US20230285169A1 - Foam insert for use with a walking canister system for amputee socket manufacture and associated methods - Google Patents
Foam insert for use with a walking canister system for amputee socket manufacture and associated methods Download PDFInfo
- Publication number
- US20230285169A1 US20230285169A1 US18/295,532 US202318295532A US2023285169A1 US 20230285169 A1 US20230285169 A1 US 20230285169A1 US 202318295532 A US202318295532 A US 202318295532A US 2023285169 A1 US2023285169 A1 US 2023285169A1
- Authority
- US
- United States
- Prior art keywords
- foam
- elongated
- foam insert
- insert
- interior surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000006260 foam Substances 0.000 title claims abstract description 108
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims description 20
- 238000005266 casting Methods 0.000 claims abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 24
- 238000012546 transfer Methods 0.000 claims abstract description 10
- 239000006261 foam material Substances 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 8
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 7
- 229920001296 polysiloxane Polymers 0.000 claims description 6
- 235000012773 waffles Nutrition 0.000 claims description 6
- 210000003414 extremity Anatomy 0.000 description 47
- 239000000725 suspension Substances 0.000 description 16
- 238000013459 approach Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 5
- 210000003484 anatomy Anatomy 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 210000003127 knee Anatomy 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000002414 leg Anatomy 0.000 description 2
- 239000011505 plaster Substances 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229920002323 Silicone foam Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000004795 extruded polystyrene foam Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 229920001821 foam rubber Polymers 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008259 solid foam Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 210000002303 tibia Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 210000001762 upper extremity of fibula Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/78—Means for protecting prostheses or for attaching them to the body, e.g. bandages, harnesses, straps, or stockings for the limb stump
- A61F2/80—Sockets, e.g. of suction type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/78—Means for protecting prostheses or for attaching them to the body, e.g. bandages, harnesses, straps, or stockings for the limb stump
- A61F2/7812—Interface cushioning members placed between the limb stump and the socket, e.g. bandages or stockings for the limb stump
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/5044—Designing or manufacturing processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/78—Means for protecting prostheses or for attaching them to the body, e.g. bandages, harnesses, straps, or stockings for the limb stump
- A61F2/7812—Interface cushioning members placed between the limb stump and the socket, e.g. bandages or stockings for the limb stump
- A61F2002/7818—Stockings or socks for the limb stump
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/78—Means for protecting prostheses or for attaching them to the body, e.g. bandages, harnesses, straps, or stockings for the limb stump
- A61F2/80—Sockets, e.g. of suction type
- A61F2002/802—Suction sockets, i.e. utilizing differential air pressure to retain the prosthesis on the stump
Definitions
- the present invention relates in general to the medical field, and in particular to prosthetic devices and associated methods.
- various current techniques involve modeling or measuring an amputee's residual limb (e.g. above the knee or below the knee) via casting or digitization while the patient is in a static position (e.g. a sitting position), which provides a static model.
- a static model is the result.
- undue pressure and skin breakdown problems are produced on the boney anatomy of the residuum, primarily the anterior distal end of the tibia and the fibula head. It should be clear that the orientation of the boney anatomy is not in the optimal or correct position in the current socket model approach.
- an amputee's residual limb may be desirable to measure an amputee's residual limb by capturing the shape in motion to provide an accurate fit, increased comfort in the socket, less harm to the patients limb, and more accurate alignment of the relationship between the socket and the foot. If the patient is measured while upright and/or walking, a more dynamic measurement will be captured. By capturing the shape in motion, it takes all three planes into consideration; sagittal, frontal, transverse. Humans are tri-planer beings, so the most accurate measurement and fit is when patient is using all three planes.
- a foam insert for use in manufacturing a prosthetic socket, the foam insert including an elongated foam body extending from an open end to a closed end, and configured to be positioned within a rigid canister.
- the elongated foam body includes a contoured exterior surface configured to transfer pressure through to an interior surface thereof to produce consistent surface contact with a residual limb having casting material thereon.
- the interior surface of the elongated foam body includes a smooth interior surface configured to interface with the residual limb.
- the contoured exterior surface of the foam insert comprises a waffle pattern defining a contoured pattern of squares.
- the contoured exterior surface of the foam insert comprises a matrix of peaks and valleys.
- the elongated foam body comprises a compressible foam material including a urethane flexible foam.
- the elongated foam body comprises a compressible foam material including a silicone flexible foam.
- a foam insert for use in manufacturing a prosthetic socket, the foam insert including an elongated foam body extending from an open end to a closed end, and configured to be positioned within a rigid canister.
- the elongated foam body includes a contoured exterior surface configured to transfer pressure through to an interior surface thereof to produce consistent surface contact with a residual limb having casting material thereon.
- the contoured exterior surface of the foam insert comprises a waffle pattern defining a contoured pattern of squares.
- the interior surface of the elongated foam body comprises a smooth interior surface configured to interface with the residual limb.
- the contoured exterior surface of the foam insert comprises a matrix of peaks and valleys.
- the elongated foam body comprises a compressible foam material including a urethane flexible foam.
- the elongated foam body comprises a compressible foam material including a silicone flexible foam.
- a method of making a foam insert for use in manufacturing a prosthetic socket including providing an elongated foam body extending from an open end to a closed end, and configured to be positioned within a rigid canister, and forming a contoured exterior surface on the elongated foam body to transfer pressure through to an interior surface thereof to produce consistent surface contact with a residual limb having casting material thereon.
- the contoured exterior surface of the foam insert comprises a waffle pattern defining a contoured pattern of squares.
- the interior surface of the elongated foam body comprises a smooth interior surface configured to interface with the residual limb.
- the contoured exterior surface of the foam insert comprises a matrix of peaks and valleys.
- the elongated foam body comprises a compressible foam material including a urethane flexible foam.
- the elongated foam body comprises a compressible foam material including a silicone flexible foam.
- FIG. 1 is a schematic cross-sectional diagram illustrating a walking canister system for manufacturing a prosthetic socket according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram illustrating the lower portion of the walking canister system of FIG. 1 and including the pump, vacuum lines, leg post and floor interface.
- FIG. 3 is a top view of the walking canister system of FIG. 1 with the foam insert, inner chamber wicking material and the suspension bladder (rolled down).
- FIG. 4 is a side view of the walking canister system of FIG. 1 mounted on a display platform and with the foam insert, inner chamber wicking material and the rolled down suspension bladder.
- FIG. 5 is a side view of the walking canister system of FIG. 1 illustrating the suspension bladder rolled up, the outer chamber wicking material, a portion of the canister and the outer chamber suspension sleeve (rolled down).
- FIG. 6 is a side view of the walking canister system of FIG. 1 illustrating a portion of the canister and the outer chamber suspension sleeve (rolled up).
- FIG. 7 is a perspective view of an example of a negative cast made with the walking canister system of FIG. 1 .
- FIG. 8 is a perspective view of an example of a positive mold made from the negative cast of FIG. 7 .
- FIG. 9 is a top perspective view of the foam insert for residual limb casting used in the walking canister system of FIG. 1 .
- FIG. 10 is a front view of the foam insert for residual limb casting illustrated in FIG. 9 .
- FIG. 11 is a rear view of the foam insert for residual limb casting illustrated in FIG. 9 .
- FIG. 12 is a top view of the foam insert for residual limb casting illustrated in FIG. 9 .
- FIG. 13 is a bottom view of the foam insert for residual limb casting illustrated in FIG. 9 .
- FIG. 14 is another perspective view of the foam insert for residual limb casting of FIG. 9 illustrating the positioning on a residual leg.
- prosthetic systems particularly for lower limbs, include a prosthetic device which is attached to the residual limb via a socket that is custom shaped to the limb.
- a liner is generally used to adhere the system to the limb and provide a comfortable transfer of the forces applied to the limb.
- the custom socket is constructed with the aid of a mold that is created from a physical casting or optical scanning of the limb while the limb is relaxed and uninhibited from external stress. The negative casting is transferred to a positive mold and the socket is typically constructed with the application of a fiberglass reinforced thermoplastic layer.
- a good fit for the system is determined empirically as the patient wears the prosthetic system over a period of weeks to months.
- the evaluation criteria include the ability to function, comfort, and consequential sores or tissue damage to the limb based on both clinical and physical evidence. Often the results require that a replacement socket be constructed to adjust the fit.
- both compression and shear may result in discomfort and tissue damage to the limb.
- An object of the invention is to provide an approach for measuring the limb for fitment of the socket while the limb is placed under normal load conditions.
- the challenges may include: 1) the provision for adjustable counter forces on the outer lateral surfaces of the limb to simulate the constraints which would be present with the optimum socket shape while the measurement is being made; 2) the ability to perform precision measurement of the limb without interference from the fitment hardware; and 3) to provide freedom of motion for the patient to move the limb with a stride of walking to better complete the span of measurements for the limb under an extended range of motion.
- a below-knee (BK) socket manufacture has approximately 13 L codes (the recognized billing code for the healthcare industry).
- BK durable medical equipment
- the average BK prosthesis has at least nine steps.
- the typical steps may be as follows: measure the patient's residual limb; pour a negative cast to create a positive mold; modify the positive mold to reflect the measurements taken by the practitioner; pull a clear thermoplastic material to create a test socket; set the test socket up on an alignment device with a pylon and foot; walk the patient to determine the fit of the socket and the establish the alignment between the socket and the foot; then, the test socket may be put into an alignment jig and the test socket is re-poured, which maintains the alignment that was established, or if the fit and alignment are unsatisfactory, steps will need to be repeated (unsatisfactory results include, but are not limited to: socket is too loose; socket is too tight; too much friction; any imbalance, etc.); with the positive mold that has maintained alignment, the definitive socket is made by either la
- the prosthetic socket may be completed in three steps, instead of the nine steps discussed above.
- insurance companies lowering their reimbursements to the provider, and patients paying more out of pocket for their prosthesis, there is a need to lower the cost of the product while also improving the quality of the product.
- a more accurate and precise measurement serves the patient as well as the practitioner.
- a patient must take time off from work for their multiple appointments to the facility. If they rely on a caregiver to transport them, that also creates reduced productivity at a place of employment.
- An accurate measurement the first time reduces the time spent at the facility. Reduced time at the facility offers the practitioner the ability to see more patients in one work day. This also reduces the materials needed for multiple test sockets. Also, the labor times for technicians per patient is reduced.
- the minimum amount of appointments at the facility is three, with appointment times varying from 30 minutes to 3 hours each time.
- FIGS. 2 - 14 the approach including a system, device and method of the present invention is described and illustrated.
- the example embodiments are best understood from the following detailed description when read with the accompanying drawing figures. Dimensions may be arbitrarily increased or decreased for clarity of discussion.
- a walking canister system 10 (aka ViaWalkTM system) that facilitates the capturing of the shape of a below-knee (BK) residual limb, under load, while the patient is walking, will be described.
- a walking canister system 10 Using the walking canister system 10 , an accurate replication of the boney anatomy and displacement of the soft tissue in a natural orientation may be obtained, leading to a dynamically manufactured prosthetic socket.
- the walking canister system 10 includes a rigid canister 12 including an open end 14 at a top, a suspension bladder 16 positioned within the rigid canister 12 , and an outer chamber wicking material 18 arranged in an outer chamber 20 defined between the suspension bladder 16 and the rigid canister 12 .
- a foam insert 22 is positioned within the suspension bladder 16 and includes a contoured exterior surface 24 configured to transfer pressure through to an interior surface 26 thereof to produce consistent surface contact with a residual limb, of a walking patient, having casting material thereon.
- the casting material may typically include a casting sock 30 , casting tape 32 (e.g. C-Form casting tape), and an outer casting sock 34 , as would be appreciated by those skilled in the art, and as illustrated in FIG. 1 , for example.
- An inner chamber wicking material 40 is arranged in an inner chamber 42 defined between the foam insert 22 and the suspension bladder 16 .
- An outer chamber vacuum port 44 is positioned in the rigid canister 12 and in fluid communication with the outer chamber 20 .
- An inner chamber vacuum port 46 is positioned in the rigid canister 12 and in fluid communication with the inner chamber 42 .
- An outer chamber suspension sleeve 48 is configured to extend from the residual limb and over the rigid canister 12 .
- a pylon attachment 50 is located at the bottom of the rigid canister 12 and includes a channel 52 in fluid communication with the inner chamber vacuum port 46 .
- the channel 52 and inner chamber vacuum port 46 may be defined by an interlocking plate 54 at the bottom of the rigid canister 12 .
- Attachment holes 56 e.g. four threaded attachment holes
- Other approaches for attaching the rigid canister 12 to a pylon 58 are contemplated as would be appreciated by those skilled in the art.
- the pylon 58 is attached to the pylon attachment 50 , and a floor interface member 60 is positioned at a bottom of the pylon 58 and configured to provide consistent pressure upward through the pylon 58 to the rigid canister 12 during a casting-walking process.
- the floor interface member 60 is shown as a large rubber stopper that provides consistent pressure upward through the pylon 58 to the walking canister system 10 during the casting walking process.
- Other types of floor interfaces may be used, such as a prosthetic foot, as long as the desired consistent pressure is achieved.
- the walking canister system 10 may include a vacuum or suction pump 62 , corresponding tubing 64 , valves 66 and couplers 68 to attach to the inner chamber vacuum port 46 and the outer chamber vacuum port 44 .
- This walking canister system 10 may be set in neutral, with no foot being used, and no other external influence.
- the natural alignment (weight line) of the relationship between a prosthetic socket and the foot of the patient may be established, determined, verified and/or defined in conjunction with the prosthetist's know-how and skill.
- the residual limb is casted by using synthetic casting material 30 , 32 , 34 which is wrapped on the residual limb. Once the casting material is applied, the limb is inserted into the rigid canister 12 .
- the inner vacuum chamber 42 of the rigid canister 12 has the foam insert 22 , which is covered with the inner chamber wicking material 40 and the suspension bladder 16 on the outside of the foam insert 22 .
- the suspension bladder 16 is pulled up and over the foam insert 22 to above the knee of the patient (e.g. as illustrated in FIG. 5 , for example).
- Suction or vacuum is then applied (e.g. in a range of ⁇ 5 to ⁇ 15 Hg), which starts the initial suspension and compression in the inner chamber 42 of the foam insert 22 .
- the outer chamber suspension sleeve 48 is rolled up over the foam insert 22 and suspension bladder 16 and it creates a seal above the inner chamber 42 .
- Vacuum is applied to the outer chamber 20 (e.g. in a range of ⁇ 5 to ⁇ 15 Hg) and creates additional suction and suspension to prevent any piston action of the limb in the bottom of the inner chamber 42 and rigid canister 12 .
- the patient is locked in safely and securely to the walking canister system 10 , and ready to walk.
- the approach is a repeatable process. Multiple users of the walking canister system 10 will obtain the same accurate results. The results are achieved with the present technology and are not dependent on the competency level or experience of the practitioner.
- the natural alignment of the patient may vary due to anatomical features of the residual limb.
- the alignment is determined during the casting process, by transferring alignment reference line(s) within the inner surface 26 of the foam insert 22 onto the outer surface of the casting material sock 34 .
- the alignment relationship between the socket and foot will be reflected on the negative cast 70 ( FIG. 7 ) when it is put onto an alignment holding device prior to forming a positive mold 80 ( FIG. 8 ) therefrom.
- the negative cast 70 will reflect the relationship between the manufactured socket and foot because the natural angulation of the individual's anatomy in the sagittal and frontal planes is preserved.
- the foam insert 22 (also referred to as a waffle-cone insert) includes a contoured exterior surface 24 with square or rectangular-shaped peaks 90 and valleys 92 in a matrix configuration.
- the interior surface 26 is preferably smooth and with application of the vacuum to the chambers, the contoured exterior surface 24 translates and/or transfers pressure through to the interior surface 26 to produce total and/or consistent surface contact with the residual limb via the cast (casting socks 30 , 34 and casting tape 32 ).
- contoured exterior surfaces are contemplated including, for example, a reverse of the pattern shown, or circular peaks and valleys in a matrix, etc., as long as the contoured exterior surface 24 creates pressure through to the interior surface 26 to produce the desired surface contact with the residual limb via the cast.
- the waffle-cone insert 22 as shown may aid in the longitudinal and latitudinal orientation of the residual limb and resulting socket fit.
- Alignment reference line(s) 94 within the inner surface 26 of the foam insert 22 may be transferred onto an outer surface of the casting material sock 34 during the approach for measuring the limb using the walking canister system 10 . This may aid in the determination of the natural alignment of the patient during the casting process.
- the waffle-cone foam insert 22 is preferably formed using a foam material that is compressible and subsequently expandable.
- foam is an object formed by trapping pockets of gas in a liquid or solid.
- the foam material for the insert 22 should result in the desired properties of translating and/or transferring pressure from the contoured exterior surface 24 through to the interior surface 26 to produce total and/or consistent surface contact with the residual limb via the cast during application of the vacuum to the chambers, as described above. Of course, other materials that achieve this goal are also contemplated.
- Solid foams can be closed-cell or open-cell.
- closed-cell foam the gas forms discrete pockets, each completely surrounded by the solid material.
- open-cell foam gas pockets connect to each other.
- Foams are examples of dispersed media.
- Foam can also refer to something that is analogous to foam, such as quantum foam, polyurethane foam (foam rubber), XPS foam, polystyrene, phenolic, or many other manufactured foams.
- Example foam materials may be provided by Smooth-on, Inc. (e.g. FlexFoam-iT!TM series) including mix and pour, high quality urethane and silicone foams that are fast curing and used for industrial, military and art related applications. Foams expand many times original volume. Flexible foams cure flexible and strong.
- the rigid canister 12 may be thermoplastic as shown, or any other suitable material that provides the rigidity needed to achieve the results during the walking approach described and shown.
- the walking canister system 10 may be provided in off-the-shelf sizes (e.g. 7 sizes from smallest to largest) and also in right and left versions.
- the present invention may have also been described, at least in part, in terms of one or more embodiments.
- An embodiment of the present invention is used herein to illustrate the present invention, an aspect thereof, a feature thereof, a concept thereof, and/or an example thereof.
- a physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process that embodies the present invention may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein.
- the embodiments may incorporate the same or similarly named functions, steps, modules, etc. that may use the same or different reference numbers and, as such, the functions, steps, modules, etc. may be the same or similar functions, steps, modules, etc. or different ones.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
The foam insert is for use in manufacturing a prosthetic socket. The foam insert includes an elongated foam body extending from an open end to a closed end, and configured to be positioned within a rigid canister. The elongated foam body includes a contoured exterior surface configured to transfer pressure through to an interior surface thereof to produce consistent surface contact with a residual limb having casting material thereon. The interior surface of the elongated foam body includes a smooth interior surface configured to interface with the residual limb.
Description
- This application is a Divisional of, and claims priority to, U.S. application Ser. No. 16/943,667 filed Jul. 30, 2020 and titled “WALKING CANISTER SYSTEM AND DEVICE FOR AMPUTEE SOCKET MANUFACTURE AND ASSOCIATED METHODS” which claims priority to U.S. Provisional Application Ser. No. 63/006,887 filed Apr. 8, 2020 titled “WALKING CANISTER SYSTEM AND DEVICE FOR AMPUTEE SOCKET MANUFACTURE AND ASSOCIATED METHODS” which is incorporated herein in its entirety by reference.
- The present invention relates in general to the medical field, and in particular to prosthetic devices and associated methods.
- In general, various current techniques involve modeling or measuring an amputee's residual limb (e.g. above the knee or below the knee) via casting or digitization while the patient is in a static position (e.g. a sitting position), which provides a static model. In other words, by casting or digitizing in a sitting/static position, a static model is the result. When such a prosthetic socket is created in a static model, undue pressure and skin breakdown problems are produced on the boney anatomy of the residuum, primarily the anterior distal end of the tibia and the fibula head. It should be clear that the orientation of the boney anatomy is not in the optimal or correct position in the current socket model approach.
- Other techniques include U.S. Pat. No. 5,503,543 to Laghi which is directed to a prosthetic casting machine that receives an amputated stump while a patient is standing so that a hard socket can be made based upon the shape of the stump when it is under load. The patient's stump is inserted into a liner and the liner is coated with plaster before the stump is inserted into the machine. After insertion, while the patient is standing, compressed air is introduced into a space between a transparent flexible bladder and a transparent rigid cylinder so that a pressure is applied to the plaster by the bladder.
- However, it may be desirable to measure an amputee's residual limb by capturing the shape in motion to provide an accurate fit, increased comfort in the socket, less harm to the patients limb, and more accurate alignment of the relationship between the socket and the foot. If the patient is measured while upright and/or walking, a more dynamic measurement will be captured. By capturing the shape in motion, it takes all three planes into consideration; sagittal, frontal, transverse. Humans are tri-planer beings, so the most accurate measurement and fit is when patient is using all three planes.
- This background section is intended to introduce the reader to various aspects of typical technology that may be related to various aspects or embodiments of the present invention, which are described and/or claimed below. This discussion is believed to be useful in providing the reader with background information to facilitate a better understanding of the various aspects and embodiments of the present invention. Accordingly, it should be understood that these statements are to be read in light of, and not as admissions of, the prior art.
- It is an object of the present embodiments to provide a system, device and method to measure an amputee's residual limb by capturing the shape thereof in motion to provide an accurate fit, increased comfort in the socket, less harm to the patients limb, and more accurate alignment of the relationship between the socket and the foot.
- This and other objects, advantages and features in accordance with the present embodiments may be provided by a foam insert for use in manufacturing a prosthetic socket, the foam insert including an elongated foam body extending from an open end to a closed end, and configured to be positioned within a rigid canister.
- The elongated foam body includes a contoured exterior surface configured to transfer pressure through to an interior surface thereof to produce consistent surface contact with a residual limb having casting material thereon. The interior surface of the elongated foam body includes a smooth interior surface configured to interface with the residual limb.
- Additionally, and/or alternatively, the contoured exterior surface of the foam insert comprises a waffle pattern defining a contoured pattern of squares.
- Additionally, and/or alternatively, the contoured exterior surface of the foam insert comprises a matrix of peaks and valleys.
- Additionally, and/or alternatively, the elongated foam body comprises a compressible foam material including a urethane flexible foam.
- Additionally, and/or alternatively, the elongated foam body comprises a compressible foam material including a silicone flexible foam.
- Other objects, advantages and features in accordance with the present embodiments may be provided by a foam insert for use in manufacturing a prosthetic socket, the foam insert including an elongated foam body extending from an open end to a closed end, and configured to be positioned within a rigid canister. The elongated foam body includes a contoured exterior surface configured to transfer pressure through to an interior surface thereof to produce consistent surface contact with a residual limb having casting material thereon.
- Additionally, and/or alternatively, the contoured exterior surface of the foam insert comprises a waffle pattern defining a contoured pattern of squares.
- Additionally, and/or alternatively, the interior surface of the elongated foam body comprises a smooth interior surface configured to interface with the residual limb.
- Additionally, and/or alternatively, the contoured exterior surface of the foam insert comprises a matrix of peaks and valleys.
- Additionally, and/or alternatively, the elongated foam body comprises a compressible foam material including a urethane flexible foam.
- Additionally, and/or alternatively, the elongated foam body comprises a compressible foam material including a silicone flexible foam.
- A method of making a foam insert for use in manufacturing a prosthetic socket, the method including providing an elongated foam body extending from an open end to a closed end, and configured to be positioned within a rigid canister, and forming a contoured exterior surface on the elongated foam body to transfer pressure through to an interior surface thereof to produce consistent surface contact with a residual limb having casting material thereon.
- Additionally, and/or alternatively, the contoured exterior surface of the foam insert comprises a waffle pattern defining a contoured pattern of squares.
- Additionally, and/or alternatively, the interior surface of the elongated foam body comprises a smooth interior surface configured to interface with the residual limb.
- Additionally, and/or alternatively, the contoured exterior surface of the foam insert comprises a matrix of peaks and valleys.
- Additionally, and/or alternatively, the elongated foam body comprises a compressible foam material including a urethane flexible foam.
- Additionally, and/or alternatively, the elongated foam body comprises a compressible foam material including a silicone flexible foam.
-
FIG. 1 is a schematic cross-sectional diagram illustrating a walking canister system for manufacturing a prosthetic socket according to an embodiment of the present invention. -
FIG. 2 is a schematic diagram illustrating the lower portion of the walking canister system ofFIG. 1 and including the pump, vacuum lines, leg post and floor interface. -
FIG. 3 is a top view of the walking canister system ofFIG. 1 with the foam insert, inner chamber wicking material and the suspension bladder (rolled down). -
FIG. 4 is a side view of the walking canister system ofFIG. 1 mounted on a display platform and with the foam insert, inner chamber wicking material and the rolled down suspension bladder. -
FIG. 5 is a side view of the walking canister system ofFIG. 1 illustrating the suspension bladder rolled up, the outer chamber wicking material, a portion of the canister and the outer chamber suspension sleeve (rolled down). -
FIG. 6 is a side view of the walking canister system ofFIG. 1 illustrating a portion of the canister and the outer chamber suspension sleeve (rolled up). -
FIG. 7 is a perspective view of an example of a negative cast made with the walking canister system ofFIG. 1 . -
FIG. 8 is a perspective view of an example of a positive mold made from the negative cast ofFIG. 7 . -
FIG. 9 is a top perspective view of the foam insert for residual limb casting used in the walking canister system ofFIG. 1 . -
FIG. 10 is a front view of the foam insert for residual limb casting illustrated inFIG. 9 . -
FIG. 11 is a rear view of the foam insert for residual limb casting illustrated inFIG. 9 . -
FIG. 12 is a top view of the foam insert for residual limb casting illustrated inFIG. 9 . -
FIG. 13 is a bottom view of the foam insert for residual limb casting illustrated inFIG. 9 . -
FIG. 14 is another perspective view of the foam insert for residual limb casting ofFIG. 9 illustrating the positioning on a residual leg. - The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Those of ordinary skill in the art realize that the following descriptions of the embodiments of the present invention are illustrative and are not intended to be limiting in any way. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure. Like numbers refer to like elements throughout.
- In this detailed description of the present invention, a person skilled in the art should note that directional terms, such as “above,” “below,” “upper,” “lower,” and other like terms are used for the convenience of the reader in reference to the drawings. Also, a person skilled in the art should notice this description may contain other terminology to convey position, orientation, and direction without departing from the principles of the present invention.
- Furthermore, in this detailed description, a person skilled in the art should note that quantitative qualifying terms such as “generally,” “substantially,” “mostly,” and other terms are used, in general, to mean that the referred to object, characteristic, or quality constitutes a majority of the subject of the reference. The meaning of any of these terms is dependent upon the context within which it is used, and the meaning may be expressly modified.
- As discussed, prosthetic systems, particularly for lower limbs, include a prosthetic device which is attached to the residual limb via a socket that is custom shaped to the limb. A liner is generally used to adhere the system to the limb and provide a comfortable transfer of the forces applied to the limb. The custom socket is constructed with the aid of a mold that is created from a physical casting or optical scanning of the limb while the limb is relaxed and uninhibited from external stress. The negative casting is transferred to a positive mold and the socket is typically constructed with the application of a fiberglass reinforced thermoplastic layer.
- A good fit for the system is determined empirically as the patient wears the prosthetic system over a period of weeks to months. The evaluation criteria include the ability to function, comfort, and consequential sores or tissue damage to the limb based on both clinical and physical evidence. Often the results require that a replacement socket be constructed to adjust the fit.
- So, one of the primary issues with fitment which compromises the initial custom shape of the socket is that the limb being measured is not under the normal load which would exist during standing or walking. The compression of the tissue at the distal end and expansion in other areas of the limb are not taken into account.
- Therefore unusual and non-optimal stresses, both compression and shear may result in discomfort and tissue damage to the limb.
- An object of the invention is to provide an approach for measuring the limb for fitment of the socket while the limb is placed under normal load conditions. The challenges may include: 1) the provision for adjustable counter forces on the outer lateral surfaces of the limb to simulate the constraints which would be present with the optimum socket shape while the measurement is being made; 2) the ability to perform precision measurement of the limb without interference from the fitment hardware; and 3) to provide freedom of motion for the patient to move the limb with a stride of walking to better complete the span of measurements for the limb under an extended range of motion.
- Additionally, a below-knee (BK) socket manufacture has approximately 13 L codes (the recognized billing code for the healthcare industry). At this time, insurance companies are reducing the amount of reimbursement to O & P facilities for durable medical equipment (DME) by at least 30%. Prosthetics fall under the DME category.
- Thus, O & P facilities need to find a more cost-effective way to design and deliver a prothesis (e.g. below knee prosthesis) than the current industry standard. The average BK prosthesis has at least nine steps. The typical steps may be as follows: measure the patient's residual limb; pour a negative cast to create a positive mold; modify the positive mold to reflect the measurements taken by the practitioner; pull a clear thermoplastic material to create a test socket; set the test socket up on an alignment device with a pylon and foot; walk the patient to determine the fit of the socket and the establish the alignment between the socket and the foot; then, the test socket may be put into an alignment jig and the test socket is re-poured, which maintains the alignment that was established, or if the fit and alignment are unsatisfactory, steps will need to be repeated (unsatisfactory results include, but are not limited to: socket is too loose; socket is too tight; too much friction; any imbalance, etc.); with the positive mold that has maintained alignment, the definitive socket is made by either lamination or thermoplastic; and the socket is assembled with the pylon and the foot, then delivered to the patient, as would be appreciated by those skilled in the art.
- With the system, device and method of the present invention, the prosthetic socket may be completed in three steps, instead of the nine steps discussed above. With insurance companies lowering their reimbursements to the provider, and patients paying more out of pocket for their prosthesis, there is a need to lower the cost of the product while also improving the quality of the product.
- With the present approach, a more accurate and precise measurement serves the patient as well as the practitioner. A patient must take time off from work for their multiple appointments to the facility. If they rely on a caregiver to transport them, that also creates reduced productivity at a place of employment. An accurate measurement the first time reduces the time spent at the facility. Reduced time at the facility offers the practitioner the ability to see more patients in one work day. This also reduces the materials needed for multiple test sockets. Also, the labor times for technicians per patient is reduced.
- Currently, with the above-mentioned current steps, the minimum amount of appointments at the facility is three, with appointment times varying from 30 minutes to 3 hours each time. With the new approach, it is realistic and possible to cast a patient, pour a positive mold, create the test socket, check for fit and alignment, make adjustments and build the definitive prosthetic in the same day, in approximately 3 to 4 hours, for example.
- Referring to the cross-sectional view of
FIG. 1 and the drawingsFIGS. 2-14 , the approach including a system, device and method of the present invention is described and illustrated. The example embodiments are best understood from the following detailed description when read with the accompanying drawing figures. Dimensions may be arbitrarily increased or decreased for clarity of discussion. - Referring more specifically to
FIGS. 1-6 , an example embodiment of a walking canister system 10 (aka ViaWalk™ system) that facilitates the capturing of the shape of a below-knee (BK) residual limb, under load, while the patient is walking, will be described. Using the walkingcanister system 10, an accurate replication of the boney anatomy and displacement of the soft tissue in a natural orientation may be obtained, leading to a dynamically manufactured prosthetic socket. - The walking
canister system 10 includes arigid canister 12 including anopen end 14 at a top, asuspension bladder 16 positioned within therigid canister 12, and an outerchamber wicking material 18 arranged in anouter chamber 20 defined between thesuspension bladder 16 and therigid canister 12. Afoam insert 22 is positioned within thesuspension bladder 16 and includes a contouredexterior surface 24 configured to transfer pressure through to aninterior surface 26 thereof to produce consistent surface contact with a residual limb, of a walking patient, having casting material thereon. The casting material may typically include a castingsock 30, casting tape 32 (e.g. C-Form casting tape), and anouter casting sock 34, as would be appreciated by those skilled in the art, and as illustrated inFIG. 1 , for example. - An inner
chamber wicking material 40 is arranged in aninner chamber 42 defined between thefoam insert 22 and thesuspension bladder 16. An outerchamber vacuum port 44 is positioned in therigid canister 12 and in fluid communication with theouter chamber 20. An innerchamber vacuum port 46 is positioned in therigid canister 12 and in fluid communication with theinner chamber 42. An outerchamber suspension sleeve 48 is configured to extend from the residual limb and over therigid canister 12. - A
pylon attachment 50 is located at the bottom of therigid canister 12 and includes achannel 52 in fluid communication with the innerchamber vacuum port 46. Thechannel 52 and innerchamber vacuum port 46 may be defined by an interlockingplate 54 at the bottom of therigid canister 12. Attachment holes 56 (e.g. four threaded attachment holes) are positioned at the bottom of thepylon attachment 50. Other approaches for attaching therigid canister 12 to apylon 58 are contemplated as would be appreciated by those skilled in the art. Thepylon 58 is attached to thepylon attachment 50, and afloor interface member 60 is positioned at a bottom of thepylon 58 and configured to provide consistent pressure upward through thepylon 58 to therigid canister 12 during a casting-walking process. - The
floor interface member 60 is shown as a large rubber stopper that provides consistent pressure upward through thepylon 58 to thewalking canister system 10 during the casting walking process. Other types of floor interfaces may be used, such as a prosthetic foot, as long as the desired consistent pressure is achieved. - As further illustrated in
FIG. 2 , for example, the walkingcanister system 10 may include a vacuum orsuction pump 62, correspondingtubing 64,valves 66 andcouplers 68 to attach to the innerchamber vacuum port 46 and the outerchamber vacuum port 44. - This walking
canister system 10 may be set in neutral, with no foot being used, and no other external influence. When the patient walks, the natural alignment (weight line) of the relationship between a prosthetic socket and the foot of the patient may be established, determined, verified and/or defined in conjunction with the prosthetist's know-how and skill. - The residual limb is casted by using
30, 32, 34 which is wrapped on the residual limb. Once the casting material is applied, the limb is inserted into thesynthetic casting material rigid canister 12. Theinner vacuum chamber 42 of therigid canister 12 has thefoam insert 22, which is covered with the innerchamber wicking material 40 and thesuspension bladder 16 on the outside of thefoam insert 22. Thesuspension bladder 16 is pulled up and over thefoam insert 22 to above the knee of the patient (e.g. as illustrated inFIG. 5 , for example). - Suction or vacuum is then applied (e.g. in a range of −5 to −15 Hg), which starts the initial suspension and compression in the
inner chamber 42 of thefoam insert 22. The outerchamber suspension sleeve 48 is rolled up over thefoam insert 22 andsuspension bladder 16 and it creates a seal above theinner chamber 42. Vacuum is applied to the outer chamber 20 (e.g. in a range of −5 to −15 Hg) and creates additional suction and suspension to prevent any piston action of the limb in the bottom of theinner chamber 42 andrigid canister 12. Thus, the patient is locked in safely and securely to thewalking canister system 10, and ready to walk. - The approach is a repeatable process. Multiple users of the walking
canister system 10 will obtain the same accurate results. The results are achieved with the present technology and are not dependent on the competency level or experience of the practitioner. - The natural alignment of the patient may vary due to anatomical features of the residual limb. The alignment is determined during the casting process, by transferring alignment reference line(s) within the
inner surface 26 of thefoam insert 22 onto the outer surface of the castingmaterial sock 34. The alignment relationship between the socket and foot will be reflected on the negative cast 70 (FIG. 7 ) when it is put onto an alignment holding device prior to forming a positive mold 80 (FIG. 8 ) therefrom. Thenegative cast 70 will reflect the relationship between the manufactured socket and foot because the natural angulation of the individual's anatomy in the sagittal and frontal planes is preserved. - Referring additionally to
FIGS. 9-14 , as illustrated, the foam insert 22 (also referred to as a waffle-cone insert) includes a contouredexterior surface 24 with square or rectangular-shapedpeaks 90 andvalleys 92 in a matrix configuration. Theinterior surface 26 is preferably smooth and with application of the vacuum to the chambers, the contouredexterior surface 24 translates and/or transfers pressure through to theinterior surface 26 to produce total and/or consistent surface contact with the residual limb via the cast (casting 30, 34 and casting tape 32). Other contoured exterior surfaces are contemplated including, for example, a reverse of the pattern shown, or circular peaks and valleys in a matrix, etc., as long as thesocks contoured exterior surface 24 creates pressure through to theinterior surface 26 to produce the desired surface contact with the residual limb via the cast. Of course, the waffle-cone insert 22 as shown may aid in the longitudinal and latitudinal orientation of the residual limb and resulting socket fit. - Alignment reference line(s) 94 (
FIG. 12 ) within theinner surface 26 of thefoam insert 22 may be transferred onto an outer surface of the castingmaterial sock 34 during the approach for measuring the limb using thewalking canister system 10. This may aid in the determination of the natural alignment of the patient during the casting process. - The waffle-
cone foam insert 22 is preferably formed using a foam material that is compressible and subsequently expandable. Generally, foam is an object formed by trapping pockets of gas in a liquid or solid. The foam material for theinsert 22 should result in the desired properties of translating and/or transferring pressure from the contouredexterior surface 24 through to theinterior surface 26 to produce total and/or consistent surface contact with the residual limb via the cast during application of the vacuum to the chambers, as described above. Of course, other materials that achieve this goal are also contemplated. - Solid foams can be closed-cell or open-cell. In closed-cell foam, the gas forms discrete pockets, each completely surrounded by the solid material. In open-cell foam, gas pockets connect to each other. Foams are examples of dispersed media. Foam can also refer to something that is analogous to foam, such as quantum foam, polyurethane foam (foam rubber), XPS foam, polystyrene, phenolic, or many other manufactured foams. Example foam materials may be provided by Smooth-on, Inc. (e.g. FlexFoam-iT!™ series) including mix and pour, high quality urethane and silicone foams that are fast curing and used for industrial, military and art related applications. Foams expand many times original volume. Flexible foams cure flexible and strong.
- The
rigid canister 12 may be thermoplastic as shown, or any other suitable material that provides the rigidity needed to achieve the results during the walking approach described and shown. The walkingcanister system 10 may be provided in off-the-shelf sizes (e.g. 7 sizes from smallest to largest) and also in right and left versions. - The present invention may have also been described, at least in part, in terms of one or more embodiments. An embodiment of the present invention is used herein to illustrate the present invention, an aspect thereof, a feature thereof, a concept thereof, and/or an example thereof. A physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process that embodies the present invention may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein. Further, from figure to figure, the embodiments may incorporate the same or similarly named functions, steps, modules, etc. that may use the same or different reference numbers and, as such, the functions, steps, modules, etc. may be the same or similar functions, steps, modules, etc. or different ones.
- The above description provides specific details, such as material types and processing conditions to provide a thorough description of example embodiments. However, a person of ordinary skill in the art would understand that the embodiments may be practiced without using these specific details.
- Some of the illustrative aspects of the present invention may be advantageous in solving the problems herein described and other problems not discussed which are discoverable by a skilled artisan. While the above description contains much specificity, these should not be construed as limitations on the scope of any embodiment, but as exemplifications of the presented embodiments thereof. Many other ramifications and variations are possible within the teachings of the various embodiments. While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best or only mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents, and not by the examples given.
- Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.
Claims (17)
1. A foam insert for use in manufacturing a prosthetic socket, the foam insert comprising:
an elongated foam body extending from an open end to a closed end, and configured to be positioned within a rigid canister;
the elongated foam body including a contoured exterior surface configured to transfer pressure through to an interior surface thereof to produce consistent surface contact with a residual limb having casting material thereon; and
the interior surface of the elongated foam body including a smooth interior surface configured to interface with the residual limb.
2. The foam insert according to claim 1 , wherein the contoured exterior surface of the foam insert comprises a waffle pattern defining a contoured pattern of squares.
3. The foam insert according to claim 1 , wherein the contoured exterior surface of the foam insert comprises a matrix of peaks and valleys.
4. The foam insert according to claim 1 , wherein the elongated foam body comprises a compressible foam material including a urethane flexible foam.
5. The foam insert according to claim 1 , wherein the elongated foam body comprises a compressible foam material including a silicone flexible foam.
6. A foam insert for use in manufacturing a prosthetic socket, the foam insert comprising:
an elongated foam body extending from an open end to a closed end, and configured to be positioned within a rigid canister;
the elongated foam body including a contoured exterior surface configured to transfer pressure through to an interior surface thereof to produce consistent surface contact with a residual limb having casting material thereon.
7. The foam insert according to claim 6 , wherein the contoured exterior surface of the foam insert comprises a waffle pattern defining a contoured pattern of squares.
8. The foam insert according to claim 7 , wherein the interior surface of the elongated foam body comprises a smooth interior surface configured to interface with the residual limb.
9. The foam insert according to claim 6 , wherein the contoured exterior surface of the foam insert comprises a matrix of peaks and valleys.
10. The foam insert according to claim 6 , wherein the elongated foam body comprises a compressible foam material including a urethane flexible foam.
11. The foam insert according to claim 6 , wherein the elongated foam body comprises a compressible foam material including a silicone flexible foam.
12. A method of making a foam insert for use in manufacturing a prosthetic socket, the method comprising:
providing an elongated foam body extending from an open end to a closed end, and configured to be positioned within a rigid canister; and
forming a contoured exterior surface on the elongated foam body to transfer pressure through to an interior surface thereof to produce consistent surface contact with a residual limb having casting material thereon.
13. The method according to claim 12 , wherein the contoured exterior surface of the foam insert comprises a waffle pattern defining a contoured pattern of squares.
14. The method according to claim 13 , wherein the interior surface of the elongated foam body comprises a smooth interior surface configured to interface with the residual limb.
15. The method according to claim 12 , wherein the contoured exterior surface of the foam insert comprises a matrix of peaks and valleys.
16. The method according to claim 12 , wherein the elongated foam body comprises a compressible foam material including a urethane flexible foam.
17. The method according to claim 12 , wherein the elongated foam body comprises a compressible foam material including a silicone flexible foam.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18/295,532 US20230285169A1 (en) | 2020-04-08 | 2023-04-04 | Foam insert for use with a walking canister system for amputee socket manufacture and associated methods |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202063006887P | 2020-04-08 | 2020-04-08 | |
| US16/943,667 US11628073B2 (en) | 2020-04-08 | 2020-07-30 | Walking canister system and device for amputee socket manufacture and associated methods |
| US18/295,532 US20230285169A1 (en) | 2020-04-08 | 2023-04-04 | Foam insert for use with a walking canister system for amputee socket manufacture and associated methods |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/943,667 Division US11628073B2 (en) | 2020-04-08 | 2020-07-30 | Walking canister system and device for amputee socket manufacture and associated methods |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20230285169A1 true US20230285169A1 (en) | 2023-09-14 |
Family
ID=78005622
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/943,667 Active 2041-01-20 US11628073B2 (en) | 2020-04-08 | 2020-07-30 | Walking canister system and device for amputee socket manufacture and associated methods |
| US18/295,532 Abandoned US20230285169A1 (en) | 2020-04-08 | 2023-04-04 | Foam insert for use with a walking canister system for amputee socket manufacture and associated methods |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/943,667 Active 2041-01-20 US11628073B2 (en) | 2020-04-08 | 2020-07-30 | Walking canister system and device for amputee socket manufacture and associated methods |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US11628073B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USD940887S1 (en) * | 2020-05-18 | 2022-01-11 | Marvin R Fourroux | Foam insert for residual limb casting |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5549709A (en) * | 1995-07-26 | 1996-08-27 | Caspers; Carl A. | Hypobarically-Controlled artificial limb for amputees |
-
2020
- 2020-07-30 US US16/943,667 patent/US11628073B2/en active Active
-
2023
- 2023-04-04 US US18/295,532 patent/US20230285169A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| US20210315717A1 (en) | 2021-10-14 |
| US11628073B2 (en) | 2023-04-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20200253750A1 (en) | Two-part prosthetic socket and method of making same | |
| Board et al. | A comparison of trans-tibial amputee suction and vacuum socket conditions | |
| US10702404B2 (en) | Methods for bone stabilization | |
| Zhang et al. | Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket | |
| Carrigan et al. | Pneumatic actuator inserts for interface pressure mapping and fit improvement in lower extremity prosthetics | |
| US20230285169A1 (en) | Foam insert for use with a walking canister system for amputee socket manufacture and associated methods | |
| Quinlan et al. | Using mechanical testing to assess the effect of lower-limb prosthetic socket texturing on longitudinal suspension | |
| US20110001794A1 (en) | System and method for shape capturing as used in prosthetics, orthotics and pedorthics | |
| Ali et al. | Comparative Study between Dermo, Pelite, and Seal‐In X5 Liners: Effect on Patient’s Satisfaction and Perceived Problems | |
| Collins et al. | Review of research on prosthetic devices for lower extremity amputation | |
| Brown et al. | Evaluation of NU-FlexSIV Socket Performance for Military Service Members with Transfemoral Amputation. | |
| Goh et al. | Static and dynamic pressure profiles of a patellar-tendon-bearing (PTB) socket | |
| CN117083035A (en) | Tibial prosthetic device and digital manufacturing workflow for an endoskeleton | |
| Subih et al. | Pressure Reduction Management System in Three-Dimensional-Printed Transtibial Prosthetic Socket during Stance Phase | |
| Ali | Interface pressure between socket and residual limb in prosthesis with seal-in X5 and dermo liner during level ground, stairs, and ramp walking | |
| CN211560546U (en) | Prosthetic prosthesis and femur structure with same | |
| Owen | Design, Development, and Evaluation of Additively Manufactured Technologies for Use in Lower Limb Prostheses | |
| Shaikh et al. | Mechanically Induced Stump Dermatoses: High Prevalence Concern and Measures of Prevention. | |
| US20240261117A1 (en) | Method and System of Digital Design and Fabrication of a Biomechanical Interface | |
| Subih et al. | Portable electronic pressure control device for below-knee prosthetic socket: a loading static assessment during preliminary | |
| Hopkins et al. | Sockets and residuum health | |
| US20250114219A1 (en) | Unibody Endoskeletal Transtibial Prosthetic Devices and Digital Fabrication Workflow | |
| Lenka et al. | Design & development of lower extremity paediatric prosthesis, a requirement in developing countries | |
| Cutti et al. | Clinical effectiveness of a novel hydrostatic casting method for transfemoral amputees: results from the first 64 patients | |
| RU2796784C1 (en) | Method of manufacturing a hip exoprosthesis sleeve |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- INCOMPLETE APPLICATION (PRE-EXAMINATION) |