US20230157697A1 - System, apparatus, and method for creating a lumen - Google Patents
System, apparatus, and method for creating a lumen Download PDFInfo
- Publication number
- US20230157697A1 US20230157697A1 US17/992,512 US202217992512A US2023157697A1 US 20230157697 A1 US20230157697 A1 US 20230157697A1 US 202217992512 A US202217992512 A US 202217992512A US 2023157697 A1 US2023157697 A1 US 2023157697A1
- Authority
- US
- United States
- Prior art keywords
- balloon
- helix
- helical shape
- generally helical
- operating mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 109
- 210000001367 artery Anatomy 0.000 claims abstract description 26
- 239000000853 adhesive Substances 0.000 claims description 11
- 230000001070 adhesive effect Effects 0.000 claims description 11
- 239000010409 thin film Substances 0.000 claims description 3
- 239000000306 component Substances 0.000 description 287
- 239000011159 matrix material Substances 0.000 description 79
- 238000010586 diagram Methods 0.000 description 74
- 238000003780 insertion Methods 0.000 description 50
- 230000037431 insertion Effects 0.000 description 50
- 239000000463 material Substances 0.000 description 45
- 230000007613 environmental effect Effects 0.000 description 34
- 210000005239 tubule Anatomy 0.000 description 21
- 229920001778 nylon Polymers 0.000 description 19
- 239000007767 bonding agent Substances 0.000 description 17
- 239000012530 fluid Substances 0.000 description 17
- 229920000139 polyethylene terephthalate Polymers 0.000 description 17
- 239000005020 polyethylene terephthalate Substances 0.000 description 17
- 238000002399 angioplasty Methods 0.000 description 16
- 238000013461 design Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 13
- 210000004204 blood vessel Anatomy 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 208000024172 Cardiovascular disease Diseases 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 208000027418 Wounds and injury Diseases 0.000 description 8
- 210000004351 coronary vessel Anatomy 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000013146 percutaneous coronary intervention Methods 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 239000004677 Nylon Substances 0.000 description 7
- 210000000748 cardiovascular system Anatomy 0.000 description 7
- 229920002725 thermoplastic elastomer Polymers 0.000 description 7
- 208000031481 Pathologic Constriction Diseases 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 229910001000 nickel titanium Inorganic materials 0.000 description 6
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 6
- 229920002635 polyurethane Polymers 0.000 description 6
- 239000004814 polyurethane Substances 0.000 description 6
- 241000282414 Homo sapiens Species 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 239000000806 elastomer Substances 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 229920002647 polyamide Polymers 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 231100000517 death Toxicity 0.000 description 4
- 238000003618 dip coating Methods 0.000 description 4
- 235000012489 doughnuts Nutrition 0.000 description 4
- 230000023597 hemostasis Effects 0.000 description 4
- 206010020718 hyperplasia Diseases 0.000 description 4
- 210000002321 radial artery Anatomy 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- 239000002550 vasoactive agent Substances 0.000 description 4
- 230000004323 axial length Effects 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000002526 effect on cardiovascular system Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 210000001105 femoral artery Anatomy 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 241000237503 Pectinidae Species 0.000 description 2
- 229920002614 Polyether block amide Polymers 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 206010047139 Vasoconstriction Diseases 0.000 description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000002586 coronary angiography Methods 0.000 description 2
- 230000003073 embolic effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 230000005802 health problem Effects 0.000 description 2
- 230000003862 health status Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 150000002843 nonmetals Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 208000037803 restenosis Diseases 0.000 description 2
- 235000020637 scallop Nutrition 0.000 description 2
- 239000012781 shape memory material Substances 0.000 description 2
- 229920000431 shape-memory polymer Polymers 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000036262 stenosis Effects 0.000 description 2
- 208000037804 stenosis Diseases 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000025033 vasoconstriction Effects 0.000 description 2
- 230000024883 vasodilation Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 200000000007 Arterial disease Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 206010008479 Chest Pain Diseases 0.000 description 1
- 206010008469 Chest discomfort Diseases 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 210000001765 aortic valve Anatomy 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000036996 cardiovascular health Effects 0.000 description 1
- 230000005800 cardiovascular problem Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940039231 contrast media Drugs 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000036449 good health Effects 0.000 description 1
- 210000004013 groin Anatomy 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229920002529 medical grade silicone Polymers 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 235000008113 selfheal Nutrition 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12136—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/32—Surgical cutting instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1002—Balloon catheters characterised by balloon shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/32—Surgical cutting instruments
- A61B2017/320044—Blunt dissectors
- A61B2017/320048—Balloon dissectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/32—Surgical cutting instruments
- A61B2017/320056—Tunnelers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1086—Balloon catheters with special features or adapted for special applications having a special balloon surface topography, e.g. pores, protuberances, spikes or grooves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1097—Balloon catheters with special features or adapted for special applications with perfusion means for enabling blood circulation only while the balloon is in an inflated state, e.g. temporary by-pass within balloon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0074—Dynamic characteristics of the catheter tip, e.g. openable, closable, expandable or deformable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/06—Body-piercing guide needles or the like
- A61M25/0662—Guide tubes
Definitions
- Catheterization procedures can provide a valuable, effective, and minimally invasive option for diagnosing and treating cardiovascular problems and other types of medical problems.
- Blockage within a blood vessel can block catheters as well as blood flow.
- Two common problems of access are vessel tortuosity and insignificant stenoses.
- the vessel pathway to the blockage that needs treatment may be very tortuous, which means it is very curved or serpentine and the angioplasty balloon catheter cannot be inserted through the tortuous vessel.
- a portion of the vessel may be stenosed, which means there are smaller blockages that make the vessel too narrow and prevent insertion of the balloon catheter. These smaller blockages are usually not intended to be treated with balloon angioplasty. It would be desirable to empower health care providers with enhanced tools and methodologies for working around obstacles to the blockage site.
- FIG. 3 f is a diagram illustrating an example of a partial and close-up view of the tubular balloon expansion component illustrated in FIG. 3 e.
- FIG. 3 g is a perspective and partial diagram illustrating an example of a tubular balloon expansion component.
- FIG. 3 i is a diagram illustrating an example of a perspective view of tubular balloon expansion component.
- FIG. 4 a is a flow chart diagram illustrating an example of a process for creating a lumen using a guide balloon embodiment of the system.
- FIG. 4 c is an environmental diagram illustrating an example of a process step where the guide balloon is inflated.
- FIG. 4 d is an environmental diagram illustrating an example of a process step where the expansion component in the form of a cover is advanced over the inflated guide balloon in order to expand the cover from a low-profile state into a high-profile state.
- FIG. 5 a is a flow chart diagram illustrating an example of a process for creating a lumen using an insertion component embodiment of the system.
- FIG. 5 b is an environmental diagram illustrating an example of a process step where the cover is inserted into the body of the patient.
- FIG. 5 c is an environmental diagram illustrating an example of a process step where an insertion component is inserted into the cover (a type of expansion component) positioned within the body of the patient to expand the distal section of the expansion component and to create the desired lumen at the desired location.
- an insertion component is inserted into the cover (a type of expansion component) positioned within the body of the patient to expand the distal section of the expansion component and to create the desired lumen at the desired location.
- FIG. 5 d is an environmental diagram illustrating an example of a process step where a stent catheter is inserted through the cover.
- FIG. 6 b is an environmental diagram illustrating an example of a process step where a sheath covers the sheathed balloon during insertion the sheathed balloon.
- FIG. 7 c is a diagram illustrating an example of an axial view of the helix and matrix configuration of FIGS. 7 a and 7 b.
- FIG. 7 d is a diagram illustrating an example of a perspective section view of the helix and matrix configuration of FIGS. 7 a - 7 c.
- FIG. 7 g shows another example helix balloon having a triangular or generally triangular cross-section when bound.
- FIGS. 8 a - f show an example helix balloon with tubules.
- FIGS. 11 a - b show an example tubular balloon with an outer support.
- FIGS. 14 a - g show an example tubular balloon with a clip.
- the additional space can enable the use of other medical devices by overcoming the problems of conventional access such as vessel tortuosity or insignificant stenoses.
- the system enables a balloon angioplasty catheter or stent catheter can be inserted through the passageway or tunnel of the lumen past the access problems and onto the desired location.
- Expansion components 110 can be categorized as direct vs. indirect. Some embodiments of the system 100 utilize balloons as expansion components 110 while other embodiments of the system 100 utilize non-balloon expansion components 110 .
- the expansion component 110 is but one component of many.
- the expansion component 110 can interfaces with certain ancillary components, such as a guide catheter 121 and a guide wire 122 .
- ancillary components such as a guide catheter 121 and a guide wire 122 .
- a guide catheter 121 and a guide wire 122 may be utilized to position the expansion component 110 to the desired location 88 .
- Such components may be part of the system 100 , but the use of ancillary components will vary widely between different embodiments of the system 100 .
- the system 100 can include virtually any prior art component useful to the provider 92 in addressing the needs of the patient 90 .
- the various embodiments of the system 100 can be organized into categories. As illustrated in FIG. 2 c , many different embodiments of the system 100 can utilize some form of a balloon 111 . Some embodiments of the system 100 can utilize a balloon 111 with a default state of uninflated that require inflation to transition from a low-profile operating mode 132 into a high-profile operating mode 134 (i.e. the tubular balloon 112 and the helix balloon 113 ). Other embodiments of the system 100 use the balloon 111 not as the expansion component but as a mechanism for expanding the expansion component 110 from a low-profile operating mode 132 into a high-profile operating mode 134 (i.e.
- PCI percutaneous coronary intervention
- the system 100 can be configured for use with virtually any catheter device and any catheterization procedure.
- Helix balloon embodiments 104 can be highly desirable because of the impact of the matrix 114 , which can selectively increase the rigidity of the expansion component 110 so that it can be inserted into locations 88 that a tubular balloon 112 without a matrix 114 will not be able to reach.
- helix balloons 113 can be implemented as conventional inflatable balloons, but also as a self-expanding helix component 141 or as a mechanically-expanding helix component 142 .
- FIG. 3 d is a diagram illustrating an example of a side view of the system 100 .
- the tubular balloon 112 has two opposed ends 112 a / 112 b .
- the valve 151 could be located at one end 112 a or could be at a different location along the length of the tubular balloon 112 . If the valve 151 is at one of the opposed ends 112 a , then the other of the opposed ends 112 could be sealed or otherwise closed off to maintain fluid pressure within the space 404 when the tubular balloon 112 is in the high profile operating mode. If the valve 151 is at a different location along the length of the tubular balloon 112 , then both of the ends 112 a / 112 b of the tubular balloon 112 could be sealed or otherwise closed off.
- Either of the tubular balloons 112 / 112 ′ can be made by blow molding, in one example.
- the tubular balloon 112 ′ is made with a cylindrical shape like the tubular balloon 112 , and then is pressed, molded, or otherwise formed into the triangular shape.
- connection 406 could be made in a variety of ways.
- the connection 406 could be made by bonding the inner and outer walls 400 / 402 together using any known adhesive that is suitable for the material of the inner and outer walls 400 / 402 and for medical applications.
- Any known material that is suitable for medical applications could be used for the tubular balloon 112 , however, some non-limiting examples include PET (polyethylene terephthalate), nylons, engineered nylons, polyamides, polyurethanes, nylon elastomers, and other thermoplastic elastomers.
- connection 406 could be made by fusing the inner and outer walls 400 / 402 together using a thermal bonding technique such as laser welding or any other known technique that is suitable for the material of the inner and outer walls 400 / 402 and for medical applications.
- connection 406 is a line or rib that extends along a circumferential or axial extent of the tubular balloon 112 .
- the connections 406 extend along less than the entire radial or circumferential extent of the tubular balloon 112 in order to maintain a single common space 404 throughout the entire tubular balloon 112 for receiving the fluid from the inflation tube 150 as discussed above.
- the tubular balloon includes multiple ribs that extend along a majority, e.g,. greater than 50% but less than 100%, of the circumferential extent of the tubular balloon 112 .
- the rib or line connections 406 could be evenly spaced along the axial extent of the tubular balloon 112 as shown in FIGS. 9 b - c , though other arrangements/distributions are also contemplated.
- FIG. 4 b is an environmental diagram illustrating an example of a process step where the guide balloon 115 is inserted.
- a guide catheter 121 or similar medical device 80 can be inserted to the femoral or radial artery, and the guide catheter will be advanced until it accesses the right or left coronary ostium.
- the ostium is the start of the coronary artery. It is where the artery branches off the aorta.
- a guide wire 122 will be inserted through the guide catheter 121 and into the coronary artery beyond the point where treatment is to be conducted.
- the guide balloon 115 of the system 100 will be inserted over top of the guide wire 122 and through the guide catheter 121 into the artery.
- the guide balloon 115 is in a deflated state while it is inserted. It is inserted past any tortuous areas or stenosis.
- FIG. 4 c is an environmental diagram illustrating an example of a process step where the guide balloon 115 is inflated.
- the guide balloon 115 is inflated after it is properly positioned. It can be inflated pneumatically with a gas such as air or hydraulically with a liquid. It is most likely to be inflated which a 50-50 mixture of sterile saline and contrast media. It may be inflated to lower pressures of 1-4 atmospheres or higher pressures up to 16 atmospheres.
- the inflated outside diameter of the guide balloon 115 may be less than, equal to, or greater than the diameter of the artery.
- the guide balloon 115 may temporarily straighten any tortuous areas of the artery, either completely or partially.
- FIG. 4 g is an environmental diagram illustrating an example of a process step where a stent 123 is inserted through the space 120 created by the system 100 .
- FIG. 5 b is an environmental diagram illustrating an example of a process step where the cover 116 is inserted into the body of the patient 90 .
- a guide catheter 121 will be inserted to the femoral or radial artery, and the catheter 121 will be advanced until it accesses the right or left coronary ostium.
- the ostium is the start of the coronary artery. It is where the artery branches off the aorta.
- a guide wire 122 will be inserted through the guide catheter 121 and into the coronary artery beyond the point where treatment is to be conducted.
- FIG. 5 d is an environmental diagram illustrating an example of a process step at 326 .
- the nested structure of the high-profile state 134 expansion component 110 and the insertion component 117 will create space 120 through which other medical devices 80 can be inserted, such as an angioplasty balloon catheter or a stent catheter 123 .
- Shape memory materials can be metallic or non-metallic. Nitinol is one possible metallic material that could be used.
- the expansion component 110 could be made from Nitinol and the memorized shape would be the low-profile state 132 . This memorized low-profile state 132 would enable the connected expansion component 110 and guide catheter 121 to be inserted into the coronary artery past the ostium, tortuous areas and any stenoses.
- the insertion component 117 would be used to actively transition the expansion component 110 from the low-profile state 132 to the high-profile state 134 .
- Non-metallic shape memory polymers could also be used to construct the expansion component 110 and accomplish the same result.
- a braid structure could be used to construct the cover 116 .
- the braid would be made to the size of the low-profile state 132 .
- the woven mesh pattern of the braid has space in the interstices between its wires. This would allow it to expand to the high-profile state 134 when the insertion component 117 is inserted.
- FIG. 6 b is an environmental diagram illustrating an example of a process step where a sheath 119 covers the system 100 during insertion.
- the expansion component 110 could be compressed to a low-profile state 132 and inserted into a sheath 119 .
- the sheath 119 would cover the expansion component 110 keeping it in the low-profile state 132 .
- the expansion component 110 and sheath 119 would be inserted through the guide catheter 121 and into the artery 91 as one unit.
- FIG. 6 f is an environmental diagram illustrating an example of a process step where the stent catheter 123 is inserted into the patient 90 through the working space 120 created by the presence of the system 100 in a high-profile operating mode 134 .
- Other devices can pass through the space 120 created by the system 100 when it is in the high-profile expanded state 134 , such as an angioplasty balloon catheter or stent 123 .
- the sheath 119 may have an atraumatic tip to aid insertion and eliminate or reduce damage to the artery wall.
- the expansion component 110 , sheath 119 or both items could have radio-opaque features so they can be visualized with fluoroscopic imaging.
- a helix balloon 113 can change operating modes 130 in precisely the same ways using the same technologies and principles of chemistry and physics.
- the tubular balloon 112 could have a dual-wall construction, as described above, or could have another construction such as a continuous tube.
- an inflation tube 150 is configured to mate with the tubular balloon 112 at a valve 151 as discussed above.
- the inflation tube 150 fluidly connects a space 212 within the tubular balloon 112 with a fluid source (not shown). Therefore, fluid such as saline can be provided or removed from the tubular balloon 112 to cause the helix balloon 113 to deflate or expand between the low profile operating mode 132 and the high profile operating mode 134 as discussed above.
- a flange 149 is a rim, collar, or ring that secures the balloon 111 into the shape of a helix balloon 113 .
- the cross-section of the helix balloon 113 can have one or more flanges 149 . Adjacent passes of the helical shape can be connected together by the flange 149 .
- the connected flanges 149 in the aggregate can form the matrix component 114 .
- Flanges 149 can be connected using a weave 145 , a bonding agent 146 , a thermally formed connection 147 , a matrix cover 148 , and/or potentially other means.
- the tubules 200 can be made of the same material as the helix balloon 113 or a different material than the helix balloon 113 . Any known material that is suitable for medical applications could be used, however, some non-limiting examples include PET (polyethylene terephthalate), nylons, engineered nylons, polyamides, polyurethanes, nylon elastomers, and other thermoplastic elastomers.
- the tubules 200 can be non-compliant (e.g., rigid), semi-compliant, or compliant (e.g., flexible).
- the helix balloon 113 can be non-compliant (e.g., rigid), semi-compliant, or compliant (e.g., flexible).
- the tubules 200 and helix balloon 113 can have the same, similar, or difference compliance.
- Each tubule 200 spans between opposed ends 202 a / 202 b .
- One of the ends 202 a meets a first turn 213 a of the helix balloon 113 and the other of the ends 202 b meets a second turn 213 b adjacent the first turn 213 a.
- the distances x and y can be selected to provide flexibility in the helix balloon 113 when it is in the high-profile operating mode 134 . For instance, areas of the helix balloon 113 that require bending could have less tubules 200 so as not to impede the movement of the helix balloon 113 in that localized area and with respect to other areas.
- the inner support 300 When the helix balloon 113 is expanded from the low-profile operating mode 132 to the high-profile operating mode 134 as described above, the inner support 300 has a generally cylindrical shape and supports the helix balloon 113 in the helical shape to maintain the lumen 120 .
- the inner support 300 also maintains the distance y between adjacent turns 213 a/ 213 b of the helix balloon 113 (which is known as the pitch of a helix). In some examples, the distance y is zero or near zero, meaning adjacent turns 213 a/ 213 b of the helix balloon 113 are touching one another. In other examples, the distance y is greater than zero.
- the inner support 300 is attached to the helix balloon 113 in such a way that the inner support 300 does not become detached from the helix balloon 113 when the helix balloon 113 is used as described herein.
- the tubular balloon 112 can be attached to the inner support 300 by any appropriate adhesive known in the art for the material of the tubular balloon 112 /inner support 300 that is also biocompatible.
- the tubular balloon 112 can be attached to the inner support 300 by a thermal bond, such as a thermal weld, an RF (radio frequency) weld, an ultrasonic weld, a laser weld, or the like.
- the attachment can be continuous, e.g., along the entire inner surface 213 c of the helix balloon 113 , or discontinuous, e.g., only at certain points along the inner surface 213 c.
- the matrix component 114 includes an outer support 350 .
- the outer support 350 can be used together with the inner support 300 discussed above, or on its own.
- the outer support 350 can be similar to the inner support 300 , except that it is attached to an outer surface 213 d of the helix balloon 113 .
- the outer support 350 can be made from any medical grade biocompatible material such PET (polyethylene terephthalate), nylon polymers, or thermoplastic polyurethane, as non-limiting examples.
- the outer support 350 is made from a “thin film” material with a thickness on the order of a tenth of a millimeter.
- the outer support 350 can be made from the same material or a different material than the tubular balloon 112 .
- the outer support 350 is perforated, e.g., is formed from a mesh.
- the helix balloon 113 can have a flattened profile at the outer surface 213 d , so that a cross-section of tubular balloon 112 is hemispherical.
- the flattened profile provides a larger surface area for bonding the tubular balloon 112 to the outer support 350 .
- the flattened profile can additionally or alternatively be at the inner surface 213 c in cases where an inner support 300 is used.
- Hinge points 505 separate the center leaf 502 from the first and second receiving leaves 504 a/ 504 b and the first and second receiving leaves 504 a/ 504 b from the first and second foldover leaves 506 a / 506 b .
- the hinge points 505 can include grooves to enable folding of the clip 500 of the clip at the hinge points 505 , as discussed in more detail below. However, other means of creating a hinge point 505 are also contemplated.
- the receiving leaves 504 a/ 504 b include openings 508 configured to receive successive turns 213 a/ 213 b of the helix balloon 113 .
- the openings 508 are dimensioned to accommodate the diameter of the tubular balloon 112 .
- the center leaf 502 has a length Lc
- the receiving leaves 504 a/ 504 b have a length Lr
- the foldover leaves 506 a / 506 b have a length Lf.
- Lc is greater than Lr, which is greater than Lf.
- Lr is greater than the diameter D of the tubular balloon 112 .
- Lr may up to about 50% greater than the diameter of the tubular balloon.
- tabs 600 may be formed at predetermined distances along the helix balloon 113 so that when the helix balloon 113 is wound to define a lumen 120 with a desired diameter, the tabs 600 of successive turns 213 a/ 213 b overlap one another.
- the tabs 600 may be spaced 120 degrees from one another around the circumference of the helix.
- the tab 600 may be a continuous tab formed along the length of the unwound helix balloon 113 so that when the helix balloon 113 is wound the tab 600 overlaps itself at the overlapping portion 602 between adjacent turns 213 a/ 213 b.
- the tabs 600 are co-extruded with the helix balloon 113 . That is, the tabs 600 are formed as the helix balloon 113 is being formed and therefore are integral with the helix balloon 113 .
- the tabs 600 can be the same or different material as the tubular balloon 112 .
- the tabs 600 can 0 comprise, for example, PET (polyethylene terephthalate), nylons, engineered nylons, polyamides, polyurethanes, nylon elastomers, and other thermoplastic elastomers.
- the strip 700 only spans some of the turns 213 a/ 213 b of the helix balloon 113 . More than one strip 700 may be used.
- the matrix component 114 includes three strips 700 arranged about 120 degrees from one another along the circumference of the helix balloon 113 .
- the scalloped restraint 800 can be the same or different material as the tubular balloon 112 .
- the scalloped restraint 800 can comprise, for example, PET (polyethylene terephthalate), nylons, engineered nylons, polyamides, polyurethanes, nylon elastomers, and other thermoplastic elastomers.
- the mandrel 375 of FIGS. 13 a - c can be used to assemble the helix balloon 113 with the scalloped restraint 800 .
- One of the scalloped strips 802 a is arranged over the mandrel 375 so that the scallops 804 fit into the the spaces 379 .
- the tubular balloon 112 is wound into the spaces 379 over the scalloped strip 802 a .
- the other of the scalloped strips 802 b is then laid over the helix balloon 113 and the scalloped strips 802 a / 802 b are joined at the joined portions.
- the scalloped strips 802 a / 802 b can be joined into a single long strip that can be folded over itself to provide two opposed scalloped strips 802 a / 802 b (similar to the band connector 500 discussed above).
- FIG. 7 b is a diagram illustrating an example of a side view of the helix 113 and matrix 114 configuration of FIG. 7 a.
- FIG. 7 c is a diagram illustrating an example of a planar front view of the helix 113 and matrix 114 configuration of FIGS. 7 a and 7 b . As illustrated in the figure, the 12 threads are uniformly spaced around the helix balloon 113 .
- FIG. 7 e is a diagram illustrating an example of a close-up view of the illustration in FIG. 7 d.
- Balloon expansion component balloon embodiments 108 can include but Embodiments are not limited to tubular balloon embodiments 103, helix balloon embodiments 104, and sheath embodiments 107.
- 109 Expansion Embodiments of the system 100 that do not involve an expansion Component Non- component 110 that is a balloon 111.
- expansion Balloon component non-balloon embodiments 109 can include but are not Embodiments limited to guide balloon embodiments 105 (expansion component 110 is advanced onto an inflated guide balloon 115) and insertion component embodiments 106 (insertion component 117 such as a second guide catheter 121 is inserted into the expansion component 110).
- Balloon An at least semi-flexible container, such that filling the container changes the shape of the container. Balloons can be inflated with air, other types of gasses, water, and other types of liquids. Some embodiments of balloons 111 can be inflated utilizing mechanical means. Many categories of expansion components 110 are balloons 111 (tubular balloon embodiments 103, helix balloon embodiments 104, and sheathed balloon embodiments 107) or are used in conjunction with balloons 111 (guide balloon embodiments 105).
- Matrix or Matrix A mechanism or configuration of mechanisms that keep the Component balloon 111 in the shape of a helix balloon 113.
- the matrix 114 maintains the helical shape of the helix balloon 113 in all operating modes 130.
- the matrix 114 can be implemented in a wide variety of different embodiments, including but not limited to a weave 145, a bonding agent 146, a thermally formed connection 147, a cover 148, and a flange 149.
- the cross sectional shape of the helix balloon 113 can be maintained differently in different operating modes 130.
- the cover 116 can be an integral part of a customary guide catheter 121 in the form of an extension on the distal end of the guide catheter 121.
- the cover 116 can be permanently and irremovably attached from the guide catheter 121 at the time of manufacture.
- the cover 116 can also be referred to as an expandable cover.
- 117 Insertion A device that is inserted into the expansion component 110 to Component trigger the expansion of the expansion component 110 from a low-profile operating mode 132 into a high-profile operating mode 134.
- the insertion component 117 can be a second guide catheter 121.
- Sheathed A balloon 111 that is naturally in an expanded state.
- the sheathed Balloon or balloon 118 changes from a low-profile operating mode 132 into Sheath Balloon a high-profile operating mode 134 when it is removed from a sheath 119.
- the sheath 119 compresses a sheathed balloon 118 from what would otherwise be a high-profile operating mode 134 into a low-profile operating mode 132.
- the sheathed balloon 118 is a braid 124.
- the sheath 119 constrains the sheathed balloon 118 such that the sheathed balloon 118 remains in a low-profile operating mode 132 so long as the sheathed balloon 118 remains within the sheath 119.
- Stent A type of medical device 80 that can be implanted within the blood vessel 91 of a patient 90 to keep the vessel 91 open for blood flow. Some embodiments of the system 100 are intended to create a lumen to facilitate inserting the stent 123 to the desired location 88.
- the stent 123 can also be referred to as a stent catheter.
- Braid or Braid A type of self-expanding sheathed balloon 118 and a type of Balloon expansion component 110.
- the construction of the braid 124 can be designed to provide optimum performance. Braid 124 characteristics such as number of wires, shape of wire, wire material, pitch, uniform pitch, variable pitch and weave pattern can be chosen to obtain the desired performance.
- More or less wires, and wire material, can affect strength and flexibility of the component. Round wires or flat wires can affect wall thickness. Pitch and weave pattern can affect expansion strength and profile size.
- 125 Attachment Wire A wire that is attached to a balloon 111 or other form of expansion component 110. Unlike a guide wire 122, the expansion component 110 does not move along the wire 125, but is fixed to the wire 125.
- 126 Medicinal A substance used in diagnosing and/or treating a disease, illness, Component or medical condition in a patient 90.
- Some embodiments of the matrix 114 can include a medical component 126, typically in the form of a coating on the matrix 114.
- the matrix 114 may contain vaso-active agents to cause vasoconstriction or vasodilation, depending on what may be required. Such an agent may be transient or longer lasting. Nitric oxide is an example of a vaso- active agent that can dilate a vessel, which would make the vessel bigger (larger diameter) until the agent wears off.
- the matrix 114 may contain any of the class of drug coatings that prevent intimal hyperplasia. Intimal hyperplasia often is a physiologic response to an angioplasty procedure resulting in restenosis of the treated area, which in layman's terms is a clogged stent 123. 130 Operating Mode A status or state of the expansion component 110.
- the matrix 114 can be made from a bonding agent 146 that is applied to a balloon 111 to secure its shape as a helix balloon 113.
- a bonding agent 146 can be used by itself or with other components to maintain the helical shape of the helix balloon 113. Consecutive passes of the helical shape can be bonded to adjacent passes.
- a wide variety of bonding agents including but not limited to adhesive glues or silicone can be used as possible bonding agents 146.
- the bonding agent 146 may be applied using dip coating techniques.
- a wide range of thermal forming Connection techniques known in the prior art can be used to connect adjacent passes of the helical shape together.
- the aggregate configuration of thermally formed connections 147 can by itself or in conjunction with other components, constitute the matrix 114.
- Matrix Cover A relatively thin sheet or a collection of thin sheets that overlay the balloon 111 to shape it into a helix balloon 113.
- the matrix cover 148 which can also be referred to as a covering 148, can contain the helix balloon 113 and help maintain its helical shape.
- the matrix cover 148 can be made from a fabric or other similar material suitable for the particular location 88 in the patient 90.
- the matrix cover 148 can cover a single pass of the helical shape, multiple passes or all passes.
- the matrix cover148 can be used by itself or in conjunction with other components to constitute the matrix 114.
- the matrix 148 may be applied using dip coating techniques as well as other plausible manufacturing methods.
- 149 Flange A flange is a rim, collar, or ring that secures the balloon 111 into the shape of a helix balloon 113.
- the cross-section of the helix balloon 113 can have one or more flanges 149. Adjacent passes of the helical shape can be connected together by the flange 149.
- the connected flanges 149 in the aggregate can form the matrix component 114.
- Flanges 149 can be connected using a weave 145, a bonding agent 146, a thermally formed connection 147, a matrix cover 148, and/or potentially other means.
- Inflation Tube A passageway to the balloon 111, such as a tubular balloon 112 or a helix balloon 113 that is used to inflate the balloon 111 with air or whatever gas or liquid is used to inflate the balloon 111.
- 151 Valve The connection between the inflation tube 150 and the balloon 111.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Child & Adolescent Psychology (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Reproductive Health (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
An example system for creating a lumen according to the present disclosure includes, among other possible things a balloon wound in a generally helical shape having an inner surface and an outer surface, and a support attached to at least one of the inner surface and the outer surface of the generally helical shape and constraining the tubular balloon in the generally helical shape. The balloon has a first diameter in a low-profile operating mode and the generally helical shape has a second diameter in a high-profile operating mode, and the second diameter is larger than the first diameter. Other example systems for creating a lumen and methods for creating a lumen in an artery are also disclosed.
Description
- This application is a continuation of U.S. patent application Ser. No. 17/991,742 filed Nov. 21, 2022, which claims priority to provisional patent applications U.S. Ser. No. 63/281,227 filed Nov. 19, 2021, U.S. Ser. No. 63/335,494 filed Apr. 27, 2022, and U.S. Ser. No. 63/354,421 filed Jun. 22, 2022, each of which are herein incorporated by reference in their entireties.
- The invention is a system, apparatus and method for creating a space (collectively the “system”). More specifically, the system creates a lumen within a body to facilitate the use of a medical device, such as the use of a catheter in a blood vessel. The term “lumen” means a “canal, duct, or cavity of a tubular organ.” Although the system can be implemented in a wide variety of different contexts, the original inspiration for the conceptualization of the system arose in the context of catheterization in the blood vessels of human beings. The system can facilitate catheterization by creating additional “working space” (i.e. the lumen) at a desired location within the body of a patient. The additional space can be created by transitioning from a low-profile operating mode into a high-profile operating mode.
- The term “catheter” refers collectively to a wide range of medical devices that are inserted into the body to (1) diagnose a medical condition; (2) treat a medical condition; (3) deliver nourishment; or (4) deliver medicine. The term “catheter” is often used more specifically to refer to a tube inserted into the body of a patient for the purposes of (a) removing material from a location in the body of a patient and/or (b) delivering medicinal and/or nourishing material to a specific location within the body of a patient. Catheters can be used in a variety of locations for a variety of purposes within the body of a patient. Catheterization procedures are commonly involved in the diagnosis and treatment of the cardiovascular system, the excretory system, and other similar systems of a patient.
- The circulation of blood is essential for a healthy body. Blood provides organs and individual cells with oxygen and nutrients necessary to sustain life. Blood also removes cellular metabolic waste products from the body. The proper flow of blood is a prerequisite for good health. At the center of the cardiovascular system is the heart, an organ responsible for pushing blood throughout the body. The heart functions as a pump at the center of a complex network of arteries and veins that make up the cardiovascular system. The cardiovascular system is thus responsible for the delivery of oxygen and nutrients and the removal of certain wastes throughout the body. The performance of the cardiovascular system can be evaluated in terms of cardiac output.
- Unfortunately, age, disease, trauma, and/or other ailments can hinder the distribution of blood throughout the body. Cardiovascular diseases are a serious health problem in the United States and elsewhere. About 1 in 3 deaths in the US is attributed to cardiovascular disease, which includes heart attacks and strokes. According to the World Health Organization (“WHO”), cardiovascular diseases are the number one cause of death in world. An estimated 17.3 million people died of cardiovascular diseases in 2008, a number that represents 30% of all deaths occurring in that year. According to WHO estimates, the number of deaths caused by cardiovascular diseases will reach 23.4 million by 2030.
- The Centers for Disease Control and Prevention (“CDC”) report that ‘“cardiovascular disease is the leading killer in every racial and ethnic group in America.’” Many health problems in the United States are either rooted in or manifested as cardiovascular disease. The most common type of heart disease in the United States is coronary artery disease (“CAD”). CAD occurs when plaque builds up in the arteries that supply blood to the heart. This can cause the arteries to narrow over time in a process called atherosclerosis. Plaque buildup can also cause chest pain or discomfort resulting from the inadequate supply of blood to the heart muscle. This is commonly referred to as a condition known as angina. Over time CAD can lead to an irregular heartbeat, a condition known as arrhythmia, and even heart failure.
- A variety of catheterization procedures are used in the prior art to diagnose and treat arterial disease. In the context of cardiovascular disease, a catheter is often a long, thin, flexible, hollow intravascular tube used to access the cardiovascular system of the body. Catheterization is most commonly conducted through the radial artery in the wrist (transradial catheterization) or the femoral artery of the groin (transfemoral catheterization). Catheterization can also be conducted through the elbow, neck, and other parts of the body.
- A wide variety of intravascular procedures can be used to address cardiovascular health issues in human beings. Percutaneous coronary intervention (“PCI”) procedures are a type of intravascular procedure commonly referred to as “coronary angioplasty”, “balloon angioplasty” or simply “angioplasty”. Patients suffering from atheroscleroisis have narrowed or blocked coronary artery segments resulting from the buildup of cholesterol-laden plaque. Angioplasty is a medical procedure used to treat the narrowed coronary arteries of the heart.
- During angioplasty, a cardiologist feeds a deflated balloon or other similar device to the site of the blockage. The balloon can then be inflated at the point of blockage to open the artery. A stent is often permanently placed at the site of blockage to keep the artery open after the balloon is deflated and removed. Angioplasty has proven to be a particularly effective treatment for patients with medically refractory myocardial ischemia. Unfortunately, it is not always possible to position the catheter in the desired location for the purposes of an angioplasty procedure.
- Catheterization procedures can provide a valuable, effective, and minimally invasive option for diagnosing and treating cardiovascular problems and other types of medical problems. Unfortunately, it is not always possible for prior art tools and techniques to reach the blockage site with a catheter. Blockage within a blood vessel can block catheters as well as blood flow. Two common problems of access are vessel tortuosity and insignificant stenoses. The vessel pathway to the blockage that needs treatment may be very tortuous, which means it is very curved or serpentine and the angioplasty balloon catheter cannot be inserted through the tortuous vessel. Also, a portion of the vessel may be stenosed, which means there are smaller blockages that make the vessel too narrow and prevent insertion of the balloon catheter. These smaller blockages are usually not intended to be treated with balloon angioplasty. It would be desirable to empower health care providers with enhanced tools and methodologies for working around obstacles to the blockage site.
- An example system for creating a lumen according to the present disclosure includes, among other possible things a balloon wound in a generally helical shape having an inner surface and an outer surface, and a support attached to at least one of the inner surface and the outer surface of the generally helical shape and constraining the balloon in the generally helical shape. The balloon has a first diameter in a low-profile operating mode and the generally helical shape has a second diameter in a high-profile operating mode, and the second diameter is larger than the first diameter.
- An example system for creating a lumen according to the present disclosure includes, among other possible things, a balloon wound in a generally helical shape having an inner surface and an outer surface, and at least one clip constraining the balloon in the generally helical shape, the at least one clip including a center leaf and first and second receiving leaves on either side of the center leaf. Each of the first and second receiving leaves including a first opening and a second opening, the first opening receiving a first turn of the generally helical shape and a second opening receiving a second turn of the generally helical shape. The balloon has a first diameter in a low-profile operating mode and the generally helical shape has a second diameter in a high-profile operating mode, and the second diameter is larger than the first diameter.
- An example system for creating a lumen according to the present disclosure includes a balloon wound in a generally helical shape having an inner surface and an outer surface, and at least one band connector constraining the balloon in the generally helical shape, the at least one band connector surrounding at least two successive turns of the generally helical shape. The balloon has a first diameter in a low-profile operating mode and the generally helical shape has a second diameter in a high-profile operating mode, and the second diameter is larger than the first diameter.
- Many features and inventive aspects of the system, are illustrated in the following drawings. However, no patent application can disclose all of the potential embodiments of an invention. In accordance with the provisions of the patent statutes, the principles and modes of operation of the system are explained and illustrated in certain preferred embodiments. However, it must be understood that the system may be practiced otherwise than is specifically explained and illustrated without departing from its spirit or scope.
- The description of the system and the various illustrations of the system should be understood to include all novel and non-obvious combination of elements described herein, and claims may be presented in this or a later application to any novel and non-obvious combination of these elements. Moreover, the foregoing embodiments are illustrative, and no single feature or element is essential to all possible combinations that may be claimed in this or a later application.
-
FIG. 1 a is a block diagram illustrating an example of a system for creating a lumen. -
FIG. 1 b is a flow chart diagram illustrating an example of a process for creating a lumen. -
FIG. 1 c is an environmental diagram illustrating an example of an expansion component in a low-profile operating mode. -
FIG. 1 d is an environmental diagram illustrating an example of an expansion component in a high-profile operating mode. -
FIG. 2 a is a hierarchy diagram illustrating an example of different embodiments of the system, including direct expansion embodiments and indirect expansion embodiments of the system. -
FIG. 2 b is a hierarchy diagram illustrating an example of different embodiments of the system, including expansion component balloon embodiments and expansion component non-balloon embodiments. -
FIG. 2 c is a hierarchy diagram illustrating an example of different types of balloons that can be utilized by the system. -
FIG. 3 a is diagram illustrating a partial and close-up view of the tubular balloon expansion component illustrated inFIG. 3 b. -
FIG. 3 b is a diagram illustrating an example of an axial view of the tubular balloon expansion component. -
FIG. 3 c is a diagram illustrating an example of a top view of the tubular balloon expansion component. -
FIG. 3 d is a diagram illustrating an example of a side view of the tubular balloon expansion component. -
FIG. 3 e is a diagram illustrating an example of a cross-sectional view of a side view of the tubular balloon expansion component with an illustration of a space within the tubular balloon expansion component. -
FIG. 3 f is a diagram illustrating an example of a partial and close-up view of the tubular balloon expansion component illustrated inFIG. 3 e. -
FIG. 3 g is a perspective and partial diagram illustrating an example of a tubular balloon expansion component. -
FIG. 3 h is a diagram illustrating an example of a front view of a pleated tubular expansion component, an example of a passive expansion component. -
FIG. 3 i is a diagram illustrating an example of a perspective view of tubular balloon expansion component. -
FIGS. 3 j-m illustrate an example of the tubular balloon ofFIGS. 3 e -g. -
FIGS. 3 n-p illustrate another example tubular balloon with a triangular or generally triangular cross-section. -
FIG. 4 a is a flow chart diagram illustrating an example of a process for creating a lumen using a guide balloon embodiment of the system. -
FIG. 4 b is an environmental diagram illustrating an example of a process step where the guide balloon is inserted. -
FIG. 4 c is an environmental diagram illustrating an example of a process step where the guide balloon is inflated. -
FIG. 4 d is an environmental diagram illustrating an example of a process step where the expansion component in the form of a cover is advanced over the inflated guide balloon in order to expand the cover from a low-profile state into a high-profile state. -
FIG. 4 e is an environmental diagram illustrating an example of a process step where the cover is positioned as desired within the body of the patient to create a lumen at the desired location. -
FIG. 4 f is an environmental diagram illustrating an example of a process step where the guide balloon is deflated and removed, creating a lumen within the cover. -
FIG. 4 g is an environmental diagram illustrating an example of a process step where a stent catheter is inserted through the space created by the cover. -
FIG. 5 a is a flow chart diagram illustrating an example of a process for creating a lumen using an insertion component embodiment of the system. -
FIG. 5 b is an environmental diagram illustrating an example of a process step where the cover is inserted into the body of the patient. -
FIG. 5 c is an environmental diagram illustrating an example of a process step where an insertion component is inserted into the cover (a type of expansion component) positioned within the body of the patient to expand the distal section of the expansion component and to create the desired lumen at the desired location. -
FIG. 5 d is an environmental diagram illustrating an example of a process step where a stent catheter is inserted through the cover. -
FIG. 6 a is a flow chart diagram illustrating an example of a process for creating a lumen using a sheathed balloon embodiment of the system. -
FIG. 6 b is an environmental diagram illustrating an example of a process step where a sheath covers the sheathed balloon during insertion the sheathed balloon. -
FIG. 6 c is an environmental diagram illustrating an example of a process step where the sheath and the sheathed balloon within the sheath are positioned as desired within the body of the patient. -
FIG. 6 d is an environmental diagram illustrating an example of a process step where the sheath is withdrawn. This causes the balloon to self-expand because it is no longer constrained by the sheath, triggering the creation of the additional working space (i.e. lumen) within in the body of the patient. -
FIG. 6 e is an environmental diagram illustrating an example of how the expanded sheathed balloon can create or enhance the lumen at the desired location within the body of the patient. -
FIG. 6 f is an environmental diagram illustrating an example of a process step where the stent catheter is inserted into the patient through the working space created by the presence of the balloon in a high-profile operating mode. -
FIG. 6 g is an environmental diagram illustrating an example of a process step where the sheath is advanced to collapse the balloon for removal. -
FIG. 7 a is a diagram illustrating a perspective view of a helix and matrix configuration that includes a tubular balloon constrained in the shape of a helix by a weave functioning as a matrix. -
FIG. 7 b is a diagram illustrating an example of a side view of the helix and matrix configuration ofFIG. 7 a. -
FIG. 7 c is a diagram illustrating an example of an axial view of the helix and matrix configuration ofFIGS. 7 a and 7 b. -
FIG. 7 d is a diagram illustrating an example of a perspective section view of the helix and matrix configuration ofFIGS. 7 a -7 c. -
FIG. 7 e is a diagram illustrating an example of close-up view of the illustration inFIG. 7 d. -
FIG. 7 f is a hierarchy diagram illustrating an example of different components and component configurations that can be utilized in a helix balloon embodiment of the system. -
FIG. 7 g shows another example helix balloon having a triangular or generally triangular cross-section when bound. -
FIGS. 8 a-f show an example helix balloon with tubules. -
FIGS. 9 a-c show an example tubular balloon with connector(s). -
FIGS. 10 a-b show an example tubular balloon with an inner support. -
FIGS. 11 a-b show an example tubular balloon with an outer support. -
FIGS. 12 a-d show examples of tubular balloons with inner/outer supports. -
FIGS. 13 a-c show an example mandrel for assembling a tubular balloon with an outer support. -
FIGS. 14 a-g show an example tubular balloon with a clip. -
FIGS. 15 a-c show an example tubular balloon with a band connector. -
FIGS. 16 a-b show an example mandrel for assembling a tubular balloon with an outer support. -
FIGS. 17 a-b show an example tubular balloon with coextruded restraints. -
FIGS. 18 a-c show an example tubular balloon with a strip having a series of flaps. -
FIGS. 19 a-c show an example tubular balloon with a scalloped restraint. - The invention is a system, apparatus and method for creating a space (collectively the “system”). More specifically, the system creates a lumen within a body to facilitate the use of a medical device, such as the use of a catheter in a blood vessel. The term “lumen” means a “canal, duct, or cavity of a tubular organ.” Although the system can be implemented in a wide variety of different contexts, the original inspiration for the conceptualization of the system arose in the context of catheterization in the blood vessels of human beings. The system can facilitate catheterization by creating additional “working space” (i.e. the lumen) at a desired location within the body of a patient. The additional space can be created by transitioning from a low-profile operating mode into a high-profile operating mode. The additional space can enable the use of other medical devices by overcoming the problems of conventional access such as vessel tortuosity or insignificant stenoses. The system enables a balloon angioplasty catheter or stent catheter can be inserted through the passageway or tunnel of the lumen past the access problems and onto the desired location.
- All of the numbered elements illustrated in the drawings and discussed in the text below that pertain to structural components rather than process steps are defined in the glossary provided in Table 1 below.
- The system can create a lumen in the body of a patient. That lumen can be used to position a medical device, such as a catheter, that can potentially save the life of the patient. The system can be described in terms of interacting entities, components, operational attributes, and processes.
- A. Entities
- As illustrated in
FIG. 1 a , asystem 100 is an interface between ahealthcare provider 92 and a body of a living organism, i.e. apatient 90. Theprovider 92 is typically a physician, although nurses, paramedics, physician assistants, veterinarians, and other health care professionals can potentially act asproviders 92 in certain contexts. Thepatient 90 is typically a human being, but other organisms can constitutepatients 90 in certain contexts. Thesystem 100 is a tool that theprovider 92 can use to benefit the health status of thepatient 90. - B. System
- The purpose of the
system 100 is to create “working space” (i.e. a lumen 120) within the body of the patient 90 sufficient to enable the positioning and use of amedical device 80 such as a catheter within the body of thepatient 90. Thesystem 100 can be implemented in a wide variety of different ways. Thesystem 100 can be used to improve the health of thepatient 90 and to even save the life of thepatient 90. - C. Medical Devices and Medical Procedures
- A wide variety of different
medical devices 80 andmedical procedures 81 can benefit from thelumen 120 created by thesystem 100. Examples of potentially usefulmedical devices 80 include but are not limited to all types of catheters, stents, patient monitoring applications, and other similar invasive devices. - A catheter device is potentially any device inserted into the body of a
patient 90. The term “catheter device” refers collectively to a wide range of medical devices that are inserted into the body to (1) diagnose a medical condition; (2) treat a medical condition; (3) delivery nourishment; or (4) deliver medicine. The term “catheter device” is often used more specifically to refer to a tube inserted into the body of apatient 90 for the purposes of (a) removing material from a location in the body of apatient 90 and/or (b) delivering medicinal and/or nourishing material to a specific location within the body of apatient 90. Catheters can be used in a variety of locations for a variety of purposes within the body of thepatient 90. Catheterization procedures are commonly involved in the diagnosis and treatment of the cardiovascular system, the excretory system, and other systems of apatient 90. - The
system 100 was originally conceived for the purpose of servingproviders 92 involved in providingmedical procedures 81 such as coronary vascular procedures. Examples of such procedures include but are not limited to Percutaneous Coronary Intervention (PCI), Percutaneous Coronary Angiogram (PCA), Chronic Total Occlusions (CTO), Stent implantation, Atherectomy, and Embolic Protection. Thesystem 100 can be particularly useful in the context of transradial catheterizations (catheterizations in which the catheter initially enters the body of the patient 90 through the radial artery) because transradial catheterizations typically involve catheterization devices with a relatively smaller profile and relatively sparse space in which to operate. Thesystem 100 in its varying embodiments can also be used in a variety of contexts that involve cardiovascular care and the treatment of wholly different conditions. - The
system 100 can also be used to deliver constituents such as drugs, biological agents, or excipients. For instance, any part of thesystem 100 such as thematrix 114 or the tubular balloon 112 (discussed in more detail below) can be loaded with constituents or encapsulated constituents according to any known method. When thesystem 100 is used in a blood vessel, contact between elements of thesystem 100 causes the constituents to be released into the vessel. - The
system 100 can also be used to temporarily improve blood perfusion in a vessel that is tortuous or includes other obstacles such as obstructions or blockages. - The
system 100 can also be used to address perforations or lesions in a vessel by being deployed at the perforation or lesion as discussed in more detail below, to apply pressure to it and seal or reduce the size of the perforation or lesion, allowing blood flow to continue through the vessel. - The
system 100 can also be used in conjunction with obtaining hemostasis of an access site. At the end of a catheterization procedure, when the last catheter or sheath is removed from the vessel (artery or vein), the hole in the vessel must be closed. Closing the hole in the vessel is referred to as hemostasis. The hole in the vessel is referred to as the access site. Thesystem 100 can be deployed as discussed in more detail below at the access site to ensure continued perfusion through the vessel and act as a closure device. Thesystem 100 is deployed in such a way as to cover the access site. This stops bleeding at the access site. With thesystem 100 in place over the access site, the vessel can naturally close, or ‘self-heal.’ When hemostasis of the access site is complete, thesystem 100 can be removed. Thesystem 100 can be particularly advantageous for obtaining hemostasis of large bore access sites, such as the ones for TAVR (transcatheter aortic valve replacement) procedures. In this example, thesystem 100 could obviate the need for surgical closure (suture closure) of the large bore access site. - D. Lumen
- A
lumen 120 is a space created within thepatient 90 by thesystem 100. Thelumen 120 is often referred to as a “canal, duct, or cavity within a tubular organ”. Thelumen 120 is the “working space” within thepatient 90 in which themedical device 80 is positioned. In many embodiments of thesystem 100, thelumen 120 is located within theexpansion component 110 and theexpansion component 110 is at least substantially in the form a hollow tube, with thelumen 120 comprising the hollow core of theexpansion component 110. - E. Expansion Component
- An
expansion component 110 is the device capable of existing in at least two operatingmodes 130, a low-profile operating mode 132 and a high-profile operating mode 134. - There are a wide variety of different embodiments of
expansion components 110 that can be incorporated into a wide variety of different embodiments of thesystem 100. In many embodiments of thesystem 100, theexpansion component 110 can transform from a high-profile operating mode 134 back into a low-profile operating mode 132 when theexpansion component 110 is no longer needed. In many embodiments, it will be easier for theprovider 92 to remove theexpansion component 110 from the patient 90 when theexpansion component 110 is in a low-profile operating mode 132. -
Expansion components 110 can be categorized as direct vs. indirect. Some embodiments of thesystem 100 utilize balloons asexpansion components 110 while other embodiments of thesystem 100 utilizenon-balloon expansion components 110. - F. Operating Modes/States
- The
expansion component 110 can operate in two or more operating modes 130 (which can also be referred to as states 130. The low-profile operating mode 132 is typically the mostconvenient operating mode 130 in which to insert theexpansion component 110 into thepatient 90 prior to creating thelumen 120. The low-profile operating mode 132 is also typically the mostconvenient operating mode 130 in which theprovider 92 can remove theexpansion component 110 after thelumen 120 is created and after themedical device 80 has been positioned correctly within thepatient 90. - Some embodiments of the
system 100 will involve one or more intermediate operating modes between the low-profile operating mode 132 and the high-profile operating mode 134. - G. Process Flow View
- The
system 100 can be described as a series of process steps as well as a configuration of interacting elements.FIG. 1 b is a flow chart diagram illustrating an example of a method for creating alumen 120. - At 200, the
expansion component 110 is inserted within thepatient 90. Different embodiments of thesystem 100 can involve different types ofexpansion components 110 to createlumen 120 for different types ofmedical devices 80. - At 202, the
expansion component 110 is positioned within thepatient 90. Different embodiments of thesystem 100 can involve a wide variety of different locations within the body of thepatient 90. - At 204, the operating
mode 130 of theexpansion component 110 is changed from a low-profile operating mode 132 into a high-profile operating mode 134 in order to create alumen 120. It is thelumen 120 that serves as the “working space” for the proper positioning and use of themedical device 80, such as a catheter. - In many embodiments, after the
lumen 120 is created andmedical device 80 is properly positioned, theexpansion component 110 is transformed back from a high-profile operating mode 134 into a low-profile operating mode 132 to facilitate the removal of theexpansion component 110 from the body of thepatient 90. - H. Operating Environment
- The
system 100 can be implemented in a wide variety of different operating environments and locations. The process of determining which embodiment of thesystem 100 is best suited for a particular context should begin with identifying the desiredmedical device 80 to be used at the desired location. Theappropriate expansion component 110 can then be identified and selected. -
FIG. 1 c is an environmental diagram illustrating an example of anexpansion component 110 in a low-profile operating mode 132. Theexpansion component 110 is being positioned to a desiredlocation 88 within ablood vessel 91 in thepatient 90. -
FIG. 1 d is an environmental diagram illustrating an example of anexpansion component 110 that has been transformed (i.e. expanded) from a low-profile operating mode 132 into a high-profile operating mode 134. - In many embodiments of the
system 100, theexpansion component 110 is but one component of many. For example, in the illustrations ofFIGS. 1 c and 1 d theexpansion component 110 can interfaces with certain ancillary components, such as aguide catheter 121 and aguide wire 122. In navigating the various narrow blood vessels 91 a variety ofguide catheters 121 and guidewires 122 may be utilized to position theexpansion component 110 to the desiredlocation 88. Such components may be part of thesystem 100, but the use of ancillary components will vary widely between different embodiments of thesystem 100. Thesystem 100 can include virtually any prior art component useful to theprovider 92 in addressing the needs of thepatient 90. - Many features and inventive aspects of the
system 100 are illustrated in the figures and described in the text of this application. However, no patent application can disclose all of the potential embodiments of an invention. In accordance with the provisions of the patent statutes, the principles and modes of operation of thesystem 100 are explained and illustrated in certain preferred embodiments. However, it must be understood that thesystem 100 may be practiced otherwise than is specifically explained and illustrated without departing from its spirit or scope. - The description of the
system 100 and the various illustrations of thesystem 100 should be understood to include all novel and non-obvious combination of elements described herein, and claims may be presented in this or a later application to any novel and non-obvious combination of these elements. Moreover, the foregoing embodiments are illustrative, and no single feature or element is essential to all possible combinations that may be claimed in this or a later application. - There are various categories that can be useful in describing various embodiments of the
system 100. - With respect to all embodiments of the
system 100, theexpansion component 110 expands from a low-profile operating mode 132 into a high-profile operating mode 134 to create alumen 120. For some embodiments of theexpansion component 110, the transformation betweenoperating modes 130 is accomplished directly by theexpansion component 110 while in other embodiments of theexpansion component 110, the transformation between operating modes is accomplished only indirectly by theexpansion component 110. -
FIG. 2 a is a hierarchy diagram illustrating examples ofdirect expansion embodiments 101 as well asindirect expansion embodiments 102.Indirect expansion embodiments 102 involveexpansion components 110 that expand or shrink due to other components of thesystem 100. In contrast,direct expansion components 101 involveexpansion components 110 that can changeoperating modes 130 without the use of other components of thesystem 100. -
Direct expansion embodiments 101 can include but are not limited to atubular balloon embodiment 103 and ahelix balloon embodiment 104.Direct expansion embodiments 101 typically involve “inflating” a balloon with a substance such as liquid to expand from a low-profile operating mode 132 into a high-profile operating mode 134. Some embodiments may utilize a gas, but it is often not desirable to risk inserting bubbles of air or other gases in theblood vessels 91 ofpatients 90. -
Indirect expansion embodiments 102 can include but are not limited to a guide balloon embodiment 105 (where anexpansion component 110 in the form of acover 116 expands by advancing upon an inflated guide balloon 115), an insertion component embodiment 106 (where anexpansion component 110 in the form of acover 116 expands through the insertion of aninsertion component 117 into the expansion component 110), and a sheath embodiment 107 (where the sheathedballoon 118 inflates when no longer constrained by the sheath 119).Indirect expansion embodiments 102 utilize other components of thesystem 100 to “inflate” to a high-profile operating mode 134 and to “deflate” to a low-profile operating mode 132.Guide balloon embodiments 105 of thesystem 100 use anexpansion component 110 that is advanced over an inflated balloon to expand theexpansion component 110.Insertion component embodiments 106 of thesystem 100 use ainsertion component 117 that is inserted into theexpansion component 110 to expand theexpansion component 110.Sheath embodiments 107 utilize a sheath to constrain anexpansion component 110 that would otherwise exist in an expanded state. - Just as different embodiments of the
system 100 can be categorized on whether theexpansion component 110 is directly or indirectly expanded, the various embodiments of thesystem 100 can also be categorized on the basis of whether theexpansion component 110 is some type of balloon (which inflates using air, some other gas, some form of liquid or fluid, or through the use of mechanical means) or whether theexpansion component 110 is not a balloon. -
FIG. 2 b is a hierarchy diagram illustrating examples of both expansioncomponent balloon embodiments 108 and expansioncomponent non-balloon embodiments 109. - Examples of expansion
component balloon embodiments 108 can include but are not limited totubular balloon embodiments 103,helix balloon embodiments 104, andsheath embodiments 107. - Examples of expansion
component non-balloon embodiments 109 can include but are not limited to guideballoon embodiments 105 andinsertion component embodiments 106. - Many differences in various embodiments of the
system 100 are dictated by the differences in theexpansion components 110 of the different embodiments. Two overarching categories ofexpansion components 110 can be differentiated on the basis of whether they are “active” or “passive”. - a. Balloon without Sheath
- The embodiment of the
system 100 illustrated inFIGS. 3 a-3 g involves an inflatable balloon as theexpansion component 110. That embodiment of thesystem 100 has a balloon as theexpansion component 110 that can be in either a low-profile state 132 or a high-profile state 134 (i.e. an expanded state). Thesystem 100 is transitioned betweenstates 130 by inflating or deflating the expansion component 110 (i.e. the balloon). Thesystem 100 has an “active” control through the inflation and deflation feature. - b. Balloon with Sheath
- An alternate embodiment of an
active control system 100 is a self-expanding balloon with a sheathedballoon 118 as theexpansion component 110. Thesystem 100 would have a balloon that self-expands. Active control of thesystem 100 is through the use of asheath 119 that covers the balloon. The device is in the low-profile state 132 when thesheath 119 covers the self-expanding balloon. In thisstate 132 thesystem 100 can be inserted to the required location. The low-profile state 132 will facilitate insertion in an atraumatic manner. In thisstate 132, thesystem 100 will be able to interface with other necessary devices, such as a 0.014 coronary guide wire and a guide catheter. When thesystem 100 is properly positioned at the required location, thesheath 119 is retracted by active control which allows theexpansion component 110 to self-expand to the expanded high-profile state 134. In the expanded high-profile state 134 thesystem 100 can enable the performance ofmedical procedures 81 involving the insertion of othermedical devices 80 such as a catheter device. It will provide aspace 120 through which other devices can be inserted. When the expandedstate 134 is not required anymore, thesheath 119 can be advanced over theballoon 118 with active control and transition thesystem 100 back to the low-profile state 132. - Another potential alternative means to achieve a self-expanding
expansion component 110 is to use materials with a spring feature. Many metals have a spring feature, such as stainless steels. Alternately, shape memory metals such as Nitinol could be used to achieve a self-expanding feature. It is envisioned that there may be other materials, either metals or non-metals, which could be used to achieve a self-expanding feature. These materials can be used to make a structure that serves as a “sheathed balloon” 118. In some embodiments, the sheathedballoon 118 can be similar to other types ofballoons 111. In other embodiments, the sheathedballoon 118 can be a self-expandingbraid structure 124. - A passive control system is a
system 100 that has two ormore operating modes 130, and thesystem 100 is passively transitioned between thestates 130 instead of actively transitioned betweenstates 130. - a. Pleated Expansion Component
- One embodiment of a passive control is a
pleated expansion component 110 as illustrated inFIGS. 3 h and 3 i . Theexpansion component 110 of thesystem 100 would be made with pleats. The pleats cause theexpansion component 110 to have a low-profile state 132. Theexpansion component 110 is small because of its pleated shape. When a differentmedical device 80 is inserted into thespace 120, orpleated expansion component 110, it will passively expand to the larger expanded state134 to allow the othermedical device 80 to pass through. The othermedical device 80 will force the pleats to expand outward to form alarger space 120 and a more expandedexpansion component 110. For this embodiment, thesystem 100 is passively transitioned between the twostates 130 by the insertion of the assisted device, not the active operation of thesystem 100 by the operator. - b. Elastic Expansion Component
- An alternate embodiment of a
passive control system 100 is anelastic expansion component 110. Theelastic expansion component 110 would be made of elastic or stretchable materials. Theexpansion component 110 would be made in the low-profile state 132. Its cross section is likely to be a round shape, but other shapes are possible, such as elliptical. When a differentmedical device 80 is inserted into to theelastic expansion component 110 it will passively expand to a larger state to allow the other medical device to pass through. The othermedical device 80 will force the elastic expandingcomponent 110 to form alarger space 120. For such an embodiment, thesystem 100 is passively transitioned between the twostates 130 instead of actively transitioned by the operator. Asystem 100 of this design could be made from a variety of materials, such as medical grade silicones or urethanes. - As illustrated in both
FIG. 2 a andFIG. 2 b , the various embodiments of thesystem 100 can be organized into categories. As illustrated inFIG. 2 c , many different embodiments of thesystem 100 can utilize some form of aballoon 111. Some embodiments of thesystem 100 can utilize aballoon 111 with a default state of uninflated that require inflation to transition from a low-profile operating mode 132 into a high-profile operating mode 134 (i.e. thetubular balloon 112 and the helix balloon 113). Other embodiments of thesystem 100 use theballoon 111 not as the expansion component but as a mechanism for expanding theexpansion component 110 from a low-profile operating mode 132 into a high-profile operating mode 134 (i.e. theguide balloon 115 on which acover 116 is advanced). Still other embodiments utilize aballoon 111 that has a default state of inflated or that self-inflates (i.e. a sheathed balloon 118). A sheathedballoon 118 transitions from a low-profile operating mode 132 into a high-profile operating mode 134 when it is removed from the constrainingsheath 119. The sheathedballoon 118 can be returned to the low-profile operating mode 132 by being positioned back within thesheath 119. - The
system 100 can be implemented usingexpansion components 110 that are (1) integrated into a single stand-alone device with other components of thesystem 100; (2) a non-integrated collection of components configured to function with certain supporting components; (3) a magnitude of integration that falls between these two polar opposites. - As indicated by the various arrows in FIG, 1 a, the
system 100 can directly interact with both thepatients 90 andproviders 92. Such asystem 100 can be implemented in a wide variety of different alternative embodiments. Some embodiments of thesystem 100 can be single stand-alone components, such as anexpandable balloon 111. Other embodiments of thesystem 100 can involve configurations of multiple components which may be permanently attached to each other, or merely configured to temporarily act in concert with each other. - The
system 100 can be used in conjunction with virtually anycatheter device 80 and as part of virtually any catheterization procedure. It facilitates a catheterization procedure by aiding the insertion ofmedical devices 80 such as various catheters and potentially other devices to the desiredlocation 80 in the body of the patient 90 that cannot otherwise be reached without thespace 120 created by thesystem 100 transitioning from a low-profile operating environment 132 into a high-profile operating environment 134. - By way of example, an angioplasty balloon catheter or a stent catheter may not otherwise able to be placed in the desired
location 88 where the blockage is located. Thesystem 100 can facilitate inserting the balloon or stent 123 (i.e. the catheter device) to the blockage. - The advantage of the
system 100 is that it can be inserted to required locations by itself thatmedical devices 80 such as catheters cannot be inserted by themselves. The ability to exist in either of twostates 130 enables thesystem 100 to have this advantage. Unlikemedical devices 80 such as catheterization devices that expand to remove blockage in an artery, thesystem 100 can be configured for the purpose of merely expanding sufficiently to create operating space for the catheter device. The operatingspace 120 is in the form of a lumen or passageway created by the expanded state of thesystem 100. Other catheterization devices can pass through the operatingspace 120 in order to be inserted to their desiredlocation 88. The operatingspace 120 can create safe passage forcatheterization devices 88 through tortuous (serpentine)vessels 91 or past stenoses that impingevessels 91. Thesystem 100 may temporarily straighten out tortuous vessels or dilate stenosed areas. - The
system 100 works in a supportive role with respect to amedical device 80, such as catheter. In the context of cardiovascular catheterization, thesystem 100 is typically inserted into coronary arteries, or other arteries or veins (collectively “vessels” 91). Thesystem 100 can be appropriately sized and constructed to accomplish the desired task of creating anadditional space 120 for the desired catheter device at the desiredlocation 88. Thesystem 100 can have two ormore states 130, with a low-profile state 132 for insertion and removal of the device, and an expandedstate 134 for coronary stabilization. - The original context inspiring the conception of the
system 100 was to facilitate percutaneous coronary intervention (PCI) procedures, or other similar intravascular procedures. However, thesystem 100 can be configured for use with virtually any catheter device and any catheterization procedure. - The
system 100 can be made from biocompatible medical grade materials, such as polymers (plastics) and metals. Thesystem 100 may be made from materials or have coatings that give it additional features. It may have a hydrophilic feature. It can be made using various manufacturing methods, such as extrusion, injection molding, thermal forming, thermal bonding, wire forming methods, laser manufacturing methods or other manufacturing methods. It will be made in such a way that it can be properly packaged and sterilized. Likely sterilization methods would be e-beam radiation, gamma radiation, ethylene oxide (EO) gas sterilization or nitrous oxide (NO2) gas sterilization. - In a
tubular balloon embodiment 103 of thesystem 100, theexpansion component 110 is atubular balloon 112.FIGS. 3 a-3 i pertain totubular balloon embodiments 103 of thesystem 100. - The
tubular balloon 112 can be inflated with air, other forms of gas, water, and other forms of liquids or fluids. In sometubular balloon embodiments 103, thetubular balloon 112 can be inflated with mechanical means such as a spring that is uncompressed or other similar means. Thetubular balloon 112 can have a burst rating of up to 27 atm according to any known method of burst rating balloons. - In a
helix balloon embodiment 104 of thesystem 100, theexpansion component 110 is ahelix balloon 113, i.e. atubular balloon 112 that is constrained by amatrix 114 to form an at least substantially helical shape.FIGS. 7 a-7 e illustrate examples ofhelix balloon embodiments 104. - Just as with
tubular balloon embodiments 103,helix balloon embodiments 104 can utilize a wide variety of different inflating mechanisms. -
Helix balloon embodiments 104 can be highly desirable because of the impact of thematrix 114, which can selectively increase the rigidity of theexpansion component 110 so that it can be inserted intolocations 88 that atubular balloon 112 without amatrix 114 will not be able to reach. As illustrated inFIG. 2 c , helix balloons 113 can be implemented as conventional inflatable balloons, but also as a self-expandinghelix component 141 or as a mechanically-expandinghelix component 142. -
FIG. 7 g shows anotherexample helix balloon 113′. Thehelix balloon 113 discussed above is wound to have a generally circular cross-section and define a generallycircular lumen 120. In the example ofFIG. 7 g , thehelix balloon 113′ is wound to have a triangular or generally triangular cross-section and define a generallytriangular lumen 120′. The triangular cross-section provides certain benefits such as improved compactness when thehelix balloon 113′ is collapsed into the low-profile operating mode 132. These benefits are the same as those discussed below for the triangulartubular balloon 112′ and shown inFIGS. 3 n -p. - A
sheath embodiment 107 of thesystem 100 uses aballoon 111 that does not require inflation to transition from a low-profile operating mode 132 into a high-profile operating mode 134.FIGS. 6 a-6 g pertain tosheath embodiments 107 of thesystem 100. A sheathedballoon 118 transitions from a low-profile operating mode 132 into a high-profile operating mode 134 when it is removed from the constrainingsheath 119. The sheathedballoon 118 can be returned to the low-profile operating mode 132 by being positioned back within thesheath 119. - As illustrated in
FIG. 2 c , a sheathedballoon 118 can be implemented as abraid balloon 124. - A
guide balloon embodiment 105 of thesystem 100 involves anexpansion component 110 that is not aballoon 111. Rather, theexpansion component 110 is acover 116 that is advanced over a preceding inflated balloon, i.e. aguide balloon 115.FIGS. 4 a-4 g illustrated examples ofguide balloon embodiments 105 of thesystem 100. -
Insertion component embodiments 106 of thesystem 100 need not use any kind ofballoon 111 in the expansion/shrinkage processes. In aninsertion component embodiment 106 of thesystem 100, aninsertion component 117 is inserted into theexpansion component 110 to cause theexpansion component 110 to expand from a low-profile operating mode 132 into a high-profile operating mode 134. Theexpansion component 110 in aninsertion component embodiment 106 of thesystem 100 can be acover 116, such as another catheter.Insertion component embodiments 106 are illustrated inFIGS. 5 a -5 d. - Some embodiments of the
system 100 will utilize a singletubular balloon 112 to serve as theexpansion component 110 to facilitate the transition between a low-profile state 132 and a high-profile state 134 that can create alumen 120 for the applicablemedical device 80, such as a balloon angioplasty catheter orstent 123, at the desiredlocation 88 in the body of thepatient 90. - The “working space” or
lumen 120 created by the expansion of atubular balloon 112 into a high-profile operating mode 134 is created within thetubular balloon 112. Examples of different types ofexpansion components 110 can includeinflatable balloons 112 with a “donut hole” space (seeFIGS. 3 a-3 i ), - As discussed above, some embodiments of the
system 100 can be configured to expand/contract using different technologies and different component configurations. In some embodiments of thesystem 100, the expansion of thesystem 100 is achieved through anexpansion component 110 that is part of thesystem 100. In other embodiments, the expansion of thesystem 100 is achieved by the expansion of a separate component/device in thesystem 100 that is expanded, and used to then expand or allow for the expansion of thesystem 100. For example, the removal of asheath 119 can trigger the expansion of the sheathedballoon 118 in asheath embodiment 107 of the system 100 (seeFIGS. 6 a-6 g ). -
Tubular balloons 112 can be implemented in a wide variety of different ways. Some embodiments oftubular balloons 112 asexpansion components 110 can use aninflation tube 150 connected to avalve 151 on thetubular balloon 112 to inflate thetubular balloon 112. Thevalve 151 acts as a connector, and in some examples, can optionally include flow control features. -
Tubular balloons 112 can be inflated using air, other forms of gases, water, and other forms of liquids or fluids.Tubular balloons 112 can also be inflated using mechanical means such as springs. Some embodiments oftubular balloons 112 can involve aballoon 111 that self-inflates. - For
tubular balloon embodiments 103 that require active inflation, thevalve 151 is typically positioned at the proximal end of theballoon 112, which would be like the ‘tail’ end of theballoon 112. Thevalve 151 is connected to aninflation tube 150. Thetube 150 runs longitudinally to theinflatable lumen 120. The inflatable lumen is at the distal end, which would be like the ‘business’ end. The overall length is approximately 100-120 cm (39.4-47.2 inches). Theinflatable balloon 112 is approximately 35 mm (1.38 inches). Theinflation tube 150 is approximately 65-85 cm (25.6-33.5 inches) in some embodiments of thesystem 100. Thesystem 100 can be constructed to have a low-profile state 132, which would be a deflated or collapsed state. The low-profile diameter size would be small enough to fit into the required arterial locations and to interface with othermedical devices 80 used during the procedure. The low-profile diameter size would be approximately 0.030-0.060 inch (0.76-1.52 mm). -
FIG. 3 a is a diagram illustrating a partial and close-up view of thesystem 100 inFIG. 3 b . A partial example of theinflatable balloon 112 is illustrated along with the accompanyinglumen 120 and thetube 150 that facilitates inflation/deflation. -
FIG. 3 b is a diagram illustrating an example of an axial view of thesystem 100. Thelumen 120 created by thesystem 100 is in the form of a “donut hole” at the center of theexpansion component 110. -
FIG. 3 c is a diagram illustrating an example of a top view of thesystem 100. -
FIG. 3 d is a diagram illustrating an example of a side view of thesystem 100. -
FIG. 3 e is a diagram illustrating an example of a cross-sectional view of a side view of thesystem 100 with an illustration of alumen 120 within thesystem 100. -
FIG. 3 f illustrates a close-up and partial view ofFIG. 3 e. - As shown in
FIGS. 3 e-g , in some examples, thetubular balloon 112 has a dual-wall construction that includes aninner wall 400 and anouter wall 402. Aspace 404 is defined between the inner andouter walls 400/402. Thespace 404 is configured to receive fluid via theinflation tube 150 as discussed above. When thespace 404 is filled with fluid, thetubular balloon 112 is expanded into the highprofile operating mode 134 where thetubular balloon 112 has a cylindrical shape that defines thelumen 120. Theinflation tube 150 is in fluid communication with thespace 304 via thevalve 151. - The
tubular balloon 112 has two opposed ends 112 a/112 b. Thevalve 151 could be located at oneend 112 a or could be at a different location along the length of thetubular balloon 112. If thevalve 151 is at one of the opposed ends 112 a, then the other of the opposed ends 112 could be sealed or otherwise closed off to maintain fluid pressure within thespace 404 when thetubular balloon 112 is in the high profile operating mode. If thevalve 151 is at a different location along the length of thetubular balloon 112, then both of theends 112 a/112 b of thetubular balloon 112 could be sealed or otherwise closed off. - As discussed above, the
inflation tube 150 may include aconnector 251 at an opposite end from thevalve 151, shown inFIG. 3 j . Theconnector 251 can be configured to mate with a syringe or fluid line as would be known for medical applications in order to communicate fluid to/from thetubular balloon 112. - The
tubular balloon 112 could be straight, as shown inFIG. 3 j , or curved, as shown inFIG. 3 k . Thetubular balloon 112 could be noncompliant (e.g., rigid), and therefore fixed in the straight/curved shape. In another example, thetubular balloon 112 is semi-complaint or complaint (e.g., flexible), and can alternate between the straight and curved shapes. - The
tubular balloon 112 could haveflat ends 112 a/112 b as shown inFIG. 3 j . A flat end has a plane that is parallel, coaxial, or colinear to an axis A of thetubular balloon 112. In another example, shown inFIGS. 3 l and 3 m , thetubular balloon 112 could have angled ends 112 a/112 b. One or both ends could be angled. Angled ends have a plane that is angled with respect to the axis A. - In another example shown in
FIGS. 3 n-p , thetubular balloon 112′ has a triangular or generally triangular cross-section. Thus thelumen 120 also has a triangular or generally triangular cross-section. The triangular cross-section allows thetubular balloon 112′ to more compactly collapse into the low-profile operating mode 132 as compared to the cylindricaltubular balloon 112 discussed above, and may also have certain manufacturing advantages. - As shown in
FIG. 3 o , the triangular cross-section may include dimples or indents 405 on one, two, or three sides of the triangle. The dimples or indents 405 further assist thetubular balloon 112′ into collapsing into a compact low-profile operating mode 132 by providing folding points to encourage folding of thetubular balloon 112′. -
FIG. 3 p shows thetubular balloon 112′ collapsed in the low-profile operating mode 132. As shown, when collapsed, the three points of the triangular cross-section each form aleaflet 407 that is essentially flat and folds circumferentially around an axis of thetubular balloon 112′. This further contributes to the compact nature of thetubular balloon 112′ when in the low-profile operating mode 132. Moreover, thetubular balloon 112′ still has asmall lumen 120′ in the low-profile operating mode 132. Thissmall lumen 120′ can receive aguide wire 122 as discussed in more detail below. - Either of the
tubular balloons 112/112′ can be made by blow molding, in one example. In some examples. Thetubular balloon 112′ is made with a cylindrical shape like thetubular balloon 112, and then is pressed, molded, or otherwise formed into the triangular shape. - In some examples shown in
FIGS. 9 a-c , thetubular balloon 112 includes one ormore connections 406 where theinner wall 400 is connected to theouter wall 402 such that there is nospace 404 between the inner andouter walls 400/402 at theconnection 406. Theconnection 406 can provide additional structural integrity to thetubular balloon 112. Theconnection 406 also prevents theinner wall 400 from collapsing into thelumen 120 when thetubular balloon 112 is in the highprofile operating mode 134. In other words, theconnection 406 acts against the pressure forces exerted on theinner wall 400 when thespace 404 is filled with fluid. Thetubular balloon 112 may include one ormore connections 406. - The
connection 406 could be made in a variety of ways. For instance, theconnection 406 could be made by bonding the inner andouter walls 400/402 together using any known adhesive that is suitable for the material of the inner andouter walls 400/402 and for medical applications. Any known material that is suitable for medical applications could be used for thetubular balloon 112, however, some non-limiting examples include PET (polyethylene terephthalate), nylons, engineered nylons, polyamides, polyurethanes, nylon elastomers, and other thermoplastic elastomers. In another example, theconnection 406 could be made by fusing the inner andouter walls 400/402 together using a thermal bonding technique such as laser welding or any other known technique that is suitable for the material of the inner andouter walls 400/402 and for medical applications. - In the example of
FIG. 9 a , theconnection 406 is a point or dot. In other words, theconnection 406 does not extend across a substantial radial or circumferential extent of thetubular balloon 112. Thetubular balloon 112 can include one or more point or dotconnections 406. The point or dotconnections 406 could be distributed on thetubular balloon 112 in any pattern such as circumferential or axial rows, or any other pattern. - In another example, shown in
FIGS. 9 b-c , theconnection 406 is a line or rib that extends along a circumferential or axial extent of thetubular balloon 112. In some examples, theconnections 406 extend along less than the entire radial or circumferential extent of thetubular balloon 112 in order to maintain a singlecommon space 404 throughout the entiretubular balloon 112 for receiving the fluid from theinflation tube 150 as discussed above. In the particular example ofFIGS. 9 b-c , the tubular balloon includes multiple ribs that extend along a majority, e.g,. greater than 50% but less than 100%, of the circumferential extent of thetubular balloon 112. The rib orline connections 406 could be evenly spaced along the axial extent of thetubular balloon 112 as shown inFIGS. 9 b-c , though other arrangements/distributions are also contemplated. - Some embodiments of the
system 100 anticipate that aguide balloon 115 is used in conjunction with thesystem 100. Theguide balloon 115 can help position thesystem 100 within the body of thepatient 90. -
FIG. 4 a is a flow chart diagram illustrating an example of a process for enhancing catheterization performed by aguide balloon embodiment 105 of thesystem 100. - At 302, the
guide balloon 115 is inserted into the body of thepatient 90.FIG. 4 b is an environmental diagram illustrating an example of a process step where theguide balloon 115 is inserted. At the beginning of a coronary catheterization procedure aguide catheter 121 or similarmedical device 80 can be inserted to the femoral or radial artery, and the guide catheter will be advanced until it accesses the right or left coronary ostium. The ostium is the start of the coronary artery. It is where the artery branches off the aorta. Aguide wire 122 will be inserted through theguide catheter 121 and into the coronary artery beyond the point where treatment is to be conducted. Theguide balloon 115 of thesystem 100 will be inserted over top of theguide wire 122 and through theguide catheter 121 into the artery. Theguide balloon 115 is in a deflated state while it is inserted. It is inserted past any tortuous areas or stenosis. - Returning to
FIG. 4 a , at 304 theguide balloon 115 is inflated.FIG. 4 c is an environmental diagram illustrating an example of a process step where theguide balloon 115 is inflated. Theguide balloon 115 is inflated after it is properly positioned. It can be inflated pneumatically with a gas such as air or hydraulically with a liquid. It is most likely to be inflated which a 50-50 mixture of sterile saline and contrast media. It may be inflated to lower pressures of 1-4 atmospheres or higher pressures up to 16 atmospheres. The inflated outside diameter of theguide balloon 115 may be less than, equal to, or greater than the diameter of the artery. Theguide balloon 115 may temporarily straighten any tortuous areas of the artery, either completely or partially. - Returning to
FIG. 4 a , at 306 thecover 116 is advanced over theguide balloon 115.FIG. 4 d is an environmental diagram illustrating an example of a process step where thecover 116 is advanced over theinflated guide balloon 115. Theexpansion component 110, which is the core component of thesystem 100, is inserted over top of theguide balloon 115 and through theguide catheter 121. In this embodiment of thesystem 100 theexpansion component 110 may be either a self-expanding design or a fixed diameter design. As theexpansion component 110 exists the distal end of theguide catheter 121 it will track over top of theinflated guide balloon 115. Theguide balloon 115 outside diameter and theexpansion component 110 inside diameter will be specifically designed for an optimum interface. The interface may be a slip fit design, a line-to-line fit design, or an interference design. The interface design will aid insertion of theexpansion component 110 and make insertion as atraumatic as possible to eliminate or prevent arterial wall damage. -
FIG. 4 e is an environmental diagram illustrating an example of acover 116 expanded over aguide balloon 115. Theguide balloon 115 serves the important task to eliminate or prevent arterial wall damage from the leading edge of theexpansion component 110 while it is being inserted, even though the leading edge may be design with its own atraumatic tip. To this end, theguide balloon 115 may intentionally be longer than theexpansion component 110. It may be two times or more than the length of theexpansion component 110. - Returning to
FIG. 4 a , at 308 theguide balloon 115 is deflated.FIG. 4 f is an environmental diagram illustrating an example of a process step where theguide balloon 115 is deflated and removed. Theguide balloon 115 is deflated and removed after theexpansion component 110 is properly positioned. Theexpansion component 110 may be designed to maintain straightening of the artery after theguide balloon 115 is removed. - Returning to
FIG. 4 a , at 310 theguide balloon 115 is removed. Theexpansion component 110 may be either a self-expanding design or a fixed diameter design for this embodiment of thesystem 100. Theexpansion component 110 will createspace 120 in the artery in the form of a lumen.Other devices 80 can pass through thespace 120 created by thesystem 100 when it is in the high-profile expandedstate 134, such as an angioplasty balloon, a stent catheter, or some other form of similarmedical device 80. - At 312, a
stent 123 is positioned through thesystem 100.FIG. 4 g is an environmental diagram illustrating an example of a process step where astent 123 is inserted through thespace 120 created by thesystem 100. - The
system 100 is removed from the artery when it is not needed anymore. The artery would regain its natural shape. This embodiment of thesystem 100 would interface with theother catheterization devices 80 used during the procedure, such as theguide wire 122, guidecatheter 121, balloon catheters andstent 123. -
FIG. 5 a is a flow chart diagram illustrating an example of a process for enhancing catheterization performed by aninsertion component embodiment 106 of thesystem 100. This embodiment of thesystem 100 uses aninsertion component 117 that is inserted into theexpansion component 110 of acover 116. In some embodiments, theinsertion component 117 can be attached to theguide catheter 121. - At 322, the
cover 116 attached to theguide catheter 121 is inserted into the body of thepatient 90.FIG. 5 b is an environmental diagram illustrating an example of a process step where thecover 116 is inserted into the body of thepatient 90. At the beginning of a typical coronary catheterization procedure aguide catheter 121 will be inserted to the femoral or radial artery, and thecatheter 121 will be advanced until it accesses the right or left coronary ostium. The ostium is the start of the coronary artery. It is where the artery branches off the aorta. Aguide wire 122 will be inserted through theguide catheter 121 and into the coronary artery beyond the point where treatment is to be conducted. For this embodiment of theexpansion component 110, which is in the form of acover 116, thecover 116 will often be an integral part of theguide catheter 121. Thecover 116 can be connected to the distal end of theguide catheter 121 as pat of the manufacturing process for those components. - Returning to
FIG. 5 a , at 324 aninsertion component 117 is inserted into thecover 116.FIG. 5 c is an environmental diagram illustrating an example of a process step where aninsertion component 117 is inserted into thecover 116 positioned within the body of the patient 90 to expand the distal section of thecover 116. Aninsertion component 117 would be inserted into the inside the entire length of the connected expansion component 110 (i.e. the cover 116) and guidecatheter 121. As it is inserted it will expand the expansion component 110 (i.e. the cove 116) to the high-profile state 134. - Returning to
FIG. 5 a , at 326 astent catheter 123 is inserted into the body of the patient 90 through theinsertion component 117.FIG. 5 d is an environmental diagram illustrating an example of a process step at 326. The nested structure of the high-profile state 134expansion component 110 and theinsertion component 117 will createspace 120 through which othermedical devices 80 can be inserted, such as an angioplasty balloon catheter or astent catheter 123. - The expansion component 110 (i.e. the cover 116) of the
system 100 andinsertion component 117 will be removed when they are not needed anymore. - The
expansion component 110 of this embodiment can be made with shape memory materials, a braid construction, a pleated design or any other expandable design structure. - Shape memory materials can be metallic or non-metallic. Nitinol is one possible metallic material that could be used. The
expansion component 110 could be made from Nitinol and the memorized shape would be the low-profile state 132. This memorized low-profile state 132 would enable the connectedexpansion component 110 and guidecatheter 121 to be inserted into the coronary artery past the ostium, tortuous areas and any stenoses. Theinsertion component 117 would be used to actively transition theexpansion component 110 from the low-profile state 132 to the high-profile state 134. Non-metallic shape memory polymers could also be used to construct theexpansion component 110 and accomplish the same result. - A braid structure could be used to construct the
cover 116. The braid would be made to the size of the low-profile state 132. The woven mesh pattern of the braid has space in the interstices between its wires. This would allow it to expand to the high-profile state 134 when theinsertion component 117 is inserted. - A pleated design could be used to make the
cover 116. The pleated design would be made to the size of the low-profile state 132. Theinsertion component 117 would unfold the pleats, when it is inserted, allowing it to transition to the high-profile state 134. -
FIG. 6 a is a flow chart diagram illustrating an example of a process of enhancing catheterization performed by a sheath coveredembodiment 107 of thesystem 100. In this category of embodiments,expansion component 110 of thesystem 100 is self-expanding. Thesheath 119 allows for theexpansion component 110 to exist in a low-profile mode 132 by constraining theexpansion component 110. Once theexpansion component 110 is released from thesheath 119, the expansion component 110 (such as a sheathed balloon 118) expands into a high-profile operating mode 134. - The self-expanding feature can be made with self-expanding materials, such as a braid structure. The braid structure is cylindrical in shape. The wall of the cylinder is constructed of the woven mesh of the braid. The ends of the cylinder are open. The braid would be designed with space in its weave pattern, which would allow the braid structure to exist in either the high-profile self-expanded
state 134 or the low-profile state 132. - At 350, the
system 100 with sheath 119 (and the encapsulatedexpansion component 110 such as a sheathed balloon 118) is inserted into the body of thepatient 90.FIG. 6 b is an environmental diagram illustrating an example of a process step where asheath 119 covers thesystem 100 during insertion. Theexpansion component 110 could be compressed to a low-profile state 132 and inserted into asheath 119. Thesheath 119 would cover theexpansion component 110 keeping it in the low-profile state 132. Theexpansion component 110 andsheath 119 would be inserted through theguide catheter 121 and into theartery 91 as one unit. - Returning to
FIG. 6 a , at 352 thesystem 100 is positioned within the body of thepatient 90.FIG. 6 c is an environmental diagram illustrating an example of a process step where thesheath 119 andsystem 100 are positioned as desired within the body of thepatient 90. Theexpansion component 110 andsheath 119 would have an appropriate low-profile size, strength, and flexibility to be inserted past any tortuous areas or stenosis - Returning to
FIG. 6 a , at 352 thesheath 119 is withdrawn.FIG. 6 d is an environmental diagram illustrating an example of a process step where thesheath 119 is withdrawn; causing thesystem 100 to self-expand and triggering the creation of the additional workingspace 120 within in the body of thepatient 90 for the purposes of catheterization. Thesheath 119 is removed after thesystem 100 is properly positioned. Theexpansion component 110 will automatically deploy because of its self-expanding feature. The expansion component createsspace 120 in the artery. - Returning to
FIG. 6 a , at 354 thesystem 100 is expanded into a high-profile state 134.FIG. 6 e is an environmental diagram illustrating an example of how the expandedsystem 100 can straighten out an artery within the body of thepatient 90. Theexpansion component 110 may partially or completely straighten any artery tortuosity. The straightening effect would be transient. When thesystem 100 is withdrawn the artery would regain its natural shape - Returning to
FIG. 6 a , at 356 thestent catheter 123 is inserted through thesystem 100.FIG. 6 f is an environmental diagram illustrating an example of a process step where thestent catheter 123 is inserted into the patient 90 through the workingspace 120 created by the presence of thesystem 100 in a high-profile operating mode 134. Other devices can pass through thespace 120 created by thesystem 100 when it is in the high-profile expandedstate 134, such as an angioplasty balloon catheter orstent 123. - Returning to
FIG. 6 a , at 358 thesheath 119 is advanced to collapse thesystem 100 for removal.FIG. 6 g is an environmental diagram illustrating an example of a process step where thesheath 119 is advance to collapse thesystem 100 for removal. Thesystem 100 can be removed when it is not needed any more. Thesheath 119 is advanced over theexpansion component 110 causing it to collapse to the low-profile state 132, and then theexpansion component 110 andsheath 119 are removed together as one unit. - An alternate embodiment of this form of the
system 100 uses a self-expandingbraid structure 124 to serve as the sheathedballoon 118. The construction of thebraid 124 can be designed to provide optimum performance.Braid 124 characteristics such as number of wires, shape of wire, wire material, pitch, uniform pitch, variable pitch and weave pattern can be chosen to obtain the desired performance. More or less wires, and wire material, can affect strength and flexibility of the component. Round wires or flat wires can affect wall thickness. Pitch and weave pattern can affect expansion strength and profile size. - Stainless Steel or Nitinol are likely materials for the
braid 124 wire, however other metals or non-metals can possibly be used. Stainless Steel can be formulated with ‘spring’ characteristics enabling it to self-expand. Nitinol is a metallic alloy of nickel and titanium. It is in a class of metals known as ‘shape memory’ . A nitinol-based expansion component can be made with a shape memory of the high-profile expandedstate 134, enabling it to self-expand. There are also shape memory polymers that can be used to construct the expansion component. - The
braid 124 can be covered with an inner and outer liner to make it atraumatic and prevent arterial wall damage. The inner and outer liners would expand and collapse with thesystem 100. - The
sheath 119 may have an atraumatic tip to aid insertion and eliminate or reduce damage to the artery wall. - The
expansion component 110,sheath 119 or both items could have radio-opaque features so they can be visualized with fluoroscopic imaging. - This embodiment of the
system 100 can interface with the other catheterization devices used during the procedure, such as theguide wire 122, guidecatheter 121, balloon catheters,stent 123, as well as othermedical devices 80. -
Helix balloon embodiments 104 of thesystem 100 are similar totubular balloon embodiments 103 of thesystem 100, except that in ahelix balloon embodiment 104 of thesystem 100, theballoon 111 is constrained and shaped by amatrix 114 the configures the shape of theballoon 111 into ahelix balloon 113. Thehelix balloon 113 is defined bymultiple turns 213 of thetubular balloon 112, which forms a helix shape. - A. Helix Balloon
- Just as a
tubular balloon 112 can be inflatable, self-inflating, or mechanically expanding, ahelix balloon 113 can changeoperating modes 130 in precisely the same ways using the same technologies and principles of chemistry and physics. Thetubular balloon 112 could have a dual-wall construction, as described above, or could have another construction such as a continuous tube. - An
example helix balloon 113 is shown inFIGS. 8 a-f (discussed in more detail below). Thehelix balloon 113 is defined between opposed ends 113 a/ 113 b and along an axis A. The axis A can be straight, as inFIG. 8 a , or curved, as inFIG. 8 b . Thehelix balloon 113 may be compliant or flexible to enable bending, or may be rigidly fixed in a straight or bent shape. - In one example shown in
FIG. 8 f (discussed in more detail below), aninflation tube 150 is configured to mate with thetubular balloon 112 at avalve 151 as discussed above. In this way, theinflation tube 150 fluidly connects aspace 212 within thetubular balloon 112 with a fluid source (not shown). Therefore, fluid such as saline can be provided or removed from thetubular balloon 112 to cause thehelix balloon 113 to deflate or expand between the lowprofile operating mode 132 and the highprofile operating mode 134 as discussed above. Thevalve 151 could be located at an end of thetubular balloon 112 that corresponds to one of the opposed ends 113 a/ 113 b of thehelix balloon 113 or could be at a different location along the length of thehelix balloon 113. If thevalve 151 is at one of the opposed ends 113 a, then the other end of the tubular balloon 112 (e.g., the end of thetubular balloon 112 that corresponds to the other of the opposed ends 113 b could be sealed or otherwise closed off to maintain fluid pressure within thespace 212 when thehelix balloon 113 is in the highprofile operating mode 134. If thevalve 151 is at a different location along the length of thehelix balloon 113, then both of the ends of thetubular balloon 112 could be sealed or otherwise closed off. - As discussed above, the
inflation tube 150 may include aconnector 251 at an opposite end from thevalve 151. Theconnector 251 can be configured to mate with a syringe or fluid line line as would be known for medical applications in order to communicate fluid to/from thetubular balloon 112. - It should be understood that the description herein for the
helix balloon 113 is equally applicable to thehelix balloon 113′ shown inFIG. 7 g and discussed above. - B. Matrix
- A mechanism or configuration of mechanisms that keep the
balloon 111 in the shape of ahelix balloon 113. Thematrix 114 maintains the helical shape of thehelix balloon 113 in all operatingmodes 130. Thematrix 114 can be implemented in a wide variety of different embodiments, including but not limited to aweave 145, abonding agent 146, a thermally formedconnection 147, amatrix cover 148, and a flange 149. The cross sectional shape of thehelix balloon 113 can be maintained differently indifferent operating modes 130. For example, the cross section of thehelix balloon 113 would otherwise be round in an inflated state (high-profile operating mode 134) and flat in a deflated state (low-profile operating mode 132). Thematrix 114 can maintain the helical shape in both states. Thematrix 114 needs both flexibility and strength to properly perform its function. - The
matrix 114 can include a medicinal component 126, a mechanism or configuration of mechanisms that enable medicinal capabilities to thesystem 100. The medicinal component 126 may include diagnosis or treatment of a medical condition, or delivery of medicine or nutrient. Thematrix 114 may contain vaso-active agents to cause vasoconstriction or vasodilation, depending on what may be required. Such an agent may be transient or longer lasting. Nitric oxide is an example of a vaso-active agent that can dilate a vessel, which would make the vessel bigger (larger diameter) until the agent wears off. Thematrix 114 may contain any of the class of drug coatings that prevent intimal hyperplasia. Intimal hyperplasia often is a physiologic response to an angioplasty procedure resulting in restenosis of the treated area, which in layman's terms is aclogged stent 123. - 1. Weave
- A
weave 145 can be a configuration of one ormore threads 144 that can contain theballoon 111 in the shape of ahelix balloon 113. Theweave 145 can use as many or asfew threads 144 as desired. In many embodiments, between 10-12threads 144 uniformly distributed about thehelix balloon 113 is a particular desirable configuration. Theweave 145 would wrap around thehelix balloon 113 as thehelix balloon 113 makes consecutive passes of the helical shape. - 2. Bonding Agent
- A chemical means to constrain the shape of the
helix balloon 113. Thematrix 114 can be made from abonding agent 146 that is applied to aballoon 111 to secure its shape as ahelix balloon 113. Abonding agent 146 can be used by itself or with other components to maintain the helical shape of thehelix balloon 113. Consecutive passes of the helical shape can be bonded to adjacent passes. A wide variety of bonding agents including but not limited to adhesive glues or silicone can be used aspossible bonding agents 146. Thebonding agent 146 may be applied using dip coating techniques. - 3. Thermally Formed Connection
- A constraint on the
helix balloon 113 that is implemented through the application of heat. A wide range of thermal forming techniques known in the prior art can be used to connect adjacent passes of the helical shape together. The aggregate configuration of thermally formedconnections 147 can by itself or in conjunction with other components, constitute thematrix 114. - 4. Matrix Covering
- A
matrix cover 148 is a relatively thin sheet or a collection of thin sheets that overlay theballoon 111 to shape it into ahelix balloon 113. Thematrix cover 148 can contain thehelix balloon 113 and maintain its helical shape. Thematrix cover 148 can be made from a fabric or other similar material suitable for theparticular location 88 in thepatient 90. Thematrix cover 148 can cover a single pass of the helical shape, multiple passes or all passes. Thematrix cover 148 can be used by itself or in conjunction with other components to constitute thematrix 114. Thematrix cover 148 may be applied using dip coating techniques as well as other plausible manufacturing methods. - 5. Flange
- A flange 149 is a rim, collar, or ring that secures the
balloon 111 into the shape of ahelix balloon 113. The cross-section of thehelix balloon 113 can have one or more flanges 149. Adjacent passes of the helical shape can be connected together by the flange 149. The connected flanges 149 in the aggregate can form thematrix component 114. Flanges 149 can be connected using aweave 145, abonding agent 146, a thermally formedconnection 147, amatrix cover 148, and/or potentially other means. - 6. Tubules
- In one example, shown in
FIGS. 8 a-e , thematrix component 114 includestubules 200 arranged circumferentially around thehelix balloon 113. Thetubules 200 run parallel to the axis A of thehelix balloon 113 between 213 a, 213 b of theadjacent turns helix balloon 113 in order to constrain thehelix balloon 113 in the helical shape and assist in maintaining thelumen 120 as will become apparently from the below description. - The
tubules 200 can be made of the same material as thehelix balloon 113 or a different material than thehelix balloon 113. Any known material that is suitable for medical applications could be used, however, some non-limiting examples include PET (polyethylene terephthalate), nylons, engineered nylons, polyamides, polyurethanes, nylon elastomers, and other thermoplastic elastomers. Thetubules 200 can be non-compliant (e.g., rigid), semi-compliant, or compliant (e.g., flexible). Similarly thehelix balloon 113 can be non-compliant (e.g., rigid), semi-compliant, or compliant (e.g., flexible). Thetubules 200 andhelix balloon 113 can have the same, similar, or difference compliance. - Each
tubule 200 spans between opposed ends 202 a/202 b. One of theends 202 a meets afirst turn 213 a of thehelix balloon 113 and the other of theends 202 b meets asecond turn 213 b adjacent thefirst turn 213 a. - The
tubules 200 can be integral with thehelix balloon 113 or can be separate structures that are attached to thehelix balloon 113 according to any known method suitable for the material(s) of thetubules 200 andhelix balloon 113 and for medical applications. In either example, thetubules 200 are hollow structures having aspace 204. Thespace 204 is in fluid communication with thespace 212 of thetubular balloon 112 so that the tubules inflate with thehelix balloon 113 when thehelix balloon 113 is expanded from the low-profile operating mode 132 to the high-profile operating mode 134 as described above. Thetubules 200 andhelix balloon 113 can have a burst rating of up to about 27 atm according to any known method of burst rating balloons. In this way, thetubules 200 assist in maintaining thelumen 120 when thehelix balloon 113 is in the high-profile operating mode 134 by providing structural support for thehelix balloon 113 that impedes collapsing of thehelix balloon 113 into thelumen 120. - As shown in
FIGS. 8 a-b , thetubules 200 are spaced apart from one another by a distance x. Thetubules 200 have a length y defined as the distance between ends 202. The length y corresponds to a distance betweenadjacent turns 213 a/ 213 b of the helix balloon 113 (which is known as the pitch of a helix). In the example ofFIGS. 8 a-f , the distance x is constant, meaning the tubules 20 are evenly spaced about the circumference of thehelix balloon 113. However, in other examples the, the distance x could be variable, meaning thetubules 200 have a different circumferential distribution around thehelix balloon 113. The distances x and y can be selected to provide flexibility in thehelix balloon 113 when it is in the high-profile operating mode 134. For instance, areas of thehelix balloon 113 that require bending could haveless tubules 200 so as not to impede the movement of thehelix balloon 113 in that localized area and with respect to other areas. - The
tubules 200 have a diameter d (FIG. 8 e ) that is in one example the same as the diameter of thetubular balloon 112 that is constrained in a helix to form thehelical balloon 113. In other examples, the diameter d of thetubules 200 can be different from the diameter of thetubular balloon 112. - 7. Inner Support
- In one example, shown in
FIGS. 10 a-b , thematrix component 114 includes aninner support 300 arranged inside thehelix balloon 113 created by thetubular balloon 112. Theinner support 300 is attached to aninterior surface 213 c of thehelical balloon 113, e.g., thesurface 213 c facing thelumen 120 when in the highprofile operating mode 134. Theinner support 300 can be non-compliant (e.g., rigid), semi-compliant, or compliant (e.g., flexible). Similarly thehelix balloon 113 can be non-compliant (e.g., rigid), semi-compliant, or compliant (e.g., flexible). Theinner support 300 andhelix balloon 113 can have the same, similar, or difference compliance. In some examples, theinner support 300 is perforated, e.g., is formed from a mesh. - When the
helix balloon 113 is expanded from the low-profile operating mode 132 to the high-profile operating mode 134 as described above, theinner support 300 has a generally cylindrical shape and supports thehelix balloon 113 in the helical shape to maintain thelumen 120. Theinner support 300 also maintains the distance y betweenadjacent turns 213 a/ 213 b of the helix balloon 113 (which is known as the pitch of a helix). In some examples, the distance y is zero or near zero, meaningadjacent turns 213 a/ 213 b of thehelix balloon 113 are touching one another. In other examples, the distance y is greater than zero. - The
inner support 300 can be made from any medical grade biocompatible material such PET (polyethylene terephthalate), nylon polymers, or thermoplastic polyurethane, as non-limiting examples. In a particular example, theinner support 300 is made from a “thin film” material with a thickness on the order of a tenth of a millimeter. Theinner support 300 can be made from the same material or a different material than thetubular balloon 112. - In the example of
FIGS. 10 a-b , theinner support 300 is continuous, e.g., it forms a continuous generally cylindrical shape when thehelix balloon 113 is in the highprofile operating mode 134. In other examples, theinner support 300 is discontinuous, and includes several strips of material, like the discontinuous outer support comprisingmultiple strips 350 a/350 b discussed below. - The
inner support 300 is attached to thehelix balloon 113 in such a way that theinner support 300 does not become detached from thehelix balloon 113 when thehelix balloon 113 is used as described herein. For instance, thetubular balloon 112 can be attached to theinner support 300 by any appropriate adhesive known in the art for the material of thetubular balloon 112/inner support 300 that is also biocompatible. In other examples, thetubular balloon 112 can be attached to theinner support 300 by a thermal bond, such as a thermal weld, an RF (radio frequency) weld, an ultrasonic weld, a laser weld, or the like. The attachment can be continuous, e.g., along the entireinner surface 213 c of thehelix balloon 113, or discontinuous, e.g., only at certain points along theinner surface 213 c. - 8. Outer Support
- In one example shown in
FIGS. 11 a-b , thematrix component 114 includes anouter support 350. Theouter support 350 can be used together with theinner support 300 discussed above, or on its own. Theouter support 350 can be similar to theinner support 300, except that it is attached to anouter surface 213 d of thehelix balloon 113. Like theinner support 300, theouter support 350 can be made from any medical grade biocompatible material such PET (polyethylene terephthalate), nylon polymers, or thermoplastic polyurethane, as non-limiting examples. In a particular example, theouter support 350 is made from a “thin film” material with a thickness on the order of a tenth of a millimeter. Theouter support 350 can be made from the same material or a different material than thetubular balloon 112. In some examples, theouter support 350 is perforated, e.g., is formed from a mesh. - The
outer support 350 can be attached to thehelix balloon 113 by an adhesive or thermal bond in such a way that theouter support 350 does not become detached from thehelix balloon 113 when thehelix balloon 113 is used as described herein, as discussed above for theinner support 300. In one example, the attachment can be by a plurality ofconnectors 352, as shown in the example ofFIGS. 11 a-b . Theconnectors 352 can be filaments or threads similar to thethreads 144 discussed above. In another example, theconnectors 352 can be strips of material that is the same material of theouter support 350 or a different material than theouter support 350. Theconnectors 352 form loops that wrap around theturns 213 a/ 213 b of thehelix balloon 113 to connect theturns 213 a/ 213 b to theouter support 350. Theconnectors 352 can be connected to theouter support 350 andhelix balloon 113 by any of the attachment methods discussed herein, such as by adhesive or by thermal bonding. There can beconnectors 352 on eachturn 213 a/ 213 b in one example, but in other examples, only some of theturns 213 a/ 21 b haveconnectors 352. Additionally, there can be several connectors circumferentially spaced about theouter surface 213 d such that certain turns 213 a/ 213 b havemultiple connectors 352. In all cases, there aresufficient connectors 352 to maintain the helical shape of thehelix balloon 113 and thelumen 120 in the highprofile operating mode 134. - The
outer support 350 can be continuous such that it forms a continuous generally cylindrical shape when thehelix balloon 113 is in the highprofile operating mode 134, as shown inFIG. 11 a-b . In other examples, the outer support can be discontinuous, and can include multiple strips orpieces 350 a/350 b as show inFIGS. 12 a-b .Several strips 350 a/350 b can be arranged circumferentially around theouter surface 213 d of thehelix balloon 113. In some examples, thestrips 350 a/350 b haveend portions 354 that fold across ends 113 a/113 b of thehelix balloon 113 and into theinterior surface 213 c of thehelix balloon 213. - In one particular example, shown in
FIG. 12 c , thehelix balloon 113 can have a flattened profile at theouter surface 213 d, so that a cross-section oftubular balloon 112 is hemispherical. The flattened profile provides a larger surface area for bonding thetubular balloon 112 to theouter support 350. Moreover, it should be understood that in other examples, the flattened profile can additionally or alternatively be at theinner surface 213 c in cases where aninner support 300 is used. - In another particular example, shown in
FIG. 12 d , both aninner support 300 and anouter support 350 are used. In this example, the inner andouter supports 300/350 can be bonded to one another betweensuccessive turns 213 a/ 213 b of thehelix balloon 113. -
FIGS. 13 a-c show amandrel 375 which can be used to assemble thehelix balloon 113 with theouter support 350. Themandrel 375 includesthreads 377 which definedspaces 379 configured to receive thetubular balloon 112 to form thehelix balloon 113. Thetubular balloon 112 is wound into thespaces 377, and then theouter support 350 is arranged over themandrel 375 with thetubular balloon 112. Themandrel 375 locates thetubular balloon 112 with respect to theouter support 350 for attachment by any of the methods discussed above. In examples whereconnectors 352 are used, theconnectors 352 can be arranged on themandrel 375 before winding thetubular balloon 112 in thespaces 377. In a particular example, themandrel 375 has notches orgrooves 381 that are configured to receive theconnectors 352. - 9. Clip
- In one example shown in
FIG. 14 a-g , thematrix component 114 includes one ormore clips 500. As best seen inFIG. 14 a , which depicts aclip 500 in a flattened or unfolded state, andFIG. 14 d , which depicts a perspective view of theclip 500 in a folded state, eachclip 500 includes acenter leaf 502, first and second receiving leaves 504 a/ 504 b on either side of thecenter leaf 502, and first and second foldover leaves 506 a/506 b flanking each of the receiving leaves 504 a/ 504 b. Hinge points 505 separate thecenter leaf 502 from the first and second receiving leaves 504 a/ 504 b and the first and second receiving leaves 504 a/ 504 b from the first and second foldover leaves 506 a/506 b. The hinge points 505 can include grooves to enable folding of theclip 500 of the clip at the hinge points 505, as discussed in more detail below. However, other means of creating ahinge point 505 are also contemplated. The receiving leaves 504 a/ 504 b includeopenings 508 configured to receivesuccessive turns 213 a/ 213 b of thehelix balloon 113. Theopenings 508 are dimensioned to accommodate the diameter of thetubular balloon 112. Theopenings 508 can be centered along the length of the receiving leaves 504 a/ 504 b (discussed in more detail below), or can be arranged closer to thecenter leaf 502 than the foldover leaves 506 a/506 b. Theclip 500 has a width W that corresponds to the number ofopenings 508/number ofturns 213 a/ 213 b of thehelix balloon 113 configured to be received in theclip 500. - As best shown in
FIGS. 14 g , theclip 500 is arranged so that the successive turns 213 a/ 213 b of thehelix balloon 113 are received in theopenings 508 and thecenter leaf 502 rests along an outer surface of thehelix balloon 113. For instance thetubular balloon 112 can be wound into theclip 500 to form thehelix balloon 113. The foldover leaves 506 a/506 b are folded towards thecenter leaf 502 as best seen inFIGS. 14 e and 14 g , thereby trapping the successive turns 213 a/ 213 b of thehelix balloon 113 between thecenter leaf 502 and the foldover leaves 506 a/506 b to maintain the helical shape. In the folded state, the foldover leaves 506 a/506 b are on the inner surface/lumen 120 side of thehelix balloon 113. The foldover leaves 506 a/506 b are arranged at about a 90 degree angle with respect to the receiving leaves 504 a/ 504 b and the receiving leaves 504 a/ 504 b are arranged at about a 90 degree angle with respect to thecenter leaf 502 in the folded state. - As best seen on
FIG. 14 a , thecenter leaf 502 has a length Lc, the receiving leaves 504 a/ 504 b have a length Lr, and the foldover leaves 506 a/506 b have a length Lf. In a particular example, Lc is greater than Lr, which is greater than Lf. In general, Lr is greater than the diameter D of thetubular balloon 112. For instance Lr may up to about 50% greater than the diameter of the tubular balloon. - The length Lf of the foldover leaves 506 a/506 b can be selected such that they meet one another in the folded state. In another example, the foldover leaves 506 a/506 b have a length Lf such that they overlap one another in the folded state, as shown in
FIG. 14 f . In yet another example, the foldover leaves 506 a/506 b have a length Lf such that they do not touch or overlap one another in the folded state, as shown inFIGS. 14 b and 14 d. - As shown in the example of
FIGS. 14 a and 14 c , respectively, thematrix component 114 can include oneclip 500 ormultiple clips 500 spaced circumferentially about thehelix balloon 113. Though twoclips 500 are shown inFIG. 14 c , more clips could be used in other examples. - In certain examples, shown in
FIG. 14 f , thematrix component 114 includescylindrical supports 510 which surround the portions of thehelix balloon 113 which are received in theopenings 508. Thesupports 510 can be more rigid than thehelix balloon 113, and help to maintain the helical shape of thehelix balloon 113 as well as provide mechanical protection to thehelix balloon 113. Thesupports 510 can be separate from or be integral with theclip 500. - The
clip 500 can be made form a compliant, semi-compliant or non-compliant biocompatible polymeric material such as PET (polyethylene terephthalate), Pebax®, nylon, polyurethanes or a combination thereof. In certain examples, theclip 500 is made from polymer material that is between about 0.06 and 0.1 mm thick. - 10. Band Connector
- In one example shown in
FIGS. 15 a-c , thematrix component 114 includes one ormore band connectors 550. Eachband connector 550 surrounds around two or moresuccessive turns 213 a/ 213 b to maintain the helical shape of thehelix balloon 113. For instance, as shown in the example ofFIG. 15 c , threeband connectors 550 could be used. In this particular example, the threeband connectors 550 are spaced evenly about the circumference of the helix balloon, e.g., eachband connector 550 is separated from adjacent band connectors by about 120 degrees. However, other arrangements are contemplated. - Each
band connector 550 is a rectangular complaint or semi-compliant or noncompliant sheet that is configured to be folded into the folded state shown inFIGS. 15 a-b over the successive turns 213 a/ 213 b of thehelix balloon 113. Theband connector 550 could be made of, for example, Pebax®, TPU (thermoplastic polyurethane), TPE (thermoplastic elastomer), epoxy, nylon, PET, or acrylate. The sheet has a thickness t (shown inFIG. 15 b ) which can be between about 0.05 and 0.02 mm, in some examples. The folding results in an overlappingportion 552 in which ends 554 a/ 554 b of the band connector overlap one another and are secured to one another to provide the folded state in which theband connector 550 maintain the shape of thehelix balloon 113. The securing can be by adhesion with an adhesive, heating, welding, bonding, or pressurization. - For an
example band connector 550 that is noncompliant, it may be formed of multiple separate pieces that are assembled and connected to one another by a locking mechanism or bonding/other method of connection suitable for the material. - In the folded state, the
band connector 550 has a folded length L and a folded width W. The overlappingportion 552 has a length Lo, which in some examples is greater than about 3 mm. The length of the sheet in the unfolded state is selected to provide the folded length L and folded width W, taking into account the length Lo of the overlappingportion 552. For instance, the width W can be selected such the foldedband connector 550 fits around the diameter D of thetubular balloon 112 as shown inFIG. 15 b . The width W is therefore equal to D+2t. In a particular example, the width W is between about 0.5 and 2 mm. The length L is selected to surround a desired number ofsuccessive turns 213 a/ 213 b of thehelix balloon 113. The length L is therefore equal to about n*D+2*t where n is the number ofsuccessive turns 213 a/ 212 b around which theband connector 550 wraps. In some examples, n is 3-5. - In some examples, overlapping
band connectors 550 could be used. For instance, for a set of 10 turns 213 a/ 213 b of the helical balloon, turns 2-5 could be subject to oneband connector 550, and turns 4-7 could be subject to anotherband connector 550, and so on. Theband connectors 550 can thus be staggered/overlapped along the axial length and circumference of thehelix balloon 113. In some examples theband connectors 550 can be connected to one another such as by any of the connection methods discussed above for the overlappingportion 552. -
FIGS. 16 a-b show amandrel 575 which can be used to assemble thehelix balloon 113 with theband connector 550. Themandrel 575 includesthreads 577 which definespaces 579 configured to receive thetubular balloon 112 to form thehelix balloon 113. The mandrel includes at least onegroove 581 configured to receive aportion 550 a of the band connector. Thetubular balloon 112 is then wound into thespaces 577 over theportion 550 a of the band connector. Asecond portion 550 b of the band connector is then folded into the folded state around thehelix balloon 113 and joined to thefirst portion 550 a, e.g., at the overlappingportion 552 as discussed above, as shown inFIG. 16 b . - The
mandrel 575 ofFIGS. 16 a-b can also be used for assembling thehelix balloon 113 with theclip 500 discussed above. In one example, thecenter leaf 502 of theclip 500 can be placed in thegroove 581 of themandrel 575 and the foldover leaves 504 a/ 504 b are arranged such that thetubular balloon 112 can be wound into thespaces 577 through theopenings 508 and over thecenter leaf 502. The foldover leaves 504 a/ 504 b can then be moved to the folded position such as the one shown inFIG. 14 d and in some examples, can be held in the folded position by a thin strip of tape or other material. - 11. Coextruded Restraint
- In one example shown in
FIGS. 17 a-b , thematrix component 114 includes a plurality of restraints onadjacent turns 213a/ 213 b of thehelix balloon 113. The restraints aretabs 600 that extend from theturns 213 a/ 213 b of the helix balloon. One or both of thetabs 600 have a length L that is longer than half of a distance y betweenadjacent turns 213 a/ 213 b of the helix balloon 113 (which is known as the pitch of a helix). Therefore, thetabs 600 overlap one another at an overlappingportion 602. The length L can be between about 0.5 mm to 2 mm in some examples. The width W can also be between about 0.5 mm to 2 mm. Overlappingtabs 600 may have the same or different widths W. The thickness of the tabs can be between about 0.05 mm to 0.02 mm in some examples. - The
tabs 600 are bonded at the overlappingportion 602 to constrain theturns 213 a/ 213 b of thehelix balloon 113. The bonding can be by any known method suitable for the material of thetabs 600, such as by an adhesive, welding, pressurization, etc. -
Several tabs 600 may be formed at predetermined distances along thehelix balloon 113 so that when thehelix balloon 113 is wound to define alumen 120 with a desired diameter, thetabs 600 ofsuccessive turns 213 a/ 213 b overlap one another. For instance, when thehelix balloon 113 is wound into the helix, thetabs 600 may be spaced 120 degrees from one another around the circumference of the helix. In another example, thetab 600 may be a continuous tab formed along the length of the unwoundhelix balloon 113 so that when thehelix balloon 113 is wound thetab 600 overlaps itself at the overlappingportion 602 betweenadjacent turns 213 a/ 213 b. - As shown in
FIG. 17 c , in some examples, thetabs 600 includes alip 604 at the distal end of thetab 600. Thelips 604 ofadjacent tabs 600 interact with one another at the overlappingportion 602 to improve the bond/join of thetabs 600. In this example, thetabs 600 may be aligned or may be offset from one another to facilitate engagement of thelips 604 as shown inFIG. 17 c. - The
tabs 600 are co-extruded with thehelix balloon 113. That is, thetabs 600 are formed as thehelix balloon 113 is being formed and therefore are integral with thehelix balloon 113. Thetabs 600 can be the same or different material as thetubular balloon 112. Thetabs 600 can 0comprise, for example, PET (polyethylene terephthalate), nylons, engineered nylons, polyamides, polyurethanes, nylon elastomers, and other thermoplastic elastomers. - 13. Strip with Flaps
- In one example shown in
FIGS. 18 a-c , thematrix component 114 includes astrip 700 with a series offlaps 702 corresponding to theturns 213 a/ 213 b of thehelix balloon 113. Theflaps 702 wrap around theturns 213 a/ 213 b of the helix balloon as shown inFIGS. 18 b-c to connect thestrip 700 to thehelix balloon 113 and constrain thehelix balloon 113 in the helix. Thestrip 700 can be long enough to span the axial length of thewound helix balloon 113, in some examples. - In other examples, the
strip 700 only spans some of theturns 213 a/ 213 b of thehelix balloon 113. More than onestrip 700 may be used. In a particular example, thematrix component 114 includes threestrips 700 arranged about 120 degrees from one another along the circumference of thehelix balloon 113. - The
flaps 702 each have a length L and width W (FIG. 18 a ) that is between about 0.5 mm and about 2 mm. The thickness of the flaps may be between about 0.05 mm and 0.2 mm. The length L is longer than the circumference of thetubular balloon 112 so that when theflap 702 wraps around eachturn 213 a/ 213 b, it overlaps itself at an overlappingportion 704. Theflap 702 can be secured to itself at the overlappingportion 704 and/or can be secured to thetubular balloon 112 by any suitable method such as by an adhesive, welding, pressurization, etc. - The
mandrel 375 ofFIGS. 13 a-c can be used to assemble thehelix balloon 113 with thestrip 700. The strip is arranged so that theflaps 702 correspond tospaces 379. Theflaps 702 extend over thespaces 379. Thetubular balloon 112 is wound into thespaces 379 over theflaps 702. Theflaps 702 are then wrapped around theturns 213 a/ 213 b and attached as discussed above. - The
strip 700 can be the same or different material as thetubular balloon 112. Thestrip 700 can comprise, for example, PET (polyethylene terephthalate), nylons, engineered nylons, polyamides, polyurethanes, nylon elastomers, and other thermoplastic elastomers. - 12. Scalloped Restraint
- In one example shown in
FIGS. 19 a-c , thematrix component 114 includes a scalloped restraint 800. The scalloped restraint 800 includes two scallopedstrips 802 a/802 b each pre-formed withscallops 804 having a semi-spherical profile and corresponding to the curvature of thetubular balloon 112. The scalloped strips 802 a/802 b are arranged so that thetubular balloon 112 is sandwiched between them, constraining thehelix balloon 113 in the helix. The scalloped strips 802 a6 /802 b are bonded at joinedportions 806 between eachsuccessive turn 213 a/ 213 b of the helix balloon by any suitable method, such as by an adhesive, welding, pressurization, etc. - The scalloped restraint 800 can be long enough to span the axial length of the
wound helix balloon 113, in some examples. In other examples, the scalloped restraint 800 only spans some of theturns 213 a/ 213 b of thehelix balloon 113. More than one scalloped restraint 800 may be used. In a particular example, thematrix component 114 includes three scalloped restraint 800 arranged about 120 degrees from one another along the circumference of thehelix balloon 113. - The scalloped restraint 800 can be the same or different material as the
tubular balloon 112. The scalloped restraint 800 can comprise, for example, PET (polyethylene terephthalate), nylons, engineered nylons, polyamides, polyurethanes, nylon elastomers, and other thermoplastic elastomers. - The scalloped strips 802 a/802 b each have a width W (
FIGS. 19 b-c ) that is between about 0.5 mm and about 2 mm. The thickness of the scalloped strips 802 a/802 b may be between about 0.05 mm and 0.2 mm. - The
mandrel 375 ofFIGS. 13 a-c can be used to assemble thehelix balloon 113 with the scalloped restraint 800. One of the scalloped strips 802 a is arranged over themandrel 375 so that thescallops 804 fit into the thespaces 379. Thetubular balloon 112 is wound into thespaces 379 over thescalloped strip 802 a. The other of the scalloped strips 802 b is then laid over thehelix balloon 113 and the scalloped strips 802 a/802 b are joined at the joined portions. - In some examples, the scalloped strips 802 a/802 b can be joined into a single long strip that can be folded over itself to provide two opposed
scalloped strips 802 a/802 b (similar to theband connector 500 discussed above). - C. Examples
-
FIG. 7 a is a diagram illustrating a perspective view of ahelix 113 andmatrix 114 configuration that includes a tubular balloon constrained in the shape of a helix by aweave 145 functioning as amatrix 114. Thecentral lumen 120 inside the helix is 0.058 inches, which is created by wrapping thetubular balloon 112 around a mandrel and secured by thematrix 114. Twelvethreads 144 that are 0.002 inches in diameter form thematrix 114. -
FIG. 7 b is a diagram illustrating an example of a side view of thehelix 113 andmatrix 114 configuration ofFIG. 7 a. -
FIG. 7 c is a diagram illustrating an example of a planar front view of thehelix 113 andmatrix 114 configuration ofFIGS. 7 a and 7 b . As illustrated in the figure, the 12 threads are uniformly spaced around thehelix balloon 113. -
FIG. 7 d is a diagram illustrating an example of a perspective section view of thehelix 113 andmatrix 114 configuration ofFIGS. 7 a -7 c. -
FIG. 7 e is a diagram illustrating an example of a close-up view of the illustration inFIG. 7 d. -
FIG. 7 f is a hierarchy diagram illustrating various examples ofdifferent helix balloon 113 andmatrix components 114. As illustrated by the dotted line in the figure, thematrix 114 is an optional component although often a highly desirable one. As illustrated in the Figure, ahelix balloon 113 can be implemented as a self-expandinghelix component 141, a mechanically-expandinghelix component 142, as well as theinflatable helix balloon 113 illustrated inFIGS. 7 a-7 e . As illustrated in the Figure, thematrix 114 can be implemented as aweave 145, abonding agent 146, a thermally formedconnection 147, and amatrix cover 148. As discussed above, thematrix 114 can include a medicinal component 126. - Table 1 below is a chart linking together element numbers, element names, and element descriptions.
-
TABLE 1 # Name Description 80 Medical Device A device that serves a medical purpose within the body of the patient 90. Thesystem 100 creates thelumen 120 in order toprovide space for the medical device 80 to be positioned at adesired location 88 within the body of thepatient 90.81 Medical A process performed on or in a patient 90 by aprovider 92 for theProcedure purpose of benefiting the health status of the patient 90.Examples of medical procedures 81 that can benefit from thecreation of a lumen 120 or the enhancement of alumen 120 caninclude but are not limited to Percutaneous Coronary Intervention (PCI), Percutaneous Coronary Angiogram (PCA), Chronic Total Occlusions (CTO), Stent implantation, Atherectomy, and Embolic Protection. Although the system 100 was originally devised toassist providers 92 with respect to coronary vascular procedures,the system 100 can benefitpatients 90 in other contexts.88 Desired Location A position within the body of the patient 90 that the provider 92desires to create a lumen 120 for the insertion of amedical device 80 and/or the performance of a medical procedure 81.90 Patient The beneficiary of the medical device 80. Thepatient 90 is theorganism in which the lumen 120 is created for the purposes ofpositioning and utilizing the medical device 80. Thesystem 100can be used with respect to a wide variety of different types of patients 90 including but not limited to, human beings, othertypes of mammals, other types of animals, and other living organisms. 91 Blood Vessel A passageway in the body of the patient 90 through which blood circulates. 92 Provider A person who provides health care assistance to the patient 90.The provider 92 is typically aphysician 92, but otherprofessionals such as nurses, paramedics, physician assistants, etc. may also act as providers 92 with respect to thesystem 100.100 System A collection of components that collectively provide for the functionality of creating a space 120 within a body.101 Direct Expansion Embodiments of the system 100 that directly inflate or deflate theEmbodiments expansion component 110 in order to change operating modes 130. Direct expansion embodiments 101 can include but are notlimited to a balloon 111, such as atubular balloon embodiments 103 and helix balloon embodiments 104.102 Indirect Embodiments of the system 100 that utilize other components ofExpansion the system 100 to expand or shrink theexpansion component Embodiments 110. Indirect expansion embodiments 102 can include but are notlimited to guide balloon embodiments 105 ( expansion component 110 expands by advancing on a guide balloon 115), insertion component embodiments 106 ( expansion component 110 expandsby the insertion of an insertion component 117), and sheathed balloon embodiments 107 ( expansion component 110 expandswhen it is removed from and no longer constrained by the sheath 119). 103 Tubular Balloon An embodiment of the system 100 where theexpansion Embodiments component 110 is a tubular balloon 104 Helix Balloon An embodiment of the system 100 where theexpansion Embodiments component 110 is a helix balloon. 105 Guide Balloon An embodiment of the system 100 where a theexpansion Embodiments component 110 is advanced over a guide balloon 115 (which is a type of balloon 111) that is in an inflated state in order to expand the expansion component 110 from a low-profile operating mode 132 into a high- profile operating mode 134.106 Insertion An embodiment of the system 100 where an insertion componentComponent is inserted into the expansion component 110 to expand theEmbodiments expansion component 110 from a low- profile operating mode 132into a high- profile operating mode 134.107 Sheathed An embodiment of the system 100 where a sheathedballoon 118Balloon is removed from a sheath 119 to change from a low-profileEmbodiments operating mode 132 into a high- profile operating mode 134. Thesheathed balloon 118 expands when no longer constrained by thesheath 119.108 Expansion Embodiments of the system 100 that involve some type of aComponent balloon 111 as the expansion component 110. Examples ofBalloon expansion component balloon embodiments 108 can include butEmbodiments are not limited to tubular balloon embodiments 103,helix balloon embodiments 104, and sheath embodiments 107.109 Expansion Embodiments of the system 100 that do not involve an expansionComponent Non- component 110 that is aballoon 111. Examples of expansionBalloon component non-balloon embodiments 109 can include but are notEmbodiments limited to guide balloon embodiments 105 ( expansion component 110 is advanced onto an inflated guide balloon 115) and insertion component embodiments 106 ( insertion component 117 such as asecond guide catheter 121 is inserted into the expansioncomponent 110). 110 Expansion Potentially any mechanism that can expand from a low-profile Component operating mode 132 into a high- profile operating mode 134 tocreate the space 120.111 Balloon An at least semi-flexible container, such that filling the container changes the shape of the container. Balloons can be inflated with air, other types of gasses, water, and other types of liquids. Some embodiments of balloons 111 can be inflated utilizing mechanicalmeans. Many categories of expansion components 110 areballoons 111 ( tubular balloon embodiments 103,helix balloon embodiments 104, and sheathed balloon embodiments 107) or are used in conjunction with balloons 111 (guide balloon embodiments 105). 112 Tubular Balloon A balloon 111 with a “donut hole” in the center of theballoon 111. When the tubular balloon 112 is inflated, the “donut hole” atthe center of the balloon 111 is thelumen 120.113 Helix Balloon A balloon 111 that is helix or helical shaped, like a coil or spring.The center of the helix can be used to create a lumen 120 whenthe helix balloon 113 expands from a low-profile state 132 into ahigh- profile state 134. Thehelix balloon 113 may be coupledwith a matrix 114 to reinforce and augment the desired shape andstructural attributes of the helix balloon 113.114 Matrix or Matrix A mechanism or configuration of mechanisms that keep the Component balloon 111 in the shape of a helix balloon 113. Thematrix 114maintains the helical shape of the helix balloon 113 in alloperating modes 130. Thematrix 114 can be implemented in awide variety of different embodiments, including but not limited to a weave 145, abonding agent 146, a thermally formedconnection 147, acover 148, and a flange 149. The crosssectional shape of the helix balloon 113 can be maintaineddifferently in different operating modes 130. For example, thecross section of the helix balloon 113 would otherwise be roundin an inflated state (high-profile operating mode 134) and flat in a deflated state (low-profile operating mode 132). The matrix 114can maintain the helical shape in both states. The matrix 114needs the both flexibility and strength to properly perform its function. The matrix 114 can also be referred to as amatrix component 114. 115 Guide Balloon The balloon 111 used in conjunction with acover 116 to changethe cover 116 from a low-profile operating mode 132 into a high-profile operating mode 134.116 Cover The expansion component 110 can be implemented as acover 116 to the guide balloon 115 or to theinsertion component 117.In the context of an insertion component embodiment 106, thecover 116 can be an integral part of acustomary guide catheter 121 in the form of an extension on the distal end of the guide catheter 121. In many such embodiments, the cover 116 can bepermanently and irremovably attached from the guide catheter 121 at the time of manufacture. The cover 116 can also bereferred to as an expandable cover. 117 Insertion A device that is inserted into the expansion component 110 toComponent trigger the expansion of the expansion component 110 from alow- profile operating mode 132 into a high-profile operating mode 134. In some embodiments, the insertion component 117can be a second guide catheter 121.118 Sheathed A balloon 111 that is naturally in an expanded state. The sheathed Balloon or balloon 118 changes from a low-profile operating mode 132 intoSheath Balloon a high- profile operating mode 134 when it is removed from asheath 119. Thesheath 119 compresses a sheathedballoon 118from what would otherwise be a high- profile operating mode 134into a low- profile operating mode 132. In the someembodiments, the sheathed balloon 118 is abraid 124.119 Sheath A container of the sheathed balloon 118. Thesheath 119constrains the sheathed balloon 118 such that the sheathedballoon 118 remains in a low-profile operating mode 132 so longas the sheathed balloon 118 remains within thesheath 119. Uponremoval from the sheath 119, the sheathedballoon 118 expandsfrom a low- profile operating mode 132 into a high-profile operating mode 134. 120 Lumen Space in the body of the patient 90 that is created by system 100.“Lumen” 120 is a medical term of art. The space is typically in the shape of a passageway or tunnel through the expansion component 110 for use by other medical devices 80 and/or in theperforming of medical procedures 81 in the treatment of apatient 90. The transition of the expansion component 110 from a low-profile operating mode 132 into a high-profile operating mode 134 creates a lumen 120.121 Guide Catheter A tube through which other medical devices 80 or theexpansion component 110 and other components of the system 100 can beinserted and positioned within the patient 90.Guide catheters 121are a very common and fundamental medical device 80 used forvascular catheterization procedures. Different embodiments of the system 100 can involve zero, one, two, or even 3 ormore guide catheters 121. 122 Guide Wire A wire or similar cord used to “guide” other medical devices 80to the desired location 88 within thepatient 90. It can also beused to connect different components of the system 100 to eachother. It is often useful to have a relatively thin wire 122 act inthe lead of other components of the system 100. Theguide wire 122 is a very common and fundamental medical device 80 usedfor vascular catheterization procedures. 123 Stent A type of medical device 80 that can be implanted within theblood vessel 91 of a patient 90 to keep thevessel 91 open forblood flow. Some embodiments of the system 100 are intendedto create a lumen to facilitate inserting the stent 123 to the desiredlocation 88. Thestent 123 can also be referred to as a stentcatheter. 124 Braid or Braid A type of self-expanding sheathed balloon 118 and a type ofBalloon expansion component 110. The construction of the braid 124 canbe designed to provide optimum performance. Braid 124characteristics such as number of wires, shape of wire, wire material, pitch, uniform pitch, variable pitch and weave pattern can be chosen to obtain the desired performance. More or less wires, and wire material, can affect strength and flexibility of the component. Round wires or flat wires can affect wall thickness. Pitch and weave pattern can affect expansion strength and profile size. 125 Attachment Wire A wire that is attached to a balloon 111 or other form ofexpansion component 110. Unlike a guide wire 122, theexpansion component 110 does not move along the wire 125, but is fixed tothe wire 125.126 Medicinal A substance used in diagnosing and/or treating a disease, illness, Component or medical condition in a patient 90. Some embodiments of thematrix 114 can include a medical component 126, typically in theform of a coating on the matrix 114. Thematrix 114 may containvaso-active agents to cause vasoconstriction or vasodilation, depending on what may be required. Such an agent may be transient or longer lasting. Nitric oxide is an example of a vaso- active agent that can dilate a vessel, which would make the vessel bigger (larger diameter) until the agent wears off. The matrix 114may contain any of the class of drug coatings that prevent intimal hyperplasia. Intimal hyperplasia often is a physiologic response to an angioplasty procedure resulting in restenosis of the treated area, which in layman's terms is a clogged stent 123.130 Operating Mode A status or state of the expansion component 110. Theexpansion component 110 includes at least two operating modes 130: (a) a low- profile operating mode 132; and (b) a high-profile operating mode 134. Some embodiments of the system 100 may involveone or more operating modes 130 between the two extremes of alow- profile operating mode 132 and a high-profile operating mode 134. Many embodiments of the expansion component 110can transform from a high- profile operating mode 134 back into alow- profile operating mode 132 when thelumen 120 is no longerrequired or desired. The operating mode 130 can also be referredto as a state 130.132 Low-Profile The operating mode 130 of theexpansion component 110 inOperating Mode which the size of the space 120 is not maximized. Can also bereferred to as a low- profile state 132.134 High-Profile The operating mode 130 of theexpansion component 110 inOperating Mode which the size of the lumen 120 is maximized. Can also bereferred to as a high- profile state 134.141 Self-Expanding A helix balloon 113 that self-expands. In other words, the naturalHelix default state of a self-expanding helix component 141 is a high-Component profile operating mode 134 rather than a low-profile operating mode 132. 142 Mechanically- A helix balloon 113 that utilizes mechanical means such asExpanding Helix springs to “inflate” (i.e. to transition between operating modes Component 130) rather than a gas or liquid. 144 Thread A cord, fiber, wire, ribbon, strip or other strand of material used in a weave 145.145 Weave A weave 145 can be a configuration of one or more threads 144that can contain the balloon 111 in the shape of ahelix balloon 113. The weave 145 can use as many or asfew threads 144 asdesired. In many embodiments, between 10-12 threads 144uniformly distributed about the helix balloon 113 is a particulardesirable configuration. The weave 145 would wrap around thehelix balloon 113 as thehelix balloon 113 makes consecutivepasses of the helical shape. 146 Bonding Agent A chemical means to constrain the shape of the helix balloon 113.The matrix 114 can be made from abonding agent 146 that isapplied to a balloon 111 to secure its shape as ahelix balloon 113. A bonding agent 146 can be used by itself or with othercomponents to maintain the helical shape of the helix balloon 113. Consecutive passes of the helical shape can be bonded to adjacent passes. A wide variety of bonding agents including but not limited to adhesive glues or silicone can be used as possible bonding agents 146. The bonding agent 146 may be appliedusing dip coating techniques. 147 Thermally A constraint on the helix balloon 113 that is implemented throughFormed the application of heat. A wide range of thermal forming Connection techniques known in the prior art can be used to connect adjacent passes of the helical shape together. The aggregate configuration of thermally formed connections 147 can by itself or inconjunction with other components, constitute the matrix 114.148 Matrix Cover A relatively thin sheet or a collection of thin sheets that overlay the balloon 111 to shape it into ahelix balloon 113. Thematrix cover 148, which can also be referred to as a covering 148, can contain the helix balloon 113 and help maintain its helical shape.The matrix cover 148 can be made from a fabric or other similarmaterial suitable for the particular location 88 in thepatient 90.The matrix cover 148 can cover a single pass of the helical shape,multiple passes or all passes. The matrix cover148 can be used by itself or in conjunction with other components to constitute the matrix 114. Thematrix 148 may be applied using dip coatingtechniques as well as other plausible manufacturing methods. 149 Flange A flange is a rim, collar, or ring that secures the balloon 111 intothe shape of a helix balloon 113. The cross-section of thehelix balloon 113 can have one or more flanges 149. Adjacent passes of the helical shape can be connected together by the flange 149. The connected flanges 149 in the aggregate can form the matrix component 114. Flanges 149 can be connected using a weave 145, a bonding agent 146, a thermally formedconnection 147, amatrix cover 148, and/or potentially other means.150 Inflation Tube A passageway to the balloon 111, such as atubular balloon 112or a helix balloon 113 that is used to inflate theballoon 111 withair or whatever gas or liquid is used to inflate the balloon 111.151 Valve The connection between the inflation tube 150 and theballoon 111.
Claims (20)
1. A system for creating a lumen, comprising:
a balloon wound in a generally helical shape having an inner surface and an outer surface; and
a support attached to at least one of the inner surface and the outer surface of the generally helical shape and constraining the balloon in the generally helical shape;
wherein the balloon has a first diameter in a low-profile operating mode and the generally helical shape has a second diameter in a high-profile operating mode, and the second diameter is larger than the first diameter.
2. The system of claim 1 , wherein the support has a generally cylindrical shape and is continuous.
3. The system of claim 1 , wherein the support is discontinuous, and wherein the support includes one or more strips.
4. The system of claim 3 , wherein the one or more strips are attached to the outer surface of the generally helical shape.
5. The system of claim 4 , wherein at least one or more strips includes an end portion folded to the inner surface of the generally helical shape.
6. The system of claim 1 , wherein the support is attached to the at least one of the inner surface and the outer surface of the generally helical shape by a connector.
7. The system of claim 1 , where in the support is a thin film.
8. The system of claim 1 , wherein the support is perforated.
9. The system of claim 1 , wherein the support includes a first support on the inner surface of the generally helical shape and a second support on the outer surface of the generally helical shape.
10. A system for creating a lumen, comprising:
a balloon wound in a generally helical shape having an inner surface and an outer surface; and
at least one clip constraining the balloon in the generally helical shape, the at least one clip including a center leaf and first and second receiving leaves on either side of the center leaf, each of the first and second receiving leaves including a first opening and a second opening, the first opening receiving a first turn of the generally helical shape and a second opening receiving a second turn of the generally helical shape;
wherein the balloon has a first diameter in a low-profile operating mode and the generally helical shape has a second diameter in a high-profile operating mode, and the second diameter is larger than the first diameter.
11. The system of claim 10 , wherein the center leaf rests along an outer surface of the generally helical shape.
12. The system of claim 10 , further comprising a first foldover leaf and a second foldover leaf flanking the first and second receiving leaves, respectively, and wherein the first and second foldover leaves are configured to fold towards the center leaf, thereby trapping the first and second turns of the generally helical shape.
13. The system of claim 10 , further comprising at least one cylindrical support surrounding a portion of at least one of the first and second turns of the helix balloon that is received in the first or second opening of the receiving portion.
14. A system for creating a lumen, comprising:
a balloon wound in a generally helical shape having an inner surface and an outer surface; and
at least one band connector constraining the balloon in the generally helical shape, the at least one band connector surrounding at least two successive turns of the generally helical shape;
wherein the balloon has a first diameter in a low-profile operating mode and the generally helical shape has a second diameter in a high-profile operating mode, and the second diameter is larger than the first diameter.
15. The system of claim 14 , wherein the system includes three band connectors, and each of the three band connectors are evenly circumferentially spaced about the generally helical shape.
16. The system of claim 14 , wherein the at least one band connector is folded around the at least two successive turns of the generally helical shape such that first and second opposed ends of the at least one band connector overlap one another at an overlapping portion.
17. The system of claim 16 , wherein the first and second opposed ends of the at least one band connector are secured to one another at the overlapping portion by an adhesive, by a thermal join, or by a pressurized join.
18. A method of creating a lumen in an artery, comprising:
inserting a balloon into the artery in a low-profile operating mode, the balloon having an inner surface and an outer surface, and a support attached to at least one of the inner surface and the outer surface;
forming a lumen within the generally helical shape by expanding the tubular balloon into a high-profile operating mode in which the inner surface of the generally helical shape defines the lumen, and in which the support constrains the balloon in the generally helical shape.
19. (canceled)
20. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/992,512 US20230157697A1 (en) | 2021-11-19 | 2022-11-22 | System, apparatus, and method for creating a lumen |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202163281227P | 2021-11-19 | 2021-11-19 | |
| US202263335494P | 2022-04-27 | 2022-04-27 | |
| US202263354421P | 2022-06-22 | 2022-06-22 | |
| US17/991,742 US20230157716A1 (en) | 2021-11-19 | 2022-11-21 | System, apparatus, and method for creating a lumen |
| US17/992,512 US20230157697A1 (en) | 2021-11-19 | 2022-11-22 | System, apparatus, and method for creating a lumen |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/991,742 Continuation US20230157716A1 (en) | 2021-11-19 | 2022-11-21 | System, apparatus, and method for creating a lumen |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20230157697A1 true US20230157697A1 (en) | 2023-05-25 |
Family
ID=86384812
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/991,742 Pending US20230157716A1 (en) | 2021-11-19 | 2022-11-21 | System, apparatus, and method for creating a lumen |
| US17/992,512 Abandoned US20230157697A1 (en) | 2021-11-19 | 2022-11-22 | System, apparatus, and method for creating a lumen |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/991,742 Pending US20230157716A1 (en) | 2021-11-19 | 2022-11-21 | System, apparatus, and method for creating a lumen |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20230157716A1 (en) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5181911A (en) * | 1991-04-22 | 1993-01-26 | Shturman Technologies, Inc. | Helical balloon perfusion angioplasty catheter |
| US5649978A (en) * | 1993-05-11 | 1997-07-22 | Target Therapeutics, Inc. | Temporary inflatable intravascular prosthesis |
| US8486014B2 (en) * | 2011-03-26 | 2013-07-16 | Medtronic Vascular, Inc. | Spiral perfusion dilatation balloon for use in valvuloplasty procedure |
| US20160066932A1 (en) * | 2014-09-10 | 2016-03-10 | Vascular Solutions, Inc. | Perfusion catheters and related methods |
| US9480823B2 (en) * | 2011-03-04 | 2016-11-01 | Medtronic Vascular, Inc. | Perfusion dilation catheter system and methods of use |
| US20170252544A1 (en) * | 2016-03-04 | 2017-09-07 | C.R. Bard, Inc. | Perfusion balloon with external valve |
| US20190134358A1 (en) * | 2008-09-15 | 2019-05-09 | Aeeg Ab | Medical Device, Method And System For Temporary Occlusion Of An Opening In A Lumen Of A Body |
| US20200054865A1 (en) * | 2018-08-16 | 2020-02-20 | Teleflex Innovations S.À.R.L. | Eluting perfusion catheters and related methods |
-
2022
- 2022-11-21 US US17/991,742 patent/US20230157716A1/en active Pending
- 2022-11-22 US US17/992,512 patent/US20230157697A1/en not_active Abandoned
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5181911A (en) * | 1991-04-22 | 1993-01-26 | Shturman Technologies, Inc. | Helical balloon perfusion angioplasty catheter |
| US5649978A (en) * | 1993-05-11 | 1997-07-22 | Target Therapeutics, Inc. | Temporary inflatable intravascular prosthesis |
| US20190134358A1 (en) * | 2008-09-15 | 2019-05-09 | Aeeg Ab | Medical Device, Method And System For Temporary Occlusion Of An Opening In A Lumen Of A Body |
| US9480823B2 (en) * | 2011-03-04 | 2016-11-01 | Medtronic Vascular, Inc. | Perfusion dilation catheter system and methods of use |
| US8486014B2 (en) * | 2011-03-26 | 2013-07-16 | Medtronic Vascular, Inc. | Spiral perfusion dilatation balloon for use in valvuloplasty procedure |
| US20160066932A1 (en) * | 2014-09-10 | 2016-03-10 | Vascular Solutions, Inc. | Perfusion catheters and related methods |
| US20170252544A1 (en) * | 2016-03-04 | 2017-09-07 | C.R. Bard, Inc. | Perfusion balloon with external valve |
| US20200054865A1 (en) * | 2018-08-16 | 2020-02-20 | Teleflex Innovations S.À.R.L. | Eluting perfusion catheters and related methods |
Also Published As
| Publication number | Publication date |
|---|---|
| US20230157716A1 (en) | 2023-05-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12414870B2 (en) | System, apparatus, and method for creating a lumen | |
| JP5775082B2 (en) | Expandable cerebrovascular sheath and method of use | |
| JP6069392B2 (en) | Expandable iliac sheath and method of use | |
| AU2016232781B2 (en) | System for low-profile occlusion balloon catheter | |
| US5599306A (en) | Method and apparatus for providing external perfusion lumens on balloon catheters | |
| JP5899280B2 (en) | Expandable iliac sheath and method of use | |
| JP6097447B2 (en) | Perfusion catheter and related methods | |
| US7887557B2 (en) | Catheter having a cutting balloon including multiple cavities or multiple channels | |
| US7241273B2 (en) | Intra-aortic renal delivery catheter | |
| US7819841B2 (en) | Vessel isolation device | |
| JP5047166B2 (en) | Balloon catheter difficult to bend | |
| WO1995026773A1 (en) | Perfusion shunt device for receiving angioplasty balloon | |
| CN112739273B (en) | Vascular treatment device | |
| JP2024524950A (en) | Medical devices including balloon modules | |
| CA3238444A1 (en) | Systems for creating a lumen | |
| US20230157697A1 (en) | System, apparatus, and method for creating a lumen | |
| JPWO2011122094A1 (en) | Stent delivery system and manufacturing method thereof | |
| CA3215474A1 (en) | System, apparatus, and method for creating a lumen | |
| WO2022221524A2 (en) | System, apparatus, and method for creating a lumen | |
| CN113209446A (en) | Guide catheter and guide catheter system | |
| CN119789891A (en) | Rolling membrane catheter with inflation tube |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |