US20230211293A1 - Gas separation membrane module with hollow fiber carbon molecular sieve membranes - Google Patents
Gas separation membrane module with hollow fiber carbon molecular sieve membranes Download PDFInfo
- Publication number
- US20230211293A1 US20230211293A1 US17/567,048 US202117567048A US2023211293A1 US 20230211293 A1 US20230211293 A1 US 20230211293A1 US 202117567048 A US202117567048 A US 202117567048A US 2023211293 A1 US2023211293 A1 US 2023211293A1
- Authority
- US
- United States
- Prior art keywords
- shell
- tubesheet
- permeate
- retentate
- cte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 119
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 14
- 238000000926 separation method Methods 0.000 title description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title description 5
- 229910052799 carbon Inorganic materials 0.000 title description 5
- 239000002808 molecular sieve Substances 0.000 title description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title description 3
- 239000012466 permeate Substances 0.000 claims abstract description 124
- 239000012465 retentate Substances 0.000 claims abstract description 116
- 239000012530 fluid Substances 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims description 67
- 239000002131 composite material Substances 0.000 claims description 16
- 239000004917 carbon fiber Substances 0.000 claims description 8
- 239000003365 glass fiber Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 8
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 26
- 239000000835 fiber Substances 0.000 description 25
- 239000004593 Epoxy Substances 0.000 description 13
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 11
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical group C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 10
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 238000004382 potting Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920005594 polymer fiber Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- 239000006091 Macor Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- POIUWJQBRNEFGX-XAMSXPGMSA-N cathelicidin Chemical compound C([C@@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C)C1=CC=CC=C1 POIUWJQBRNEFGX-XAMSXPGMSA-N 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- -1 polymeric Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/225—Multiple stage diffusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/024—Hollow fibre modules with a single potted end
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/021—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D2053/221—Devices
- B01D2053/223—Devices with hollow tubes
- B01D2053/224—Devices with hollow tubes with hollow fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/02—Specific tightening or locking mechanisms
- B01D2313/025—Specific membrane holders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/04—Specific sealing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/14—Specific spacers
- B01D2313/143—Specific spacers on the feed side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/14—Specific spacers
- B01D2313/146—Specific spacers on the permeate side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/20—Specific housing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/21—Specific headers, end caps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/24—Counter-current operation
Definitions
- CMS carbon molecular sieve
- Polymeric membranes and CMS membranes for fluid separations are typically enclosed in a pressure vessel so as to isolate the fluid being separated from the ambient.
- U.S. Pat. No. 3,702,658 disclosed an improved support for a tubesheet under shell feed pressure with an inert, porous and non-compressible material (such as epoxy resin bonded sand).
- the support conveys effluent from fiber lumens to the port of the vessel and to support the tubesheet against differential pressure. Dimensional and relative positional changes of the tubesheets involved in creep and plastic deformation under pressure are avoided.
- a tubesheet is formed on one end of membrane fiber.
- the structure is then encased in a vessel to make a shell feed module.
- the supported tubesheet is locked in place between vessel and cap. The closed fibers on the other end hang free without a second tubesheet to hold it together for structural integrity.
- Two external vessels one with feed port and the other with retentate port, enclose the ABS shell and butt to the circular disk in the middle of the ABS shell and are bolted together.
- the other ends of the two vessels are bolted to two separate caps on two ends of ABS shell.
- CTE coefficient of thermal expansion
- CMS around 5 ppm/m/° C.
- epoxy around 60 ppm/m/° C.
- a mismatch in CTE between ABS shell and tubesheet could cause them to separate. The separation would cause leakage between feed and permeate. Separation would also create cavities in the tubesheet which are stress concentrators. The stress concentrators could accelerate possible crack propagation and premature tubesheet failure.
- Current commercial shell-fed polymeric hollow fiber membrane modules for gas separation typically include a hollow center tube with holes, two end tubesheets, and a vessel.
- the hollow fiber is tightly wrapped around the center tube to desired packing density.
- the ends of the fiber in one tubesheet are machined open and the tubesheet is termed a permeate tubesheet.
- the fiber ends in the other tubesheet are closed and sealed and the tubesheet is termed a nub, cap, or retentate tubesheet.
- the holes in the center tube are along the entire length in cross flow module, however, in counter-current flow module, on the holes in the center tube are present only near the retentate tubesheet.
- the feed gas travels radially inward across tightly packed hollow fiber membranes. Some gas permeates through a wall of the hollow fiber from the external surface to the internal bore and travels down the bore in a direction from the retentate tubesheet towards the permeation tubesheet to reach the open ends in the permeate tubesheet and is piped out.
- the retentate reaches the holes in the center tube, travels inside the hollow center tube in a direction from the permeate tubesheet to towards the nub tubesheet and is piped out through retentate port.
- a non-permeable, flexible polymer film is wrapped around the tightly packed hollow fiber membranes on the outside.
- the film starts from the nub tubesheet and stops at a short distance from the permeation tubesheet.
- feed gas is supplied to the vessel through the feed port, it reaches the membrane fiber through the gap between the non-permeable wrap and the permeate tubesheet.
- the feed gas is then forced to travel outside the fiber in a direction from the permeate tubesheet towards the retentate tubesheet under the wrap.
- the retentate reaches the holes in the center tube close to the retentate tubesheet, travels inside the hollow center tube and is piped out.
- the feed gas supplied through the feed gas port on the pressure vessel and the retentate collected at the hollow center tube are physically separated by the tightly packed polymer fiber membrane around the center tube.
- a counter-current flow CMS membrane module comprising: a hollow, cylindrical pressure vessel having first and second open ends, an open feed port formed therein at a position closer to the second pressure vessel end than the first pressure vessel end; a first end cap covering and attached to the first open end of the pressure vessel, the first end cap having an open retentate port formed therein; a second end cap covering and attached to the second open end of the pressure vessel, the second end cap having an open permeate port formed therein; a hollow cylindrical shell having first and second sides and being concentrically disposed within the pressure vessel; a plurality of hollow fiber CMS membranes enclosed by the shell extending at least from the first end of the shell to the second end of the shell; a first cylindrical tubesheet of a material, that includes a cured polymer, that is formed around the first end of the shell and encapsulating portions of the CMS membranes that are adjacent the first end of the shell, the first tubesheet closing off open ends of the CMS membranes adjacent the first end of the shell; a first seal disposed
- the method comprises the following steps.
- a feed fluid is fed to the feed port.
- a permeate fluid is withdrawn from the permeate port.
- a retentate fluid is withdrawn from the retentate port.
- a feed fluid enters the pressure vessel via the feed port and travels through an annular space between an inner surface of the pressure vessel and an outer surface of the shell that extends between the first and second seals, the feed fluid enters the shell interior via the feed fluid inlet, some of the feed fluid permeates across walls of the CMS membranes and enters bores of the CMS membranes as permeate, the permeate travels down the bores of the CMS membranes towards the open ends of the CMS membranes, the permeate exits the open ends of the CMS membranes and exits the CMS membrane module via the porous support and permeate port, a remainder of the feed fluid flows between the CMS membranes towards the first end of the shell and exits the shell at the retentate outlet as retentate, and the retentate exits said CMS membrane module via the retentate port.
- the above-described CMS membrane module and method of separating a fluid may include one or more of the following aspects:
- FIG. 1 is a cross-sectional schematic view of an embodiment of the CMS membrane module of the invention.
- FIG. 2 is a cross-sectional schematic view of a variant of the CMS membrane module of FIG. 1 .
- FIG. 3 is a cross-sectional schematic view of a variant of the CMS membrane module of FIG. 1 .
- the invention solves the problems associated with conventional counter-current flow CMS membrane modules by packing the CMS membranes in a rigid shell and allowing the structure made up of the shell, CMS membranes, retentate and permeate tubesheets, and retentate and permeate seals to be slidable within the pressure vessel.
- the retentate and permeate tubesheets may be potted without damaging the CMS membranes to an unsatisfactory degree.
- the counter-current flow CMS membrane module includes a hollow, cylindrical pressure vessel 8 having open ends.
- a retentate end cap 2 b covers the open end of the retentate side of the pressure vessel 8 and has a retentate port 1 b formed therein.
- the retentate end cap 2 b is secured to the pressure vessel 8 with retentate end cap bolt 3 b and retentate cap nut 11 b.
- a permeate end cap 2 a covers the open end of the permeate-side of the pressure vessel 8 and has a permeate port 1 a formed therein.
- the permeate end cap 2 a is secured to the pressure vessel 8 with permeate end cap bolt 3 a and permeate cap nut 11 a.
- the pressure vessel 8 and end caps 2 a, 2 b may be made of any material known for such purposes in the field of gas separation membrane technology. Any other technique or structure known for securing an end cap to a pressure vessel known in the field of gas separation membrane technology may be used as an alternative to the bolts 3 a , 3 b and nuts 11 a, 11 b.
- each of pair of bolts 3 a, 3 b and nuts 11 a, 11 b and the alternatives are known as a retentate end cap fastening means and a permeate end cap fastening means.
- the shell 9 includes one or more openings at a position(s) in between a permeate tubesheet 4 a (described below) and a retentate tubesheet 4 b (described below) that form(s) a feed fluid inlet 19 .
- the feed fluid inlet 19 is typically positioned in between a midpoint of the shell 9 and the permeate tubesheet 4 a, and more typically positioned close to the permeate tubesheet 4 a.
- the shell 9 also includes one or more openings at a position(s) in between a retentate seal (described below) and the retentate tubesheet 4 b.
- a retentate tubesheet 4 b is formed around a first end 22 of the shell 9 .
- the retentate tubesheet 4 b encapsulates the portions of the CMS membranes 21 and closes off the otherwise-open ends of the CMS membranes 21 that are adjacent the first end 22 of the shell 9 so as to form a fluid-tight seal.
- the retentate tubesheet 4 b may also be referred to as a nub or cap.
- the material making up the retentate tubesheet 4 b may be any known in the field of gas separation membrane technology, typically the material is mainly comprised of a cured polymer, such as an epoxy, that is cured after “potting” the retentate tubesheet 4 b.
- the retentate tubesheet 4 b is contiguous with at least portions of an inner circumferential surface of the shell 9 adjacent the first end 22 to form a gas-tight seal in between the retentate tubesheet 4 b and the shell 9 . In other words, gas is prevented from flowing in between the shell 9 and the retentate tubesheet 4 b .
- the retentate tubesheet 4 b encapsulates not only the portions of the CMS membranes 21 that are adjacent the first end 22 , it also encapsulates the portions of the shell 9 adjacent the first end 22 so that the retentate tubesheet 4 b is contiguous with portions of the inner circumferential surface of the shell 9 adjacent the first end 22 , with portions of the outer circumferential surface of the shell 9 adjacent the first end 22 , and with an end face of the shell 9 adjacent the first end 22 .
- the rententate tubesheet 4 b does not encapsulate the portions of the shell 9 adjacent the first end 22 .
- the opposite faceing outer circumferential surface of the shell 9 adjacent the first end 22 is not in contact with the material of the retentate tubesheet 4 b.
- This alternative configuration may be formed by potting the retentate tubesheet 4 b so as to encapsulate portions of the shell 9 adjacent the first end 22 followed by machining away of portions of the retentate tubesheet 4 b that are adjacent to the outer circumferential surface of the shell 9 .
- a permeate tubesheet 4 a encapsulates portions of the shell 9 that are adjacent the second end 23 and also the portions of the CMS membranes 21 that are adjacent the second end 23 . In contrast to the retentate tubesheet 4 b, it does not close off the open ends of the CMS membranes 21 that are adjacent the second end 23 of the shell 9 . This is because, after the permeate tubesheet 4 a is initially formed and cured, a planar face thereof adjacent the second end 23 is machined away so as to expose the bores of the CMS membranes 21 . While the material making up the permeate tubesheet 4 a may be any known in the field of gas separation membrane technology, typically the material is mainly comprised of an epoxy that is cured after “potting” the permeate tubesheet 4 a.
- the permeate tubesheet 4 a is contiguous with at least portions of an inner circumferential surface of the shell 9 adjacent the second end 23 to form a gas-tight seal in between the permeate tubesheet 4 a and the shell 9 . In other words, gas is prevented from flowing in between the shell 9 and the permeate tubesheet 4 a.
- the permeate tubesheet 4 a encapsulates not only the portions of the CMS membranes 21 that are adjacent the second end 23 , it also encapsulates the portions of the shell 9 adjacent the second end 23 so that the permeate tubesheet 4 a is contiguous with portions of the inner circumferential surface of the shell 9 adjacent the second end 23 , with portions of the outer circumferential surface of the shell 9 adjacent the second end 23 , and with an end face of the shell 9 adjacent the second end 23 .
- the permeate tubesheet 4 a does not encapsulate the portions of the shell 9 adjacent the second end 23 .
- the opposite facing outer circumferential surface of the shell 9 adjacent the second end 23 is not in contact with the material of the permeate tubesheet 4 a.
- This alternative configuration may be formed by potting the permeate tubesheet 4 a so as to encapsulate portions of the shell 9 adjacent the second end 23 followed by machining away of portions of the permeate tubesheet 4 a that are adjacent to the outer circumferential surface of the shell 9 .
- a retentate seal is made up of a retentate seal O-ring 6 b and a retentate seal O-ring groove 5 b.
- the retentate seal is radially positioned in between an inner surface of the pressure vessel 8 and an outer, circumferential surface of the shell 9 and axially positioned in between the feed fluid inlet 19 and the retentate tubesheet 4 b.
- the retentate seal is typically positioned closer to the retentate tubesheet 4 b than it is to the feed fluid inlet 19 .
- the retentate seal O-ring groove 5 b is adhesed, welded, or otherwise fastened to the shell 9 .
- the retentate seal extends around a circumference of the shell 9 , is gas-impermeable, and is made of a compressible material.
- the material from which the retentate seal is made may exhibit a non-zero permeability to a gas or gases, the permeability of the material and/or the thickness of the retentate seal virtually renders the retentate seal impermeable.
- the retentate seal illustrated in the FIG and others known in the field of gas separation membrane technology are known as a retentate seal means.
- a permeate seal is made of a permeate seal O-ring 6 a and a permeate seal O-ring groove 5 a.
- the permeate seal is radially positioned in between an inner surface of the pressure vessel 8 and an outer, circumferential surface of the permeate tubesheet 4 a.
- the permeate seal O-ring 6 a rests in a permeate seal O-ring groove 5 a that is formed or machined in the outer, circumferential surface of the permeate tubesheet 4 a.
- permeate seals known in the field of gas separation membrane technology may be used as a substitute for the permeate seal O-ring 6 a and permeate seal O-ring groove 5 a, such as the seals disclosed in U.S. Pat. No. 9,737,857 B2.
- the permeate seal illustrated in the FIG and others known in the field of gas separation membrane technology are known as a permeate seal means.
- a porous support 15 is disposed in between the machined-away face of the permeate tubesheet 4 a and the permeate end cap 2 a.
- the porous support 15 may be made from a material that provides an adequate flow path for the fluid without irreversibly compressing under application of pressure.
- suitable materials includes sintered metal powders, sintered ceramic powders, sintered metal fibers, metallic foam, woven metal mesh, or a metal, polymeric, or composite material block machined to have flow channels.
- porous support 15 mechanically support the structure made up of the shell 9 , seals, tubesheets 4 a, 4 b, and CMS membranes 21 . Even though that structure is slidable within the pressure vessel 8 and is not fixed to either the pressure vessel 8 or the end caps 2 a, 2 b, due to the difference between the higher pressure side of the feed fluid in between the tubesheets 4 a, 4 b and the lower pressure side of the permeate in between the permeate tubesheet 4 a and the permeate end cap 2 a, that structure is urged towards the permeate end cap 2 a.
- the porous support 15 mechanically supports that structure in that instance. In the absence of the porous support 15 , the structure would instead abut against the permeate end cap 2 a and potentially restrict flow of permeate.
- porous support 15 Another function of the porous support 15 is to allow the permeate to flow from the bores of the CMS membranes 21 at the machined-away face of the permeate tubesheet 4 a and out of the CMS membrane module via the permeate port 1 a .
- all the stresses on the permeate tubesheet 4 a and the porous support 15 are compressive.
- the compressive strength of the permeate tubesheet 4 a and the porous support 15 is much higher than the associated tensile and shear strengths.
- the compression strengths of the permeate tubesheet 4 a and the porous support 15 are very high to withstand pressure as high as 3000 psig. As a result, there is almost zero possibility that the permeate tubesheet 4 a will separate from, or break off from, the shell 9 and cause a leak as would otherwise potentially happen in conventional CMS module designs.
- the inventive CMS membrane module may avoid the above-described CTE problems associated with conventional CMS membrane modules by utilizing materials having similar CTEs for the shell 9 and the tubesheets 4 a, 4 b.
- the tubesheets 4 a, 4 b are made of an epoxy which is optionally filled with inorganic or metallic particles or toughened with rubber particles and has been cured after potting.
- the CTE value for unfilled epoxy between 50 and 75 ppm/° C. and typically around 60 ppm/° C. for unfilled epoxy, or between 30 and 70 ppm/° C.
- a non-limiting list materials suitable for use in the shell includes carbon fiber composite, glass fiber, reinforced polymer composite, stainless steel, aluminum, titanium, cast iron, zinc, zinc alloys, nickel-based alloys, quartz, glass, and ceramic.
- the CTE of carbon or glass fiber composites in particular, may be tailored within a relatively wide range of values by changing how the fibers are arranged in the structures, the type of fiber used, the type of potting resin, and the fiber volume.
- the CTE of the material of the shell may be measured according to methods well known in the field of material science.
- the difference between the CTE of the shell 9 (CTES) and the CTE of the permeate tubesheet 4 a or retentate tubesheet 4 b is no more than 45 ppm/° C.
- the maximum CTE mismatch i.e., difference between the CTEs of the tubesheet and the shell depends upon the gas separation application temperature. The higher the application temperature, the smaller the maximum mismatch needs to be.
- the material of the shell 9 is selected to have a CTE in the range of 5-60 ppm/° C. since the CTE of many commercial polymeric membrane module tubesheets is around 60 ppm/° C., whereas the CTE of many CMS membranes 21 is around 5 ppm/° C. This will minimize stresses and avoid or prevent possible separation and/or cracking of the tubesheets 4 a, 4 b, the CMS membranes 21 , or shell 9 , or at interface therebetween. Thus, it prevents possible stress concentrations resulting from separation or cracking and possible leaks or catastrophic structural failure.
- the shell 9 may be made in different sections with different materials.
- the portions of the shell 9 , around which are formed the tubesheet 4 a, 4 b, is made of a first material selected to match the CTE of the tubesheets 4 a, 4 b (e.g., around 35 ppm/° C. potted with filled epoxy or around 60 ppm/° C. potted with unfilled epoxy).
- the tubesheets 4 a , 4 b could be made of an unfilled epoxy for low temperature applications up to about 80° C. and/or low pressure applications up to 200 psig applications.
- the tubesheets 4 a, 4 b could be made of a filled epoxy for high temperature applications above 80° C. and/or high pressure applications above 200 psig.
- the middle portion of the shell 9 between the tubesheets 4 a, 4 b may be made of a second material selected to match the CTE of the CMS membranes 21 (e.g., around 5 ppm/° C.), such as carbon fiber composite, glass fiber composite, alumina, macor, glass, titanium, Invar, or steel. If the CTE of the shell 9 matches that of the CMS membranes 21 , their matching expansions and contractions in the length direction will reduce stresses upon the relatively brittle CMS membranes 21 fiber and minimize possible fiber breakage.
- the retentate tubesheet 4 b preferentially encapsulates not only the portions of the CMS membranes 21 that are adjacent the first end 22 , it also encapsulates the portions of the shell 9 adjacent the first end 22 so that the retentate tubesheet 4 b is contiguous with portions of the inner circumferential surface of the shell 9 adjacent the first end 22 , with portions of the outer circumferential surface of the shell 9 adjacent the first end 22 , and with an end face of the shell 9 adjacent the first end 22 .
- the permeate tubesheet 4 a preferentially encapsulates not only the portions of the CMS membranes 21 that are adjacent the second end 23 , it also encapsulates the portions of the shell 9 adjacent the second end 23 so that the permeate tubesheet 4 a is contiguous with portions of the inner circumferential surface of the shell 9 adjacent the second end 23 , with portions of the outer circumferential surface of the shell 9 adjacent the second end 23 , and with an end face of the shell 9 adjacent the second end 23 .
- FIG. 1 A variation of this preferred configuration is illustrated in FIG.
- one or more holes 24 are formed in portions of the shell 9 that are encapsulated by the retentate tubesheet 4 b and portions of the shell 9 that are encapsulated by the permeate tubesheet 4 a.
- This enables the material of the retentate tubesheet 4 b and permeate tubesheet 4 a, prior to being cured, to flow through the corresponding holes 24 .
- portions of the cured material making up the retentate and permeate tubesheets 4 b, 4 a form a bridge through the one or more holes 24 between remaining portions of the cured material on each side of the shell 9 .
- “Comprising” in a claim is an open transitional term which means the subsequently identified claim elements are a nonexclusive listing i.e. anything else may be additionally included and remain within the scope of “comprising.” “Comprising” is defined herein as necessarily encompassing the more limited transitional terms “consisting essentially of” and “consisting of”; “comprising” may therefore be replaced by “consisting essentially of” or “consisting of” and remain within the expressly defined scope of “comprising”.
- Providing in a claim is defined to mean furnishing, supplying, making available, or preparing something. The step may be performed by any actor in the absence of express language in the claim to the contrary.
- Optional or optionally means that the subsequently described event or circumstances may or may not occur.
- the description includes instances where the event or circumstance occurs and instances where it does not occur.
- Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the one particular value and/or to the other particular value, along with all combinations within said range.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
- None.
- The present invention relates to improved structures for carbon molecular sieve (CMS) membrane-based gas separation modules, otherwise known as CMS membrane modules.
- Polymeric membranes and CMS membranes for fluid separations are typically enclosed in a pressure vessel so as to isolate the fluid being separated from the ambient.
- Several have proposed module designs.
- U.S. Pat. No. 3,702,658 disclosed an improved support for a tubesheet under shell feed pressure with an inert, porous and non-compressible material (such as epoxy resin bonded sand). The support conveys effluent from fiber lumens to the port of the vessel and to support the tubesheet against differential pressure. Dimensional and relative positional changes of the tubesheets involved in creep and plastic deformation under pressure are avoided.
- In a single-ended shell feed module design illustrated in U.S. Pat. No. 3,702,658, a tubesheet is formed on one end of membrane fiber. The structure is then encased in a vessel to make a shell feed module. There is no rigid structure to enclose the fibers for protection when a tubesheet is potted on one end of the fiber. While such protection might not be necessary for polymer fiber membranes, it is very important for the relatively brittle (in comparison to polymeric fiber membranes) CMS fiber membrane to survive the handling during the tubesheet potting process. Also, the supported tubesheet is locked in place between vessel and cap. The closed fibers on the other end hang free without a second tubesheet to hold it together for structural integrity.
- In two related publications (Xuezhong He, hollow fiber carbon molecular sieve membranes, in Encyclopedia of Membranes, E. Droli, L. Giorno (eds), Springer-Verlag, Berlin, Heidelberg, 2014 and Xuezhong He, May-Britt Hagg, Hollow fiber carbon membranes: From material to application, Chemical Engineering Journal, 215-216 (2013), 440-448), CMS fibers are enclosed in an acrylonitrile-butadiene-styrene (ABS) shell. There are three circular disks attached to the ABS shell: one in the middle, and one each on two ends. Two external vessels, one with feed port and the other with retentate port, enclose the ABS shell and butt to the circular disk in the middle of the ABS shell and are bolted together. The other ends of the two vessels are bolted to two separate caps on two ends of ABS shell.
- There are several drawbacks to the approaches of these two related publications. Even a slight mismatch in the dimension between the length of the external vessel and the location of three circular disks on the ABS shell could cause stresses in the bonding between the disk and ABS shell. These stresses could result in separation of the disk from the shell. Any separation would cause a leak and intermixing of feed and permeation and feed and retentate. Also, upon final assembly, the ABS shell enclosing the fibers is mechanically locked in place and cannot move or slide inside the vessel. If the disk and tubesheet on permeation end is not supported properly, the lack of movement could prevent them from sliding to the support and result in severe stresses in tubesheet and in bonding between the disk and shell to result in possible tubesheet failure and separation of disk from the ABS shell. Moreover, the coefficient of thermal expansion (CTE) of the ABS shell (believed to be 101 ppm/m/° C.) is much higher than that of CMS (around 5 ppm/m/° C.) and epoxy (around 60 ppm/m/° C.) in the tubesheet. A mismatch in CTE between ABS shell and tubesheet could cause them to separate. The separation would cause leakage between feed and permeate. Separation would also create cavities in the tubesheet which are stress concentrators. The stress concentrators could accelerate possible crack propagation and premature tubesheet failure.
- Current commercial shell-fed polymeric hollow fiber membrane modules for gas separation typically include a hollow center tube with holes, two end tubesheets, and a vessel. The hollow fiber is tightly wrapped around the center tube to desired packing density. The ends of the fiber in one tubesheet are machined open and the tubesheet is termed a permeate tubesheet. On the other hand, the fiber ends in the other tubesheet are closed and sealed and the tubesheet is termed a nub, cap, or retentate tubesheet. The holes in the center tube are along the entire length in cross flow module, however, in counter-current flow module, on the holes in the center tube are present only near the retentate tubesheet.
- For many commercial cross flow modules, the feed gas travels radially inward across tightly packed hollow fiber membranes. Some gas permeates through a wall of the hollow fiber from the external surface to the internal bore and travels down the bore in a direction from the retentate tubesheet towards the permeation tubesheet to reach the open ends in the permeate tubesheet and is piped out. On the other hand, the retentate reaches the holes in the center tube, travels inside the hollow center tube in a direction from the permeate tubesheet to towards the nub tubesheet and is piped out through retentate port.
- For many commercial counter-current flow modules, a non-permeable, flexible polymer film is wrapped around the tightly packed hollow fiber membranes on the outside. The film starts from the nub tubesheet and stops at a short distance from the permeation tubesheet. As feed gas is supplied to the vessel through the feed port, it reaches the membrane fiber through the gap between the non-permeable wrap and the permeate tubesheet. The feed gas is then forced to travel outside the fiber in a direction from the permeate tubesheet towards the retentate tubesheet under the wrap. The retentate reaches the holes in the center tube close to the retentate tubesheet, travels inside the hollow center tube and is piped out. Some gas permeates across the wall of the fiber from the external surface to the internal bore, travels inside the fiber bore in a direction from the retentate tubesheet towards the permeate tubesheet to reach open ends of fiber in the permeate tubesheet and is piped out through the permeate port. Because the feed gas and the permeate gas travel in opposite directions, this type of module design is named counter-current flow.
- In both cross flow and counter-current flow hollow polymeric fiber membrane modules, the feed gas supplied through the feed gas port on the pressure vessel and the retentate collected at the hollow center tube are physically separated by the tightly packed polymer fiber membrane around the center tube.
- In contrast, in known CMS membrane modules, there is no center tube and the rigid fibers cannot be packed tightly easily, especially without damaging them.
- Thus, there is a need for a new structure for counter-current flow CMS membrane modules without a center tube.
- There is disclosed a counter-current flow CMS membrane module, comprising: a hollow, cylindrical pressure vessel having first and second open ends, an open feed port formed therein at a position closer to the second pressure vessel end than the first pressure vessel end; a first end cap covering and attached to the first open end of the pressure vessel, the first end cap having an open retentate port formed therein; a second end cap covering and attached to the second open end of the pressure vessel, the second end cap having an open permeate port formed therein; a hollow cylindrical shell having first and second sides and being concentrically disposed within the pressure vessel; a plurality of hollow fiber CMS membranes enclosed by the shell extending at least from the first end of the shell to the second end of the shell; a first cylindrical tubesheet of a material, that includes a cured polymer, that is formed around the first end of the shell and encapsulating portions of the CMS membranes that are adjacent the first end of the shell, the first tubesheet closing off open ends of the CMS membranes adjacent the first end of the shell; a first seal disposed between an inner surface of the pressure vessel and an outer circumferential surface of the shell closer to the first end thereof than the second end thereof, the first seal comprising an O-ring that is adjacent the inner surface of the pressure vessel that rests in a grooved ring that is secured to an outer surface of the shell; a second cylindrical tubesheet of a material, that includes a cured polymer, formed around the second end of the shell and encapsulating portions of the CMS membranes that are adjacent the second end of the shell, the second tubesheet having being machined away at a face thereof adjacent the second end cap so as to expose open ends of the CMS membranes thereat; a porous support disposed between the second end cap and the machined away face of the second tubesheet; a second seal disposed between an inner surface of the pressure vessel and an outer circumferential surface of the second tubesheet, the second seal comprising an O-ring that is adjacent the inner surface of the pressure vessel that rests in a grooved ring that is secured to the outer circumferential surface of the second tubesheet. One or more openings are formed in the shell between the first and second seals to form a feed fluid inlet. One or more openings are formed in the shell between the first seal and the first tubesheet to form a retentate outlet.
- There is also disclosed a method of separating a fluid using the above-described CMS membrane module. The method comprises the following steps. A feed fluid is fed to the feed port. A permeate fluid is withdrawn from the permeate port. A retentate fluid is withdrawn from the retentate port. In use: a feed fluid enters the pressure vessel via the feed port and travels through an annular space between an inner surface of the pressure vessel and an outer surface of the shell that extends between the first and second seals, the feed fluid enters the shell interior via the feed fluid inlet, some of the feed fluid permeates across walls of the CMS membranes and enters bores of the CMS membranes as permeate, the permeate travels down the bores of the CMS membranes towards the open ends of the CMS membranes, the permeate exits the open ends of the CMS membranes and exits the CMS membrane module via the porous support and permeate port, a remainder of the feed fluid flows between the CMS membranes towards the first end of the shell and exits the shell at the retentate outlet as retentate, and the retentate exits said CMS membrane module via the retentate port.
- The above-described CMS membrane module and method of separating a fluid may include one or more of the following aspects:
- the seals are slidable along the inner surface of the pressure vessel and none of the tubesheets and seals are fixed in place in relation to the pressure vessel and end caps.
- a portion of the shell around which is formed the retentate tubesheet is made of a material that has an associated CTERS; a portion of the shell around which is formed the permeate tubesheet is made of a material that has an associated CTEPS; the material of the first tubesheet has an associated CTERTS; the material of the second tubesheet has an associated CTEPTS; a difference between CTERS and CTERTS is no more than 45 ppm/° C.; and a difference between CTEPS and CTEPTS is no more than 45 ppm/° C.
- a middle portion of the shell between the first and second tubesheets is made of a material having a CTEM that is lower than CTERS and CTEPS.
- the shell is made of a material that has an associated CTES; the material of the retentate tubesheet has an associated CTERTS; the material of the permeate tubesheet has an associated CTEPTS; a difference between CTES and CTEPTS is no more than 45 ppm/° C.; and a difference between CTES and CTEPTS is no more than 45 ppm/° C.
- the material of the shell is carbon fiber composite, glass fiber composite, pure metal, or a metal alloy.
- the material of the shell has a CTES that is in the range of 5-35 ppm/° C.
- the material of the shell is carbon fiber composite or glass fiber composite.
- said module has no hollow center tube extending along an axis of the pressure vessel within the CMS membranes.
- For a further understanding of the nature and objects of the present invention, reference should be made to the following detailed description, taken in conjunction with the accompanying drawings, in which like elements are given the same or analogous reference numbers and wherein:
-
FIG. 1 is a cross-sectional schematic view of an embodiment of the CMS membrane module of the invention. -
FIG. 2 is a cross-sectional schematic view of a variant of the CMS membrane module ofFIG. 1 . -
FIG. 3 is a cross-sectional schematic view of a variant of the CMS membrane module ofFIG. 1 . - The invention solves the problems associated with conventional counter-current flow CMS membrane modules by packing the CMS membranes in a rigid shell and allowing the structure made up of the shell, CMS membranes, retentate and permeate tubesheets, and retentate and permeate seals to be slidable within the pressure vessel. In contrast to typical known large polymeric membrane modules, there is no center tube extending along an axis of the module within the CMS membranes. As a result of the foregoing, the retentate and permeate tubesheets may be potted without damaging the CMS membranes to an unsatisfactory degree.
- As best shown in
FIG. 1 , the counter-current flow CMS membrane module includes a hollow,cylindrical pressure vessel 8 having open ends. Aretentate end cap 2 b covers the open end of the retentate side of thepressure vessel 8 and has aretentate port 1 b formed therein. Theretentate end cap 2 b is secured to thepressure vessel 8 with retentateend cap bolt 3 b andretentate cap nut 11 b. Apermeate end cap 2 a covers the open end of the permeate-side of thepressure vessel 8 and has apermeate port 1 a formed therein. Thepermeate end cap 2 a is secured to thepressure vessel 8 with permeateend cap bolt 3 a andpermeate cap nut 11 a. Thepressure vessel 8 and 2 a, 2 b may be made of any material known for such purposes in the field of gas separation membrane technology. Any other technique or structure known for securing an end cap to a pressure vessel known in the field of gas separation membrane technology may be used as an alternative to theend caps 3 a, 3 b and nuts 11 a, 11 b. Collectively, each of pair ofbolts 3 a, 3 b and nuts 11 a, 11 b and the alternatives are known as a retentate end cap fastening means and a permeate end cap fastening means.bolts - Disposed concentrically within the
pressure vessel 8 is a hollow,cylindrical shell 9. A plurality of hollowfiber CMS membranes 21 extend along the interior of theshell 9. The CMS membranes 21 may be made of any material known for such purposes in the field of gas separation membrane technology. Those skilled in the art will understand that they are made by at least partially pyrolyzing polymeric hollow fiber membranes. Theshell 9 includes one or more openings at a position(s) in between apermeate tubesheet 4 a (described below) and aretentate tubesheet 4 b (described below) that form(s) afeed fluid inlet 19. In order to enhance the counter-current flow, thefeed fluid inlet 19 is typically positioned in between a midpoint of theshell 9 and thepermeate tubesheet 4 a, and more typically positioned close to thepermeate tubesheet 4 a. Theshell 9 also includes one or more openings at a position(s) in between a retentate seal (described below) and theretentate tubesheet 4 b. - A
retentate tubesheet 4 b is formed around afirst end 22 of theshell 9. Theretentate tubesheet 4 b encapsulates the portions of theCMS membranes 21 and closes off the otherwise-open ends of theCMS membranes 21 that are adjacent thefirst end 22 of theshell 9 so as to form a fluid-tight seal. Those skilled in the art will recognize that theretentate tubesheet 4 b may also be referred to as a nub or cap. While the material making up theretentate tubesheet 4 b may be any known in the field of gas separation membrane technology, typically the material is mainly comprised of a cured polymer, such as an epoxy, that is cured after “potting” theretentate tubesheet 4 b. - The
retentate tubesheet 4 b is contiguous with at least portions of an inner circumferential surface of theshell 9 adjacent thefirst end 22 to form a gas-tight seal in between theretentate tubesheet 4 b and theshell 9. In other words, gas is prevented from flowing in between theshell 9 and theretentate tubesheet 4 b. Preferably, theretentate tubesheet 4 b encapsulates not only the portions of theCMS membranes 21 that are adjacent thefirst end 22, it also encapsulates the portions of theshell 9 adjacent thefirst end 22 so that theretentate tubesheet 4 b is contiguous with portions of the inner circumferential surface of theshell 9 adjacent thefirst end 22, with portions of the outer circumferential surface of theshell 9 adjacent thefirst end 22, and with an end face of theshell 9 adjacent thefirst end 22. Alternatively and as best shown inFIG. 2 , the rententate tubesheet 4 b does not encapsulate the portions of theshell 9 adjacent thefirst end 22. While it is still contiguous with an inner circumferential surface of theshell 9 adjacent thefirst end 22, the opposite faceing outer circumferential surface of theshell 9 adjacent thefirst end 22 is not in contact with the material of the retentate tubesheet 4 b. In other words, there is cured polymer forming the tubesheet on the inside of theshell 9 adjacent thefirst end 22 but not around the outside of the shell adjacent thefirst end 22. This alternative configuration may be formed by potting theretentate tubesheet 4 b so as to encapsulate portions of theshell 9 adjacent thefirst end 22 followed by machining away of portions of the retentate tubesheet 4 b that are adjacent to the outer circumferential surface of theshell 9. - With reference to
FIG. 1 , apermeate tubesheet 4 a encapsulates portions of theshell 9 that are adjacent thesecond end 23 and also the portions of theCMS membranes 21 that are adjacent thesecond end 23. In contrast to theretentate tubesheet 4 b, it does not close off the open ends of theCMS membranes 21 that are adjacent thesecond end 23 of theshell 9. This is because, after thepermeate tubesheet 4 a is initially formed and cured, a planar face thereof adjacent thesecond end 23 is machined away so as to expose the bores of theCMS membranes 21. While the material making up thepermeate tubesheet 4 a may be any known in the field of gas separation membrane technology, typically the material is mainly comprised of an epoxy that is cured after “potting” thepermeate tubesheet 4 a. - The permeate tubesheet 4 a is contiguous with at least portions of an inner circumferential surface of the
shell 9 adjacent thesecond end 23 to form a gas-tight seal in between thepermeate tubesheet 4 a and theshell 9. In other words, gas is prevented from flowing in between theshell 9 and thepermeate tubesheet 4 a. - Preferably, the
permeate tubesheet 4 a encapsulates not only the portions of theCMS membranes 21 that are adjacent thesecond end 23, it also encapsulates the portions of theshell 9 adjacent thesecond end 23 so that thepermeate tubesheet 4 a is contiguous with portions of the inner circumferential surface of theshell 9 adjacent thesecond end 23, with portions of the outer circumferential surface of theshell 9 adjacent thesecond end 23, and with an end face of theshell 9 adjacent thesecond end 23. Alternatively and as best shown inFIG. 2 , thepermeate tubesheet 4 a does not encapsulate the portions of theshell 9 adjacent thesecond end 23. While it is still contiguous with an inner circumferential surface of theshell 9 adjacent thesecond end 23, the opposite facing outer circumferential surface of theshell 9 adjacent thesecond end 23 is not in contact with the material of thepermeate tubesheet 4 a. In other words, there is cured polymer forming the tubesheet on the inside of theshell 9 adjacent thesecond end 23 but not around the outside of the shell adjacent thesecond end 23. This alternative configuration may be formed by potting thepermeate tubesheet 4 a so as to encapsulate portions of theshell 9 adjacent thesecond end 23 followed by machining away of portions of thepermeate tubesheet 4 a that are adjacent to the outer circumferential surface of theshell 9. - A retentate seal is made up of a retentate seal O-
ring 6 b and a retentate seal O-ring groove 5 b. The retentate seal is radially positioned in between an inner surface of thepressure vessel 8 and an outer, circumferential surface of theshell 9 and axially positioned in between thefeed fluid inlet 19 and theretentate tubesheet 4 b. In order to enhance the counter-current flow, the retentate seal is typically positioned closer to theretentate tubesheet 4 b than it is to thefeed fluid inlet 19. In order to provide a more effective seal, the retentate seal O-ring groove 5 b is adhesed, welded, or otherwise fastened to theshell 9. Those skilled in the art will recognize that other types of retentate seals known in the field of gas separation membrane technology may be used as a substitute for the retentate seal O-ring 6 b and retentate seal O-ring groove 5 b. Generally, in practice of the invention, the retentate seal extends around a circumference of theshell 9, is gas-impermeable, and is made of a compressible material. Those skilled in the art of gas separation membranes will recognize that while the material from which the retentate seal is made may exhibit a non-zero permeability to a gas or gases, the permeability of the material and/or the thickness of the retentate seal virtually renders the retentate seal impermeable. Collectively, the retentate seal illustrated in the FIG and others known in the field of gas separation membrane technology are known as a retentate seal means. - A permeate seal is made of a permeate seal O-
ring 6 a and a permeate seal O-ring groove 5 a. The permeate seal is radially positioned in between an inner surface of thepressure vessel 8 and an outer, circumferential surface of thepermeate tubesheet 4 a. The permeate seal O-ring 6 a rests in a permeate seal O-ring groove 5 a that is formed or machined in the outer, circumferential surface of thepermeate tubesheet 4 a. Those skilled in the art will recognize that other types of permeate seals known in the field of gas separation membrane technology may be used as a substitute for the permeate seal O-ring 6 a and permeate seal O-ring groove 5 a, such as the seals disclosed in U.S. Pat. No. 9,737,857 B2. Collectively, the permeate seal illustrated in the FIG and others known in the field of gas separation membrane technology are known as a permeate seal means. - A
porous support 15 is disposed in between the machined-away face of thepermeate tubesheet 4 a and thepermeate end cap 2 a. Theporous support 15 may be made from a material that provides an adequate flow path for the fluid without irreversibly compressing under application of pressure. A non-limiting list of suitable materials includes sintered metal powders, sintered ceramic powders, sintered metal fibers, metallic foam, woven metal mesh, or a metal, polymeric, or composite material block machined to have flow channels. - One function of the
porous support 15 is to mechanically support the structure made up of theshell 9, seals, tubesheets 4 a, 4 b, andCMS membranes 21. Even though that structure is slidable within thepressure vessel 8 and is not fixed to either thepressure vessel 8 or the 2 a, 2 b, due to the difference between the higher pressure side of the feed fluid in between theend caps 4 a, 4 b and the lower pressure side of the permeate in between thetubesheets permeate tubesheet 4 a and thepermeate end cap 2 a, that structure is urged towards thepermeate end cap 2 a. Theporous support 15 mechanically supports that structure in that instance. In the absence of theporous support 15, the structure would instead abut against thepermeate end cap 2 a and potentially restrict flow of permeate. - Another function of the
porous support 15 is to allow the permeate to flow from the bores of theCMS membranes 21 at the machined-away face of thepermeate tubesheet 4 a and out of the CMS membrane module via thepermeate port 1 a. Under the above-described pressure difference, all the stresses on thepermeate tubesheet 4 a and theporous support 15 are compressive. The compressive strength of thepermeate tubesheet 4 a and theporous support 15 is much higher than the associated tensile and shear strengths. The compression strengths of thepermeate tubesheet 4 a and theporous support 15 are very high to withstand pressure as high as 3000 psig. As a result, there is almost zero possibility that thepermeate tubesheet 4 a will separate from, or break off from, theshell 9 and cause a leak as would otherwise potentially happen in conventional CMS module designs. - In a particular advantageous feature, the inventive CMS membrane module may avoid the above-described CTE problems associated with conventional CMS membrane modules by utilizing materials having similar CTEs for the
shell 9 and the 4 a, 4 b. As described above, typically thetubesheets 4 a, 4 b are made of an epoxy which is optionally filled with inorganic or metallic particles or toughened with rubber particles and has been cured after potting. In order to draw near to the CTE value for unfilled epoxy between 50 and 75 ppm/° C. and typically around 60 ppm/° C. for unfilled epoxy, or between 30 and 70 ppm/° C. for filled epoxy whose CTE is tailored with the type and amount of the filler) of the cured epoxy, a non-limiting list materials suitable for use in the shell includes carbon fiber composite, glass fiber, reinforced polymer composite, stainless steel, aluminum, titanium, cast iron, zinc, zinc alloys, nickel-based alloys, quartz, glass, and ceramic. The CTE of carbon or glass fiber composites, in particular, may be tailored within a relatively wide range of values by changing how the fibers are arranged in the structures, the type of fiber used, the type of potting resin, and the fiber volume. The CTE of the material of the shell may be measured according to methods well known in the field of material science.tubesheets - While it is not necessary to exactly match the CTEs of the
4 a, 4 b andtubesheets shell 9, typically, the difference between the CTE of the shell 9 (CTES) and the CTE of thepermeate tubesheet 4 a orretentate tubesheet 4 b is no more than 45 ppm/° C. The maximum CTE mismatch (i.e., difference between the CTEs of the tubesheet and the shell depends upon the gas separation application temperature. The higher the application temperature, the smaller the maximum mismatch needs to be. Because there are fewer ways of adjusting the CTE of the material of the 4 a, 4 b and the CTE of the material of thetubesheets CMS membranes 21 than there are ways of adjusting the CTE of theshell 9, typically the material of theshell 9 is selected to have a CTE in the range of 5-60 ppm/° C. since the CTE of many commercial polymeric membrane module tubesheets is around 60 ppm/° C., whereas the CTE ofmany CMS membranes 21 is around 5 ppm/° C. This will minimize stresses and avoid or prevent possible separation and/or cracking of the 4 a, 4 b, thetubesheets CMS membranes 21, orshell 9, or at interface therebetween. Thus, it prevents possible stress concentrations resulting from separation or cracking and possible leaks or catastrophic structural failure. - In an optional feature, to even further reduce stresses between the
CMS fibers 21 and theshell 9 in the axial direction due to CTE mismatch, theshell 9 may be made in different sections with different materials. For example, the portions of theshell 9, around which are formed the 4 a, 4 b, is made of a first material selected to match the CTE of thetubesheet 4 a, 4 b (e.g., around 35 ppm/° C. potted with filled epoxy or around 60 ppm/° C. potted with unfilled epoxy). Thetubesheets 4 a, 4 b could be made of an unfilled epoxy for low temperature applications up to about 80° C. and/or low pressure applications up to 200 psig applications. Thetubesheets 4 a, 4 b could be made of a filled epoxy for high temperature applications above 80° C. and/or high pressure applications above 200 psig. On the other hand, the middle portion of thetubesheets shell 9 between the 4 a, 4 b may be made of a second material selected to match the CTE of the CMS membranes 21 (e.g., around 5 ppm/° C.), such as carbon fiber composite, glass fiber composite, alumina, macor, glass, titanium, Invar, or steel. If the CTE of thetubesheets shell 9 matches that of theCMS membranes 21, their matching expansions and contractions in the length direction will reduce stresses upon the relativelybrittle CMS membranes 21 fiber and minimize possible fiber breakage. - As mentioned above, the
retentate tubesheet 4 b preferentially encapsulates not only the portions of theCMS membranes 21 that are adjacent thefirst end 22, it also encapsulates the portions of theshell 9 adjacent thefirst end 22 so that theretentate tubesheet 4 b is contiguous with portions of the inner circumferential surface of theshell 9 adjacent thefirst end 22, with portions of the outer circumferential surface of theshell 9 adjacent thefirst end 22, and with an end face of theshell 9 adjacent thefirst end 22. Similarly, thepermeate tubesheet 4 a preferentially encapsulates not only the portions of theCMS membranes 21 that are adjacent thesecond end 23, it also encapsulates the portions of theshell 9 adjacent thesecond end 23 so that thepermeate tubesheet 4 a is contiguous with portions of the inner circumferential surface of theshell 9 adjacent thesecond end 23, with portions of the outer circumferential surface of theshell 9 adjacent thesecond end 23, and with an end face of theshell 9 adjacent thesecond end 23. A variation of this preferred configuration is illustrated inFIG. 3 wherein one ormore holes 24 are formed in portions of theshell 9 that are encapsulated by theretentate tubesheet 4 b and portions of theshell 9 that are encapsulated by thepermeate tubesheet 4 a. This enables the material of the retentate tubesheet 4 b and permeatetubesheet 4 a, prior to being cured, to flow through the corresponding holes 24. After curing, portions of the cured material making up the retentate and permeate 4 b, 4 a form a bridge through the one ortubesheets more holes 24 between remaining portions of the cured material on each side of theshell 9. -
List of Reference Characters 1a permeate port 1b retentate port 2a permeate end cap 2b retentate end cap 3a permeate cap bolt 3b retentate cap bolt 4a permeate tubesheet 4b retentate tubesheet 5a permeate seal O- ring groove 5b retentate seal O- ring groove 6a permeate seal O- ring 6b retentate seal O- ring 7a permeate side vessel O- ring groove 7b retentate side vessel O- ring groove 8 pressure vessel 9 Shell 10 feed port 11a permeation end cap nut 11b retentate end cap nut 12 flow of permeate 13 flow of retentate 14 flow of feed fluid 15 porous support 16 epoxy cap 18 retentate outlet 19 feed fluid inlet 20a permeate side vessel O- ring 20b retentate side vessel O- ring 21 CMS hollow fiber membranes 22 first end of the shell 23 second end of the shell 24 holes in portion of shell adjacent to retentate tubesheet - While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations that fall within the spirit and broad scope of the appended claims. The present invention may suitably comprise, consist or consist essentially of the elements disclosed and may be practiced in the absence of an element not disclosed. Furthermore, if there is language referring to order, such as first and second, it should be understood in an exemplary sense and not in a limiting sense. For example, it can be recognized by those skilled in the art that certain steps can be combined into a single step.
- The singular forms “a”, “an” and “the” include plural referents, unless the context clearly dictates otherwise.
- “Comprising” in a claim is an open transitional term which means the subsequently identified claim elements are a nonexclusive listing i.e. anything else may be additionally included and remain within the scope of “comprising.” “Comprising” is defined herein as necessarily encompassing the more limited transitional terms “consisting essentially of” and “consisting of”; “comprising” may therefore be replaced by “consisting essentially of” or “consisting of” and remain within the expressly defined scope of “comprising”.
- “Providing” in a claim is defined to mean furnishing, supplying, making available, or preparing something. The step may be performed by any actor in the absence of express language in the claim to the contrary.
- Optional or optionally means that the subsequently described event or circumstances may or may not occur. The description includes instances where the event or circumstance occurs and instances where it does not occur.
- Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the one particular value and/or to the other particular value, along with all combinations within said range.
- All references identified herein are each hereby incorporated by reference into this application in their entireties, as well as for the specific information for which each is cited.
Claims (20)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/567,048 US11691108B1 (en) | 2021-12-31 | 2021-12-31 | Gas separation membrane module with hollow fiber carbon molecular sieve membranes |
| PCT/US2022/053744 WO2023129461A1 (en) | 2021-12-31 | 2022-12-22 | Gas separation membrane module with hollow fiber carbon molecular sieve membranes |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/567,048 US11691108B1 (en) | 2021-12-31 | 2021-12-31 | Gas separation membrane module with hollow fiber carbon molecular sieve membranes |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US11691108B1 US11691108B1 (en) | 2023-07-04 |
| US20230211293A1 true US20230211293A1 (en) | 2023-07-06 |
Family
ID=85199346
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/567,048 Active US11691108B1 (en) | 2021-12-31 | 2021-12-31 | Gas separation membrane module with hollow fiber carbon molecular sieve membranes |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US11691108B1 (en) |
| WO (1) | WO2023129461A1 (en) |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3616929A (en) * | 1970-05-20 | 1971-11-02 | Universal Water Corp | Reverse osmosis module |
| US4547289A (en) * | 1983-02-28 | 1985-10-15 | Yoshihiro Okano | Filtration apparatus using hollow fiber membrane |
| US20020003105A1 (en) * | 2000-05-26 | 2002-01-10 | Mcevoy Thomas J. | Modular assembly for hollow membrane fiber cartridges |
| US20060125187A1 (en) * | 2000-06-21 | 2006-06-15 | Millipore Corporation | Sealing device for filtration devices |
| US20100107880A1 (en) * | 2007-07-02 | 2010-05-06 | Kabushiki Kaisha Toshiba | Hollow fiber membrane dehumidifier |
| US20110203458A1 (en) * | 2010-02-25 | 2011-08-25 | Perma Pure Llc | Membrane gas dryers incorporating rotatable fittings |
| US20150136689A1 (en) * | 2013-11-19 | 2015-05-21 | Brian E. Butters | Filtration methods, apparatus, and systems using a ceramic seal gasket |
| US20160023164A1 (en) * | 2014-07-23 | 2016-01-28 | Air Liquide Advanced Technologies U.S. Llc | Gas separation membrane module with improved gas seal |
| US20160193570A1 (en) * | 2013-09-30 | 2016-07-07 | Toray Industries, Inc. | Cartridge-type hollow fiber membrane module and method for manufacturing cartridge-type hollow fiber membrane module |
| US20170001148A1 (en) * | 2015-06-30 | 2017-01-05 | Air Liquide Advanced Technologies U.S. Llc | Gas separation membrane module for reactive gas service |
| US20170001149A1 (en) * | 2015-06-30 | 2017-01-05 | Air Liquide Advanced Technologies U.S. LP | Gas separation membrane module for reactive gas service |
| US20170113181A1 (en) * | 2014-03-28 | 2017-04-27 | Beko Technologies Gmbh | Housing head with scavenging air regulator |
| US20170136412A1 (en) * | 2015-11-12 | 2017-05-18 | Unger Marketing International, Llc | Fluid conditioning systems having caps with filter cartridge sealing and removal devices and/or locking devices |
| US20170136415A1 (en) * | 2014-05-28 | 2017-05-18 | Sartorius Stedim Biotech Gmbh | Method for the production of a hollow fiber module, and hollow fiber module |
| US20170348643A1 (en) * | 2015-02-25 | 2017-12-07 | Mitsubishi Chemical Corporation | Separation membrane module and repairing method thereof |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3720658A (en) | 1969-04-30 | 1973-03-13 | Westinghouse Electric Corp | Cholesteryl p-phenylazophenyl carbonate |
| US3702658A (en) | 1971-02-24 | 1972-11-14 | Du Pont | Permeation separation apparatus |
| US11918956B2 (en) * | 2019-12-16 | 2024-03-05 | Cameron International Corporation | Membrane module |
-
2021
- 2021-12-31 US US17/567,048 patent/US11691108B1/en active Active
-
2022
- 2022-12-22 WO PCT/US2022/053744 patent/WO2023129461A1/en not_active Ceased
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3616929A (en) * | 1970-05-20 | 1971-11-02 | Universal Water Corp | Reverse osmosis module |
| US4547289A (en) * | 1983-02-28 | 1985-10-15 | Yoshihiro Okano | Filtration apparatus using hollow fiber membrane |
| US20020003105A1 (en) * | 2000-05-26 | 2002-01-10 | Mcevoy Thomas J. | Modular assembly for hollow membrane fiber cartridges |
| US20060125187A1 (en) * | 2000-06-21 | 2006-06-15 | Millipore Corporation | Sealing device for filtration devices |
| US20100107880A1 (en) * | 2007-07-02 | 2010-05-06 | Kabushiki Kaisha Toshiba | Hollow fiber membrane dehumidifier |
| US20110203458A1 (en) * | 2010-02-25 | 2011-08-25 | Perma Pure Llc | Membrane gas dryers incorporating rotatable fittings |
| US20160193570A1 (en) * | 2013-09-30 | 2016-07-07 | Toray Industries, Inc. | Cartridge-type hollow fiber membrane module and method for manufacturing cartridge-type hollow fiber membrane module |
| US20150136689A1 (en) * | 2013-11-19 | 2015-05-21 | Brian E. Butters | Filtration methods, apparatus, and systems using a ceramic seal gasket |
| US20170113181A1 (en) * | 2014-03-28 | 2017-04-27 | Beko Technologies Gmbh | Housing head with scavenging air regulator |
| US20170136415A1 (en) * | 2014-05-28 | 2017-05-18 | Sartorius Stedim Biotech Gmbh | Method for the production of a hollow fiber module, and hollow fiber module |
| US20160023164A1 (en) * | 2014-07-23 | 2016-01-28 | Air Liquide Advanced Technologies U.S. Llc | Gas separation membrane module with improved gas seal |
| US20170348643A1 (en) * | 2015-02-25 | 2017-12-07 | Mitsubishi Chemical Corporation | Separation membrane module and repairing method thereof |
| US20170001148A1 (en) * | 2015-06-30 | 2017-01-05 | Air Liquide Advanced Technologies U.S. Llc | Gas separation membrane module for reactive gas service |
| US20170001149A1 (en) * | 2015-06-30 | 2017-01-05 | Air Liquide Advanced Technologies U.S. LP | Gas separation membrane module for reactive gas service |
| US20170136412A1 (en) * | 2015-11-12 | 2017-05-18 | Unger Marketing International, Llc | Fluid conditioning systems having caps with filter cartridge sealing and removal devices and/or locking devices |
Also Published As
| Publication number | Publication date |
|---|---|
| US11691108B1 (en) | 2023-07-04 |
| WO2023129461A1 (en) | 2023-07-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0454918B1 (en) | Hollow fibre separation module and method for the use thereof | |
| JP5858117B2 (en) | Separation membrane module | |
| US20140208948A1 (en) | Gas Separation Modules and Methods for Forming | |
| US11559964B2 (en) | Composite structures, composite storage tanks, vehicles including such composite storage tanks, and related systems and methods | |
| US9186628B2 (en) | Air separation module with clam shell axial support | |
| JP3933907B2 (en) | Gas separator fixing structure and gas separator using the same | |
| EP2977094A1 (en) | Gas separation membrane module with improved gas seal | |
| EP0038612B1 (en) | Hollow filament separatory modules | |
| JP2016511141A5 (en) | ||
| US7255729B2 (en) | Porous cylindrical-body module, structure for supporting porous cylindrical bodies, and method for fastening a supporting member | |
| US5916440A (en) | Rigid membrane fluid treatment module | |
| US20050284293A1 (en) | Membrane module for separation of fluids | |
| EP0228836A2 (en) | Threaded end enclosure | |
| US11691108B1 (en) | Gas separation membrane module with hollow fiber carbon molecular sieve membranes | |
| Stern et al. | The permeation of gases through hollow silicone rubber fibers: Effect of fiber elasticity on gas permeability | |
| KR20180099622A (en) | Gas Separation Membrane Module for Reactive Gas Service | |
| JP2016538988A (en) | Air separation device, deactivation device, and aircraft equipped with such a device | |
| US9764275B2 (en) | Membrane module capable of operation in extreme temperature environments | |
| KR102512455B1 (en) | Gas Separation Membrane Modules for Reactive Gas Service | |
| JP2003159517A (en) | Hollow fiber separation membrane module | |
| AU2017269010B2 (en) | Separation membrane module | |
| JP5135854B2 (en) | Shell feed type gas separation membrane module | |
| JP2017029911A (en) | Hollow fiber membrane module |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| AS | Assignment |
Owner name: AMERICAN AIR LIQUIDE, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, TAO;SWAIDAN, RAJA;GAGLIANO, ROBERT A.;REEL/FRAME:062808/0344 Effective date: 20221219 Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMERICAN AIR LIQUIDE, INC.;REEL/FRAME:062808/0579 Effective date: 20221215 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |