ;
- FIG. 4 is an exploded front perspective view of the exemplary inner door hinge assembly shown in FIG. 3 ;
- FIG. 5 is a front perspective view of the inner and outer doors of the exemplary laundry appliance shown in FIG. 1 , where the exemplary inner door hinge shown in FIG. 3 and an exemplary telescopic attachment assembly have been illustrated in hidden lines;
- FIG. 6 is a front perspective view of the exemplary telescopic attachment assembly shown in FIG. 5 , where the telescopic attachment assembly is illustrated in a retracted position in FIG. 6 ;
- FIG. 7 is another front perspective view of the exemplary telescopic attachment assembly shown in FIG. 5 , where the telescopic attachment assembly is illustrated in an extended position in FIG. 7 ;
- FIG. 8 is an exploded front perspective view of the exemplary telescopic attachment assembly and inner door shown in FIG. 5 ;
- FIG. 9 is a front perspective view of the inner and outer doors of the exemplary laundry appliance shown in FIG. 1 , where the front wall of the outer door has been removed to show another exemplary telescopic attachment assembly that has been constructed in accordance with another aspect of the present disclosure.
- FIG. 10 is an exploded front perspective view of the exemplary telescopic attachment assembly shown in FIG. 9 .
- Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
- first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
- the laundry appliance 20 includes an appliance housing 22 that is rectangular in shape and that includes a front appliance opening 24 .
- the laundry appliance 20 has a door-in-door configuration and therefore has a door assembly 26 that includes an inner door 28 and an outer door 30 that are both pivotally connected to the laundry appliance 20 .
- the laundry appliance 20 in the illustrated examples is a combination washer and dryer appliance and therefore is configured to perform both a washing cycle and a drying cycle in series without re-setting the laundry appliance 20 or transferring any laundry into or out of the laundry appliance 20 between cycles.
- the laundry appliance 20 includes a wash unit tub 32 that is supported within the appliance housing 22 by a suspension system 34 that permits relative movement between the wash unit tub 32 and the appliance housing 22 .
- the wash unit tub 32 generally has a cylindrical shape and the suspension system 34 includes several dynamic mounts 36 that keep the wash unit tub 32 from rotating, but permit limited degrees of freedom that allow the wash unit tub 32 to move/oscillate relative to the appliance housing 22 during tumbling.
- the wash unit tub 32 includes a front ring 38 , a rear tub wall 40 , and a tub sidewall 42 that extends from the front ring 38 to the rear tub wall 40 .
- the front ring 38 of the wash unit tub 32 includes a laundry compartment opening 44 that is positioned in at least partial alignment with the front appliance opening 24 .
- the front ring 38 is made of a rigid material.
- the front ring 38 is made of metal. The rigidity and strength of the front ring 38 is particularly important in the illustrated example because the inner door 28 is pivotally mounted to the front ring 38 of the wash unit tub 32 , which will be explained in greater detail below.
- a drum 46 is positioned in the wash unit tub 32 and is supported therein such that the drum 46 is rotatable with respect to the wash unit tub 32 .
- the drum 46 also has a cylindrical shape and includes a drum opening 48 , a rear drum wall 50 , and a drum sidewall 52 that extends between the drum opening 48 and the rear drum wall 50 .
- the drum sidewall 52 and the rear drum wall 50 cooperate to define a laundry compartment 54 inside the drum 46 .
- the front appliance opening 24 in the appliance housing 22 , the laundry compartment opening 44 in the front ring 38 of the wash unit tub 32 , and the drum opening 48 are at least partially aligned with one another and therefore provide access to the laundry compartment 54 inside the drum 46 when the inner and outer doors 28 , 30 are in the open position.
- laundry e.g., clothes, towels, and bedding
- a drive shaft (not shown), is fixedly coupled to the rear drum wall 50 , is supported by a bearing pack (not shown) such that the drive shaft and the drum 46 rotate together as a single unit within the appliance housing 22 .
- a motor (not shown) is positioned in the appliance housing 22 and is coupled to the drive shaft. The motor drives rotation of the drive shaft and the drum 46 relative to the wash unit tub 32 and the appliance housing 22 during operation of the laundry appliance 20 , such as during washing and drying.
- the outer door 30 is pivotally coupled to the appliance housing 22 by an outer door hinge assembly 56 .
- the outer door hinge assembly 56 includes an upper hinge 58 and a lower hinge 60 .
- Each of the upper and lower hinges 58 , 60 include a hinge plate that is fixedly mounted to the appliance housing and pin that extends through the hinge plate and into a hole in the outer door 30 .
- An outer door catch assembly 62 may be provided to enable locking/latching of the outer door 30 with the appliance housing 22 during operation of the laundry appliance 20 .
- the outer door catch assembly 62 may include an outer door lock striker 64 that is positioned on the appliance housing 22 and a hook 66 that is mounted on the outer door 30 and positioned to engage the outer door lock striker 64 in order to retain the outer door 30 in the closed position during the washing and drying cycles.
- the inner door 28 is pivotally coupled to the front ring 38 of the wash unit tub 32 by an inner door hinge assembly 68 , which will be described in greater detail below.
- Both the inner and the outer doors 28 , 30 swing between a closed position (shown in FIG. 1 ) and an open position (shown in FIG. 2 ). In the closed position, the outer door 30 shuts or closes the front appliance opening 24 in the appliance housing 22 . Meanwhile, the inner door 28 shuts or closes the laundry compartment opening 44 in the wash unit tub 32 .
- An inner door catch assembly 70 may also be provided to enable locking/latching of the inner door 28 with the wash unit tub 32 during operation of the laundry appliance 20 .
- the outer door 30 of the laundry appliance 20 primarily serves an aesthetic purpose and is connected to the stationary appliance housing 22 via the outer door hinge assembly 56
- the inner door 28 primarily serves a functional purpose (i.e., sealing) and is connected to the suspended wash unit tub 32 (which is permitted to oscillate inside the appliance housing) via the inner door hinge assembly 68
- the inner door 28 is coupled to the outer door 30 by a telescopic attachment assembly 72 , which works in combination with the inner door hinge assembly 68 , to permit the inner door 28 to move/oscillate relative to the outer door 30 when the inner and outer doors 28 , 30 are in the closed position, but still enables the inner door 28 to swing with the outer door 30 between the open and closed positions.
- the wash unit tub 32 may include a facia 74 that covers at least part of the front ring 38 .
- the facia 74 and the front ring 38 may sit flush or may be spaced apart to define a cavity between the two.
- the inner door catch assembly 70 may include an inner door lock striker 76 that is positioned on the facia 74 or front ring 38 and a latch 78 that is mounted on the inner door 28 and positioned to engage the inner door lock striker 76 in order to retain the inner door 28 in the closed position during the washing and drying cycles. While the facia 74 may be provided in a variety of different shapes, in the illustrated example, the facia 74 has a contour 80 that extends about the laundry compartment opening 44 .
- the contour 80 may be stepped to match a mating contour 82 on the inner door 28 .
- a seal 83 extending about the laundry compartment opening 44 , is positioned on and mounted to either the facia 74 or the front ring 38 to provide a fluid-tight (i.e., watertight) seal against the inner door 28 when the inner door 28 is in the closed position.
- the seal 83 may be contacted by the mating contour 82 of the inner door 28 , sealing the two to prohibit water from exiting the drum 46 and wash unit tub 32 during operation.
- the seal 83 may be a high-temperature seal that also provides a thermal seal between the inner door 28 and the wash unit tub 32 for fire containment purposes.
- washer and dryer combination appliances In existing washers and washer/dryer combination appliances that are equipped with a bellows seal, there is a problem with accumulation of lint, floc, and hair along the bellows seal.
- the bellows has a tendency to trap water and moisture due to this accumulation, which prevents the bellows from draining and drying properly. Ultimately, this can lead to molding and odor.
- the bellows can also wear out due to the accumulation of lint, floc, and hair.
- a rubber bellows can be damaged by high temperatures and therefore provides poor fire containment.
- washer and dryer combination appliances typically include a heater (not shown) for heating the air inside the laundry compartment to dry the laundry contained therein during a drying cycle.
- the laundry appliance 20 described in the present disclosure provides door assemblies 26 , 26 ′ with inner and outer doors 28 , 30 and 28 ′, 30 ′ to enable elimination of the bellows seal. Because the inner doors 28 , 28 ′ have some limited freedom of movement relative to the outer doors 30 , 30 ′, the door assemblies 26 , 26 ′ described herein still accommodate the movement and oscillation of the wash unit tub 32 (particularly during the washing cycle) and at the same time allows for the use of tighter tolerance high-temperature seals 83 to provide fire containment capability.
- the inner door hinge assembly 68 permits the inner door 28 to slide laterally (i.e., horizontally) relative to the outer door 30 and the appliance housing 22 .
- the inner door hinge assembly 68 includes a hinge leaf 84 that is mounted to the front ring 38 of the wash unit tub 32 , a pivoting track 86 with a slide 88 that is mounted to the inner door 28 , and a hinge pin 90 that pivotally couples the pivoting track 86 to the hinge leaf 84 .
- the slide 88 is coupled to the pivoting track 86 in a manner that permits the slide 88 to move laterally (i.e., horizontally) along the pivoting track 86 .
- the inner door hinge assembly 68 further includes one or more rollers 92 that are mounted to the slide 88 and a ramp 94 that is mounted to the front of the wash unit tub 32 at a location adjacent to the hinge leaf 84 .
- the rollers 92 are positioned to contact and roll along the ramp 94 as the inner door 28 swings towards the closed position. The rollers 92 therefore operate to guide/align the inner door 28 with a laundry compartment opening 44 in the front ring 38 of the wash unit tub 32 as the inner door 28 closes.
- the hinge leaf 84 of the inner door hinge assembly 68 is mounted to the front ring 38 of the wash unit tub 32 and the ramp 94 of the inner door hinge assembly 68 is mounted to the hinge leaf 84 .
- the ramp 94 could alternatively be mounted directly to the front ring 38 of the wash unit tub 32 .
- the slide 88 extends laterally between an inboard end 96 and an outboard end 98 .
- the inboard end 96 of the slide 88 is positioned closer to the hinge leaf 84 than the outboard end 98 .
- a roller pin 100 supports the rollers 92 on the inboard end 96 of the slide 88 and the ramp 94 has a curved surface that is arranged to contact the rollers 92 .
- the pivoting track 86 has a pair of curved lateral edges 102 that define a channel 104 in the pivoting track 86 that receives the slide 88 in the sliding fit.
- the inner door hinge assembly 68 also includes a rail 106 that is positioned between and mounted to the pivoting track 86 and the slide 88 .
- the rail 106 may include one or more bearings or bushings that permit lateral (i.e., horizontal) movement of the slide 88 relative to the pivoting track 86 .
- the pivoting track 86 remains positioned between the inner door 28 and the outer door 30 as the inner and outer doors 28 , 30 swing between open and closed positions.
- the lateral (i.e., horizontal) movement of the slide 88 relative to the pivoting track 86 allows the inner and outer doors 28 , 30 to swing together between the open and closed positions without interference even though the inner and outer doors 28 , 30 have different (i.e., spaced apart) pivot points/axes.
- the wash unit tub 32 , the inner door hinge assembly 68 , and the inner door 28 all move and oscillate together relative to the appliance housing 22 and the outer door 30 .
- the telescoping attachment assembly 72 couples the inner door 28 to the outer door 30 in a manner that permits the inner door 28 to move/oscillate relative to the outer door 30 in the closed position, but causes the inner door 28 to swing with the outer door 30 between the open and closed positions.
- the telescoping attachment assembly 72 includes a door mounted coupler 108 and an opposing in-door socket 110 .
- the opposing in-door socket 110 receives the door mounted coupler 108 in a sliding fit so that the door mounted coupler 108 is permitted to slide, pivot, and gimbal relative to the opposing in-door socket 110 .
- the door mounted coupler 108 includes a bowl-shaped (i.e., hemispherical) flange 112 and the opposing in-door socket 110 has a complementary hemispherical shape that is configured to receive the bowl-shaped flange 112 in a sliding fit.
- the opposing in-door socket 110 is provided in a posterior wall 114 of the inner door 28 and the door mounted coupler 108 includes a post 116 that is fixed to the outer door 30 .
- the telescopic attachment assembly 72 also includes a collar 118 that extends about the post 116 in a sliding fit, a floating sleeve 120 that extends about the post 116 and the collar 118 in a sliding fit, and a spring-biased plunger 122 that is received inside the collar 118 in a sliding fit.
- this configuration may be reversed where the door mounted coupler 108 is attached to the inner door 28 and the opposing in-door socket 110 could be provided in the outer door 30 .
- the post 116 extends longitudinally between an outer post end 124 that is secured to the outer door 30 and an inner post end 126 that is hollow.
- the collar 118 has an outer collar end 128 and an inner collar end 130 .
- the outer collar end 128 has a smaller diameter/width than the inner collar end 130 and is received in the inner post end 126 .
- the bowl-shaped flange 112 extends radially from the inner collar end 130 and a first coil spring 132 , positioned inside the post 116 , operates in tension to pull the outer collar end 128 into the inner post end 126 and towards the outer post end 124 .
- the floating sleeve 120 extends annularly about the collar 118 and longitudinally between an outer sleeve end 134 and an inner sleeve end 136 .
- a pair of spring mounts 138 , 140 extend from the inner sleeve end 136 and receive second and third springs 142 , 144 .
- the second and third springs 142 , 144 operate in compression and push against a pair of spring bosses 146 , 148 on the bowl-shaped flange 112 .
- the spring-biased plunger 122 extends longitudinally between an outer plunger end 150 that is received inside the collar 118 and an inner plunger end 152 that extends out of the inner collar end 130 and is configured to push against an anterior wall 154 of the inner door 28 .
- the anterior wall 154 of the inner door 28 is longitudinally spaced from the posterior wall 114 of the inner door 28 such that a cavity 156 is formed between the posterior and anterior walls 114 , 154 of the inner door 28 .
- a fourth spring 158 is positioned inside the collar 118 and the spring-biased plunger 122 and operates in compression to push the inner plunger end 152 out away from the inner collar end 130 and towards the anterior wall 154 of the inner door 28 .
- the telescopic attachment assembly 72 includes a first mechanical latch 160 that engages the post 116 and the collar 118 and a second mechanical latch 162 that engages the spring-biased plunger 122 to hold the telescopic attachment assembly 72 in a retracted position when the first and second mechanical latches 160 , 162 are engaged. This retracted position of the telescopic attachment assembly 72 is illustrated in FIG. 6 .
- the first mechanical latch 160 includes a first pair of resilient fingers 164 with ramped ends 166 that engage windows 168 , 170 in the inner post end 126 and the outer collar end 128
- the second mechanical latch 162 includes a second pair of resilient fingers 172 with ramped ends 174 that engage windows 176 in the collar 118 .
- Disengagement of the first and second mechanical latches 160 , 162 releases the collar 118 and the spring-biased plunger 122 to define an extended position of the telescopic attachment assembly 72 , which is illustrated in FIG. 7 .
- the telescopic attachment assembly 72 has a first longitudinal length L1 in the retracted position and a second longitudinal length L2 in the extended position that is larger than the first longitudinal length L1 in the retracted position.
- the telescopic attachment assembly 72 is thus configured to hold the inner and outer doors 28 , 30 further apart from one another when the inner and outer doors 28 , 30 are in the open position to provide room for movement of the inner door hinge assembly 68 , clearance between the inner and outer doors 28 , 30 , and to provide proper closure and latching of first the inner door 28 followed by a subsequent closure and latching of the outer door 30 .
- the telescopic attachment assembly 72 becomes compressed when the inner and outer doors 28 , 30 are swung to the closed position and the first and second mechanical latches 160 , 162 engage to hold the telescopic attachment assembly 72 in the retracted position. This allows for tighter tolerances between the inner and outer doors 28 , 30 in the closed position.
- the first and second mechanical latches 160 , 162 release and the telescopic attachment assembly 72 returns to the extended position and is therefore re-set for a subsequent closing of the inner and outer doors 28 , 30 .
- the telescopic attachment assembly 72 may also include one or more clocking features/interfaces 178 to maintain the post 116 , collar 118 , floating sleeve 120 , and/or plunger 122 in a particular orientation and to prevent such components from spinning.
- the clocking features/interfaces 178 are a combination of longitudinal grooves or slots that receive a corresponding tab or projection.
- FIGS. 9 and 10 illustrate another exemplary door assembly 26 ′ with a different telescopic attachment assembly 72 ′ that is constructed in an alternative configuration.
- the door assembly 26 ′ shown in FIGS. 9 and 10 utilizes the same inner door hinge assembly 68 described above in connection with FIGS. 2 - 5 .
- the primary difference is that the telescopic attachment assembly 72 ′ of the door assembly 26 ′ illustrated in FIGS. 9 and 10 is an electronic/powered assembly, whereas the telescopic attachment assembly 72 illustrated in FIGS. 5 - 8 is a mechanical assembly.
- Some of the elements of the telescopic attachment assembly 72 ′ shown in FIGS. 9 and 10 are the same or similar to the elements of the telescopic attachment assembly 72 shown in FIGS.
- the telescopic attachment assembly 72 ′ shown in FIGS. 9 and 10 includes a door mounted coupler 108 ′ and an opposing in-door socket 110 ′.
- the door mounted coupler 108 ′ is mounted to the outer door 30 ′ and the opposing in-door socket 110 ′ is provided on the inner door 28 ′, but this configuration could be reversed where the door mounted coupler 108 ′ is mounted to the inner door 28 ′ and the opposing in-door socket 110 ′ is provided on the outer door 30 ′.
- the door mounted coupler 108 ′ includes an actuator housing 180 ′ that is fixedly attached to a mounting plate 182 ′.
- the mounting plate is received in a receptacle 184 ′ in the outer door 30 ′ and is secured in place to the outer door 30 ′.
- Both the outer door 30 ′ and the mounting plate 182 ′ have reinforcing ribs 186 ′ in the illustrated example, but structures without ribs may also be utilized.
- the door mounted coupler 108 ′ also includes an electric actuator 188 ′ that is received in the actuator housing 180 ′ and a driven rod 190 ′ with a first rod end 192 ′ that is configured to extend and retract relative to the actuator housing 180 ′ in response to actuation of the electric actuator 188 ′.
- the door mounted coupler 108 ′ also includes a collar 118 ′ that is fixed to the first rod end 192 ′ of the driven rod 190 ′.
- a bowl-shaped flange 112 ′ extends radially from the collar 118 ′ and is received in the opposing in-door socket 110 ′ in a sliding fit.
- the driven rod 190 ′ is threaded and has a second rod end 194 ′ that threads into a threaded slide 196 ′ that includes a pair of wings 198 ′.
- the actuator housing 180 ′ has an actuator channel 200 ′ that receives the threaded slide 196 ′ in a sliding fit.
- the actuator channel 200 ′ is complementary in shape to the threaded slide 196 ′ and therefore prevents the threaded slide 196 ′ from rotating.
- the electric actuator 188 ′ is a screw-type actuator that operates to rotate the driven rod 190 ′ when electricity is supplied to the electric actuator 188 ′. This causes the driven rod 190 ′ to advance (i.e., move) between a range of extended and retracted positions.
- the electric actuator 188 ′ of the telescopic attachment assembly 72 ′ is actuated (i.e., controlled) to rotate the driven rod 190 ′ in a direction that extends the first rod end 192 ′ and thus the collar 118 ′ to a position that is spaced further away from the actuator housing 180 ′ to hold the inner and outer doors 28 ′, 30 ′ further apart from one another when the inner and outer doors 28 ′, 30 ′ are in the open position to provide room for movement of the inner door hinge assembly 68 , clearance between the inner and outer doors 28 ′, 30 ′, and to provide proper closure and latching of first the inner door 28 ′ followed by a subsequent closure and latching of the outer door 30 ′.
- the electric actuator 188 ′ is actuated to rotate the driven rod 190 ′ in the opposite direction to retract the driven rod 190 ′ into the actuator housing 180 ′, which draws the collar 118 ′ and thus the inner door 28 ′ closer to the outer door 30 ′. Again, this allows for tighter tolerances between the inner and outer doors 28 ′, 30 ′ in the closed position.
- the electric actuator 188 ′ of the telescopic attachment assembly 72 ′ may also be actuated (i.e., controlled) to retract the driven rod 190 ′ when the inner and outer doors 28 ′, 30 ′ reach the open position for aesthetic reasons (i.e., to reduce the gap between the inner and outer doors 28 ′, 30 ′).
- the electric actuator 188 ′ in the illustrated example is a screw-type actuator, it should be appreciated that the electric actuator 188 ′ could be constructed in a number of different ways and could alternatively be a linear actuator, a solenoid, a wax motor, a driven cam, or a driven linkage (e.g., a four-bar linkage), for example and without limitation. It should also be appreciated that the electric actuator 188 ′ shown in the illustrated example could alternatively be replaced with other types of actuators that are powered by pneumatics or hydraulics rather than electricity. All such alternatives still provide power actuation that operates to increase and decrease the distance/gap between the inner and outer doors 28 ′, 30 ′).
- the laundry appliance 20 is a washer and dryer combination appliance that performs both a wash cycle and a drying cycle; however, it should be appreciated that the door assemblies 26 , 26 ′ described herein may also be used in other types of laundry appliances that include an outer (aesthetic) door and an inner (sealing) door, including laundry appliances that only perform a wash cycle (i.e., in washing machines) and laundry appliances that only perform a drying cycle (i.e., dryers).
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
Abstract
Description
- The present disclosure relates generally to laundry appliances and more particularly to a door-in-door closure assembly for a front-load washer and dryer combination appliance.
- The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
- Laundry appliances (i.e., laundry machines, washing machines, and dryers) are prolific in both residential and commercial settings. Traditionally, separate washer and dryer machines have been used in tandem to clean and dry laundry. However, there is a growing market for washer and dryer combination appliances where a single machine performs both the washing and drying functions, thereby eliminating the need for two separate machines. There are a number of different names used to describe washer and dryer combination appliances, including without limitation, “washer/dryer combos” and “all-in-one washer dryers.” While these appliances save space compared to separate washer and dryer machines, combining the washing and drying functions into a single appliance presents a number of engineering challenges.
- Many washer and dryer combination appliances have a front-load appliance configuration, where the washer and dryer combination appliance includes an appliance housing with a front appliance opening. A drum is positioned in and is rotatable with respect to the appliance housing. The drum typically has a front end with a drum opening that provides access to a laundry compartment inside the drum.
- During both washing and drying cycles, a motor housed within the appliance housing rotates the drum. During the washing cycle, laundry repeatedly tumbles into water in the lower part of the drum and is then lifted back out of the water as the drum rotates. This action can generate considerable vibration and thumping. The drum is therefore suspended within the appliance housing so that this vibration and thumping can be absorbed. In conventional washing machines, a large rubber bellows is used to provide a dynamic seal between the drum opening and the appliance door. This large rubber bellows can accommodate large movements of the drum relative to the appliance housing and therefore provides good sealing during a washing cycle. However, large rubber bellows do not typically provide good fire containment capabilities. This is not problematic in washing machine applications, but fire containment capability is an important consideration when designing a washer and dryer combination appliance since a heater (usually electric, natural gas, or propane) is typically used in such appliances to heat drying air during the drying cycle. Rubber bellows can also have other drawbacks, including creating odor problems due to the lint, floc, and hair that can accumulate on the bellows and prevent proper drying of the rubber bellows between wash cycles.
- The washer and dryer combination appliance described herein does not have a rubber bellows, so alternative door designs had to be developed for this particular application.
- This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features.
- In accordance with one aspect of the present disclosure, a laundry appliance is provided, which includes an appliance housing with a front appliance opening, a wash unit tub that is supported within the appliance by a suspension system that permits relative movement between the wash unit tub and the appliance housing, and a drum that is positioned in and rotatable with respect to the wash unit tub. The drum includes a laundry compartment and a drum opening that provides access to the laundry compartment. The wash unit tub includes a front ring, a rear tub wall, and a tub sidewall that extends from the front ring to the rear tub wall. The front ring of the wash unit tub includes a laundry compartment opening that is positioned in at least partial alignment with the front appliance opening and the drum opening to provide access to the laundry compartment inside the drum.
- The laundry appliance has a door-in-door configuration and therefore has a door assembly with an outer door and an inner door. The outer door is pivotally coupled to the appliance housing by an outer door hinge assembly and serves primarily aesthetic purposes as it can be seen from outside the laundry appliance. The inner door is pivotally coupled to the wash unit tub by an inner door hinge assembly and serves primarily function purposes, including sealing the laundry compartment opening. In particular, a door seal may be mounted to the wash unit tub. The door seal extends around the laundry compartment opening and is configured to contact and form a fluid-tight seal against the inner door when the inner door is closed.
- In accordance with one aspect of the present disclosure, the inner door hinge assembly includes a hinge leaf that is mounted to the wash unit tub, a pivoting track that is pivotally coupled to the hinge leaf by a hinge pin, and a slide that is mounted to the inner door. The slide is coupled to the pivoting track in a manner that permits lateral movement between the slide and the track.
- In accordance with another aspect of the present disclosure, a telescopic attachment assembly couples the inner door to the outer door so that the inner and outer doors swing (i.e., articulate) together between open and closed positions while still permitting the inner door to move and oscillate with the wash unit tub, and relative to the outer door, when the inner and outer doors are in the closed position.
- In accordance with another aspect of the present disclosure, the telescopic attachment assembly comprises a coupler that is mounted to the outer door and includes a hemispherical flange. An opposing hemispherical socket in the inner door receives the hemispherical flange of the coupler in a sliding fit. In accordance with this aspect of the design, the inner and outer doors are coupled together by the telescopic attachment assembly and swing together between open and closed positions, but the inner door remains free to move and oscillate with the wash unit tub, and relative to the outer door, when the inner and outer doors are in the closed position.
- Advantageously, the door-in-door closure design described herein eliminates a bellow-type door seal and therefore solves the fire containment and odor problems that can arise with bellow-type door seals. At the same time, the combination of the inner door hinge assembly and the telescopic attachment assembly allows the inner and outer doors to move (i.e., swing together) while still allowing the inner door to move and oscillate with the wash unit tub during tumbling (i.e., during rotation of the drum in the washing and/or drying cycles) when the inner and outer doors are closed. This means that improved fluid sealing and fire containment performance can be achieved without requiring a user to separately open and close two separate doors.
- Other advantages of the present disclosure will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
-
FIG. 1 is a front perspective view of an exemplary laundry appliance that has been constructed in accordance with the present disclosure, which has an inner door and an outer door that are illustrated in closed positions inFIG. 1 ; -
FIG. 2 is another front perspective view of the exemplary laundry appliance shown inFIG. 1 , but illustrates the inner and outer doors in open positions; -
FIG. 3 is an exploded rear perspective view of an exemplary inner door hinge assembly of the exemplary laundry appliance shown inFIG. 1 ; -
FIG. 4 is an exploded front perspective view of the exemplary inner door hinge assembly shown inFIG. 3 ; -
FIG. 5 is a front perspective view of the inner and outer doors of the exemplary laundry appliance shown inFIG. 1 , where the exemplary inner door hinge shown inFIG. 3 and an exemplary telescopic attachment assembly have been illustrated in hidden lines; -
FIG. 6 is a front perspective view of the exemplary telescopic attachment assembly shown inFIG. 5 , where the telescopic attachment assembly is illustrated in a retracted position inFIG. 6 ; -
FIG. 7 is another front perspective view of the exemplary telescopic attachment assembly shown inFIG. 5 , where the telescopic attachment assembly is illustrated in an extended position inFIG. 7 ; -
FIG. 8 is an exploded front perspective view of the exemplary telescopic attachment assembly and inner door shown inFIG. 5 ; -
FIG. 9 is a front perspective view of the inner and outer doors of the exemplary laundry appliance shown inFIG. 1 , where the front wall of the outer door has been removed to show another exemplary telescopic attachment assembly that has been constructed in accordance with another aspect of the present disclosure; and -
FIG. 10 is an exploded front perspective view of the exemplary telescopic attachment assembly shown inFIG. 9 . - Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, a
laundry appliance 20 is illustrated. - Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
- The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
- When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
- Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
- For purposes of description herein the terms “up,” “down,” “above,” “below,” “upper,” “lower,” “top,” “bottom,” “front,” “rear,” and derivatives thereof shall relate to the assembly as oriented in
FIGS. 1-10 . However, it is to be understood that the apparatus and assemblies described herein may assume various alternative orientations. - With reference to
FIGS. 1 and 2 , alaundry appliance 20 having a front-load configuration is illustrated. Thelaundry appliance 20 includes anappliance housing 22 that is rectangular in shape and that includes afront appliance opening 24. As will be explained in greater detail below, thelaundry appliance 20 has a door-in-door configuration and therefore has adoor assembly 26 that includes aninner door 28 and anouter door 30 that are both pivotally connected to thelaundry appliance 20. - The
laundry appliance 20 in the illustrated examples is a combination washer and dryer appliance and therefore is configured to perform both a washing cycle and a drying cycle in series without re-setting thelaundry appliance 20 or transferring any laundry into or out of thelaundry appliance 20 between cycles. Thelaundry appliance 20 includes awash unit tub 32 that is supported within theappliance housing 22 by asuspension system 34 that permits relative movement between thewash unit tub 32 and theappliance housing 22. Thewash unit tub 32 generally has a cylindrical shape and thesuspension system 34 includes severaldynamic mounts 36 that keep thewash unit tub 32 from rotating, but permit limited degrees of freedom that allow thewash unit tub 32 to move/oscillate relative to theappliance housing 22 during tumbling. Thewash unit tub 32 includes afront ring 38, arear tub wall 40, and atub sidewall 42 that extends from thefront ring 38 to therear tub wall 40. Thefront ring 38 of thewash unit tub 32 includes a laundry compartment opening 44 that is positioned in at least partial alignment with thefront appliance opening 24. Thefront ring 38 is made of a rigid material. By way of example and without limitation, thefront ring 38 is made of metal. The rigidity and strength of thefront ring 38 is particularly important in the illustrated example because theinner door 28 is pivotally mounted to thefront ring 38 of thewash unit tub 32, which will be explained in greater detail below. - A
drum 46 is positioned in thewash unit tub 32 and is supported therein such that thedrum 46 is rotatable with respect to thewash unit tub 32. Thedrum 46 also has a cylindrical shape and includes adrum opening 48, arear drum wall 50, and adrum sidewall 52 that extends between thedrum opening 48 and therear drum wall 50. Thedrum sidewall 52 and therear drum wall 50 cooperate to define alaundry compartment 54 inside thedrum 46. Thefront appliance opening 24 in theappliance housing 22, the laundry compartment opening 44 in thefront ring 38 of thewash unit tub 32, and thedrum opening 48 are at least partially aligned with one another and therefore provide access to thelaundry compartment 54 inside thedrum 46 when the inner and 28, 30 are in the open position. Thus, it should be appreciated that in use, laundry (e.g., clothes, towels, and bedding) is placed inside theouter doors laundry compartment 54 where it is first cleaned during the wash cycle and then dried during the drying cycle. - A drive shaft (not shown), is fixedly coupled to the
rear drum wall 50, is supported by a bearing pack (not shown) such that the drive shaft and thedrum 46 rotate together as a single unit within theappliance housing 22. A motor (not shown) is positioned in theappliance housing 22 and is coupled to the drive shaft. The motor drives rotation of the drive shaft and thedrum 46 relative to thewash unit tub 32 and theappliance housing 22 during operation of thelaundry appliance 20, such as during washing and drying. - The
outer door 30 is pivotally coupled to theappliance housing 22 by an outerdoor hinge assembly 56. Although many configurations are possible, in the illustrated example, the outerdoor hinge assembly 56 includes anupper hinge 58 and alower hinge 60. Each of the upper and lower hinges 58, 60 include a hinge plate that is fixedly mounted to the appliance housing and pin that extends through the hinge plate and into a hole in theouter door 30. An outerdoor catch assembly 62 may be provided to enable locking/latching of theouter door 30 with theappliance housing 22 during operation of thelaundry appliance 20. The outerdoor catch assembly 62 may include an outerdoor lock striker 64 that is positioned on theappliance housing 22 and ahook 66 that is mounted on theouter door 30 and positioned to engage the outerdoor lock striker 64 in order to retain theouter door 30 in the closed position during the washing and drying cycles. Theinner door 28 is pivotally coupled to thefront ring 38 of thewash unit tub 32 by an innerdoor hinge assembly 68, which will be described in greater detail below. - Both the inner and the
28, 30 swing between a closed position (shown inouter doors FIG. 1 ) and an open position (shown inFIG. 2 ). In the closed position, theouter door 30 shuts or closes thefront appliance opening 24 in theappliance housing 22. Meanwhile, theinner door 28 shuts or closes the laundry compartment opening 44 in thewash unit tub 32. An innerdoor catch assembly 70 may also be provided to enable locking/latching of theinner door 28 with thewash unit tub 32 during operation of thelaundry appliance 20. Theouter door 30 of thelaundry appliance 20 primarily serves an aesthetic purpose and is connected to thestationary appliance housing 22 via the outerdoor hinge assembly 56, while theinner door 28 primarily serves a functional purpose (i.e., sealing) and is connected to the suspended wash unit tub 32 (which is permitted to oscillate inside the appliance housing) via the innerdoor hinge assembly 68. As will be explained in greater detail below, theinner door 28 is coupled to theouter door 30 by atelescopic attachment assembly 72, which works in combination with the innerdoor hinge assembly 68, to permit theinner door 28 to move/oscillate relative to theouter door 30 when the inner and 28, 30 are in the closed position, but still enables theouter doors inner door 28 to swing with theouter door 30 between the open and closed positions. - The
wash unit tub 32 may include afacia 74 that covers at least part of thefront ring 38. Thefacia 74 and thefront ring 38 may sit flush or may be spaced apart to define a cavity between the two. The innerdoor catch assembly 70 may include an innerdoor lock striker 76 that is positioned on thefacia 74 orfront ring 38 and alatch 78 that is mounted on theinner door 28 and positioned to engage the innerdoor lock striker 76 in order to retain theinner door 28 in the closed position during the washing and drying cycles. While thefacia 74 may be provided in a variety of different shapes, in the illustrated example, thefacia 74 has acontour 80 that extends about thelaundry compartment opening 44. Thecontour 80 may be stepped to match amating contour 82 on theinner door 28. Aseal 83, extending about thelaundry compartment opening 44, is positioned on and mounted to either thefacia 74 or thefront ring 38 to provide a fluid-tight (i.e., watertight) seal against theinner door 28 when theinner door 28 is in the closed position. Theseal 83 may be contacted by themating contour 82 of theinner door 28, sealing the two to prohibit water from exiting thedrum 46 and washunit tub 32 during operation. In addition to water-tightness, theseal 83 may be a high-temperature seal that also provides a thermal seal between theinner door 28 and thewash unit tub 32 for fire containment purposes. - In existing washers and washer/dryer combination appliances that are equipped with a bellows seal, there is a problem with accumulation of lint, floc, and hair along the bellows seal. The bellows has a tendency to trap water and moisture due to this accumulation, which prevents the bellows from draining and drying properly. Ultimately, this can lead to molding and odor. The bellows can also wear out due to the accumulation of lint, floc, and hair. Finally, a rubber bellows can be damaged by high temperatures and therefore provides poor fire containment. Unlike traditional washers where fire containment is of little concern, washer and dryer combination appliances typically include a heater (not shown) for heating the air inside the laundry compartment to dry the laundry contained therein during a drying cycle. Thus, it is an object of the
laundry appliance 20 described in the present disclosure to provide a design that eliminates the bellows seal between the 26, 26′ and thedoor assembly wash unit tub 32. Thelaundry appliance 20 of the present disclosure provides 26, 26′ with inner anddoor assemblies 28, 30 and 28′, 30′ to enable elimination of the bellows seal. Because theouter doors 28, 28′ have some limited freedom of movement relative to theinner doors 30, 30′, theouter doors 26, 26′ described herein still accommodate the movement and oscillation of the wash unit tub 32 (particularly during the washing cycle) and at the same time allows for the use of tighter tolerance high-door assemblies temperature seals 83 to provide fire containment capability. - With additional reference to
FIGS. 3-5 , the innerdoor hinge assembly 68 is illustrated in greater detail. The innerdoor hinge assembly 68 permits theinner door 28 to slide laterally (i.e., horizontally) relative to theouter door 30 and theappliance housing 22. The innerdoor hinge assembly 68 includes ahinge leaf 84 that is mounted to thefront ring 38 of thewash unit tub 32, a pivotingtrack 86 with aslide 88 that is mounted to theinner door 28, and ahinge pin 90 that pivotally couples the pivotingtrack 86 to thehinge leaf 84. Theslide 88 is coupled to the pivotingtrack 86 in a manner that permits theslide 88 to move laterally (i.e., horizontally) along the pivotingtrack 86. The innerdoor hinge assembly 68 further includes one ormore rollers 92 that are mounted to theslide 88 and aramp 94 that is mounted to the front of thewash unit tub 32 at a location adjacent to thehinge leaf 84. Therollers 92 are positioned to contact and roll along theramp 94 as theinner door 28 swings towards the closed position. Therollers 92 therefore operate to guide/align theinner door 28 with a laundry compartment opening 44 in thefront ring 38 of thewash unit tub 32 as theinner door 28 closes. - Although other configurations are possible, in the illustrate example, the
hinge leaf 84 of the innerdoor hinge assembly 68 is mounted to thefront ring 38 of thewash unit tub 32 and theramp 94 of the innerdoor hinge assembly 68 is mounted to thehinge leaf 84. However, it should be appreciated that theramp 94 could alternatively be mounted directly to thefront ring 38 of thewash unit tub 32. Theslide 88 extends laterally between aninboard end 96 and anoutboard end 98. Theinboard end 96 of theslide 88 is positioned closer to thehinge leaf 84 than theoutboard end 98. Aroller pin 100 supports therollers 92 on theinboard end 96 of theslide 88 and theramp 94 has a curved surface that is arranged to contact therollers 92. - The pivoting
track 86 has a pair of curvedlateral edges 102 that define achannel 104 in the pivotingtrack 86 that receives theslide 88 in the sliding fit. The innerdoor hinge assembly 68 also includes arail 106 that is positioned between and mounted to the pivotingtrack 86 and theslide 88. Therail 106 may include one or more bearings or bushings that permit lateral (i.e., horizontal) movement of theslide 88 relative to the pivotingtrack 86. Thus, in accordance with this arrangement, the pivotingtrack 86 remains positioned between theinner door 28 and theouter door 30 as the inner and 28, 30 swing between open and closed positions. The lateral (i.e., horizontal) movement of theouter doors slide 88 relative to the pivotingtrack 86 allows the inner and 28, 30 to swing together between the open and closed positions without interference even though the inner andouter doors 28, 30 have different (i.e., spaced apart) pivot points/axes. However, it should be appreciated that when the inner andouter doors 28, 30 are closed, theouter doors wash unit tub 32, the innerdoor hinge assembly 68, and theinner door 28 all move and oscillate together relative to theappliance housing 22 and theouter door 30. It is the telescoping attachment assembly 72 (as opposed to the inner door hinge assembly 68) that permits theinner door 28 to move and oscillate relative to theouter door 30 when the inner and 28, 30 are in the closed position.outer doors - With additional reference to
FIGS. 6-8 , thetelescoping attachment assembly 72 couples theinner door 28 to theouter door 30 in a manner that permits theinner door 28 to move/oscillate relative to theouter door 30 in the closed position, but causes theinner door 28 to swing with theouter door 30 between the open and closed positions. Thetelescoping attachment assembly 72 includes a door mountedcoupler 108 and an opposing in-door socket 110. The opposing in-door socket 110 receives the door mountedcoupler 108 in a sliding fit so that the door mountedcoupler 108 is permitted to slide, pivot, and gimbal relative to the opposing in-door socket 110. In the illustrated examples, the door mountedcoupler 108 includes a bowl-shaped (i.e., hemispherical)flange 112 and the opposing in-door socket 110 has a complementary hemispherical shape that is configured to receive the bowl-shapedflange 112 in a sliding fit. - Although other configurations are possible, in the illustrated examples, the opposing in-
door socket 110 is provided in aposterior wall 114 of theinner door 28 and the door mountedcoupler 108 includes apost 116 that is fixed to theouter door 30. Thetelescopic attachment assembly 72 also includes acollar 118 that extends about thepost 116 in a sliding fit, a floatingsleeve 120 that extends about thepost 116 and thecollar 118 in a sliding fit, and a spring-biasedplunger 122 that is received inside thecollar 118 in a sliding fit. However, it should be appreciated that this configuration may be reversed where the door mountedcoupler 108 is attached to theinner door 28 and the opposing in-door socket 110 could be provided in theouter door 30. - The
post 116 extends longitudinally between anouter post end 124 that is secured to theouter door 30 and aninner post end 126 that is hollow. Thecollar 118 has anouter collar end 128 and aninner collar end 130. Theouter collar end 128 has a smaller diameter/width than theinner collar end 130 and is received in theinner post end 126. The bowl-shapedflange 112 extends radially from theinner collar end 130 and afirst coil spring 132, positioned inside thepost 116, operates in tension to pull theouter collar end 128 into theinner post end 126 and towards theouter post end 124. The floatingsleeve 120 extends annularly about thecollar 118 and longitudinally between anouter sleeve end 134 and aninner sleeve end 136. A pair of spring mounts 138, 140 extend from theinner sleeve end 136 and receive second and 142, 144. The second andthird springs 142, 144 operate in compression and push against a pair ofthird springs 146, 148 on the bowl-shapedspring bosses flange 112. The spring-biasedplunger 122 extends longitudinally between anouter plunger end 150 that is received inside thecollar 118 and aninner plunger end 152 that extends out of theinner collar end 130 and is configured to push against ananterior wall 154 of theinner door 28. Theanterior wall 154 of theinner door 28 is longitudinally spaced from theposterior wall 114 of theinner door 28 such that a cavity 156 is formed between the posterior and 114, 154 of theanterior walls inner door 28. Afourth spring 158 is positioned inside thecollar 118 and the spring-biasedplunger 122 and operates in compression to push theinner plunger end 152 out away from theinner collar end 130 and towards theanterior wall 154 of theinner door 28. - The
telescopic attachment assembly 72 includes a firstmechanical latch 160 that engages thepost 116 and thecollar 118 and a secondmechanical latch 162 that engages the spring-biasedplunger 122 to hold thetelescopic attachment assembly 72 in a retracted position when the first and second 160, 162 are engaged. This retracted position of themechanical latches telescopic attachment assembly 72 is illustrated inFIG. 6 . Although other configurations are possible, the firstmechanical latch 160 includes a first pair ofresilient fingers 164 with ramped ends 166 that engage 168, 170 in thewindows inner post end 126 and theouter collar end 128, while the secondmechanical latch 162 includes a second pair ofresilient fingers 172 with ramped ends 174 that engagewindows 176 in thecollar 118. Disengagement of the first and second 160, 162 releases themechanical latches collar 118 and the spring-biasedplunger 122 to define an extended position of thetelescopic attachment assembly 72, which is illustrated inFIG. 7 . Thus, it should be appreciated that thetelescopic attachment assembly 72 has a first longitudinal length L1 in the retracted position and a second longitudinal length L2 in the extended position that is larger than the first longitudinal length L1 in the retracted position. - The
telescopic attachment assembly 72 is thus configured to hold the inner and 28, 30 further apart from one another when the inner andouter doors 28, 30 are in the open position to provide room for movement of the innerouter doors door hinge assembly 68, clearance between the inner and 28, 30, and to provide proper closure and latching of first theouter doors inner door 28 followed by a subsequent closure and latching of theouter door 30. Thetelescopic attachment assembly 72 becomes compressed when the inner and 28, 30 are swung to the closed position and the first and secondouter doors 160, 162 engage to hold themechanical latches telescopic attachment assembly 72 in the retracted position. This allows for tighter tolerances between the inner and 28, 30 in the closed position. When theouter doors outer door 30 is pulled away from the closed position, the first and second 160, 162 release and themechanical latches telescopic attachment assembly 72 returns to the extended position and is therefore re-set for a subsequent closing of the inner and 28, 30.outer doors - The
telescopic attachment assembly 72 may also include one or more clocking features/interfaces 178 to maintain thepost 116,collar 118, floatingsleeve 120, and/orplunger 122 in a particular orientation and to prevent such components from spinning. Although a variety of different structures may be used, in the illustrated examples, the clocking features/interfaces 178 are a combination of longitudinal grooves or slots that receive a corresponding tab or projection. -
FIGS. 9 and 10 illustrate anotherexemplary door assembly 26′ with a differenttelescopic attachment assembly 72′ that is constructed in an alternative configuration. Thedoor assembly 26′ shown inFIGS. 9 and 10 utilizes the same innerdoor hinge assembly 68 described above in connection withFIGS. 2-5 . The primary difference is that thetelescopic attachment assembly 72′ of thedoor assembly 26′ illustrated inFIGS. 9 and 10 is an electronic/powered assembly, whereas thetelescopic attachment assembly 72 illustrated inFIGS. 5-8 is a mechanical assembly. Some of the elements of thetelescopic attachment assembly 72′ shown inFIGS. 9 and 10 are the same or similar to the elements of thetelescopic attachment assembly 72 shown inFIGS. 5-8 and therefore share the same reference numbers, but have been annotated with a prime symbol (′) after the reference numerals. Like in thetelescopic attachment assembly 72 shown inFIGS. 5-8 , thetelescopic attachment assembly 72′ shown inFIGS. 9 and 10 includes a door mountedcoupler 108′ and an opposing in-door socket 110′. Again, the door mountedcoupler 108′ is mounted to theouter door 30′ and the opposing in-door socket 110′ is provided on theinner door 28′, but this configuration could be reversed where the door mountedcoupler 108′ is mounted to theinner door 28′ and the opposing in-door socket 110′ is provided on theouter door 30′. - In the embodiment shown in
FIGS. 9 and 10 , the door mountedcoupler 108′ includes anactuator housing 180′ that is fixedly attached to a mountingplate 182′. The mounting plate is received in areceptacle 184′ in theouter door 30′ and is secured in place to theouter door 30′. Both theouter door 30′ and the mountingplate 182′ have reinforcingribs 186′ in the illustrated example, but structures without ribs may also be utilized. The door mountedcoupler 108′ also includes anelectric actuator 188′ that is received in theactuator housing 180′ and a drivenrod 190′ with afirst rod end 192′ that is configured to extend and retract relative to theactuator housing 180′ in response to actuation of theelectric actuator 188′. The door mountedcoupler 108′ also includes acollar 118′ that is fixed to thefirst rod end 192′ of the drivenrod 190′. Like in the previous embodiment, a bowl-shapedflange 112′ extends radially from thecollar 118′ and is received in the opposing in-door socket 110′ in a sliding fit. The drivenrod 190′ is threaded and has asecond rod end 194′ that threads into a threadedslide 196′ that includes a pair ofwings 198′. Theactuator housing 180′ has anactuator channel 200′ that receives the threadedslide 196′ in a sliding fit. Theactuator channel 200′ is complementary in shape to the threadedslide 196′ and therefore prevents the threadedslide 196′ from rotating. Theelectric actuator 188′ is a screw-type actuator that operates to rotate the drivenrod 190′ when electricity is supplied to theelectric actuator 188′. This causes the drivenrod 190′ to advance (i.e., move) between a range of extended and retracted positions. - The
electric actuator 188′ of thetelescopic attachment assembly 72′ is actuated (i.e., controlled) to rotate the drivenrod 190′ in a direction that extends thefirst rod end 192′ and thus thecollar 118′ to a position that is spaced further away from theactuator housing 180′ to hold the inner andouter doors 28′, 30′ further apart from one another when the inner andouter doors 28′, 30′ are in the open position to provide room for movement of the innerdoor hinge assembly 68, clearance between the inner andouter doors 28′, 30′, and to provide proper closure and latching of first theinner door 28′ followed by a subsequent closure and latching of theouter door 30′. On the other hand, when the inner andouter doors 28′, 30′ are swung to the closed position, theelectric actuator 188′ is actuated to rotate the drivenrod 190′ in the opposite direction to retract the drivenrod 190′ into theactuator housing 180′, which draws thecollar 118′ and thus theinner door 28′ closer to theouter door 30′. Again, this allows for tighter tolerances between the inner andouter doors 28′, 30′ in the closed position. Theelectric actuator 188′ of thetelescopic attachment assembly 72′ may also be actuated (i.e., controlled) to retract the drivenrod 190′ when the inner andouter doors 28′, 30′ reach the open position for aesthetic reasons (i.e., to reduce the gap between the inner andouter doors 28′, 30′). - While the
electric actuator 188′ in the illustrated example is a screw-type actuator, it should be appreciated that theelectric actuator 188′ could be constructed in a number of different ways and could alternatively be a linear actuator, a solenoid, a wax motor, a driven cam, or a driven linkage (e.g., a four-bar linkage), for example and without limitation. It should also be appreciated that theelectric actuator 188′ shown in the illustrated example could alternatively be replaced with other types of actuators that are powered by pneumatics or hydraulics rather than electricity. All such alternatives still provide power actuation that operates to increase and decrease the distance/gap between the inner andouter doors 28′, 30′). - In the illustrated example, the
laundry appliance 20 is a washer and dryer combination appliance that performs both a wash cycle and a drying cycle; however, it should be appreciated that the 26, 26′ described herein may also be used in other types of laundry appliances that include an outer (aesthetic) door and an inner (sealing) door, including laundry appliances that only perform a wash cycle (i.e., in washing machines) and laundry appliances that only perform a drying cycle (i.e., dryers).door assemblies - Many modifications and variations of the apparatus and assemblies described in the present disclosure are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. These antecedent recitations should be interpreted to cover any combination in which the inventive novelty exercises its utility.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/874,759 US20240035222A1 (en) | 2022-07-27 | 2022-07-27 | Door-in-door closure assembly for a laundry appliance |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/874,759 US20240035222A1 (en) | 2022-07-27 | 2022-07-27 | Door-in-door closure assembly for a laundry appliance |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20240035222A1 true US20240035222A1 (en) | 2024-02-01 |
Family
ID=89664924
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/874,759 Abandoned US20240035222A1 (en) | 2022-07-27 | 2022-07-27 | Door-in-door closure assembly for a laundry appliance |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20240035222A1 (en) |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110120195A1 (en) * | 2009-11-25 | 2011-05-26 | Samsung Electronics Co., Ltd. | Drum washing machine with hinge units |
| US20160273149A1 (en) * | 2015-03-20 | 2016-09-22 | Lg Electronics Inc. | Washing machine |
| US9556552B2 (en) * | 2013-06-19 | 2017-01-31 | Samsung Electronics Co., Ltd. | Door hinge apparatus and drum type washing machine having the same |
| US10060070B2 (en) * | 2015-05-08 | 2018-08-28 | Lg Electronics Inc. | Washing machine |
| US10100457B2 (en) * | 2015-05-08 | 2018-10-16 | Lg Electronics Inc. | Washing machine |
| US20180340286A1 (en) * | 2015-12-09 | 2018-11-29 | Samsung Electronics Co., Ltd | Washing machine |
| US20190010650A1 (en) * | 2015-12-23 | 2019-01-10 | Qingdao Haier Drum Washing Machine Co., Ltd. | Drum washing machine |
| US20190071809A1 (en) * | 2017-09-07 | 2019-03-07 | Samsung Electronics Co., Ltd. | Washing machine |
| US10316449B2 (en) * | 2015-03-20 | 2019-06-11 | Lg Electronics Inc. | Washing machine |
| US20200332456A1 (en) * | 2019-04-19 | 2020-10-22 | Samsung Electronics Co., Ltd. | Washing machine |
| CN112301678A (en) * | 2019-08-01 | 2021-02-02 | 无锡小天鹅电器有限公司 | Linkage mechanism, linkage device and clothes treatment equipment |
| US20230203741A1 (en) * | 2021-12-29 | 2023-06-29 | Whirlpool Corporation | Floating Inner Door Of A Combination Washer/Dryer |
-
2022
- 2022-07-27 US US17/874,759 patent/US20240035222A1/en not_active Abandoned
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110120195A1 (en) * | 2009-11-25 | 2011-05-26 | Samsung Electronics Co., Ltd. | Drum washing machine with hinge units |
| US9556552B2 (en) * | 2013-06-19 | 2017-01-31 | Samsung Electronics Co., Ltd. | Door hinge apparatus and drum type washing machine having the same |
| US20160273149A1 (en) * | 2015-03-20 | 2016-09-22 | Lg Electronics Inc. | Washing machine |
| US10316449B2 (en) * | 2015-03-20 | 2019-06-11 | Lg Electronics Inc. | Washing machine |
| US10060070B2 (en) * | 2015-05-08 | 2018-08-28 | Lg Electronics Inc. | Washing machine |
| US10100457B2 (en) * | 2015-05-08 | 2018-10-16 | Lg Electronics Inc. | Washing machine |
| US20180340286A1 (en) * | 2015-12-09 | 2018-11-29 | Samsung Electronics Co., Ltd | Washing machine |
| US20190010650A1 (en) * | 2015-12-23 | 2019-01-10 | Qingdao Haier Drum Washing Machine Co., Ltd. | Drum washing machine |
| US20190071809A1 (en) * | 2017-09-07 | 2019-03-07 | Samsung Electronics Co., Ltd. | Washing machine |
| US20200332456A1 (en) * | 2019-04-19 | 2020-10-22 | Samsung Electronics Co., Ltd. | Washing machine |
| CN112301678A (en) * | 2019-08-01 | 2021-02-02 | 无锡小天鹅电器有限公司 | Linkage mechanism, linkage device and clothes treatment equipment |
| US20230203741A1 (en) * | 2021-12-29 | 2023-06-29 | Whirlpool Corporation | Floating Inner Door Of A Combination Washer/Dryer |
Non-Patent Citations (1)
| Title |
|---|
| Machine translation of CN 112301678 A to Miao et al. (Year: 2021) * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5645464B2 (en) | Washing machine | |
| KR100452354B1 (en) | Hook assembly of drum-washer's door | |
| KR101550843B1 (en) | Clothing dryer and Door of the same | |
| KR102390026B1 (en) | Washing machine | |
| US7159910B2 (en) | Apparatus for opening/closing door of dryer | |
| US20080302141A1 (en) | Drum type washer and door | |
| KR20100070707A (en) | Drum type washing machine | |
| CN101280499B (en) | Drum washing machine | |
| KR100425126B1 (en) | Device for linking case to door in drum type washing machine and method for assembling the same | |
| KR20060040891A (en) | Drum door automatic switchgear of washing machine | |
| US20240035222A1 (en) | Door-in-door closure assembly for a laundry appliance | |
| EP4206376A1 (en) | Floating inner door of a combination washer/dryer | |
| KR102882226B1 (en) | Washing machine | |
| KR20160112647A (en) | Washing machine | |
| CN110552162A (en) | Locking structure for drum door body of washing machine and washing machine | |
| KR20160112646A (en) | Washing machine | |
| CN114687162B (en) | Door assembly of clothes treatment equipment and clothes treatment equipment with door assembly | |
| KR100710226B1 (en) | washer | |
| RU2796284C1 (en) | Laundry washing device | |
| US11788226B2 (en) | Water recirculation insert for laundry appliance | |
| CN114687163B (en) | Door hinge of clothes treatment equipment and clothes treatment equipment with door hinge | |
| CN214193808U (en) | Inside and outside linkage's multi-door top-open drum type washing machine | |
| KR19990051590A (en) | Drum Washing Machine | |
| CN213925509U (en) | Drum and washing machine of a top-opening drum washing machine | |
| CN223593068U (en) | Automatic door opening and closing mechanism and fabric treatment device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: WHIRLPOOL CORPORATION, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURGESS, BRENT M;FISCHER, MARCUS;REEL/FRAME:060643/0224 Effective date: 20220726 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |