US20230256563A1 - Slurry recycling for chemical mechanical planarization system - Google Patents
Slurry recycling for chemical mechanical planarization system Download PDFInfo
- Publication number
- US20230256563A1 US20230256563A1 US18/301,010 US202318301010A US2023256563A1 US 20230256563 A1 US20230256563 A1 US 20230256563A1 US 202318301010 A US202318301010 A US 202318301010A US 2023256563 A1 US2023256563 A1 US 2023256563A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- tank
- slurry
- cmp
- polishing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002002 slurry Substances 0.000 title claims abstract description 110
- 239000000126 substance Substances 0.000 title claims abstract description 58
- 238000004064 recycling Methods 0.000 title claims description 6
- 238000005188 flotation Methods 0.000 claims abstract description 84
- 238000000034 method Methods 0.000 claims abstract description 76
- 239000012530 fluid Substances 0.000 claims abstract description 74
- 238000005498 polishing Methods 0.000 claims abstract description 55
- 239000002699 waste material Substances 0.000 claims description 58
- 239000000758 substrate Substances 0.000 claims description 35
- 239000003607 modifier Substances 0.000 claims description 20
- 239000006227 byproduct Substances 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 238000001556 precipitation Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 230000000704 physical effect Effects 0.000 claims description 2
- 230000001376 precipitating effect Effects 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 44
- 239000007788 liquid Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 20
- 235000012431 wafers Nutrition 0.000 description 18
- 239000003082 abrasive agent Substances 0.000 description 17
- 238000005054 agglomeration Methods 0.000 description 13
- 230000002776 aggregation Effects 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000003750 conditioning effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- NEHNMFOYXAPHSD-UHFFFAOYSA-N citronellal Chemical compound O=CCC(C)CCC=C(C)C NEHNMFOYXAPHSD-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- PXRCIOIWVGAZEP-UHFFFAOYSA-N Camphene hydrate Chemical compound C1CC2C(O)(C)C(C)(C)C1C2 PXRCIOIWVGAZEP-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910002566 KAl(SO4)2·12H2O Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000011126 aluminium potassium sulphate Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000002894 chemical waste Substances 0.000 description 1
- 229930003633 citronellal Natural products 0.000 description 1
- 235000000983 citronellal Nutrition 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229940050271 potassium alum Drugs 0.000 description 1
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- GNBVPFITFYNRCN-UHFFFAOYSA-M sodium thioglycolate Chemical compound [Na+].[O-]C(=O)CS GNBVPFITFYNRCN-UHFFFAOYSA-M 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000036964 tight binding Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- OFLNOEMLSXBOFY-UHFFFAOYSA-K trisodium;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([S-])=S OFLNOEMLSXBOFY-UHFFFAOYSA-K 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B57/00—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
- B24B57/02—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/07—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
- B24B37/10—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
- B24B37/105—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement
- B24B37/107—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement in a rotary movement only, about an axis being stationary during lapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/26—Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B53/00—Devices or means for dressing or conditioning abrasive surfaces
- B24B53/017—Devices or means for dressing, cleaning or otherwise conditioning lapping tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B57/00—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
Definitions
- Polishing semiconductor wafers with a chemical mechanical planarization (CMP) system requires a continuous supply of slurry.
- the continuous supply of slurry contributes to a significant cost of fabricating semiconductor devices.
- FIG. 1 illustrates a CMP system, according to some embodiments.
- FIG. 2 illustrates a cross-sectional view of a flotation module, according to some embodiments.
- FIG. 3 illustrates a cross-sectional view of another flotation module, according to some embodiments.
- FIGS. 4 A- 4 C illustrate a flotation process in a flotation module, according to some embodiments.
- FIG. 5 illustrates a method for recycling slurry for a polishing tool, according to some embodiments.
- first and second features are formed in direct contact
- additional features may be formed that are between the first and second features, such that the first and second features are not in direct contact.
- spatially relative terms such as “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element(s) or feature(s) as illustrated in the figures.
- the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
- the apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
- the term “about” as used herein indicates the value of a given quantity that can vary based on a particular technology node associated with the subject semiconductor device. In some embodiments, based on the particular technology node, the term “about” can indicate a value of a given quantity that varies within, for example, 5-30% of the value (e.g., ⁇ 5%, ⁇ 10%, ⁇ 20%, or ⁇ 30% of the value).
- CMP Chemical mechanical planarization
- the wafer is positioned face down on a wafer holder, or carrier, and held against a polishing pad which is positioned on a flat surface referred to as a “platen.”
- the polisher can use either a rotary or orbital motion during the polishing process.
- the CMP process achieves wafer planarity by removing elevated features relative to recessed features on the wafer surface.
- the slurry is a mixture of abrasives and chemicals that are used to remove specific materials from the wafer’s surface during the CMP process.
- Precise slurry mixing and consistent batch blends are critical for achieving wafer-to-wafer (WtW) and lot-to-lot (LtL) polishing repeatability (e.g., consistent polish rate, consistent polish uniformity across the wafer and across the die, etc.).
- WtW wafer-to-wafer
- LtL lot-to-lot
- the quality of the slurry is important so that scratches on the wafer surface are avoided during the CMP process.
- the polishing pad attaches to a top surface of the platen.
- the polishing pad can be made, for example, from polyurethane due to polyurethane’s mechanical characteristics and porosity. Further, the polishing pad can include small perforations to help transport the slurry along the wafer’s surface and promote uniform polishing. The polishing pad also removes the reacted products away from the wafer surface. As the polishing pad polishes more wafers, the pad’s surface becomes flat and smooth, causing a condition referred to as “glazing.” Glazed pads cannot hold the polishing slurry—which significantly decreases the polishing rate.
- Polishing pads require regular conditioning to retard the effects of glazing.
- the purpose of conditioning is to remove old slurry particles and abraded particles from the polishing pad to extend the polishing pad’s lifetime and provide consistent polishing performance throughout its life.
- Polishing pads can be conditioned with mechanical abrasion or a deionized (DI) water jet spray that can agitate (activate) the pad’s surface and increase its roughness.
- DI deionized
- An alternative approach to activate the pad’s surface is to use a conditioning wheel (“disk”) featuring a bottom diamond surface that contacts the pad while it rotates.
- a flotation module is fluidly connected to the polishing pad to collect a CMP waste sprayed from the polishing pad.
- the flotation module includes chemicals, including a frother, a collector, and a modifier to react with the CMP waste to generate a recycled slurry.
- the recycled slurry from the flotation module can be delivered to the polisher, according to some embodiments.
- FIG. 1 illustrates a CMP system 100 (thereafter “polisher 100 ”), according to some embodiments.
- Polisher 100 can include a polishing pad 102 (thereafter “pad 102 ”) which is loaded on a rotating platen (e.g., a rotating table) 104 .
- Polisher 100 can also include a rotating substrate carrier 106 , a rotating conditioning wheel (or “disk”) 108 , a first slurry feeder 110 connected to a mixing tank 116 which mixes a fresh slurry, abrasives and DI water, and a second slurry feeder 118 .
- FIG. 1 includes selected portions of polisher 100 and other portions (not shown) may be included, such as control units, transfer modules, pumps, drains, etc.
- a substrate 112 to be polished is mounted face-down at the bottom of substrate carrier 106 so that the substrate’s top surface contacts the top surface of pad 102 .
- Substrate carrier 106 rotates substrate 112 and exerts pressure (e.g., a downforce) on it so that substrate 112 is pressed against rotating pad 102 .
- a first fluid 114 and a second fluid 120 can be dispensed on the pad’s surface, where first fluid 114 can be a mixture from mixing tank 116 and second fluid 120 can include a recycled slurry. Chemical reactions and mechanical abrasion between first fluid 114 , second fluid 120 , substrate 112 , and pad 102 can result in material removal from the top surface of substrate 112 .
- CMP waste 122 can further include the abrasives and an un-reacted slurry within first fluid 114 and second fluid 120 .
- conditioning wheel 108 can agitate the top surface of pad 102 to restore its roughness. However, this is not limiting and conditioning wheel 108 can condition pad 102 after substrate 112 has been polished and removed from polisher 100 .
- polisher 100 can be configured to polish substrates with surfaces that include different types of materials, such as silicon, germanium, arsenic, nitrogen, oxygen, and metals.
- the slurry can be a mixture of chemicals that can include one or more abrasives, an oxidizer, a chelator, a surfactant, a corrosion inhibitor, a wetting agent, a removal rate enhancer, a biocide, a pH adjuster, and water.
- An ingredient of the slurry can be based on chemical components, such as silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), cerium dioxide (CeC 2 ), carbon (C), silicon carbide (SiC), or titanium dioxide (TiO 2 ).
- the one or more abrasives can include particles of SiO 2 , CeO 2 , Al 2 O 3 , zirconium oxide (ZrO 2 ), TiO 2 , iron oxide (Fe 2 O 3 ), zinc oxide (ZnO), or any other suitable material.
- the physical and mechanical properties of pad 102 can depend on the material to be removed from substrate 112 .
- the material to be removed from substrate 112 For example, copper polishing, copper barrier polishing, tungsten polishing, shallow trench isolation polishing, oxide polishing, or buff polishing require different type of pads in terms of materials, porosity, and stiffness.
- the pads used in a polisher, like polisher 100 should exhibit some rigidity to uniformly polish the substrate surface.
- Pads, like pad 102 can be a stack of soft and hard materials that can conform to some extent to the local topography of substrate 112 .
- pad 102 can be thermoset or thermoplastic.
- Pad 102 can also include urethane or porous polymeric materials with a pore size between about 1 and about 500 ⁇ m.
- polisher 100 can further include a flotation module 124 to recycle slurry from CMP waste 122 , where flotation module 124 can include an inlet 123 and an outlet 125 .
- CMP waste 122 generated from substrate polishing is collected and introduced into inlet 123 of flotation module 124 .
- CMP waste 122 reacts with chemicals in flotation module 124 , where the chemicals can include a frother, a modifier, and a collector.
- a flotation process within flotation module 124 removes most of CMP by-products and abrasives from CMP waste 122 , and therefore extracts a recycled slurry from CMP waste 122 .
- the recycled slurry is outputted at outlet 125 of flotation module 124 and is fluidly connected to second slurry feeder 118 as a source of second fluid 120 .
- flotation module 124 can include multiple inlets to receive CMP waste 122 and multiple outlets to output the recycled slurry.
- the recycled slurry from flotation module 124 is received by a filter module 126 .
- Filter module 126 can include one or more filter elements to remove particles from the recycled slurry.
- the one or more filter elements can be a resin or a filter paper to remove particles with a diameter larger than 0.5 ⁇ m.
- the filtered recycled slurry from filter module 126 can be received by a detection module 128 to examine chemical or physical properties of the filtered recycled slurry, which includes conductivity, chemical composition, chemical concentration, and/or a pH value of the filtered recycled slurry.
- a control unit associated with polisher 100 (not shown in FIG. 1 ) regulates and manages the amount of filtered recycled slurry received by second slurry feeder 118 as a source of second fluid 120 .
- FIG. 2 is an isometric view of a flotation module 200 , according to some embodiments.
- Flotation module 200 can be an embodiment of flotation module 124 of FIG. 1 .
- Flotation module 200 can include an agitator 214 and a first tank 202 , where first tank 202 includes a chemical fluid 220 .
- Chemical fluid 220 can include de-ionized (DI) water, a frother, a modifier, and/or a collector.
- DI de-ionized
- First tank 202 can include a first inlet 204 to receive a CMP waste liquid containing slurry (e.g., CMP waste 122 from polisher 100 ), a first outlet 206 configured to output a recycled slurry from the CMP waste liquid, and a second outlet 208 fluidly connected to a drain (not shown in FIG. 2 ) of polisher 100 .
- Flotation module 200 can further include a second tank 216 fluidly connected to an upper portion 240 of first tank 202 . Second tank 216 can be fluidly connected to a drain (not shown in FIG. 2 ) to dispose chemical waste from first tank 202 .
- first inlet 204 and first outlet 206 of FIG. 2 can be inlet 123 and outlet 125 of FIG. 1 , respectively.
- first outlet 206 and second outlet 208 can be located at a middle portion 242 and a bottom portion 244 of first tank 202 , respectively.
- first tank 202 can further include a second inlet 210 fluidly connected to a gas source (not shown in FIG. 2 ), where a gas (e.g., air or inert gas) from the gas source is dispensed into first tank 202 via gas dispensers 212 .
- second inlet 210 can be located at bottom portion 244 of first tank 202 .
- flotation module 200 is configured to perform a flotation process to convert the CMP waste liquid containing slurry (e.g., CMP waste 122 ) to a recycled slurry.
- the CMP waste liquid generated from substrate polishing is collected and received by first tank 202 via first inlet 204 .
- first tank 202 a portion of CMP by-products with heavy weight contained in the CMP waste liquid can start to sink and form precipitations 224 at bottom portion 244 of first tank 202 .
- Precipitations 224 are discarded towards a drain of polisher 100 via second outlet 208 .
- agitator 214 is configured to agitate chemical fluid 220 and the CMP waste liquid in first tank 202 .
- Such agitation process facilitates the frother to form bubbles in first tank 202 .
- the gas introduced via second inlet 210 can be another source to promote the frother to form bubbles.
- the bubbles contain air or gas and therefore have a tendency to float towards upper portion 240 of first tank 202 .
- Abrasives and another portion of CMP by-products in the waste liquid react with the modifier and the collector to form intermediate molecules.
- the intermediate molecules further bond with the bubbles to form agglomerations 222 .
- a majority of agglomerations 222 float toward upper portion 240 of first tank 202 .
- a portion of agglomerations 222 further drift or diffuse to second tank 216 and are expelled to a drain (not shown at FIG. 2 ) fluidly connected to second tank 216 .
- a majority portion of the CMP waste e.g., abrasives and CMP by-products
- the CMP waste liquid at middle portion 242 of first tank 202 includes less abrasives and CMP by-products and can be outputted as a recycled slurry via first outlet 206 of flotation module 200 .
- agitator 204 can include a fan in chemical fluid 220 and a bearing supporting the fan.
- the bearing can be coupled to a motion mechanism (not shown in FIG. 2 ), such as pump or a motor, to rotate the fan.
- agitator 204 can be an ultrasonic device or an oscillator device to facilitate the frother in first tank 202 to form bubbles.
- flotation module 200 can further include a heating device to control a temperature of chemical fluid 220 in first tank 202 .
- the flotation process occurs at or above room temperature (e.g., 25° C.).
- FIG. 3 is a isometric view of a flotation module 300 , according to some embodiments.
- Flotation module 300 can be an embodiment of flotation module 124 in FIG. 1 .
- flotation module 300 can include a flotation module 300 A fluidly connected to another flotation module 300 B, where an outlet 306 A of flotation module 300 A is fluidly connected to an inlet 304 B of flotation module 300 B.
- Both flotation module 300 A and 300 B have similar configurations and functionality as flotation module 200 .
- a CMP waste liquid containing slurry (e.g., CMP waste 122 ) is received by flotation module 300 A via an inlet 304 A.
- a first recycled slurry from outlet 306 A of flotation module 300 A enters flotation module 300 B via an inlet 304 B.
- the final recycled slurry is outputted from flotation module 300 B via an outlet 306 B.
- the flotation process described above with respect to FIG. 2 can be performed by each of flotation modules 300 A and 300 B.
- the final recycled slurry from flotation module 300 B includes less CMP waste than the first recycled slurry.
- flotation module 300 can fluidly connect more than two flotation modules 200 in series to output a recycled slurry with improved purity.
- FIGS. 4 A- 4 C illustrate details of the flotation process described above with respect to flotation modules 200 and 300 , according to some embodiments.
- the flotation process converts a CMP waste fluid (e.g., CMP waste 122 ) to a recycled slurry.
- the flotation process can include a frothing process, an adjustment process, and a collecting process.
- FIG. 4 A shows the frothing process performed by a frother 404 scattered within a chemical liquid 420 , where chemical liquid 420 can be similar to chemical fluid 220 described above.
- Frother 404 can be a molecule which has a polar and a nonpolar bond. The polar bond attracts water molecules in chemical liquid 420 and causes frother 404 to gather at a surface level 406 of chemical liquid 420 .
- a non-dissolvable gas e.g., air or inert gas
- frother 404 can accumulate at the boundary of each bubble 408 , where the polar bond and nonpolar bond of each frother 404 faces outward and inward of each bubble 408 , respectively.
- Each bubble 408 contains the non-dissolvable gas and therefore has buoyance to float upward in chemical liquid 420 .
- frother 404 can be alcohol (C 5 H 11 OH), phenol (C 6 H 5 OH), or wood oil including pinene (C 10 H 16 ), terpineol (C 10 H 17 OH), citronellal (C 10 H 18 O), or any other suitable material.
- frother 404 can be an organic or an inorganic material.
- FIG. 4 B shows the adjustment and the collecting processes performed by collectors 432 and modifiers 424 , respectively.
- the collecting process can be configured to bind abrasives or CMP by-products from the CMP waste to bubbles 408 .
- chemical bonds of collectors 432 can connect with frothers 404 located at a boundary of bubble 408 , while other chemical bonds of collectors 432 can tie to the abrasives or CMP by-products.
- the adjustment process can be configured to alter a hydrophobicity or hydrophilicity property of the abrasives or CMP by-products via modifier 424 .
- molecules 426 can be an abrasive in a slurry used by a polisher (e.g., polisher 100 ).
- Molecules 426 can also be a CMP by-product, such as a chemical reactant or a removed material generated by polishing substrates.
- molecules 426 can include silicon, silicon hydroxide (Si(OH) 4 ), germanium, arsenic, metal ions such as copper, tungsten, aluminum, cobalt, ruthenium, titanium, cerium, or any other materials.
- Molecules 426 can have a property of hydrophilicity, where each molecule 426 may have one or more OH-bonds 428 .
- Molecules 426 therefore have favorable interactions with surrounding water molecules, such as forming polar bonding in between. As a result, molecules 426 tie to surrounding water molecules and are difficult to be moved away from its local position in chemical liquid 420 . Modifiers 424 can be applied to release such tight binding by converting molecules 426 from a property of hydrophilicity (e.g., in favor to bond with water) to hydrophobicity (e.g., against a bond with water). With less attraction to the surrounding water molecules, the converted molecules are easier to be captured by collector 432 . Therefore, the modifying process via modifier 424 can improve an efficiency of the collecting process via collector 422 .
- hydrophilicity e.g., in favor to bond with water
- hydrophobicity e.g., against a bond with water
- the collecting process can also include tying molecule 426 to collector 432 via one or more oxygen bonds included in molecule 426 .
- collector 432 can be a molecule that forms a bond with frother 404 . In some embodiments, collector 432 can be a molecule that bonds with one or more oxygen bonds from molecule 426 , where molecule 426 is from CMP waste. In some embodiments, collector 432 can be a fatty acid or a soap with a molecular structure that includes R-COOH, or R-COO- M, where R represents a chain of hydrocarbon (e.g., C n H 2n+1 ) and M represents metal (e.g., sodium (Na), potassium (K), or any other metal elements). In some embodiments, collector 432 can be sodium dithiophosphate (Na 3 PS 2 O 2 ) or ethyl amine (NC 2 C 2 H 5 ). In some embodiments, collector 432 can be an organic or an inorganic material.
- modifier 424 can be a pH adjuster, such as sodium carbonate (Na 2 CO 3 ), sodium hydroxide (NaOH), or any other suitable material.
- modifier 424 can be a dispersant, such as sodium silicate (Na 2 SiO 3 ), a molecule containing molecular structure of phosphate (PO 3 - ), or any other suitable material.
- modifier 424 can be an agglomerant, such as potassium alum (KAl(SO 4 ) 2 ⁇ 12H 2 O) or any other suitable material.
- modifier 424 can be an inhibitor, such as sodium mercaptoacetate (HSCH 2 COONa) or any other suitable material.
- modifier 424 can be an activator, such as sodium carbonate or any other suitable material.
- modifier 424 can be an organic or an inorganic material.
- FIG. 4 C shows an exemplary agglomeration 422 formed by the flotation process.
- Agglomeration 422 is similar to agglomeration 222 described above.
- the hydrophilicity or hydrophobicity property of molecules 426 is modified by the adjustment process via modifiers 424 .
- One or more collectors 432 then capture and bind modified molecules 426 to bubble 408 created by the frothing process via frother 404 .
- agglomeration 422 is formed and is an assembly of bubble 408 connecting with intermediate molecules 440 , where each intermediate molecule 440 includes modified molecules 426 fastening together with collectors 432 .
- agglomeration 422 has tendency to move toward a surface level of chemical liquid 420 .
- molecules 426 e.g., CMP waste
- the flotation process can be moved away by agglomerations 422 and are collected near the surface level of chemical liquid 420 by the flotation process.
- FIG. 5 is an exemplary method 500 for operating a polisher using a recycled slurry where the recycled slurry is recycled from a CMP waste generated by a polishing process, according to some embodiments.
- This disclosure is not limited to this operational description. It is to be appreciated that additional operations may be performed. Moreover, not all operations may be needed to perform the disclosure provided herein. Further, some of the operations may be performed simultaneously or in a different order than shown in FIG. 5 . In some implementations, one or more other operations may be performed in addition to or in place of the presently described operations.
- method 500 is described with reference to the embodiments of FIGS. 1 - 4 . However, method 500 is not limited to these embodiments.
- Exemplary method 500 begins with operation 510 , where a substrate is transferred into a polisher.
- substrate 112 can be transferred into polisher 100 and placed under substrate carrier 106 so that the side of the substrate to be polished is facing polishing pad 102 .
- the top surface of substrate 112 can be positioned against the top surface of pad 102 .
- Substrate 112 can be transferred into polisher 100 , for example, from a transfer module with the help of a robotic arm, which is not shown in FIG. 1 merely for simplicity.
- the polishing operation can include dispensing a slurry 114 and a recycled slurry 120 through a first slurry feeder 110 and a second slurry feeder 118 over pad 102 and subsequently rotating substrate carrier 106 and pad 102 (e.g., through platen 104 ).
- substrate carrier 106 and pad 102 can rotate in the same direction; however, their respective rotational speeds, or angular speeds, can be different.
- a CMP waste 122 is generated and sprayed off edge of pad 102 , where CMP waste 122 can include un-reacted slurry, abrasives, and CMP by-products that include reactants and removed material caused by polishing substrate 112 .
- CMP waste 122 is collected and introduced to a flotation module, where the flotation module initiates a flotation procedure to convert the CMP waste fluid to a recycled slurry.
- CMP waste 122 can be received by inlet 204 of flotation module 200 by a pump associated with polisher 100 .
- agitator 214 can initiate an agitation process to mix CMP waste 122 with chemicals in flotation module 200 , where the chemicals can include a frother, a modifier and a collector. The agitation process triggers frother to form bubbles.
- a gas can be introduced into flotation module 200 to promote the frother to form the bubbles.
- Modifiers can be used to alter the hydrophobicity or hydrophilicity property of abrasives and CMP by-products in CMP waste 122 . This can enhance the efficiency of collectors to tie the abrasives and the CMP by-products together with the bubbles to form agglomerations 222 in flotation module 200 . With the buoyance of the bubbles, such agglomerations 222 have tendency to float toward an upper portion of flotation module 200 . In other words, a majority of abrasives and CMP by-products are carried away by agglomerations 222 and transported toward the upper portion of flotation module 200 . As a result, CMP waste 122 located at the middle portion of flotation module 200 has a purer slurry and can therefore be used as recycled slurry.
- the floatation module can further include a heater device to provide heat to facilitate the flotation procedure.
- the flotation module can be configured to recycle slurry from CMP waste fluid from a variety of CMP processes, including CMP processes for metals, dielectrics, and other materials. Additionally, the flotation module can be used to recycle slurry from CMP waste fluid from CMP processes employed in different areas of chip manufacturing, such as front end of the line (FEOL), middle of the line (MOL), and back end of the line (BEOL). Further, the flotation module can be used to recycle slurry from CMP waste fluid from a CMP process for any technology area that includes the CMP process.
- CMP processes for metals, dielectrics, and other materials.
- the flotation module can be used to recycle slurry from CMP waste fluid from CMP processes employed in different areas of chip manufacturing, such as front end of the line (FEOL), middle of the line (MOL), and back end of the line (BEOL). Further, the flotation module can be used to recycle slurry from CMP waste fluid from a CMP process for any technology area that includes the CMP process.
- the recycled slurry from outlet 206 of FIG. 2 is received by slurry feeder 118 of FIG. 1 using a pump associated with polisher 100 .
- the recycled slurry dispensed by slurry dispenser 118 can be mixed with a fresh slurry dispensed by slurry feeder 110 on pad 102 for polishing substrate 112 .
- a ratio between the recycled slurry and the fresh slurry dispensed on pad 102 can be controlled by a control unit associated with polisher 100 .
- the control unit can manage operations of flotation module 200 and determine and regulate an output flux or quantity of the recycled slurry.
- the recycled slurry can be received by filter module 126 shown in FIG. 1 .
- Filter module 126 can be equipped with one or more filtering elements to remove particles from the recycled slurry.
- filter module 126 can be configured to remove particles larger than 0.5 ⁇ m in diameter. The recycled slurry with reduced particles can provide reliable polishing for substrate 112 on pad 102 .
- the recycled slurry from filter module 126 can be received by a detection module 128 shown in FIG. 1 .
- the detection module is configured to examine properties of the recycled slurry, which can include conductivity, pH value, purity, and chemical composition. This information can be sent to a control unit associated with polisher 100 , where the control unit regulates a flux of the recycled slurry to slurry dispenser 118 based on the information.
- the apparatus can include a flotation module to recycle the used slurry, which contains a CMP waste.
- the flotation module can include chemicals to conduct a flotation process to separate the CMP waste from the used slurry, where the chemicals can include a frother, a collector, and a modifier.
- the flotation process can include forming bubbles via the frother, modifying a hydrophobicity or hydrophilicity property of the CMP waste via the modifier, and bonding the modified CMP waste with the bubbles via the collector.
- Such polishing apparatus equipped with the flotation module can cut amount of slurry consumption, thus reducing manufacturing cost and overhead of operating the polishing apparatus.
- a polishing system includes a pad on a rotation platen, a first feeder and a second feeder where each of the first and the second feeder is configured to dispense a slurry on the pad, and a flotation module configured to process a first fluid sprayed from the pad.
- the flotation module further includes an oulet fluidly connected to the second feeder and configured to output a second fluid, and a first tank configured to store a plurality of chemicals where the plurality of chemicals include a frother and a collector configured to chemically bond with chemicals in the first fluid.
- a flotation module includes a tank configured to store a first fluid including a frother, and an agitator configured to cause the frother to create bubbles in the first fluid in the tank.
- the tank further includes an inlet configured to provide a second fluid to the tank, a first outlet configured to output a recycled slurry, and a second outlet fluidly connect to a drain.
- a method for operating a chemical mechanical planarization (CMP) system includes supplying a first fluid and a second fluid where the first fluid includes a slurry, polishing a substrate with the first and the second fluids, collecting, by a flotation module, a third fluid where the third fluid is created by polishing the substrate, and extracting a fourth fluid from the third fluid where the fourth fluid is fluidly connected to a source of the second fluid.
- CMP chemical mechanical planarization
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
The present disclosure describes an apparatus and a method for a chemical mechanical polishing (CMP) process that recycles used slurry as another slurry supply. The apparatus includes a pad on a rotation platen, a first feeder and a second feeder where each of the first and the second feeder is configured to dispense a slurry on the pad, and a flotation module configured to process a first fluid sprayed from the pad. The flotation module further includes an oulet fluidly connected to the second feeder and configured to output a second fluid, and a first tank configured to store a plurality of chemicals where the plurality of chemicals include a frother and a collector configured to chemically bond with chemicals in the first fluid.
Description
- The present application is a divisional of U.S. Non-provisional Pat. Application No. 16/252,101, filed on Jan. 18, 2019, titled “Slurry Recycling for Chemical Mechanical Polishing System,” which claims the benefit of U.S. Provisional Pat. Application No. 62/724,910, filed on Aug. 30, 2018, titled “Slurry Recycling for Chemical Mechanical Polishing (CMP) System,” which are both incorporated by reference herein in their entireties.
- Polishing semiconductor wafers with a chemical mechanical planarization (CMP) system requires a continuous supply of slurry. The continuous supply of slurry contributes to a significant cost of fabricating semiconductor devices.
- Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with common practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
-
FIG. 1 illustrates a CMP system, according to some embodiments. -
FIG. 2 illustrates a cross-sectional view of a flotation module, according to some embodiments. -
FIG. 3 illustrates a cross-sectional view of another flotation module, according to some embodiments. -
FIGS. 4A-4C illustrate a flotation process in a flotation module, according to some embodiments. -
FIG. 5 illustrates a method for recycling slurry for a polishing tool, according to some embodiments. - The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed that are between the first and second features, such that the first and second features are not in direct contact.
- Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
- The term “about” as used herein indicates the value of a given quantity that can vary based on a particular technology node associated with the subject semiconductor device. In some embodiments, based on the particular technology node, the term “about” can indicate a value of a given quantity that varies within, for example, 5-30% of the value (e.g., ±5%, ±10%, ±20%, or ±30% of the value).
- Chemical mechanical planarization (CMP) is a planarization technique that can be used to planarize a wafer’s surface by a relative motion between a wafer and a polishing pad in the presence of a slurry while applying pressure (e.g., a downforce) to the wafer. The slurry and the polishing pad are referred to as “consumables” because of their continual usage and replacement. For ease of reference, the CMP system is also referred to herein as a “polisher.”
- In the polisher, the wafer is positioned face down on a wafer holder, or carrier, and held against a polishing pad which is positioned on a flat surface referred to as a “platen.” The polisher can use either a rotary or orbital motion during the polishing process. The CMP process achieves wafer planarity by removing elevated features relative to recessed features on the wafer surface.
- The slurry is a mixture of abrasives and chemicals that are used to remove specific materials from the wafer’s surface during the CMP process. Precise slurry mixing and consistent batch blends are critical for achieving wafer-to-wafer (WtW) and lot-to-lot (LtL) polishing repeatability (e.g., consistent polish rate, consistent polish uniformity across the wafer and across the die, etc.). The quality of the slurry is important so that scratches on the wafer surface are avoided during the CMP process.
- The polishing pad attaches to a top surface of the platen. The polishing pad can be made, for example, from polyurethane due to polyurethane’s mechanical characteristics and porosity. Further, the polishing pad can include small perforations to help transport the slurry along the wafer’s surface and promote uniform polishing. The polishing pad also removes the reacted products away from the wafer surface. As the polishing pad polishes more wafers, the pad’s surface becomes flat and smooth, causing a condition referred to as “glazing.” Glazed pads cannot hold the polishing slurry—which significantly decreases the polishing rate.
- Polishing pads require regular conditioning to retard the effects of glazing. The purpose of conditioning is to remove old slurry particles and abraded particles from the polishing pad to extend the polishing pad’s lifetime and provide consistent polishing performance throughout its life. Polishing pads can be conditioned with mechanical abrasion or a deionized (DI) water jet spray that can agitate (activate) the pad’s surface and increase its roughness. An alternative approach to activate the pad’s surface is to use a conditioning wheel (“disk”) featuring a bottom diamond surface that contacts the pad while it rotates.
- To maintain yield and quality of wafer polishing for volume manufacturing, it is desirable to continuously flow fresh slurry onto the polishing pad during the CMP process. And, for CMP processes that require a high removal rate, a higher flow rate of fresh slurry onto the polishing pad is required. It is therefore necessary to prepare a large quantity of fresh slurry to operate the polisher.
- As the pad rotates to polish the wafers, a portion of fresh slurry reacts with the wafer’s surface. This reaction creates by-products including strayed particles from the polishing pad and reactants between the slurry and wafers. The un-reacted fresh slurry, the abrasives, and the by-products become waste that is sprayed off the edge of the polishing pad and carried away by a drain. The constant supply of fresh slurry and resulting waste result in a significant manufacturing cost and overhead (e.g., environment pollution) to operate the polisher.
- The present disclosure is directed to reduce manufacturing cost and overhead of operating the polisher by recycling slurry sprayed off the edge of the polishing pad. In some embodiments, a flotation module is fluidly connected to the polishing pad to collect a CMP waste sprayed from the polishing pad. In some embodiments, the flotation module includes chemicals, including a frother, a collector, and a modifier to react with the CMP waste to generate a recycled slurry. The recycled slurry from the flotation module can be delivered to the polisher, according to some embodiments.
-
FIG. 1 illustrates a CMP system 100 (thereafter “polisher 100”), according to some embodiments.Polisher 100 can include a polishing pad 102 (thereafter “pad 102”) which is loaded on a rotating platen (e.g., a rotating table) 104.Polisher 100 can also include a rotatingsubstrate carrier 106, a rotating conditioning wheel (or “disk”) 108, afirst slurry feeder 110 connected to amixing tank 116 which mixes a fresh slurry, abrasives and DI water, and asecond slurry feeder 118. For illustration purposes,FIG. 1 includes selected portions ofpolisher 100 and other portions (not shown) may be included, such as control units, transfer modules, pumps, drains, etc. - A
substrate 112 to be polished is mounted face-down at the bottom ofsubstrate carrier 106 so that the substrate’s top surface contacts the top surface ofpad 102.Substrate carrier 106 rotatessubstrate 112 and exerts pressure (e.g., a downforce) on it so thatsubstrate 112 is pressed against rotatingpad 102. Afirst fluid 114 and asecond fluid 120 can be dispensed on the pad’s surface, wherefirst fluid 114 can be a mixture from mixingtank 116 andsecond fluid 120 can include a recycled slurry. Chemical reactions and mechanical abrasion betweenfirst fluid 114,second fluid 120,substrate 112, andpad 102 can result in material removal from the top surface ofsubstrate 112. The removed material are CMP by-products and are constantly sprayed off edge ofpad 102 as aCMP waste 122. As a result,CMP waste 122 can further include the abrasives and an un-reacted slurry withinfirst fluid 114 andsecond fluid 120. At the same time,conditioning wheel 108 can agitate the top surface ofpad 102 to restore its roughness. However, this is not limiting andconditioning wheel 108 can condition pad 102 aftersubstrate 112 has been polished and removed frompolisher 100. - In some embodiments,
polisher 100 can be configured to polish substrates with surfaces that include different types of materials, such as silicon, germanium, arsenic, nitrogen, oxygen, and metals. - In some embodiments, the slurry can be a mixture of chemicals that can include one or more abrasives, an oxidizer, a chelator, a surfactant, a corrosion inhibitor, a wetting agent, a removal rate enhancer, a biocide, a pH adjuster, and water. An ingredient of the slurry can be based on chemical components, such as silicon dioxide (SiO2), aluminum oxide (Al2O3), cerium dioxide (CeC2), carbon (C), silicon carbide (SiC), or titanium dioxide (TiO2). Depending on the substrate polishing application, the one or more abrasives can include particles of SiO2, CeO2, Al2O3, zirconium oxide (ZrO2), TiO2, iron oxide (Fe2O3), zinc oxide (ZnO), or any other suitable material.
- In some embodiments, the physical and mechanical properties of pad 102 (e.g., roughness, material selection, porosity, stiffness, etc.) can depend on the material to be removed from
substrate 112. For example, copper polishing, copper barrier polishing, tungsten polishing, shallow trench isolation polishing, oxide polishing, or buff polishing require different type of pads in terms of materials, porosity, and stiffness. The pads used in a polisher, likepolisher 100, should exhibit some rigidity to uniformly polish the substrate surface. Pads, likepad 102, can be a stack of soft and hard materials that can conform to some extent to the local topography ofsubstrate 112. By way of example and not limitation, pad 102 can be thermoset or thermoplastic.Pad 102 can also include urethane or porous polymeric materials with a pore size between about 1 and about 500 µm. - Referring to
FIG. 1 ,polisher 100 can further include aflotation module 124 to recycle slurry fromCMP waste 122, whereflotation module 124 can include aninlet 123 and anoutlet 125.CMP waste 122 generated from substrate polishing is collected and introduced intoinlet 123 offlotation module 124.CMP waste 122 reacts with chemicals inflotation module 124, where the chemicals can include a frother, a modifier, and a collector. In some embodiments, a flotation process withinflotation module 124 removes most of CMP by-products and abrasives fromCMP waste 122, and therefore extracts a recycled slurry fromCMP waste 122. The recycled slurry is outputted atoutlet 125 offlotation module 124 and is fluidly connected tosecond slurry feeder 118 as a source ofsecond fluid 120. In some embodiments,flotation module 124 can include multiple inlets to receiveCMP waste 122 and multiple outlets to output the recycled slurry. - In some embodiments, the recycled slurry from
flotation module 124 is received by afilter module 126.Filter module 126 can include one or more filter elements to remove particles from the recycled slurry. For example, the one or more filter elements can be a resin or a filter paper to remove particles with a diameter larger than 0.5 µm. The filtered recycled slurry fromfilter module 126 can be received by adetection module 128 to examine chemical or physical properties of the filtered recycled slurry, which includes conductivity, chemical composition, chemical concentration, and/or a pH value of the filtered recycled slurry. Depending on the properties of the filtered recycle slurry, a control unit associated with polisher 100 (not shown inFIG. 1 ) regulates and manages the amount of filtered recycled slurry received bysecond slurry feeder 118 as a source ofsecond fluid 120. -
FIG. 2 is an isometric view of aflotation module 200, according to some embodiments.Flotation module 200 can be an embodiment offlotation module 124 ofFIG. 1 .Flotation module 200 can include anagitator 214 and afirst tank 202, wherefirst tank 202 includes achemical fluid 220.Chemical fluid 220 can include de-ionized (DI) water, a frother, a modifier, and/or a collector.First tank 202 can include afirst inlet 204 to receive a CMP waste liquid containing slurry (e.g.,CMP waste 122 from polisher 100), afirst outlet 206 configured to output a recycled slurry from the CMP waste liquid, and asecond outlet 208 fluidly connected to a drain (not shown inFIG. 2 ) ofpolisher 100.Flotation module 200 can further include asecond tank 216 fluidly connected to anupper portion 240 offirst tank 202.Second tank 216 can be fluidly connected to a drain (not shown inFIG. 2 ) to dispose chemical waste fromfirst tank 202. - In some embodiments,
first inlet 204 andfirst outlet 206 ofFIG. 2 can beinlet 123 andoutlet 125 ofFIG. 1 , respectively. In some embodiments,first outlet 206 andsecond outlet 208 can be located at amiddle portion 242 and abottom portion 244 offirst tank 202, respectively. In some embodiments,first tank 202 can further include asecond inlet 210 fluidly connected to a gas source (not shown inFIG. 2 ), where a gas (e.g., air or inert gas) from the gas source is dispensed intofirst tank 202 viagas dispensers 212. In some embodiments,second inlet 210 can be located atbottom portion 244 offirst tank 202. - Referring to
FIG. 2 ,flotation module 200 is configured to perform a flotation process to convert the CMP waste liquid containing slurry (e.g., CMP waste 122) to a recycled slurry. The CMP waste liquid generated from substrate polishing is collected and received byfirst tank 202 viafirst inlet 204. Infirst tank 202, a portion of CMP by-products with heavy weight contained in the CMP waste liquid can start to sink and formprecipitations 224 atbottom portion 244 offirst tank 202.Precipitations 224 are discarded towards a drain ofpolisher 100 viasecond outlet 208. At the same time,agitator 214 is configured to agitatechemical fluid 220 and the CMP waste liquid infirst tank 202. Such agitation process facilitates the frother to form bubbles infirst tank 202. In some embodiments, the gas introduced viasecond inlet 210 can be another source to promote the frother to form bubbles. The bubbles contain air or gas and therefore have a tendency to float towardsupper portion 240 offirst tank 202. - Abrasives and another portion of CMP by-products in the waste liquid react with the modifier and the collector to form intermediate molecules. The intermediate molecules further bond with the bubbles to form
agglomerations 222. With the buoyancy of the bubbles, a majority ofagglomerations 222 float towardupper portion 240 offirst tank 202. A portion ofagglomerations 222 further drift or diffuse tosecond tank 216 and are expelled to a drain (not shown atFIG. 2 ) fluidly connected tosecond tank 216. As a result, a majority portion of the CMP waste (e.g., abrasives and CMP by-products) is removed from the CMP waste liquid by bothprecipitations 224 sinking down andagglomerations 222 floating up. Thus, the CMP waste liquid atmiddle portion 242 offirst tank 202 includes less abrasives and CMP by-products and can be outputted as a recycled slurry viafirst outlet 206 offlotation module 200. - In some embodiments,
agitator 204 can include a fan inchemical fluid 220 and a bearing supporting the fan. The bearing can be coupled to a motion mechanism (not shown inFIG. 2 ), such as pump or a motor, to rotate the fan. In some embodiments,agitator 204 can be an ultrasonic device or an oscillator device to facilitate the frother infirst tank 202 to form bubbles. - In some embodiments,
flotation module 200 can further include a heating device to control a temperature ofchemical fluid 220 infirst tank 202. In some embodiments, the flotation process occurs at or above room temperature (e.g., 25° C.). -
FIG. 3 is a isometric view of aflotation module 300, according to some embodiments.Flotation module 300 can be an embodiment offlotation module 124 inFIG. 1 . As shown inFIG. 3 ,flotation module 300 can include aflotation module 300A fluidly connected to anotherflotation module 300B, where anoutlet 306A offlotation module 300A is fluidly connected to aninlet 304B offlotation module 300B. Both 300A and 300B have similar configurations and functionality asflotation module flotation module 200. A CMP waste liquid containing slurry (e.g., CMP waste 122) is received byflotation module 300A via aninlet 304A. A first recycled slurry fromoutlet 306A offlotation module 300A entersflotation module 300B via aninlet 304B. The final recycled slurry is outputted fromflotation module 300B via anoutlet 306B. The flotation process described above with respect toFIG. 2 can be performed by each of 300A and 300B. As a result, the final recycled slurry fromflotation modules flotation module 300B includes less CMP waste than the first recycled slurry. In some embodiments,flotation module 300 can fluidly connect more than twoflotation modules 200 in series to output a recycled slurry with improved purity. -
FIGS. 4A-4C illustrate details of the flotation process described above with respect to 200 and 300, according to some embodiments. The flotation process converts a CMP waste fluid (e.g., CMP waste 122) to a recycled slurry. The flotation process can include a frothing process, an adjustment process, and a collecting process.flotation modules -
FIG. 4A shows the frothing process performed by afrother 404 scattered within achemical liquid 420, wherechemical liquid 420 can be similar tochemical fluid 220 described above.Frother 404 can be a molecule which has a polar and a nonpolar bond. The polar bond attracts water molecules inchemical liquid 420 and causes frother 404 to gather at asurface level 406 ofchemical liquid 420. When introducing a non-dissolvable gas (e.g., air or inert gas) into chemical liquid 420 (e.g., byagitator 214 in flotation module 200), a portion offrother 404 can start to froth and form bubbles 408 inchemical liquid 420. For eachbubble 408,frother 404 can accumulate at the boundary of eachbubble 408, where the polar bond and nonpolar bond of eachfrother 404 faces outward and inward of eachbubble 408, respectively. Eachbubble 408 contains the non-dissolvable gas and therefore has buoyance to float upward inchemical liquid 420. - In some embodiments,
frother 404 can be alcohol (C5H11OH), phenol (C6H5OH), or wood oil including pinene (C10H16), terpineol (C10H17OH), citronellal (C10H18O), or any other suitable material. In some embodiments,frother 404 can be an organic or an inorganic material. -
FIG. 4B shows the adjustment and the collecting processes performed bycollectors 432 andmodifiers 424, respectively. The collecting process can be configured to bind abrasives or CMP by-products from the CMP waste to bubbles 408. In the collecting process, chemical bonds ofcollectors 432 can connect withfrothers 404 located at a boundary ofbubble 408, while other chemical bonds ofcollectors 432 can tie to the abrasives or CMP by-products. The adjustment process can be configured to alter a hydrophobicity or hydrophilicity property of the abrasives or CMP by-products viamodifier 424. In referring toFIG. 4B ,molecules 426 can be an abrasive in a slurry used by a polisher (e.g., polisher 100).Molecules 426 can also be a CMP by-product, such as a chemical reactant or a removed material generated by polishing substrates. As a result,molecules 426 can include silicon, silicon hydroxide (Si(OH)4), germanium, arsenic, metal ions such as copper, tungsten, aluminum, cobalt, ruthenium, titanium, cerium, or any other materials.Molecules 426 can have a property of hydrophilicity, where eachmolecule 426 may have one or more OH-bonds 428.Molecules 426 therefore have favorable interactions with surrounding water molecules, such as forming polar bonding in between. As a result,molecules 426 tie to surrounding water molecules and are difficult to be moved away from its local position inchemical liquid 420.Modifiers 424 can be applied to release such tight binding by convertingmolecules 426 from a property of hydrophilicity (e.g., in favor to bond with water) to hydrophobicity (e.g., against a bond with water). With less attraction to the surrounding water molecules, the converted molecules are easier to be captured bycollector 432. Therefore, the modifying process viamodifier 424 can improve an efficiency of the collecting process viacollector 422. - In some embodiments, the collecting process can also include tying
molecule 426 tocollector 432 via one or more oxygen bonds included inmolecule 426. - In some embodiments,
collector 432 can be a molecule that forms a bond withfrother 404. In some embodiments,collector 432 can be a molecule that bonds with one or more oxygen bonds frommolecule 426, wheremolecule 426 is from CMP waste. In some embodiments,collector 432 can be a fatty acid or a soap with a molecular structure that includes R-COOH, or R-COO- M, where R represents a chain of hydrocarbon (e.g., CnH2n+1) and M represents metal (e.g., sodium (Na), potassium (K), or any other metal elements). In some embodiments,collector 432 can be sodium dithiophosphate (Na3PS2O2) or ethyl amine (NC2C2H5). In some embodiments,collector 432 can be an organic or an inorganic material. - In some embodiments,
modifier 424 can be a pH adjuster, such as sodium carbonate (Na2CO3), sodium hydroxide (NaOH), or any other suitable material. In some embodiments,modifier 424 can be a dispersant, such as sodium silicate (Na2SiO3), a molecule containing molecular structure of phosphate (PO3 -), or any other suitable material. In some embodiments,modifier 424 can be an agglomerant, such as potassium alum (KAl(SO4)2·12H2O) or any other suitable material. In some embodiments,modifier 424 can be an inhibitor, such as sodium mercaptoacetate (HSCH2COONa) or any other suitable material. In some embodiments,modifier 424 can be an activator, such as sodium carbonate or any other suitable material. In some embodiments,modifier 424 can be an organic or an inorganic material. -
FIG. 4C shows anexemplary agglomeration 422 formed by the flotation process.Agglomeration 422 is similar toagglomeration 222 described above. During the flotation process, the hydrophilicity or hydrophobicity property ofmolecules 426 is modified by the adjustment process viamodifiers 424. One ormore collectors 432 then capture and bind modifiedmolecules 426 tobubble 408 created by the frothing process viafrother 404. As a result,agglomeration 422 is formed and is an assembly ofbubble 408 connecting withintermediate molecules 440, where eachintermediate molecule 440 includes modifiedmolecules 426 fastening together withcollectors 432. Sincebubble 408 tends to float up inchemical liquid 420,agglomeration 422 has tendency to move toward a surface level ofchemical liquid 420. As a result, molecules 426 (e.g., CMP waste) can be moved away byagglomerations 422 and are collected near the surface level ofchemical liquid 420 by the flotation process. -
FIG. 5 is anexemplary method 500 for operating a polisher using a recycled slurry where the recycled slurry is recycled from a CMP waste generated by a polishing process, according to some embodiments. This disclosure is not limited to this operational description. It is to be appreciated that additional operations may be performed. Moreover, not all operations may be needed to perform the disclosure provided herein. Further, some of the operations may be performed simultaneously or in a different order than shown inFIG. 5 . In some implementations, one or more other operations may be performed in addition to or in place of the presently described operations. For illustrative purposes,method 500 is described with reference to the embodiments ofFIGS. 1-4 . However,method 500 is not limited to these embodiments. -
Exemplary method 500 begins withoperation 510, where a substrate is transferred into a polisher. Referring toFIG. 1 , for example,substrate 112 can be transferred intopolisher 100 and placed undersubstrate carrier 106 so that the side of the substrate to be polished is facing polishingpad 102. In other words, the top surface ofsubstrate 112 can be positioned against the top surface ofpad 102.Substrate 112 can be transferred intopolisher 100, for example, from a transfer module with the help of a robotic arm, which is not shown inFIG. 1 merely for simplicity. - In referring to
FIG. 5 , inoperation 520,substrate 112 is polished. Referring toFIG. 1 , the polishing operation can include dispensing aslurry 114 and arecycled slurry 120 through afirst slurry feeder 110 and asecond slurry feeder 118 overpad 102 and subsequently rotatingsubstrate carrier 106 and pad 102 (e.g., through platen 104). In some embodiments,substrate carrier 106 and pad 102 can rotate in the same direction; however, their respective rotational speeds, or angular speeds, can be different. Duringoperation 520, aCMP waste 122 is generated and sprayed off edge ofpad 102, whereCMP waste 122 can include un-reacted slurry, abrasives, and CMP by-products that include reactants and removed material caused by polishingsubstrate 112. - In
operation 530,CMP waste 122 is collected and introduced to a flotation module, where the flotation module initiates a flotation procedure to convert the CMP waste fluid to a recycled slurry. Referring toFIGS. 1 and 2 , for example,CMP waste 122 can be received byinlet 204 offlotation module 200 by a pump associated withpolisher 100. At the same time,agitator 214 can initiate an agitation process to mixCMP waste 122 with chemicals inflotation module 200, where the chemicals can include a frother, a modifier and a collector. The agitation process triggers frother to form bubbles. In some embodiments, a gas can be introduced intoflotation module 200 to promote the frother to form the bubbles. Modifiers can be used to alter the hydrophobicity or hydrophilicity property of abrasives and CMP by-products inCMP waste 122. This can enhance the efficiency of collectors to tie the abrasives and the CMP by-products together with the bubbles to formagglomerations 222 inflotation module 200. With the buoyance of the bubbles,such agglomerations 222 have tendency to float toward an upper portion offlotation module 200. In other words, a majority of abrasives and CMP by-products are carried away byagglomerations 222 and transported toward the upper portion offlotation module 200. As a result,CMP waste 122 located at the middle portion offlotation module 200 has a purer slurry and can therefore be used as recycled slurry. - In some embodiments, the floatation module can further include a heater device to provide heat to facilitate the flotation procedure.
- In some embodiments, the flotation module can be configured to recycle slurry from CMP waste fluid from a variety of CMP processes, including CMP processes for metals, dielectrics, and other materials. Additionally, the flotation module can be used to recycle slurry from CMP waste fluid from CMP processes employed in different areas of chip manufacturing, such as front end of the line (FEOL), middle of the line (MOL), and back end of the line (BEOL). Further, the flotation module can be used to recycle slurry from CMP waste fluid from a CMP process for any technology area that includes the CMP process.
- In
operation 540, the recycled slurry fromoutlet 206 ofFIG. 2 is received byslurry feeder 118 ofFIG. 1 using a pump associated withpolisher 100. The recycled slurry dispensed byslurry dispenser 118 can be mixed with a fresh slurry dispensed byslurry feeder 110 onpad 102 for polishingsubstrate 112. A ratio between the recycled slurry and the fresh slurry dispensed onpad 102 can be controlled by a control unit associated withpolisher 100. In some embodiments, the control unit can manage operations offlotation module 200 and determine and regulate an output flux or quantity of the recycled slurry. - In some embodiments, after outputting the recycled slurry from
flotation module 200, the recycled slurry can be received byfilter module 126 shown inFIG. 1 .Filter module 126 can be equipped with one or more filtering elements to remove particles from the recycled slurry. For example,filter module 126 can be configured to remove particles larger than 0.5 µm in diameter. The recycled slurry with reduced particles can provide reliable polishing forsubstrate 112 onpad 102. - In some embodiments, the recycled slurry from
filter module 126 can be received by adetection module 128 shown inFIG. 1 . The detection module is configured to examine properties of the recycled slurry, which can include conductivity, pH value, purity, and chemical composition. This information can be sent to a control unit associated withpolisher 100, where the control unit regulates a flux of the recycled slurry toslurry dispenser 118 based on the information. - The present disclosure provides an apparatus and a method for a CMP process that recycles used slurry as other source of slurry supply. According to some embodiments, the apparatus can include a flotation module to recycle the used slurry, which contains a CMP waste. In some embodiments, the flotation module can include chemicals to conduct a flotation process to separate the CMP waste from the used slurry, where the chemicals can include a frother, a collector, and a modifier. The flotation process can include forming bubbles via the frother, modifying a hydrophobicity or hydrophilicity property of the CMP waste via the modifier, and bonding the modified CMP waste with the bubbles via the collector. Such polishing apparatus equipped with the flotation module can cut amount of slurry consumption, thus reducing manufacturing cost and overhead of operating the polishing apparatus.
- In some embodiments, a polishing system includes a pad on a rotation platen, a first feeder and a second feeder where each of the first and the second feeder is configured to dispense a slurry on the pad, and a flotation module configured to process a first fluid sprayed from the pad. The flotation module further includes an oulet fluidly connected to the second feeder and configured to output a second fluid, and a first tank configured to store a plurality of chemicals where the plurality of chemicals include a frother and a collector configured to chemically bond with chemicals in the first fluid.
- In some embodiments, a flotation module includes a tank configured to store a first fluid including a frother, and an agitator configured to cause the frother to create bubbles in the first fluid in the tank. The tank further includes an inlet configured to provide a second fluid to the tank, a first outlet configured to output a recycled slurry, and a second outlet fluidly connect to a drain.
- In some embodiments, a method for operating a chemical mechanical planarization (CMP) system includes supplying a first fluid and a second fluid where the first fluid includes a slurry, polishing a substrate with the first and the second fluids, collecting, by a flotation module, a third fluid where the third fluid is created by polishing the substrate, and extracting a fourth fluid from the third fluid where the fourth fluid is fluidly connected to a source of the second fluid.
- It is to be appreciated that the Detailed Description section, and not the Abstract of the Disclosure section, is intended to be used to interpret the claims. The Abstract of the Disclosure section may set forth one or more but not all possible embodiments of the present disclosure as contemplated by the inventor(s), and thus, are not intended to limit the subjoined claims in any way.
- The foregoing disclosure outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art will appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art will also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
Claims (20)
1. A method of operating a polishing system, comprising:
dispensing an abrasive-containing slurry on a pad using a first feeder and a second feeder;
processing a first fluid generated from the pad using a first flotation module;
storing a plurality of chemicals in a first tank of the first flotation module, wherein the plurality of chemicals comprise a frother and a collector configured to chemically bond with chemicals in the first fluid;
dispensing a gas into the first fluid using an inlet comprising one or more gas dispensers immersed in the first fluid in the first tank; and
fluidly connecting the outlet of the first tank to an upper portion of a second tank of a second flotation module.
2. The method of claim 1 , further comprising agitating the first fluid in the first tank using an agitator.
3. The method of claim 1 , further comprising precipitating by-products from the first fluid at a bottom portion of the first tank.
4. The method of claim 1 , further comprising altering the hydrophilicity or hydrophobicity of one or more chemicals of the plurality of chemicals with a modifier.
5. The method of claim 1 , further comprising collecting used slurry from the first fluid in an upper portion of the first tank.
6. The method of claim 1 , further comprising outputting, to the second tank, a recycled portion of the first fluid from a middle portion of the first tank.
7. A method for recycling chemical mechanical planarization (CMP) waste slurry, the method comprising:
storing a fluid comprising a frother in a tank;
providing the CMP waste slurry to the tank through a first inlet;
mixing the CMP waste slurry with the fluid in the tank;
dispensing a gas through a second inlet comprising one or more dispensers immersed in the fluid in the tank;
creating, in the tank, bubbles in the fluid using an agitator; and
outputting, via an outlet of the tank, a recycled waste slurry collected in a middle portion of the tank.
8. The method of claim 7 , further comprising filtering the recycled waste slurry by removing particles using one or more filter elements in a filter module connected to the outlet of the tank.
9. The method of claim 7 , further comprising controlling a temperature of the fluid and the CMP waste slurry in the tank using a heating device.
10. The method of claim 9 , further comprising controlling the temperature of the fluid and the CMP waste slurry in the tank at a temperature at or greater than room temperature.
11. The method of claim 7 , wherein mixing the CMP waste slurry with the fluid in the tank comprises agitating the CMP waste slurry and the fluid with the agitator.
12. The method of claim 7 , further comprising forming a precipitation at a bottom portion of the tank and discarding the precipitation through a drain.
13. The method of claim 7 , further comprising inspecting, by a detection module, physical and chemical properties of the recycled waste slurry, wherein the physical and chemical properties comprise conductivity, pH value, purity, and chemical composition.
14. A method of operating a chemical mechanical planarization (CMP) system, comprising:
supplying a first fluid and a second fluid, wherein the first fluid and the second fluid comprise a slurry;
polishing a substrate with the first and the second fluids;
collecting, by a flotation module, a third fluid created by polishing the substrate; and
extracting a fourth fluid from the third fluid, wherein the fourth fluid is fluidly connected to a source of the second fluid.
15. The method of claim 14 , wherein extracting the fourth fluid comprises agitating the third fluid with an agitator.
16. The method of claim 15 , wherein agitating the third fluid further comprises generating bubbles in the third fluid.
17. The method of claim 14 , further comprising removing particles in the fourth fluid via a filter module comprising one or more filter elements.
18. The method of claim 14 , further comprising inspecting, by a detection module, chemical and physical properties of the fourth fluid.
19. The method of claim 14 , further comprising dispensing a gas through one or more dispensers immersed in the third fluid.
20. The method of claim 14 , further comprising controlling a ratio of the first and second fluids for polishing the substrate.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18/301,010 US20230256563A1 (en) | 2018-08-30 | 2023-04-14 | Slurry recycling for chemical mechanical planarization system |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862724910P | 2018-08-30 | 2018-08-30 | |
| US16/252,101 US11642754B2 (en) | 2018-08-30 | 2019-01-18 | Slurry recycling for chemical mechanical polishing system |
| US18/301,010 US20230256563A1 (en) | 2018-08-30 | 2023-04-14 | Slurry recycling for chemical mechanical planarization system |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/252,101 Division US11642754B2 (en) | 2018-08-30 | 2019-01-18 | Slurry recycling for chemical mechanical polishing system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20230256563A1 true US20230256563A1 (en) | 2023-08-17 |
Family
ID=69640939
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/252,101 Active 2041-07-13 US11642754B2 (en) | 2018-08-30 | 2019-01-18 | Slurry recycling for chemical mechanical polishing system |
| US17/870,251 Pending US20220355441A1 (en) | 2018-08-30 | 2022-07-21 | Slurry recycling for chemical mechanical polishing system |
| US18/301,010 Pending US20230256563A1 (en) | 2018-08-30 | 2023-04-14 | Slurry recycling for chemical mechanical planarization system |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/252,101 Active 2041-07-13 US11642754B2 (en) | 2018-08-30 | 2019-01-18 | Slurry recycling for chemical mechanical polishing system |
| US17/870,251 Pending US20220355441A1 (en) | 2018-08-30 | 2022-07-21 | Slurry recycling for chemical mechanical polishing system |
Country Status (3)
| Country | Link |
|---|---|
| US (3) | US11642754B2 (en) |
| CN (1) | CN110871408B (en) |
| TW (1) | TWI769377B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11244834B2 (en) * | 2018-07-31 | 2022-02-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Slurry recycling for chemical mechanical polishing system |
| CN114952626B (en) * | 2022-05-11 | 2024-01-12 | 宁夏盾源聚芯半导体科技股份有限公司 | Gravity liquid supply system for polishing machine |
| EP4561754A1 (en) * | 2022-07-29 | 2025-06-04 | A.N.T Trust | Froth flotation cell |
Family Cites Families (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4026799A (en) * | 1976-01-09 | 1977-05-31 | Hildreth Edward C | Apparatus for removing immiscible solids and liquids from a liquid |
| US4425227A (en) * | 1981-10-05 | 1984-01-10 | Gnc Energy Corporation | Ambient froth flotation process for the recovery of bitumen from tar sand |
| JPH06211B2 (en) | 1986-11-19 | 1994-01-05 | 三菱重工業株式会社 | Flotation device |
| JP2606156B2 (en) * | 1994-10-14 | 1997-04-30 | 栗田工業株式会社 | Method for collecting abrasive particles |
| US5702612A (en) * | 1995-07-20 | 1997-12-30 | University Of Kentucky Research Foundation | Method and apparatus for flotation separation |
| JPH1110540A (en) * | 1997-06-23 | 1999-01-19 | Speedfam Co Ltd | Slurry recycling system of cmp device and its method |
| JP2000071172A (en) * | 1998-08-28 | 2000-03-07 | Nec Corp | Regenerative unit for and regenerative method of slurry for mechanochemical polishing |
| JP3426149B2 (en) * | 1998-12-25 | 2003-07-14 | 富士通株式会社 | Method and apparatus for recycling polishing waste liquid in semiconductor manufacturing |
| JP3778747B2 (en) * | 1999-11-29 | 2006-05-24 | 株式会社荏原製作所 | Abrasive fluid supply device |
| US20020045349A1 (en) | 2000-03-23 | 2002-04-18 | Rhoades Robert L. | Method for chemical-mechanical-polishing a substrate |
| US20010052500A1 (en) * | 2000-06-16 | 2001-12-20 | Applied Materials, Inc. | Metal removal system and method for chemical mechanical polishing |
| WO2002001618A1 (en) * | 2000-06-27 | 2002-01-03 | Nymtech Co., Ltd. | Slurry recycling system and method for cmp apparatus |
| US6623355B2 (en) | 2000-11-07 | 2003-09-23 | Micell Technologies, Inc. | Methods, apparatus and slurries for chemical mechanical planarization |
| US6458020B1 (en) * | 2001-11-16 | 2002-10-01 | International Business Machines Corporation | Slurry recirculation in chemical mechanical polishing |
| US7166015B2 (en) * | 2002-06-28 | 2007-01-23 | Lam Research Corporation | Apparatus and method for controlling fluid material composition on a polishing pad |
| JP4335541B2 (en) | 2003-01-20 | 2009-09-30 | 隼次 芝田 | Method and apparatus for separating SiO2 particles and SiC particles, and separation and recovery SiC |
| JPWO2008020507A1 (en) | 2006-08-16 | 2010-01-07 | 旭硝子株式会社 | Abrasive recovery method and apparatus from abrasive slurry waste liquid |
| WO2009042372A1 (en) * | 2007-09-25 | 2009-04-02 | Concord Materials Technologies Llc | Foaming of liquids |
| WO2010111291A2 (en) | 2009-03-25 | 2010-09-30 | Applied Materials, Inc. | Point of use recycling system for cmp slurry |
| CA2787089A1 (en) * | 2010-02-05 | 2011-08-11 | Glenn S. Dobby | Froth flotation and apparatus for same |
| JP5905191B2 (en) | 2010-06-30 | 2016-04-20 | 太平洋セメント株式会社 | Flotation processing system |
| EP2481482A1 (en) * | 2011-01-26 | 2012-08-01 | ABB Research Ltd. | Control of a froth flotation process with a model based controller using the online measurement of the surface tension |
| MY176270A (en) * | 2011-12-27 | 2020-07-25 | Konica Minolta Inc | Method for separating polishing material and regenerated polishing material |
| JP2015155132A (en) | 2014-02-21 | 2015-08-27 | パナソニックIpマネジメント株式会社 | separation method |
| US20160082446A1 (en) * | 2014-09-24 | 2016-03-24 | Omnis Mineral Technologies, Llc | Flotation separation of fine coal particles from ash-forming particles |
| US10441958B2 (en) | 2015-08-28 | 2019-10-15 | Hunter Process Technologies Pty Limited | System, method and apparatus for froth flotation |
| CN106733219B (en) | 2017-01-22 | 2019-05-17 | 彭朝辉 | A method of utilizing the additive froth flotation Non-ferrous minerals of Non-ferrous minerals flotation agent |
-
2019
- 2019-01-18 US US16/252,101 patent/US11642754B2/en active Active
- 2019-04-24 TW TW108114363A patent/TWI769377B/en active
- 2019-05-06 CN CN201910372727.5A patent/CN110871408B/en active Active
-
2022
- 2022-07-21 US US17/870,251 patent/US20220355441A1/en active Pending
-
2023
- 2023-04-14 US US18/301,010 patent/US20230256563A1/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| US20220355441A1 (en) | 2022-11-10 |
| US11642754B2 (en) | 2023-05-09 |
| TW202012108A (en) | 2020-04-01 |
| US20200070308A1 (en) | 2020-03-05 |
| TWI769377B (en) | 2022-07-01 |
| CN110871408A (en) | 2020-03-10 |
| CN110871408B (en) | 2024-10-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20230256563A1 (en) | Slurry recycling for chemical mechanical planarization system | |
| US20220157618A1 (en) | Slurry recycling for chemical mechanical polishing system | |
| US6152805A (en) | Polishing machine | |
| KR102230096B1 (en) | Method for polishing gan single crystal material | |
| TW513336B (en) | Cleaning and slurry distribution system assembly for use in chemical mechanical polishing apparatus | |
| US8133097B2 (en) | Polishing apparatus | |
| US20010041508A1 (en) | Method and apparatuses for planarizing microelectronic substrate assemblies | |
| US20130210323A1 (en) | CMP Pad Cleaning Apparatus | |
| US6346032B1 (en) | Fluid dispensing fixed abrasive polishing pad | |
| US10800004B2 (en) | System and method of chemical mechanical polishing | |
| CN107532067A (en) | Composition for polishing | |
| US20220016742A1 (en) | Dressing apparatus and polishing apparatus | |
| CN1826684A (en) | Method for polishing wafer | |
| US7097677B2 (en) | Polishing slurry | |
| US8662963B2 (en) | Chemical mechanical polishing system | |
| CN100443260C (en) | A non-damaging grinding method for hard and brittle crystal substrates | |
| JP5050064B2 (en) | Surface polishing method, surface polishing apparatus and surface polishing plate | |
| KR100590513B1 (en) | Chemical mechanical polishing apparatus and method | |
| JP7704547B2 (en) | Polishing liquid, manufacturing method of polishing liquid, and polishing method | |
| CN217141451U (en) | Device for cleaning silicon carbide polishing solution on polishing pad | |
| JP2008194797A (en) | Surface polishing method, surface polishing device, and surface polishing plate | |
| CN120230476A (en) | A chemical mechanical polishing liquid |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, WEN-KUEI;REEL/FRAME:063584/0865 Effective date: 20190102 |