US20240023896A1 - Stent delivery system and stent sensor device - Google Patents
Stent delivery system and stent sensor device Download PDFInfo
- Publication number
- US20240023896A1 US20240023896A1 US18/354,693 US202318354693A US2024023896A1 US 20240023896 A1 US20240023896 A1 US 20240023896A1 US 202318354693 A US202318354693 A US 202318354693A US 2024023896 A1 US2024023896 A1 US 2024023896A1
- Authority
- US
- United States
- Prior art keywords
- stent
- sensor
- delivery system
- living body
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6862—Stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0031—Implanted circuitry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/966—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/823—Stents, different from stent-grafts, adapted to cover an aneurysm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
- A61F2002/9583—Means for holding the stent on the balloon, e.g. using protrusions, adhesives or an outer sleeve
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0014—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0001—Means for transferring electromagnetic energy to implants
- A61F2250/0002—Means for transferring electromagnetic energy to implants for data transfer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0023—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0039—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0096—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
Definitions
- the present invention generally relates to a stent delivery system that is used to ameliorate a stenosed site or an occlusion site generated in a body lumen such as a blood vessel (for example, a cerebral blood vessel or a coronary artery of a heart), a bile duct, a trachea, an esophagus, or a urethra, and more particularly to a stent delivery system and a stent sensor device that can obtain biological-related information or stent state information on a stent indwelling site.
- a blood vessel for example, a cerebral blood vessel or a coronary artery of a heart
- a bile duct for example, a cerebral blood vessel or a coronary artery of a heart
- a bile duct for example, a bile duct, a trachea, an esophagus, or a urethra
- An in-vivo indwelling stent is used to treat various diseases caused by stenosis or occlusion of a blood vessel or other body lumens.
- the stent is formed in a tubular shape in order to expand the stenosed site or the occlusion site and to secure the lumen thereof.
- the stent Since the stent is inserted into the body from outside the body, the stent has a compressed small diameter at the time of insertion, is expanded to increase a diameter at a target stenosed or occlusion site, and holds the lumen in the open state.
- a cylindrical stent obtained by processing a metal wire material or a metal tube is generally used.
- the stent is mounted on a catheter or the like in a compressed state, inserted into the living body, expanded in some way at the target site, and pressed against and fixed to an inner wall of the lumen to maintain a shape of the lumen.
- Stents are classified into self-expandable stents and balloon inflatable stents according to a function and an indwelling method.
- the balloon inflatable stent does not have an expansion function by itself.
- the balloon is inflated, and the stent is expanded (plastically deformed) by an inflation force of the balloon and is pressed and fixed to an inner surface of a target lumen.
- This type of stent requires a stent expansion operation as described above.
- the self-expandable stent has an expansion function by itself.
- the self-expandable stent is inserted into the living body in a thin and compressed state and is released from its compressed state at the target site, so that the self-expandable stent returns to an original expanded state thereof and is pressed to and fixed to the inner wall of the lumen to maintain the shape of the lumen.
- ischemic cerebral artery disease is stenosis and occlusion of intracranial artery and an aneurysm.
- a risk can be reduced by an anti-platelet therapy.
- a medical treatment there is a limit to a medical treatment, and a treatment by balloon inflation or stent indwelling is performed on a patient who exhibits drug resistance.
- U.S. Pat. No. 9,439,791 discloses a stent for treating a body-cavity such as an embolization of a vascular aneurysm and the like.
- the stent disclosed in this patent is a so-called self-expandable stent, and is a stent having a generally cylindrical body formed of a single woven nitinol wire.
- a distal end portion and a proximal end portion of the stent include a plurality of loops, some of which include marker members used for visualizing a position of the stent, and further include an inner flow diverting layer.
- U.S. Pat. No. 8,187,317 discloses an endoprosthesis (stent).
- the endoprosthesis disclosed in this patent is designed to be implanted into an aneurysm (12) of a patient caused by deformation of a vascular wall, strictly speaking, a wall of an artery (14).
- the endoprosthesis includes tubular envelopes (22, 24) extending in a direction (Y-Y′) and a plurality of pressure probes (26) fixed to the envelope (22, 24).
- Each probe (26) includes a sensor (28) that measures a pressure, and units (34, 36) that transmit a measurement value of the pressure to a monitoring device disposed outside a body of the patient.
- the units (34, 36) that transmit the measurement value of the pressure from each probe (26) are designed to generate an electromagnetic pressure measurement transmission signal having at least one distinguishable characteristic of the probe (26) of which these units (34, 36) form a part thereof.
- the endoprosthesis (stent) includes the pressure probes (26), and each probe (26) of the endoprosthesis (stent) can measure the pressure in the stent indwelling into the living body.
- the pressure probe (26) is fixed to the endoprosthesis (stent)
- physical properties of the endoprosthesis (stent) in a pressure probe portion are different from those in other portions. For this reason, in this portion, favorable deformation of the endoprosthesis (stent) may be inhibited, and a thrombus may be formed at the endoprosthesis.
- the stent delivery system and stent sensor device disclosed here are capable of obtaining biological-related information or stent state information in a stent after the stent indwells in a living body, and that are capable of taking out, from the living body, a sensor that collects the biological-related information or the stent state information.
- a stent delivery system includes: a stent that has a plurality of side wall openings, that is formed in a substantially cylindrical shape and compressed in a central axis direction for insertion into a living body, and that is expandable outward for implanting into the living body; a sheath possessing a distal portion accommodates the stent; and a stent extrusion member whose distal side portion is located in the distal portion of the sheath.
- the stent delivery system is configured to release the stent by moving the sheath toward a proximal end side with respect to the stent extrusion member.
- the stent delivery system further includes a sensor device, wherein the sensor device includes: a sensor unit; and a pressing portion capable of bringing the sensor unit into contact with an inner surface of the stent indwelling into the living body.
- the sensor device is able to the sensor unit in a proximal end direction of the stent by movement of the stent extrusion member toward the proximal end side or withdrawal of the sensor device, and the stent delivery system is able to obtain biological-related information or stent state information in the stent using a signal from the sensor unit.
- the sensor device is removable from the living body by removing the stent delivery system from the living body or removing the sensor device from the stent delivery system.
- the sensor device possesses two or more of the sensor units that are separated from each other by a predetermined distance for detecting at a plurality of positions in an axial direction of the stent.
- the pressing portion is a wire-shaped pressing portion
- the sensor device comprises a traction wire
- a rear end portion of the pressing portion is interlocked with the traction wire.
- the stent delivery system according to any one of (1) to (7), in which the stent extrusion member comprises a lumen opened at a distal end thereof, the sensor device accommodates a device tube accommodated in the lumen and capable of protruding from the opening of the stent extrusion member, and an operation wire interlocked with at least the pressing portion and a rear end portion of the pressing portion in the device tube, the pressing portion is exposed from the device tube by movement of the device tube toward the rear end side or pushing of the operation wire, and the sensor unit is brought into contact with the inner surface of the stent indwelling into the living body by the pressing portion.
- the stent delivery system according to any one of (1) to (10), in which the sensor unit is a sensor unit configured to detect a blood velocity which is the biological-related information.
- the stent delivery system according to any one of (1) to (12), in which the sensor device comprises a wire-shaped strain sensor possessing the sensor unit and the wire-shaped pressing portion, and the strain sensor and the pressing portion are integrated in parallel.
- the stent delivery system according to any one of (1) to (13) further comprises an arithmetic processing device configured to calculate the biological-related information or the stent state information in the stent using the signal from the sensor unit.
- the stent delivery system according to any one of (1) to (14), in which the sensor unit is a pressure sensor, and the arithmetic processing device outputs information on blood velocity using a difference in pressure-related signal values that are detected by the same sensor unit at different positions in a radial direction of a blood vessel.
- the stent delivery system according to any one of (1) to (14), in which the sensor unit is a pressure sensor, and the arithmetic processing device outputs information on blood velocity using a difference in pressure-related signal values that are detected by the same sensor unit at different positions in a radial direction of a blood vessel.
- the stent is substantially cylindrically shaped and has a plurality of side wall openings that pass through a wall of the stent from an outer surface of the stent to an inner surface of the stent.
- the stent is compressed radially inwardly in a central axis direction at a time of insertion of the stent sensor device and the stent into a living body, and is expandable radially outwardly at a time of indwelling the stent sensor device and the stent into the living body.
- the stent sensor device is positioned inside the stent and comprises: at least one sensor unit positioned inside the stent, with the at least one type of sensor being a wire-shaped pressure sensor, a contact force sensor, or a strain sensor; and a pressing portion connected to the sensor unit to press the sensor unit toward the inner surface of the stent.
- the sensor device is removable from a rear end side of the stent after the stent indwells into the living body.
- a stent delivery system disclosed here may include: a stent that has a plurality of side wall openings, that is formed in a substantially cylindrical shape, is compressed in a central axis direction at a time of insertion into a living body, and that is expandable outward at a time of indwelling into the living body; a sheath in which the stent is accommodated in a distal portion; and a stent extrusion member whose distal side portion is positioned in a distal side portion of the sheath.
- the stent delivery system is capable of releasing the stent by moving the sheath toward a rear end side with respect to the stent extrusion member.
- the stent delivery system further includes a sensor device.
- the sensor device includes: a sensor unit; and a pressing portion capable of bringing the sensor unit into contact with an inner surface of the stent indwelling into the living body.
- the sensor device is capable of moving the sensor unit in a rear end direction of the stent by movement of the stent extrusion member toward the rear end side or withdrawal of the sensor device.
- the stent delivery system is capable of obtaining biological-related information or stent state information in the stent using a signal from the sensor unit.
- the sensor device is capable of being taken out from the living body by removing the stent delivery system from the living body or removing the sensor device from the stent delivery system.
- a sensor that collects the biological-related information or the stent state information can be taken out by removing the stent delivery system from the living body and/or removing the sensor device from the stent delivery system, and a problem caused by a residual sensor does not occur.
- Another aspect of the disclosure here involves a method comprising: inserting a stent into a living body, the stent being substantially cylindrically shaped and having a plurality of side wall openings that pass through a wall of the stent from an outer surface of the stent to an inner surface of the stent, with the stent being compressed radially inwardly during the inserting of the stent into the living body.
- the inserting of the stent into the living body occurs while a sensor is positioned inside the stent.
- the method additionally involves radially outwardly expanding the stent after the stent is positioned in the living body; moving the sensors that are positioned inside the stent toward the inner surface of the stent, with the moving of the sensors toward the inner surface of the stent occurring after starting the radially outwardly expanding of the stent; using a signal produced by the sensor to determine information about blood flowing in the living body or information about a state of the stent; and removing the sensor from the living body while maintaining the stent in the living body.
- FIG. 1 is a partially omitted front view of a stent delivery system according to an embodiment of the present invention.
- FIG. 2 is a longitudinal cross-sectional view of the stent delivery system illustrated in FIG. 1 .
- FIG. 3 is an enlarged cross-sectional view of a distal portion of the stent delivery system illustrated in FIG. 1 .
- FIG. 4 is an enlarged cross-sectional view taken along a section line IV-IV in FIG. 3 .
- FIG. 5 is an enlarged cross-sectional view taken along a section line V-V in FIG. 4 .
- FIG. 6 is a partially omitted enlarged cross-sectional view of a rear end portion of the stent delivery system illustrated in FIG. 1 .
- FIG. 7 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention.
- FIG. 8 is an enlarged cross-sectional view of an example of a pressing member wire integrated member used in the stent delivery system according to the present invention.
- FIG. 9 is an enlarged cross-sectional view of another example of the pressing member wire integrated member used in the stent delivery system according to the present invention.
- FIG. 10 is an enlarged cross-sectional view of another example of the pressing member wire integrated member used in the stent delivery system according to the present invention.
- FIG. 11 is an enlarged lateral cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention.
- FIG. 12 is an enlarged lateral cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention.
- FIG. 13 is a front view of an example of an in-vivo indwelling stent used in the stent delivery system according to the present invention.
- FIG. 14 is a view illustrating the in-vivo indwelling stent illustrated in FIG. 13 .
- FIG. 15 is a view illustrating the in-vivo indwelling stent illustrated in FIG. 13 .
- FIG. 16 is a view illustrating an effect of the stent delivery system illustrated in FIG. 1 .
- FIG. 17 is a view illustrating an effect of the stent delivery system illustrated in FIG. 1 .
- FIG. 18 is a view illustrating an effect of the stent delivery system illustrated in FIG. 1 .
- FIG. 19 is a view illustrating an effect of the stent delivery system illustrated in FIG. 1 .
- FIG. 20 is a view illustrating an effect of the stent delivery system illustrated in FIG. 1 .
- FIG. 21 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention.
- FIG. 22 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention.
- FIG. 23 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention.
- FIG. 24 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention.
- FIG. 25 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention.
- FIG. 26 is an enlarged cross-sectional view taken along a section line XXVI-XXVI in FIG. 25 .
- FIG. 27 is a longitudinal cross-sectional view of a stent delivery system according to another embodiment of the present invention.
- FIG. 28 is a longitudinal cross-sectional view of a stent delivery system according to another embodiment of the present invention.
- FIG. 29 is an enlarged cross-sectional view of a distal portion of the stent delivery system illustrated in FIG. 28 .
- FIG. 30 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention.
- FIG. 31 is a longitudinal cross-sectional view of a stent delivery system according to another embodiment of the present invention.
- FIG. 32 is an enlarged cross-sectional view of a distal portion of the stent delivery system illustrated in FIG. 31 .
- FIG. 33 is a view illustrating an effect of the stent delivery system illustrated in FIG. 31 .
- FIG. 34 is a view illustrating an effect of the stent delivery system illustrated in FIG. 31 .
- FIG. 35 is a view illustrating an effect of the stent delivery system illustrated in FIG. 31 .
- FIG. 36 is a view illustrating an effect of the stent delivery system illustrated in FIG. 31 .
- FIG. 37 is a view illustrating an effect of the stent delivery system illustrated in FIG. 31 .
- FIG. 38 is a view illustrating an effect of a stent delivery system according to another embodiment of the present invention.
- FIG. 39 is a partially omitted longitudinal cross-sectional view of a stent delivery system according to another embodiment of the present invention.
- FIG. 40 is a view illustrating another effect of the stent delivery system illustrated in FIG. 39 .
- FIG. 41 is a view illustrating another effect of the stent delivery system illustrated in FIG. 31 .
- FIG. 42 is a view illustrating another effect of the stent delivery system illustrated in FIG. 31 .
- FIG. 43 is a view illustrating another effect of the stent delivery system illustrated in FIG. 31 .
- FIG. 44 is a view illustrating another effect of the stent delivery system illustrated in FIG. 31 .
- FIG. 45 is a view illustrating a stent delivery device using the stent delivery system according to the present invention.
- FIG. 46 is a view illustrating an effect of the stent delivery device illustrated in FIG. 45 .
- FIG. 47 is a view illustrating an effect of the stent delivery device illustrated in FIG. 45 .
- a stent delivery system 1 includes: a stent 3 that has a plurality of side wall openings, that is formed in a substantially cylindrical shape and compressed in a central axis direction at the time of insertion into a living body, and that is expandable outward at the time of indwelling into the living body; a sheath (stent accommodation tube) 21 in which the stent 3 is accommodated in a distal portion of the sheath; and a stent extrusion member (stent extrusion member 4 in an embodiment illustrated in FIGS. 1 to 25 ) whose distal side portion is located in a distal side portion of the sheath 21 .
- the stent delivery system 1 is capable of releasing the stent 3 by moving the sheath 21 toward a rear end side with respect to the stent extrusion member.
- the stent delivery system 1 includes a sensor device 5 (sensor).
- the sensor device 5 includes: a sensor unit; and a pressing portion that brings the sensor unit into contact with an inner surface of the stent 3 indwelling into the living body. Further, the sensor device 5 is capable of moving the sensor unit in a rear end direction of the stent 3 by movement of the stent extrusion member toward a rear end side or retraction (withdrawal or pulling) of the sensor device 5 .
- the stent delivery system 1 can obtain biological-related information or stent state information in the stent 3 using a signal from the sensor unit.
- the biological-related information is information related to a living body, for example, information related to a liquid pressure, a blood velocity, and the like of blood in a blood vessel.
- the stent state information is information related to a placement state of the stent, and is, for example, information related to a shape of the stent indwelling in the blood vessel and stent malapposition (the stent indwells in a blood vessel in an abnormal state such as a state where the stent or part of the stent is floated or spaced from a vascular wall).
- the sensor device 5 can be taken out from the living body by removing the stent delivery system 1 from the living body or removing the sensor device 5 from the stent delivery system 1 .
- the stent delivery system 1 according to an embodiment illustrated in FIGS. 1 to 6 will be described.
- the stent delivery system 1 includes a tube assembly 2 including the stent accommodation tube 21 , a self-expandable stent 3 accommodated in the stent accommodation tube 21 , the stent extrusion member 4 slidably accommodated in the tube 21 , and the sensor device 5 disposed in the stent 3 .
- the stent accommodation tube 21 is a tube-shaped body (tubular body), and a distal end and a rear end of the tube 21 are open. A distal end opening functions as a discharge port of the stent 3 when the stent 3 indwells in a stenosed site in a body-cavity.
- the stent accommodation tube 21 is slid toward the rear end side, so that the stent 3 is released from the distal end opening, a stress load is released, and the stent 3 is expanded and returns to a shape before compression.
- the distal portion of the stent accommodation tube 21 is a stent accommodation portion that accommodates the stent 3 therein.
- An outer diameter of the stent accommodation tube 21 is preferably about 0.4 mm to 4.0 mm, and particularly preferably 0.5 mm to 3.0 mm.
- An inner diameter of the stent accommodation tube 21 is preferably about 0.3 mm to 2.0 mm.
- the stent accommodation tube 21 is preferably a flexible tube.
- a material having a certain degree of flexibility for example, a thermoplastic resin such as polyolefin (for example, polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-vinyl acetate copolymer, and further including a crosslinked or partially crosslinked product), polyvinyl chloride, polyamide elastomer, or polyurethane, silicone rubber, or latex rubber can be used, and the thermoplastic resin described above is preferable.
- a thermoplastic resin such as polyolefin (for example, polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-vinyl acetate copolymer, and further including a crosslinked or partially crosslinked product), polyvinyl chloride, polyamide elastomer, or polyurethane, silicone rubber, or latex rubber
- the thermoplastic resin described above is preferable.
- the tube assembly 2 includes a lumen 20 therein and a tube hub 22 fixed to a rear end portion of the stent accommodation tube 21 .
- the tube hub 22 includes a tube hub main body 23 and a seal member 27 accommodated in a rear end flange portion 24 of the tube hub main body 23 and holding the stent extrusion member 4 in a slidable and liquid-tight manner.
- the tube hub 22 includes a branch port portion 25 branched obliquely rearward from a vicinity of a center of the tube hub main body 23 .
- An opening portion 26 of the branch port portion 25 is in communication with the inside of the stent accommodation tube 21 .
- the stent extrusion member 4 includes a hollow shaft portion 41 , a distal end guiding portion 45 , an elastic tubular portion 43 provided at a distal end of the hollow shaft portion 41 , a stent pressing portion 42 provided at a distal end of the elastic tubular portion 43 , a guide portion fixing portion 49 provided at a rear end of the distal end guiding portion 45 , and an elastic tubular interlock portion 71 that interlocks the stent pressing portion 42 and the guide portion fixing portion 49 .
- the distal end guiding portion 45 includes a guide portion shaft 48 , a spherical distal portion 47 fixed to a distal end of the guide portion shaft 48 , and a distal coil member 46 extending from a rear portion of the spherical distal portion 47 in a rear end direction of the guide portion shaft 48 .
- the distal coil member 46 has a distal end fixed to the rear portion of the spherical distal portion 47 and a rear end fixed to a distal portion side portion of the guide portion shaft 48 . In this embodiment, a distal side of the distal coil member 46 protrudes from a distal end of the stent 3 with respect to a rear end portion of the distal coil member 46 .
- the guide portion shaft 48 is a solid shaft portion.
- the distal coil member 46 is preferably a coil spring.
- the guide portion shaft 48 and the spherical distal portion 47 are also a distal portion of the stent delivery system 1 , it is preferable that positions of the guide portion shaft 48 and the spherical distal portion 47 can be easily checked under X-ray fluoroscopy. It is preferable to use Pt, a Pt alloy (for example, Pt—Ir alloy), W, a W alloy, Ag, an Ag alloy, or the like as the material from which the distal end guiding portion 45 is fabricated.
- a rear end portion of the guide portion shaft 48 is inserted into and fixed to a central opening portion of the guide portion fixing portion 49 .
- a coil spring extending for a predetermined length is used as the elastic tubular portion 43 provided at the distal end of the hollow shaft portion 41 .
- a coil spring is used as the elastic tubular interlock portion 71 that interlocks the stent pressing portion 42 and the guide portion fixing portion 49 .
- the coil spring used as the elastic tubular interlock portion 71 has a smaller diameter and is shorter than the coil spring used as the elastic tubular portion 43 .
- the stent pressing portion 42 and the guide portion fixing portion 49 preferably have X-ray contrast properties, and the entire body or surfaces of the stent pressing portion 42 and the guide portion fixing portion 49 are preferably formed of an X-ray contrast material.
- the stent 3 to be described later includes a stopper 33 provided at a rear end portion, and the stopper 33 is located between the stent pressing portion 42 and the guide portion fixing portion 49 . Further, a distal end of the stent pressing portion 42 is attachable to a rear end of the stopper 33 . A rear end of the guide portion fixing portion 49 is attachable to a distal end of the stopper 33 .
- a shaft hub 72 is fixed to a rear end of the hollow shaft portion 41 .
- the stent delivery system 1 includes the sensor device 5 .
- the sensor device 5 includes sensor units or sensors 51 ( 51 a, 51 b, 51 c, and 51 d ), pressing portions 52 ( 52 a, 52 b, 52 c , and 52 d ) that bring the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) into contact with an inner surface of the stent 3 indwelling into the living body, and sensor cables 53 ( 53 a , 53 b, 53 c, and 53 d ) whose distal ends are electrically connected to the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ).
- the sensor unit or sensors 51 ( 51 a, 51 b, 51 c, and 51 d ) are wired sensors.
- the sensor device 5 according to this embodiment and a sensor device to be described later are also stent sensor devices according to the present disclosure.
- the stent sensor device 5 h is disposed inside the stent 3 , which has a plurality of side wall openings, is formed in a substantially cylindrical shape, is compressed in a central axis direction at the time of insertion into the living body, and which can expand outward and return to a shape before compression at the time of indwelling into the living body.
- the sensor device includes at least one type of sensor unit 51 selected from a wire-shaped pressure sensor, a contact force sensor, or a strain sensor, and the pressing portions 52 that press the sensor units 51 to the inside of the stent. After the stent indwells into the living body, the sensor device can be removed from a rear end side of the stent 3 .
- the sensor device 5 can move the sensor units in a rear end direction of the stent 3 by the movement of the stent extrusion member (stent extrusion member 4 ) toward a rear end side or the retraction (withdrawal or pulling) of the sensor device 5 .
- the stent delivery system 1 can obtain biological-related information or stent state information using signals from the sensor units.
- a pressure sensor As the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ), a pressure sensor, a contact force sensor, a strain sensor, or the like is used.
- a pressure sensor for example, a thin-film type pressure sensor or an extra-fine diameter optical fiber pressure sensor can be used.
- the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) are pressed into contact with the inner surface of the stent 3 by the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ) whose distal ends are fixed to the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ). Further, as illustrated in FIGS. 1 to 5 , the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) are pressed into contact with the inner surface of the stent 3 by the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ) whose distal ends are fixed to the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ). Further, as illustrated in FIGS.
- the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) can be pressed (attached), by the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ), against the inner surface of the stent 3 indwelling into the living body.
- the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ) can press (attach), with substantially equal pressures, the attached sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) against the inner surface of the stent 3 indwelling into the living body.
- each pressing portion is a wire-shaped (elongated) pressing portion.
- a linear main body portion and bent portions 55 a, 55 b, 55 c, and 55 d bent from the main body portion are provided.
- the sensor units are fixed to distal ends of the bent portions 55 a, 55 b , and 55 d of the pressing portions.
- an elastic linear body (elastic wire) having a spring property capable of pressing the sensor units 51 ( 51 a , 51 b, 51 c, and 51 d ) is used as the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ).
- the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ) may not have a strong spring property as long as the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) can be pressed into contact with the inner surface of the stent.
- the pressing portions may include a shape memory alloy in order to have a spring property.
- the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ) are pressed by the sensor units, which are pressed by the stent 3 , and are elastically deformed inward.
- rear end portions of the pressing portions 52 ( 52 a, 52 b , 52 c, and 52 d ) are fixed to the rear end portion of the guide portion shaft 48 or a distal portion of the guide portion fixing portion 49 .
- rear end portions 56 a, 56 b, 56 c, and 56 d of the pressing portions 52 are located and fixed between the rear end portion of the guide portion shaft 48 and a ring-shaped fixing portion 57 .
- the distal ends of the sensor cables 53 are electrically connected to the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ).
- the sensor cables 53 pass through the stent accommodation tube 21 , enter the stent extrusion member 4 from four opening portions 49 a, 49 b, 49 c, and 49 d formed in the guide portion fixing portion 49 through the distal portion of the guide portion fixing portion 49 , pass through the guide portion fixing portion 49 , the elastic tubular interlock portion 71 , the stent pressing portion 42 , the elastic tubular portion 43 , and the hollow shaft portion 41 , and are electrically connected to a connector 50 located at the rear end of the hollow shaft portion 41 .
- the sensor cables 53 ( 53 a, 53 b, 53 c, and 53 d ) are bundled or twisted to form a single wire body 54 in the stent extrusion member 4 , specifically, in the guide portion fixing portion 49 , and the single wire body 54 extends in the stent extrusion member 4 and is electrically connected to the connector 50 .
- the connector 50 is fixed to the shaft hub 72 , and when the sensor device is pulled, the user also pulls the stent extrusion member 4 together because the sensor device is fixed to the shaft hub 72 which is fixed to the stent extrusion member 4 .
- the sensor cables 53 ( 53 a, 53 b, 53 c, and 53 d ) are wound around the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ) at a distal side portion.
- the sensor device includes both a sensor cable and a pressing portion, and the sensor cable is not limited to a type in which the sensor cable is wound around the pressing portion as described above.
- a sensor cable 12 including a conductive wire 12 a and a coating film 12 b may be disposed on a side surface of a pressing portion 11 , and the sensor cable 12 and the pressing portion 11 may be fixed to each other by an adhesive portion 13 to form an integrated member 10 .
- the sensor cable 12 including the conductive wire 12 a and the coating film 12 b may be disposed on the side surface of the pressing portion 11 , and the integrated member 10 a may be formed by a covering tube 14 that covers and fixes both the sensor cable 12 and the pressing portion 11 . Further, as illustrated in FIG.
- the sensor cable 12 including the conductive wire 12 a and the coating film 12 b may be disposed on the side surface of the pressing portion 11 , and the integrated member 10 b may be formed by a resin layer 15 that covers and fixes both the sensor cable 12 and the pressing portion 11 .
- the sensor device 5 includes two or more sensor units (sensors) spaced apart by a predetermined distance. Specifically, it is preferable to include three or more sensor units. When three or more sensor units are provided, it is preferable that the sensor units are attached, in a manner of being annular and spaced apart by a predetermined distance, to the inner surface of the stent 3 indwelling into the living body. In the embodiment illustrated in FIGS. 1 to 6 , particularly in FIG. 4 , four sensor units are provided, and as illustrated in FIG. 16 , the sensor units are attached, in a manner of being annular and spaced apart by a predetermined distance, to the inner surface of the stent 3 indwelling into the living body.
- the number of sensor units in the sensor device is not limited to four as described above, and may be three as in a stent delivery system 1 b according to an embodiment illustrated in FIG. 11 . In this case, it is preferable that the sensor units are also attached, in a manner of being annular and spaced apart by a predetermined distance, to the inner surface of the stent 3 indwelling into the living body.
- the number of sensor units may be five as in a stent delivery system 1 c according to an embodiment illustrated in FIG. 12 . In this case, it is preferable that the sensor units are also attached, in a manner of being annular and spaced apart by a predetermined distance, to the inner surface of the stent 3 indwelling into the living body.
- the sensor device includes the sensor units 51 ( 51 a, 51 b, 51 c, 51 d, and 51 e ), the pressing portions 52 ( 52 a, 52 b, 52 c, 52 d, and 52 e ) that press the sensor units against the inner surface of the stent 3 indwelling into the living body, and the sensor cables 53 ( 53 a, 53 b, 53 c, 53 d, and 53 e ) electrically connected to the sensor units.
- the guide portion fixing portion 49 of the stent extrusion member 4 has five opening portions 49 a, 49 b, 49 c, 49 d, and 49 e through which the sensor cables 53 ( 53 a, 53 b , 53 c, 53 d, and 53 e ) pass.
- the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) of the sensor device 5 are movable in the rear end direction of the stent 3 in a state where the sensor units are attached, in a manner of being annular and spaced apart by a predetermined distance, to the inner surface of the stent 3 indwelling into the living body by the movement of the stent extrusion member (stent extrusion member 4 ) toward the rear end side. Therefore, it is possible to obtain biological-related information or stent state information in the stent 3 at a plurality of positions in the stent 3 using signals from the sensor units.
- the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ) of the sensor device are fixed to the guide portion fixing portion 49 of the stent extrusion member 4 , but are not limited to this type.
- the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ) may not be fixed to the guide portion fixing portion 49 of the stent extrusion member 4 .
- rear ends of the pressing portions 52 enter the guide portion fixing portion 49 from an opening portion of the guide portion fixing portion 49 and are bundled.
- the connector 50 electrically connected to the sensor cables is fixed to the shaft hub 72 , and the shaft hub 72 is not fixed to the rear end of the hollow shaft portion 41 .
- the connector 50 when the connector 50 is pulled rearward together with the shaft hub 72 , a distal portion of the sensor device moves rearward, and the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ) can be accommodated in the guide portion fixing portion 49 of the stent extrusion member 4 .
- the sensor cables 53 ( 53 a , 53 b, 53 c, and 53 d ) are bundled to form a traction wire, meaning the user can move the sensor device by withdrawing the sensor cables 53 .
- the bundle of the sensor cables serve as a traction wire allowing retraction or withdrawal of the sensor device.
- a traction wire may be separately provided, and the sensor cables 53 ( 53 a , 53 b, 53 c, and 53 d ) may be wound around the traction wire.
- the rear ends of the pressing portions 52 52 a, 52 b, 52 c, and 52 d ) are preferably fixed to a distal end of the traction wire.
- the sensor units 51 51 a, 51 b, 51 c, and 51 d ) may also be accommodated in the guide portion fixing portion 49 .
- a so-called self-expandable stent that has a plurality of side wall openings, that is formed in a substantially cylindrical shape, that is compressed in the central axis direction (radially inwardly) at the time of insertion into the living body, and that can expand outward and return to a shape before compression at the time of indwelling into the living body is used.
- any stent may be used as the self-expandable stent, and for example, the stent 3 as illustrated in FIGS. 13 to 15 can be suitably used.
- the stent 3 according to this embodiment is effective for ameliorating an aneurysm forming portion of a cerebral blood vessel.
- a diameter of the stent 3 at the time of expansion (non-compression) is preferably about 0.5 mm to 6.0 mm, and particularly more preferably 0.9 mm to 5.0 mm.
- a length of the stent at the time of expansion (non-compression) is preferably about 5 mm to 50 mm.
- a thickness of the stent is preferably about 0.05 mm to 0.15 mm, and particularly more preferably 0.06 mm to 0.13 mm.
- FIGS. 13 and 14 also show an example of side wall openings passing through the wall of the stent.
- a superelastic metal As a constituent material from which the stent may be fabricated, a superelastic metal is preferred.
- a superelastic metal As the superelastic metal, a superelastic alloy is preferably used.
- the superelastic alloy referred to herein is generally called a shape memory alloy, and exhibits superelasticity at least at a biological temperature (around 37° C.).
- the above Ti—Ni alloy is used.
- the mechanical properties can be appropriately changed by selecting the cold working ratio and/or the conditions of the final heat treatment using the Ti—Ni—X alloy described above.
- a buckling strength (yield stress when loaded) of the superelastic alloy to be used is 5 kg/mm 2 to 200 kg/mm 2 (at 22° C.), preferably 8 kg/mm 2 to 150 kg/mm 2 , and restoring stress (yield stress when unloaded) of the superelastic alloy is 3 kg/mm 2 to 180 kg/mm 2 (at 22° C.), more preferably 5 kg/mm 2 to 130 kg/mm 2 .
- the term “superelasticity” here means that, even when a normal metal is deformed (bent, stretched, or compressed) to a region where the normal metal is plastically deformed at an operating temperature, the metal substantially returns to a shape before compression without requiring heat after the deformation is released.
- the stent 3 includes a stent main body 31 , a distal side marker 32 , and a rear end side stopper 33 .
- both the distal side marker 32 and the rear end side stopper 33 are formed of coil springs. It is preferable that positions of the distal side marker 32 and the rear end side stopper 33 can be easily checked under X-ray fluoroscopy, and Pt, a Pt alloy (for example, a Pt—Ir alloy), W, a W alloy, Ag, an Ag alloy, or the like is preferably used as the material of the distal side marker 32 and the rear end side stopper 33 .
- the stent 3 according to this embodiment is a double-layered stent, and the stent main body 31 is double-layered.
- the stent main body 31 includes a tubular stent outer layer 34 as illustrated in FIGS. 13 and 14 , and a tubular stent inner layer 35 disposed inside the stent outer layer 34 as illustrated in FIGS. 13 and 15 .
- the stent outer layer 34 is formed in a tubular shape by a wire braid, and includes the distal side marker 32 and the rear end side stopper 33 described above at both end portions.
- the stent inner layer 35 is formed in a tubular shape by a wire braid that is thinner than the stent outer layer 34 , and is a tight tubular body. Therefore, a side wall opening formed in a tubular side surface of the stent inner layer 35 is sufficiently smaller than a side wall opening formed in a tubular side surface of the stent outer layer 34 .
- the stent inner layer 35 is shorter than the stent outer layer 34 . That is, both end portions of the stent main body 31 are formed only by the stent outer layer 34 , and the stent inner layer 35 is not present.
- the distal side marker 32 and the rear end side stopper 33 described above are provided at the end portions of the stent main body 31 formed only by the stent outer layer 34 .
- the stent inner layer 35 functions as a flow-diverting layer for changing a direction of blood flow.
- the stent inner layer 35 that functions as the flow-diverting layer is preferably formed in a tubular shape by braiding a fine-diameter superelastic metal wire.
- a pore diameter thereof is preferably 0.3 mm or less and an opening area thereof is preferably 0.07 mm 2 or less.
- the pore diameter thereof is preferably 0.03 mm or more and the opening area is preferably mm 2 or more. Both end portions of the stent inner layer 35 are preferably formed by laser cutting or etching a thin tube. A porosity of the tubular side surface of the stent inner layer 35 at the time of the stent expansion is preferably 45% to 70%.
- the stent 3 according to this embodiment which is a double-layered stent, has a larger radial force (defined as a radial force applied in compression in a radial direction of about 50% of the stent) than either the stent outer layer 34 or the stent inner layer 35 alone.
- the radial force of the stent 3 is preferably larger than a sum of the radial forces of the stent outer layer 34 and the stent inner layer 35 .
- a plurality of fixing portions that connect the stent outer layer 34 and the stent inner layer 35 are provided at both end portions of the stent inner layer 35 .
- the fixing portions can be formed by winding fine-diameter wires.
- the fixing portions can also be formed by pressing portions of the stent outer layer 34 corresponding to positions on both end portions of the stent inner layer 35 .
- the fixing portions can also be formed by weaving both end portions of the stent inner layer 35 into the stent outer layer 34 .
- FIGS. 16 to 20 A method for using the stent delivery system 1 according to the embodiment illustrated in FIGS. 1 to 6 will be described with reference to FIGS. 16 to 20 .
- the stent 3 is placed in the living body (for example, in a cerebral artery 16 ) in which the stent 3 is to indwell, specifically, after a distal side portion (spherical distal portion 47 and distal coil member 46 ) of the distal end guiding portion 45 of the stent delivery system 1 is placed in a manner of being located a predetermined distance forward (peripheral side at the predetermined distance) from a target in-vivo indwelling portion, specifically, an aneurysm 17 of the cerebral artery 16 having the aneurysm 17 , by advancing the stent extrusion member 4 or retracting the stent accommodation tube 21 (tube assembly 2 ), the stopper 33 at the rear end portion of the stent 3 is attached to (contacted by) and pressed by a distal end surface of the stent pressing portion 42 of the stent extrusion member 4 , and the stent 3 is discharged from the stent accommodation tube 21 .
- a distal portion of the stent 3 discharged from the stent accommodation tube 21 self-expands and is pressed into contact with an inner surface of the living body, specifically, an inner surface of the cerebral artery 16 .
- distal side portions of the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ) of the sensor device 5 are also outside the stent accommodation tube 21 and spread, and the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) are attached to the inner surface of the expanded stent 3 (stent main body 31 ).
- the entire stent 3 is discharged from the stent accommodation tube 21 and indwells in a manner of covering the inside of the cerebral artery 16 and an opening portion between the aneurysm 17 and the blood vessel.
- biological-related information or stent state information in the stent 3 can be obtained using the signals from the sensor units.
- stent state information can be obtained (i.e., information about the state of the stent can be obtained).
- stent delivery system 1 by retracting the stent delivery system 1 from the state illustrated in FIG. 17 , as illustrated in FIGS.
- axial positions of the sensor units 51 ( 51 a, 51 b, 51 c , and 51 d ) in the stent 3 (stent main body 31 ) can be changed, and stent state information can be obtained at a plurality of sites.
- the sensor device 5 can be accommodated in the stent accommodation tube 21 by retracting the stent extrusion member 4 with respect to the stent accommodation tube 21 .
- the stent delivery system 1 preferably includes an arithmetic processing device 100 (computer) as illustrated in FIG. 45 .
- the arithmetic processing device 100 includes a device main body portion 101 , a cable 102 connected to the device main body portion 101 , and a coupler 103 provided at a distal end of the cable 102 and connectable to the connector 50 of the stent delivery system 1 .
- the device main body portion 101 includes a sensor signal input unit 104 , a calculation unit 105 that performs calculation using a signal from the sensor signal input unit 104 , a display unit 106 that performs output based on a calculation result, and a storage unit 107 that stores input data, output data, and the like.
- the arithmetic processing device 100 has a function of displaying, on the display unit 106 , a value of the contact force in the sensor units 51 a, 51 b, 51 c, and 51 d calculated using the signals from the sensor units.
- the calculation unit 105 of the arithmetic processing device 100 outputs that a stent state is favorable when the value of the contact force in the sensor units 51 a , 51 b, 51 c, and 51 d calculated using the signals from the sensor units is within a predetermined range.
- the stent 3 (stent main body 31 ) includes a stent deformation portion 31 a which is pressed by a deformation portion 16 a of the cerebral artery (blood vessel) 16 and which is curved inward.
- the sensor unit 51 a is attached to the stent deformation portion 31 a. Since the sensor unit 51 a is more strongly pressed inward than other sensor units 51 b, 51 c, and 51 d, a signal (data) caused by the contact force (pressing force) to be output is different from a signal from the sensor unit 51 a.
- a value of the contact force in the sensor units calculated using the signal from the sensor unit 51 a displayed on the display unit 106 is different from (specifically, larger than the value of the contact force) the value of the contact force in the other sensor units 51 b, 51 c , and 51 d calculated using the signals from the other sensor units.
- the calculation unit 105 of the arithmetic processing device 100 outputs that the stent state is not favorable.
- a balloon catheter (not illustrated) is inserted into the stent 3 , and a balloon is inflated. Accordingly, a shape of the stent 3 can be improved.
- a stent delivery system 1 d according to an embodiment illustrated in FIG. 21 will be described.
- a wireless sensor having a communication function as a sensor unit is used in a sensor device 5 b. Therefore, although the sensor device 5 b includes the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) and the pressing portions 52 ( 52 a, 52 b , 52 c, and 52 d ) that press the respective sensor units on the inner surface of the stent 3 indwelling in the living body, the sensor cable is not provided.
- Other configurations, features and aspects of the stent delivery system 1 d are the same as those of the above-described stent delivery system 1 .
- a sensor device 5 c includes wire-shaped pressing portions 60 a, 60 b, and 60 c each having a helical shape wire, and the sensor units 51 a, 51 b, and 51 c located at respective distal portions of the pressing portions.
- the sensor device 5 c includes the sensor units 51 ( 51 a, 51 b, and 51 c ), and the pressing portions that press the sensor units are formed by spiral wires 60 a, 60 b, and 60 c instead of linear wires as in the above-described embodiment.
- the spiral wires 60 a, 60 b, and 60 c are compressibly braided (i.e., the spiral wires are braided such that the braided wires can be compressed), and when the stent 3 is expanded, the spiral wires 60 a, 60 b, and 60 c expand and press the sensor units 51 ( 51 a, 51 b, and 51 c ) fixed to distal portions of the spiral wires 60 a, 60 b, and 60 c against the inner surface of the stent 3 .
- the sensor cables may be wound around the spiral wires 60 a, 60 b, and 60 c, and it is preferable to use integrated members 10 a, 10 b, and 10 c in which the pressing portions and the sensor cables illustrated in FIGS. 8 to 10 are integrated.
- a sensor device 5 d includes a wire-shaped pressing portion 18 having a coil shape and a sensor unit located at a distal portion of the pressing portion 18 having a coil shape.
- the sensor device 5 d includes a wire-shaped pressing portion having a coil shape, that is, a so-called spring-shaped pressing portion 18 , and includes a plurality of sensor units 51 a, 51 b, and 51 c that are fixed at a predetermined distance from one another at a distal portion of the pressing portion 18 .
- a rear end 18 a of the spring-shaped pressing portion 18 is linear, and is fixed to a shaft portion 48 of a distal end guiding portion of the stent delivery system 1 f.
- the spring-shaped pressing portion 18 is formed in a spring shape whose distal side portion extends by a predetermined length, and the sensor units 51 a, 51 b, and 51 c are fixed to a side surface (radially outwardly facing surface) of the spring-shaped pressing portion 18 .
- the spring-shaped pressing portion 18 can be compressed.
- the sensor units 51 a, 51 b, and 51 c fixed to the side surface of the distal portion of the spring-shaped pressing portion 18 are pressed against the inner surface of the stent 3 .
- the sensor cables 53 a, 53 b, and 53 c pass through the inside of the spring-shaped pressing portion 18 and enter the guide portion fixing portion 49 through an opening of the guide portion fixing portion 49 .
- wireless sensors 51 a, 51 b, and 51 c having a communication function may be used as sensor units of a sensor device 5 e. In this case, the sensor device 5 e does not include a sensor cable.
- FIG. 26 is a cross-sectional view taken along a line XXVI-XXVI in FIG. 25 .
- a sensor device 5 f includes the wire-shaped pressing portions 52 a, 52 b, 52 c, and 52 d each having an elongated loop shape, and the sensor units 51 a, 51 b, 51 c, and 51 d located at the respective distal portions of the pressing portions.
- the sensor device 5 f includes the sensor units 51 a, 51 b, 51 c, and 51 d, and the pressing portions that press the sensor units are not linear wires as in the above-described embodiment, but are formed of loop-shaped wires 52 a, 52 b, 52 c, and 52 d each having a long elliptical shape.
- Rear ends of the loop-shaped wires 52 a, 52 b, 52 c, and 52 d are fixed to the distal portion of the guide portion fixing portion 49 .
- the sensor units 51 a, 51 b, 51 c, and 51 d are fixed to the respective distal portions of the pressing portions 52 a, 52 b, 52 c, and 52 d formed of the loop-shaped wires.
- the pressing portions 52 a, 52 b, 52 c, and 52 d formed of the loop-shaped wires can be deformed inward by pressing, and when the stent 3 is expanded, the pressing portions 52 a, 52 b, 52 c, and 52 d formed of the loop-shaped wires press the sensor units 51 a, 51 b, and 51 c against the inner surface of the stent 3 .
- the sensor cables 53 a, 53 b, 53 c, and 53 d pass through the respective loop-shaped wires 52 a, 52 b, 52 c, and 52 d, and enter the stent extrusion member 4 through the opening of the guide portion fixing portion 49 .
- a sensor device 5 g includes a device tube 70 slidably inserted into or positioned in the hollow shaft portion 41 of a stent extrusion member 4 a. A rear end portion of the device tube 70 protrudes from a rear end portion of the hollow shaft portion. In this embodiment, a distal end of the device tube 70 is positioned inside a distal portion of the stent extrusion member 4 a, and sensor units, pressing portions, and sensor cables protrude from the distal end of the device tube 70 .
- a distal portion of the stent pressing portion 42 of the stent extrusion member 4 a is a guide portion fixing portion, and the distal end guiding portion 45 is fixed to the distal portion of the stent pressing portion 42 .
- the rear ends of the pressing portions 52 enter the stent pressing portion 42 from an opening portion of the stent pressing portion 42 and are bundled.
- the connector 50 electrically connected to the sensor cables is not fixed to the shaft hub 72 , and the rear end portion of the device tube 70 is fixed to the shaft hub 72 .
- the rear end portion of the hollow shaft portion 41 is not fixed to the shaft hub 72 . Therefore, when the connector 50 is pulled rearward, the distal portion of the sensor device 5 g moves rearward, and the pressing portions 52 ( 52 a, 52 b, 52 c, and 52 d ) pass through the stent extrusion member 4 a and can be accommodated in the device tube 70 .
- the sensor device 5 g moves rearward together with the device tube 70 . If necessary, the sensor device 5 g including the device tube 70 can be removed from the stent delivery system 1 i by further pulling the device tube 70 rearward.
- the sensor cables 53 are bundled to form a traction wire.
- a traction wire may be separately provided, and the sensor cables 53 ( 53 a, 53 b, 53 c, and 53 d ) may be wound around the traction wire.
- the rear ends of the pressing portions 52 52 a, 52 b, 52 c, and 52 d ) are preferably fixed to a distal end of the traction wire.
- the sensor units 51 51 a, 51 b , 51 c, and 51 d ) may also be accommodated in the device tube 70 .
- a stent delivery system 1 j according to an embodiment illustrated in FIG. 28 will be described.
- a wire-shaped sensor 61 having a coil shape at a distal portion 61 a is used as a sensor device 5 h.
- a wire-shaped strain sensor is used as the wire-shaped sensor 61 .
- the wire-shaped sensor 61 includes a coiled distal portion 61 a, and the coiled distal portion 61 a can be compressed.
- the coiled distal portion 61 a When the stent 3 is expanded, the coiled distal portion 61 a is expanded, and a side surface (radially outwardly facing surface) of the coiled distal portion 61 a is pressed against the inner surface of the stent 3 .
- a portion behind the coiled distal portion 61 a of the wire-shaped sensor 61 is a linear portion 61 b, and a rear end of the linear portion 61 b is electrically connected to the connector 50 through the inside of the stent extrusion member 4 .
- the stent delivery system disclosed here is not limited to a configuration in which the coiled distal portion 61 a is formed using an elastic force of the wire-shaped sensor 61 .
- a wire-shaped sensor reinforcing member in which the wire-shaped sensor 61 and a wire-shaped pressing portion disposed on a side portion thereof are integrated may be used as in the integrated members 10 a, 10 b, and 10 c in which the pressing portions and the sensor cables illustrated in FIGS. 8 to 10 are integrated.
- the wire-shaped strain sensor for example, a sensor having a three-layer coaxial structure including an external conductor, a piezoelectric material, and a central conductor from the outside can be used.
- a strain sensor of this type When the strain sensor of this type is deformed from a straight state which is a standard state, a potential difference is generated between the external conductor and the central conductor according to a degree of deformation. By measuring the potential difference between the external conductor and the central conductor, the degree of deformation of the strain sensor from the standard state can be calculated.
- one wire-shaped sensor 61 (wire-shaped strain sensor) is used, and when the coiled distal portion 61 a that comes into contact with the inner surface of the stent 3 is partially deformed, a signal (data) having a potential difference different from a normal potential difference is output.
- a signal (data) having a potential difference different from a normal potential difference is output.
- FIG. 46 when the stent 3 is expanded in a favorable state at the in-vivo indwelling portion, the coiled distal portion 61 a that comes into contact with the inner surface of the stent 3 is not partially deformed and has a favorable continuous curved shape, and thus a signal of a predetermined value indicating that the stent state is favorable is output.
- the arithmetic processing device 100 as illustrated in FIG. 45 is also used at the time of use, and in this case, the storage unit 107 of the arithmetic processing device 100 stores a predetermined value (normal output value or reference value) indicating that the stent state is favorable as described above.
- the stent 3 When the stent 3 is in the state illustrated in FIG. 47 , the stent 3 (stent main body 31 ) includes the stent deformation portion 31 a which is pressed by the deformation portion 16 a of the cerebral artery 16 and which is curved inward.
- the arithmetic processing device 100 compares the input signal (data) influenced by the strain with the normal output value stored in the storage unit 107 . When a difference is out of a predetermined range, the arithmetic processing device 100 outputs, to the display unit, that the stent state is not favorable. Then, when it is detected that the stent state is not favorable (in the case as that in FIG. 47 ), after the stent delivery system 1 j is removed from the living body, a balloon catheter (not illustrated) is inserted into the stent 3 , and a balloon is inflated. Accordingly, the shape of the stent 3 can be improved.
- a stent delivery system using a wire-shaped sensor is not limited to a stent delivery system using a single wire-shaped sensor as the above-described stent delivery system 1 j.
- a plurality of (specifically, two) wire-shaped sensors 58 and 59 may be used.
- the wire-shaped sensors 58 and 59 include spiral distal portions 58 a and 59 a (loose coiled distal portions), and the spiral distal portions 58 a and 59 a can be compressed.
- the spiral distal portions 58 a and 59 a expand, and side surfaces (radially outwardly facing surfaces) of the spiral distal portions 58 a and 59 a are pressed against the inner surface of the stent 3 .
- Portions behind the spiral distal portions 58 a and 59 a of the wire-shaped sensors 58 and 59 are linear portions 58 b and 59 b, and rear ends of the linear portions 58 b and 59 b are electrically connected to the connector 50 through the inside of the stent extrusion member 4 .
- a wire-shaped sensor is used as the wire-shaped sensors 58 and 59 .
- the stent delivery system is also not limited to a configuration in which coiled distal portions 58 a and 59 a are formed using an elastic force of the wire-shaped sensor, and a wire-shaped sensor reinforcing member in which the wire-shaped sensor and a wire-shaped pressing portion disposed on a side portion thereof are integrated may be used as in the integrated members 10 a, 10 b, and 10 c in which the pressing portions and the sensor cables illustrated in FIGS. 8 to 10 are integrated.
- the arithmetic processing device 100 as illustrated in FIG. 45 is also used at the time of use, and in this case, the storage unit 107 of the arithmetic processing device 100 stores a predetermined value (normal output value) indicating that the stent state is favorable as described above for each of the wire-shaped sensors 58 and 59 .
- the stent 3 When the stent 3 is in the state illustrated in FIG. 47 , the stent 3 (stent main body 31 ) includes the stent deformation portion 31 a which is pressed by the deformation portion 16 a of the cerebral artery 16 and which is curved inward.
- the sensor Since a part of one of the spiral distal portions 58 a and 59 a of the wire-shaped sensors 58 and 59 is attached to the stent deformation portion 31 a, the sensor is strained at the part, and a signal (data) influenced by the strain is output.
- the arithmetic processing device 100 compares the input signal (data) influenced by the strain with the normal output value stored in the storage unit 107 . When a difference is out of a predetermined range, the arithmetic processing device 100 outputs, to the display unit, that the stent state is not favorable. Then, when it is detected that the stent state is not favorable (in the case as that in FIG. 47 ), after the stent delivery system 1 k is removed from the living body, a balloon catheter (not shown) is inserted into the stent 3 , and a balloon is inflated. Accordingly, the shape of the stent 3 can be improved.
- the stent delivery system 1 m includes a stent extrusion member 4 b and a sensor device 5 i.
- the stent extrusion member 4 b includes a lumen opened at a distal end thereof
- the sensor device 5 i comprises a device tube 73 slidably accommodated in the lumen of the stent extrusion member 4 b and capable of protruding from a distal end opening of the stent extrusion member 4 b.
- the device tube 73 accommodates at least pressing portions 75 a, 75 b, 75 c, and 75 d and an operation wire 64 interlocked with rear end portions of the pressing portions in the device tube 73 .
- the sensor units 51 ( 51 a , 51 b, 51 c, and 51 d ) are fixed to distal portions of the pressing portions 75 a, 75 b, 75 c , and 75 d, respectively.
- the pressing portions 75 a, 75 b, 75 c, and 75 d are exposed from the device tube 73 by the movement of the device tube 73 toward the rear end side or the pushing of the operation wire 64 , and the sensor units 51 ( 51 a, 51 b, 51 c , and 51 d ) are brought into contact with the inner surface of the stent 3 indwelling into the living body by the pressing portions 75 a, 75 b, 75 c, and 75 d.
- the pressing portions 75 a, 75 b, 75 c , and 75 d are formed by integrating wire-shaped sensors and wire-shaped pressing portions disposed on side portions (radially outwardly facing portions) of the wire-shaped sensors as in the integrated members 10 a, 10 b, and 10 c in which the pressing portions and the sensor cables illustrated in FIGS. 8 to 10 are integrated.
- the pressing portions 75 a, 75 b, 75 c, and 75 d terminate within a distal portion of the device tube 73 , and behind the pressing portions 75 a, 75 b, 75 c, and 75 d, the sensor cables are bundled or twisted to form a traction wire (operation wire) 64 .
- the traction wire 64 including the sensor cables protrudes from a rear end of the stent extrusion member 4 b and is electrically connected to the connector 50 .
- a rear end portion of the device tube 73 of the sensor device 5 i protrudes from the rear end portion of the hollow shaft portion.
- the distal portion of the device tube 73 protrudes from a distal end of the stent extrusion member 4 b, and the distal end of the stent extrusion member 4 b is located within the distal end of the stent 3 .
- the sensor device 5 i includes the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) and the pressing portions 75 a, 75 b, 75 c, and 75 d whose distal portions are attached to the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ), and the pressing portions 75 a, 75 b, 75 c , and 75 d spread in a radial manner when protruding from the device tube 73 .
- a rear end portion of the traction wire 64 including sensor cables electrically connected to the connector 50 protrudes from the shaft hub 72 . Further, a proximal portion of a protective tube 65 through which the traction wire 64 is inserted is fixed to the connector 50 . A distal portion of the protective tube 65 slidably enters the shaft hub 72 and the hollow shaft portion 41 . Therefore, when the connector 50 is pressed in a distal end direction, the traction wire 64 advances, and the pressing portions 75 a, 75 b, 75 c, and 75 d protrude from a distal end of the device tube 73 . After the protrusion, by pulling the connector 50 in the rear end direction, the traction wire 64 is retracted, and the pressing portions 75 a, 75 b, 75 c, and 75 d can be moved back into and accommodated in the device tube 73 .
- the rear end portion of the device tube 73 of the sensor device 5 i is fixed to the shaft hub 72 .
- the rear end portion of the hollow shaft portion 41 is not fixed to the shaft hub 72 . Therefore, when the shaft hub 72 is pulled rearward, the device tube 73 moves rearward.
- the shaft hub 72 is pulled rearward in a state where the connector 50 is held, in a case where the pressing portions 75 a, 75 b, 75 c, and 75 d protrude, the pressing portions 75 a, 75 b, 75 c, and 75 d can be accommodated in the device tube 73 .
- the sensor units, the pressing portions, and the traction wire can be moved rearward together with the device tube 73 . If necessary, the sensor device 5 i including the device tube 73 can be removed from the stent delivery system 1 m by further pulling the device tube 73 rearward.
- the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) can be accommodated in the device tube 73 .
- the stent delivery system 1 m can detect a blood velocity which is biological-related information and check a blockage state of an aneurysm in the case where the stent indwells in the aneurysm forming portion.
- the blood velocity can be detected using a pressure sensor as the sensor unit 51 ( 51 a, 51 b, 51 c, and 51 d ) and using a signal obtained therefrom. Accordingly, variations in pressure values at a plurality of sites in a lumen of a stent indwelling in a blood vessel (cerebral artery in which an aneurysm is formed) are quantified, and the presence or absence of blood flowing into the aneurysm is detected.
- a step of detecting the presence or absence of blood flowing into the aneurysm using the stent delivery system 1 m according to this embodiment will be described with reference to FIGS. 33 to 38 .
- the stent 3 is placed in the cerebral artery 16 in which the aneurysm 17 is formed and in which the stent 3 is to indwell, specifically, after the distal end of the device tube 73 of the sensor device 5 i of the stent delivery system 1 m is placed in a manner of being located a predetermined distance forward (peripheral side at the predetermined distance) from the aneurysm 17 of the cerebral artery 16 having the aneurysm 17 , by retracting the stent accommodation tube 21 (tube assembly 2 ) by a predetermined length, the stopper 33 at the rear end portion of the stent 3 is attached to and pressed by the distal end surface of the stent pressing portion 42 of the stent extrusion member 4 b, and the distal side portion of the stent is discharged from the stent accommodation tube 21 , resulting in a state illustrated in FIG.
- the distal side portion of the stent self-expands and is pressed into contact with the inner surface of the cerebral artery 16 , and a rear end side portion of the stent is located inside the stent accommodation tube 21 .
- the device tube 73 and the connector 50 are pulled in the rear end direction in a state where a position of the stent accommodation tube 21 is held, and as illustrated in FIG. 34 , the distal portion of the device tube 73 is located at a central portion of the stent or an aneurysm portion. Subsequently, by pressing the connector 50 in a state where a position of the device tube 73 illustrated in FIG. 34 is held, the distal portions of the pressing portions 75 a, 75 b, 75 c, and 75 d are protruded from the distal end of the device tube 73 .
- the pressing portions 75 a, 75 b, 75 c, and 75 d each including a sensor unit at the distal portion thereof protrude.
- the pressing portions 75 a, 75 b, 75 c, and 75 d slightly spread in a radial manner and are in a state illustrated in FIG. 35 .
- the sensor units 51 51 a, 51 b, 51 c, and 51 d ) fixed to the distal portions of the pressing portions 75 a, 75 b, 75 c, and 75 d are located near a center of the cerebral artery (blood vessel) 16 although being slightly separated from one another.
- the arithmetic processing device 100 as illustrated in FIG. 45 is also used.
- pressure values at four sites near the center of the cerebral artery 16 are detected using signals from the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) which are pressure sensors.
- the detected pressure value is stored in a storage unit of the arithmetic processing device 100 .
- the process proceeds to the next step.
- the pressing portions 75 a, 75 b, 75 c, and 75 d are further exposed and the sensor units 51 a, 51 b, 51 c, and 51 d are further separated. Then, the pressure values at the four sites near the center of the cerebral artery 16 are detected again, and when the detected four pressure values are within the threshold stored in the arithmetic processing device 100 , the process proceeds to the next step.
- the entire stent 3 is discharged from the stent accommodation tube 21 .
- the device tube 73 is pulled rearward in a state where the positions of the sensor units 51 ( 51 a, 51 b , 51 c, and 51 d ) are held. Accordingly, all of the pressing portions 75 a, 75 b, 75 c, and 75 d protrude from the device tube 73 and spread widely in a radial manner as illustrated in FIGS.
- the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) move outward from the positions in FIG. 35 and come into contact with the inner surface of the expanded stent (stent main body 31 ) 3 . Accordingly, the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) are close to the intravascular wall.
- the sensor 51 a which is one of the sensor units 51 , is located near an opening portion of the aneurysm 17 .
- any of the sensor units is located at a site that is closer to the opening portion of aneurysm 17 than are other sensor units.
- the sensor units 51 in states in FIGS. 36 and 37 , can be used to measure a pressure near the vascular wall.
- the arithmetic processing device 100 has a determination function of determining an embolization status of the aneurysm 17 by the stent using pressure values at four sites in a central portion of the cerebral artery 16 and the pressure values at the four sites near the vascular wall. For example, when a pressure drop exceeding a threshold is detected in one or two sensor units as compared with other sensor units in the pressure values at the four sites in the pressure near the vascular wall, it is estimated that blood flows into the aneurysm 17 . When the pressure value near the vascular wall is lower than a predetermined value as compared with the pressure values detected by the same sensor unit at the central portion of the cerebral artery 16 , it is estimated that blood flows into the aneurysm 17 .
- the arithmetic processing device 100 has a function of comprehensively determining the embolization status of the aneurysm 17 by the stent using the pressure values at the four sites in the central portion of the cerebral artery 16 and the pressure values at the four sites in the pressure near the vascular wall.
- the arithmetic processing device 100 preferably has the following functions. When the arithmetic processing device 100 determines that blood does not flow into the aneurysm 17 , the arithmetic processing device 100 displays, on the display unit 106 , that the stent indwelling is favorable.
- the arithmetic processing device 100 determines that blood flows into the aneurysm 17 , for example, the arithmetic processing device 100 roughly estimates a flow dilation effect (inhibition of blood flow into the aneurysm from a parent artery) in the stent indwelling this time using the pressure values at the four sites in the central portion of the cerebral artery 16 and the pressure values at the four sites in the pressure near the vascular wall, and displays a result (flow dilation effect ratio) on the display unit 106 . Furthermore, it is preferable that the arithmetic processing device 100 displays a precaution, a future countermeasure method, and the like on the display unit 103 based on the above result.
- an appropriate treatment policy and an appropriate treatment plan according to a state of blood flow and a distribution of the blood velocity of the aneurysm 17 can be formulated.
- the device tube 73 is pulled and the distal portion in the device tube 73 is accommodated in the distal portion of the stent accommodation tube 21 (tube assembly 2 ), resulting in a state in FIG. 38 . Then, the stent delivery system 1 m is removed from the living body.
- the stent delivery system 1 m according to this embodiment can be used for checking the expanded state of the stent described above, in addition to the presence or absence of blood flowing into the aneurysm described above. This case will be described with reference to FIGS. 33 and 41 to 44 .
- the distal end of the device tube 73 of the sensor device 5 i of the stent delivery system 1 m is placed in a manner of being located within the distal end of the stent 3 .
- the stopper 33 at the rear end portion of the stent 3 is attached to and pressed by the distal end surface of the stent pressing portion 42 of the stent extrusion member 4 b, and the distal side portion of the stent is discharged from the stent accommodation tube 21 , resulting in the state illustrated in FIG.
- the distal side portion of the stent self-expands and is brought into contact with the inner surface of the cerebral artery 16 , and the rear end side portion of the stent is located inside the stent accommodation tube 21 .
- the entire stent 3 is discharged from the stent accommodation tube 21 .
- the device tube 73 is pulled rearward in a state where the positions of the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) are held. Accordingly, all of the pressing portions 75 a, 75 b, 75 c, and 75 d protrude from the device tube 73 and spread widely in a radial manner as illustrated in FIG. 41 , and the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) come into contact with the inner surface of the expanded stent (stent main body 31 ) 3 .
- the pressing portions 75 a, 75 b, 75 c, and 75 d respectively press the sensor units 51 a, 51 b, 51 c, and 51 d against the inner surface of the stent 3 (stent main body 31 ) with substantially the same pressure, signals (data) caused by the output pressure are also substantially the same.
- the stent state information (pressure values) in the stent 3 (stent main body 31 ) can be obtained. Further, by retracting the stent delivery system 1 m from the state in FIG. 41 , as illustrated in FIGS.
- the axial positions of the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) in the stent 3 (stent main body 31 ) can be changed, and stent state information (pressure values) can be obtained at the plurality of sites.
- the stent 3 When the stent 3 is in the state as illustrated in FIG. 47 , the stent 3 (stent main body 31 ) includes the stent deformation portion 31 a which is pressed by the deformation portion 16 a of the cerebral artery 16 and which is curved inward.
- the sensor When any one of the sensor units is attached to or comes close to the stent deformation portion 31 a, the sensor is strained at this portion, and a signal (data) influenced by the strain is output.
- the arithmetic processing device 100 compares the input signal (data) influenced by the strain with the normal output value stored in the storage unit 107 .
- the arithmetic processing device 100 When a difference is out of a predetermined range, the arithmetic processing device 100 outputs, to the display unit 106 , that the stent state is not favorable. Then, when it is detected that the stent state is not favorable (in the case as that in FIG. 47 ), after the stent delivery system is removed from the living body, a balloon catheter (not illustrated) is inserted into the stent 3 , and a balloon is inflated. Accordingly, the shape of the stent 3 can be improved. In this embodiment, as illustrated in FIG. 44 , after the information collection is completed, the pressing portions and the device tube are accommodated in the stent accommodation tube 21 , and then removed from the living body.
- the stent delivery system 1 n includes a stent extrusion member 4 c and the sensor device 5 i.
- a pressing member 42 a of the stent extrusion member 4 c includes a tube lumen 76 that opens at a distal end thereof and that penetrates therethrough and a guide wire lumen 74 .
- the hollow shaft portion 41 of the stent extrusion member 4 c also includes a tube lumen 81 that opens at a distal end thereof and that penetrates therethrough and a guide wire lumen 77 .
- the tube hub 79 to be described later has a guide wire insertion port 78 .
- a guide wire (not illustrated) to be inserted from the guide wire insertion port 78 of the tube hub 79 passes through the wire lumen 77 of the hollow shaft portion 41 , the elastic tubular portion 43 , and the guide wire lumen 74 of the stent extrusion member 4 c, and protrudes toward the distal side therefrom. Therefore, the stent delivery system 1 n can be inserted into the living body and guided to a target site using a guide wire inserted through the guide wire lumen 74 at a distal portion thereof.
- the sensor device 5 i accommodates the device tube 73 slidably accommodated in the tube lumen 76 of the stent extrusion member 4 c and capable of protruding from a distal end opening (distal end of the tube lumen 76 ) of the stent extrusion member (pressing member 42 a ) 4 c, and the operation wire 64 interlocked with at least pressing portions 75 a, 75 b, 75 c, and 75 d and rear end portions of the pressing portions in the device tube 73 .
- the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) are fixed to the distal portions of the pressing portions 75 a, 75 b, 75 c, and 75 d , respectively.
- the pressing portions 75 a, 75 b, 75 c, and 75 d are exposed from the device tube 73 by the movement of the device tube 73 toward the rear end side or the pushing of the operation wire 64 , and the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) are brought into contact with the inner surface of the stent 3 indwelling into the living body by the pressing portions 75 a, 75 b, 75 c, and 75 d.
- the pressing portions 75 a, 75 b, 75 c , and 75 d are formed by integrating wire-shaped sensors and wire-shaped pressing portions disposed on side portions of the wire-shaped sensors as in the integrated members 10 a, 10 b, and 10 c in which the pressing portions and the sensor cables illustrated in FIGS. 8 to 10 are integrated.
- the pressing portions 75 a, 75 b, 75 c, and 75 d terminate within a distal portion of the device tube 73 , and behind the pressing portions 75 a, 75 b, 75 c, and 75 d, the sensor cables are bundled or twisted to form the traction wire (operation wire) 64 .
- the traction wire 64 including the sensor cables protrudes from the rear end of the stent extrusion member 4 c and is electrically connected to the connector 50 .
- the rear end portion of the device tube 73 of the sensor device 5 i protrudes from a rear end portion of the tube lumen 81 of the hollow shaft portion 41 , and a rear end of the device tube 73 is fixed to the tube hub 79 .
- the tube hub 79 has the guide wire insertion port 78 .
- the tube lumen 76 provided in the pressing member 42 a of the stent extrusion member 4 c is provided not at a center of the pressing member 42 a but at a position on a peripheral side of (i.e., eccentric relative to or radially offset from) the pressing member 42 a.
- the distal portion of the device tube 73 protrudes from a distal end of the stent extrusion member 4 c, and the distal end of the stent extrusion member 4 c is located within the distal end of the stent 3 .
- the sensor device 5 i includes the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) and the pressing portions 75 a, 75 b, 75 c, and 75 d whose distal portions are attached to the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ), and the pressing portions 75 a, 75 b, 75 c, and 75 d extend radially when protruding from the device tube 73 .
- the tube lumen 76 is provided at a position shifted from the center of the pressing member 42 a.
- the pressing portions 75 a, 75 b, 75 c, and 75 d extend radially when protruding from the device tube 73 , and the sensor units 51 ( 51 a, 51 b, 51 c, and 51 d ) are located substantially on the same circumference.
- the device tube 73 and the tube lumen 76 have an elliptical cross-section, and the rotary movement of the device tube 73 in the tube lumen 76 is restricted (prevented).
- the hollow shaft portion 41 of the stent extrusion member 4 c includes the guide wire lumen 77 .
- the shaft hub 72 is fixed to the rear end of the hollow shaft portion 41 .
- the rear end portion of the traction wire 64 including sensor cables protrudes from a rear end of the tube hub 79 , and a rear end of the traction wire 64 is electrically connected to the connector 50 .
- the traction wire 64 advances, and the pressing portions 75 a , 75 b, 75 c, and 75 d protrude from the distal end of the device tube 73 .
- the traction wire 64 is retracted, and the pressing portions 75 a, 75 b, 75 c, and 75 d can be moved back into and accommodated in the device tube 73 .
- the rear end portion of the device tube 73 of the sensor device 5 i is fixed to the tube hub 79 .
- the rear end portion of the hollow shaft portion 41 is fixed to the shaft hub 72 .
- the tube hub 79 and the shaft hub 72 are not fixed to each other. Therefore, the connector 50 and the tube hub 79 can be moved separately from the shaft hub 72 . Specifically, when the tube hub 79 is pulled rearward in a state where a position of the connector 50 is held, in a case where the pressing portions 75 a, 75 b, 75 c, and 75 d protrude, the pressing portions 75 a, 75 b, 75 c, and 75 d can be accommodated in the device tube 73 .
- the device tube 73 By pulling the device tube 73 rearward, a distal portion of the sensor device 5 i can be accommodated in the stent extrusion member 4 c. Further, by pulling the device tube 73 rearward, the sensor device 5 i can be removed from the stent delivery system 1 n . In this embodiment, by pulling the shaft hub 72 , the sensor device 5 i can be moved rearward together with the stent extrusion member 4 c.
- the stent delivery system 1 can detect a blood velocity which is biological-related information, can check a blockage state of an aneurysm in the case where the stent indwells in the aneurysm forming portion, and can be used to check the expanded state of the stent.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Physiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Computer Networks & Wireless Communication (AREA)
- Hematology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
Abstract
A stent delivery system that obtains biological-related information or stent state information in a stent using a signal from a sensor after the stent indwells in a living body and then removing the sensor from the living body. A stent delivery system includes a sheath in which a stent is accommodated, a stent extrusion member, and a sensor device. The sensor device includes a sensor unit and a pressing portion configured to bring the sensor unit into contact with an inner surface of the stent indwelling into the living body. The sensor device can move the sensor unit in a rear end direction of the stent by movement of the stent extrusion member toward a rear end side or withdrawal of the sensor device. The sensor device can be taken out from the living body by removing the stent delivery system or the sensor device from the living body.
Description
- This application is based on and claims priority to Japanese Patent Application No. 2022-116740 filed on Jul. 21, 2022, the entire content of which is incorporated herein by reference.
- The present invention generally relates to a stent delivery system that is used to ameliorate a stenosed site or an occlusion site generated in a body lumen such as a blood vessel (for example, a cerebral blood vessel or a coronary artery of a heart), a bile duct, a trachea, an esophagus, or a urethra, and more particularly to a stent delivery system and a stent sensor device that can obtain biological-related information or stent state information on a stent indwelling site.
- An in-vivo indwelling stent is used to treat various diseases caused by stenosis or occlusion of a blood vessel or other body lumens. The stent is formed in a tubular shape in order to expand the stenosed site or the occlusion site and to secure the lumen thereof.
- Since the stent is inserted into the body from outside the body, the stent has a compressed small diameter at the time of insertion, is expanded to increase a diameter at a target stenosed or occlusion site, and holds the lumen in the open state.
- As the stent, a cylindrical stent obtained by processing a metal wire material or a metal tube is generally used. The stent is mounted on a catheter or the like in a compressed state, inserted into the living body, expanded in some way at the target site, and pressed against and fixed to an inner wall of the lumen to maintain a shape of the lumen.
- Stents are classified into self-expandable stents and balloon inflatable stents according to a function and an indwelling method. The balloon inflatable stent does not have an expansion function by itself. After the stent mounted on a balloon is inserted into the target site, the balloon is inflated, and the stent is expanded (plastically deformed) by an inflation force of the balloon and is pressed and fixed to an inner surface of a target lumen. This type of stent requires a stent expansion operation as described above. On the other hand, the self-expandable stent has an expansion function by itself. The self-expandable stent is inserted into the living body in a thin and compressed state and is released from its compressed state at the target site, so that the self-expandable stent returns to an original expanded state thereof and is pressed to and fixed to the inner wall of the lumen to maintain the shape of the lumen.
- One of causes of ischemic cerebral artery disease is stenosis and occlusion of intracranial artery and an aneurysm. As a general treatment method, a risk can be reduced by an anti-platelet therapy. However, there is a limit to a medical treatment, and a treatment by balloon inflation or stent indwelling is performed on a patient who exhibits drug resistance.
- U.S. Pat. No. 9,439,791 discloses a stent for treating a body-cavity such as an embolization of a vascular aneurysm and the like. The stent disclosed in this patent is a so-called self-expandable stent, and is a stent having a generally cylindrical body formed of a single woven nitinol wire. A distal end portion and a proximal end portion of the stent include a plurality of loops, some of which include marker members used for visualizing a position of the stent, and further include an inner flow diverting layer.
- U.S. Pat. No. 8,187,317 discloses an endoprosthesis (stent). The endoprosthesis disclosed in this patent is designed to be implanted into an aneurysm (12) of a patient caused by deformation of a vascular wall, strictly speaking, a wall of an artery (14). The endoprosthesis includes tubular envelopes (22, 24) extending in a direction (Y-Y′) and a plurality of pressure probes (26) fixed to the envelope (22, 24). Each probe (26) includes a sensor (28) that measures a pressure, and units (34, 36) that transmit a measurement value of the pressure to a monitoring device disposed outside a body of the patient. The units (34, 36) that transmit the measurement value of the pressure from each probe (26) are designed to generate an electromagnetic pressure measurement transmission signal having at least one distinguishable characteristic of the probe (26) of which these units (34, 36) form a part thereof.
- However, although the stent disclosed in U.S. Pat. No. 9,439,791 is effective as a stent, it is not possible to obtain biological-related information or stent state information in the stent indwelling into the living body.
- In U.S. Pat. No. 8,187,317, the endoprosthesis (stent) includes the pressure probes (26), and each probe (26) of the endoprosthesis (stent) can measure the pressure in the stent indwelling into the living body. However, since the pressure probe (26) is fixed to the endoprosthesis (stent), physical properties of the endoprosthesis (stent) in a pressure probe portion are different from those in other portions. For this reason, in this portion, favorable deformation of the endoprosthesis (stent) may be inhibited, and a thrombus may be formed at the endoprosthesis.
- The stent delivery system and stent sensor device disclosed here are capable of obtaining biological-related information or stent state information in a stent after the stent indwells in a living body, and that are capable of taking out, from the living body, a sensor that collects the biological-related information or the stent state information.
- (1) A stent delivery system includes: a stent that has a plurality of side wall openings, that is formed in a substantially cylindrical shape and compressed in a central axis direction for insertion into a living body, and that is expandable outward for implanting into the living body; a sheath possessing a distal portion accommodates the stent; and a stent extrusion member whose distal side portion is located in the distal portion of the sheath. The stent delivery system is configured to release the stent by moving the sheath toward a proximal end side with respect to the stent extrusion member. The stent delivery system further includes a sensor device, wherein the sensor device includes: a sensor unit; and a pressing portion capable of bringing the sensor unit into contact with an inner surface of the stent indwelling into the living body. The sensor device is able to the sensor unit in a proximal end direction of the stent by movement of the stent extrusion member toward the proximal end side or withdrawal of the sensor device, and the stent delivery system is able to obtain biological-related information or stent state information in the stent using a signal from the sensor unit. The sensor device is removable from the living body by removing the stent delivery system from the living body or removing the sensor device from the stent delivery system.
- (2) The stent delivery system according to (1), the sensor device possesses two or more of the sensor units that are separated from each other by a predetermined distance for detecting at a plurality of positions in an axial direction of the stent.
- (3) The stent delivery system according to (1) or (2), in which the pressing portion possesses a wire-shaped portion and the sensor unit located at a distal portion of the wire-shaped portion.
- (4) The stent delivery system according to (3), in which the wire-shaped portion is formed a coil shape.
- (5) The stent delivery system according to any one of (3), in which the wire-shaped portion possesses a plurality of helical shape wires.
- (6) The stent delivery system according to any one of (1) to (5), in which the pressing portion is a wire-shaped pressing portion, and a rear end portion of the pressing portion is fixed to the stent extrusion member.
- (7) The stent delivery system according to any one of (1) to (6), in which the pressing portion is a wire-shaped pressing portion, the sensor device comprises a traction wire, and a rear end portion of the pressing portion is interlocked with the traction wire.
- (8) The stent delivery system according to any one of (1) to (7), in which the stent extrusion member comprises a lumen opened at a distal end thereof, the sensor device accommodates a device tube accommodated in the lumen and capable of protruding from the opening of the stent extrusion member, and an operation wire interlocked with at least the pressing portion and a rear end portion of the pressing portion in the device tube, the pressing portion is exposed from the device tube by movement of the device tube toward the rear end side or pushing of the operation wire, and the sensor unit is brought into contact with the inner surface of the stent indwelling into the living body by the pressing portion.
- (9) The stent delivery system according to any one of (1) to (8), in which a sensor unit comprises a wired sensor.
- (10) The stent delivery system according to any one of (1) to (9), in which the sensor unit comprises a wireless sensor.
- (11) The stent delivery system according to any one of (1) to (10), in which the sensor unit is a sensor unit configured to detect a blood velocity which is the biological-related information.
- (12) The stent delivery system according to any one of (1) to (11), in which the sensor unit is a pressure sensor.
- (13) The stent delivery system according to any one of (1) to (12), in which the sensor device comprises a wire-shaped strain sensor possessing the sensor unit and the wire-shaped pressing portion, and the strain sensor and the pressing portion are integrated in parallel.
- (14) The stent delivery system according to any one of (1) to (13) further comprises an arithmetic processing device configured to calculate the biological-related information or the stent state information in the stent using the signal from the sensor unit.
- (15) The stent delivery system according to any one of (1) to (14), in which the sensor unit is a pressure sensor, and the arithmetic processing device outputs information on blood velocity using a difference in pressure-related signal values that are detected by the same sensor unit at different positions in a radial direction of a blood vessel.
- (16) The stent delivery system according to any one of (1) to (14), in which the sensor unit is a pressure sensor, and the arithmetic processing device outputs information on blood velocity using a difference in pressure-related signal values that are detected by the same sensor unit at different positions in a radial direction of a blood vessel.
- (17) The stent delivery system according to any one of (1) to (15), in which the pressing portion includes a shape memory alloy.
- (18) Another aspect of the disclosure here involves a combination of a stent sensor device and a stent. The stent is substantially cylindrically shaped and has a plurality of side wall openings that pass through a wall of the stent from an outer surface of the stent to an inner surface of the stent. The stent is compressed radially inwardly in a central axis direction at a time of insertion of the stent sensor device and the stent into a living body, and is expandable radially outwardly at a time of indwelling the stent sensor device and the stent into the living body. The stent sensor device is positioned inside the stent and comprises: at least one sensor unit positioned inside the stent, with the at least one type of sensor being a wire-shaped pressure sensor, a contact force sensor, or a strain sensor; and a pressing portion connected to the sensor unit to press the sensor unit toward the inner surface of the stent. The sensor device is removable from a rear end side of the stent after the stent indwells into the living body.
- A stent delivery system disclosed here may include: a stent that has a plurality of side wall openings, that is formed in a substantially cylindrical shape, is compressed in a central axis direction at a time of insertion into a living body, and that is expandable outward at a time of indwelling into the living body; a sheath in which the stent is accommodated in a distal portion; and a stent extrusion member whose distal side portion is positioned in a distal side portion of the sheath. The stent delivery system is capable of releasing the stent by moving the sheath toward a rear end side with respect to the stent extrusion member. The stent delivery system further includes a sensor device. The sensor device includes: a sensor unit; and a pressing portion capable of bringing the sensor unit into contact with an inner surface of the stent indwelling into the living body. The sensor device is capable of moving the sensor unit in a rear end direction of the stent by movement of the stent extrusion member toward the rear end side or withdrawal of the sensor device. The stent delivery system is capable of obtaining biological-related information or stent state information in the stent using a signal from the sensor unit. The sensor device is capable of being taken out from the living body by removing the stent delivery system from the living body or removing the sensor device from the stent delivery system.
- Therefore, in the stent delivery system, after a stent indwells in a living body, biological-related information or stent state information in the stent can be obtained, a sensor that collects the biological-related information or the stent state information can be taken out by removing the stent delivery system from the living body and/or removing the sensor device from the stent delivery system, and a problem caused by a residual sensor does not occur.
- Another aspect of the disclosure here involves a method comprising: inserting a stent into a living body, the stent being substantially cylindrically shaped and having a plurality of side wall openings that pass through a wall of the stent from an outer surface of the stent to an inner surface of the stent, with the stent being compressed radially inwardly during the inserting of the stent into the living body. The inserting of the stent into the living body occurs while a sensor is positioned inside the stent. The method additionally involves radially outwardly expanding the stent after the stent is positioned in the living body; moving the sensors that are positioned inside the stent toward the inner surface of the stent, with the moving of the sensors toward the inner surface of the stent occurring after starting the radially outwardly expanding of the stent; using a signal produced by the sensor to determine information about blood flowing in the living body or information about a state of the stent; and removing the sensor from the living body while maintaining the stent in the living body.
-
FIG. 1 is a partially omitted front view of a stent delivery system according to an embodiment of the present invention. -
FIG. 2 is a longitudinal cross-sectional view of the stent delivery system illustrated inFIG. 1 . -
FIG. 3 is an enlarged cross-sectional view of a distal portion of the stent delivery system illustrated inFIG. 1 . -
FIG. 4 is an enlarged cross-sectional view taken along a section line IV-IV inFIG. 3 . -
FIG. 5 is an enlarged cross-sectional view taken along a section line V-V inFIG. 4 . -
FIG. 6 is a partially omitted enlarged cross-sectional view of a rear end portion of the stent delivery system illustrated inFIG. 1 . -
FIG. 7 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention. -
FIG. 8 is an enlarged cross-sectional view of an example of a pressing member wire integrated member used in the stent delivery system according to the present invention. -
FIG. 9 is an enlarged cross-sectional view of another example of the pressing member wire integrated member used in the stent delivery system according to the present invention. -
FIG. 10 is an enlarged cross-sectional view of another example of the pressing member wire integrated member used in the stent delivery system according to the present invention. -
FIG. 11 is an enlarged lateral cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention. -
FIG. 12 is an enlarged lateral cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention. -
FIG. 13 is a front view of an example of an in-vivo indwelling stent used in the stent delivery system according to the present invention. -
FIG. 14 is a view illustrating the in-vivo indwelling stent illustrated inFIG. 13 . -
FIG. 15 is a view illustrating the in-vivo indwelling stent illustrated inFIG. 13 . -
FIG. 16 is a view illustrating an effect of the stent delivery system illustrated inFIG. 1 . -
FIG. 17 is a view illustrating an effect of the stent delivery system illustrated inFIG. 1 . -
FIG. 18 is a view illustrating an effect of the stent delivery system illustrated inFIG. 1 . -
FIG. 19 is a view illustrating an effect of the stent delivery system illustrated inFIG. 1 . -
FIG. 20 is a view illustrating an effect of the stent delivery system illustrated inFIG. 1 . -
FIG. 21 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention. -
FIG. 22 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention. -
FIG. 23 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention. -
FIG. 24 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention. -
FIG. 25 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention. -
FIG. 26 is an enlarged cross-sectional view taken along a section line XXVI-XXVI inFIG. 25 . -
FIG. 27 is a longitudinal cross-sectional view of a stent delivery system according to another embodiment of the present invention. -
FIG. 28 is a longitudinal cross-sectional view of a stent delivery system according to another embodiment of the present invention. -
FIG. 29 is an enlarged cross-sectional view of a distal portion of the stent delivery system illustrated inFIG. 28 . -
FIG. 30 is an enlarged cross-sectional view of a distal portion of a stent delivery system according to another embodiment of the present invention. -
FIG. 31 is a longitudinal cross-sectional view of a stent delivery system according to another embodiment of the present invention. -
FIG. 32 is an enlarged cross-sectional view of a distal portion of the stent delivery system illustrated inFIG. 31 . -
FIG. 33 is a view illustrating an effect of the stent delivery system illustrated inFIG. 31 . -
FIG. 34 is a view illustrating an effect of the stent delivery system illustrated inFIG. 31 . -
FIG. 35 is a view illustrating an effect of the stent delivery system illustrated inFIG. 31 . -
FIG. 36 is a view illustrating an effect of the stent delivery system illustrated inFIG. 31 . -
FIG. 37 is a view illustrating an effect of the stent delivery system illustrated inFIG. 31 . -
FIG. 38 is a view illustrating an effect of a stent delivery system according to another embodiment of the present invention. -
FIG. 39 is a partially omitted longitudinal cross-sectional view of a stent delivery system according to another embodiment of the present invention. -
FIG. 40 is a view illustrating another effect of the stent delivery system illustrated inFIG. 39 . -
FIG. 41 is a view illustrating another effect of the stent delivery system illustrated inFIG. 31 . -
FIG. 42 is a view illustrating another effect of the stent delivery system illustrated inFIG. 31 . -
FIG. 43 is a view illustrating another effect of the stent delivery system illustrated inFIG. 31 . -
FIG. 44 is a view illustrating another effect of the stent delivery system illustrated inFIG. 31 . -
FIG. 45 is a view illustrating a stent delivery device using the stent delivery system according to the present invention. -
FIG. 46 is a view illustrating an effect of the stent delivery device illustrated inFIG. 45 . -
FIG. 47 is a view illustrating an effect of the stent delivery device illustrated inFIG. 45 . - Set forth below with reference to the accompanying drawings is a detailed description of embodiments of a stent delivery system and a stent sensor device representing examples of the new stent delivery system and stent sensor device disclosed here.
- A
stent delivery system 1 according to one embodiment includes: astent 3 that has a plurality of side wall openings, that is formed in a substantially cylindrical shape and compressed in a central axis direction at the time of insertion into a living body, and that is expandable outward at the time of indwelling into the living body; a sheath (stent accommodation tube) 21 in which thestent 3 is accommodated in a distal portion of the sheath; and a stent extrusion member (stent extrusion member 4 in an embodiment illustrated inFIGS. 1 to 25 ) whose distal side portion is located in a distal side portion of thesheath 21. Thestent delivery system 1 is capable of releasing thestent 3 by moving thesheath 21 toward a rear end side with respect to the stent extrusion member. - The
stent delivery system 1 includes a sensor device 5 (sensor). Thesensor device 5 includes: a sensor unit; and a pressing portion that brings the sensor unit into contact with an inner surface of thestent 3 indwelling into the living body. Further, thesensor device 5 is capable of moving the sensor unit in a rear end direction of thestent 3 by movement of the stent extrusion member toward a rear end side or retraction (withdrawal or pulling) of thesensor device 5. Thestent delivery system 1 can obtain biological-related information or stent state information in thestent 3 using a signal from the sensor unit. The biological-related information is information related to a living body, for example, information related to a liquid pressure, a blood velocity, and the like of blood in a blood vessel. The stent state information is information related to a placement state of the stent, and is, for example, information related to a shape of the stent indwelling in the blood vessel and stent malapposition (the stent indwells in a blood vessel in an abnormal state such as a state where the stent or part of the stent is floated or spaced from a vascular wall). Thesensor device 5 can be taken out from the living body by removing thestent delivery system 1 from the living body or removing thesensor device 5 from thestent delivery system 1. - The
stent delivery system 1 according to an embodiment illustrated inFIGS. 1 to 6 will be described. - As illustrated in
FIGS. 1 to 6 , thestent delivery system 1 according to this embodiment includes atube assembly 2 including thestent accommodation tube 21, a self-expandable stent 3 accommodated in thestent accommodation tube 21, thestent extrusion member 4 slidably accommodated in thetube 21, and thesensor device 5 disposed in thestent 3. - The
stent accommodation tube 21 is a tube-shaped body (tubular body), and a distal end and a rear end of thetube 21 are open. A distal end opening functions as a discharge port of thestent 3 when thestent 3 indwells in a stenosed site in a body-cavity. Thestent accommodation tube 21 is slid toward the rear end side, so that thestent 3 is released from the distal end opening, a stress load is released, and thestent 3 is expanded and returns to a shape before compression. The distal portion of thestent accommodation tube 21 is a stent accommodation portion that accommodates thestent 3 therein. - An outer diameter of the
stent accommodation tube 21 is preferably about 0.4 mm to 4.0 mm, and particularly preferably 0.5 mm to 3.0 mm. An inner diameter of thestent accommodation tube 21 is preferably about 0.3 mm to 2.0 mm. Thestent accommodation tube 21 is preferably a flexible tube. For thestent accommodation tube 21, a material having a certain degree of flexibility, for example, a thermoplastic resin such as polyolefin (for example, polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-vinyl acetate copolymer, and further including a crosslinked or partially crosslinked product), polyvinyl chloride, polyamide elastomer, or polyurethane, silicone rubber, or latex rubber can be used, and the thermoplastic resin described above is preferable. - As illustrated in
FIGS. 1 and 2 , thetube assembly 2 includes alumen 20 therein and atube hub 22 fixed to a rear end portion of thestent accommodation tube 21. Thetube hub 22 includes a tube hubmain body 23 and aseal member 27 accommodated in a rearend flange portion 24 of the tube hubmain body 23 and holding thestent extrusion member 4 in a slidable and liquid-tight manner. Thetube hub 22 includes abranch port portion 25 branched obliquely rearward from a vicinity of a center of the tube hubmain body 23. An openingportion 26 of thebranch port portion 25 is in communication with the inside of thestent accommodation tube 21. - As illustrated in
FIGS. 1 to 6 , thestent extrusion member 4 includes ahollow shaft portion 41, a distalend guiding portion 45, anelastic tubular portion 43 provided at a distal end of thehollow shaft portion 41, astent pressing portion 42 provided at a distal end of theelastic tubular portion 43, a guideportion fixing portion 49 provided at a rear end of the distalend guiding portion 45, and an elastictubular interlock portion 71 that interlocks thestent pressing portion 42 and the guideportion fixing portion 49. - The distal
end guiding portion 45 includes aguide portion shaft 48, a sphericaldistal portion 47 fixed to a distal end of theguide portion shaft 48, and adistal coil member 46 extending from a rear portion of the sphericaldistal portion 47 in a rear end direction of theguide portion shaft 48. Thedistal coil member 46 has a distal end fixed to the rear portion of the sphericaldistal portion 47 and a rear end fixed to a distal portion side portion of theguide portion shaft 48. In this embodiment, a distal side of thedistal coil member 46 protrudes from a distal end of thestent 3 with respect to a rear end portion of thedistal coil member 46. Theguide portion shaft 48 is a solid shaft portion. Thedistal coil member 46 is preferably a coil spring. - Since the
guide portion shaft 48 and the sphericaldistal portion 47 are also a distal portion of thestent delivery system 1, it is preferable that positions of theguide portion shaft 48 and the sphericaldistal portion 47 can be easily checked under X-ray fluoroscopy. It is preferable to use Pt, a Pt alloy (for example, Pt—Ir alloy), W, a W alloy, Ag, an Ag alloy, or the like as the material from which the distalend guiding portion 45 is fabricated. - A rear end portion of the
guide portion shaft 48 is inserted into and fixed to a central opening portion of the guideportion fixing portion 49. A coil spring extending for a predetermined length is used as theelastic tubular portion 43 provided at the distal end of thehollow shaft portion 41. A coil spring is used as the elastictubular interlock portion 71 that interlocks thestent pressing portion 42 and the guideportion fixing portion 49. The coil spring used as the elastictubular interlock portion 71 has a smaller diameter and is shorter than the coil spring used as theelastic tubular portion 43. - The
stent pressing portion 42 and the guideportion fixing portion 49 preferably have X-ray contrast properties, and the entire body or surfaces of thestent pressing portion 42 and the guideportion fixing portion 49 are preferably formed of an X-ray contrast material. Thestent 3 to be described later includes astopper 33 provided at a rear end portion, and thestopper 33 is located between thestent pressing portion 42 and the guideportion fixing portion 49. Further, a distal end of thestent pressing portion 42 is attachable to a rear end of thestopper 33. A rear end of the guideportion fixing portion 49 is attachable to a distal end of thestopper 33. Ashaft hub 72 is fixed to a rear end of thehollow shaft portion 41. - As illustrated in
FIGS. 1 to 5 , thestent delivery system 1 according to this embodiment includes thesensor device 5. Thesensor device 5 includes sensor units or sensors 51 (51 a, 51 b, 51 c, and 51 d), pressing portions 52 (52 a, 52 b, 52 c, and 52 d) that bring the sensor units 51 (51 a, 51 b, 51 c, and 51 d) into contact with an inner surface of thestent 3 indwelling into the living body, and sensor cables 53 (53 a, 53 b, 53 c, and 53 d) whose distal ends are electrically connected to the sensor units 51 (51 a, 51 b, 51 c, and 51 d). The sensor unit or sensors 51 (51 a, 51 b, 51 c, and 51 d) are wired sensors. - The
sensor device 5 according to this embodiment and a sensor device to be described later are also stent sensor devices according to the present disclosure. - The
stent sensor device 5 h is disposed inside thestent 3, which has a plurality of side wall openings, is formed in a substantially cylindrical shape, is compressed in a central axis direction at the time of insertion into the living body, and which can expand outward and return to a shape before compression at the time of indwelling into the living body. The sensor device includes at least one type ofsensor unit 51 selected from a wire-shaped pressure sensor, a contact force sensor, or a strain sensor, and thepressing portions 52 that press thesensor units 51 to the inside of the stent. After the stent indwells into the living body, the sensor device can be removed from a rear end side of thestent 3. - The
sensor device 5 can move the sensor units in a rear end direction of thestent 3 by the movement of the stent extrusion member (stent extrusion member 4) toward a rear end side or the retraction (withdrawal or pulling) of thesensor device 5. - The
stent delivery system 1 according to this embodiment can obtain biological-related information or stent state information using signals from the sensor units. - As the sensor units 51 (51 a, 51 b, 51 c, and 51 d), a pressure sensor, a contact force sensor, a strain sensor, or the like is used. As the pressure sensor, for example, a thin-film type pressure sensor or an extra-fine diameter optical fiber pressure sensor can be used.
- In the
stent delivery system 1 according to this embodiment, as illustrated inFIGS. 1 to 5 , the sensor units 51 (51 a, 51 b, 51 c, and 51 d) are pressed into contact with the inner surface of thestent 3 by the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) whose distal ends are fixed to the sensor units 51 (51 a, 51 b, 51 c, and 51 d). Further, as illustrated inFIGS. 16 to 20 , the sensor units 51 (51 a, 51 b, 51 c, and 51 d) can be pressed (attached), by the pressing portions 52 (52 a, 52 b, 52 c, and 52 d), against the inner surface of thestent 3 indwelling into the living body. The pressing portions 52 (52 a, 52 b, 52 c, and 52 d) can press (attach), with substantially equal pressures, the attached sensor units 51 (51 a, 51 b, 51 c, and 51 d) against the inner surface of thestent 3 indwelling into the living body. - In the
sensor device 5 according to this embodiment, each pressing portion is a wire-shaped (elongated) pressing portion. Specifically, a linear main body portion and 55 a, 55 b, 55 c, and 55 d bent from the main body portion are provided. The sensor units are fixed to distal ends of thebent portions 55 a, 55 b, and 55 d of the pressing portions.bent portions - As the pressing portions 52 (52 a, 52 b, 52 c, and 52 d), an elastic linear body (elastic wire) having a spring property capable of pressing the sensor units 51 (51 a, 51 b, 51 c, and 51 d) is used. The pressing portions 52 (52 a, 52 b, 52 c, and 52 d) may not have a strong spring property as long as the sensor units 51 (51 a, 51 b, 51 c, and 51 d) can be pressed into contact with the inner surface of the stent. The pressing portions may include a shape memory alloy in order to have a spring property.
- In this embodiment, in a state illustrated in
FIGS. 1 to 5 , the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) are pressed by the sensor units, which are pressed by thestent 3, and are elastically deformed inward. In this embodiment, as illustrated inFIGS. 1 to 5 , rear end portions of the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) are fixed to the rear end portion of theguide portion shaft 48 or a distal portion of the guideportion fixing portion 49. In this embodiment, 56 a, 56 b, 56 c, and 56 d of the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) are located and fixed between the rear end portion of therear end portions guide portion shaft 48 and a ring-shaped fixingportion 57. - The distal ends of the sensor cables 53 (53 a, 53 b, 53 c, and 53 d) are electrically connected to the sensor units 51 (51 a, 51 b, 51 c, and 51 d). The sensor cables 53 (53 a, 53 b, 53 c, and 53 d) pass through the
stent accommodation tube 21, enter thestent extrusion member 4 from four opening 49 a, 49 b, 49 c, and 49 d formed in the guideportions portion fixing portion 49 through the distal portion of the guideportion fixing portion 49, pass through the guideportion fixing portion 49, the elastictubular interlock portion 71, thestent pressing portion 42, theelastic tubular portion 43, and thehollow shaft portion 41, and are electrically connected to aconnector 50 located at the rear end of thehollow shaft portion 41. In this embodiment, the sensor cables 53 (53 a, 53 b, 53 c, and 53 d) are bundled or twisted to form asingle wire body 54 in thestent extrusion member 4, specifically, in the guideportion fixing portion 49, and thesingle wire body 54 extends in thestent extrusion member 4 and is electrically connected to theconnector 50. - In this embodiment, the
connector 50 is fixed to theshaft hub 72, and when the sensor device is pulled, the user also pulls thestent extrusion member 4 together because the sensor device is fixed to theshaft hub 72 which is fixed to thestent extrusion member 4. In this embodiment, the sensor cables 53 (53 a, 53 b, 53 c, and 53 d) are wound around the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) at a distal side portion. - In all the embodiments to be described later, the sensor device includes both a sensor cable and a pressing portion, and the sensor cable is not limited to a type in which the sensor cable is wound around the pressing portion as described above.
- For example, as illustrated in
FIG. 8 , asensor cable 12 including aconductive wire 12 a and acoating film 12 b may be disposed on a side surface of apressing portion 11, and thesensor cable 12 and thepressing portion 11 may be fixed to each other by anadhesive portion 13 to form anintegrated member 10. For example, as illustrated inFIG. 9 , thesensor cable 12 including theconductive wire 12 a and thecoating film 12 b may be disposed on the side surface of thepressing portion 11, and theintegrated member 10 a may be formed by a coveringtube 14 that covers and fixes both thesensor cable 12 and thepressing portion 11. Further, as illustrated inFIG. 10 , thesensor cable 12 including theconductive wire 12 a and thecoating film 12 b may be disposed on the side surface of thepressing portion 11, and theintegrated member 10 b may be formed by aresin layer 15 that covers and fixes both thesensor cable 12 and thepressing portion 11. - In this embodiment, as illustrated in
FIGS. 1 to 6 , particularly inFIG. 4 , thesensor device 5 includes two or more sensor units (sensors) spaced apart by a predetermined distance. Specifically, it is preferable to include three or more sensor units. When three or more sensor units are provided, it is preferable that the sensor units are attached, in a manner of being annular and spaced apart by a predetermined distance, to the inner surface of thestent 3 indwelling into the living body. In the embodiment illustrated inFIGS. 1 to 6 , particularly inFIG. 4 , four sensor units are provided, and as illustrated inFIG. 16 , the sensor units are attached, in a manner of being annular and spaced apart by a predetermined distance, to the inner surface of thestent 3 indwelling into the living body. - The number of sensor units in the sensor device is not limited to four as described above, and may be three as in a
stent delivery system 1 b according to an embodiment illustrated inFIG. 11 . In this case, it is preferable that the sensor units are also attached, in a manner of being annular and spaced apart by a predetermined distance, to the inner surface of thestent 3 indwelling into the living body. The number of sensor units may be five as in astent delivery system 1 c according to an embodiment illustrated inFIG. 12 . In this case, it is preferable that the sensor units are also attached, in a manner of being annular and spaced apart by a predetermined distance, to the inner surface of thestent 3 indwelling into the living body. In thestent delivery system 1 c according to this embodiment, the sensor device includes the sensor units 51 (51 a, 51 b, 51 c, 51 d, and 51 e), the pressing portions 52 (52 a, 52 b, 52 c, 52 d, and 52 e) that press the sensor units against the inner surface of thestent 3 indwelling into the living body, and the sensor cables 53 (53 a, 53 b, 53 c, 53 d, and 53 e) electrically connected to the sensor units. Further, the guideportion fixing portion 49 of thestent extrusion member 4 has five opening 49 a, 49 b, 49 c, 49 d, and 49 e through which the sensor cables 53 (53 a, 53 b, 53 c, 53 d, and 53 e) pass.portions - In the embodiment illustrated in
FIGS. 1 to 6 , as illustrated inFIGS. 16 to the sensor units 51 (51 a, 51 b, 51 c, and 51 d) of thesensor device 5 are movable in the rear end direction of thestent 3 in a state where the sensor units are attached, in a manner of being annular and spaced apart by a predetermined distance, to the inner surface of thestent 3 indwelling into the living body by the movement of the stent extrusion member (stent extrusion member 4) toward the rear end side. Therefore, it is possible to obtain biological-related information or stent state information in thestent 3 at a plurality of positions in thestent 3 using signals from the sensor units. - In the
stent delivery system 1 according to the embodiment illustrated inFIGS. 1 to 6 , the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) of the sensor device are fixed to the guideportion fixing portion 49 of thestent extrusion member 4, but are not limited to this type. For example, as in asensor device 5 a of astent delivery system 1 a illustrated inFIG. 7 , the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) may not be fixed to the guideportion fixing portion 49 of thestent extrusion member 4. In particular, in thestent delivery system 1 a according to this embodiment, rear ends of the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) enter the guideportion fixing portion 49 from an opening portion of the guideportion fixing portion 49 and are bundled. Furthermore, in thestent delivery system 1 a according to this embodiment, theconnector 50 electrically connected to the sensor cables is fixed to theshaft hub 72, and theshaft hub 72 is not fixed to the rear end of thehollow shaft portion 41. Therefore, when theconnector 50 is pulled rearward together with theshaft hub 72, a distal portion of the sensor device moves rearward, and the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) can be accommodated in the guideportion fixing portion 49 of thestent extrusion member 4. In this embodiment, the sensor cables 53 (53 a, 53 b, 53 c, and 53 d) are bundled to form a traction wire, meaning the user can move the sensor device by withdrawing thesensor cables 53. Thus, the bundle of the sensor cables serve as a traction wire allowing retraction or withdrawal of the sensor device. A traction wire may be separately provided, and the sensor cables 53 (53 a, 53 b, 53 c, and 53 d) may be wound around the traction wire. When the traction wire is separately provided, the rear ends of the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) are preferably fixed to a distal end of the traction wire. The sensor units 51 (51 a, 51 b, 51 c, and 51 d) may also be accommodated in the guideportion fixing portion 49. - As the
stent 3, a so-called self-expandable stent that has a plurality of side wall openings, that is formed in a substantially cylindrical shape, that is compressed in the central axis direction (radially inwardly) at the time of insertion into the living body, and that can expand outward and return to a shape before compression at the time of indwelling into the living body is used. - Any stent may be used as the self-expandable stent, and for example, the
stent 3 as illustrated inFIGS. 13 to 15 can be suitably used. Thestent 3 according to this embodiment is effective for ameliorating an aneurysm forming portion of a cerebral blood vessel. - For example, when the
stent 3 indwells in the cerebral blood vessel, a diameter of thestent 3 at the time of expansion (non-compression) is preferably about 0.5 mm to 6.0 mm, and particularly more preferably 0.9 mm to 5.0 mm. A length of the stent at the time of expansion (non-compression) is preferably about 5 mm to 50 mm. A thickness of the stent is preferably about 0.05 mm to 0.15 mm, and particularly more preferably 0.06 mm to 0.13 mm.FIGS. 13 and 14 also show an example of side wall openings passing through the wall of the stent. - As a constituent material from which the stent may be fabricated, a superelastic metal is preferred. As the superelastic metal, a superelastic alloy is preferably used. The superelastic alloy referred to herein is generally called a shape memory alloy, and exhibits superelasticity at least at a biological temperature (around 37° C.). Particularly preferably, a superelastic alloy such as a Ti—Ni alloy of 49 atom % to 53 atom % of Ni, a Cu—Zn alloy of 38.5 weight % to 41.5 weight % of Zn, a Cu-Zn—X alloy of 1 weight % to 10 weight % of X (X=Be, Si, Sn, Al, Ga), an Ni—Al alloy of 36 atom % to 38 atom % of Al, and an Mg—Sc alloy of 15 atom % to 25 atom % of Sc is preferably used. Particularly preferably, the above Ti—Ni alloy is used. Mechanical properties can be appropriately changed by preparing a Ti—Ni—X alloy (X=Co, Fe, Mn, Cr, V, Al, Nb, W, B, etc.) in which a part of the Ti—Ni alloy is substituted with 0.01% to 10.0% of X, preparing a Ti—Ni—X alloy (X=Cu, Pb, Zr) in which a part of the Ti—Ni alloy is substituted with 0.01% to 30.0% of X, and selecting a cold working ratio and/or conditions of final heat treatment. The mechanical properties can be appropriately changed by selecting the cold working ratio and/or the conditions of the final heat treatment using the Ti—Ni—X alloy described above. A buckling strength (yield stress when loaded) of the superelastic alloy to be used is 5 kg/mm2 to 200 kg/mm2 (at 22° C.), preferably 8 kg/mm2 to 150 kg/mm2, and restoring stress (yield stress when unloaded) of the superelastic alloy is 3 kg/mm2 to 180 kg/mm2 (at 22° C.), more preferably 5 kg/mm2 to 130 kg/mm2. The term “superelasticity” here means that, even when a normal metal is deformed (bent, stretched, or compressed) to a region where the normal metal is plastically deformed at an operating temperature, the metal substantially returns to a shape before compression without requiring heat after the deformation is released.
- The
stent 3 according to this embodiment includes a stentmain body 31, adistal side marker 32, and a rearend side stopper 33. In the stent according to this embodiment, both thedistal side marker 32 and the rearend side stopper 33 are formed of coil springs. It is preferable that positions of thedistal side marker 32 and the rearend side stopper 33 can be easily checked under X-ray fluoroscopy, and Pt, a Pt alloy (for example, a Pt—Ir alloy), W, a W alloy, Ag, an Ag alloy, or the like is preferably used as the material of thedistal side marker 32 and the rearend side stopper 33. - The
stent 3 according to this embodiment is a double-layered stent, and the stentmain body 31 is double-layered. The stentmain body 31 includes a tubular stentouter layer 34 as illustrated inFIGS. 13 and 14 , and a tubular stentinner layer 35 disposed inside the stentouter layer 34 as illustrated inFIGS. 13 and 15 . - The stent
outer layer 34 is formed in a tubular shape by a wire braid, and includes thedistal side marker 32 and the rearend side stopper 33 described above at both end portions. The stentinner layer 35 is formed in a tubular shape by a wire braid that is thinner than the stentouter layer 34, and is a tight tubular body. Therefore, a side wall opening formed in a tubular side surface of the stentinner layer 35 is sufficiently smaller than a side wall opening formed in a tubular side surface of the stentouter layer 34. - The stent
inner layer 35 is shorter than the stentouter layer 34. That is, both end portions of the stentmain body 31 are formed only by the stentouter layer 34, and the stentinner layer 35 is not present. Thedistal side marker 32 and the rearend side stopper 33 described above are provided at the end portions of the stentmain body 31 formed only by the stentouter layer 34. - In the
stent 3 according to this embodiment, the stentinner layer 35 functions as a flow-diverting layer for changing a direction of blood flow. The stentinner layer 35 that functions as the flow-diverting layer is preferably formed in a tubular shape by braiding a fine-diameter superelastic metal wire. As a size of the side wall opening formed in the tubular side surface of the stentinner layer 35 at the time of stent expansion, a pore diameter thereof is preferably 0.3 mm or less and an opening area thereof is preferably 0.07 mm2 or less. As the size of the side wall opening of the stentinner layer 35 at the time of the stent expansion, the pore diameter thereof is preferably 0.03 mm or more and the opening area is preferably mm2 or more. Both end portions of the stentinner layer 35 are preferably formed by laser cutting or etching a thin tube. A porosity of the tubular side surface of the stentinner layer 35 at the time of the stent expansion is preferably 45% to 70%. - It is preferable that the
stent 3 according to this embodiment, which is a double-layered stent, has a larger radial force (defined as a radial force applied in compression in a radial direction of about 50% of the stent) than either the stentouter layer 34 or the stentinner layer 35 alone. In particular, the radial force of thestent 3 is preferably larger than a sum of the radial forces of the stentouter layer 34 and the stentinner layer 35. - A plurality of fixing portions (not illustrated) that connect the stent
outer layer 34 and the stentinner layer 35 are provided at both end portions of the stentinner layer 35. The fixing portions can be formed by winding fine-diameter wires. The fixing portions can also be formed by pressing portions of the stentouter layer 34 corresponding to positions on both end portions of the stentinner layer 35. Furthermore, the fixing portions can also be formed by weaving both end portions of the stentinner layer 35 into the stentouter layer 34. - A method for using the
stent delivery system 1 according to the embodiment illustrated inFIGS. 1 to 6 will be described with reference toFIGS. 16 to 20 . - After the
stent 3 is placed in the living body (for example, in a cerebral artery 16) in which thestent 3 is to indwell, specifically, after a distal side portion (sphericaldistal portion 47 and distal coil member 46) of the distalend guiding portion 45 of thestent delivery system 1 is placed in a manner of being located a predetermined distance forward (peripheral side at the predetermined distance) from a target in-vivo indwelling portion, specifically, ananeurysm 17 of thecerebral artery 16 having theaneurysm 17, by advancing thestent extrusion member 4 or retracting the stent accommodation tube 21 (tube assembly 2), thestopper 33 at the rear end portion of thestent 3 is attached to (contacted by) and pressed by a distal end surface of thestent pressing portion 42 of thestent extrusion member 4, and thestent 3 is discharged from thestent accommodation tube 21. - As illustrated in
FIG. 16 , a distal portion of thestent 3 discharged from thestent accommodation tube 21 self-expands and is pressed into contact with an inner surface of the living body, specifically, an inner surface of thecerebral artery 16. At the same time, distal side portions of the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) of thesensor device 5 are also outside thestent accommodation tube 21 and spread, and the sensor units 51 (51 a, 51 b, 51 c, and 51 d) are attached to the inner surface of the expanded stent 3 (stent main body 31). By advancing thestent extrusion member 4 or retracting the stent accommodation tube 21 (tube assembly 2), as illustrated inFIG. 17 , theentire stent 3 is discharged from thestent accommodation tube 21 and indwells in a manner of covering the inside of thecerebral artery 16 and an opening portion between theaneurysm 17 and the blood vessel. - In a state illustrated in
FIG. 16 and a state illustrated inFIG. 17 , biological-related information or stent state information in the stent 3 (stent main body 31) can be obtained using the signals from the sensor units. For example, when a pressure sensor or a contact force sensor is used as the sensor units 51 (51 a, 51 b, 51 c, and 51 d), stent state information can be obtained (i.e., information about the state of the stent can be obtained). In thestent delivery system 1 according to this embodiment, by retracting thestent delivery system 1 from the state illustrated inFIG. 17 , as illustrated inFIGS. 18 and 19 , axial positions of the sensor units 51 (51 a, 51 b, 51 c, and 51 d) in the stent 3 (stent main body 31) can be changed, and stent state information can be obtained at a plurality of sites. In this embodiment, as illustrated inFIG. 20 , after information collection is completed, thesensor device 5 can be accommodated in thestent accommodation tube 21 by retracting thestent extrusion member 4 with respect to thestent accommodation tube 21. - The
stent delivery system 1 preferably includes an arithmetic processing device 100 (computer) as illustrated inFIG. 45 . Thearithmetic processing device 100 according to this embodiment includes a devicemain body portion 101, acable 102 connected to the devicemain body portion 101, and acoupler 103 provided at a distal end of thecable 102 and connectable to theconnector 50 of thestent delivery system 1. The devicemain body portion 101 includes a sensorsignal input unit 104, acalculation unit 105 that performs calculation using a signal from the sensorsignal input unit 104, adisplay unit 106 that performs output based on a calculation result, and astorage unit 107 that stores input data, output data, and the like. - When the
stent 3 is expanded in a favorable state at the in-vivo indwelling portion, a state as illustrated inFIG. 46 is obtained. Since the 52 a, 52 b, 52 c, and 52 d press thepressing portions 51 a, 51 b, 51 c, and 51 d against the inner surface of the stent 3 (stent main body 31) with substantially the same contact force (pressing force), signals (data) caused by the contact force to be output are also substantially the same.respective sensor units - The
arithmetic processing device 100 according to this embodiment has a function of displaying, on thedisplay unit 106, a value of the contact force in the 51 a, 51 b, 51 c, and 51 d calculated using the signals from the sensor units. Thesensor units calculation unit 105 of thearithmetic processing device 100 outputs that a stent state is favorable when the value of the contact force in the 51 a, 51 b, 51 c, and 51 d calculated using the signals from the sensor units is within a predetermined range.sensor units - In a case where an expanded state of the
stent 3 is not favorable, for example, a state as illustrated inFIG. 47 is considered. In a state illustrated inFIG. 47 , the stent 3 (stent main body 31) includes astent deformation portion 31 a which is pressed by adeformation portion 16 a of the cerebral artery (blood vessel) 16 and which is curved inward. Thesensor unit 51 a is attached to thestent deformation portion 31 a. Since thesensor unit 51 a is more strongly pressed inward than 51 b, 51 c, and 51 d, a signal (data) caused by the contact force (pressing force) to be output is different from a signal from theother sensor units sensor unit 51 a. A value of the contact force in the sensor units calculated using the signal from thesensor unit 51 a displayed on thedisplay unit 106 is different from (specifically, larger than the value of the contact force) the value of the contact force in the 51 b, 51 c, and 51 d calculated using the signals from the other sensor units. When a difference between the value of the contact force in theother sensor units sensor unit 51 a and the value of the contact force in the 51 b, 51 c, and 51 d calculated using the signals from the sensor units is out of the predetermined range, thesensor units calculation unit 105 of thearithmetic processing device 100 outputs that the stent state is not favorable. When it is detected that the stent state is not favorable (in the case as that inFIG. 47 ), after thestent delivery system 1 is removed from the living body, a balloon catheter (not illustrated) is inserted into thestent 3, and a balloon is inflated. Accordingly, a shape of thestent 3 can be improved. - Next, a
stent delivery system 1 d according to an embodiment illustrated inFIG. 21 will be described. In thestent delivery system 1 d according to this embodiment, a wireless sensor having a communication function as a sensor unit is used in asensor device 5 b. Therefore, although thesensor device 5 b includes the sensor units 51 (51 a, 51 b, 51 c, and 51 d) and the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) that press the respective sensor units on the inner surface of thestent 3 indwelling in the living body, the sensor cable is not provided. Other configurations, features and aspects of thestent delivery system 1 d are the same as those of the above-describedstent delivery system 1. - Next, a
stent delivery system 1 e according to an embodiment illustrated inFIG. 22 will be described. In thestent delivery system 1 e according to this embodiment, asensor device 5 c includes wire-shaped 60 a, 60 b, and 60 c each having a helical shape wire, and thepressing portions 51 a, 51 b, and 51 c located at respective distal portions of the pressing portions. Specifically, in thesensor units stent delivery system 1 e according to this embodiment, thesensor device 5 c includes the sensor units 51 (51 a, 51 b, and 51 c), and the pressing portions that press the sensor units are formed by 60 a, 60 b, and 60 c instead of linear wires as in the above-described embodiment. Thespiral wires 60 a, 60 b, and 60 c are compressibly braided (i.e., the spiral wires are braided such that the braided wires can be compressed), and when thespiral wires stent 3 is expanded, the 60 a, 60 b, and 60 c expand and press the sensor units 51 (51 a, 51 b, and 51 c) fixed to distal portions of thespiral wires 60 a, 60 b, and 60 c against the inner surface of thespiral wires stent 3. In thesensor device 5 c according to this embodiment, the sensor cables may be wound around the 60 a, 60 b, and 60 c, and it is preferable to usespiral wires 10 a, 10 b, and 10 c in which the pressing portions and the sensor cables illustrated inintegrated members FIGS. 8 to 10 are integrated. - Next, a
stent delivery system 1 f according to an embodiment illustrated inFIG. 23 will be described. In thestent delivery system 1 f according to this embodiment, asensor device 5 d includes a wire-shapedpressing portion 18 having a coil shape and a sensor unit located at a distal portion of thepressing portion 18 having a coil shape. Specifically, thesensor device 5 d includes a wire-shaped pressing portion having a coil shape, that is, a so-called spring-shapedpressing portion 18, and includes a plurality of 51 a, 51 b, and 51 c that are fixed at a predetermined distance from one another at a distal portion of thesensor units pressing portion 18. Specifically, in thesensor device 5 d according to this embodiment, arear end 18 a of the spring-shapedpressing portion 18 is linear, and is fixed to ashaft portion 48 of a distal end guiding portion of thestent delivery system 1 f. The spring-shapedpressing portion 18 is formed in a spring shape whose distal side portion extends by a predetermined length, and the 51 a, 51 b, and 51 c are fixed to a side surface (radially outwardly facing surface) of the spring-shapedsensor units pressing portion 18. The spring-shapedpressing portion 18 can be compressed. When thestent 3 is expanded, thepressing portion 18 is expanded, and the 51 a, 51 b, and 51 c fixed to the side surface of the distal portion of the spring-shapedsensor units pressing portion 18 are pressed against the inner surface of thestent 3. In thesensor device 5 d according to this embodiment, the 53 a, 53 b, and 53 c pass through the inside of the spring-shapedsensor cables pressing portion 18 and enter the guideportion fixing portion 49 through an opening of the guideportion fixing portion 49. In thestent delivery system 1 f according to the embodiment illustrated inFIG. 23 , as in a stent delivery system 1 g according to an embodiment illustrated inFIG. 24 , 51 a, 51 b, and 51 c having a communication function may be used as sensor units of awireless sensors sensor device 5 e. In this case, thesensor device 5 e does not include a sensor cable. - Next, a
stent delivery system 1 h according to an embodiment illustrated inFIG. 25 will be described.FIG. 26 is a cross-sectional view taken along a line XXVI-XXVI inFIG. 25 . - In the
stent delivery system 1 h according to this embodiment, asensor device 5 f includes the wire-shaped 52 a, 52 b, 52 c, and 52 d each having an elongated loop shape, and thepressing portions 51 a, 51 b, 51 c, and 51 d located at the respective distal portions of the pressing portions. Specifically, in thesensor units stent delivery system 1 h according to this embodiment, thesensor device 5 f includes the 51 a, 51 b, 51 c, and 51 d, and the pressing portions that press the sensor units are not linear wires as in the above-described embodiment, but are formed of loop-shapedsensor units 52 a, 52 b, 52 c, and 52 d each having a long elliptical shape. Rear ends of the loop-shapedwires 52 a, 52 b, 52 c, and 52 d are fixed to the distal portion of the guidewires portion fixing portion 49. The 51 a, 51 b, 51 c, and 51 d are fixed to the respective distal portions of thesensor units 52 a, 52 b, 52 c, and 52 d formed of the loop-shaped wires. Thepressing portions 52 a, 52 b, 52 c, and 52 d formed of the loop-shaped wires can be deformed inward by pressing, and when thepressing portions stent 3 is expanded, the 52 a, 52 b, 52 c, and 52 d formed of the loop-shaped wires press thepressing portions 51 a, 51 b, and 51 c against the inner surface of thesensor units stent 3. In thesensor device 5 f according to this embodiment, the 53 a, 53 b, 53 c, and 53 d pass through the respective loop-shapedsensor cables 52 a, 52 b, 52 c, and 52 d, and enter thewires stent extrusion member 4 through the opening of the guideportion fixing portion 49. - Next, a stent delivery system 1 i according to an embodiment illustrated in
FIG. 27 will be described. In the stent delivery system 1 i according to this embodiment, asensor device 5 g includes adevice tube 70 slidably inserted into or positioned in thehollow shaft portion 41 of astent extrusion member 4 a. A rear end portion of thedevice tube 70 protrudes from a rear end portion of the hollow shaft portion. In this embodiment, a distal end of thedevice tube 70 is positioned inside a distal portion of thestent extrusion member 4 a, and sensor units, pressing portions, and sensor cables protrude from the distal end of thedevice tube 70. - In this embodiment, a distal portion of the
stent pressing portion 42 of thestent extrusion member 4 a is a guide portion fixing portion, and the distalend guiding portion 45 is fixed to the distal portion of thestent pressing portion 42. The rear ends of the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) enter thestent pressing portion 42 from an opening portion of thestent pressing portion 42 and are bundled. - In the stent delivery system 1 i according to this embodiment, the
connector 50 electrically connected to the sensor cables is not fixed to theshaft hub 72, and the rear end portion of thedevice tube 70 is fixed to theshaft hub 72. The rear end portion of thehollow shaft portion 41 is not fixed to theshaft hub 72. Therefore, when theconnector 50 is pulled rearward, the distal portion of thesensor device 5 g moves rearward, and the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) pass through thestent extrusion member 4 a and can be accommodated in thedevice tube 70. When thedevice tube 70 is pulled rearward together with theshaft hub 72, thesensor device 5 g moves rearward together with thedevice tube 70. If necessary, thesensor device 5 g including thedevice tube 70 can be removed from the stent delivery system 1 i by further pulling thedevice tube 70 rearward. - In the stent delivery system 1 i according to this embodiment, the sensor cables 53 (53 a, 53 b, 53 c, and 53 d) are bundled to form a traction wire. A traction wire may be separately provided, and the sensor cables 53 (53 a, 53 b, 53 c, and 53 d) may be wound around the traction wire. When the traction wire is separately provided, the rear ends of the pressing portions 52 (52 a, 52 b, 52 c, and 52 d) are preferably fixed to a distal end of the traction wire. The sensor units 51 (51 a, 51 b, 51 c, and 51 d) may also be accommodated in the
device tube 70. - In the stent delivery system 1 i according to this embodiment, configurations, features and aspects other than those described above are the same as a configuration of the above-described
stent delivery system 1. - Next, a
stent delivery system 1 j according to an embodiment illustrated inFIG. 28 will be described. In thestent delivery system 1 j according to this embodiment, a wire-shapedsensor 61 having a coil shape at adistal portion 61 a is used as asensor device 5 h. As the wire-shapedsensor 61, a wire-shaped strain sensor is used. As illustrated inFIG. 29 , the wire-shapedsensor 61 includes a coileddistal portion 61 a, and the coileddistal portion 61 a can be compressed. When thestent 3 is expanded, the coileddistal portion 61 a is expanded, and a side surface (radially outwardly facing surface) of the coileddistal portion 61 a is pressed against the inner surface of thestent 3. A portion behind the coileddistal portion 61 a of the wire-shapedsensor 61 is alinear portion 61 b, and a rear end of thelinear portion 61 b is electrically connected to theconnector 50 through the inside of thestent extrusion member 4. - As described above, the stent delivery system disclosed here is not limited to a configuration in which the coiled
distal portion 61 a is formed using an elastic force of the wire-shapedsensor 61. Alternatively, a wire-shaped sensor reinforcing member in which the wire-shapedsensor 61 and a wire-shaped pressing portion disposed on a side portion thereof are integrated may be used as in the 10 a, 10 b, and 10 c in which the pressing portions and the sensor cables illustrated inintegrated members FIGS. 8 to 10 are integrated. - In the
stent delivery system 1 j according to this embodiment, configurations, features and aspects other than those described above are the same as the configuration of the above-describedstent delivery system 1. - As the wire-shaped strain sensor, for example, a sensor having a three-layer coaxial structure including an external conductor, a piezoelectric material, and a central conductor from the outside can be used. When the strain sensor of this type is deformed from a straight state which is a standard state, a potential difference is generated between the external conductor and the central conductor according to a degree of deformation. By measuring the potential difference between the external conductor and the central conductor, the degree of deformation of the strain sensor from the standard state can be calculated. In the
stent delivery system 1 j according to this embodiment, one wire-shaped sensor 61 (wire-shaped strain sensor) is used, and when the coileddistal portion 61 a that comes into contact with the inner surface of thestent 3 is partially deformed, a signal (data) having a potential difference different from a normal potential difference is output. For example, as illustrated inFIG. 46 , when thestent 3 is expanded in a favorable state at the in-vivo indwelling portion, the coileddistal portion 61 a that comes into contact with the inner surface of thestent 3 is not partially deformed and has a favorable continuous curved shape, and thus a signal of a predetermined value indicating that the stent state is favorable is output. - In this
stent delivery system 1 j, thearithmetic processing device 100 as illustrated inFIG. 45 is also used at the time of use, and in this case, thestorage unit 107 of thearithmetic processing device 100 stores a predetermined value (normal output value or reference value) indicating that the stent state is favorable as described above. When thestent 3 is in the state illustrated inFIG. 47 , the stent 3 (stent main body 31) includes thestent deformation portion 31 a which is pressed by thedeformation portion 16 a of thecerebral artery 16 and which is curved inward. Since a part of the coileddistal portion 61 a is attached to thestent deformation portion 31 a, the sensor is strained at the part, and a signal (data) influenced by the strain is output. Then, thearithmetic processing device 100 compares the input signal (data) influenced by the strain with the normal output value stored in thestorage unit 107. When a difference is out of a predetermined range, thearithmetic processing device 100 outputs, to the display unit, that the stent state is not favorable. Then, when it is detected that the stent state is not favorable (in the case as that inFIG. 47 ), after thestent delivery system 1 j is removed from the living body, a balloon catheter (not illustrated) is inserted into thestent 3, and a balloon is inflated. Accordingly, the shape of thestent 3 can be improved. - When a strain is detected in a part of the distal portion of the stent during indwelling of the stent, it is possible to accommodate the stent in the sheath again, change an indwelling position, and attempt indwelling of the stent again. When such use is assumed, it is necessary to dispose the coiled
distal portion 61 a that comes into contact with the inner surface of thestent 3 on a part of the stent on the distal side, and for example, it is necessary to dispose the coileddistal portion 61 a in a range of 50% or less of an overall length of the stent on a distal side of the stent. - A stent delivery system using a wire-shaped sensor is not limited to a stent delivery system using a single wire-shaped sensor as the above-described
stent delivery system 1 j. - As in a
stent delivery system 1 k according to an embodiment illustrated inFIG. 30 , a plurality of (specifically, two) wire-shaped 58 and 59 may be used. In this embodiment, as illustrated insensors FIG. 30 , the wire-shaped 58 and 59 include spiralsensors 58 a and 59 a (loose coiled distal portions), and the spiraldistal portions 58 a and 59 a can be compressed. When thedistal portions stent 3 is expanded, the spiral 58 a and 59 a expand, and side surfaces (radially outwardly facing surfaces) of the spiraldistal portions 58 a and 59 a are pressed against the inner surface of thedistal portions stent 3. Portions behind the spiral 58 a and 59 a of the wire-shapeddistal portions 58 and 59 aresensors 58 b and 59 b, and rear ends of thelinear portions 58 b and 59 b are electrically connected to thelinear portions connector 50 through the inside of thestent extrusion member 4. As the wire-shaped 58 and 59, a wire-shaped sensor is used. In this embodiment, the stent delivery system is also not limited to a configuration in which coiledsensors 58 a and 59 a are formed using an elastic force of the wire-shaped sensor, and a wire-shaped sensor reinforcing member in which the wire-shaped sensor and a wire-shaped pressing portion disposed on a side portion thereof are integrated may be used as in thedistal portions 10 a, 10 b, and 10 c in which the pressing portions and the sensor cables illustrated inintegrated members FIGS. 8 to 10 are integrated. - In the
stent delivery system 1 k, thearithmetic processing device 100 as illustrated inFIG. 45 is also used at the time of use, and in this case, thestorage unit 107 of thearithmetic processing device 100 stores a predetermined value (normal output value) indicating that the stent state is favorable as described above for each of the wire-shaped 58 and 59. When thesensors stent 3 is in the state illustrated inFIG. 47 , the stent 3 (stent main body 31) includes thestent deformation portion 31 a which is pressed by thedeformation portion 16 a of thecerebral artery 16 and which is curved inward. Since a part of one of the spiral 58 a and 59 a of the wire-shapeddistal portions 58 and 59 is attached to thesensors stent deformation portion 31 a, the sensor is strained at the part, and a signal (data) influenced by the strain is output. - Then, the
arithmetic processing device 100 compares the input signal (data) influenced by the strain with the normal output value stored in thestorage unit 107. When a difference is out of a predetermined range, thearithmetic processing device 100 outputs, to the display unit, that the stent state is not favorable. Then, when it is detected that the stent state is not favorable (in the case as that inFIG. 47 ), after thestent delivery system 1 k is removed from the living body, a balloon catheter (not shown) is inserted into thestent 3, and a balloon is inflated. Accordingly, the shape of thestent 3 can be improved. - Next, a
stent delivery system 1 m according to an embodiment illustrated inFIG. 31 will be described. - The
stent delivery system 1 m according to the embodiment includes astent extrusion member 4 b and asensor device 5 i. As illustrated inFIG. 31 , thestent extrusion member 4 b includes a lumen opened at a distal end thereof, thesensor device 5 i comprises adevice tube 73 slidably accommodated in the lumen of thestent extrusion member 4 b and capable of protruding from a distal end opening of thestent extrusion member 4 b. Thedevice tube 73 accommodates at least 75 a, 75 b, 75 c, and 75 d and anpressing portions operation wire 64 interlocked with rear end portions of the pressing portions in thedevice tube 73. The sensor units 51 (51 a, 51 b, 51 c, and 51 d) are fixed to distal portions of the 75 a, 75 b, 75 c, and 75 d, respectively. Thepressing portions 75 a, 75 b, 75 c, and 75 d are exposed from thepressing portions device tube 73 by the movement of thedevice tube 73 toward the rear end side or the pushing of theoperation wire 64, and the sensor units 51 (51 a, 51 b, 51 c, and 51 d) are brought into contact with the inner surface of thestent 3 indwelling into the living body by the 75 a, 75 b, 75 c, and 75 d.pressing portions - In this embodiment, it is preferable that the
75 a, 75 b, 75 c, and 75 d are formed by integrating wire-shaped sensors and wire-shaped pressing portions disposed on side portions (radially outwardly facing portions) of the wire-shaped sensors as in thepressing portions 10 a, 10 b, and 10 c in which the pressing portions and the sensor cables illustrated inintegrated members FIGS. 8 to 10 are integrated. The 75 a, 75 b, 75 c, and 75 d terminate within a distal portion of thepressing portions device tube 73, and behind the 75 a, 75 b, 75 c, and 75 d, the sensor cables are bundled or twisted to form a traction wire (operation wire) 64. Thepressing portions traction wire 64 including the sensor cables protrudes from a rear end of thestent extrusion member 4 b and is electrically connected to theconnector 50. - As illustrated in
FIG. 31 , a rear end portion of thedevice tube 73 of thesensor device 5 i protrudes from the rear end portion of the hollow shaft portion. In this embodiment, as illustrated inFIG. 32 , the distal portion of thedevice tube 73 protrudes from a distal end of thestent extrusion member 4 b, and the distal end of thestent extrusion member 4 b is located within the distal end of thestent 3. Thesensor device 5 i includes the sensor units 51 (51 a, 51 b, 51 c, and 51 d) and the 75 a, 75 b, 75 c, and 75 d whose distal portions are attached to the sensor units 51 (51 a, 51 b, 51 c, and 51 d), and thepressing portions 75 a, 75 b, 75 c, and 75 d spread in a radial manner when protruding from thepressing portions device tube 73. - In the
stent delivery system 1 m according to this embodiment, as illustrated inFIG. 31 , a rear end portion of thetraction wire 64 including sensor cables electrically connected to theconnector 50 protrudes from theshaft hub 72. Further, a proximal portion of aprotective tube 65 through which thetraction wire 64 is inserted is fixed to theconnector 50. A distal portion of theprotective tube 65 slidably enters theshaft hub 72 and thehollow shaft portion 41. Therefore, when theconnector 50 is pressed in a distal end direction, thetraction wire 64 advances, and the 75 a, 75 b, 75 c, and 75 d protrude from a distal end of thepressing portions device tube 73. After the protrusion, by pulling theconnector 50 in the rear end direction, thetraction wire 64 is retracted, and the 75 a, 75 b, 75 c, and 75 d can be moved back into and accommodated in thepressing portions device tube 73. - The rear end portion of the
device tube 73 of thesensor device 5 i is fixed to theshaft hub 72. The rear end portion of thehollow shaft portion 41 is not fixed to theshaft hub 72. Therefore, when theshaft hub 72 is pulled rearward, thedevice tube 73 moves rearward. When theshaft hub 72 is pulled rearward in a state where theconnector 50 is held, in a case where the 75 a, 75 b, 75 c, and 75 d protrude, thepressing portions 75 a, 75 b, 75 c, and 75 d can be accommodated in thepressing portions device tube 73. - By pulling the
shaft hub 72, the sensor units, the pressing portions, and the traction wire can be moved rearward together with thedevice tube 73. If necessary, thesensor device 5 i including thedevice tube 73 can be removed from thestent delivery system 1 m by further pulling thedevice tube 73 rearward. The sensor units 51 (51 a, 51 b, 51 c, and 51 d) can be accommodated in thedevice tube 73. - It is preferable that the
stent delivery system 1 m according to this embodiment can detect a blood velocity which is biological-related information and check a blockage state of an aneurysm in the case where the stent indwells in the aneurysm forming portion. The blood velocity can be detected using a pressure sensor as the sensor unit 51 (51 a, 51 b, 51 c, and 51 d) and using a signal obtained therefrom. Accordingly, variations in pressure values at a plurality of sites in a lumen of a stent indwelling in a blood vessel (cerebral artery in which an aneurysm is formed) are quantified, and the presence or absence of blood flowing into the aneurysm is detected. - A step of detecting the presence or absence of blood flowing into the aneurysm using the
stent delivery system 1 m according to this embodiment will be described with reference toFIGS. 33 to 38 . - After the
stent 3 is placed in thecerebral artery 16 in which theaneurysm 17 is formed and in which thestent 3 is to indwell, specifically, after the distal end of thedevice tube 73 of thesensor device 5 i of thestent delivery system 1 m is placed in a manner of being located a predetermined distance forward (peripheral side at the predetermined distance) from theaneurysm 17 of thecerebral artery 16 having theaneurysm 17, by retracting the stent accommodation tube 21 (tube assembly 2) by a predetermined length, thestopper 33 at the rear end portion of thestent 3 is attached to and pressed by the distal end surface of thestent pressing portion 42 of thestent extrusion member 4 b, and the distal side portion of the stent is discharged from thestent accommodation tube 21, resulting in a state illustrated inFIG. 33 . In the state illustrated inFIG. 33 , the distal side portion of the stent self-expands and is pressed into contact with the inner surface of thecerebral artery 16, and a rear end side portion of the stent is located inside thestent accommodation tube 21. - The
device tube 73 and theconnector 50 are pulled in the rear end direction in a state where a position of thestent accommodation tube 21 is held, and as illustrated inFIG. 34 , the distal portion of thedevice tube 73 is located at a central portion of the stent or an aneurysm portion. Subsequently, by pressing theconnector 50 in a state where a position of thedevice tube 73 illustrated inFIG. 34 is held, the distal portions of the 75 a, 75 b, 75 c, and 75 d are protruded from the distal end of thepressing portions device tube 73. The 75 a, 75 b, 75 c, and 75 d each including a sensor unit at the distal portion thereof protrude. Accordingly, thepressing portions 75 a, 75 b, 75 c, and 75 d slightly spread in a radial manner and are in a state illustrated inpressing portions FIG. 35 . In this state, the sensor units 51 (51 a, 51 b, 51 c, and 51 d) fixed to the distal portions of the 75 a, 75 b, 75 c, and 75 d are located near a center of the cerebral artery (blood vessel) 16 although being slightly separated from one another.pressing portions - In the
stent delivery system 1 m according to this embodiment, thearithmetic processing device 100 as illustrated inFIG. 45 is also used. In thestent delivery system 1 m according to this embodiment, in the state inFIG. 35 , pressure values at four sites near the center of thecerebral artery 16 are detected using signals from the sensor units 51 (51 a, 51 b, 51 c, and 51 d) which are pressure sensors. The detected pressure value is stored in a storage unit of thearithmetic processing device 100. When the four detected pressure values are within a threshold stored in thearithmetic processing device 100, the process proceeds to the next step. When the detected pressure values vary beyond the threshold stored in thearithmetic processing device 100, by slightly pressing theconnector 50 or pulling thedevice tube 73, the 75 a, 75 b, 75 c, and 75 d are further exposed and thepressing portions 51 a, 51 b, 51 c, and 51 d are further separated. Then, the pressure values at the four sites near the center of thesensor units cerebral artery 16 are detected again, and when the detected four pressure values are within the threshold stored in thearithmetic processing device 100, the process proceeds to the next step. - In the next step, by retracting the stent accommodation tube 21 (tube assembly 2) by a predetermined length in a state where positions of the sensor units 51 (51 a, 51 b, 51 c, and 51 d) illustrated in
FIG. 35 are held, theentire stent 3 is discharged from thestent accommodation tube 21. Subsequently, thedevice tube 73 is pulled rearward in a state where the positions of the sensor units 51 (51 a, 51 b, 51 c, and 51 d) are held. Accordingly, all of the 75 a, 75 b, 75 c, and 75 d protrude from thepressing portions device tube 73 and spread widely in a radial manner as illustrated inFIGS. 36 and 37 , and the sensor units 51 (51 a, 51 b, 51 c, and 51 d) move outward from the positions inFIG. 35 and come into contact with the inner surface of the expanded stent (stent main body 31) 3. Accordingly, the sensor units 51 (51 a, 51 b, 51 c, and 51 d) are close to the intravascular wall. - In particular, as illustrated, in this embodiment, the
sensor 51 a, which is one of thesensor units 51, is located near an opening portion of theaneurysm 17. Not limited to such a case, any of the sensor units is located at a site that is closer to the opening portion ofaneurysm 17 than are other sensor units. In thestent delivery system 1 m according to this embodiment, in states inFIGS. 36 and 37 , the sensor units 51 (51 a, 51 b, 51 c, and 51 d) can be used to measure a pressure near the vascular wall. By using the signals from the sensor units 51 (51 a, 51 b, 51 c, and 51 d) which are pressure sensors, pressure values at four sites near the vascular wall of thecerebral artery 16 are detected. The detected pressure values are sent to thearithmetic processing device 100. - The
arithmetic processing device 100 has a determination function of determining an embolization status of theaneurysm 17 by the stent using pressure values at four sites in a central portion of thecerebral artery 16 and the pressure values at the four sites near the vascular wall. For example, when a pressure drop exceeding a threshold is detected in one or two sensor units as compared with other sensor units in the pressure values at the four sites in the pressure near the vascular wall, it is estimated that blood flows into theaneurysm 17. When the pressure value near the vascular wall is lower than a predetermined value as compared with the pressure values detected by the same sensor unit at the central portion of thecerebral artery 16, it is estimated that blood flows into theaneurysm 17. Thearithmetic processing device 100 according to this embodiment has a function of comprehensively determining the embolization status of theaneurysm 17 by the stent using the pressure values at the four sites in the central portion of thecerebral artery 16 and the pressure values at the four sites in the pressure near the vascular wall. - The
arithmetic processing device 100 preferably has the following functions. When thearithmetic processing device 100 determines that blood does not flow into theaneurysm 17, thearithmetic processing device 100 displays, on thedisplay unit 106, that the stent indwelling is favorable. When thearithmetic processing device 100 determines that blood flows into theaneurysm 17, for example, thearithmetic processing device 100 roughly estimates a flow dilation effect (inhibition of blood flow into the aneurysm from a parent artery) in the stent indwelling this time using the pressure values at the four sites in the central portion of thecerebral artery 16 and the pressure values at the four sites in the pressure near the vascular wall, and displays a result (flow dilation effect ratio) on thedisplay unit 106. Furthermore, it is preferable that thearithmetic processing device 100 displays a precaution, a future countermeasure method, and the like on thedisplay unit 103 based on the above result. According to the present embodiment, when it is found that a larger amount of blood flows into theaneurysm 17 than usual, it is necessary to design a treatment policy and a treatment plan in consideration of this fact. Therefore, according to the present embodiment, an appropriate treatment policy and an appropriate treatment plan according to a state of blood flow and a distribution of the blood velocity of theaneurysm 17 can be formulated. - Next, after the
connector 50 is pulled and the 75 a, 75 b, 75 c, and 75 d are accommodated in thepressing portions device tube 73, thedevice tube 73 is pulled and the distal portion in thedevice tube 73 is accommodated in the distal portion of the stent accommodation tube 21 (tube assembly 2), resulting in a state inFIG. 38 . Then, thestent delivery system 1 m is removed from the living body. - The
stent delivery system 1 m according to this embodiment can be used for checking the expanded state of the stent described above, in addition to the presence or absence of blood flowing into the aneurysm described above. This case will be described with reference toFIGS. 33 and 41 to 44 . - First, after the
stent 3 is placed in thecerebral artery 16 in which thestent 3 is to indwell, specifically, the distal end of thedevice tube 73 of thesensor device 5 i of thestent delivery system 1 m is placed in a manner of being located within the distal end of thestent 3. Subsequently, when the stent accommodation tube 21 (tube assembly 2) is retracted by a predetermined length, thestopper 33 at the rear end portion of thestent 3 is attached to and pressed by the distal end surface of thestent pressing portion 42 of thestent extrusion member 4 b, and the distal side portion of the stent is discharged from thestent accommodation tube 21, resulting in the state illustrated inFIG. 33 . In the state illustrated inFIG. 33 , the distal side portion of the stent self-expands and is brought into contact with the inner surface of thecerebral artery 16, and the rear end side portion of the stent is located inside thestent accommodation tube 21. - By retracting the stent accommodation tube 21 (tube assembly 2) by a predetermined length in a state where the positions of the sensor units 51 (51 a, 51 b, 51 c, and 51 d) illustrated in
FIG. 33 are held, theentire stent 3 is discharged from thestent accommodation tube 21. Subsequently, thedevice tube 73 is pulled rearward in a state where the positions of the sensor units 51 (51 a, 51 b, 51 c, and 51 d) are held. Accordingly, all of the 75 a, 75 b, 75 c, and 75 d protrude from thepressing portions device tube 73 and spread widely in a radial manner as illustrated inFIG. 41 , and the sensor units 51 (51 a, 51 b, 51 c, and 51 d) come into contact with the inner surface of the expanded stent (stent main body 31) 3. - In this embodiment, since the
75 a, 75 b, 75 c, and 75 d respectively press thepressing portions 51 a, 51 b, 51 c, and 51 d against the inner surface of the stent 3 (stent main body 31) with substantially the same pressure, signals (data) caused by the output pressure are also substantially the same. In a state illustrated insensor units FIG. 41 , the stent state information (pressure values) in the stent 3 (stent main body 31) can be obtained. Further, by retracting thestent delivery system 1 m from the state inFIG. 41 , as illustrated inFIGS. 42 and 43 , the axial positions of the sensor units 51 (51 a, 51 b, 51 c, and 51 d) in the stent 3 (stent main body 31) can be changed, and stent state information (pressure values) can be obtained at the plurality of sites. - When the
stent 3 is in the state as illustrated inFIG. 47 , the stent 3 (stent main body 31) includes thestent deformation portion 31 a which is pressed by thedeformation portion 16 a of thecerebral artery 16 and which is curved inward. When any one of the sensor units is attached to or comes close to thestent deformation portion 31 a, the sensor is strained at this portion, and a signal (data) influenced by the strain is output. Thearithmetic processing device 100 compares the input signal (data) influenced by the strain with the normal output value stored in thestorage unit 107. When a difference is out of a predetermined range, thearithmetic processing device 100 outputs, to thedisplay unit 106, that the stent state is not favorable. Then, when it is detected that the stent state is not favorable (in the case as that inFIG. 47 ), after the stent delivery system is removed from the living body, a balloon catheter (not illustrated) is inserted into thestent 3, and a balloon is inflated. Accordingly, the shape of thestent 3 can be improved. In this embodiment, as illustrated inFIG. 44 , after the information collection is completed, the pressing portions and the device tube are accommodated in thestent accommodation tube 21, and then removed from the living body. - Next, a
stent delivery system 1 n according to an embodiment illustrated inFIGS. 39 and 40 will be described. - The
stent delivery system 1 n according to the embodiment includes astent extrusion member 4 c and thesensor device 5 i. As illustrated inFIGS. 39 and 40 , a pressingmember 42 a of thestent extrusion member 4 c includes atube lumen 76 that opens at a distal end thereof and that penetrates therethrough and aguide wire lumen 74. Thehollow shaft portion 41 of thestent extrusion member 4 c also includes atube lumen 81 that opens at a distal end thereof and that penetrates therethrough and aguide wire lumen 77. Thetube hub 79 to be described later has a guidewire insertion port 78. In thestent delivery system 1 n, a guide wire (not illustrated) to be inserted from the guidewire insertion port 78 of thetube hub 79 passes through thewire lumen 77 of thehollow shaft portion 41, theelastic tubular portion 43, and theguide wire lumen 74 of thestent extrusion member 4 c, and protrudes toward the distal side therefrom. Therefore, thestent delivery system 1 n can be inserted into the living body and guided to a target site using a guide wire inserted through theguide wire lumen 74 at a distal portion thereof. - The
sensor device 5 i accommodates thedevice tube 73 slidably accommodated in thetube lumen 76 of thestent extrusion member 4 c and capable of protruding from a distal end opening (distal end of the tube lumen 76) of the stent extrusion member (pressingmember 42 a) 4 c, and theoperation wire 64 interlocked with at least 75 a, 75 b, 75 c, and 75 d and rear end portions of the pressing portions in thepressing portions device tube 73. The sensor units 51 (51 a, 51 b, 51 c, and 51 d) are fixed to the distal portions of the 75 a, 75 b, 75 c, and 75 d, respectively. Thepressing portions 75 a, 75 b, 75 c, and 75 d are exposed from thepressing portions device tube 73 by the movement of thedevice tube 73 toward the rear end side or the pushing of theoperation wire 64, and the sensor units 51 (51 a, 51 b, 51 c, and 51 d) are brought into contact with the inner surface of thestent 3 indwelling into the living body by the 75 a, 75 b, 75 c, and 75 d.pressing portions - In this embodiment, it is preferable that the
75 a, 75 b, 75 c, and 75 d are formed by integrating wire-shaped sensors and wire-shaped pressing portions disposed on side portions of the wire-shaped sensors as in thepressing portions 10 a, 10 b, and 10 c in which the pressing portions and the sensor cables illustrated inintegrated members FIGS. 8 to 10 are integrated. The 75 a, 75 b, 75 c, and 75 d terminate within a distal portion of thepressing portions device tube 73, and behind the 75 a, 75 b, 75 c, and 75 d, the sensor cables are bundled or twisted to form the traction wire (operation wire) 64. Thepressing portions traction wire 64 including the sensor cables protrudes from the rear end of thestent extrusion member 4 c and is electrically connected to theconnector 50. - As illustrated in
FIG. 39 , the rear end portion of thedevice tube 73 of thesensor device 5 i protrudes from a rear end portion of thetube lumen 81 of thehollow shaft portion 41, and a rear end of thedevice tube 73 is fixed to thetube hub 79. Thetube hub 79 has the guidewire insertion port 78. In this embodiment, as illustrated inFIGS. 39 and 40 , thetube lumen 76 provided in the pressingmember 42 a of thestent extrusion member 4 c is provided not at a center of the pressingmember 42 a but at a position on a peripheral side of (i.e., eccentric relative to or radially offset from) the pressingmember 42 a. - The distal portion of the
device tube 73 protrudes from a distal end of thestent extrusion member 4 c, and the distal end of thestent extrusion member 4 c is located within the distal end of thestent 3. Thesensor device 5 i includes the sensor units 51 (51 a, 51 b, 51 c, and 51 d) and the 75 a, 75 b, 75 c, and 75 d whose distal portions are attached to the sensor units 51 (51 a, 51 b, 51 c, and 51 d), and thepressing portions 75 a, 75 b, 75 c, and 75 d extend radially when protruding from thepressing portions device tube 73. In particular, in this embodiment, as illustrated inFIG. 40 , thetube lumen 76 is provided at a position shifted from the center of the pressingmember 42 a. However, the 75 a, 75 b, 75 c, and 75 d extend radially when protruding from thepressing portions device tube 73, and the sensor units 51 (51 a, 51 b, 51 c, and 51 d) are located substantially on the same circumference. In this embodiment, as illustrated inFIG. 40 , thedevice tube 73 and thetube lumen 76 have an elliptical cross-section, and the rotary movement of thedevice tube 73 in thetube lumen 76 is restricted (prevented). - In the
stent delivery system 1 n according to this embodiment, as illustrated inFIG. 39 , thehollow shaft portion 41 of thestent extrusion member 4 c includes theguide wire lumen 77. Theshaft hub 72 is fixed to the rear end of thehollow shaft portion 41. The rear end portion of thetraction wire 64 including sensor cables protrudes from a rear end of thetube hub 79, and a rear end of thetraction wire 64 is electrically connected to theconnector 50. When theconnector 50 is pressed in the distal end direction, thetraction wire 64 advances, and the 75 a, 75 b, 75 c, and 75 d protrude from the distal end of thepressing portions device tube 73. After the protrusion, by pulling theconnector 50 in the rear end direction, thetraction wire 64 is retracted, and the 75 a, 75 b, 75 c, and 75 d can be moved back into and accommodated in thepressing portions device tube 73. - The rear end portion of the
device tube 73 of thesensor device 5 i is fixed to thetube hub 79. The rear end portion of thehollow shaft portion 41 is fixed to theshaft hub 72. However, thetube hub 79 and theshaft hub 72 are not fixed to each other. Therefore, theconnector 50 and thetube hub 79 can be moved separately from theshaft hub 72. Specifically, when thetube hub 79 is pulled rearward in a state where a position of theconnector 50 is held, in a case where the 75 a, 75 b, 75 c, and 75 d protrude, thepressing portions 75 a, 75 b, 75 c, and 75 d can be accommodated in thepressing portions device tube 73. Further, by pulling thedevice tube 73 rearward, a distal portion of thesensor device 5 i can be accommodated in thestent extrusion member 4 c. Further, by pulling thedevice tube 73 rearward, thesensor device 5 i can be removed from thestent delivery system 1 n. In this embodiment, by pulling theshaft hub 72, thesensor device 5 i can be moved rearward together with thestent extrusion member 4 c. - The
stent delivery system 1 according to this embodiment can detect a blood velocity which is biological-related information, can check a blockage state of an aneurysm in the case where the stent indwells in the aneurysm forming portion, and can be used to check the expanded state of the stent. - The detailed description above describes embodiments of a stent delivery system, stent sensor device and operational methods representing examples of the new stent delivery system, stent sensor device and operational methods disclosed here. The invention is not limited, however, to the precise embodiments and variations described. Various changes, modifications and equivalents can be effected by one skilled in the art without departing from the spirit and scope of the invention as defined in the accompanying claims. It is expressly intended that all such changes, modifications and equivalents that fall within the scope of the claims are embraced by the claims.
Claims (20)
1. A stent delivery system comprising:
a stent that has an inner surface and a plurality of side wall openings, that is formed in a substantially cylindrical shape and compressed in a central axis direction for insertion into a living body, and that is expandable outward for implanting into the living body;
a sheath possessing a distal portion, the stent being accommodated in the distal portion of the sheath;
a stent extrusion member that includes a distal side portion located in the distal portion of the sheath;
the sheath being movable toward a proximal end side with respect to the stent extrusion member to release the stent;
a sensor device;
the sensor device including:
a sensor unit; and
a pressing portion connected to the sensor unit to move the sensor unit into contact with the inner surface of the stent when the stent is indwelling into the living body;
the sensor unit being movable in a proximal end direction of the stent by movement of the stent extrusion member toward the proximal end side or withdrawal of the sensor device;
the sensor unit producing a signal during use of the stent delivery system that provides obtain biological-related information or stent state information in the stent; and
the sensor device being removable from the living body by removing the stent delivery system from the living body or removing the sensor device from the stent delivery system.
2. The stent delivery system according to claim 1 , wherein the sensor device includes two or more of the sensor units that are separated from each other for detecting at a plurality of positions in an axial direction of the stent.
3. The stent delivery system according to claim 1 , wherein the pressing portion includes a wire-shaped portion having a distal portion and the sensor unit is located at the distal portion of the wire-shaped portion.
4. The stent delivery system according to claim 1 , wherein the pressing portion is a coil-shaped portion having a distal portion, the sensor unit being located at the distal portion of the coil-shaped portion.
5. The stent delivery system according to claim 3 , wherein the pressing portion is comprised of a plurality of helically-shaped wires, the sensor unit being located at a distal portion of the helically-shaped wires.
6. The stent delivery system according to claim 1 , wherein the pressing portion is a wire-shaped pressing portion, and a rear end portion of the wire-shaped pressing portion is fixed to the stent extrusion member.
7. The stent delivery system according to claim 1 , wherein the pressing portion is a wire-shaped pressing portion, the sensor device comprises a traction wire, and a rear end portion of the wire-shaped pressing portion is interlocked with the traction wire.
8. The stent delivery system according to claim 1 , wherein the stent extrusion member comprises a lumen that communicates with an open distal end of the stent extrusion member, the sensor device including a device tube accommodated in the lumen of the stent extrusion member and positionable to protrude distally beyond the open distal end of the stent extrusion member, and an operation wire interlocked with at least the pressing portion and a rear end portion of the pressing portion in the device tube, the pressing portion being relatively axially moved to a position exposed distally beyond a distal end of the device tube by rearward movement of the device tube or forward movement of the operation wire, and the sensor unit being brought into contact with the inner surface of the stent indwelling into the living body by the pressing portion when the pressing portion is exposed distally beyond the distal end of the device tube.
9. The stent delivery system according to claim 1 , wherein the sensor unit comprises a wired sensor.
10. The stent delivery system according to claim 1 , wherein the sensor unit comprises a wireless sensor.
11. The stent delivery system according to claim 1 , wherein the sensor unit is a sensor unit that detects blood velocity, which is the biological-related information.
12. The stent delivery system according to claim 1 , wherein the sensor unit is a pressure sensor.
13. The stent delivery system according to claim 1 , wherein the sensor device comprises a wire-shaped strain sensor possessing the sensor unit and the wire-shaped pressing portion, and the strain sensor and the pressing portion are integrated in parallel.
14. The stent delivery system according to claim 1 , further comprising an arithmetic processing device configured to calculate the biological-related information or the stent state information in the stent using the signal from the sensor unit.
15. The stent delivery system according to claim 14 , wherein the sensor unit is a pressure sensor, and the arithmetic processing device outputs information on blood velocity using a difference in pressure-related signal values that are detected by the sensor unit at different positions in a radial direction of a blood vessel.
16. The stent delivery system according to claim 14 , wherein the sensor unit is a blood velocity sensor, and the arithmetic processing device outputs blood vessel state information using a difference in blood velocity-related signal values that are output from three or more sensor units.
17. The stent delivery system according to claim 1 , wherein the pressing portion is made of a shape memory alloy.
18. A combination of a stent sensor device and a stent;
the stent being substantially cylindrically shaped and having a plurality of side wall openings that pass through a wall of the stent from an outer surface of the stent to an inner surface of the stent, the stent being compressed radially inwardly in a central axis direction at a time of insertion of the stent sensor device and the stent into a living body, and being expandable radially outwardly at a time of indwelling the stent sensor device and the stent into the living body; and
the stent sensor device being positioned inside the stent and comprising:
at least one sensor unit positioned inside the stent, the at least one type of sensor being a wire-shaped pressure sensor, a contact force sensor, or a strain sensor;
a pressing portion connected to the sensor unit to press the sensor unit toward the inner surface of the stent; and
the sensor device being removable from a rear end side of the stent after the stent indwells into the living body.
19. The combination according to claim 18 , wherein the at least one sensing unit comprises a plurality of sensing units, and the pressing portion comprises a plurality of spaced apart wire portions, each of the sensing units being connected to one of the wore portions so that the sensing units are spaced apart from one another.
20. A method comprising:
inserting a stent into a living body, the stent being substantially cylindrically shaped and having a plurality of side wall openings that pass through a wall of the stent from an outer surface of the stent to an inner surface of the stent, the stent being compressed radially inwardly during the inserting of the stent into the living body;
the inserting of the stent into the living body occurring while a sensor is positioned inside the stent;
radially outwardly expanding the stent after the stent is positioned in the living body;
moving the sensors that are positioned inside the stent toward the inner surface of the stent, the moving of the sensors toward the inner surface of the stent occurring after starting the radially outwardly expanding of the stent;
using a signal produced by the sensor to determine information about blood flowing in the living body or information about a state of the stent; and
removing the sensor from the living body while maintaining the stent in the living body.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2022116740A JP2024014129A (en) | 2022-07-21 | 2022-07-21 | Stent delivery system and sensor device for stent |
| JP2022-116740 | 2022-07-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20240023896A1 true US20240023896A1 (en) | 2024-01-25 |
Family
ID=89578031
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US18/354,693 Pending US20240023896A1 (en) | 2022-07-21 | 2023-07-19 | Stent delivery system and stent sensor device |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20240023896A1 (en) |
| JP (1) | JP2024014129A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210338465A1 (en) * | 2014-07-20 | 2021-11-04 | Restore Medical Ltd. | Pulmonary artery implant apparatus and methods of use thereof |
| US20220280298A1 (en) * | 2019-12-06 | 2022-09-08 | Edwards Lifesciences Corporation | Flex sensors for measuring real-time valve diameter during procedure |
-
2022
- 2022-07-21 JP JP2022116740A patent/JP2024014129A/en active Pending
-
2023
- 2023-07-19 US US18/354,693 patent/US20240023896A1/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210338465A1 (en) * | 2014-07-20 | 2021-11-04 | Restore Medical Ltd. | Pulmonary artery implant apparatus and methods of use thereof |
| US12138185B2 (en) * | 2014-07-20 | 2024-11-12 | Restore Medical Ltd. | Pulmonary artery implant apparatus and methods of use thereof |
| US20220280298A1 (en) * | 2019-12-06 | 2022-09-08 | Edwards Lifesciences Corporation | Flex sensors for measuring real-time valve diameter during procedure |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2024014129A (en) | 2024-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3860530B1 (en) | Medical implant delivery system | |
| JP5284165B2 (en) | Biological organ lesion improvement device | |
| US20240023896A1 (en) | Stent delivery system and stent sensor device | |
| EP2489334B1 (en) | Medical stent | |
| CN210170107U (en) | Implant, implant delivery system and medical assembly thereof | |
| US5902308A (en) | Lesion diameter measurement catheter and method | |
| EP1791588B1 (en) | Variable flexibility wire guide | |
| US6743219B1 (en) | Delivery apparatus for a self-expanding stent | |
| EP1434538B1 (en) | A delivery apparatus for a self-expanding stent | |
| CN110123406B (en) | Implant delivery device | |
| JP5432912B2 (en) | Stent delivery system | |
| JP5791521B2 (en) | Stent delivery system | |
| US20190282384A1 (en) | Medical device delivery system including a support member | |
| CN211633755U (en) | Self-expanding stent conveying system | |
| KR20140112424A (en) | Distal capture device for a self-expanding stent | |
| CN115916075A (en) | Device and method for neurovascular endoluminal intervention | |
| JP5662324B2 (en) | Stent delivery system | |
| EP3895633B1 (en) | Wire-equipped stent | |
| JP3754055B2 (en) | Instrument for treatment of stenosis in body cavity | |
| US20240090894A1 (en) | Suture linkage for inhibiting premature embolic implant deployment | |
| EP4555978A1 (en) | Distal stabilizer | |
| US20240099869A1 (en) | Landing zone marker for flow diverting stent | |
| WO2024241863A1 (en) | Distal stabilizer and imaging method for distal stabilizer | |
| WO2024080366A1 (en) | Distal stabilizer | |
| JP2011067282A (en) | Device for improving affected region of biological organ |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: TERUMO KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENOMOTO, KAORI;REEL/FRAME:064306/0995 Effective date: 20230707 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |