US20240009947A1 - System for manufacturing a support structure - Google Patents
System for manufacturing a support structure Download PDFInfo
- Publication number
- US20240009947A1 US20240009947A1 US18/473,333 US202318473333A US2024009947A1 US 20240009947 A1 US20240009947 A1 US 20240009947A1 US 202318473333 A US202318473333 A US 202318473333A US 2024009947 A1 US2024009947 A1 US 2024009947A1
- Authority
- US
- United States
- Prior art keywords
- tire assembly
- cured tire
- members
- partially
- spacer members
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/02—Solid tyres ; Moulds therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/0005—Pretreatment of tyres or parts thereof, e.g. preheating, irradiation, precuring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/0061—Accessories, details or auxiliary operations not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C7/00—Non-inflatable or solid tyres
- B60C7/10—Non-inflatable or solid tyres characterised by means for increasing resiliency
- B60C7/14—Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
- B60C7/16—Non-inflatable or solid tyres characterised by means for increasing resiliency using springs of helical or flat coil form
- B60C7/18—Non-inflatable or solid tyres characterised by means for increasing resiliency using springs of helical or flat coil form disposed radially relative to wheel axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C7/00—Non-inflatable or solid tyres
- B60C7/24—Non-inflatable or solid tyres characterised by means for securing tyres on rim or wheel body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/0016—Handling tyres or parts thereof, e.g. supplying, storing, conveying
- B29D2030/0027—Handling cured tyres, e.g. transferring or storing after vulcanizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/0016—Handling tyres or parts thereof, e.g. supplying, storing, conveying
- B29D2030/0038—Handling tyre parts or semi-finished parts, excluding beads, e.g., storing, transporting, transferring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2030/00—Pneumatic or solid tyres or parts thereof
- B29L2030/006—Solid tyres
Definitions
- the present invention relates to wheel/tire assemblies, and more particularly, to a system for manufacturing non-pneumatic wheel/tire assemblies.
- Radial pneumatic tires rely on the ply reinforcement to carry and transfer the load between the rim and the belt layer. These ply cords need to be tensioned to carry the load. Tensioning of these ply cords is achieved with the pressurized air in the inner chamber of the tire. If air pressure is lost, load carrying capacity of a pneumatic tire decreases significantly. Preventing the slow or sudden air pressure loss has been a challenge for the tire makers.
- One proposed solution is to use non-pneumatic tires.
- a top loader non-pneumatic tire can perform similar to a pneumatic tire if its durability, speed rating/limit and load capacity can be increased to the levels of a pneumatic tire.
- top loader non-pneumatic tires rely on the polymeric spokes to carry the load of the vehicle. Spokes transfer the load from the rim to the shear band. Due to the characteristics of the polymeric materials used in the spokes of these tires, performance of these tires is limited. It is an object of the present invention to overcome this limitation and increase the load carrying capacity and durability of these spokes and hence the performance of the top loader non-pneumatic tire while also reducing manufacturing flexibility.
- Annular means formed like a ring.
- “Circumferential” and “circumferentially” mean lines or directions extending along the perimeter of the surface of the annular tire parallel to the equatorial plane (EP) and perpendicular to the axial direction; it can also refer to the direction of the sets of adjacent circular curves whose radii define the axial curvature of the tread, as viewed in cross section.
- Equatorial plane means the plane perpendicular to the tire's axis of rotation and passing through the center of its tread; or the plane containing the circumferential centerline of the tread.
- “Lateral” means an axial direction
- Normal load means the load assigned by the appropriate standards organization for the service condition for the tire.
- Ring and radially mean directions radially toward or away from the axis of rotation of the tire.
- “Spring rate” means the stiffness of tire expressed as the slope of the load deflection curve at a given pressure.
- Thread means a molded rubber component which, when bonded to a tire casing, includes that portion of the tire that comes into contact with the road when the tire is normally inflated and under normal load.
- Thread element or “traction element” means a rib or a block element.
- Thread width means the arc length of the tread surface in a plane including the axis of rotation of the tire.
- “Vertical deflection” means the amount that a tire deflects under load.
- “Wheel” or “hub” means a structure for supporting the tire and mounting to the vehicle axle.
- a system in accordance with the present invention cures and manufactures a partially-cured tire assembly.
- the system includes: a functional wheel member for rotating attachment to a vehicle, the wheel member being slid into a corresponding annular, radially inner surface of the partially-cured tire assembly; a plurality of elongate spacer members for maintaining corresponding uniform cavity dimensions in the partially-cured tire assembly tire assembly by fastening the spacer members to the hub member with flap members of the partially-cured tire assembly thereby enclosing a radially outermost surface of each of the spacer members; a first annular curing platen for axially securing the wheel member and spacer members relative to each other; a second annular curing platen for axially securing the wheel member and spacer members relative to each other; and a plurality of elongate inserts for creating a substantially smooth, uniform outer cylindrical surface formed by a radially outer surface of each insert and flap members of the tire assembly positioned by the radially outermost surfaces of the spacer
- the wheel member has roughened up concave surfaces for increasing surface area and bond strength at an interface between the partially-cured tire assembly and the wheel member.
- the concave surfaces of the wheel member define raised tips for more efficient torque and force transfer between corresponding convex surfaces of the partially-cured tire assembly and the wheel member.
- use of the functional wheel member from the beginning of the overall system reduces overall complexity and eliminates a later step of assembling the wheel member and tire assembly before attachment to the vehicle.
- the elongate inserts have a triangular cross-section.
- the mold members are radially removable from around the complete, cured tire assembly.
- the curing platens are axially removable from the wheel member, the elongate spacer members, and elongate inserts.
- the curing platens are heated by a hot liquid.
- the elongate spacer members platens are heated by steam.
- the elongate inserts are heated by electricity.
- a method in accordance with the present invention completes the curing of a partially cured tire assembly.
- the method includes the steps of: sliding a functional wheel member into a corresponding annular, radially inner surface of the partially-cured tire assembly; maintaining a plurality of spacer members within corresponding uniform cavities in the partially-cured tire assembly; fastening the spacer members to the wheel member with uncured flap members of the partially-cured tire assembly enclosing a radially outermost surface of each of the spacer members; axially securing first and second curing platens, the wheel member, and spacer members relative to each other; and creating a substantially smooth, uniform outer cylindrical surface formed by a radially outer surface of each spacer member and each of the uncured flap members of the partially-cured tire assembly positioned by the radially outermost surfaces of the spacer members.
- a further step includes serially placing an uncured inner annular shear band and an uncured outer annular tread member of the partially-cured tire assembly circumferentially around the uniform outer cylindrical surface.
- a further step includes affixing the uncured inner annular shear band and the uncured outer annular tread member of the partially-cured tire assembly to each other.
- a further step includes placing a plurality of mold members circumferentially around a radially outer surface of the tread member.
- a further step includes forming a tread shaped outer surface in the outer surface of the tread member by radially inner surfaces of the mold members.
- a further step includes heating the spacer members, curing platens, elongate inserts, and mold members in order to form the flap members, shear band, and tread member into a fully-cured tire assembly.
- a further step includes radially removing the mold members from around the fully-cured tire assembly.
- a further step includes axially removing the curing platens from the wheel member.
- a further step includes axially withdrawing the spacer members and inserts from the fully-cured tire assembly to reveal stable cavities within a spoke structure of a fully-cured tire assembly.
- the heating step includes a medium from the group consisting of a hot liquid, steam, and electricity.
- FIG. 1 is a schematic perspective representation of part of a system in accordance with the present invention
- FIG. 2 is a schematic perspective representation of the part of FIG. 1 with another part of the system in accordance with the present invention
- FIG. 3 is a schematic perspective view of a part of an example wheel/tire assembly for use with the present invention
- FIG. 4 is another schematic perspective view of part of the assembly of FIG. 3 ;
- FIG. 5 is a schematic perspective view of another part of the assembly of FIG. 3 ;
- FIG. 6 is a schematic perspective view of yet another part of the assembly of FIG. 3 ;
- FIG. 7 is a schematic perspective view of still another part of the assembly of FIG. 3 ;
- FIG. 8 is a schematic perspective view of yet another part of the assembly of FIG. 3 ;
- FIG. 9 is a schematic perspective view of still another part of the assembly of FIG. 3 ;
- FIG. 10 is a schematic perspective view of yet another part of the assembly of FIG. 3 ;
- FIG. 11 is an exploded schematic perspective view of still another part of the assembly of FIG. 3 ;
- FIG. 12 is a schematic perspective view of yet another part of the assembly of FIG. 3 ;
- FIG. 13 is a schematic perspective view of still another part of the assembly of FIG. 3 ;
- FIG. 14 is a schematic perspective view of yet another part of the assembly of FIG. 3 ;
- FIG. 15 is a schematic perspective view of still another part of the assembly of FIG. 3 ;
- FIG. 16 is a schematic perspective view of yet another part of the assembly of FIG. 3 ;
- FIG. 17 is a schematic perspective view of still another part of the assembly of FIG. 3 ;
- FIG. 18 is a schematic perspective view of yet another part of the assembly of FIG. 3 ;
- FIG. 19 is a schematic perspective view of still another part of the assembly of FIG. 3 ;
- FIG. 20 is an exploded schematic perspective view of yet another part of the assembly of FIG. 3 ;
- FIG. 21 is a schematic perspective view of still another part of the assembly of FIG. 3 ;
- FIG. 22 is a schematic perspective view of yet another part of the assembly of FIG. 3 ;
- FIG. 23 is a schematic perspective view of still another part of the assembly of FIG. 3 .
- a conventional wheel/tire assembly may have an outer ring, such as a shear band, flexibly connected to a central hub by means of lightweight composite springs.
- the springs may be plates fixed to the ring and to the hub.
- the hub may contain a speed reduction gear unit and/or an electric motor and may have a suspension mechanism for connecting a vehicle chassis to each wheel.
- the ring may be constructed from a flexible composite material, such as carbon fiber reinforced nylon material and have twin rubber tires and a plurality of circumferentially spaced-apart radial cleats which engage the ground and provide improved traction.
- the hub may also be formed from a carbon fiber reinforced composite material.
- Another conventional wheel may have a rubber strip with a molded tread bonded to a composite ring for improved grip.
- the springs interconnecting the ring and hub may be S-shaped lightweight composite springs.
- Another conventional wheel/tire assembly may be formed from a lightweight composite material, such as carbon fiber reinforced polyamide.
- the assembly may have a cylindrical central hub and a circular outer flexible rim mounted on the central hub by an endless looped spring band extending between the central hub and the circular rim. Six radial loops may be defined by the spring band.
- the spring band may be attached to the central hub and to the circular rim by any suitable means, such as adhesion, cohesion, soldering and/or mechanical fixing by means of bolts, rivets, and/or clamps.
- an example tire assembly for use with the present invention may be formed from a lightweight polymer material, such as, for example, a standard tire rubber compound, a thermoplastic polymer, polyethylene terephthalate (PET), polyether ether ketone (PEEK), a cross-linking polymer like natural rubber, synthetic rubber-like polymers, epoxy resins, and/or phenolic resins.
- a lightweight polymer material such as, for example, a standard tire rubber compound, a thermoplastic polymer, polyethylene terephthalate (PET), polyether ether ketone (PEEK), a cross-linking polymer like natural rubber, synthetic rubber-like polymers, epoxy resins, and/or phenolic resins.
- the assembly may have an inner central rim, such as an automobile wheel (not shown), and a circular outer flexible ring, which may include a shear band and tread structure, mounted on the inner central rim by a continuous cord/fabric reinforced spoke structure extending between the inner central rim and the outer ring.
- an inner central rim such as an automobile wheel (not shown)
- a circular outer flexible ring which may include a shear band and tread structure, mounted on the inner central rim by a continuous cord/fabric reinforced spoke structure extending between the inner central rim and the outer ring.
- the spoke structure may define a plurality of cavities disposed concentrically about the inner central rim allowing the spoke structure to deflect under load thereby defining a suitable balance between flexibility for ride comfort and traction within a footprint of the assembly and stiffness for vehicle handling, low rolling resistance, and low heat build-up within the spoke structure.
- the cavities of the spoke structure may further define openings for arms of the inner central rim to extend therethrough and secure the spoke structure to the inner central rim.
- the arms may engage portions in a mechanical interlocking arrangement.
- the inner central rim may further include plates that, along with the arms may sandwich the portions of the spoke structure and create a further frictional and/or adhesive securement between the inner central rim and the spoke structure.
- the spoke structure may comprise a homogenous or heterogeneous polymer and/or a filled polymer.
- the spokes may include one or more reinforcing layers.
- the layer(s) may be constructed of single end dipped cords, conventional pneumatic tire ply/cord arrangements, short fibers, and/or polymeric film. Further, these constructions may be PET, nylon 6, nylon 6,6, rayon, steel, glass fibers, carbon fiber, aramid, and/or a hybrid construction of these materials.
- the cords may be from 400 denier to 9000 denier.
- the polymeric film may be from 0.1 mm to 2.0 mm thick.
- the spokes may be oriented at angle between 0 degrees and 90 degrees.
- the reinforcement of the spokes may be continuously reinforced across their entire axial length. Continuous reinforcement layer(s) may extend radially outward to multiple locations adjacent to a shear band at the outer flexible ring.
- Each cavity may have a common cross-sectional profile about the axis of rotation of the assembly. Further, each cavity may have a common axial length equal to a uniform axial thickness of the spoke structure. Each cavity may be curvedly shaped to prevent “pinch” points on the reinforcement layer(s) and mitigate compressive stress concentrations on the reinforcement layer(s). The number of cavities may be between 2 and 60 for large scale tire assemblies.
- the inner central rim may include steel, cast iron, aluminum, aluminum alloys, magnesium allows, and/or iron alloys.
- FIGS. 3 - 24 show a system 200 for use with the present invention that may cure and manufacture partially-cured pneumatic and/or non-pneumatic tire assemblies 140 .
- the system 200 may include an annular hub member 210 slid into a corresponding annular, radially inner surface 142 of the tire assembly 140 , a plurality of spacer members 220 for maintaining corresponding uniform cavity dimensions in the tire assembly 140 by fastening the spacer members 220 to the hub member 210 with flap members 147 of the tire assembly 140 enclosing a radially outermost surface 222 of each of the spacer members 220 , first and second curing platens 230 , 240 for axially securing the hub member 210 and spacer members 220 relative to each other, and a plurality of triangular inserts 250 for creating a substantially smooth, uniform outer cylindrical surface formed by a radially outer surface 252 of each triangular insert 250 and each of the flap members 147 of the tire assembly 140 positioned by the radially outermost
- An inner annular shear band 160 and an outer annular tread member 162 of the tire assembly 140 may be serially placed circumferentially around the uniform outer cylindrical surface 147 , 252 and affixed at least temporarily thereto and to each other 160 , 162 . This may be accomplished by building up layers 160 , 162 around the assembly 200 similar to a conventional tire building method (not shown) or by forming a complete annular band structure from the shear band 160 and the tread member 162 ( FIG. 17 ).
- a plurality of mold members 260 (six shown in FIG. 18 ) may be placed circumferentially around a radially outer surface 163 of the tread member 162 .
- the mold members 260 may have radially inner surfaces 262 for together forming a tread shaped outer surface in the outer surface 163 of the tread member 162 .
- the spacer members 220 , curing platens 230 , 240 , triangular inserts 250 , and mold members 260 may be heated in order to cure form the flap members 147 , shear band 160 , and tread member 162 (e.g., uncured parts of the tire assembly 140 ) into a molded integral part of a complete, cured tire assembly 170 having an appropriate tread 172 ( FIG. 23 ).
- the mold members 260 may be radially removed from around the complete tire assembly 170 , the curing platens 230 , 240 may be axially removed from the hub member 210 , and the spacer members 220 and inserts 250 may be axially withdrawn from the tire assembly 170 to reveal stable cavities 176 within a spoke structure 174 of the mount-ready tire assembly 170 .
- a method, for use with the present invention may cure and manufacture a partially-cured tire assembly 140 into a completed, “ready-to-install”, completely cured tire assembly 170 .
- the method may include: a first step of sliding an annular hub member 210 into a corresponding annular, radially inner surface 142 of the partially-cured tire assembly 140 ; a second step of maintaining a plurality of spacer members 220 within corresponding uniform cavity dimensions in the partially-cured tire assembly 140 ; a third step of fastening the spacer members 220 to the hub member 210 with flap members 147 of the partially-cured tire assembly 140 enclosing a radially outermost surface 222 of each of the spacer members 220 ; a fourth step of axially securing first and second curing platens 230 , 240 , the hub member 210 , and spacer members 220 relative to each other; a fifth step of utilizing a plurality of triangular inserts 250 for creating a substantially smooth, uniform outer cylindrical surface formed by
- the method may further include a tenth step of heating (e.g., by a hot liquid, steam, electricity, etc.) the spacer members 220 , curing platens 230 , 240 , triangular inserts 250 , and mold members 260 in order to cure/form the flap members 147 , shear band 160 , and tread member 162 (e.g., uncured parts of the partially-cured tire assembly 140 ) into a molded integral part of a complete, cured tire assembly 170 having an appropriate tread 172 ; an eleventh step of radially removing the mold members 260 from around the complete, fully-cured tire assembly 170 ; a twelfth step of axially removing the curing platens 230 , 240 from the hub member 210 ; and a thirteenth step of axially withdrawing the spacer members 220 and inserts 250 from the fully-cured tire assembly 170 to reveal stable cavities 176 within a spoke structure 174 of the rim-mountable, fully-cured tire
- the above first step of sliding an annular hub member 210 into a corresponding annular, radially inner surface 142 of the partially-cured tire assembly 140 may be replaced with a step of sliding an annular wheel member 2210 into a corresponding annular, radially inner surface 142 of the partially-cured tire assembly 140 ( FIGS. 1 - 2 ).
- the wheel member 2210 may be a completely functional rim for attaching the fully completed tire 170 to a fully operational vehicle.
- the wheel member 2210 may have roughened up concave surfaces 2211 for increasing surface area and bond strength at the interface between the rubber tire 170 and wheel member.
- the concave surfaces may further define raised tips 2214 for more efficient torque and force transfer between corresponding convex surfaces 2245 of the tire assembly 140 and the wheel member.
- rubber/polymer components of the convex surfaces 2245 of the tire assembly 140 may be bonded to the concave surfaces 2211 of the wheel member 2210 , similar to bonding between steel wire or bead wire and rubber/polymer components of a conventional pneumatic or ono-pneumatic tire.
- the wheel member 2210 may thereby remain with tire assembly 140 throughout primary curing of the tire assembly 140 and the above secondary curing method such that a wheel member/tire assembly 2210 , 170 may be rotatingly secured to a vehicle ( FIG. 2 ).
- the use of the operational wheel assembly 2210 from the beginning of the overall method may reduce overall complexity and eliminate a later step of assembling the wheel member 2210 and tire assembly 170 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Tyre Moulding (AREA)
Abstract
Description
- The present invention relates to wheel/tire assemblies, and more particularly, to a system for manufacturing non-pneumatic wheel/tire assemblies.
- Radial pneumatic tires rely on the ply reinforcement to carry and transfer the load between the rim and the belt layer. These ply cords need to be tensioned to carry the load. Tensioning of these ply cords is achieved with the pressurized air in the inner chamber of the tire. If air pressure is lost, load carrying capacity of a pneumatic tire decreases significantly. Preventing the slow or sudden air pressure loss has been a challenge for the tire makers. One proposed solution is to use non-pneumatic tires. A top loader non-pneumatic tire can perform similar to a pneumatic tire if its durability, speed rating/limit and load capacity can be increased to the levels of a pneumatic tire.
- Many top loader non-pneumatic tires rely on the polymeric spokes to carry the load of the vehicle. Spokes transfer the load from the rim to the shear band. Due to the characteristics of the polymeric materials used in the spokes of these tires, performance of these tires is limited. It is an object of the present invention to overcome this limitation and increase the load carrying capacity and durability of these spokes and hence the performance of the top loader non-pneumatic tire while also reducing manufacturing flexibility.
- As used herein and in the claims:
- “Annular” means formed like a ring.
- “Axial” and “axially” refer to lines or directions that are parallel to the axis of rotation of the tire.
- “Circumferential” and “circumferentially” mean lines or directions extending along the perimeter of the surface of the annular tire parallel to the equatorial plane (EP) and perpendicular to the axial direction; it can also refer to the direction of the sets of adjacent circular curves whose radii define the axial curvature of the tread, as viewed in cross section.
- “Equatorial plane (EP)” means the plane perpendicular to the tire's axis of rotation and passing through the center of its tread; or the plane containing the circumferential centerline of the tread.
- “Inner” means toward the inside of the tire and “outer” means toward its exterior.
- “Lateral” means an axial direction.
- “Normal load” means the load assigned by the appropriate standards organization for the service condition for the tire.
- “Radial” and “radially” mean directions radially toward or away from the axis of rotation of the tire.
- “Spring rate” means the stiffness of tire expressed as the slope of the load deflection curve at a given pressure.
- “Tread” means a molded rubber component which, when bonded to a tire casing, includes that portion of the tire that comes into contact with the road when the tire is normally inflated and under normal load.
- “Tread element” or “traction element” means a rib or a block element.
- “Tread width” means the arc length of the tread surface in a plane including the axis of rotation of the tire.
- “Vertical deflection” means the amount that a tire deflects under load.
- “Wheel” or “hub” means a structure for supporting the tire and mounting to the vehicle axle.
- A system in accordance with the present invention cures and manufactures a partially-cured tire assembly. The system includes: a functional wheel member for rotating attachment to a vehicle, the wheel member being slid into a corresponding annular, radially inner surface of the partially-cured tire assembly; a plurality of elongate spacer members for maintaining corresponding uniform cavity dimensions in the partially-cured tire assembly tire assembly by fastening the spacer members to the hub member with flap members of the partially-cured tire assembly thereby enclosing a radially outermost surface of each of the spacer members; a first annular curing platen for axially securing the wheel member and spacer members relative to each other; a second annular curing platen for axially securing the wheel member and spacer members relative to each other; and a plurality of elongate inserts for creating a substantially smooth, uniform outer cylindrical surface formed by a radially outer surface of each insert and flap members of the tire assembly positioned by the radially outermost surfaces of the spacer members.
- According to another aspect of the system, the wheel member has roughened up concave surfaces for increasing surface area and bond strength at an interface between the partially-cured tire assembly and the wheel member.
- According to still another aspect of the system, the concave surfaces of the wheel member define raised tips for more efficient torque and force transfer between corresponding convex surfaces of the partially-cured tire assembly and the wheel member.
- According to yet another aspect of the system, use of the functional wheel member from the beginning of the overall system reduces overall complexity and eliminates a later step of assembling the wheel member and tire assembly before attachment to the vehicle.
- According to still another aspect of the system, the elongate inserts have a triangular cross-section.
- According to yet another aspect of the system, the mold members are radially removable from around the complete, cured tire assembly.
- According to still another aspect of the system, the curing platens are axially removable from the wheel member, the elongate spacer members, and elongate inserts.
- According to yet another aspect of the system, the curing platens are heated by a hot liquid.
- According to still another aspect of the system, the elongate spacer members platens are heated by steam.
- According to yet another aspect of the system, the elongate inserts are heated by electricity.
- A method in accordance with the present invention completes the curing of a partially cured tire assembly. The method includes the steps of: sliding a functional wheel member into a corresponding annular, radially inner surface of the partially-cured tire assembly; maintaining a plurality of spacer members within corresponding uniform cavities in the partially-cured tire assembly; fastening the spacer members to the wheel member with uncured flap members of the partially-cured tire assembly enclosing a radially outermost surface of each of the spacer members; axially securing first and second curing platens, the wheel member, and spacer members relative to each other; and creating a substantially smooth, uniform outer cylindrical surface formed by a radially outer surface of each spacer member and each of the uncured flap members of the partially-cured tire assembly positioned by the radially outermost surfaces of the spacer members.
- According to another aspect of the method, a further step includes serially placing an uncured inner annular shear band and an uncured outer annular tread member of the partially-cured tire assembly circumferentially around the uniform outer cylindrical surface.
- According to still another aspect of the method, a further step includes affixing the uncured inner annular shear band and the uncured outer annular tread member of the partially-cured tire assembly to each other.
- According to yet another aspect of the method, a further step includes placing a plurality of mold members circumferentially around a radially outer surface of the tread member.
- According to still another aspect of the method, a further step includes forming a tread shaped outer surface in the outer surface of the tread member by radially inner surfaces of the mold members.
- According to yet another aspect of the method, a further step includes heating the spacer members, curing platens, elongate inserts, and mold members in order to form the flap members, shear band, and tread member into a fully-cured tire assembly.
- According to still another aspect of the method, a further step includes radially removing the mold members from around the fully-cured tire assembly.
- According to yet another aspect of the method, a further step includes axially removing the curing platens from the wheel member.
- According to still another aspect of the method, a further step includes axially withdrawing the spacer members and inserts from the fully-cured tire assembly to reveal stable cavities within a spoke structure of a fully-cured tire assembly.
- According to yet another aspect of the method, the heating step includes a medium from the group consisting of a hot liquid, steam, and electricity.
- The present invention will be more clearly understood by the following description of some examples thereof, with reference to the accompanying drawings, in which:
-
FIG. 1 is a schematic perspective representation of part of a system in accordance with the present invention; -
FIG. 2 is a schematic perspective representation of the part ofFIG. 1 with another part of the system in accordance with the present invention; -
FIG. 3 is a schematic perspective view of a part of an example wheel/tire assembly for use with the present invention; -
FIG. 4 is another schematic perspective view of part of the assembly ofFIG. 3 ; -
FIG. 5 is a schematic perspective view of another part of the assembly ofFIG. 3 ; -
FIG. 6 is a schematic perspective view of yet another part of the assembly ofFIG. 3 ; -
FIG. 7 is a schematic perspective view of still another part of the assembly ofFIG. 3 ; -
FIG. 8 is a schematic perspective view of yet another part of the assembly ofFIG. 3 ; -
FIG. 9 is a schematic perspective view of still another part of the assembly ofFIG. 3 ; -
FIG. 10 is a schematic perspective view of yet another part of the assembly ofFIG. 3 ; -
FIG. 11 is an exploded schematic perspective view of still another part of the assembly ofFIG. 3 ; -
FIG. 12 is a schematic perspective view of yet another part of the assembly ofFIG. 3 ; -
FIG. 13 is a schematic perspective view of still another part of the assembly ofFIG. 3 ; -
FIG. 14 is a schematic perspective view of yet another part of the assembly ofFIG. 3 ; -
FIG. 15 is a schematic perspective view of still another part of the assembly ofFIG. 3 ; -
FIG. 16 is a schematic perspective view of yet another part of the assembly ofFIG. 3 ; -
FIG. 17 is a schematic perspective view of still another part of the assembly ofFIG. 3 ; -
FIG. 18 is a schematic perspective view of yet another part of the assembly ofFIG. 3 ; -
FIG. 19 is a schematic perspective view of still another part of the assembly ofFIG. 3 ; -
FIG. 20 is an exploded schematic perspective view of yet another part of the assembly ofFIG. 3 ; -
FIG. 21 is a schematic perspective view of still another part of the assembly ofFIG. 3 ; -
FIG. 22 is a schematic perspective view of yet another part of the assembly ofFIG. 3 ; and -
FIG. 23 is a schematic perspective view of still another part of the assembly ofFIG. 3 . - A conventional wheel/tire assembly may have an outer ring, such as a shear band, flexibly connected to a central hub by means of lightweight composite springs. The springs may be plates fixed to the ring and to the hub. The hub may contain a speed reduction gear unit and/or an electric motor and may have a suspension mechanism for connecting a vehicle chassis to each wheel. The ring may be constructed from a flexible composite material, such as carbon fiber reinforced nylon material and have twin rubber tires and a plurality of circumferentially spaced-apart radial cleats which engage the ground and provide improved traction. The hub may also be formed from a carbon fiber reinforced composite material. Another conventional wheel may have a rubber strip with a molded tread bonded to a composite ring for improved grip. Further, the springs interconnecting the ring and hub may be S-shaped lightweight composite springs.
- Another conventional wheel/tire assembly may be formed from a lightweight composite material, such as carbon fiber reinforced polyamide. The assembly may have a cylindrical central hub and a circular outer flexible rim mounted on the central hub by an endless looped spring band extending between the central hub and the circular rim. Six radial loops may be defined by the spring band. The spring band may be attached to the central hub and to the circular rim by any suitable means, such as adhesion, cohesion, soldering and/or mechanical fixing by means of bolts, rivets, and/or clamps.
- As shown in
FIGS. 22-23 , an example tire assembly for use with the present invention, such as that described in Applicant's U.S. patent application Ser. Nos. 17/109,901 and 17/111,741, both incorporated herein by reference in their entirety, may be formed from a lightweight polymer material, such as, for example, a standard tire rubber compound, a thermoplastic polymer, polyethylene terephthalate (PET), polyether ether ketone (PEEK), a cross-linking polymer like natural rubber, synthetic rubber-like polymers, epoxy resins, and/or phenolic resins. The assembly may have an inner central rim, such as an automobile wheel (not shown), and a circular outer flexible ring, which may include a shear band and tread structure, mounted on the inner central rim by a continuous cord/fabric reinforced spoke structure extending between the inner central rim and the outer ring. - The spoke structure may define a plurality of cavities disposed concentrically about the inner central rim allowing the spoke structure to deflect under load thereby defining a suitable balance between flexibility for ride comfort and traction within a footprint of the assembly and stiffness for vehicle handling, low rolling resistance, and low heat build-up within the spoke structure. The cavities of the spoke structure may further define openings for arms of the inner central rim to extend therethrough and secure the spoke structure to the inner central rim. The arms may engage portions in a mechanical interlocking arrangement. The inner central rim may further include plates that, along with the arms may sandwich the portions of the spoke structure and create a further frictional and/or adhesive securement between the inner central rim and the spoke structure. The spoke structure may comprise a homogenous or heterogeneous polymer and/or a filled polymer.
- Spokes of the spoke structure may be curved inwardly or outwardly for mitigating or enhancing buckling of the spokes. The spokes may include one or more reinforcing layers. The layer(s) may be constructed of single end dipped cords, conventional pneumatic tire ply/cord arrangements, short fibers, and/or polymeric film. Further, these constructions may be PET, nylon 6, nylon 6,6, rayon, steel, glass fibers, carbon fiber, aramid, and/or a hybrid construction of these materials. The cords may be from 400 denier to 9000 denier. The polymeric film may be from 0.1 mm to 2.0 mm thick. The spokes may be oriented at angle between 0 degrees and 90 degrees. The reinforcement of the spokes may be continuously reinforced across their entire axial length. Continuous reinforcement layer(s) may extend radially outward to multiple locations adjacent to a shear band at the outer flexible ring.
- Each cavity may have a common cross-sectional profile about the axis of rotation of the assembly. Further, each cavity may have a common axial length equal to a uniform axial thickness of the spoke structure. Each cavity may be curvedly shaped to prevent “pinch” points on the reinforcement layer(s) and mitigate compressive stress concentrations on the reinforcement layer(s). The number of cavities may be between 2 and 60 for large scale tire assemblies. The inner central rim may include steel, cast iron, aluminum, aluminum alloys, magnesium allows, and/or iron alloys.
-
FIGS. 3-24 show asystem 200 for use with the present invention that may cure and manufacture partially-cured pneumatic and/ornon-pneumatic tire assemblies 140. Thesystem 200 may include anannular hub member 210 slid into a corresponding annular, radiallyinner surface 142 of thetire assembly 140, a plurality ofspacer members 220 for maintaining corresponding uniform cavity dimensions in thetire assembly 140 by fastening thespacer members 220 to thehub member 210 withflap members 147 of thetire assembly 140 enclosing a radiallyoutermost surface 222 of each of thespacer members 220, first and 230, 240 for axially securing thesecond curing platens hub member 210 andspacer members 220 relative to each other, and a plurality oftriangular inserts 250 for creating a substantially smooth, uniform outer cylindrical surface formed by a radiallyouter surface 252 of eachtriangular insert 250 and each of theflap members 147 of thetire assembly 140 positioned by the radiallyoutermost surfaces 222 of thespacer members 220. The curing 230, 240 may also haveplatens spring hook members 270 for maintaining alignment with thespacer members 220 and the remaining parts of theassembly 200. - An inner
annular shear band 160 and an outerannular tread member 162 of thetire assembly 140 may be serially placed circumferentially around the uniform outer 147, 252 and affixed at least temporarily thereto and to each other 160, 162. This may be accomplished by building upcylindrical surface 160, 162 around thelayers assembly 200 similar to a conventional tire building method (not shown) or by forming a complete annular band structure from theshear band 160 and the tread member 162 (FIG. 17 ). A plurality of mold members 260 (six shown inFIG. 18 ) may be placed circumferentially around a radiallyouter surface 163 of thetread member 162. Themold members 260 may have radiallyinner surfaces 262 for together forming a tread shaped outer surface in theouter surface 163 of thetread member 162. - The
spacer members 220, curing 230, 240,platens triangular inserts 250, andmold members 260 may be heated in order to cure form theflap members 147,shear band 160, and tread member 162 (e.g., uncured parts of the tire assembly 140) into a molded integral part of a complete, curedtire assembly 170 having an appropriate tread 172 (FIG. 23 ). Once curing is complete, themold members 260 may be radially removed from around thecomplete tire assembly 170, the curing 230, 240 may be axially removed from theplatens hub member 210, and thespacer members 220 and inserts 250 may be axially withdrawn from thetire assembly 170 to revealstable cavities 176 within aspoke structure 174 of the mount-ready tire assembly 170. - A method, for use with the present invention, may cure and manufacture a partially-cured
tire assembly 140 into a completed, “ready-to-install”, completely curedtire assembly 170. The method may include: a first step of sliding an annular hub member 210 into a corresponding annular, radially inner surface 142 of the partially-cured tire assembly 140; a second step of maintaining a plurality of spacer members 220 within corresponding uniform cavity dimensions in the partially-cured tire assembly 140; a third step of fastening the spacer members 220 to the hub member 210 with flap members 147 of the partially-cured tire assembly 140 enclosing a radially outermost surface 222 of each of the spacer members 220; a fourth step of axially securing first and second curing platens 230, 240, the hub member 210, and spacer members 220 relative to each other; a fifth step of utilizing a plurality of triangular inserts 250 for creating a substantially smooth, uniform outer cylindrical surface formed by a radially outer surface 252 of each spacer member 250 and each of the flap members 147 of the partially-cured tire assembly 140 positioned by the radially outermost surfaces 222 of the spacer members 220; a sixth step of serially placing an uncured inner annular shear band 160 and an uncured outer annular tread member 162 of the partially-cured tire assembly 140 circumferentially around the uniform outer cylindrical surface 147, 252; a seventh step of affixing at least temporarily the uncured inner annular shear band 160 and the uncured outer annular tread member 162 of the partially-cured tire assembly 140 to each other 160, 162; an eighth step of placing a plurality of mold members 260 circumferentially around a radially outer surface 163 of the tread member 162; and a ninth step of forming a tread shaped outer surface in the outer surface 163 of the tread member 162 by radially inner surfaces 262 of the mold members. - The method may further include a tenth step of heating (e.g., by a hot liquid, steam, electricity, etc.) the
spacer members 220, curing 230, 240,platens triangular inserts 250, andmold members 260 in order to cure/form theflap members 147,shear band 160, and tread member 162 (e.g., uncured parts of the partially-cured tire assembly 140) into a molded integral part of a complete, curedtire assembly 170 having anappropriate tread 172; an eleventh step of radially removing themold members 260 from around the complete, fully-curedtire assembly 170; a twelfth step of axially removing the curing 230, 240 from theplatens hub member 210; and a thirteenth step of axially withdrawing thespacer members 220 and inserts 250 from the fully-curedtire assembly 170 to revealstable cavities 176 within aspoke structure 174 of the rim-mountable, fully-curedtire assembly 170. - In accordance with the present invention, the above first step of sliding an
annular hub member 210 into a corresponding annular, radiallyinner surface 142 of the partially-curedtire assembly 140 may be replaced with a step of sliding anannular wheel member 2210 into a corresponding annular, radiallyinner surface 142 of the partially-cured tire assembly 140 (FIGS. 1-2 ). Thewheel member 2210 may be a completely functional rim for attaching the fully completedtire 170 to a fully operational vehicle. Thewheel member 2210 may have roughened upconcave surfaces 2211 for increasing surface area and bond strength at the interface between therubber tire 170 and wheel member. The concave surfaces may further define raisedtips 2214 for more efficient torque and force transfer between correspondingconvex surfaces 2245 of thetire assembly 140 and the wheel member. Thus, rubber/polymer components of theconvex surfaces 2245 of thetire assembly 140 may be bonded to theconcave surfaces 2211 of thewheel member 2210, similar to bonding between steel wire or bead wire and rubber/polymer components of a conventional pneumatic or ono-pneumatic tire. - The
wheel member 2210 may thereby remain withtire assembly 140 throughout primary curing of thetire assembly 140 and the above secondary curing method such that a wheel member/ 2210, 170 may be rotatingly secured to a vehicle (tire assembly FIG. 2 ). The use of theoperational wheel assembly 2210 from the beginning of the overall method may reduce overall complexity and eliminate a later step of assembling thewheel member 2210 andtire assembly 170. - Variations in the present invention are possible in light of the description of it provided herein. While certain representative examples and details have been shown for the purpose of illustrating the present invention, it will be apparent to those skilled in this art that various changes and/or modifications may be made therein without departing from the scope of the present invention. It is, therefore, to be understood that changes may be made in the particular examples described herein, which will be within the full scope of the present invention as defined by the following appended claims. Further, the present invention is not limited to the examples hereinbefore described, which may be varied in construction and/or detail within the full scope of the appended claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18/473,333 US20240009947A1 (en) | 2021-06-09 | 2023-09-25 | System for manufacturing a support structure |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/342,833 US11801651B2 (en) | 2021-06-09 | 2021-06-09 | System for manufacturing a support structure |
| US18/473,333 US20240009947A1 (en) | 2021-06-09 | 2023-09-25 | System for manufacturing a support structure |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/342,833 Division US11801651B2 (en) | 2021-06-09 | 2021-06-09 | System for manufacturing a support structure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20240009947A1 true US20240009947A1 (en) | 2024-01-11 |
Family
ID=81975072
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/342,833 Active 2042-01-21 US11801651B2 (en) | 2021-06-09 | 2021-06-09 | System for manufacturing a support structure |
| US18/473,333 Abandoned US20240009947A1 (en) | 2021-06-09 | 2023-09-25 | System for manufacturing a support structure |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/342,833 Active 2042-01-21 US11801651B2 (en) | 2021-06-09 | 2021-06-09 | System for manufacturing a support structure |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US11801651B2 (en) |
| EP (1) | EP4112286A1 (en) |
| JP (1) | JP2022188758A (en) |
| CN (1) | CN115447181A (en) |
| BR (1) | BR102022010327A2 (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180354316A1 (en) * | 2017-06-07 | 2018-12-13 | The Goodyear Tire & Rubber Company | Method of manufacturing a non-pneumatic support structure |
Family Cites Families (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US482175A (en) | 1892-09-06 | George hollafolla | ||
| US479255A (en) | 1892-07-19 | boyd dunlop | ||
| US1002003A (en) | 1910-07-23 | 1911-08-29 | Christian J Simonson | Steel tire. |
| US1233722A (en) | 1917-01-03 | 1917-07-17 | Frederick Kemppel | Resilient wheel. |
| US1389285A (en) | 1920-03-29 | 1921-08-30 | August W Althoff | Vehicle-wheel |
| US1451517A (en) | 1922-02-27 | 1923-04-10 | William H Smith | Spring wheel |
| US1930764A (en) | 1931-11-05 | 1933-10-17 | Wingfoot Corp | Pneumatic tire and method of making same |
| US3493027A (en) | 1966-05-20 | 1970-02-03 | Nasa | Deformable vehicle wheel |
| US4226273A (en) | 1978-06-30 | 1980-10-07 | The Goodyear Tire & Rubber Company | Nonpneumatic tire and rim assembly |
| US4235270A (en) | 1978-06-30 | 1980-11-25 | The Goodyear Tire & Rubber Company | Tire with supporting and cushioning walls |
| US4602823A (en) | 1981-08-18 | 1986-07-29 | Berg Charles A | Portable collapsible wheels |
| CA2043082A1 (en) | 1991-02-27 | 1992-08-28 | James Edward Duddey | Non-pneumatic spare tire |
| US5800643A (en) | 1996-04-26 | 1998-09-01 | Inner Tire Corporation | Pneumatic inner tire |
| US6260598B1 (en) | 1997-07-11 | 2001-07-17 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire with looped tread-sidewall reinforcement |
| US20040069385A1 (en) | 2002-07-01 | 2004-04-15 | Sean Timoney | Wheel |
| US20100193097A1 (en) | 2007-06-29 | 2010-08-05 | Mcnier Jared Hahn | Elastic shear band with cylindrical elements |
| FR2928865B1 (en) | 2008-03-19 | 2010-03-19 | Michelin Soc Tech | NON-PNEUMATIC ELASTIC WHEEL |
| US9180732B2 (en) | 2009-08-28 | 2015-11-10 | Compagnie Generale Des Etablissements Michelin | Non-pneumatic wheel assembly with removable hub |
| US20150034225A1 (en) | 2013-07-30 | 2015-02-05 | Caterpillar Inc. | Reinforced non-pneumatic tire and system for molding reinforced non-pneumatic tire |
| CN204020424U (en) * | 2014-06-20 | 2014-12-17 | 北京汽车股份有限公司 | A kind of trouble-proof tire and automobile |
| US10569601B2 (en) | 2014-12-18 | 2020-02-25 | Bridgestone Americas Tire Operations, Llc | Tire with arched spokes |
| US10384409B2 (en) * | 2016-11-15 | 2019-08-20 | The Goodyear Tire & Rubber Company | Method of manufacturing a non-pneumatic support structure |
| EP3615351B1 (en) | 2017-04-27 | 2023-03-29 | Bridgestone Americas Tire Operations, LLC | Tire with spoke loops |
| KR102005417B1 (en) | 2017-09-11 | 2019-07-30 | 금호타이어 주식회사 | Rim for non pneumatic tire and wheel including the same |
| US10406852B2 (en) | 2017-10-27 | 2019-09-10 | The Goodyear Tire & Rubber Company | Non-pneumatic support structure |
| US10457094B2 (en) | 2017-12-11 | 2019-10-29 | The Goodyear Tire & Rubber Company | Wheel for a support structure |
| US10603956B2 (en) | 2018-03-28 | 2020-03-31 | The Goodyear Tire & Rubber Company | Wheel for a support structure |
| US11827062B2 (en) * | 2019-08-29 | 2023-11-28 | The Goodyear Tire & Rubber Company | Non-pneumatic tire with a flexible looped spoke and method of forming |
| US20220168980A1 (en) * | 2020-12-02 | 2022-06-02 | The Goodyear Tire & Rubber Company | System for manufacturing a support structure |
-
2021
- 2021-06-09 US US17/342,833 patent/US11801651B2/en active Active
-
2022
- 2022-05-26 BR BR102022010327-5A patent/BR102022010327A2/en not_active Application Discontinuation
- 2022-06-01 JP JP2022089370A patent/JP2022188758A/en active Pending
- 2022-06-07 EP EP22177667.7A patent/EP4112286A1/en not_active Withdrawn
- 2022-06-09 CN CN202210647513.6A patent/CN115447181A/en active Pending
-
2023
- 2023-09-25 US US18/473,333 patent/US20240009947A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180354316A1 (en) * | 2017-06-07 | 2018-12-13 | The Goodyear Tire & Rubber Company | Method of manufacturing a non-pneumatic support structure |
Also Published As
| Publication number | Publication date |
|---|---|
| EP4112286A1 (en) | 2023-01-04 |
| JP2022188758A (en) | 2022-12-21 |
| US20220396044A1 (en) | 2022-12-15 |
| US11801651B2 (en) | 2023-10-31 |
| BR102022010327A2 (en) | 2022-12-27 |
| CN115447181A (en) | 2022-12-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10207544B2 (en) | Wheel for a support structure | |
| US10040317B2 (en) | Non-pneumatic support structure | |
| US10603956B2 (en) | Wheel for a support structure | |
| US11020918B2 (en) | Method of manufacturing a non-pneumatic support structure | |
| EP3599107B1 (en) | Wheel for a support structure | |
| EP4008539B1 (en) | System and method for manufacturing a support structure | |
| US11801651B2 (en) | System for manufacturing a support structure | |
| EP3822092B1 (en) | Wheel assembly for a support structure | |
| US12202219B2 (en) | System for manufacturing a support structure | |
| US11697307B2 (en) | Wheel for a support structure | |
| US11806960B2 (en) | System for manufacturing a support structure | |
| EP4197807B1 (en) | Tire/rim assembly for a support structure | |
| US20230144443A1 (en) | Wheel for a support structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: THE GOODYEAR TIRE & RUBBER COMPANY, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELIK, CEYHAN;REEL/FRAME:065004/0646 Effective date: 20210608 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |