[go: up one dir, main page]

US20230079931A1 - Microfibrillated cellulose as rheology modifier in high ionic strength agricultural formulations - Google Patents

Microfibrillated cellulose as rheology modifier in high ionic strength agricultural formulations Download PDF

Info

Publication number
US20230079931A1
US20230079931A1 US17/727,497 US202217727497A US2023079931A1 US 20230079931 A1 US20230079931 A1 US 20230079931A1 US 202217727497 A US202217727497 A US 202217727497A US 2023079931 A1 US2023079931 A1 US 2023079931A1
Authority
US
United States
Prior art keywords
composition
agriculturally active
microfibrillated cellulose
active ingredient
ionic strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/727,497
Inventor
Humberto Benito Lopez
Lisiane ZENI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amvac Chemical Corp
Original Assignee
Amvac Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amvac Chemical Corp filed Critical Amvac Chemical Corp
Priority to US17/727,497 priority Critical patent/US20230079931A1/en
Publication of US20230079931A1 publication Critical patent/US20230079931A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B15/00Organic phosphatic fertilisers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/12Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing acyclic or cycloaliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/40Mixtures of one or more fertilisers with additives not having a specially fertilising activity for affecting fertiliser dosage or release rate; for affecting solubility
    • C05G3/44Mixtures of one or more fertilisers with additives not having a specially fertilising activity for affecting fertiliser dosage or release rate; for affecting solubility for affecting solubility
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/60Biocides or preservatives, e.g. disinfectants, pesticides or herbicides; Pest repellants or attractants
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/10Solid or semi-solid fertilisers, e.g. powders
    • C05G5/12Granules or flakes
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/10Solid or semi-solid fertilisers, e.g. powders
    • C05G5/18Semi-solid fertilisers, e.g. foams or gels
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers
    • C05G5/27Dispersions, e.g. suspensions or emulsions
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/30Layered or coated, e.g. dust-preventing coatings
    • C05G5/35Capsules, e.g. core-shell
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose

Definitions

  • Agricultural formulations with high ionic strength include formulations of glufosinate and glyphosate as well as fertilizers such as 10-34-0 and 6-24-6 starter fertilizers and many other materials that contain ammonium, phosphate, potassium, micronutrients and many other highly ionic salts.
  • Such formulations enhance agricultural yields as well as act as an aid in harvesting and processing of agricultural products, and provide aesthetic value in turf and ornamental applications. While it is desirable to combine these highly ionic formulations with other agrochemical active ingredients in single formulations, the ionic formulations are frequently applied separately due to incompatibility.
  • compositions comprising a microfibrillated cellulose, a medium having a high ionic strength, optionally an agriculturally active compound, and optionally a biostimulant, wherein the composition exhibits thixotropy.
  • compositions comprising a fertilizer and microfibrillated cellulose.
  • methods comprising mixing a fertilizer with a microfibrillated cellulose to form a mix-ready fertilizer adjuvant.
  • High ionic strength media are often applied diluted in water but in many circumstances, especially in the case of fertilizers and micronutrients, they are applied neat. While it can be beneficial to combine agrochemical formulations of various types with high ionic strength media to serve multiple purposes, certain classes of products do not lend themselves to be combined in the context of high ionic strength. In particular, high ionic strength media are known to be difficult to combine with emulsifiable concentrates (EC), suspension concentrates (SC), capsule suspensions (CS), wettable granules (WG), and the like, either as formulated products or as tank mixes. Most formulations of the above referenced type do not disperse well or flocculate in the presence of these highly ionic liquids.
  • a rheology modifier compatible with emulsifiable concentrates (EC), capsule suspensions (CS), suspension concentrates (SC) and other type of formulations containing either particulates or oils (as droplets) in high ionic media, such as fertilizer, micronutrients rich in multivalent cations, and other highly ionic media would be very valuable.
  • the value increases substantially if these formulations can be maintained over prolonged periods of time to allow the product to be stored and used at a later time without settling, separation or flocculation.
  • microfibrillated cellulose another polysaccharide-base rheology agent
  • microfibrillated cellulose allows one to create structure in a large variety of fertilizer solutions, glufosinate and glyphosate ammonium and potassium and other highly ionic media as well as in many ionic salts of organic weak acids used as insecticides, herbicides, fungicides, and the like.
  • these systems can be stabilized for weeks or even months.
  • the term “about” means a range of values including the specified value, which a person of ordinary skill in the art would consider reasonably similar to the specified value. In embodiments, about means within a standard deviation using measurements generally acceptable in the art. In embodiments, about means a range extending to +/ ⁇ 10% of the specified value. In embodiments, about includes the specified value.
  • composition as used herein is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product, which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • agriculturally active compound refers to a compound or substrate which have an effect on agricultural crops, including pesticidal and herbicidal effects, among others.
  • ionic strength refers to a measure of the concentration of ions (i.e., electrically charged species) in a solution.
  • an ionic strength is “high” when conventional rheology modifiers such as xanthan and/or guar gums begin to agglomerate and/or otherwise fail to impart sustained thixotropic character to the composition.
  • “High ionic strength” includes ion concentrations obtained from solutions that are about 5% of saturation in any functional ion. For example, NaCl is soluble in water at saturation at about 360 g/L. Accordingly, a “high ionic strength” relative to NaCl would include 18 g NaCl/L in water.
  • MFC With respect to the performance of MFC compared to such agents as xanthan gum, MFC also benefits from compatibility with cationic surfactants and multivalent cations (which are ubiquitous in micronutrients) where xanthan gum fails. In the case of multivalent cations, the concentrations of such ions can be very low, including trace amounts, and still cause agglomeration of xanthan gum or guar gum.
  • dry matter weight concentration refers to the absolute weight percent of MFC, excluding water and other absorbed liquids in the formulation.
  • dry matter or “solids content,” in the context of the amount of MFC refers to the amount of MFC if all the solvent (typically water) is removed. Accordingly, providing the amount of MFC as a concentration of “dry matter” provides the amount as “% w/w” relative to the overall weight of the composition in the absence of solvent.
  • thixotropy refers to a time-dependent shear thinning property of a composition.
  • a composition exhibits thixotropy when it is viscous under static conditions but flows (e.g., becomes thinner, becomes less viscous) over time when subjected to an applied stress, such as being shaken, agitated, pumped, mixed or subjected to shear-stress.
  • a “mix-ready fertilizer adjuvant” refers to a product that can be provided in a kit form, along with instructions to mix compositions comprising MFC and fertilizer with an agriculturally active compound or as an additive to mix with a pre-fabricated agricultural formulation.
  • Such formulations include, without limitation, suspension concentrates, suspo-emulsions, capsule suspensions, microemulsions, and the like.
  • Microfibrillated cellulose or “MFC,” (also known as “reticulated” cellulose or as “superfine” cellulose, or as “cellulose nanofibrils”) is a cellulose-based product and is described, for example, in U.S. Pat. Nos. 4,481,077, 4,374,702 and 4,341,807, each of which is incorporated herein by reference.
  • microfibrillated cellulose has reduced length scales (diameter, fibril length) vis-à-vis cellulose fibers, improved water retention and adjustable viscoelastic properties.
  • MFC with improved or tailored properties for specific applications are known, such as those disclosed in WO 2007/091942 and WO 2015/180844, each of which is incorporated herein by reference.
  • Microfibrillated cellulose is a product derived from cellulose and is commonly manufactured in a process in which cellulose fibers are opened up and unraveled to form fibrils and microfibrils/nanofibrils by (repeated) passage through a geometrical constraint.
  • MFC may be produced as disclosed in WO 2015/180844 by passing a liquid composition of cellulose through a small diameter orifice in which the composition is subjected to a pressure drop of at least 3000 psig and a high velocity shearing action followed by a high velocity decelerating impact. The passage of the MFC composition through the orifice is repeated until the cellulose composition becomes a substantially stable composition. This process converts the cellulose into microfibrillated cellulose, which has valuable physical properties (gel forming capability, thixotropic properties, high water retention value WRV and the like) without substantial chemical change of the cellulose starting material.
  • microfibrillated cellulose Another process for manufacturing microfibrillated cellulose is described in U.S. Pat. No. 5,385,640 which discloses a means for refining fibrous cellulosic material into a dispersed tertiary level of structure and thereby achieving desirable properties attendant with such structural change.
  • the cellulosic fiber produced in this way is referred to as “microdenominated cellulose (MDC)”, a sub-group of microfibrillated cellulose.
  • MDC microdenominated cellulose
  • microfibrillated cellulose is obtained by repeatedly passing a liquid composition of fibrous cellulose through a zone of high shear, which is defined by two opposed surfaces, with one of the surfaces rotating relative to the other, under conditions and for a length of time sufficient to render the composition substantially stable and to impart to the composition a water retention that shows consistent increase with repeated passage of the cellulose composition through the zone of high shear. This process increases the viscosity and leads to a gel structure, until no further increase in viscosity is achieved. After such a treatment, homogeneous MFC is obtained and the conversion of cellulose to microcellulose as such is concluded.
  • MFC Microfibrillated cellulose
  • the starting cellulose material to generate MFC does not contain a significant portion of individualized and “separated” cellulose “fibrils.”
  • the cellulose in wood fibres is an aggregation of fibrils.
  • elementary fibrils are aggregated into microfibrils which are further aggregated into larger fibril bundles and finally into cellulosic fibres.
  • the diameter of wood based fibres is typically in the range 10-50 microns (with the length of these fibres being even greater).
  • a heterogeneous mixture of “released” fibrils with cross-sectional dimensions and lengths from nm to microns may result. Fibrils and bundles of fibrils may co-exist in the resulting microfibrillated cellulose.
  • Microfibrillated cellulose contains fibrils in constant interaction with each other in a three-dimensional network.
  • individual fibrils or fibril bundles can be identified and easily discerned by way of conventional optical microscopy, for example at a magnification of 40 ⁇ or by use of electron microscopy.
  • MFC microfibrillated cellulose
  • any type of microfibrillated cellulose may be used in connection with embodiments disclosed herein as long as the fiber bundles as present in the original cellulose pulp are sufficiently separated in the process of making MFC so that the average diameter of the resulting fibrils is in the nanometer-range and therefore more surface of the overall cellulose-based material has been created, vis-à-vis the surface available in the original cellulose material.
  • MFC may be prepared according to any of the processes described in the art, including the references specifically cited above.
  • the microfibrillated cellulose may be characterized by the following features:
  • the microfibrillated cellulose forms a gel-like dispersion that has a zero shear viscosity, ⁇ 0, of at least 2000 PaS, or at least 3000 Pa ⁇ s or 4000 Pa ⁇ s, or at least 5000 Pa s, or at least 6000 Pa s, or at least 7000 Pa s, as measured in polyethylene glycol (PEG) as the solvent, and at a solids content of the MFC of about 0.65%.
  • PEG polyethylene glycol
  • the rheological properties in particular zero shear viscosity can be measured on a rheometer of the type Anton Paar Physica MCR 301.
  • the temperature in all measurements can be performed at 25° C. and a “plate-plate” geometry used (diameter: 50 mm).
  • the rheological measurement can be performed as an oscillating measurement (amplitude sweep) to evaluate the degree of structure in the dispersions and as rotational viscosity measurements, in which case the viscosity may be measured as a function of the shear rate to evaluate the viscosity at rest (shear forces ⁇ 0), as well as the shear thinning properties of the dispersions.
  • the measurement method is further described in PCT/EP2015/001103 (EP 3 149 241).
  • the microfibrillated cellulose has a water holding capacity (also water retention capacity) of more than 40, or more than 50, or more than 60, or more than 70, or more than 75, or more than 80, or more than 90, further or more than 100.
  • the water holding capacity is given as (mV/mT) ⁇ 1 where mV is the weight of the wet sediment and mT is the weight of dry MFC analyzed.
  • the water holding capacity describes the ability of the MFC to retain water within the MFC structure and this relates to the accessible surface area.
  • the water holding capacity can be measured by diluting the MFC samples to a 0.3% solids content in water and then centrifuging the sample at 1000 G for 15 minutes. The clear water phase can be separated from the sediment and the sediment weighed. The measurement method is further described in PCT/EP2015/001103 (EP 3 149 241).
  • the raw material for the cellulose microfibrils may be any cellulosic material, in particular wood, annual plants, cotton, flax, straw, ramie, bagasse (from sugar cane), suitable algae, jute, sugar beet, citrus fruits, waste from the food processing industry or energy crops or cellulose of bacterial origin or from animal origin, e.g., from tunicates.
  • wood-based materials are used as raw materials, either hardwood or softwood or both (in mixtures).
  • softwood is used as a raw material, either one kind or mixtures of different soft wood types.
  • Modified (derivatized) and non-modified (un-derivatized) cellulose/MFC may be employed.
  • the microfibrillated cellulose may be unmodified with respect to its functional groups or may be physically modified or chemically modified, or both.
  • Chemical modification of the surface of the cellulose microfibrils may be achieved by various possible reactions of the surface functional groups of the cellulose microfibrils such as functionalizing of the hydroxyl groups, including by: oxidation, silylation reactions, etherification reactions, condensations with isocyanates, alkoxylation reactions with alkylene oxides, or condensation or substitution reactions with glycidyl derivatives. Chemical modification may take place before or after the defibrillation step.
  • cellulose microfibrils may be modified by a physical route, either by adsorption at the surface, or by spraying, or by coating, or by encapsulation of the microfibril.
  • modified microfibrils can be obtained by physical adsorption of at least one compound.
  • the MFC may also be modified by association with an amphiphilic compound (surfactant).
  • the microfibrillated cellulose is not physically modified.
  • the microfibrillated cellulose is a non-modified microfibrillated cellulose, such as a non-modified microfibrillated cellulose derived from plant material.
  • the microfibrillated cellulose is prepared by a process, which comprises at least the following steps: (a) subjecting a cellulose pulp to at least one mechanical pretreatment step; (b) subjecting the mechanically pretreated cellulose pulp of step (a) to a homogenizing step, which results in fibrils and fibril bundles of reduced length and diameter vis-à-vis the cellulose fibers present in the mechanically pretreated cellulose pulp of step (a), said step (b) resulting in microfibrillated cellulose; wherein the homogenizing step (b) involves compressing the cellulose pulp from step (a) and subjecting the cellulose pulp to a pressure drop.
  • the mechanical pretreatment step can include a refining step.
  • the purpose of the mechanical pretreatment is to “beat” the cellulose pulp in order to increase the accessibility of the cell walls, i.e., to increase the surface area.
  • enzymatic (pre)treatment of the cellulose pulp is an optional additional step that may be desirable for some applications.
  • enzymatic pretreatment in conjunction with microfibrillating cellulose the respective content of WO 2007/091942 is incorporated herein by reference. Any other type of pretreatment, including chemical pretreatment may also be performed.
  • step (b) which is to be conducted after the (mechanical) pretreatment step, the cellulose pulp slurry from step (a) is passed through a homogenizer at least once, or at least two times, as described, for example, in PCT/EP2015/001103, the respective content of which is hereby incorporated by reference.
  • SC sustained-suspension concentrate
  • SC preparations generally display non-Newtonian flow characteristics.
  • sucspo-emulsion refers to a stable suspension of fine particles combined with an emulsion of fine droplets of an oil in an aqueous continuous phase.
  • capsule suspension refers to a stable suspension of an encapsulated agricultural active compound in an aqueous continuous phase which is intended for dilution with water before use.
  • the encapsulation is generally provided by polymeric compositions including, without limitation, polyureas, polyurethanes, cyclodextrins, and functionally similar systems.
  • oil dispersion or “oil-based suspension concentrate,” or “OD,” refers to a stable suspension of an agricultural active ingredient in an organic solvent fluid (and may contain other dissolved compounds) which is intended for dilution with water before use.
  • agricultural active compounds may be provided in “particulate form.”
  • “particulate form” may include encapsulated agricultural active compounds (to form capsule suspensions), gels, wettable powders (WP), water dispersible powders for slurry seed treatment (WS), water dispersible granules (WG), emulsifiable granules (EG), and emulsifiable powders (EP).
  • Gels include any organic polymer capable of forming gel particles, such as acrylic acid-based gels, including polyacrylamide, polyammonium acrylate and the like. Examples of such gels are disclosed in U.S. Pat. No. 5,185,024, which is incorpated herein by reference in its entirety.
  • WP particulates are homogenous solids of an agricultural active together with optional fillers and other formulation ingredients in a fine powder form, generally free of visible extraneous matter and hard lumps.
  • WS particulates are homogenenous solids of an agricultural active together with a carrier and other formulation ingredients, typically including a colorant, and in the form of a powder, generally free of visible extraneous matter and hard lumps.
  • WG particulates are homogeneous solids of an agricultural active together with carriers and other formulation ingredients and typically designed to disintegrate in water to form a colloidal suspension. WG are generally free-flowing, mostly dust free, and generally free of visible extraneous matter and hard lumps.
  • EG particulates are granules of an agricultural active which may be dissolved in an organic solvent together with other formulation ingredients.
  • EG particulates are generally homogenous, and generally free of visible extraneous matter and hard lumps.
  • EP particulates are homogenous mixtures of an agricultural active together with other formulation ingredients and supplied free-flowing powder generally free of visible extraneous matter and hard lumps, and which form an emulsion upon dilution with water.
  • biostimulant refers to compounds or substrates used to stimulate natural processes of plants to enhance and/or benefit crop quality, soil health, nutrient efficiency, nutrient uptake, and reduce abiotic stress.
  • Plant biostimulant products can be used in sustainable agriculture production systems and integrated pest management (IPM) programs, which can reduce the amount of irrigation water used, as well as the amount of agrochemical supplements and fertilizers.
  • Biostimulants include, but are not limited to protein hydrolysates, humic and fulvic acids, seaweed extracts, chitosans, biopolymers, inorganic compounds, and probiotics.
  • compositions comprising a microfibrillated cellulose, a medium having a high ionic strength, and optionally an agriculturally active ingredient, wherein the composition exhibits shear thinning behavior.
  • Rheological structure is defined by the values measured of certain parameters well understood in the science of rheology. These include the storage modulus (also commonly denoted as G′ in rheology) and the loss modulus (also known as G′′ in rheology). Included in the definition of rheological structure is what is known as shear thinning behavior in rheology. This behavior is very useful in practical applications as a fluid will have a high viscosity upon standing on the shelf and be less susceptible to separation and settling but will be easy to handle when shaken or pumped.
  • High ionic strength liquids such as fertilizers, glyphosate salt solutions and glufosinate salt solutions, in the absence of MFC, behave as Newtonian fluids in that they are not shear thinning.
  • the addition of microfibrillated cellulose adds structure and provides compositions that exhibit shear thinning behavior.
  • CS capsule suspension
  • emulsifiable concentrate is dispersed in a solution of fertilizer and it can remain suspended through the application period which can be one week thus allowing a material which would otherwise immediately separate to be applied and give the farmer an advantage in his ability to plant more efficiently.
  • compositions comprising a high ionic strength liquid, and a microfibrillated cellulose. In embodiments, there are provided compositions consisting essentially of a high ionic strength liquid, and a microfibrillated cellulose. In embodiments, there are provided compositions comprising a fertilizer, and a microfibrillated cellulose. In embodiments, there are provided compositions consisting essentially of a fertilizer, and a microfibrillated cellulose.
  • compositions may comprise at least one of fertilizer, pesticide, fungicide, insecticide, herbicide, growth regulator, safener, and micronutrient.
  • composition may comprise a fertilizer, wherein the fertilizer comprises at least one of a nitrogen source, a phosphorus source, and a potassium source, wherein the nitrogen source, the phosphorus source, and the potassium source are present in amounts to provide a NPK (nitrogen-phosphorus-potassium) value of between 0-40: 0-50: 0-40, with the proviso that at least one of the value of the nitrogen source, the phosphorus, and the potassium source is not zero.
  • NPK nitrogen-phosphorus-potassium
  • the nitrogen source is selected from the group consisting of ammonia, urea, urea phosphate, thiourea, ammonium sulfate, ammonium nitrate, potassium nitrate, ammonium phosphate, ammonium polyphosphate, ammonium chloride, diammonium phosphate (DAP), urea triazone, amino acids, aromatic nitrogen or heterocyclic nitrogen compounds, hexamethylene tetraamine, melamine, nitrobenzene, and mixtures thereof.
  • DAP diammonium phosphate
  • the phosphorous source is selected from the group consisting of phosphate salts, phosphite salts, calcium phosphate, nitro phosphate, potassium phosphate, mono ammonium phosphate, di-ammonium phosphate, triple super phosphate, phosphoric acid, phosphorous acid, polyphosphoric acid, HEDP (1-hydroxyethane 1,1-diphosphonic acid), AMP (Adenosine monophosphate), amino-tris(methylenephosphonic acid), phosphorous pentoxide, and mixtures thereof.
  • the potassium source is selected from the group consisting of potassium sulfate, potassium phosphate, potassium oxide, potassium hydroxide, potassium chloride, potassium nitrate, potassium carbonate, potassium bicarbonate, potassium magnesium sulfate, and mixtures thereof.
  • the compositions may comprise a herbicide selected from the group consisting of glyphosate, glufosinate, thiocarbamates, difenzoquat, pyridazinone, nicotinanilide, fluridone, isoxazolidinone, diphenylether; N-phenylphthalimide, oxadiazole, triazolinone, chloroacetamides, oxyacetamide, phthalamate, N-phenylphthalimide, oxadiazole, triazolinone, acetamides, benzoylisoxazol, isoxazole, pyrazole, pyrazolium, triketone, benzofuran, acetochlor, clethodim, dicamba, flumioxazin, fomesafen, metolachlor, triasulfuron, mesotrione, quizalofop, saflufenacil, sulcot
  • compositions may comprise a micronutrient comprises an element selected from the group consisting of boron, copper, manganese, iron, chlorine, molybdenum, zinc, and mixtures thereof.
  • the composition is formulated as an emulsifiable concentrate (EC), suspension concentrate (SC), capsule suspension (CS), water-soluble concentrate (SL), an emulsion (EW), a micro-emulsion (ME), an oil-based suspension concentrate (OD), an aqueous suspo-emulsion (SE), or a microencapsulated suspension (CS).
  • EC emulsifiable concentrate
  • SC suspension concentrate
  • CS capsule suspension
  • SL water-soluble concentrate
  • EW emulsion
  • ME micro-emulsion
  • ME oil-based suspension concentrate
  • SE aqueous suspo-emulsion
  • CS microencapsulated suspension
  • the composition is formulated as an emulsifiable concentrate (EC), suspension concentrate (SC), capsule suspension (CS), water-soluble concentrate (SL), an emulsion (EW), a micro-emulsion (ME), an oil-based suspension concentrate (OD), an aqueous suspo-emulsion (SE), or a microencapsulated suspension (CS).
  • the composition is formulated as an emulsifiable concentrate (EC).
  • the composition is formulated as a suspension concentrate (SC).
  • the composition is formulated as a capsule suspension (CS).
  • the composition is formulated as a water-soluble concentrate (SL).
  • the composition is formulated as an emulsion (EW).
  • the composition is formulated as a micro-emulsion (ME). In embodiments, the composition is formulated as an oil-based suspension concentrate (OD). In embodiments, the composition is formulated as an aqueous suspo-emulsion (SE). In embodiments, the composition is formulated as a microencapsulated suspension (CS). In embodiments, the composition is formulated as a water dispersible granule or a wettable powder.
  • the agricultural liquid comprises at least one of glyphosate, glufosinate, and a fertilizer comprises at least one of a nitrogen source, a phosphorus source, and a potassium source, wherein the nitrogen source, the phosphorus source, and the potassium source are present in amounts to provide a NPK (nitrogen-phosphorus-potassium) value of between 0-40: 0-50: 0-40, with the proviso that at least one of the value of the nitrogen source, the phosphorus, and the potassium source is not zero.
  • NPK nitrogen-phosphorus-potassium
  • composition comprising: a microfibrillated cellulose; a medium having a high ionic strength; and optionally an agriculturally active ingredient, wherein the composition exhibits thixotropy.
  • compositions comprising (a) a microfibrillated cellulose (MFC), (b) a medium resistant to exhibiting thixotropic behavior in the presence of xanthan gum or guar gum, and (c) optionally an agriculturally active ingredient, wherein the composition exhibits thixotropy in the presence of MFC.
  • MFC microfibrillated cellulose
  • the medium resistant to exhibiting thixotropic behavior in the presence of xanthan and/or guar gums includes fertilizers, such as fertilizer concentrates, and other agriculturally active ingredients in salt form at high concentrations.
  • any medium that fails to exhibit the benefits of conventional rheology additives such as xanthan gum or guar gum may realize the desired rheology characteristics by use of microfibrillated cellulose instead.
  • failure means the conventional rheology modifier suffers from agglomeration and/or does not provide sustained/stable thixotropic behavior to the resultant composition for more than 4 hours.
  • the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 5% of saturation level. In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 10% of saturation level. In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 20% of saturation level. In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 50% of saturation level. In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration at about 100% of saturation level.
  • the medium having high ionic strength comprises a fertilizer.
  • the fertilizer comprises at least one of a nitrogen source, a phosphorus source, and a potassium source, wherein the nitrogen source, the phosphorus source, and the potassium source are present in amounts to provide a NPK (nitrogen-phosphorus-potassium) value of between 0-60: 0-60: 0-60, with the proviso that at least one of the values of the nitrogen, phosphorus, or potassium source is not zero.
  • NPK nitrogen-phosphorus-potassium
  • the nitrogen source is selected from the group comprising but not limited to ammonia, urea, urea phosphate, thiourea, ammonium sulfate, ammonium nitrate, potassium nitrate, ammonium phosphate, ammonium polyphosphate, ammonium chloride, diammonium phosphate (DAP), urea triazone, amino acids, aromatic nitrogen or heterocyclic nitrogen compounds, hexamethylene tetraamine, melamine, nitrobenzene, and mixtures thereof.
  • DAP diammonium phosphate
  • the phosphorous source is selected from the group comprising but not limited to phosphate salts, phosphite salts, calcium phosphate, nitro phosphate, potassium phosphate, mono ammonium phosphate, di-ammonium phosphate, triple super phosphate, phosphoric acid, phosphorous acid, polyphosphoric acid, HEDP (1-hydroxyethane 1,1-diphosphonic acid), AMP (Adenosine monophosphate), amino-tris(methylenephosphonic acid), phosphorous pentoxide, and mixtures thereof.
  • the potassium source is selected from the group comprising but not limited to potassium sulfate, potassium phosphate, potassium oxide, potassium hydroxide, potassium chloride, potassium nitrate, potassium carbonate, potassium bicarbonate, potassium magnesium sulfate, and mixtures thereof.
  • the medium having a high ionic strength comprises an agriculturally active ingredient as a salt.
  • the medium having a high ionic strength comprises a surfactant.
  • the surfactant is a cationic surfactant.
  • the surfactant is an anionic surfactant.
  • the surfactant is a zwitterionic surfactant.
  • the syurfactant is a polymeric or a non-ionic susrfactant.
  • the agriculturally active ingredient as a salt is selected from the group consisting of glufosinate, glyphosate, 2,4 D, dicamba, or other ionic active ingredients.
  • the agriculturally active ingredient is present. In embodiments, the agriculturally active ingredient is in a particulate form. In embodiments, the particulate is a solid particle of the agriculturally active ingredient. In embodiments, the particulate is a capsule suspension of the agriculturally active ingredient. In embodiments, the particulate is a suspension concentrate of the agriculturally active ingredient. In embodiments, the particulate is an emulsifiable concentrate of the agriculturally active ingredient. In embodiments, the particulate is a liquid particle of the agriculturally active ingredient. In embodiments, the particulate is a dispersed gel of the agriculturally active ingredient.
  • the agriculturally active ingredient comprises at least one of a virucide, a pesticide, a bactericide, an algaecide, a nematicide, a fungicide, a larvicide, an insecticide, an herbicide, an herbicide safener, a plant growth regulator, a plant activator, a synergist, an acaricide, a molluscicide, a repellant, a piscicide, an avicide, a rodenticide, an antifeedant, a chemosterilant, and a micronutrient.
  • a virucide a pesticide, a bactericide, an algaecide, a nematicide, a fungicide, a larvicide, an insecticide, an herbicide, an herbicide safener, a plant growth regulator, a plant activator, a synergist, an acaricide, a molluscicide, a repellant, a piscicide, an avicide,
  • the agriculturally active ingredient comprises at least one of a pesticide, a bactericide, an algaecide, a nematicide, a fungicide, a larvicide, an insecticide, an herbicide, an herbicide safener, a plant growth regulator, a plant activator, a synergist, an acaricide, a molluscicide, a repellant, and a micronutrient.
  • the agriculturally active ingredient comprises a virucide.
  • the agriculturally active ingredient comprises a pesticide.
  • the agriculturally active ingredient comprises a bactericide.
  • the agriculturally active ingredient comprises an algaecide.
  • the agriculturally active ingredient comprises a nematicide.
  • the agriculturally active ingredient comprises a fungicide. In embodiments, the agriculturally active ingredient comprises a larvicide. In embodiments, the agriculturally active ingredient comprises an insecticide. In embodiments, the agriculturally active ingredient comprises an herbicide. In embodiments, the agriculturally active ingredient comprises an herbicide safener. In embodiments, the agriculturally active ingredient comprises a plant growth regulator. In embodiments, the agriculturally active ingredient comprises a plant activator. In embodiments, the agriculturally active ingredient comprises a synergist. In embodiments, the agriculturally active ingredient comprises an acaricide. In embodiments, the agriculturally active ingredient comprises a molluscicide. In embodiments, the agriculturally active ingredient comprises a repellant. In embodiments, the agriculturally active ingredient comprises a piscicide.
  • the agriculturally active ingredient comprises an avicide. In embodiments, the agriculturally active ingredient comprises a rodenticide. In embodiments, the agriculturally active ingredient comprises an antifeedant. In embodiments, the agriculturally active ingredient comprises a chemosterilant. In embodiments, the agriculturally active ingredient comprises a micronutrient.
  • the virucide is imanin or ribavirin.
  • the bactericide is bronopol, copper hydroxide, cresol, dichlorophen, dipyrithione, dodicin, fenaminosulf, formaldehyde, hydrargaphen, 8-hydroxyquinoline sulfate, kasugamycin, nitrapyrin, octhilinone, oxolinic acid, oxytetracycline, probenazole, streptomycin, tecloftalam, or thiomersal.
  • the nematicide is an antibiotic nematicide (e.g., abamectin (AVID®), a carbamate nematicide (e.g., benomyl, carbofuran, carbosulfan, cloethocarb, oxime carbamate nematicides, alanycarb, aldicarb, aldoxycarb, or oxamyl), an organophosphorus nematicide (e.g., diamidafos, fenamiphos, fosthietan, phosphamidon, cadusafos, chlorpyrifos, dichlofenthion, dimethoate, ethoprophos, fensulfothion, fosthiazate, heterophos, isamidofos, isazofos, mecarphon, phorate, phosphocarb, terbufos, thionazin, or triazophos), acetopro
  • the algaecide is a bromine compound (e.g., AGRIBROM®), bethoxazin (3-benzo[b]thien-2-yl-5,6-dihydro-1,4,2-oxathiazine 4-oxide), copper sulfate, cybutryne (N-cyclopropyl-N-(1,1-dimethylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine), dichlon (2,3-dichloro-1,4-naphthoquinone), dichlorophen (2,2-methylenebis[4-chlorophenol] or 4,4-dichloro-2,2-methylenediphenol), endothal, fentin (triphenyltin, triphenylstannylium, or fenolovo), hydrated lime (calcium hydroxide), nabam, quinoclamine (2-amino-3-chloro-1,4-
  • the fungicide is an aliphatic nitrogen fungicide (e.g., butylamine, cymoxanil, dodicin, dodine, guazatine, or iminoctadine), an amide fungicide (e.g., carpropamid, chloraniformethan, cyazofamid, cyflufenamid, diclocymet, ethaboxam, fenoxanil, flumetover, furametpyr, penthiopyrad, prochloraz, quinazamid, silthiofam, triforine, benalaxyl (e.g., benalaxyl-M), furalaxyl, metalaxyl (RIDOMIL®, SUBDUE®) (e.g., metalaxyl-M), pefurazoate, benzamide fungicides (e.g., benzohydroxamic acid, fluopicolide, tioxymid,
  • the herbicide is copper sulfate (CuSO 4 ), sulfuric acid (H 2 SO 4 ), sodium chlorate (NaClO 3 ), ammonium sulfamate (NH 4 SO 3 NH 2 ), borax, calcium chlorate, ferrous sulfate, potassium azide, potassium cyanate sodium azide, an aliphatic or halo-aliphatic acid (e.g., dalapon/2,2-dichloro propionic acid (DOWPON®, TAFAPON®) or trichloro acetic acid (TCA)))(VARITOX®), an amide herbicide (e.g., allidochlor/N,N-diallyl-2-chloro acetamide (CDAA))(RANDOX®), beflubutamid, benzadox, benzipram, bromobutide, cafenstrole, 2-chloro-N,N-diethylacetamide (CDEA), chlorthiamid, cy
  • the herbicide safener is benoxacor, cloquintocet, cyometrinil, dichlormid, dicyclonon, dietholate, fenchlorazole, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen, mefenpyr, mephenate, naphthalic anhydride, or oxabetrinil.
  • the plant activator is acibenzolar or probenazole.
  • the plant growth regulator is an antiauxin (e.g., clofibric acid or 2,3,5-tri-iodobenzoic acid), an auxin (e.g., 2-(4-chlorophenoxy)acetic acid (4-CPA), 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), 2,4-DEP, dichlorprop, fenoprop, indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), naphthaleneacetamide, ⁇ -naphthaleneacetic acid, 1-naphthol, naphthoxyacetic acid, potassium naphthenate, sodium naphthenate, or 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)), cytokinins (e.g., 2iP, benzyladenine, kinetin, or zeatin
  • the molluscicide is calcium arsenate, copper acetoarsenite (i.e., Paris green/pigment green 21/C 4 H 6 As 6 Cu 4 O 16 )), copper sulfate, N-bromoacetamide (C 2 H 4 BrNO), metaldehyde, niclosamide, pentachlorophenol, sodium pentachlorophenoxide, phenyl methylcarbamates (e.g., cloethocarb, methiocarb, tazimcarb, thiodicarb, or trimethacarb), organotin fungicides (e.g., triethyl tin oxide, tributyl tin oxide, triphenyl acetate tin, or fentin), or trifenmorph.
  • copper acetoarsenite i.e., Paris green/pigment green 21/C 4 H 6 As 6 Cu 4 O 16
  • N-bromoacetamide C 2
  • the insecticide is a muscacide, an ectoparasiticide/acaricide (e.g., antibiotic acaricides (e.g., nikkomycins, thuringiensin, macrocyclic lactone acaricides, tetranactin, avermectin acaricides (e.g., abamectin)(AVID®), doramectin, eprinomectin, ivermectin, or selamectin), or milbemycin acaricides (e.g., milbemectin, milbemycin oxime, or moxidectin)), azobenzene, benzoximate, benzyl benzoate, bromopropylate, chlorbenside, chlorfenethol, chlorfenson, chlorfensulphide, chlorobenzilate, chloropropylat, dichlorodiphenyltrichloroethane (e.g
  • the repellant is an insect repellant, a bird repellant, or a mammal repellant. In embodiments, the repellant is an insect repellant. In embodiments, the repellant is a bird repellant. In embodiments, the repellant is a mammal repellant.
  • the insect repellant is butopyronoxyl, dibutyl phthalate, N,N-diethyl-m-toluamide (DEET) (AUTAN EXTREME®), dimethyl carbate, dimethyl phthalate, ethohexadiol, hexamide, methoquin-butyl, methylneodecanamide, oxamate, picaridin/KBR 3023, Citronella, Pelargoniumon, or SS-220.
  • the bird repellant is anthraquinone, chloralose, copper oxychloride/R6, diazinon, guazatine, methiocarb, thiram, trimethacarb, or ziram.
  • the mammal repellant is copper naphthenate, trimethacarb, zinc naphthenate, or ziram.
  • the repellant is butopyronoxyl, dibutyl phthalate, N,N-diethyl-m-toluamide (DEET) (AUTAN EXTREME®), dimethyl carbate, dimethyl phthalate, ethohexadiol, hexamide, methoquin-butyl, methylneodecanamide, oxamate, picaridin/KBR 3023, Citronella, Pelargoniumon, SS-220, anthraquinone, chloralose, copper oxychloride/R6, diazinon, guazatine, methiocarb, thiram, trimethacarb, ziram, copper naphthenate, or zinc naphthenate.
  • DEET N,N-diethyl-m-toluamide
  • the avicide is 4-aminopyridine, chloralose, endrin, fenthion, or strychnine.
  • the rodenticide is an indandione rodenticide (e.g., chlorophacinone, diphacinone, or pindone), an organophosphorus rodenticide (e.g., phosacetim), a pyrimidinamine rodenticide (e.g., crimidine), a ⁇ -glutamyl-carboxylase inhibitor (coumarin rodenticide) (e.g., brodifacoum, bromadiolone, coumachlor, coumafuryl, coumatetralyl, difenacoum, difethialone, flocoumafen, or warfarin), an aconitase inhibitor (e.g., fluoracetamide or sodium fluoroacetate), an inorganic rodenticide (e.g., aluminum phosphide (CELPHOS®, DEGESCH FUMIGATION TABLETS®, FUMITOXIN®), arsenous oxide, white or yellow elemental
  • the synergist is piperonyl butoxide, piprotal, propyl isome, sesamex, sesamolin, or sulfoxide.
  • the antifeedant is chlordimeform, fentin, guazatine, or pymetrozine.
  • the chemosterilant is apholate, bisazir, busulfan, diflubenzuron, dimatif, hemel, hempa, metepa, methiotepa, methyl apholate, morzid, penfluron, tepa, thiohempa, thiotepa, tretamine, or uredepa.
  • the agriculturally active ingredient comprises a copper chromated arsenate (CCA), calcium cyanide, a dinitrophenol, a naphthylindane-1,3-dione, nicotine sulfate, nonanol, piperazine, a polybutene, potassium ethylxanthate, sodium cyanide, a thiocyanatodinitrobenzene, a trichlorotrinitrobenzene, or zinc trichlorophenoxide.
  • CCA copper chromated arsenate
  • the agricultural formulation comprises a herbicide selected from the group consisting of glyphosate, glufosinate, thiocarbamates, difenzoquat, pyridazinone, nicotinanilide, fluridone, isoxazolidinone, diphenylether; N-phenylphthalimide, oxadiazole, triazolinone, chloroacetamides, oxyacetamide, phthalamate, N-phenylphthalimide, oxadiazole, triazolinone, acetamides, benzoylisoxazol, isoxazole, pyrazole, pyrazolium, triketone, benzofuran, acetochlor, clethodim, dicamba, flumioxazin, fomesafen, metolachlor, triasulfuron, mesotrione, topramezone, quizalofop, saflufenacil,
  • the agricultural liquid comprises a micronutrient, which comprises an element selected from the group consisting of boron, copper, manganese, iron, chlorine, molybdenum, zinc, and mixtures thereof.
  • the microfibrillated cellulose is present in a concentration from about 0.01% to about 5%. This percentage is a dry weight basis, as defined hereinabove. In embodiments, the microfibrillated cellulose is present in a concentration from about 0.01% to about 4%. In embodiments, the microfibrillated cellulose is present in a concentration from about 0.01% to about 3%. In embodiments, the microfibrillated cellulose is present in a concentration from about 0.01% to about 2%. In embodiments, the microfibrillated cellulose is present in a concentration from about 0.01% to about 1%.
  • compositions comprising: a fertilizer; and a microfibrillated cellulose.
  • the microfibillated cellulose is pre-processed with a wetting agent or a dispersant under shear conditions and then added to the fertilizer or other high ionic strength media.
  • an agricultural concentrate comprising mixing a high ionic strength liquid selected from at least one of a fertilizer, pesticide, fungicide, insecticide, herbicide, growth regulator, safener and micronutrient; and a microfibrillated cellulose.
  • methods comprising mixing a fertilizer with a microfibrillated cellulose to form a mix-ready fertilizer adjuvant.
  • Mat-ready the product is suitable for adding to any agricultural formulation, including those that are sensitive to high ionic concentrations, the presence of multivalent cations, and the like.
  • the microfibrillated cellulose is added to a high ioinic media, including fertilizers, micronutrient media, and other high ionic strength media at a concentration from about 0.01% to about 5%.
  • methods further comprise adding an agriculturally active ingredient to the mix-ready fertilizer adjuvant.
  • Embodiment P1 A concentrate comprising:
  • Embodiment P2 The concentrate of embodiment P1, wherein the agricultural liquid comprises at least one of fertilizer, pesticide, fungicide, insecticide, herbicide, growth regulator, safener, and micronutrient.
  • Embodiment P3 The concentrate of embodiment P1, wherein the agricultural liquid comprises a fertilizer, wherein the fertilizer comprises at least one of a nitrogen source, a phosphorus source, and a potassium source, wherein the nitrogen source, the phosphorus source, and the potassium source are present in amounts to provide a NPK (nitrogen-phosphorus-potassium) value of between 0-60: 0-60: 0-60, with the proviso that at least one of the value of the nitrogen, phosphorus, or the potassium source is not zero.
  • NPK nitrogen-phosphorus-potassium
  • Embodiment P4 The concentrate of embodiment P3, wherein the nitrogen source is selected from ammonia, urea, urea phosphate, thiourea, ammonium sulfate, ammonium nitrate, potassium nitrate, ammonium phosphate, ammonium polyphosphate, ammonium chloride, diammonium phosphate (DAP), urea triazone, amino acids, aromatic nitrogen or heterocyclic nitrogen compounds, hexamethylene tetraamine, melamine, nitrobenzene, and mixtures thereof.
  • the nitrogen source is selected from ammonia, urea, urea phosphate, thiourea, ammonium sulfate, ammonium nitrate, potassium nitrate, ammonium phosphate, ammonium polyphosphate, ammonium chloride, diammonium phosphate (DAP), urea triazone, amino acids, aromatic nitrogen or heterocyclic nitrogen compounds, hexamethylene tetraamine,
  • Embodiment P5. The concentrate of embodiment P3, wherein the phosphorous source is selected from phosphate salts, phosphite salts, calcium phosphate, nitro phosphate, potassium phosphate, mono ammonium phosphate, di-ammonium phosphate, triple super phosphate, phosphoric acid, phosphorous acid, polyphosphoric acid, HEDP (1-hydroxyethane 1,1-diphosphonic acid), AMP (Adenosine monophosphate), amino-tris(methylenephosphonic acid), phosphorous pentoxide, and mixtures thereof.
  • the phosphorous source is selected from phosphate salts, phosphite salts, calcium phosphate, nitro phosphate, potassium phosphate, mono ammonium phosphate, di-ammonium phosphate, triple super phosphate, phosphoric acid, phosphorous acid, polyphosphoric acid, HEDP (1-hydroxyethane 1,1-diphosphonic acid), AMP (Adenosine monophosphate),
  • Embodiment P6 The concentrate of embodiment P3, wherein the potassium source is selected from potassium sulfate, potassium phosphate, potassium oxide, potassium hydroxide, potassium chloride, potassium nitrate, potassium carbonate, potassium bicarbonate, potassium magnesium sulfate, and mixtures thereof.
  • the potassium source is selected from potassium sulfate, potassium phosphate, potassium oxide, potassium hydroxide, potassium chloride, potassium nitrate, potassium carbonate, potassium bicarbonate, potassium magnesium sulfate, and mixtures thereof.
  • Embodiment P7 The concentrate of embodiment P1, wherein the agricultural liquid comprises a herbicide selected from the group consisting of glyphosate, glufosinate, thiocarbamates, difenzoquat, pyridazinone, nicotinanilide, fluridone, isoxazolidinone, diphenylether; N-phenylphthalimide, oxadiazole, triazolinone, chloroacetamides, oxyacetamide, phthalamate, N-phenylphthalimide, oxadiazole, triazolinone, acetamides, benzoylisoxazol, isoxazole, pyrazole, pyrazolium, triketone, topramezone benzofuran, acetochlor, clethodim, dicamba, flumioxazin, fomesafen, metolachlor, triasulfuron, mesotrione, quizalofop
  • Embodiment P8 The concentrate of embodiment P1, wherein the agricultural liquid comprises a micronutrient comprises an element selected from the group consisting of boron, copper, manganese, iron, chlorine, molybdenum, zinc, and mixtures thereof.
  • Embodiment P9 The concentrate of embodiment P1, wherein the microfibrillated cellulose is characterized in which:
  • Embodiment P10 The concentrate of embodiment P9, wherein the number of the bifurcated ends of fibrils/fibril bundles is at least 60 bifurcated ends of fibrils per mm 2 , as measured with an optical light microscopy at a magnification of 40 times and as measured at a solids content of 0.17% of microfibrillated cellulose in water.
  • Embodiment P11 The concentrate of embodiment P9, wherein the ratio of the number of the bifurcated ends of fibrils/fibril bundles of the microfibrillated cellulose relative to the number of such bifurcated ends of fibrils/fibril bundles of a reference microfibrillated cellulose is at least 5.
  • Embodiment P12 The concentrate of embodiment P1, wherein the concentrate is formulated as an emulsifiable concentrate (EC), suspension concentrate (SC), capsule suspension (CS), water-soluble concentrate (SL), an emulsion (EW), a micro-emulsion (ME), an oil-based suspension concentrate (OD), an aqueous suspo-emulsion (SE), or a microencapsulated suspension (CS).
  • EC emulsifiable concentrate
  • SC suspension concentrate
  • CS capsule suspension
  • EW emulsion
  • ME micro-emulsion
  • ME oil-based suspension concentrate
  • SE aqueous suspo-emulsion
  • CS microencapsulated suspension
  • Embodiment P13 A method of making an agricultural concentrate comprising:
  • a high ionic strength liquid selected from at least one of a fertilizer, pesticide, fungicide, insecticide, herbicide, growth regulator, safener and micronutrient; and a microfibrillated cellulose.
  • Embodiment P14 The method of embodiment P13, wherein the agricultural liquid comprises at least one of glyphosate, glufosinate, and a fertilizer comprises at least one of a nitrogen source, a phosphorus source, and a potassium source, wherein the nitrogen source, the phosphorus source, and the potassium source are present in amounts to provide a NPK (nitrogen-phosphorus-potassium) value of between 0-40: 0-50: 0-40, with the proviso that at least one of the value of the nitrogen source, the phosphorus, and the potassium source is not zero.
  • NPK nitrogen-phosphorus-potassium
  • compositions comprising a microfibrillated cellulose, a medium having a high ionic strength, optionally an agriculturally active compound, and optionally a biostimulant, wherein the composition exhibits thixotropy.
  • compositions consisting essentially of a microfibrillated cellulose in a fertilizer.
  • kits comprising compositions consisting essentially of a microfibrillated cellulose in a fertilizer, along with instructions for tank mixing the composition.
  • compositions consisting essentially of a microfibrillated cellulose in a micronutrient medium.
  • kits comprising compositions consisting essentially of a microfibrillated cellulose in a micronutrient medium, along with instructions for tank mixing the composition.
  • compositions consisting essentially of a microfibrillated cellulose in a fertizer and micronutrient medium.
  • kits comprising compositions consisting essentially of a microfibrillated cellulose in a fertilizer and micronutrient medium, along with instructions for tank mixing the composition.
  • compositions consisting essentially of a microfibrillated cellulose in an aqueous medium of glufosinate, glyphosate, 2,4 D, or Dicamba.
  • kits comprising compositions consisting essentially of a microfibrillated cellulose in an aqueous medium of glufosinate, glyphosate, 2,4 D, or Dicamba, along with instructions for tank mixing the composition.
  • the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 5% of saturation level.
  • the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 10% of saturation level.
  • the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 20% of saturation level.
  • the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 50% of saturation level.
  • the high ionic strength of the medium is provided by one or more ions having a concentration at about 100% of saturation level.
  • the high ionic strength of the medium is provided by one or more ions having a concentration above 100% of the saturation level and undissolved material is suspended in the composition.
  • such embodiments include supersaturated solutions of salts with additional undissolved salts forming a suspension.
  • the medium having high ionic strength comprises a fertilizer.
  • the medium having a high ionic strength comprises an agriculturally active compound as a salt.
  • the agriculturally active compound as a salt is selected from the group consisting of glufosinate, glyphosate, and 2,4 D, Dicamba.
  • the agriculturally active ingredient is present.
  • the agriculturally active ingredient is in a particulate form.
  • the particulate is a solid particle of the agriculturally active ingredient.
  • the particulate is a capsule suspension of the agriculturally active ingredient.
  • the particulate is a suspension concentrate of the agriculturally active ingredient.
  • the particulate is an emulsion concentrate of the agriculturally active ingredient.
  • the particulate is a liquid particle of the agriculturally active ingredient.
  • the particulate is a gel of the agriculturally active ingredient.
  • the agriculturally active ingredient comprises at least one of a pesticide, a bactericide, an algaecide, a nematicide, a fungicide, a larvicide, an insecticide, an herbicide, an herbicide safener, a plant growth regulator, a plant activator, a synergist, an acaricide, a molluscicide, a repellant, a biostimulant and a micronutrient.
  • the microfibrillated cellulose is present in a dry matter weight concentration from about 0.01% to about 5%
  • compositions comprising a fertilizer; and microfibrillated cellulose.
  • the microfibrillated cellulose is pre-processed using high shear conditions, optionally using a wetting agent, a dispersant, or combinations thereof.
  • the microfibrillated cellulose is present in a dry weight concentration from about 0.01% to about 5%.
  • methods comprising mixing a fertilizer with a microfibrillated cellulose to form a mix-ready fertilizer adjuvant.
  • the microfibrillated cellulose is present in a concentration from about 0.01% to about 5%.
  • methods may further comprise adding an agriculturally active ingredient to the mix-ready fertilizer adjuvant.
  • Rheological properties were determined with a DHR-3 strain controlled rheometer (TA Instruments), using a Couettegeometry (recessed end rotor with a diameter 14 mm and height 42 mm, cup diameter 15 mm) with a Peltier temperature control system (25° C.).
  • Storage and loss moduli were obtained by amplitude sweep measurements with an angular frequency of 10 rad/s. Following each measurement, the geometry was removed, cleaned with acetone and reattached. Following reattachment, the gap was ‘zeroed’ at 5 normal force.
  • Fertilizers with and NPK value of 3-18-18 from JR Simplot and PCT were assessed for rheological structure before and after addition of 0.3% microfibrillated cellulose (MFC) from Borregaard AS, Kelzan S Plus (XG) from Kelco was also tested with the following results:
  • MFC microfibrillated cellulose
  • XG Kelzan S Plus
  • MFC microfibrillated cellulose
  • MFC microfibrillated cellulose
  • MFC microfibrillated cellulose
  • MFC microfibrillated cellulose
  • MFC microfibrillated cellulose
  • MFC microfibrillated cellulose
  • a 8-24-0 fertilizer was evaluated in the presence of microfibrillated cellulose, and mixed at a 90 to 10 ratio with Folex EC emulsifiable concentrate (EC) to determine the development of structure in the fertilizer solution with the following results:
  • a 6-24-6 fertilizer (Blue Zone Ultra) was evaluated in the presence of microfibrillated cellulose, and mixed at a 90 to 10 ratio with Impact Z suspension concentrate (SC) to determine the development of structure in the fertilizer solution with the following results:
  • Glufosinate ammonium solution containing solubilized topramezone was evaluated in the presence of microfibrillated cellulose (MFC), and mixed at a 90 to 10 ratio with Folex EC emulsifiable concentrate (EC) to determine the development of structure in the fertilizer solution with the following results:
  • Glufosinate ammonium solution containing solubilized topramezone was evaluated in the presence of microfibrillated cellulose (MFC), and mixed at a 90 to 10 ratio with Folex CS capsule suspension (CS) to determine the development of structure in the fertilizer solution with the following results:
  • a Glufosinate ammonium solution containing solubilized topramezone was evaluated in the presence of microfibrillated cellulose (MFC), and mixed at a 90 to 10 ratio with Impact Z suspension concentrate (SC) to determine the development of structure in the fertilizer solution with the following results:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Dentistry (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

Described herein, inter alia, is a concentrate including a high ionic strength liquid and a microfibrillated cellulose, and methods of making the same.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application claims the benefit of provisional application Ser. No. 62/797,124 filed Jan. 25, 2019, provisional application Ser. No. 62/896,762 filed Sep. 6, 2019, and provisional application Ser. No. 62/916,764 filed Oct. 17, 2019, each of which are incorporated herein by reference.
  • BACKGROUND
  • Agricultural formulations with high ionic strength include formulations of glufosinate and glyphosate as well as fertilizers such as 10-34-0 and 6-24-6 starter fertilizers and many other materials that contain ammonium, phosphate, potassium, micronutrients and many other highly ionic salts. Such formulations enhance agricultural yields as well as act as an aid in harvesting and processing of agricultural products, and provide aesthetic value in turf and ornamental applications. While it is desirable to combine these highly ionic formulations with other agrochemical active ingredients in single formulations, the ionic formulations are frequently applied separately due to incompatibility.
  • BRIEF SUMMARY
  • In some aspects, there are provided compositions comprising a microfibrillated cellulose, a medium having a high ionic strength, optionally an agriculturally active compound, and optionally a biostimulant, wherein the composition exhibits thixotropy.
  • In some aspects, there are provided compositions comprising a fertilizer and microfibrillated cellulose.
  • In some aspects, there are provided methods comprising mixing a fertilizer with a microfibrillated cellulose to form a mix-ready fertilizer adjuvant.
  • DETAILED DESCRIPTION
  • High ionic strength media are often applied diluted in water but in many circumstances, especially in the case of fertilizers and micronutrients, they are applied neat. While it can be beneficial to combine agrochemical formulations of various types with high ionic strength media to serve multiple purposes, certain classes of products do not lend themselves to be combined in the context of high ionic strength. In particular, high ionic strength media are known to be difficult to combine with emulsifiable concentrates (EC), suspension concentrates (SC), capsule suspensions (CS), wettable granules (WG), and the like, either as formulated products or as tank mixes. Most formulations of the above referenced type do not disperse well or flocculate in the presence of these highly ionic liquids. The problem is compounded by the presence of certain multivalent cations such as calcium ion or magnesium ion, where even relatively very low concentrations of these ions tend to cause conventional polysaccharide-based rheology modifiers to flocculate. The importance of this problem is evident from the large number of commercially available adjuvants purportedly provided as compatability agents for mixes with fertilizer or highly ionic media.
  • In particular, a rheology modifier compatible with emulsifiable concentrates (EC), capsule suspensions (CS), suspension concentrates (SC) and other type of formulations containing either particulates or oils (as droplets) in high ionic media, such as fertilizer, micronutrients rich in multivalent cations, and other highly ionic media would be very valuable. The value increases substantially if these formulations can be maintained over prolonged periods of time to allow the product to be stored and used at a later time without settling, separation or flocculation. However, the use of conventional rheology modifiers such as xanthan gum, gellan gum, alginate, guar gum or other polysaccharides as agents for creating rheological structure in highly ionic media has had limited success because the polysaccharides tend to flocculate rather than impart the desired rheology. Similarly, the use of clays, alumino silicates and other hydrophilic or hydrophobic silicas has proven to have limited success as they are very formulation specific and work only on limited cases.
  • In accordance with embodiments herein, it was therefore surprising that the use of microfibrillated cellulose (another polysaccharide-base rheology agent) has allowed the formation of rheological structure in these highly ionic systems, including in the presence of low concentrations of multivalent cations, without the drawbacks observed with conventional rheological modifiers. Microfibrillated cellulose allows one to create structure in a large variety of fertilizer solutions, glufosinate and glyphosate ammonium and potassium and other highly ionic media as well as in many ionic salts of organic weak acids used as insecticides, herbicides, fungicides, and the like. Moreover, these systems can be stabilized for weeks or even months.
  • I. Definitions
  • The abbreviations used herein generally comport with their conventional meaning within the chemical and biological arts. Unless specifically indicated otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art. In addition, any method or material similar or equivalent to a method or material described herein can be used in the practice of the embodiments disclosed herein. For purposes of the present embodiments, the following terms are defined.
  • As used herein, the term “about” means a range of values including the specified value, which a person of ordinary skill in the art would consider reasonably similar to the specified value. In embodiments, about means within a standard deviation using measurements generally acceptable in the art. In embodiments, about means a range extending to +/−10% of the specified value. In embodiments, about includes the specified value.
  • “Composition” as used herein is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product, which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • As used herein, “agriculturally active compound,” or “agricultural active,” refers to a compound or substrate which have an effect on agricultural crops, including pesticidal and herbicidal effects, among others.
  • As used herein “ionic strength” refers to a measure of the concentration of ions (i.e., electrically charged species) in a solution. For the purpose of determining whether ionic strength is “high,” an ionic strength is “high” when conventional rheology modifiers such as xanthan and/or guar gums begin to agglomerate and/or otherwise fail to impart sustained thixotropic character to the composition. “High ionic strength” includes ion concentrations obtained from solutions that are about 5% of saturation in any functional ion. For example, NaCl is soluble in water at saturation at about 360 g/L. Accordingly, a “high ionic strength” relative to NaCl would include 18 g NaCl/L in water. With respect to the performance of MFC compared to such agents as xanthan gum, MFC also benefits from compatibility with cationic surfactants and multivalent cations (which are ubiquitous in micronutrients) where xanthan gum fails. In the case of multivalent cations, the concentrations of such ions can be very low, including trace amounts, and still cause agglomeration of xanthan gum or guar gum.
  • As used herein, the term “dry matter weight concentration” refers to the absolute weight percent of MFC, excluding water and other absorbed liquids in the formulation. The term “dry matter,” or “solids content,” in the context of the amount of MFC refers to the amount of MFC if all the solvent (typically water) is removed. Accordingly, providing the amount of MFC as a concentration of “dry matter” provides the amount as “% w/w” relative to the overall weight of the composition in the absence of solvent.
  • As used herein, “thixotropy” refers to a time-dependent shear thinning property of a composition. A composition exhibits thixotropy when it is viscous under static conditions but flows (e.g., becomes thinner, becomes less viscous) over time when subjected to an applied stress, such as being shaken, agitated, pumped, mixed or subjected to shear-stress.
  • As used herein, a “mix-ready fertilizer adjuvant” refers to a product that can be provided in a kit form, along with instructions to mix compositions comprising MFC and fertilizer with an agriculturally active compound or as an additive to mix with a pre-fabricated agricultural formulation. Such formulations include, without limitation, suspension concentrates, suspo-emulsions, capsule suspensions, microemulsions, and the like.
  • “Microfibrillated cellulose,” or “MFC,” (also known as “reticulated” cellulose or as “superfine” cellulose, or as “cellulose nanofibrils”) is a cellulose-based product and is described, for example, in U.S. Pat. Nos. 4,481,077, 4,374,702 and 4,341,807, each of which is incorporated herein by reference. In embodiments, microfibrillated cellulose has reduced length scales (diameter, fibril length) vis-à-vis cellulose fibers, improved water retention and adjustable viscoelastic properties. MFC with improved or tailored properties for specific applications are known, such as those disclosed in WO 2007/091942 and WO 2015/180844, each of which is incorporated herein by reference.
  • Microfibrillated cellulose (MFC) is a product derived from cellulose and is commonly manufactured in a process in which cellulose fibers are opened up and unraveled to form fibrils and microfibrils/nanofibrils by (repeated) passage through a geometrical constraint. For example, MFC may be produced as disclosed in WO 2015/180844 by passing a liquid composition of cellulose through a small diameter orifice in which the composition is subjected to a pressure drop of at least 3000 psig and a high velocity shearing action followed by a high velocity decelerating impact. The passage of the MFC composition through the orifice is repeated until the cellulose composition becomes a substantially stable composition. This process converts the cellulose into microfibrillated cellulose, which has valuable physical properties (gel forming capability, thixotropic properties, high water retention value WRV and the like) without substantial chemical change of the cellulose starting material.
  • Another process for manufacturing microfibrillated cellulose is described in U.S. Pat. No. 5,385,640 which discloses a means for refining fibrous cellulosic material into a dispersed tertiary level of structure and thereby achieving desirable properties attendant with such structural change. The cellulosic fiber produced in this way is referred to as “microdenominated cellulose (MDC)”, a sub-group of microfibrillated cellulose. Such microfibrillated cellulose is obtained by repeatedly passing a liquid composition of fibrous cellulose through a zone of high shear, which is defined by two opposed surfaces, with one of the surfaces rotating relative to the other, under conditions and for a length of time sufficient to render the composition substantially stable and to impart to the composition a water retention that shows consistent increase with repeated passage of the cellulose composition through the zone of high shear. This process increases the viscosity and leads to a gel structure, until no further increase in viscosity is achieved. After such a treatment, homogeneous MFC is obtained and the conversion of cellulose to microcellulose as such is concluded.
  • “Microfibrillated cellulose” (MFC) in accordance with embodiments disclosed herein is to be understood as relating to cellulose fibers that have been subjected to a mechanical treatment resulting in an increase of the specific surface and a reduction of the size of cellulose fibers, in terms of cross-section (diameter) and/or length, wherein said size reduction leads to “fibrils” having a diameter in the nanometer range and a length in the micrometer range.
  • The starting cellulose material to generate MFC does not contain a significant portion of individualized and “separated” cellulose “fibrils.” The cellulose in wood fibres is an aggregation of fibrils. In cellulose (pulp), elementary fibrils are aggregated into microfibrils which are further aggregated into larger fibril bundles and finally into cellulosic fibres. The diameter of wood based fibres is typically in the range 10-50 microns (with the length of these fibres being even greater). When the cellulose fibres are microfibrillated, a heterogeneous mixture of “released” fibrils with cross-sectional dimensions and lengths from nm to microns may result. Fibrils and bundles of fibrils may co-exist in the resulting microfibrillated cellulose.
  • Microfibrillated cellulose contains fibrils in constant interaction with each other in a three-dimensional network. The rheological properties of MFC—high viscosity at rest, shear thinning (thixotropic) behavior, water holding capacity—are a result of the existence of this entangled network.
  • In the MFC products disclosed herein, individual fibrils or fibril bundles can be identified and easily discerned by way of conventional optical microscopy, for example at a magnification of 40× or by use of electron microscopy.
  • As indicated above any type of microfibrillated cellulose (MFC) may be used in connection with embodiments disclosed herein as long as the fiber bundles as present in the original cellulose pulp are sufficiently separated in the process of making MFC so that the average diameter of the resulting fibrils is in the nanometer-range and therefore more surface of the overall cellulose-based material has been created, vis-à-vis the surface available in the original cellulose material. MFC may be prepared according to any of the processes described in the art, including the references specifically cited above.
  • In embodiments, the microfibrillated cellulose may be characterized by the following features: The microfibrillated cellulose forms a gel-like dispersion that has a zero shear viscosity, η0, of at least 2000 PaS, or at least 3000 Pa·s or 4000 Pa·s, or at least 5000 Pa s, or at least 6000 Pa s, or at least 7000 Pa s, as measured in polyethylene glycol (PEG) as the solvent, and at a solids content of the MFC of about 0.65%.
  • The rheological properties, in particular zero shear viscosity can be measured on a rheometer of the type Anton Paar Physica MCR 301. The temperature in all measurements can be performed at 25° C. and a “plate-plate” geometry used (diameter: 50 mm). The rheological measurement can be performed as an oscillating measurement (amplitude sweep) to evaluate the degree of structure in the dispersions and as rotational viscosity measurements, in which case the viscosity may be measured as a function of the shear rate to evaluate the viscosity at rest (shear forces→0), as well as the shear thinning properties of the dispersions. The measurement method is further described in PCT/EP2015/001103 (EP 3 149 241).
  • In embodiments, the microfibrillated cellulose has a water holding capacity (also water retention capacity) of more than 40, or more than 50, or more than 60, or more than 70, or more than 75, or more than 80, or more than 90, further or more than 100. The water holding capacity is given as (mV/mT)−1 where mV is the weight of the wet sediment and mT is the weight of dry MFC analyzed. The water holding capacity describes the ability of the MFC to retain water within the MFC structure and this relates to the accessible surface area. The water holding capacity can be measured by diluting the MFC samples to a 0.3% solids content in water and then centrifuging the sample at 1000 G for 15 minutes. The clear water phase can be separated from the sediment and the sediment weighed. The measurement method is further described in PCT/EP2015/001103 (EP 3 149 241).
  • There is no specific restriction in regard to the origin of the cellulose, and hence of the microfibrillated cellulose employed in embodiments disclosed herein. In principle, the raw material for the cellulose microfibrils may be any cellulosic material, in particular wood, annual plants, cotton, flax, straw, ramie, bagasse (from sugar cane), suitable algae, jute, sugar beet, citrus fruits, waste from the food processing industry or energy crops or cellulose of bacterial origin or from animal origin, e.g., from tunicates.
  • In embodiments, wood-based materials are used as raw materials, either hardwood or softwood or both (in mixtures). In embodiments, softwood is used as a raw material, either one kind or mixtures of different soft wood types.
  • Modified (derivatized) and non-modified (un-derivatized) cellulose/MFC may be employed. In embodiments, the microfibrillated cellulose may be unmodified with respect to its functional groups or may be physically modified or chemically modified, or both.
  • Chemical modification of the surface of the cellulose microfibrils may be achieved by various possible reactions of the surface functional groups of the cellulose microfibrils such as functionalizing of the hydroxyl groups, including by: oxidation, silylation reactions, etherification reactions, condensations with isocyanates, alkoxylation reactions with alkylene oxides, or condensation or substitution reactions with glycidyl derivatives. Chemical modification may take place before or after the defibrillation step.
  • In embodiments, cellulose microfibrils may be modified by a physical route, either by adsorption at the surface, or by spraying, or by coating, or by encapsulation of the microfibril. In embodiments, modified microfibrils can be obtained by physical adsorption of at least one compound. The MFC may also be modified by association with an amphiphilic compound (surfactant).
  • In embodiments, the microfibrillated cellulose is not physically modified.
  • In embodiments, the microfibrillated cellulose is a non-modified microfibrillated cellulose, such as a non-modified microfibrillated cellulose derived from plant material.
  • In embodiments, the microfibrillated cellulose is prepared by a process, which comprises at least the following steps: (a) subjecting a cellulose pulp to at least one mechanical pretreatment step; (b) subjecting the mechanically pretreated cellulose pulp of step (a) to a homogenizing step, which results in fibrils and fibril bundles of reduced length and diameter vis-à-vis the cellulose fibers present in the mechanically pretreated cellulose pulp of step (a), said step (b) resulting in microfibrillated cellulose; wherein the homogenizing step (b) involves compressing the cellulose pulp from step (a) and subjecting the cellulose pulp to a pressure drop.
  • The mechanical pretreatment step can include a refining step. The purpose of the mechanical pretreatment is to “beat” the cellulose pulp in order to increase the accessibility of the cell walls, i.e., to increase the surface area.
  • Prior to the mechanical pretreatment step, or in addition to the mechanical pretreatment step, enzymatic (pre)treatment of the cellulose pulp is an optional additional step that may be desirable for some applications. In regard to enzymatic pretreatment in conjunction with microfibrillating cellulose, the respective content of WO 2007/091942 is incorporated herein by reference. Any other type of pretreatment, including chemical pretreatment may also be performed.
  • In the homogenizing step (b), which is to be conducted after the (mechanical) pretreatment step, the cellulose pulp slurry from step (a) is passed through a homogenizer at least once, or at least two times, as described, for example, in PCT/EP2015/001103, the respective content of which is hereby incorporated by reference.
  • As used herein, the term “suspension concentrate,” or “SC,” refers to a stable suspension of an agricultural active compound in an aqueous continuous phase which is intended for dilution with water before use. SC preparations generally display non-Newtonian flow characteristics.
  • As used herein, the term “suspo-emulsion,” or “SE,” refers to a stable suspension of fine particles combined with an emulsion of fine droplets of an oil in an aqueous continuous phase.
  • As used herein, the term “capsule suspension,” or “CS,” refers to a stable suspension of an encapsulated agricultural active compound in an aqueous continuous phase which is intended for dilution with water before use. The encapsulation is generally provided by polymeric compositions including, without limitation, polyureas, polyurethanes, cyclodextrins, and functionally similar systems.
  • As used herein, the term “oil dispersion,” or “oil-based suspension concentrate,” or “OD,” refers to a stable suspension of an agricultural active ingredient in an organic solvent fluid (and may contain other dissolved compounds) which is intended for dilution with water before use.
  • In general, agricultural active compounds may be provided in “particulate form.” As used herein, “particulate form” may include encapsulated agricultural active compounds (to form capsule suspensions), gels, wettable powders (WP), water dispersible powders for slurry seed treatment (WS), water dispersible granules (WG), emulsifiable granules (EG), and emulsifiable powders (EP). Gels include any organic polymer capable of forming gel particles, such as acrylic acid-based gels, including polyacrylamide, polyammonium acrylate and the like. Examples of such gels are disclosed in U.S. Pat. No. 5,185,024, which is incorpated herein by reference in its entirety. WP particulates are homogenous solids of an agricultural active together with optional fillers and other formulation ingredients in a fine powder form, generally free of visible extraneous matter and hard lumps. WS particulates are homogenenous solids of an agricultural active together with a carrier and other formulation ingredients, typically including a colorant, and in the form of a powder, generally free of visible extraneous matter and hard lumps. WG particulates are homogeneous solids of an agricultural active together with carriers and other formulation ingredients and typically designed to disintegrate in water to form a colloidal suspension. WG are generally free-flowing, mostly dust free, and generally free of visible extraneous matter and hard lumps. EG particulates are granules of an agricultural active which may be dissolved in an organic solvent together with other formulation ingredients. EG particulates are generally homogenous, and generally free of visible extraneous matter and hard lumps. EP particulates are homogenous mixtures of an agricultural active together with other formulation ingredients and supplied free-flowing powder generally free of visible extraneous matter and hard lumps, and which form an emulsion upon dilution with water.
  • As used herein, “biostimulant” refers to compounds or substrates used to stimulate natural processes of plants to enhance and/or benefit crop quality, soil health, nutrient efficiency, nutrient uptake, and reduce abiotic stress. Plant biostimulant products can be used in sustainable agriculture production systems and integrated pest management (IPM) programs, which can reduce the amount of irrigation water used, as well as the amount of agrochemical supplements and fertilizers. Biostimulants include, but are not limited to protein hydrolysates, humic and fulvic acids, seaweed extracts, chitosans, biopolymers, inorganic compounds, and probiotics.
  • II. Compositions
  • In embodiments, there are provided compositions comprising a microfibrillated cellulose, a medium having a high ionic strength, and optionally an agriculturally active ingredient, wherein the composition exhibits shear thinning behavior. Rheological structure is defined by the values measured of certain parameters well understood in the science of rheology. These include the storage modulus (also commonly denoted as G′ in rheology) and the loss modulus (also known as G″ in rheology). Included in the definition of rheological structure is what is known as shear thinning behavior in rheology. This behavior is very useful in practical applications as a fluid will have a high viscosity upon standing on the shelf and be less susceptible to separation and settling but will be easy to handle when shaken or pumped.
  • High ionic strength liquids such as fertilizers, glyphosate salt solutions and glufosinate salt solutions, in the absence of MFC, behave as Newtonian fluids in that they are not shear thinning. Surprisingly the addition of microfibrillated cellulose adds structure and provides compositions that exhibit shear thinning behavior.
  • The ability to create structure in highly ionic liquids allows us to prolong the shelf life of formulations where oils or particulates have been dispersed in these highly ionic liquids. For example, a capsule suspension (CS) can be dispersed in a glufosinate solution and remain suspended for a year thus making the product commercially viable. Another example is when an emulsifiable concentrate is dispersed in a solution of fertilizer and it can remain suspended through the application period which can be one week thus allowing a material which would otherwise immediately separate to be applied and give the farmer an advantage in his ability to plant more efficiently.
  • In embodiments, there are provided compositions comprising a high ionic strength liquid, and a microfibrillated cellulose. In embodiments, there are provided compositions consisting essentially of a high ionic strength liquid, and a microfibrillated cellulose. In embodiments, there are provided compositions comprising a fertilizer, and a microfibrillated cellulose. In embodiments, there are provided compositions consisting essentially of a fertilizer, and a microfibrillated cellulose.
  • In embodiments, the compositions may comprise at least one of fertilizer, pesticide, fungicide, insecticide, herbicide, growth regulator, safener, and micronutrient.
  • In embodiments, composition may comprise a fertilizer, wherein the fertilizer comprises at least one of a nitrogen source, a phosphorus source, and a potassium source, wherein the nitrogen source, the phosphorus source, and the potassium source are present in amounts to provide a NPK (nitrogen-phosphorus-potassium) value of between 0-40: 0-50: 0-40, with the proviso that at least one of the value of the nitrogen source, the phosphorus, and the potassium source is not zero.
  • In embodiments, the nitrogen source is selected from the group consisting of ammonia, urea, urea phosphate, thiourea, ammonium sulfate, ammonium nitrate, potassium nitrate, ammonium phosphate, ammonium polyphosphate, ammonium chloride, diammonium phosphate (DAP), urea triazone, amino acids, aromatic nitrogen or heterocyclic nitrogen compounds, hexamethylene tetraamine, melamine, nitrobenzene, and mixtures thereof.
  • In embodiments, the phosphorous source is selected from the group consisting of phosphate salts, phosphite salts, calcium phosphate, nitro phosphate, potassium phosphate, mono ammonium phosphate, di-ammonium phosphate, triple super phosphate, phosphoric acid, phosphorous acid, polyphosphoric acid, HEDP (1-hydroxyethane 1,1-diphosphonic acid), AMP (Adenosine monophosphate), amino-tris(methylenephosphonic acid), phosphorous pentoxide, and mixtures thereof.
  • In embodiments, the potassium source is selected from the group consisting of potassium sulfate, potassium phosphate, potassium oxide, potassium hydroxide, potassium chloride, potassium nitrate, potassium carbonate, potassium bicarbonate, potassium magnesium sulfate, and mixtures thereof.
  • In embodiments, the compositions may comprise a herbicide selected from the group consisting of glyphosate, glufosinate, thiocarbamates, difenzoquat, pyridazinone, nicotinanilide, fluridone, isoxazolidinone, diphenylether; N-phenylphthalimide, oxadiazole, triazolinone, chloroacetamides, oxyacetamide, phthalamate, N-phenylphthalimide, oxadiazole, triazolinone, acetamides, benzoylisoxazol, isoxazole, pyrazole, pyrazolium, triketone, benzofuran, acetochlor, clethodim, dicamba, flumioxazin, fomesafen, metolachlor, triasulfuron, mesotrione, quizalofop, saflufenacil, sulcotrione, 2,4-dichlorophenoxyacetic, salts thereof, and mixtures thereof.
  • In embodiments, the compositions may comprise a micronutrient comprises an element selected from the group consisting of boron, copper, manganese, iron, chlorine, molybdenum, zinc, and mixtures thereof.
  • In embodiments, the composition is formulated as an emulsifiable concentrate (EC), suspension concentrate (SC), capsule suspension (CS), water-soluble concentrate (SL), an emulsion (EW), a micro-emulsion (ME), an oil-based suspension concentrate (OD), an aqueous suspo-emulsion (SE), or a microencapsulated suspension (CS).
  • In embodiments, the composition is formulated as an emulsifiable concentrate (EC), suspension concentrate (SC), capsule suspension (CS), water-soluble concentrate (SL), an emulsion (EW), a micro-emulsion (ME), an oil-based suspension concentrate (OD), an aqueous suspo-emulsion (SE), or a microencapsulated suspension (CS). In embodiments, the composition is formulated as an emulsifiable concentrate (EC). In embodiments, the composition is formulated as a suspension concentrate (SC). In embodiments, the composition is formulated as a capsule suspension (CS). In embodiments, the composition is formulated as a water-soluble concentrate (SL). In embodiments, the composition is formulated as an emulsion (EW). In embodiments, the composition is formulated as a micro-emulsion (ME). In embodiments, the composition is formulated as an oil-based suspension concentrate (OD). In embodiments, the composition is formulated as an aqueous suspo-emulsion (SE). In embodiments, the composition is formulated as a microencapsulated suspension (CS). In embodiments, the composition is formulated as a water dispersible granule or a wettable powder.
  • In embodiments, the agricultural liquid comprises at least one of glyphosate, glufosinate, and a fertilizer comprises at least one of a nitrogen source, a phosphorus source, and a potassium source, wherein the nitrogen source, the phosphorus source, and the potassium source are present in amounts to provide a NPK (nitrogen-phosphorus-potassium) value of between 0-40: 0-50: 0-40, with the proviso that at least one of the value of the nitrogen source, the phosphorus, and the potassium source is not zero.
  • In an aspect is provided a composition comprising: a microfibrillated cellulose; a medium having a high ionic strength; and optionally an agriculturally active ingredient, wherein the composition exhibits thixotropy.
  • In embodiments, there are provided compositions comprising (a) a microfibrillated cellulose (MFC), (b) a medium resistant to exhibiting thixotropic behavior in the presence of xanthan gum or guar gum, and (c) optionally an agriculturally active ingredient, wherein the composition exhibits thixotropy in the presence of MFC. In embodiments, the medium resistant to exhibiting thixotropic behavior in the presence of xanthan and/or guar gums includes fertilizers, such as fertilizer concentrates, and other agriculturally active ingredients in salt form at high concentrations.
  • In embodiments, any medium that fails to exhibit the benefits of conventional rheology additives such as xanthan gum or guar gum may realize the desired rheology characteristics by use of microfibrillated cellulose instead. In this context, failure means the conventional rheology modifier suffers from agglomeration and/or does not provide sustained/stable thixotropic behavior to the resultant composition for more than 4 hours.
  • In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 5% of saturation level. In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 10% of saturation level. In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 20% of saturation level. In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 50% of saturation level. In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration at about 100% of saturation level.
  • In embodiments, the medium having high ionic strength comprises a fertilizer. In embodiments, the fertilizer comprises at least one of a nitrogen source, a phosphorus source, and a potassium source, wherein the nitrogen source, the phosphorus source, and the potassium source are present in amounts to provide a NPK (nitrogen-phosphorus-potassium) value of between 0-60: 0-60: 0-60, with the proviso that at least one of the values of the nitrogen, phosphorus, or potassium source is not zero.
  • In embodiments, the nitrogen source is selected from the group comprising but not limited to ammonia, urea, urea phosphate, thiourea, ammonium sulfate, ammonium nitrate, potassium nitrate, ammonium phosphate, ammonium polyphosphate, ammonium chloride, diammonium phosphate (DAP), urea triazone, amino acids, aromatic nitrogen or heterocyclic nitrogen compounds, hexamethylene tetraamine, melamine, nitrobenzene, and mixtures thereof.
  • In embodiments, the phosphorous source is selected from the group comprising but not limited to phosphate salts, phosphite salts, calcium phosphate, nitro phosphate, potassium phosphate, mono ammonium phosphate, di-ammonium phosphate, triple super phosphate, phosphoric acid, phosphorous acid, polyphosphoric acid, HEDP (1-hydroxyethane 1,1-diphosphonic acid), AMP (Adenosine monophosphate), amino-tris(methylenephosphonic acid), phosphorous pentoxide, and mixtures thereof.
  • In embodiments, the potassium source is selected from the group comprising but not limited to potassium sulfate, potassium phosphate, potassium oxide, potassium hydroxide, potassium chloride, potassium nitrate, potassium carbonate, potassium bicarbonate, potassium magnesium sulfate, and mixtures thereof.
  • In embodiments, the medium having a high ionic strength comprises an agriculturally active ingredient as a salt.
  • In embodiments, the medium having a high ionic strength comprises a surfactant. In embodiments, the surfactant is a cationic surfactant. In embodiments, the surfactant is an anionic surfactant. In embodiments, the surfactant is a zwitterionic surfactant. In embodiments the syurfactant is a polymeric or a non-ionic susrfactant.
  • In embodiments, the agriculturally active ingredient as a salt is selected from the group consisting of glufosinate, glyphosate, 2,4 D, dicamba, or other ionic active ingredients.
  • In embodiments, the agriculturally active ingredient is present. In embodiments, the agriculturally active ingredient is in a particulate form. In embodiments, the particulate is a solid particle of the agriculturally active ingredient. In embodiments, the particulate is a capsule suspension of the agriculturally active ingredient. In embodiments, the particulate is a suspension concentrate of the agriculturally active ingredient. In embodiments, the particulate is an emulsifiable concentrate of the agriculturally active ingredient. In embodiments, the particulate is a liquid particle of the agriculturally active ingredient. In embodiments, the particulate is a dispersed gel of the agriculturally active ingredient.
  • In embodiments, the agriculturally active ingredient comprises at least one of a virucide, a pesticide, a bactericide, an algaecide, a nematicide, a fungicide, a larvicide, an insecticide, an herbicide, an herbicide safener, a plant growth regulator, a plant activator, a synergist, an acaricide, a molluscicide, a repellant, a piscicide, an avicide, a rodenticide, an antifeedant, a chemosterilant, and a micronutrient. In embodiments, the agriculturally active ingredient comprises at least one of a pesticide, a bactericide, an algaecide, a nematicide, a fungicide, a larvicide, an insecticide, an herbicide, an herbicide safener, a plant growth regulator, a plant activator, a synergist, an acaricide, a molluscicide, a repellant, and a micronutrient. In embodiments, the agriculturally active ingredient comprises a virucide. In embodiments, the agriculturally active ingredient comprises a pesticide. In embodiments, the agriculturally active ingredient comprises a bactericide. In embodiments, the agriculturally active ingredient comprises an algaecide. In embodiments, the agriculturally active ingredient comprises a nematicide. In embodiments, the agriculturally active ingredient comprises a fungicide. In embodiments, the agriculturally active ingredient comprises a larvicide. In embodiments, the agriculturally active ingredient comprises an insecticide. In embodiments, the agriculturally active ingredient comprises an herbicide. In embodiments, the agriculturally active ingredient comprises an herbicide safener. In embodiments, the agriculturally active ingredient comprises a plant growth regulator. In embodiments, the agriculturally active ingredient comprises a plant activator. In embodiments, the agriculturally active ingredient comprises a synergist. In embodiments, the agriculturally active ingredient comprises an acaricide. In embodiments, the agriculturally active ingredient comprises a molluscicide. In embodiments, the agriculturally active ingredient comprises a repellant. In embodiments, the agriculturally active ingredient comprises a piscicide. In embodiments, the agriculturally active ingredient comprises an avicide. In embodiments, the agriculturally active ingredient comprises a rodenticide. In embodiments, the agriculturally active ingredient comprises an antifeedant. In embodiments, the agriculturally active ingredient comprises a chemosterilant. In embodiments, the agriculturally active ingredient comprises a micronutrient.
  • In embodiments, the virucide is imanin or ribavirin.
  • In embodiments, the bactericide is bronopol, copper hydroxide, cresol, dichlorophen, dipyrithione, dodicin, fenaminosulf, formaldehyde, hydrargaphen, 8-hydroxyquinoline sulfate, kasugamycin, nitrapyrin, octhilinone, oxolinic acid, oxytetracycline, probenazole, streptomycin, tecloftalam, or thiomersal.
  • In embodiments, the nematicide is an antibiotic nematicide (e.g., abamectin (AVID®), a carbamate nematicide (e.g., benomyl, carbofuran, carbosulfan, cloethocarb, oxime carbamate nematicides, alanycarb, aldicarb, aldoxycarb, or oxamyl), an organophosphorus nematicide (e.g., diamidafos, fenamiphos, fosthietan, phosphamidon, cadusafos, chlorpyrifos, dichlofenthion, dimethoate, ethoprophos, fensulfothion, fosthiazate, heterophos, isamidofos, isazofos, mecarphon, phorate, phosphocarb, terbufos, thionazin, or triazophos), acetoprole, benclothiaz, chloropicrin, dazomet, 1,2-dibromo-3-chloropropane (DBCP), dichlorophenolindophenol (DCIP), 1,2-dichloropropane, 1,3-dichloropropene, furfural, iodomethane, metam, methyl bromide, methyl isothiocyanate, or xylenols.
  • In embodiments, the algaecide is a bromine compound (e.g., AGRIBROM®), bethoxazin (3-benzo[b]thien-2-yl-5,6-dihydro-1,4,2-oxathiazine 4-oxide), copper sulfate, cybutryne (N-cyclopropyl-N-(1,1-dimethylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine), dichlon (2,3-dichloro-1,4-naphthoquinone), dichlorophen (2,2-methylenebis[4-chlorophenol] or 4,4-dichloro-2,2-methylenediphenol), endothal, fentin (triphenyltin, triphenylstannylium, or fenolovo), hydrated lime (calcium hydroxide), nabam, quinoclamine (2-amino-3-chloro-1,4-naphthoquinone or ACN), quinonamid (2,2-dichloro-N-(3-chloro-1,4-naphthoquinon-2-yl)acetamide), or simazine.
  • In embodiments, the fungicide is an aliphatic nitrogen fungicide (e.g., butylamine, cymoxanil, dodicin, dodine, guazatine, or iminoctadine), an amide fungicide (e.g., carpropamid, chloraniformethan, cyazofamid, cyflufenamid, diclocymet, ethaboxam, fenoxanil, flumetover, furametpyr, penthiopyrad, prochloraz, quinazamid, silthiofam, triforine, benalaxyl (e.g., benalaxyl-M), furalaxyl, metalaxyl (RIDOMIL®, SUBDUE®) (e.g., metalaxyl-M), pefurazoate, benzamide fungicides (e.g., benzohydroxamic acid, fluopicolide, tioxymid, trichlamide, zarilamid, or zoxamide), furamide fungicides (e.g., cyclafuramid, furmecyclox), phenylsulfamide fungicides (e.g., dichlofluanid, tolylfluanid), valinamide fungicides (e.g., benthiavalicarb, iprovalicarb), anilide fungicides (e.g., benalaxyl (e.g., benalaxyl-M), boscalid, carboxin (VITAVAX®), fenhexamid, metalaxyl (e.g., metalaxyl-M), metsulfovax, ofurace, oxadixyl, oxycarboxin, pyracarbolid, thifluzamide, or tiadinil), benzanilide fungicides (e.g., benodanil, flutolanil, mebenil, mepronil, salicylanilide, or tecloftalam), furanilide fungicides (e.g., fenfuram, furalaxyl, furcarbanil, or methfuroxam), or sulfonanilide fungicides (e.g., flusulfamide)), an antibiotic fungicide (e.g., aureofungin, blasticidin-S, cycloheximide, griseofulvin, kasugamycin, natamycin, polyoxins, polyoxorim, streptomycin, validamycin, or strobilurin fungicides (e.g., azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, or trifloxystrobin)), an aromatic fungicide (e.g., biphenyl, chlorodinitronaphthalene, chloroneb, chlorothalonil (BRAVO®, DACONIL 2787®, EXOTHERM®, TERMIL®), cresol, dicloran, chlorobenzoles (e.g., hexachlorobenzene (HCB), pentachloronitrobenzene (PCNB)))(TERRACLOR®)), pentachlorophenol (penta) (PCP))(DUROTOX®), quintozene, sodium pentachlorophenoxide, tecnazene, or tribromophenol), a benzimidazole fungicide (e.g., benomyl, carbendazim, chlorfenazole, cypendazole, debacarb, fuberidazole, mecarbinzid, rabenzazole, or thiabendazole), a benzimidazole precursor fungicide (e.g., furophanate, thiophanate, or thiophanate-methyl), a benzothioazole fungicide (e.g., bentaluron, chlobenthiazone, or (benzothiazol-2-ylthio)methyl thiocyanate (TCMTB)), a bridged diphenyl fungicide (e.g., bithionol, dichlorophen, or diphenylamine), a carbamate fungicide (e.g., benthiavalicarb, furophanate, iprovalicarb, propamocarb, thiophanate, thiophanate-methyl (CLEARY 3336®, EASOUT®), benomyl, carbendazim, cypendazole, debacarb, mecarbinzid, or diethofencarb), a conazole fungicide (e.g., climbazole, clotrimazole, imazalil, oxpoconazole, prochloraz, triflumizole, azaconazole, bromuconazole, cyproconazole, diclobutrazol, difenoconazole, diniconazole (e.g., diniconazole-M), epoxiconazole, etaconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, furconazole (e.g., furconazole-cis), hexaconazole, imibenconazole, ipconazole, metconazole, myclobutanil, penconazole, propiconazole, prothioconazole, quinconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triticonazole, or uniconazole (e.g., uniconazole-P)), a copper fungicide (e.g., Bordeaux mixture (i.e., copper sulfate/copper(II) tetraoxosulfate/cupric sulfate (CuSO4) (1-2%)+calcium carbonate (CaCO3) or hydroxide with or without stailizing agents (CuSO4.3Cu(OH)2.3CaSO4)), Burgundy mixture (i.e., disodium carbonate+copper sulfate in water), Cheshunt mixture (i.e., copper(II) tetraoxosulfate and diammonium carbonate), copper acetate, copper carbonate (basic), copper hydroxide, copper naphthenate, copper oleate, copper oxychloride, copper sulfate, copper sulfate (basic), copper zinc chromate, cufraneb, cuprobam, cuprous oxide, mancopper, or oxine copper), a dicarboximide fungicide (e.g., famoxadone, fluoroimide, chlozolinate, dichlozoline, iprodione, isovaledione, myclozolin, procymidone, vinclozolin, captafol (DIFOLATAN®), captan (CAPTAN®), ditalimfos, folpet (FOLPAN®, PHALTAN®, THIOPHAL®), or thiochlorfenphim), a dinitrophenol fungicide/nitroderivative (e.g., binapacryl, dinobuton, dinocap (e.g., dinocap-4 or dinocap-6), dinocton, dinopenton, dinosulfon, dinoterbon, dinitro-ortho-cresol (DNOC), p-nonyl-dinitrophenol, or dinitrophenyl-nonyl-butyrate), a dithiocarbamate fungicide (e.g., dimethyldithiocarbamates (e.g., ferbam or ziram), ethylenebisdithiocarbamates (EBDC) (e.g., mancozeb)(DITHANE®), maneb (MB)/manganese ethylene-bis-dithiocarbamate (Mn-EBDC), zineb, nabam/disodium ethylenebis(dithiocarbamate)/disodium 1,2-ethanediylbis(carbamodithioate)), or thiram (THIRAM®, TULISAN®)), propylenebisdithiocarbamates (e.g., propineb), azithiram, carbamorph, cufraneb, cuprobam, disulfiram, metam, tecoram, cyclic dithiocarbamate fungicides (e.g., dazomet, etem, or milneb), or polymeric dithiocarbamate fungicides (e.g., mancopper, metiram, polycarbamate, or propylenebisdithiocarbamates (e.g., propineb))), an imidazole fungicide (e.g., cyazofamid, fenamidone, fenapanil, glyodin, iprodione (CHIPCO26019®, ROVRAL®), isovaledione, pefurazoate, or triazoxide), an inorganic fungicide (e.g., potassium azide, potassium thiocyanate, sodium azide, sulfur fungicides (e.g., sulfur powder (SULPHUR-92%°, wettable sulphur, or lime Sulphur), mercury fungicides (e.g., mercuric chloride, mercuric oxide, mercurous chloride, agrosan GN, ceresan, semesan, perrugen, (3-ethoxypropyl)mercury bromide, ethylmercury acetate, ethylmercury bromide, ethylmercury chloride, ethylmercury 2,3-dihydroxypropyl mercaptide, ethylmercury phosphate, ethylmercury sulfate, N-(ethylmercury)-p-toluenesulphonanilide, hydrargaphen, 2-methoxyethylmercury chloride, methylmercury benzoate, methylmercury dicyandiamide, methylmercury pentachlorophenoxide, 8-phenylmercurioxyquinoline, phenylmercuriurea, phenylmercury acetate, phenylmercury chloride, phenylmercury derivative of pyrocatechol, phenylmercury nitrat, phenylmercury salicylate, thiomersal, or tolylmercury acetate), a morpholine fungicide (e.g., aldimorph, benzamorf, carbamorph, dimethomorph, dodemorph, fenpropimorph, flumorph, or tridemorph), an organophosphorus fungicide (e.g., ampropylfos, ditalimfos, edifenphos, fosetyl, hexylthiofos, iprobenfos, phosdiphen, pyrazophos, tolclofos-methyl, triamiphos, or tri-o-tolyl phosphate/tri-ortho cresyl phosphate (TOCP)), an organotin fungicide (e.g., decafentin, fentin, or tributyltin oxide), an oxathiin fungicide (e.g., carboxin or oxycarboxin), an oxazole fungicide (e.g., chlozolinate, dichlozoline, drazoxolon, famoxadone, hymexazol, metazoxolon, myclozolin, oxadixyl, or vinclozolin), a polysulfide fungicide (e.g., barium polysulfide, calcium polysulfide, potassium polysulfide, or sodium polysulfide), a pyrazole fungicide (e.g., furametpyr or penthiopyrad), a pyridine fungicide (e.g., boscalid, buthiobate, dipyrithione, fluazinam, fluopicolide, pyridinitril, pyrifenox, pyroxychlor, or pyroxyfur), a pyrimidine fungicide (e.g., bupirimate, cyprodinil, diflumetorim, dimethirimol, ethirimol, fenarimol, ferimzone, mepanipyrim, nuarimol, pyrimethanil, or triarimol), a pyrrole fungicide (e.g., fenpiclonil, fludioxonil, or fluoroimide), a quinoline fungicide (e.g., ethoxyquin or halacrinate), an 8-hydroxyquinoline sulfate (e.g., quinacetol or quinoxyfen), a quinone fungicide (e.g., benquinox, chloranil, dichlone, or dithianon), a quinolone, a quinoxaline fungicide (e.g., chinomethionat, chlorquinox, or thioquinox), a thiazole fungicide (e.g., ethaboxam, etridiazole)(TRUBAN®), metsulfovax, octhilinone, thiabendazole, thiadifluor, or thifluzamide), a thiocarbamate fungicide (e.g., methasulfocarb or prothiocarb), a thiophene fungicide (e.g., ethaboxam or silthiofam), a triazine fungicide (e.g., anilazine, triazole fungicides, bitertanol, fluotrimazole, or triazbutil), a urea fungicide (e.g., bentaluron, pencycuron, or quinazamid), a systemic fungicide (e.g., oxathin derivatives (e.g., plantvax or vitavax), demosan, or bavistin), acibenzolar, acypetacs, allyl alcohol, benzalkonium chloride, benzamacril, bethoxazin, carvone, chloropicrin, 1,2-dibromo-3-chloropropane (DBCP), dehydroacetic acid, diclomezine, diethyl pyrocarbonate, fenaminosulf (LESAN®), fenitropan, fenpropidin, formaldehyde, furfural, hexachlorobutadiene, iodomethane, isoprothiolane, methyl bromide, methyl isothiocyanate, metrafenone, nitrostyrene, nitrothal-isopropyl, OCH, 2-phenylphenol, phthalide, piperalin, probenazole, proquinazid, pyroquilon, sodium orthophenylphenoxide, spiroxamine, sultropen, thicyofen, tricyclazole, zinc naphthenate, malachite green, or efosite-A1) (ALIETTE®).
  • In embodiments, the herbicide is copper sulfate (CuSO4), sulfuric acid (H2SO4), sodium chlorate (NaClO3), ammonium sulfamate (NH4SO3NH2), borax, calcium chlorate, ferrous sulfate, potassium azide, potassium cyanate sodium azide, an aliphatic or halo-aliphatic acid (e.g., dalapon/2,2-dichloro propionic acid (DOWPON®, TAFAPON®) or trichloro acetic acid (TCA)))(VARITOX®), an amide herbicide (e.g., allidochlor/N,N-diallyl-2-chloro acetamide (CDAA))(RANDOX®), beflubutamid, benzadox, benzipram, bromobutide, cafenstrole, 2-chloro-N,N-diethylacetamide (CDEA), chlorthiamid, cyprazole, dimethenamid (e.g., dimethenamid-P), diphenamid, epronaz, etnipromid, fentrazamide, flupoxam, fomesafen, halosafen, isocarbamid, isoxaben, napropamide, naptalam/N-1-naphthyohthalamic acid (ALANAP®), penoxsulam, pethoxamid, propyzamide, quinonamid, tebutam, or anilide herbicides (e.g., chloranocryl, cisanilide, clomeprop, cypromid, diflufenican, etobenzanid, fenasulam, flufenacet, flufenican, mefenacet, mefluidide, metamifop, monalide, naproanilide, pentanochlor, picolinafen, propanil/3,4-dichloro propionanilide (STAM F-34®, ROGUE®), benzoylprop, flamprop (e.g., flamprop-M), acetochlor, alachlor/2-chloro-2,6-diethyl-N-(methoxymethyl)-acetanilide (LASSO®), butachlor/N-(butoxymethyl)-2-chloro-2′, c′ ethyl acetanilide (MACHETE®), butenachlor, delachlor, diethatyl, dimethachlor, metazachlor, metolachlor (e.g., S-metolachlor), pretilachlor, propachlor/2-chloro-N-isopropyl acetanilide (RAMROD®), propisochlor, prynachlor, terbuchlor, thenylchlor, xylachlor, benzofluor, cloransulam, diclosulam, florasulam, flumetsulam, metosulam, perfluidone, profluazol, or pronamide/3,5-dichloro (N-1,1-dimethyl-2-propynyl) benzamide (KERB®))), an acryldehyde (e.g., acrolein/2-propanol or acryl aldihide (AQALIN®)), an aromatic acid herbicide (e.g., benzoic acid herbicides (e.g., chloramben, dicamba, 2,3,6-trichlorobenzoic acid (2,3,6-TBA), or tricamba), pyrimidinyloxybenzoic acid herbicides (e.g., bispyribac or pyriminobac), pyrimidinylthiobenzoic acid herbicides (e.g., pyrithiobac), phthalic acid herbicides (e.g., chlorthal), picolinic acid herbicides (e.g., aminopyralid, clopyralid, or picloram), or quinolinecarboxylic acid herbicides (e.g., quinclorac or quinmerac)), an aniline or nitro-phenol (e.g., dinitamine/2,6-dinitro-3,amino-4-tri-fluoromethyl-N,N-diethyl-aniline (COBEX®), nitralin/4-(methyl-sulphonyl)-2,6-dinitro-N,N-dipropyniline (PLANAVIN®), penexalin/N-(ethyl propyl)-3,4-dimethyl-2,6-dinitrobenzamine (STOMP®), trifluralin/2,6-dinitro-N,N-dipropyl-4-trifluron methylaniline (TREFLAN®), fluchlorlin/N-propyl-N-(2′chloroethyl)-2,6-dintro-trifluroin-ethyl-aniline (BASALIN®), 2-methyl-4,6-dinitrophenol/dinitroorthocresol (DNOC)(SINOX®), dinoseb/4,6-dinitro-2-5-butyl phenol (DOW-WEED KILLER®), pentachlorophenol, nitrofen/2,4-dinitro-4-trifluoro-methyl-diphenyl-ether (TOK E-25®)), an arsenical herbicide (e.g., cacodylic acid, CMA, hexaflurate, MAMA, potassium arsenite, sodium arsenite, disodium methyl arsenate (DSMA) (ANSER 184®), methane arsenic acid (MAA) (ANSAR®), monosodium methyl arsenate (MSMA) (ANSER-529®), calcium arsenate or orthoarsenate/tricalcium arsenate or orthoarsenate (CaHAsO4), lead arsenate (PbHAsO4), or dimethylarsonate), antibiotic herbicides (e.g., bilanafos), benzoic and phenyl acetic acid (e.g., chloramben/3-amino-2,5-dichlorobenzoic acid (AMIBEN, VEGIBEN®), dicamba/2-methoxy-3,6-dichlorobenzoic acid (Banvel-D®), fenac/2,3,6-trichlorophenyl acetic acid (FENAC®), or oxyfluorfen/2-chloro-1-(3-ethoxy-4-nitro phenoxy)-4-(trifluormethyl) benzene (GOAL®)), a benzoylcyclohexanedione herbicide (e.g., mesotrione or sulcotrione), a benzofuranyl alkylsulfonate herbicide (e.g., benfuresate or ethofumesate), a carbamate herbicide (e.g., carboxazole, chlorprocarb, dichlormate/3,4-dichlorobenzyl methyl carbamate (SIRMATE®), asulam/methyl sulfanilyl carbamate) (AUSLOX®), fenasulam, karbutilate, or terbucarb), a carbanilate herbicide (e.g., barban/4-chloro-2-butynyl m-chloro-carbanilate (CARBYNE®), 1-methylpropyl C-(3-chlorophenyl)carbamate (BCPC), carbasulam, carbetamide, 2-chloroethyl N-(3-chlorophenyl)carbamate (CEPC), chlorbufam, chlorprophan/isopropyl m-chloro carbanilate (CIPC®), 2-chloro-1-methylethyl N-(3-chlorophenyl)carbamate (CPPC), desmedipham, phenisopham, phenmedipham, phenmedipham-ethyl, propham/isopropyl carbanilate (IPC®), or SWEP/3,4-dichloro carbonilate (METHYL®)), a cyclohexene oxime herbicide (e.g., alloxydim, butroxydim, clethodim, cloproxydim, cycloxydim, profoxydim, sethoxydim, tepraloxydim, or tralkoxydim), a cyclopropylisoxazole herbicide (e.g., isoxachlortole or isoxaflutole), a dicarboximide herbicide (e.g., benzfendizone, cinidon-ethyl, flumezin, flumiclorac, flumioxazin, or flumipropyn), a dinitroaniline herbicide (e.g., benfluralin, butralin, dinitramine, ethalfluralin, fluchloralin, isopropalin, methalpropalin, nitralin, oryzalin, pendimethalin, prodiamine, profluralin, or trifluralin), a dinitrophenol herbicide (e.g., dinofenate, dinoprop, dinosam, dinoseb, dinoterb, 2-methyl-4,6-dinitrophenol/dinitro-o-cresol (DNOC) (SINOX®), etinofen, or medinoterb), a diphenyl ether herbicide (e.g., ethoxyfen or nitrophenyl ether herbicides (e.g., acifluorfen, aclonifen, bifenox, chlomethoxyfen, chlomitrofen, etnipromid, fluorodifen, fluoroglycofen, fluoronitrofen, fomesafen, furyloxyfen, halosafen, lactofen, nitrofen, nitrofluorfen, or oxyfluorfen)), a dithiocarbamate herbicide (e.g., dazomet or metam), a halogenated aliphatic herbicide (e.g., alorac, chloropon, dalapon, flupropanate, hexachloroacetone, iodomethane, methyl bromide, monochloroacetic acid, SMA, or trichloroacetic acid (TCA)), an imidazolinone herbicide (e.g., imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, or imazethapyr), a nitrile herbicide (e.g., bromobonil, bromoxynil/4-hydroxy-3,5-dibromo benzonitrile (BUCTRIL®), chloroxynil, dichlobenil/2,6-dichlorobenzonitrile (CASORON®), iodobonil, ioxynil/4-hydroxy-3-5-di-iodobenzonitrile (ACTRIL®), or pyraclonil), an organophosphorus herbicide (e.g., amiprofos-methyl, anilofos, bensulide, bilanafos, butamifos, 2,4-DEP, 0-(2,4-dichlorophenyl) O-methyl (1-methylethyl)phosphoramidothioate (DMPA), ethyl (P,P)-bis(2-ethylhexyl)phosphinate (EBEP), fosamine, phosphonomethyl amino acids/glycine derivatives (e.g., glyphosate/glycine phosphonate (ROUND-UP®) or N-(phosphonomethyl)-glycine/glufosinate), or piperophos)), a phenoxy herbicide (e.g., bromofenoxim, clomeprop, 2,4-DEB, 2,4-DEP/tris(2-(2-4-dichlorophenoxy) ethyl sulfate (FALONE®), 2,4-DES/sodium,2-(2-4-dichlorophenoxy) ethyl sulfate (SESONE®), difenopenten, disul, erbon, etnipromid, fenteracol, trifopsime, 2-(4-chlorophenoxy)acetic acid (4-CPA), 2,4-dichlorophenoxyacetic acid (2,4-D) (ETHYL ESTER®) 3,4-DA, 2-methyl chlorophenoxyacetic acid (MCPA) (ACME MCPA AMINE 4®, AGRITOX®, AGRO ONE®, BORDERMASTER®, BH, MCPA®, CHIPTOX®, DED-WEED®, EMPAL®, KILSEM®, MEPHANAL®, METHOXONE®, PHOMENE®, RHONOX®, and WEEDAR®), S-ethyl 2-(4-chloro-2-methylphenoxy)ethanethioate (MCPA-thioethyl), or 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) (BRUSH KILLER®) (often contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), Agent Blue, Agent Green, Agent Orange, Agent Pink, Agent Purple, Agent White, dinxol, trinoxol, bromacil, diquat, tandex, monuron, diuron, dalapon, a phenoxybutyric herbicide (e.g., 4-(4-chlorophenoxy)butanoic acid (4-CPB), (2,4-dichloro phenoxy) butyric acid (2,4-DB) (BUTAXONE®), 3,4-DB, 4-chloro-2-methyl-phenoxy) butyric acid (MCPB)(TROPOTOX®), or 4-(2,4,5-trichlorophenoxy)butanoic acid (2,4,5-TB)), an α-phenoxypropionic herbicide (e.g., silvex/2(2,4,5-trichlorophenoxy) propionic acid) (WEEDONE®), 2-(4-chlorophenoxy)propanoic acid (4-CPP), dichlorprop/α-(2,4-dichlorophenoxy) propionic acid)(2,4-DP®) (e.g., dichlorprop-P), 3,4-DP, fenoprop, or mecoprop/(4-chloro-2-methyl phenoxy) propionic acid (MCPP®) (e.g., mecoprop-P)), an aryloxyphenoxypropionic herbicide (e.g., chlorazifop, clodinafop, clofop, cyhalofop, diclofop, fenoxaprop (e.g., fenoxaprop-P), fenthiaprop, fluazifop (e.g., fluazifop-P), haloxyfop (e.g., haloxyfop-P), isoxapyrifop, metamifop, propaquizafop, quizalofop (e.g., quizalofop-P), or trifop), a phenylenediamine herbicide (e.g., dinitramine or prodiamine), a pyrazolyloxyacetophenone herbicide (e.g., benzofenap or pyrazoxyfen), a pyrazolylphenyl herbicide (e.g., fluazolate or pyraflufen), a pyridazine herbicide (e.g., credazine, pyridafol, pyridate, maleic hydrazide (MH)/1,2-dihydro pyridazine-3,6-dione (RETARD®), a pyridazinone herbicide (e.g., brompyrazon, chloridazon, dimidazon, flufenpyr, metflurazon, norflurazon, oxapyrazon, or pydanon), a pyridine herbicide (e.g., aminopyralid, cliodinate, clopyralid, dithiopyr, fluroxypyr, haloxydine, picloram/4-amino-3,5,6-trichloro piclonic acid (TORDON®), picolinafen, pyriclor, thiazopyr, or triclopyr), a pyrimidinediamine herbicide (e.g., iprymidam or tioclorim), a quaternary ammonium herbicide (e.g., cyperquat, diethamquat, difenzoquat, morfamquat, diquat/1,1-ethyl-2,2 bipyridylium dibromide (REGLON®), or paraquat/1,1-dimethyl-4,4-bipyridylium dibromide (GRAMOXONE®)), a triazine herbicide (e.g., dipropetryn, triaziflam, trihydroxytriazine, chlorotriazine herbicides (e.g., atrazine/2-chloro-4-(ethyl amino)-6-(isopropyl amino)-S-triazine (ATRATAF®, RESIDOX®), chlorazine, cyanazine, cyprazine, eglinazine, ipazine, mesoprazine, procyazine, proglinazine, propazine, sebuthylazine, simazine/2-chloro-4,6-bis-(ethyl amino)—S-triazine (GESATOP®), terbuthylazine, or trietazine), methoxytriazine herbicides (e.g., atraton, methometon, prometone/prometon/2,4-bis(isopropyl amino)-6-methoxy-S-triazine) (PRAMITOL®), secbumeton, simeton, or terbumeton), or methylthiotriazine herbicides (e.g., ametryne/ametryn/2-(ethyl amino)-4-(isopropyl-amino)-6-(methyl amino)—S-triazine (GESAPAX®), aziprotryne, cyanatryn, desmetryn, dimethametryn, methoprotryne, prometryn, simetryn, or terbutryn/terbutryne/2,4-bis(isopropyl amino)-6-methoxy-S-triazine (tert-butylamino)-4 (ethyl amino)-6-(methylthio)—S-triazine (IGRAN®)), a triazinone herbicide (e.g., ametridione, amibuzin, hexazinone, isomethiozin, metamitron, or metribuzin/4-amino-6-tert-butyl 3-(methyl-thio)-S-triazine-5(4H) one (SENCOR®)), a triazole herbicide (e.g., amitrole/3-amino-1,2,4-triazole (WEEDAZOL®), cafenstrole, epronaz, or flupoxam), a triazolone herbicide (e.g., amicarbazone, carfentrazone, flucarbazone, propoxycarbazone, or sulfentrazone), a triazolopyrimidine herbicide (e.g., cloransulam, diclosulam, florasulam, flumetsulam, metosulam, penoxsulam, uracil herbicides, butafenacil, flupropacil, isocil, lenacil, bromacil/5-bromo-6-methyl 1 3,5-butyl uracil (HYVAR-X®), or terbacil/5-chloro-6-methyl 3-T butyl uracil (SINBAR®)), aminotriazone, amitrole/3-amino-1,2,4-triazole (WEEDAZOL®), endothal/3,6-endoxohexa hydrophthalic acid/7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid (ENDOTHALL®), oxadiazon/2-butyl-4-(2-,4-dichloro-5-isopropyl-1,3,4-oxadiazolin 5 oneoxyphenol) (RONSTAR®), or pyrazon/5-amino-4-chloro-2-phenyl 3 (2H) pyridazinone (PYRAMIN®)), a thiocarbamate herbicide (e.g., butylate, cycloate, diallate/S-(2,3-dichloro allyl) diisopropylthiocarbamate (AVADEX®), S-ethyldipropylthiocarbamate (EPTC)(EPTAM®), esprocarb, ethiolate, isopolinate, methiobencarb, molinate/S-ethyl hexahydro-I H-azapine 1-carbothionate (ORDAM-72®), orbencarb, pebulate, prosulfocarb, pyributicarb, sulfallate, thiobencarb, tiocarbazil, triallate/S-(2,3,3-trichloro allyl) diisopropylthiocarbamate (AVADEX BW®), vernolate (e.g., benthiocarb/S-(4-chlorobenzyl)-N,N-diethyl thiocarbamate (SATURN®, BOLERO®), 2-chloro allyl diethyl dithiocarbamate (CDEC) (VEGADEX®), bentazon/bentazone/3-isopropyl-2,1,3-benzo-thiadiazon-4-one-2,2-dioxide (BESAGRAN BSA-3510®), or parathion), a thiocarbonate herbicide (e.g., dimexano, thioperoxydicarbonic acid diethyl ester (EXD), or proxan), a substituted urea herbicide (e.g., benzthiazuron, cumyluron, cycluron, dichloralurea, diflufenzopyr, isonoruron, isouron, methabenzthiazuron, monisouron, noruron, methiuron, anisuron, buturon, linuron/3-(3,4-dichloro phenyl)-1,methoxy-1-methyl urea (LOROX®), chlorbromuron/3-(4-bromo-3-chlorophenyl)-1-methoxy-1-methyl urea (BROMEX®), chloreturon, chlorotoluron, chlorosulfuron, chloroxuron/3-(p-(p-chlorophenoxy) phenyl) 1,1-dimethyl urea (TENORON®), diuron/3-(3,4-dichlorophenyl) dimethyl urea (KARMEX®), fenuron TCA/1,1-dimethyl-3-phenyl-ureamon (trichloro acetate)(URAB®), fluometuron/1,1-dimethyl-3-(a,a,a-trifluoro m-tolyl) urea (COTORON®), monuron/3(p-chlorphenyl)-1,1-dimethylurea (TELVAR®), neburon/3,4-dichlorophenyl butyl, methyl urea (BONUS®), daimuron, difenoxuron, dimefuron, fluothiuron, isoproturon, methiuron, methyldymron, metobenzuron, metobromuron, metoxuron, monolinuron, parafluron, phenobenzuron, siduron, tetrafluron, thidiazuron, amidosulfuron, azimsulfuron, bensulfuron, chlorimuron, cyclosulfamuron, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, mesosulfuron, nicosulfuron, oxasulfuron, primisulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, trifloxysulfuron, chlorsulfuron, cinosulfuron, ethametsulfuron, iodosulfuron, metsulfuron, prosulfuron, thifensulfuron, triasulfuron, tribenuron, triflusulfuron, tritosulfuron, buthiuron, ethidimuron, tebuthiuron, thiazafluron, or thidiazuron), C-288-methazole/2-(3,4-dichlorophenyl)-4-methyl-1,2-4-oxadiazolidine-3,5-dione (PROBE®), perfluidone/4-(phenyl sulphonyl)-1,1,1-trifluromethyl sulphono-o-toluidide (DESTUN®), fosmidomycin, acrolein, allyl alcohol, azafenidin, benazolin, benzobicyclon, buthidazole, calcium cyanamide (CaCN2) (DORMEX®), cambendichlor, chlorfenac, chlorfenprop, chlorflurazole, chlorflurenol, cinmethylin, clomazone, 1-chloro-N′-(3,4-dichlorophenyl)-N,N-dimethylmethanimidamide (CPMF), cresol, ortho-dichlorobenzene, dimepiperate, fluoromidine, fluridone, flurochloridone, flurtamone, fluthiacet, indanofan, methyl isothiocyanate, nipyraclofen, OCH, oxadiargyl, oxaziclomefone, pentachlorophenol, pentoxazone, phenylmercury acetate, pinoxaden, prosulfalin, pyrazolynate, pyribenzoxim, pyriftalid, quinoclamine, rhodethanil, sulglycapin, thidiazimin, tridiphane, trimeturon, tripropindan, or tritac.
  • In embodiments, the herbicide safener is benoxacor, cloquintocet, cyometrinil, dichlormid, dicyclonon, dietholate, fenchlorazole, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen, mefenpyr, mephenate, naphthalic anhydride, or oxabetrinil.
  • In embodiments, the plant activator is acibenzolar or probenazole.
  • In embodiments, the plant growth regulator is an antiauxin (e.g., clofibric acid or 2,3,5-tri-iodobenzoic acid), an auxin (e.g., 2-(4-chlorophenoxy)acetic acid (4-CPA), 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), 2,4-DEP, dichlorprop, fenoprop, indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), naphthaleneacetamide, α-naphthaleneacetic acid, 1-naphthol, naphthoxyacetic acid, potassium naphthenate, sodium naphthenate, or 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)), cytokinins (e.g., 2iP, benzyladenine, kinetin, or zeatin), defoliants (e.g., calcium cyanamide, dimethipin, endothal, ethephon, metoxuron, pentachlorophenol, thidiazuron, or tribufos), ethylene inhibitors (e.g., aviglycine or 1-methylcyclopropene), ethylene releasers (e.g., 1-aminocyclopropane-1-carboxylic acid (ACC), etacelasil, ethephon, or glyoxime), gibberellins (e.g., gibberellic acid), growth inhibitors (e.g., abscisic acid, ancymidol, butralin, carbaryl, chlorphonium, chlorpropham, dikegulac, flumetralin, fluoridamid, fosamine, glyphosine, isopyrimol, jasmonic acid, maleic hydrazide, mepiquat chloride, piproctanyl, prohydrojasmon, propham, 2,3,5-tri-iodobenzoic acid, morphactins (e.g., chlorfluren, chlorflurenol, dichlorflurenol, or flurenol), growth retardants (e.g., chlormequat chloride) (CYCOCEL®), daminozide)(B-NINE®), flurprimidol, mefluidide, paclobutrazol, tetcyclacis, or uniconazole), growth stimulators (e.g., brassinolide, forchlorfenuron, or hymexazol), benzofluor, buminafos, carvone, ciobutide, clofencet, cloxyfonac, cyclanilide, cycloheximide, epocholeone, ethychlozate, ethylene, fenridazon, heptopargil, holosulf, inabenfide, karetazan, lead arsenate, methasulfocarb, prohexadione, pydanon, sintofen, triapenthenol, or trinexapac.
  • In embodiments, the molluscicide is calcium arsenate, copper acetoarsenite (i.e., Paris green/pigment green 21/C4H6As6Cu4O16)), copper sulfate, N-bromoacetamide (C2H4BrNO), metaldehyde, niclosamide, pentachlorophenol, sodium pentachlorophenoxide, phenyl methylcarbamates (e.g., cloethocarb, methiocarb, tazimcarb, thiodicarb, or trimethacarb), organotin fungicides (e.g., triethyl tin oxide, tributyl tin oxide, triphenyl acetate tin, or fentin), or trifenmorph.
  • In embodiments, the insecticide is a muscacide, an ectoparasiticide/acaricide (e.g., antibiotic acaricides (e.g., nikkomycins, thuringiensin, macrocyclic lactone acaricides, tetranactin, avermectin acaricides (e.g., abamectin)(AVID®), doramectin, eprinomectin, ivermectin, or selamectin), or milbemycin acaricides (e.g., milbemectin, milbemycin oxime, or moxidectin)), azobenzene, benzoximate, benzyl benzoate, bromopropylate, chlorbenside, chlorfenethol, chlorfenson, chlorfensulphide, chlorobenzilate, chloropropylat, dichlorodiphenyltrichloroethane (DDT), dicofol (KELTHANE®, MITIGAN®), diphenyl sulfone, dofenapyn, fenson, fentrifanil, fluorbenside, proclonol, tetradifon, tetrasul, benomyl) (BENLATE®), carbanolate, carbaryl, carbofuran, methiocarb, metolcarb, promacyl, propoxur, aldicarb, butocarboxim, oxamyl, thiocarboxime, thiofanox, binapacryl, dinex, dinobuton, dinocap (e.g., dinocap-4 or dinocap-6), dinocton, dinopenton, dinosulfon, dinoterbon, 4,6-dinitro-o-cresol (DNOC), amitraz, chlordimeform, chloromebuform, formetanate, formparanate, mite growth regulators (e.g., clofentezine, diflovidazin, dofenapyn, fluazuron, flubenzimine, flucycloxuron, flufenoxuron, or hexythiazox), organochlorine acaricides (e.g., bromocyclen, camphechlor, DDT, dienochlor (Pentac QQUAFLOW®), endosulfan, or lindane), organophosphorus acaricides (e.g., chlorfenvinphos, crotoxyphos, dichlorvos, heptenophos, mevinphos, monocrotophos, naled, schradan, tetraethyl pyrophosphate (TEPP), tetrachlorvinphos, amidithion, amiton, azinphos-ethyl, azinphos-methyl, azothoate, benoxafos, bromophos, bromophos-ethyl, carbophenothion, chlorpyrifos, chlorthiophos, coumaphos, cyanthoate, demeton (e.g., demeton-O or demeton-S), demeton-methyl (e.g., demeton-O-methyl or demeton-S-methyl), demeton-S-methylsulphon, dialifos, diazinon, dimethoate, dioxathion, disulfoton, endothion, ethion, ethoate-methyl, formothion, malathion, mecarbam, methacrifos, omethoate, oxydeprofos, oxydisulfoton, parathion, phenkapton, phorate, phosalone, phosmet, phoxim, pirimiphos-methyl, prothidathion, prothoate, pyrimitate, quinalphos, quintiofos, sophamide, sulfotep, thiometon, triazophos, trifenofos, vamidothion, trichlorfon, isocarbophos, methamidophos, propetamphos, phosphorodiamide acaricides, dimefox, or mipafox), organotin acaricides (e.g., azocyclotin, cyhexatin (DOWCO 213®, PLICTRAN®), or fenbutatin-oxide (TORQUE®, VENDEX®)), dichlofluanid, dialifos, phosmet, acetoprole, fipronil, tebufenpyrad, vaniliprole, pyrethroid acaricides (e.g., acrinathrin, bifenthrin, cyhalothrin, cypermethrin (e.g., alpha-cypermethrin), fenpropathrin, fenvalerate, flucythrinate, flumethrin, fluvalinate (e.g., tau-fluvalinate), permethrin, or halfenprox), pyrimidifen, chlorfenapyr, chinomethionat, thioquinox, propargite, clofentezine, diflovidazin, spirodiclofen, fenothiocarb, chloromethiuron, diafenthiuron, acequinocyl, amidoflumet, arsenous oxide, bifenazate, closantel, crotamiton, disulfiram, etoxazole, fenazaflor, fenazaquin, fenpyroximate, fluacrypyrim, fluenetil, mesulfen, 2-fluoro-N-methyl-N-(1-naphthalenyl)acetamide (MNAF), nifluridide, pyridaben, sulfiram, sulfluramid, sulfur, or triarathene), an antibiotic insecticide (e.g., allosamidin, thuringiensin, macrocyclic lactone insecticides (e.g., spinosad), avermectin insecticides (e.g., abamectin)(AVID®), doramectin, emamectin, eprinomectin, ivermectin, or selamectin), or milbemycin insecticides (e.g., milbemectin, milbemycin oxime, or moxidectin)), an arsenical insecticide/arsenical (e.g., calcium arsenate, copper acetoarsenite, copper arsenate, lead arsenate, potassium arsenite, or sodium arsenite), a carbamate insecticide/carbamate acetylcholinesterase (AChE) inhibitor (e.g., bendiocarb, carbaryl, benzofuranyl methylcarbamate insecticides (e.g., benfuracarb, carbofuran, carbosulfan, decarbofuran, or furathiocarb), dimethylcarbamate insecticides (e.g., dimetan, dimetilan, hyquincarb, or pirimicarb), oxime carbamate insecticides (e.g., alanycarb, aldicarb, aldoxycarb, butocarboxim, butoxycarboxim, methomyl, nitrilacarb, oxamyl) (OXAMYL®), tazimcarb, thiocarboxime, thiodicarb, or thiofanox), phenyl methylcarbamate insecticides (e.g., allyxycarb, aminocarb, bufencarb, butacarb, carbanolate, cloethocarb, dicresyl, dioxacarb, 4-(ethylthio)phenyl N-methylcarbamate (EMPC), ethiofencarb, fenethacarb, fenobucarb, isoprocarb, methiocarb, metolcarb, mexacarbate, promacyl, promecarb, propoxur, trimethacarb, 3,5-dimethylphenyl N-methylcarbamate (XMC), or xylylcarb), a dinitrophenol insecticide (e.g., dinex, dinoprop, dinosam, or 2-methyl-4,6-dinitrophenol/dinitro-o-cresol (DNOC) (SINOX®)), a fluorine insecticide (e.g., fluosilicates (e.g., barium hexafluorosilicate or sodium hexafluorosilicate), cryolite, sodium fluoride, or sulfluramid), a formamidine insecticide (e.g., amitraz, chlordimeform, formetanate, or formparanate), a fumigant insecticide (e.g., acrylonitrile, carbon disulfide, carbon tetrachloride, chloroform, chloropicrin, p-dichlorobenzene1,2-dichloropropane, ethyl formate, ethylene dibromide, ethylene dichloride, ethylene oxide, hydrogen cyanide, iodomethane, methyl bromide, methylchloroform, methylene chloride, naphthalene, phosphine, sulfuryl fluoride, or tetrachloroethane), an inorganic insecticide (e.g., borax, calcium polysulfide, copper oleate, mercurous chloride, potassium thiocyanate, or sodium thiocyanate), an insect growth regulator (e.g., chitin synthesis inhibitors (e.g., bistrifluron, buprofezin, chlorfluazuron, cyromazine, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, penfluron, teflubenzuron, or triflumuron), juvenile hormone mimics (e.g., epofenonane, fenoxycarb, hydroprene, kinoprene (ENSTAR®), methoprene, pyriproxyfen, or triprene), juvenile hormones (e.g., juvenile hormone I, juvenile hormone II, or juvenile hormone III), moulting hormone agonists (e.g., chromafenozide, halofenozide, methoxyfenozide, or tebufenozide), moulting hormones (e.g., ecdysone or ecdysterone), moulting inhibitors (e.g., diofenolan), precocenes (e.g., precocene I, precocene II, or precocene III), or dicyclanil), a nereistoxin analogue insecticide (e.g., bensultap, cartap, thiocyclam, or thiosultap), a nicotinoid insecticide (e.g., flonicamid, clothianidin, dinotefuran, imidacloprid, thiamethoxam, nitenpyram, nithiazine, acetamiprid, imidacloprid, nitenpyram, or thiacloprid), an organochlorine/chlorinated hydrocarbons insecticide (e.g., dichlorodiphenyltrichloroethane (DDT) (e.g., pp-DDT), bromo-DDT, camphechlor, dichlorodiphenyldichloroethane (ethyl-DDD), hexachlorocyclohexane (HCH) (e.g., gamma-HCH or lindane), methoxychlor, pentachlorophenol, dichlorodiphenyldichloroethane (TDE), cyclodiene insecticides (e.g., Aldrin, bromocyclen, chlorbicyclen, chlordane, chlordecone, dieldrin, dilor, endosulfan, endrin, 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-endo-1,4-exo-5,8-dimethanonaphthalene (HEOD), heptachlor, (1R,4S,4aS,5S,8R,8aR)-1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5,8-dimethanonaphthalene (HHDN), isobenzan, isodrin, kelevan, or mirex), voltage-gated Na+ channels inhibitors, or chlorinated cyclodienes GABAA antagonists), an organophosphorus insecticide (e.g., bromfenvinfos, chlorfenvinphos, crotoxyphos, dichlorvos, dicrotophos, dimethylvinphos, fospirate, heptenophos, methocrotophos, mevinphos, monocrotophos, naled, naftalofo, phosphamidon, propaphos, schradan, tetraethyl pyrophosphate (TEPP), tetrachlorvinphos, dioxabenzofos, fosmethilan, phenthoate, acethion, amiton, cadusafos, chlorethoxyfos, chlormephos, demephion (e.g., demephion-O or demephion-S), demeton (e.g., demeton-O or demeton-S), demeton-methyl (e.g., demeton-O-methyl or demeton-S-methyl), demeton-S-methylsulphon, disulfoton, ethion, ethoprophos, S-[(ethylsulfinyl)methyl] O,O-bis(1-methylethyl) phosphorodithioate (IPSP), isothioate, malathion, methacrifos, oxydemeton-methyl) (METASYSTOX®), oxydeprofos, oxydisulfoton, phorate, sulfotep, terbufos, thiometon, amidithion, cyanthoate, dimethoate, ethoate-methyl, formothion, mecarbam, omethoate, prothoate, sophamide, vamidothion, chlorphoxim, phoxim, phoxim-methyl, azamethiphos, coumaphos, coumithoate, dioxathion, endothion, menazon, morphothion, phosalon, pyraclofos, pyridaphenthion, quinothion, dithicrofos, thicrofos, azinphos-ethyl, azinphos-methyl, dialifos, phosmet, isoxathion, zolaprofos, chlorprazophos, pyrazophos, chlorpyrifos, chlorpyrifos-methyl, butathiofos, diazinon, etrimfos, lirimfos, pirimiphos-ethyl, pirimiphos-methyl, primidophos, pyrimitate, tebupirimfos, quinalphos, quinalphos-methyl, athidathion, lythidathion, methidathion, prothidathion, isazofos, triazophos, azothoate, bromophos, bromophos-ethyl, carbophenothion, chlorthiophos, cyanophos, cythioate, dicapthon, dichlofenthion, etaphos, famphur, fenchlorphos, fenitrothion, fensulfothion, fenthion, fenthion-ethyl, heterophos, jodfenphos, mesulfenfos, parathion, parathion-methyl, phenkapton, phosnichlor, profenofos, prothiofos, sulprofos, temephos, trichlormetaphos-3, trifenofos, butonate, trichlorfon, mecarphon, fonofos, trichloronat, cyanofenphos, O-ethyl O-(4-nitrophenyl) phenylphosphonothioate (EPN), leptophos, crufomate, fenamiphos, fosthietan, mephosfolan, phosfolan, pirimetaphos, acephate)(ORTHENE®), isocarbophos, isofenphos, methamidophos, propetamphos, dimefox, mazidox, mipafox, oxadiazine insecticides, or indoxacarb), a phthalimide insecticide (e.g., dialifos, phosmet, or tetramethrin), a pyrazole insecticide (e.g., acetoprole, ethiprole, fipronil, tebufenpyrad, tolfenpyrad, or vaniliprole), a pyrethroid insecticide (e.g., acrinathrin, allethrin (e.g., bioallethrin), barthrin, bifenthrin, bioethanomethrin, cyclethrin, cycloprothrin, cyfluthrin (e.g., beta-cyfluthrin), cyhalothrin (e.g., gamma-cyhalothrin or lambda-cyhalothrin), cypermethrin (e.g., alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, or zeta-cypermethrin), cyphenothrin, deltamethrin, dimefluthrin, dimethrin, empenthrin, fenfluthrin, fenpirithrin, fenpropathrin, fenvalerate (e.g., esfenvalerate), flucythrinate, fluvalinate (e.g., tau-fluvalinate))(MAVRIK®)), furethrin, imiprothrin, metofluthrin, permethrin (e.g., biopermethrin or transpermethrin), phenothrin, prallethrin, profluthrin, pyresmethrin, resmethrin (e.g., bioresmethrin or cismethrin), tefluthrin, terallethrin, tetramethrin, tralomethrin, transfluthrin, etofenprox, flufenprox, halfenprox, protrifenbute, or silafluofe), a pyrimidinamine insecticide (e.g., flufenerim or pyrimidifen), a pyrrole insecticide (e.g., chlorfenapyr), a tetronic acid insecticide (e.g., spiromesifen), a thiourea insecticide (e.g., diafenthiuron, urea insecticides, flucofuron, or sulcofuron), closantel, crotamiton, thioperoxydicarbonic acid diethyl ester (EXD), fenazaflor, fenoxacrim, hydramethylnon, isoprothiolane, malonoben, metoxadiazone, nifluridide, pyridaben, pyridalyl, rafoxanide, triarathene, triazamate, fluosilicate, lethane, thanite, magnesium phosphide (DETIA GAS-EX-B-FORTE®), imidachloprid (ADMIRE®, MARATHON®, RAXIL SECUR®), insecticidal soap (M-PEDE®, SAFER SOAP®), or chinomethionat)(MORESTAN®).
  • In embodiments, the repellant is an insect repellant, a bird repellant, or a mammal repellant. In embodiments, the repellant is an insect repellant. In embodiments, the repellant is a bird repellant. In embodiments, the repellant is a mammal repellant. In embodiments, the insect repellant is butopyronoxyl, dibutyl phthalate, N,N-diethyl-m-toluamide (DEET) (AUTAN EXTREME®), dimethyl carbate, dimethyl phthalate, ethohexadiol, hexamide, methoquin-butyl, methylneodecanamide, oxamate, picaridin/KBR 3023, Citronella, Pelargoniumon, or SS-220. In embodiments, the bird repellant is anthraquinone, chloralose, copper oxychloride/R6, diazinon, guazatine, methiocarb, thiram, trimethacarb, or ziram. In embodiments, the mammal repellant is copper naphthenate, trimethacarb, zinc naphthenate, or ziram.
  • In embodiments, the repellant is butopyronoxyl, dibutyl phthalate, N,N-diethyl-m-toluamide (DEET) (AUTAN EXTREME®), dimethyl carbate, dimethyl phthalate, ethohexadiol, hexamide, methoquin-butyl, methylneodecanamide, oxamate, picaridin/KBR 3023, Citronella, Pelargoniumon, SS-220, anthraquinone, chloralose, copper oxychloride/R6, diazinon, guazatine, methiocarb, thiram, trimethacarb, ziram, copper naphthenate, or zinc naphthenate.
  • In embodiments, the avicide is 4-aminopyridine, chloralose, endrin, fenthion, or strychnine.
  • In embodiments, the rodenticide is an indandione rodenticide (e.g., chlorophacinone, diphacinone, or pindone), an organophosphorus rodenticide (e.g., phosacetim), a pyrimidinamine rodenticide (e.g., crimidine), a γ-glutamyl-carboxylase inhibitor (coumarin rodenticide) (e.g., brodifacoum, bromadiolone, coumachlor, coumafuryl, coumatetralyl, difenacoum, difethialone, flocoumafen, or warfarin), an aconitase inhibitor (e.g., fluoracetamide or sodium fluoroacetate), an inorganic rodenticide (e.g., aluminum phosphide (CELPHOS®, DEGESCH FUMIGATION TABLETS®, FUMITOXIN®), arsenous oxide, white or yellow elemental phosphorus, potassium arsenite, sodium arsenite, or thallium sulfate), a thiourea rodenticide (e.g., α-naphthylthiourea (ANTU) (ANTU®)), a urea rodenticide (e.g., pyrinuron), a fumigant (e.g., calcium cyanide (CaCN2))(CYMAG®), carbon monoxide (CO), carbon dioxide (CO2), petrol chloroform, carbon tetrachloride (CCl4), dichloroethane, ethylene dibromide, dibromochloropropane, methyl bromide, EDTC mixture, gamma-hexachlorocyclohexane (gamma-HCH), HC, lindane, a GABA antagonist (e.g., tetramine (tetramethylene disulfotetramine)), a voltage gated sodium channels inhibitor (e.g., dichlorodiphenyl trichloroethane (DDT)), bromethalin, chloralose, α-chlorohydrin, ergocalciferol, flupropadine, hydrogen cyanide, or norbomide)(RATICATE®).
  • In embodiments, the synergist is piperonyl butoxide, piprotal, propyl isome, sesamex, sesamolin, or sulfoxide.
  • In embodiments, the antifeedant is chlordimeform, fentin, guazatine, or pymetrozine.
  • In embodiments, the chemosterilant is apholate, bisazir, busulfan, diflubenzuron, dimatif, hemel, hempa, metepa, methiotepa, methyl apholate, morzid, penfluron, tepa, thiohempa, thiotepa, tretamine, or uredepa.
  • In embodiments, the agriculturally active ingredient comprises a copper chromated arsenate (CCA), calcium cyanide, a dinitrophenol, a naphthylindane-1,3-dione, nicotine sulfate, nonanol, piperazine, a polybutene, potassium ethylxanthate, sodium cyanide, a thiocyanatodinitrobenzene, a trichlorotrinitrobenzene, or zinc trichlorophenoxide.
  • In embodiments, the agricultural formulation comprises a herbicide selected from the group consisting of glyphosate, glufosinate, thiocarbamates, difenzoquat, pyridazinone, nicotinanilide, fluridone, isoxazolidinone, diphenylether; N-phenylphthalimide, oxadiazole, triazolinone, chloroacetamides, oxyacetamide, phthalamate, N-phenylphthalimide, oxadiazole, triazolinone, acetamides, benzoylisoxazol, isoxazole, pyrazole, pyrazolium, triketone, benzofuran, acetochlor, clethodim, dicamba, flumioxazin, fomesafen, metolachlor, triasulfuron, mesotrione, topramezone, quizalofop, saflufenacil, sulcotrione, 2,4-dichlorophenoxyacetic, salts thereof, and mixtures thereof.
  • In embodiments, the agricultural liquid comprises a micronutrient, which comprises an element selected from the group consisting of boron, copper, manganese, iron, chlorine, molybdenum, zinc, and mixtures thereof.
  • In embodiments, the microfibrillated cellulose is present in a concentration from about 0.01% to about 5%. This percentage is a dry weight basis, as defined hereinabove. In embodiments, the microfibrillated cellulose is present in a concentration from about 0.01% to about 4%. In embodiments, the microfibrillated cellulose is present in a concentration from about 0.01% to about 3%. In embodiments, the microfibrillated cellulose is present in a concentration from about 0.01% to about 2%. In embodiments, the microfibrillated cellulose is present in a concentration from about 0.01% to about 1%.
  • In embodiments, there are provided compositions comprising: a fertilizer; and a microfibrillated cellulose.
  • In embodiments, the microfibillated cellulose is pre-processed with a wetting agent or a dispersant under shear conditions and then added to the fertilizer or other high ionic strength media.
  • Methods of Making
  • In embodiments, there are provided methods of making an agricultural concentrate comprising mixing a high ionic strength liquid selected from at least one of a fertilizer, pesticide, fungicide, insecticide, herbicide, growth regulator, safener and micronutrient; and a microfibrillated cellulose.
  • In embodiments, there are provided methods comprising mixing a fertilizer with a microfibrillated cellulose to form a mix-ready fertilizer adjuvant. “Mix-ready” the product is suitable for adding to any agricultural formulation, including those that are sensitive to high ionic concentrations, the presence of multivalent cations, and the like.
  • In embodiments, the microfibrillated cellulose is added to a high ioinic media, including fertilizers, micronutrient media, and other high ionic strength media at a concentration from about 0.01% to about 5%.
  • In embodiments, methods further comprise adding an agriculturally active ingredient to the mix-ready fertilizer adjuvant.
  • III. Embodiments
  • Embodiment P1. A concentrate comprising:
  • a high ionic strength liquid, and
    a microfibrillated cellulose.
  • Embodiment P2. The concentrate of embodiment P1, wherein the agricultural liquid comprises at least one of fertilizer, pesticide, fungicide, insecticide, herbicide, growth regulator, safener, and micronutrient.
  • Embodiment P3. The concentrate of embodiment P1, wherein the agricultural liquid comprises a fertilizer, wherein the fertilizer comprises at least one of a nitrogen source, a phosphorus source, and a potassium source, wherein the nitrogen source, the phosphorus source, and the potassium source are present in amounts to provide a NPK (nitrogen-phosphorus-potassium) value of between 0-60: 0-60: 0-60, with the proviso that at least one of the value of the nitrogen, phosphorus, or the potassium source is not zero.
  • Embodiment P4. The concentrate of embodiment P3, wherein the nitrogen source is selected from ammonia, urea, urea phosphate, thiourea, ammonium sulfate, ammonium nitrate, potassium nitrate, ammonium phosphate, ammonium polyphosphate, ammonium chloride, diammonium phosphate (DAP), urea triazone, amino acids, aromatic nitrogen or heterocyclic nitrogen compounds, hexamethylene tetraamine, melamine, nitrobenzene, and mixtures thereof.
  • Embodiment P5. The concentrate of embodiment P3, wherein the phosphorous source is selected from phosphate salts, phosphite salts, calcium phosphate, nitro phosphate, potassium phosphate, mono ammonium phosphate, di-ammonium phosphate, triple super phosphate, phosphoric acid, phosphorous acid, polyphosphoric acid, HEDP (1-hydroxyethane 1,1-diphosphonic acid), AMP (Adenosine monophosphate), amino-tris(methylenephosphonic acid), phosphorous pentoxide, and mixtures thereof.
  • Embodiment P6. The concentrate of embodiment P3, wherein the potassium source is selected from potassium sulfate, potassium phosphate, potassium oxide, potassium hydroxide, potassium chloride, potassium nitrate, potassium carbonate, potassium bicarbonate, potassium magnesium sulfate, and mixtures thereof.
  • Embodiment P7. The concentrate of embodiment P1, wherein the agricultural liquid comprises a herbicide selected from the group consisting of glyphosate, glufosinate, thiocarbamates, difenzoquat, pyridazinone, nicotinanilide, fluridone, isoxazolidinone, diphenylether; N-phenylphthalimide, oxadiazole, triazolinone, chloroacetamides, oxyacetamide, phthalamate, N-phenylphthalimide, oxadiazole, triazolinone, acetamides, benzoylisoxazol, isoxazole, pyrazole, pyrazolium, triketone, topramezone benzofuran, acetochlor, clethodim, dicamba, flumioxazin, fomesafen, metolachlor, triasulfuron, mesotrione, quizalofop, saflufenacil, sulcotrione, 2,4-dichlorophenoxyacetic, salts thereof, and mixtures thereof.
  • Embodiment P8. The concentrate of embodiment P1, wherein the agricultural liquid comprises a micronutrient comprises an element selected from the group consisting of boron, copper, manganese, iron, chlorine, molybdenum, zinc, and mixtures thereof.
  • Embodiment P9. The concentrate of embodiment P1, wherein the microfibrillated cellulose is characterized in which:
      • i) the length and the diameter of the cellulose fibrils and fibril bundles are reduced vis-à-vis the respective length and diameter of the cellulose fibers and fiber bundles making up the cellulose that was used as a starting product; and
      • ii) at least a fraction of the fibril bundles and individual fibrils of the microfibrillated cellulose, having reduced length and diameter, has bifurcations on at least one end of the main fibrils into secondary fibrils, wherein said secondary fibrils have a smaller diameter than the non-bifurcated main fibril.
  • Embodiment P10. The concentrate of embodiment P9, wherein the number of the bifurcated ends of fibrils/fibril bundles is at least 60 bifurcated ends of fibrils per mm2, as measured with an optical light microscopy at a magnification of 40 times and as measured at a solids content of 0.17% of microfibrillated cellulose in water.
  • Embodiment P11. The concentrate of embodiment P9, wherein the ratio of the number of the bifurcated ends of fibrils/fibril bundles of the microfibrillated cellulose relative to the number of such bifurcated ends of fibrils/fibril bundles of a reference microfibrillated cellulose is at least 5.
  • Embodiment P12. The concentrate of embodiment P1, wherein the concentrate is formulated as an emulsifiable concentrate (EC), suspension concentrate (SC), capsule suspension (CS), water-soluble concentrate (SL), an emulsion (EW), a micro-emulsion (ME), an oil-based suspension concentrate (OD), an aqueous suspo-emulsion (SE), or a microencapsulated suspension (CS).
  • Embodiment P13. A method of making an agricultural concentrate comprising:
  • mixing a high ionic strength liquid selected from at least one of a fertilizer, pesticide, fungicide, insecticide, herbicide, growth regulator, safener and micronutrient; and
    a microfibrillated cellulose.
  • Embodiment P14. The method of embodiment P13, wherein the agricultural liquid comprises at least one of glyphosate, glufosinate, and a fertilizer comprises at least one of a nitrogen source, a phosphorus source, and a potassium source, wherein the nitrogen source, the phosphorus source, and the potassium source are present in amounts to provide a NPK (nitrogen-phosphorus-potassium) value of between 0-40: 0-50: 0-40, with the proviso that at least one of the value of the nitrogen source, the phosphorus, and the potassium source is not zero.
  • IV. Additional Embodiments
  • In embodiments, there are provided compositions comprising a microfibrillated cellulose, a medium having a high ionic strength, optionally an agriculturally active compound, and optionally a biostimulant, wherein the composition exhibits thixotropy.
  • In embodiments, there provided compositions consisting essentially of a microfibrillated cellulose in a fertilizer.
  • In embodiments, there are provided kits comprising compositions consisting essentially of a microfibrillated cellulose in a fertilizer, along with instructions for tank mixing the composition.
  • In embodiments, there provided compositions consisting essentially of a microfibrillated cellulose in a micronutrient medium.
  • In embodiments, there are provided kits comprising compositions consisting essentially of a microfibrillated cellulose in a micronutrient medium, along with instructions for tank mixing the composition.
  • In embodiments, there provided compositions consisting essentially of a microfibrillated cellulose in a fertizer and micronutrient medium.
  • In embodiments, there are provided kits comprising compositions consisting essentially of a microfibrillated cellulose in a fertilizer and micronutrient medium, along with instructions for tank mixing the composition.
  • In embodiments, there provided compositions consisting essentially of a microfibrillated cellulose in an aqueous medium of glufosinate, glyphosate, 2,4 D, or Dicamba.
  • In embodiments, there are provided kits comprising compositions consisting essentially of a microfibrillated cellulose in an aqueous medium of glufosinate, glyphosate, 2,4 D, or Dicamba, along with instructions for tank mixing the composition.
  • In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 5% of saturation level.
  • In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 10% of saturation level.
  • In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 20% of saturation level.
  • In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 50% of saturation level.
  • In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration at about 100% of saturation level.
  • In embodiments, the high ionic strength of the medium is provided by one or more ions having a concentration above 100% of the saturation level and undissolved material is suspended in the composition. For example, such embodiments, include supersaturated solutions of salts with additional undissolved salts forming a suspension.
  • In embodiments, the medium having high ionic strength comprises a fertilizer.
  • In embodiments, the medium having a high ionic strength comprises an agriculturally active compound as a salt.
  • In embodiments, the agriculturally active compound as a salt is selected from the group consisting of glufosinate, glyphosate, and 2,4 D, Dicamba.
  • In embodiments, the agriculturally active ingredient is present.
  • In embodiments, the agriculturally active ingredient is in a particulate form.
  • In embodiments, the particulate is a solid particle of the agriculturally active ingredient.
  • In embodiments, the particulate is a capsule suspension of the agriculturally active ingredient.
  • In embodiments, the particulate is a suspension concentrate of the agriculturally active ingredient.
  • In embodiments, the particulate is an emulsion concentrate of the agriculturally active ingredient.
  • In embodiments, the particulate is a liquid particle of the agriculturally active ingredient.
  • In embodiments, the particulate is a gel of the agriculturally active ingredient.
  • In embodiments, the agriculturally active ingredient comprises at least one of a pesticide, a bactericide, an algaecide, a nematicide, a fungicide, a larvicide, an insecticide, an herbicide, an herbicide safener, a plant growth regulator, a plant activator, a synergist, an acaricide, a molluscicide, a repellant, a biostimulant and a micronutrient.
  • In embodiments, the microfibrillated cellulose is present in a dry matter weight concentration from about 0.01% to about 5%
  • In embodiments, there are provided compositions comprising a fertilizer; and microfibrillated cellulose.
  • In embodiments, the microfibrillated cellulose is pre-processed using high shear conditions, optionally using a wetting agent, a dispersant, or combinations thereof.
  • In embodiments, the microfibrillated cellulose is present in a dry weight concentration from about 0.01% to about 5%.
  • In embodiments, there provided methods comprising mixing a fertilizer with a microfibrillated cellulose to form a mix-ready fertilizer adjuvant.
  • In embodiments, the microfibrillated cellulose is present in a concentration from about 0.01% to about 5%.
  • In embodiments, methods may further comprise adding an agriculturally active ingredient to the mix-ready fertilizer adjuvant.
  • EXAMPLES
  • The following examples are being submitted to illustrate embodiments of the present disclosure. The Examples are intended to be illustrative only and are not intended to limit the scope of the present disclosure.
  • General Procedures: Rheological properties were determined with a DHR-3 strain controlled rheometer (TA Instruments), using a Couettegeometry (recessed end rotor with a diameter 14 mm and height 42 mm, cup diameter 15 mm) with a Peltier temperature control system (25° C.). Storage and loss moduli (G′ and G″) were obtained by amplitude sweep measurements with an angular frequency of 10 rad/s. Following each measurement, the geometry was removed, cleaned with acetone and reattached. Following reattachment, the gap was ‘zeroed’ at 5 normal force.
  • Example 1
  • Fertilizers with and NPK value of 3-18-18 from JR Simplot and PCT were assessed for rheological structure before and after addition of 0.3% microfibrillated cellulose (MFC) from Borregaard AS, Kelzan S Plus (XG) from Kelco was also tested with the following results:
  • Vis-
    % % cosity Shear
    MFC XG G′ G″ (Pa · s) thinning?
    3-8-18 Simplot 0 0.3 0.003 0.007 0.03 No
    3-8-18 Simplot 0 0 0.002 0.005 0.03 No
    3-8-18 Simplot 0.3 0 37.5 7.1 274 Yes
    3-8-18 PCT 0 0.3 0.005 0.002 0.02 No
    3-8-18 PCT 0.3 0 82.7 15.3 613 Yes
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the fertilizer solution.
  • Example 2
  • Fertilizers with and NPK value of 6-24-6 from three different suppliers were assessed for rheological structure before and after addition of 0.3% microfibrillated cellulose (MFC) from Borregaard AS with the following results:
  • % Viscosity Shear
    MFC G′ G″ (Pa.s) thinning?
    6-24-6 Blue Zone Ultra 0 .04 .03 0.09 No
    6-24-6 Blue Zone Ultra 0.3 71.1 13.1 482 Yes
    6-24-6 Generic 0 0.01 .02 .05 No
    6-24-6 Generic 0.3 39.5 7.5 282 Yes
    6-24-6 PMAX Plus 0 .005 .02 .07 No
    6-24-6 PMAX Plus 0.3 68.5 13.2 493 Yes
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the fertilizer solution.
  • Example 3
  • Fertilizers with and NPK values of 6-20-5 and 7-20-3 from various suppliers were assessed for rheological structure before and after addition of 0.3% microfibrillated cellulose (MFC) from Borregaard AS with the following results:
  • % Viscosity Shear
    MFC G′ G″ (Pa.s) thinning?
    6-20-5 Opti Start Gold 0 0.008 0.08 0.14 No
    6-20-5 Opti Start Gold 0.3 59.3 11.3 424 Yes
    7-20-3 Generic 0 .02 .03 .15 No
    7-20-3 Generic 0.3 37.9 6.9 271 Yes
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the fertilizer solution.
  • Example 4
  • Fertilizers with and NPK values of 7-37-0 and 11-37-0 from various suppliers were assessed for rheological structure before and after addition of 0.3% microfibrillated cellulose (MFC) from Borregaard AS with the following results:
  • % Viscosity Shear
    MFC G′ G″ (Pa.s) thinning?
    7-37-0 Wilbur Ellis 0 .002 .03 .04 No
    7-37-0 Wilbur Ellis 0.3 115 26.7 792 Yes
    11-37-0 Grow Mark 0 .002 .03 .01 No
    11-37-0 Grow Mark 0.3 200 44.3 1486 Yes
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the fertilizer solution.
  • Example 5
  • Fertilizers with and NPK values of 9-18-6 and 9-18-9 from various suppliers were assessed for rheological structure before and after addition of 0.3% microfibrillated cellulose (MFC) from Borregaard AS with the following results:
  • % Viscosity Shear
    MFC G′ G″ (Pa.s) thinning?
    9-18-6 Opti Start 0 .01 .02 .11 No
    Pro + Avail
    9-18-6 Opti Start 0.3 42.6 8.1 302 Yes
    Pro + Avail
    9-18-9 w Zinc PCT 0 .02 .01 .08 No
    9-18-9 w Zinc PCT 0.3 45.6 8.2 336 Yes
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the fertilizer solution.
  • Example 6
  • High Ionic Strength biological fertilizers/adjuvants from various suppliers were assessed for rheological structure before and after addition of 0.3% microfibrillated cellulose (MFC) from Borregaard AS with the following results:
  • % Viscosity Shear
    MFC G′ G″ (Pa.s) thinning?
    Biovate 0 .02 .004 .05 No
    Biovate 0.3 2.6 .63 14.2 Yes
    Bunch of Bugs 0 .004 .009 .02 No
    Bunch of Bugs 0.3 15.0 2.3 115 Yes
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the biological solution.
  • Example 7
  • Fertilizers with and various NPK values from various different suppliers were assessed for rheological structure before and after addition of 0.3% microfibrillated cellulose (MFC) from Borregaard AS with the following results:
  • % Viscosity Shear
    MFC G′ G″ (Pa.s) thinning?
    8-24-0 OPHOS 0 .008 .004 .04 No
    8-24-0 OPHOS 0.3 54.6 9.6 399 Yes
    9-28-1 with avail + Zinc 0 .008 .02 .04 No
    9-28-1 with avail + Zinc 0.3 48.3 9.6 334 Yes
    10-10-5 Liquinox Grow 0 .0003 .01 .07 No
    10-10-5 Liquinox Grow 0.3 5.0 .9 38 Yes
    28-0-0 Coron 0 .03 .03 .04 No
    6-24-6 PMAX Plus 0.3 84.5 16.6 576 Yes
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the fertilizer solution.
  • Example 8
  • A 8-24-0 fertilizer was evaluated in the presence of microfibrillated cellulose, and mixed at a 90 to 10 ratio with Folex EC emulsifiable concentrate (EC) to determine the development of structure in the fertilizer solution with the following results:
  • Vis- Separation
    % cosity Shear after 24
    MFC G′ G″ (Pa · s) thinning? hours
    8-24-0 OPHOS 0 .008 .004 .04 No No
    8-24-0 OPHOS 0.3 54.6 9.6 399 Yes No
    8-24-0 0.3 23.0 4.1 170 Yes No
    OPHOS:Folex
    EC at a 90:10
    ratio
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the fertilizer solution in the presence of an emulsifiable concentrate (EC). This gave us the beneficial effect of no separation of the EC in the fertilizer solution permitting a homogeneous application.
  • Example 9
  • A 6-24-6 fertilizer (PMAX Plus) was evaluated in the presence of microfibrillated cellulose, and mixed at a 90 to 10 ratio with Folex CS capsule suspension (CS) to determine the development of structure in the fertilizer solution with the following results:
  • Vis- Separation
    % cosity Shear after 24
    MFC G′ G″ (Pa · s) thinning? hours
    6-24-6 PMAX 0 0.005 0.02 0.07 No No
    Plus
    6-24-6 PMAX 0.3 68.5 13.2 493 Yes No
    Plus
    6-24-6 PMAX 0.3 17.1 3.8 114 Yes No
    Plus:Folex
    CS at a 90:10
    ratio
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the fertilizer solution in the presence of a capsule suspension (CS). This gave us the beneficial effect of no separation of the Capsule suspension (CS) in the fertilizer solution permitting a homogeneous application.
  • Example 10
  • A 6-24-6 fertilizer (Blue Zone Ultra) was evaluated in the presence of microfibrillated cellulose, and mixed at a 90 to 10 ratio with Impact Z suspension concentrate (SC) to determine the development of structure in the fertilizer solution with the following results:
  • Vis- Separation
    % cosity Shear after 24
    MFC G′ G″ (Pa · s) thinning? hours
    6-24-6 Blue Zone 0 .04 .03 0.09 No No
    Ultra
    6-24-6 Blue Zone 0.3 71.1 13.1 482 Yes No
    Ultra
    6-24-6 Blue Zone 0.3 11.6 2.8 76.5 Yes No
    Ultra:Impact Z
    CS at a 90:10
    ratio
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the fertilizer solution in the presence of a suspension concentrate (SC). This gave us the beneficial effect of no separation of the suspension concentrate (SC) in the fertilizer solution permitting a homogeneous application.
  • Example 11
  • A Glufosinate ammonium solution containing solubilized topramezone was evaluated in the presence of microfibrillated cellulose (MFC), and mixed at a 90 to 10 ratio with Folex EC emulsifiable concentrate (EC) to determine the development of structure in the fertilizer solution with the following results:
  • Vis- Separation
    % cosity Shear after 24
    MFC G′ G″ (Pa · s) thinning? hours
    Topramezone/ 0 0.02 0.09 0.07 No Yes
    Glufosinate
    ammonium
    solution
    with Folex EC
    Topramezone/ 0.3 3.97 1.04 32.2 Yes No
    Glufosinate
    ammonium
    solution
    with Folex EC
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the highly ionic solution of topramezone and glufosinate ammonium in the presence of an emulsifiable concentrate (EC). This gave us the beneficial effect of no separation of the emulsifiable concentrate (EC) in the glufosinate solution permitting a homogeneous application.
  • Example 12
  • A Glufosinate ammonium solution containing solubilized topramezone was evaluated in the presence of microfibrillated cellulose (MFC), and mixed at a 90 to 10 ratio with Folex CS capsule suspension (CS) to determine the development of structure in the fertilizer solution with the following results:
  • Vis- Separation
    % cosity Shear after 24
    MFC G′ G″ (Pa · s) thinning? hours
    Topramezone/ 0 0.04 0.06 0.18 No Yes
    Glufosinate
    ammonium
    solution
    with Folex CS
    Topramezone/ 0.3 6.7 1.6 51.9 Yes No
    Glufosinate
    ammonium
    solution
    with Folex CS
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the highly ionic solution of topramezone and glufosinate ammonium in the presence of a capsule suspension (CS). This gave us the beneficial effect of no separation of the Capsule suspension (CS) in the glufosinate solution permitting a homogeneous application.
  • Example 13
  • A Glufosinate ammonium solution containing solubilized topramezone was evaluated in the presence of microfibrillated cellulose (MFC), and mixed at a 90 to 10 ratio with Impact Z suspension concentrate (SC) to determine the development of structure in the fertilizer solution with the following results:
  • Vis- Separation
    % cosity Shear after 24
    MFC G′ G″ (Pa · s) thinning? hours
    Topramezone/ 0 0.09 0.5 0.65 No Yes
    Glufosinate
    ammonium
    solution
    with Impact Z
    Topramezone/ 0.3 32.2 7.7 196 Yes No
    Glufosinate
    ammonium
    solution
    with Impact Z
  • The presence of MFC in the sample created structure in the form of G′, G″ and shear thinning behavior in the highly ionic solution of topramezone and glufosinate ammonium in the presence of a suspension concentrate (SC). This gave us the beneficial effect of no separation of the suspension concentrate (SC) in the glufosinate solution permitting a homogeneous application.

Claims (26)

What is claimed is:
1. A composition comprising:
a microfibrillated cellulose;
a medium having a high ionic strength;
optionally an agriculturally active compound; and
optionally a biostimulant;
wherein the composition exhibits thixotropy.
2. The composition of claim 1, wherein the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 5% of saturation level.
3. The composition of claim 1, wherein the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 10% of saturation level.
4. The composition of claim 1, wherein the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 20% of saturation level.
5. The composition of claim 1, wherein the high ionic strength of the medium is provided by one or more ions having a concentration of at least about 50% of saturation level.
6. The composition of claim 1, wherein the high ionic strength of the medium is provided by one or more ions having a concentration at about 100% of saturation level.
7. The composition of claim 1, wherein the high ionic strength of the medium is provided by one or more ions having a concentration above 100% of the saturation level and undissolved material is suspended in the composition.
8. The composition of claim 1, wherein the medium having high ionic strength comprises a fertilizer.
9. The composition of claim 1, wherein the medium having a high ionic strength comprises an agriculturally active compound as an ionic salt
10. The composition of claim 9, wherein the agriculturally active compound as a salt is selected from the group comprising of glufosinate, glyphosate, 2,4 D, Dicamba.
11. The composition of claim 1, wherein the agriculturally active ingredient is present.
12. The composition of claim 11, wherein the agriculturally active ingredient is in a particulate form.
13. The composition of claim 12, wherein the particulate is a solid particle of the agriculturally active ingredient.
14. The composition of claim 12, wherein the particulate is a capsule suspension of the agriculturally active ingredient.
15. The composition of claim 12, wherein the particulate is a suspension concentrate of the agriculturally active ingredient.
16. The composition of claim 12, wherein the particulate is an emulsion concentrate of the agriculturally active ingredient.
17. The composition of claim 12, wherein the particulate is a liquid particle of the agriculturally active ingredient.
18. The composition of claim 12, wherein the particulate is a gel of the agriculturally active ingredient.
19. The composition of claim 11, wherein the agriculturally active ingredient comprises at least one of a pesticide, a bactericide, an algaecide, a nematicide, a fungicide, a larvicide, an insecticide, an herbicide, an herbicide safener, a plant growth regulator, a plant activator, a synergist, an acaricide, a molluscicide, a repellant, a biostimulant and a micronutrient.
20. The composition of claim 1, wherein the microfibrillated cellulose is present in a dry matter weight concentration from about 0.01% to about 5%
21. A composition comprising:
a fertilizer; and
microfibrillated cellulose.
22. The composition of claim 21, wherein the microfibrillated cellulose is pre-processed using high shear conditions, optionally using a wetting agent, a dispersant, or combinations thereof.
23. The composition of claim 21, wherein the microfibrillated cellulose is present in a dry matter weight concentration from about 0.01% to about 5%.
24. A method comprising:
mixing a fertilizer with a microfibrillated cellulose to form a mix-ready fertilizer adjuvant.
25. The method of claim 24, wherein the microfibrillated cellulose is present in a concentration from about 0.01% to about 5%.
26. The method of claim 24, further comprising adding an agriculturally active ingredient to the mix-ready fertilizer adjuvant.
US17/727,497 2019-01-25 2022-04-22 Microfibrillated cellulose as rheology modifier in high ionic strength agricultural formulations Abandoned US20230079931A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/727,497 US20230079931A1 (en) 2019-01-25 2022-04-22 Microfibrillated cellulose as rheology modifier in high ionic strength agricultural formulations

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962797124P 2019-01-25 2019-01-25
US201962896762P 2019-09-06 2019-09-06
US201962916764P 2019-10-17 2019-10-17
US16/751,423 US11358905B2 (en) 2019-01-25 2020-01-24 Microfibrillated cellulose as rheology modifier in high ionic strength agricultural formulations
US17/727,497 US20230079931A1 (en) 2019-01-25 2022-04-22 Microfibrillated cellulose as rheology modifier in high ionic strength agricultural formulations

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/751,423 Continuation US11358905B2 (en) 2019-01-25 2020-01-24 Microfibrillated cellulose as rheology modifier in high ionic strength agricultural formulations

Publications (1)

Publication Number Publication Date
US20230079931A1 true US20230079931A1 (en) 2023-03-16

Family

ID=71733067

Family Applications (5)

Application Number Title Priority Date Filing Date
US16/751,410 Active US12378165B2 (en) 2019-01-25 2020-01-24 Pesticide formulation comprising MFC as rheology modifier
US16/751,441 Active 2040-03-12 US12049431B2 (en) 2019-01-25 2020-01-24 Agricultural adjuvant comprising microfibrillated cellulose
US16/751,423 Active US11358905B2 (en) 2019-01-25 2020-01-24 Microfibrillated cellulose as rheology modifier in high ionic strength agricultural formulations
US17/727,497 Abandoned US20230079931A1 (en) 2019-01-25 2022-04-22 Microfibrillated cellulose as rheology modifier in high ionic strength agricultural formulations
US18/750,747 Pending US20250128993A1 (en) 2019-01-25 2024-06-21 Agricultural adjuvant comprising microfibrillated cellulose

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US16/751,410 Active US12378165B2 (en) 2019-01-25 2020-01-24 Pesticide formulation comprising MFC as rheology modifier
US16/751,441 Active 2040-03-12 US12049431B2 (en) 2019-01-25 2020-01-24 Agricultural adjuvant comprising microfibrillated cellulose
US16/751,423 Active US11358905B2 (en) 2019-01-25 2020-01-24 Microfibrillated cellulose as rheology modifier in high ionic strength agricultural formulations

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/750,747 Pending US20250128993A1 (en) 2019-01-25 2024-06-21 Agricultural adjuvant comprising microfibrillated cellulose

Country Status (11)

Country Link
US (5) US12378165B2 (en)
EP (3) EP3914075A4 (en)
JP (4) JP2022518545A (en)
CN (3) CN113811519A (en)
AU (4) AU2020212597A1 (en)
BR (3) BR112021014540A2 (en)
CA (3) CA3127482A1 (en)
CR (3) CR20210406A (en)
EC (3) ECSP21054729A (en)
MX (3) MX2021008906A (en)
WO (3) WO2020154684A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CR20210406A (en) 2019-01-25 2021-12-02 Amvac Hong Kong Ltd AGRICULTURAL ADJUVANT COMPRISING MICROFIBRILLATED CELLULOSE
US11325872B2 (en) * 2019-06-17 2022-05-10 Total Grow LLO Concentrated aqueous suspension of microfibrillated cellulose comprising salts for plant nutrition
US12180126B2 (en) 2019-06-17 2024-12-31 Total Grow Concentrated aqueous suspension of microfibrillated cellulose comprising salts for plant nutrition
DE102019123387A1 (en) * 2019-08-31 2019-10-24 Unifer International GmbH Biostimulants for the treatment of plants and / or plant seeds
NZ801097A (en) * 2021-02-01 2025-11-28 Valent Biosciences Llc 1-amino-1-cyclopropanecarboaylic acid solid compositions
GB2616071A (en) * 2022-02-28 2023-08-30 Swellfix Uk Ltd Materials and compositions for reservoir stimulation treatment
CN116637220A (en) * 2023-06-08 2023-08-25 蔓莎(苏州)工艺制品有限公司 A kind of high stability plant aromatherapy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015180844A1 (en) * 2014-05-30 2015-12-03 Borregaard As Microfibrillated cellulose
CN107318839A (en) * 2016-04-28 2017-11-07 闫合 A kind of bactericide and its application

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB228237A (en) 1923-10-27 1925-01-27 John William Nasmith Automatic feed device for rotary cutting & scoring & the like machines
US4374702A (en) 1979-12-26 1983-02-22 International Telephone And Telegraph Corporation Microfibrillated cellulose
US4341807A (en) 1980-10-31 1982-07-27 International Telephone And Telegraph Corporation Food products containing microfibrillated cellulose
JPS5939789A (en) 1982-08-27 1984-03-05 ダイセル化学工業株式会社 Fertilizer granulation
US4481077A (en) 1983-03-28 1984-11-06 International Telephone And Telegraph Corporation Process for preparing microfibrillated cellulose
YU43949B (en) 1985-11-06 1989-12-31 Francek Pajenk Process for producing universal organo-mineral and bio-stimulated manure
US5185024A (en) 1991-10-24 1993-02-09 Aqua Source Inc. Application of agricultural polyammonium acrylate or polyacrylamide hydrogels
US5388748A (en) 1993-05-13 1995-02-14 Avery Dennison Corp. Electric powered apparatus for dispensing individual plastic fasteners from fastener stock
US5385640A (en) 1993-07-09 1995-01-31 Microcell, Inc. Process for making microdenominated cellulose
US5405953A (en) 1993-08-03 1995-04-11 Biocontrol Incorporated Microfibrillated oxycellulose
CA2130375C (en) * 1993-10-01 2004-08-17 Lynn Sue James Insecticide and insect repellant compositions
CA2319140A1 (en) 1998-02-06 1999-08-12 Monsanto Company Acid-stable and cationic-compatible cellulose compositions and methods of preparation
AU3740499A (en) 1998-04-29 1999-11-16 Henkel Corporation Agricultural adjuvant
MXPA02008773A (en) 2000-03-09 2003-02-12 Hercules Inc Stabilized microfibrillar cellulose.
PL215110B1 (en) 2002-09-20 2013-10-31 Fmc Corp Cosmetic composition containing microcrystalline cellulose
DE10337011A1 (en) 2003-08-12 2005-03-17 Wolff Cellulosics Gmbh & Co. Kg Additives containing cellulose derivatives with gel-like rheological properties, their use in building material systems and a process for cement extrusion using these additives
US20050260240A1 (en) 2004-05-20 2005-11-24 Isp Investments Inc. Rain-fast bioactive compositions
US20070027108A1 (en) * 2005-05-23 2007-02-01 Zhi-Fa Yang Method of producing effective bacterial cellulose-containing formulations
ES2436636T1 (en) 2006-02-08 2014-01-03 Stfi-Packforsk Ab  Microfibrillated cellulose manufacturing process
ES2691549T3 (en) 2006-03-15 2018-11-27 Huntsman Petrochemical Llc Polymeric derivatives with comb structure of polyetheramines useful as agricultural dispersants
EP2069413B1 (en) 2006-10-05 2011-08-03 Basf Se Active ingredient formulations containing comb polymers
AR065986A1 (en) 2007-04-12 2009-07-15 Uniqema Americas Inc AGROCHEMICAL COMPOSITIONS
EP2142293A2 (en) 2007-04-26 2010-01-13 Basf Se Enzymatic method for the production of microcapsules
JP2009067910A (en) 2007-09-14 2009-04-02 Asahi Kasei Chemicals Corp Water-based paint additive and water-based paint composition
US8232229B2 (en) 2007-12-03 2012-07-31 Valent U.S.A., Corporation Seed treatment formulations and methods of use
RU2529165C2 (en) 2009-03-04 2014-09-27 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Microincapsulated insecticidal composition
JP5519222B2 (en) 2009-09-07 2014-06-11 第一工業製薬株式会社 Aqueous pesticide composition
CN102100229A (en) * 2009-12-16 2011-06-22 联合国南通农药剂型开发中心 Pesticide micro-capsule granules and preparation method thereof
FI124406B (en) * 2010-06-02 2014-08-15 Upm Kymmene Corp Method for treating the soil material
ES2361432B9 (en) 2011-03-18 2012-04-24 Biofungitek, Sociedad Limitada PHYTOSANITARY COMPOSITION THAT INCLUDES ESSENTIAL OILS POTENTIATING THE ANTIFUNGICAL ACTIVITY.
MX2014001098A (en) 2011-07-27 2014-09-12 Procter & Gamble Multiphase liquid detergent composition.
EP2551337A1 (en) 2011-07-27 2013-01-30 The Procter & Gamble Company Process for the production of a rheology modifier containing composition
JP5918496B2 (en) 2011-10-07 2016-05-18 花王株式会社 Gel-like body and method for producing the same
MX2014006487A (en) * 2011-11-30 2015-02-12 Dow Agrosciences Llc Stable suspoemulsions comprising a plurality of agriculturally active ingredients.
ES2752451T3 (en) 2011-12-13 2020-04-06 Monsanto Technology Llc Microbes that promote the growth of plants and their uses
DE13706882T1 (en) 2012-04-13 2015-05-07 Cp Kelco U.S., Inc. Highly efficient and convenient form of microfiber cellulose
RU2622331C2 (en) * 2012-06-06 2017-06-14 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи High-effective herbicidal suspension concentrates
MX2015000094A (en) * 2012-07-05 2015-07-06 Ralco Nutrition Inc Agricultural compositions and applications utilizing mineral compounds.
PL3590333T3 (en) 2012-09-04 2022-02-07 Dow Agrosciences Llc Compositions and methods for improving the compatibility of water soluble herbicide salts
JP6234037B2 (en) 2013-02-26 2017-11-22 国立大学法人京都大学 Composition comprising cellulose and dispersant
US10173939B2 (en) * 2013-03-12 2019-01-08 Mid-America Distributing, Llc Food-grade fertilizer for crops
CN110714359B (en) 2013-03-15 2022-04-26 纤维精益技术有限公司 Method for processing microfibrillated cellulose
NO343138B1 (en) 2013-03-20 2018-11-19 Elkem Materials Viscosity-increasing agent for drilling fluids
BR102013009504A2 (en) 2013-04-18 2015-03-17 Oxiteno S A Indústria E Comércio Oil dispersion type agrochemical formulation, use of oil dispersion type agrochemical formulations and process for obtaining oil dispersion type agrochemical formulation
SE1350743A1 (en) 2013-06-18 2014-12-19 Stora Enso Oyj A process for treating a plant with a solution comprising a nanofibrillated polysaccharide
CA2925489C (en) * 2013-09-26 2022-08-23 Hans Henrik Oevreboe A pesticide composition comprising microfibrillated cellulose
NZ717718A (en) * 2014-02-24 2017-06-30 Thomas T Yamashita Fertilizer compositions comprising a cellulose nutrient component and methods for using same
US20160369121A1 (en) 2014-03-27 2016-12-22 Melodea Ltd. Nanocrystaline cellulose as absorbent and encapsulation material
FI126755B (en) 2014-04-28 2017-05-15 Kemira Oyj Procedure for a suspension of microfibrillar cellulose, microfibrillar cellulose and its use
CN104082290B (en) 2014-06-09 2016-03-16 长兴德源环保助剂有限公司 A kind of thickening Synergistic type emulsifier and preparation method thereof
CN104082287B (en) * 2014-07-25 2016-06-22 孙波 A kind of preparation method of cellulose base germicide emulsion
US20170273298A1 (en) 2014-09-25 2017-09-28 Borregaard As Pesticide compositions and use thereof
JP2016069294A (en) * 2014-09-28 2016-05-09 第一工業製薬株式会社 Insect repellent composition and spray insect repellent
JP2016069295A (en) 2014-09-28 2016-05-09 第一工業製薬株式会社 Aqueous pesticide composition
JP2016069293A (en) 2014-09-28 2016-05-09 第一工業製薬株式会社 Insecticide composition and spray type insecticide
UY36478A (en) 2014-12-29 2017-07-31 Fmc Corp MICROBIAL COMPOSITIONS AND METHODS TO USE TO BENEFIT THE GROWTH OF PLANTS AND TREAT PLANT DISEASE
AU2015372558B2 (en) 2014-12-31 2019-01-24 Corteva Agriscience Llc Microencapsulated nitrification inhibitor compositions
MX375975B (en) 2015-06-19 2025-03-07 Basf Se PESTICIDE MICROCAPSULES WITH A COATING MADE OF TETRAMETHYLXYLENE DIISOCYANATE, CYCLOALIPHATIC DIISOCYANATE AND ALIPHATIC DIAMINE.
BR112018001569B1 (en) 2015-08-04 2022-06-07 Rhodia Operations Agricultural adjuvant formulations, their uses and method for preparing a tank mix
EP3178912A1 (en) * 2015-12-10 2017-06-14 The Procter and Gamble Company Process of making a liquid laundry detergent composition
CN108713056B (en) 2016-03-02 2020-12-18 荷兰联合利华有限公司 Detergent composition in the form of a suspension
EP3519549A4 (en) 2016-09-30 2020-06-03 Novaflux, Inc. COMPOSITIONS FOR CLEANING AND DECONTAMINATION
MX388933B (en) 2017-03-17 2025-03-20 Corteva Agriscience Llc Microencapsulated nitrification inhibitor compositions
US11849724B2 (en) 2017-08-17 2023-12-26 Bayer Cropscience Lp Liquid fertilizer-dispersible compositions and methods thereof
FI130214B (en) * 2018-11-30 2023-04-25 Xpyro Oy Method and aqueous composition for preventing wildfire
CR20210406A (en) 2019-01-25 2021-12-02 Amvac Hong Kong Ltd AGRICULTURAL ADJUVANT COMPRISING MICROFIBRILLATED CELLULOSE
US11325872B2 (en) 2019-06-17 2022-05-10 Total Grow LLO Concentrated aqueous suspension of microfibrillated cellulose comprising salts for plant nutrition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015180844A1 (en) * 2014-05-30 2015-12-03 Borregaard As Microfibrillated cellulose
CN107318839A (en) * 2016-04-28 2017-11-07 闫合 A kind of bactericide and its application

Also Published As

Publication number Publication date
JP2024054264A (en) 2024-04-16
US12378165B2 (en) 2025-08-05
US20200260721A1 (en) 2020-08-20
JP2022523685A (en) 2022-04-26
WO2020154685A1 (en) 2020-07-30
ECSP21054729A (en) 2021-08-31
ECSP21054723A (en) 2022-07-29
CA3127482A1 (en) 2020-07-30
BR112021014551A2 (en) 2022-01-04
US20250128993A1 (en) 2025-04-24
CN113811519A (en) 2021-12-17
US20200239375A1 (en) 2020-07-30
CN113727605A (en) 2021-11-30
AU2020211605B2 (en) 2025-01-02
EP3914075A4 (en) 2022-11-16
WO2020154687A1 (en) 2020-07-30
US12049431B2 (en) 2024-07-30
JP2022518290A (en) 2022-03-14
EP3914574A1 (en) 2021-12-01
AU2025202181A1 (en) 2025-04-17
BR112021014544A2 (en) 2021-10-13
BR112021014540A2 (en) 2021-10-13
US11358905B2 (en) 2022-06-14
CA3127481A1 (en) 2020-07-30
JP2022518545A (en) 2022-03-15
CN113811520A (en) 2021-12-17
ECSP21054728A (en) 2021-08-31
AU2020211464A1 (en) 2021-08-05
AU2020211605A1 (en) 2021-08-05
MX2021008904A (en) 2021-08-19
AU2020212597A1 (en) 2021-08-12
CA3127825A1 (en) 2020-07-30
EP3914573A1 (en) 2021-12-01
WO2020154684A1 (en) 2020-07-30
EP3914075A1 (en) 2021-12-01
MX2021008906A (en) 2021-08-24
CR20210406A (en) 2021-12-02
JP7436492B2 (en) 2024-02-21
US20200236926A1 (en) 2020-07-30
MX2021008905A (en) 2021-08-24
EP3914573A4 (en) 2022-10-12
EP3914574A4 (en) 2022-11-16
CR20210405A (en) 2021-11-03
CR20210407A (en) 2021-11-03

Similar Documents

Publication Publication Date Title
US11358905B2 (en) Microfibrillated cellulose as rheology modifier in high ionic strength agricultural formulations
AU2016323961B2 (en) Improved adjuvants for agricultural chemicals
CN100566561C (en) Use of phosphorylated ALCANOLS as dispersant, emulsifier, hydrotrope, wetting agent and compatibilizer in agricultural compositions
EP1765072B1 (en) Use of phosphated alcanols as dispersants, emulsifiers, hydrotropes, wetting agents and compatability agents in agricultural compositions
US20130203595A1 (en) Stable mixtures and related methods
EP2861064A1 (en) Producing solids and related mother liquors

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION