[go: up one dir, main page]

US20220397318A1 - Air Conditioning Apparatus - Google Patents

Air Conditioning Apparatus Download PDF

Info

Publication number
US20220397318A1
US20220397318A1 US17/777,143 US202017777143A US2022397318A1 US 20220397318 A1 US20220397318 A1 US 20220397318A1 US 202017777143 A US202017777143 A US 202017777143A US 2022397318 A1 US2022397318 A1 US 2022397318A1
Authority
US
United States
Prior art keywords
heat exchanger
flow path
air conditioning
conditioning apparatus
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/777,143
Inventor
Masanori Sato
Wahei Shingu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI ELECTRIC CORPORATION reassignment MITSUBISHI ELECTRIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHINGU, Wahei, SATO, MASANORI
Publication of US20220397318A1 publication Critical patent/US20220397318A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Definitions

  • the present disclosure relates to an air conditioning apparatus.
  • CO 2 carbon dioxide
  • R407c common refrigerant
  • a refrigeration cycle apparatus of Japanese Patent Laying-Open No. 2003-194432 operates as follows.
  • a cooling operation mode high-temperature, high-pressure refrigerant discharged from a compressor is cooled in a heat-source-side heat exchanger and is further cooled in an inner heat exchanger.
  • a heating operation mode high-temperature, high-pressure refrigerant discharged from the compressor is cooled in a use-side heat exchanger and is further decompressed in a decompressor, and is then flowed into the inner heat exchanger.
  • the inner heat exchanger In the heating operation mode, the inner heat exchanger is seldom used due to a small difference between the temperature of refrigerant flowing through a low-pressure-side flow path and the temperature of refrigerant flowing through a high-pressure-side flow path.
  • Such a configuration allows the refrigerant to circulate in both of the cooling operation mode and the heating operation mode without a four-way valve newly provided.
  • the refrigerant discharged from the compressor has an extremely high temperature.
  • the discharge temperature of the compressor may rise further to exceed a limit value at which the compressor operates normally.
  • protection control such as lowering the frequency of the compressor, is performed.
  • the operating performance of the air conditioning apparatus decreases.
  • the CO 2 refrigerant is supercritical within the outdoor heat exchanger. Consequently, the operating performance of the air conditioning apparatus decreases more than when the CO 2 refrigerant is used in a two-phase region. To compensate for such a decrease, the heat transfer area of the outdoor heat exchanger needs to be larger than the heat transfer area of an indoor heat exchanger, which causes a problem as described below.
  • the inner heat exchanger is used in the cooling operation mode, an amount of refrigerant required increases, increasing a cost and also increasing a risk in case of CO 2 refrigerant leakage.
  • the heating operation mode no inner heat exchanger is used, and accordingly, the amount of the refrigerant within the indoor heat exchanger increases. This increases a high pressure in the air conditioning apparatus, decreasing the performance of the air conditioning apparatus.
  • An object of the present disclosure is therefore to provide an air conditioning apparatus that has two operation modes and that can achieve high performance even when CO 2 refrigerant is used.
  • An air conditioning apparatus of the present disclosure includes a refrigerant circuit which has a compressor, a flow path switch, a first heat exchange unit, a second heat exchange unit, an inner heat exchanger, a first valve, and a second valve, and in which refrigerant flows.
  • the flow path switch is provided with a first opening, a second opening, a third opening, and a fourth opening.
  • the inner heat exchanger is provided with a first inner flow path and a second inner flow path.
  • a discharge side of the compressor is connected to the first opening of the flow path switch.
  • a first end of the first heat exchange unit is connected to the fourth opening of the flow path switch.
  • a second end of the first heat exchange unit is connected to a first end of the first valve.
  • a second end of the first valve is connected to a first end of the first inner flow path of the inner heat exchanger.
  • a second end of the first inner flow path of the inner heat exchanger is connected to a first end of the second heat exchange unit.
  • a first end of the second inner flow path of the inner heat exchanger is connected to the second opening of the flow path switch.
  • a second end of the second heat exchange unit is connected to a first branching portion.
  • the first branching portion is connected to a first end of the second valve and the third opening of the flow path switch.
  • a second end of the second valve is connected to a second branching portion.
  • the second branching portion is connected to a suction side of the compressor and a second end of the second inner flow path of the inner heat exchanger.
  • the second valve When an operation mode of the air conditioning apparatus is a first mode, the second valve is configured to open, the first opening is connected to the fourth opening, and the second opening is connected to the third opening.
  • the second valve When the operation mode of the air conditioning apparatus is a second mode, the second valve is configured to close, the first opening is connected to the third opening, and the second opening is connected to the fourth opening.
  • the second valve when the operation mode of the air conditioning apparatus is the first mode, the second valve is open, the first opening is connected to the fourth opening, and the second opening is connected to the third opening.
  • the second valve When the operation mode of the air conditioning apparatus is the second mode, the second valve is closed, the first opening is connected to the third opening, and the second opening is connected to the fourth opening.
  • the air conditioning apparatus of the present disclosure has two operation modes and can achieve high performance even when CO 2 refrigerant is used.
  • FIG. 1 shows a configuration of an air conditioning apparatus 1000 of Embodiment 1.
  • FIG. 2 shows a configuration of an air conditioning apparatus 1100 of a reference example.
  • FIG. 3 is a side view of an outdoor unit 200 .
  • FIG. 4 is another side view of outdoor unit 200 .
  • FIG. 5 shows a configuration of an air conditioning apparatus 1001 of Embodiment 2.
  • FIG. 6 shows a configuration of an air conditioning apparatus 1002 of Embodiment 3.
  • FIG. 1 shows a configuration of an air conditioning apparatus 1000 of Embodiment 1.
  • Air conditioning apparatus 1000 includes an outdoor unit 200 and an indoor unit 100 .
  • Outdoor unit 200 includes a compressor 230 , a first heat exchange unit 210 , a flow path switch 240 , a first valve 250 , a second valve 280 , an inner heat exchanger 260 , and an outdoor blower 220 .
  • First heat exchange unit 210 includes a first outdoor heat exchanger 211 and a second outdoor heat exchanger 212 .
  • Indoor unit 100 includes a second heat exchange unit 110 and an indoor blower 120 .
  • Second heat exchange unit 110 includes a first indoor heat exchanger 111 and a second indoor heat exchanger 112 .
  • a refrigerant circuit RC 1 includes compressor 230 , flow path switch 240 , first heat exchange unit 210 , second heat exchange unit 110 , inner heat exchanger 260 , first valve 250 , and second valve 280 .
  • Refrigerant enclosed in refrigerant circuit RC 1 is CO 2 refrigerant.
  • Flow path switch 240 is formed of a four-way valve. Flow path switch 240 is provided with a first opening P 1 , a second opening P 2 , a third opening P 3 , and a fourth opening P 4 . A first flow path, which connects first opening P 1 to third opening P 3 or fourth opening P 4 , and a second flow path, which connects second opening P 2 to fourth opening P 4 or third opening P 3 , are arranged in flow path switch 240 .
  • Inner heat exchanger 260 is provided with a first inner flow path 261 a and a second inner flow path 261 b . Refrigerant flowing through first inner flow path 261 a and refrigerant flowing through second inner flow path 261 b are subjected to heat exchange.
  • First inner flow path 261 a is parallel to second inner flow path 261 b .
  • a first end of first inner flow path 261 a is arranged near a first end of second inner flow path 261 b
  • a second end of first inner flow path 261 a is arranged near a second end of second inner flow path 261 b.
  • a discharge side of compressor 230 is connected to first opening P 1 of flow path switch 240 by a pipe 315 M.
  • a first end of first heat exchange unit 210 is connected to fourth opening P 4 of flow path switch 240 by a pipe 318 M.
  • a second end of first heat exchange unit 210 is connected to a first end of first valve 250 by a pipe 317 M.
  • a second end of first valve 250 is connected to the first end of first inner flow path 261 a of inner heat exchanger 260 by a pipe 317 M.
  • the second end of first inner flow path 261 a of inner heat exchanger 260 is connected to a first end of second heat exchange unit 110 by a pipe 316 M.
  • the first end of second inner flow path 261 b of inner heat exchanger 260 is connected to second opening P 2 of flow path switch 240 by a pipe 312 M.
  • a second end of second heat exchange unit 110 is connected to a first branching portion BP 1 by a pipe 310 M.
  • First branching portion BP 1 is connected to a first end of second valve 280 by a first bypass pipe PB 1 .
  • First branching portion BP 1 is connected to third opening P 3 of flow path switch 240 by a pipe 311 M.
  • a second end of second valve 280 is connected to a second branching portion BP 2 by first bypass pipe PB 1 .
  • Second branching portion BP 2 is connected to a suction side of compressor 230 by a pipe 314 M.
  • Second branching portion BP 2 is connected to the second end of second inner flow path 261 b of inner heat exchanger 260 by a pipe 313 M.
  • Pipe 318 M, pipe 317 M, pipe 313 M, pipe 314 M, pipe 315 M, pipe 316 M, pipe 310 M, pipe 311 M, and pipe 312 M constitute a main pipe PM.
  • Operation modes of air conditioning apparatus 1000 include a first mode, a second mode, and a third mode.
  • the first mode is, for example, a cooling operation mode.
  • the second mode is, for example, a heating operation mode.
  • the third mode is, for example, a high-load cooling operation mode.
  • the operation mode of air conditioning apparatus 1000 When the operation mode of air conditioning apparatus 1000 is the first mode and when an outside air temperature exceeds a specified value, the operation mode of air conditioning apparatus 1000 changes to the third mode. In this case, the frequency of compressor 230 remains unchanged. In the present embodiment, a high-load cooling operation is enabled without changing the frequency of compressor 230 .
  • Compressor 230 compresses sucked refrigerant and discharges the compressed refrigerant.
  • Flow path switch 240 switches a flow path of the refrigerant in accordance with the operation mode of air conditioning apparatus 1000 .
  • first opening P 1 is connected to fourth opening P 4
  • second opening P 2 is connected to third opening P 3 .
  • compressor 230 is connected to first heat exchange unit 210
  • inner heat exchanger 260 is connected to second heat exchange unit 110 and second valve 280 .
  • first opening P 1 is connected to third opening P 3
  • second opening P 2 is connected to fourth opening P 4 .
  • compressor 230 is connected to second heat exchange unit 110 and second valve 280
  • inner heat exchanger 260 is connected to first heat exchange unit 210 .
  • First heat exchange unit 210 operates as a condenser in the first mode and the third mode. First heat exchange unit 210 operates as an evaporator in the second mode.
  • Second heat exchange unit 110 operates as an evaporator in the first mode and the third mode. Second heat exchange unit 110 operates as a condenser in the second mode.
  • inner heat exchanger 260 performs heat exchange between the refrigerant flowing from flow path switch 240 to compressor 230 and the refrigerant flowing from first valve 250 to second heat exchange unit 110 .
  • inner heat exchanger 260 performs heat exchange between the refrigerant flowing from flow path switch 240 to compressor 230 , the refrigerant flowing from second heat exchange unit 110 to first valve 250 , and the refrigerant from first valve 250 .
  • First valve 250 is an electronic expansion valve.
  • Second valve 280 is a solenoid valve. Second valve 280 opens in the first mode. Second valve 280 closes in the second mode and the third mode.
  • Outdoor blower 220 blows the outdoor air to first outdoor heat exchanger 211 and second outdoor heat exchanger 212 .
  • Indoor blower 120 blows the indoor air to first indoor heat exchanger 111 and second indoor heat exchanger 112 .
  • the refrigerant flows in order of compressor 230 , flow path switch 240 , first heat exchange unit 210 , first valve 250 , inner heat exchanger 260 , second heat exchange unit 110 , and first branching portion BP 1 .
  • first branching portion BP 1 part of the refrigerant flows in order of second valve 280 , second branching portion BP 2 , and compressor 230 .
  • the rest of the refrigerant flows in order of flow path switch 240 , inner heat exchanger 260 , second branching portion BP 2 , and compressor 230 .
  • the refrigerant flows in order of compressor 230 , flow path switch 240 , second heat exchange unit 110 , inner heat exchanger 260 , first valve 250 , first heat exchange unit 210 , flow path switch 240 , inner heat exchanger 260 , second branching portion BP 2 , and compressor 230 .
  • FIG. 2 shows a configuration of an air conditioning apparatus 1100 of a reference example.
  • Air conditioning apparatus 1100 of the reference example is different from air conditioning apparatus 1000 of Embodiment 1 in that air conditioning apparatus 1100 of the reference example includes two compressors 230 A, 230 B, two flow path switches 240 A, 240 B, and two first valves 250 A, 250 B.
  • Air conditioning apparatus 1100 of the reference example is used, for example, in a train. Air conditioning apparatus 1100 of the reference example uses R407c, which is general refrigerant. Air conditioning apparatus 1100 of the reference example uses two compressors 230 A, 230 B to achieve the required performance.
  • the air conditioning apparatus needs to include an inner heat exchanger.
  • the air conditioning apparatus using the CO 2 refrigerant includes two compressors as in the reference example, the air conditioning apparatus needs to include two inner heat exchangers in correspondence with the two compressors or include one inner heat exchanger and a complicated control mechanism. As a result, the cost of the air conditioning apparatus using the CO 2 refrigerant increases.
  • the air conditioning apparatus using the CO 2 refrigerant has a higher operating pressure, and thus, the thickness of each of a heat exchanger and a pipe needs to be increased. Accordingly, the weight of the air conditioning apparatus using the CO 2 refrigerant is greater than the weight of air conditioning apparatus 1100 of the reference example.
  • the compressor of the air conditioning apparatus using the CO 2 refrigerant can thus be much smaller in size than the compressor for general refrigerant. Accordingly, the air conditioning apparatus using the CO 2 refrigerant can include only a single compressor.
  • the air conditioning apparatus using the CO 2 refrigerant according to the present embodiment includes one compressor and one inner heat exchanger, as shown in FIG. 1 .
  • FIGS. 3 and 4 are side views of outdoor unit 200 .
  • An upper surface US of outdoor unit 200 has an arc shape in an X-axis direction, as shown in FIG. 3 .
  • Outdoor unit 200 is highest in the central portion in the X-axis direction.
  • first outdoor heat exchanger 211 and second outdoor heat exchanger 212 need to have a maximum possible size.
  • outdoor blower 220 needs to be arranged between first outdoor heat exchanger 211 and second outdoor heat exchanger 212 .
  • Outdoor blower 220 is arranged at the center of outdoor unit 200 in the X-axis direction.
  • first outdoor heat exchanger 211 is arranged on a first side of outdoor blower 220
  • second outdoor heat exchanger 212 is arranged on a second side of outdoor blower 220 .
  • compressor 230 is arranged between a first end E 1 of outdoor unit 200 and first outdoor heat exchanger 211 .
  • inner heat exchanger 260 is arranged between a second end E 2 of outdoor unit 200 and second outdoor heat exchanger 212 .
  • compressor 230 and inner heat exchanger 260 are remote from each other in the X-axis direction.
  • first bypass pipe PB 1 is arranged in the X-axis direction.
  • first bypass pipe PB 1 can have a length smaller than the length of pipe 312 M and the length of pipe 313 M.
  • first bypass pipe PB 1 is arranged between compressor 230 and first end E 1 of the outdoor unit, as shown in FIG. 4 . It is premised here that the thickness of first bypass pipe PB 1 , the thickness of pipe 312 M, and the thickness of pipe 313 M are equal to each other.
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 into first outdoor heat exchanger 211 and second outdoor heat exchanger 212 .
  • first outdoor heat exchanger 211 and second outdoor heat exchanger 212 the refrigerant dissipates heat through heat exchange with the outdoor air blown by outdoor blower 220 .
  • first valve 250 the refrigerant is decompressed in first valve 250 to enter a gas-liquid two-phase state.
  • the refrigerant in the gas-liquid two-phase state flows through inner heat exchanger 260 into first indoor heat exchanger 111 and second indoor heat exchanger 112 .
  • first indoor heat exchanger 111 and second indoor heat exchanger 112 the refrigerant absorbs heat through heat exchange with the outside air blown by indoor blower 120 , thereby entering the gas state.
  • first branching portion BP 1 The gaseous refrigerant reaches first branching portion BP 1 .
  • second valve 280 is open, and accordingly, flow paths from first branching portion BP 1 to second branching portion BP 2 on the suction side of compressor 230 are a first flow path 11 and a second flow path 12 .
  • First flow path 11 is a flow path via first bypass pipe PB 1 and second valve 280 .
  • Second flow path 12 is a flow path via pipe 311 M, flow path switch 240 , pipe 312 M, inner heat exchanger 260 , and pipe 313 M.
  • first bypass pipe PB 1 As the length of first bypass pipe PB 1 is made smaller than the length of pipe 312 M and the length of pipe 313 M as shown in FIG. 4 , a flow path resistance LR 2 of second flow path 12 is greater than a flow path resistance LR 1 of first flow path 11 .
  • the flow rate of the refrigerant flowing through first flow path 11 is F 1 ⁇ a 1
  • the flow rate of the refrigerant flowing through second flow path 12 is F 1 ⁇ a 2
  • F 1 represents the flow rate of the gaseous refrigerant that has reached first branching portion BP 1
  • a 1 >a 2 is F 1 ⁇ a 1 .
  • the refrigerant that has flowed through first flow path 11 and the refrigerant that has flowed through second flow path 12 merge and are sucked by compressor 230 . Since a larger amount of refrigerant flows through first flow path 11 having a smaller flow path resistance, an amount of the decrease in the pressure of second branching portion BP 2 from the pressure of first branching portion BP 1 can be reduced. As a result, the performance of air conditioning apparatus 1000 can be improved.
  • the refrigerant (refrigerant A) in the gas-liquid two-phase state from first valve 250 and the refrigerant (refrigerant B) that has flowed from second heat exchange unit 110 to second flow path 12 flow into inner heat exchanger 260 .
  • Refrigerant B has a smaller flow rate, and each of refrigerant A and refrigerant B is decompressed refrigerant.
  • refrigerant A and refrigerant B are seldom subjected to heat exchange in inner heat exchanger 260 .
  • inner heat exchanger 260 is not used.
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 to first branching portion BP 1 .
  • second valve 280 is closed, and accordingly, the refrigerant does not flow through first flow path 11 and flows into first indoor heat exchanger 111 and second indoor heat exchanger 112 .
  • Liquid refrigerant, the heat of which has been dissipated in first indoor heat exchanger 111 and second indoor heat exchanger 112 is cooled further in inner heat exchanger 260 .
  • the refrigerant is decompressed in first valve 250 to enter the gas-liquid two-phase state, and then, flows into first outdoor heat exchanger 211 and second outdoor heat exchanger 212 .
  • the refrigerant the heat of which has been absorbed in first outdoor heat exchanger 211 and second outdoor heat exchanger 212 , flows through flow path switch 240 into inner heat exchanger 260 .
  • the refrigerant is heated in inner heat exchanger 260 to be gas refrigerant.
  • the refrigerant then flows through second branching portion BP 2 and is sucked by compressor 230 .
  • the liquid refrigerant (refrigerant C) from first indoor heat exchanger 111 and second indoor heat exchanger 112 and the refrigerant (refrigerant D) from first outdoor heat exchanger 211 and second outdoor heat exchanger 212 are subjected to heat exchange.
  • Refrigerant C is cooled through heat dissipation to refrigerant D.
  • Refrigerant D is heated through heat absorption from refrigerant C.
  • inner heat exchanger 260 is effectively used.
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 into first outdoor heat exchanger 211 and second outdoor heat exchanger 212 .
  • first outdoor heat exchanger 211 and second outdoor heat exchanger 212 the refrigerant dissipates heat through heat exchange with the outdoor air blown by outdoor blower 220 .
  • first valve 250 the refrigerant is decompressed in first valve 250 to enter the gas-liquid two-phase state.
  • the refrigerant in the gas-liquid two-phase state flows through inner heat exchanger 260 into first indoor heat exchanger 111 and second indoor heat exchanger 112 .
  • first indoor heat exchanger 111 and second indoor heat exchanger 112 the refrigerant absorbs heat through heat exchange with the outside air blown by indoor blower 120 , thereby entering the gas state.
  • Second flow path 12 is a flow path via pipe 311 M, flow path switch 240 , pipe 312 M, inner heat exchanger 260 , and pipe 313 M.
  • the refrigerant that has flowed to second branching portion BP 2 is sucked by compressor 230 .
  • the refrigerant (refrigerant A) in the gas-liquid two-phase state from first valve 250 and the refrigerant (refrigerant B) that has flowed from second heat exchange unit 110 to second flow path 12 flow into inner heat exchanger 260 .
  • Each of refrigerant A and refrigerant B is decompressed refrigerant.
  • refrigerant A and refrigerant B are seldom subjected to heat exchange in inner heat exchanger 260 .
  • inner heat exchanger 260 is not used.
  • the gaseous refrigerant which has absorbed heat from the outside air in first indoor heat exchanger 111 and second indoor heat exchanger 112 , flows through second flow path 12 having a large flow path resistance, and accordingly, a large pressure drop occurs on the suction side of compressor 230 .
  • the circulation flow rate of the refrigerant decreases, resulting in decreased cooling performance of air conditioning apparatus 1000 .
  • the outside air temperature exceeds a specified value, thus, a high pressure discharged from compressor 230 can be reduced by setting air conditioning apparatus 1000 to the third mode. This can avoid the execution of a protective operation due to a high discharge pressure of compressor 230 .
  • the inner heat exchanger is used in the heating operation in an air conditioning apparatus including one compressor and using the CO 2 refrigerant.
  • an air conditioning apparatus including one compressor and using the CO 2 refrigerant.
  • the performance of the air conditioning apparatus can be improved.
  • a bypass path including a solenoid valve is provided at a portion through which low-pressure refrigerant flows in the cooling operation. As a result, a pressure loss at the low-pressure portion can be reduced, resulting in an increased efficiency of the air conditioning apparatus.
  • FIG. 5 shows a configuration of an air conditioning apparatus 1001 of Embodiment 2.
  • Air conditioning apparatus 1001 of FIG. 5 is different from air conditioning apparatus 1000 of the embodiment shown in FIG. 1 in the following point.
  • a refrigerant circuit RC 2 of air conditioning apparatus 1001 of FIG. 5 includes a second bypass pipe 271 and a third valve 270 .
  • a third branching portion BP 3 between first valve 250 and inner heat exchanger 260 is connected to a fourth branching portion BP 4 between inner heat exchanger 260 and second heat exchange unit 110 via third valve 270 by second bypass pipe 271 .
  • Third valve 270 is formed of, for example, a check valve.
  • the check valve causes the refrigerant to flow from third branching portion BP 3 to fourth branching portion BP 4 , and interrupts a flow of the refrigerant from fourth branching portion BP 4 to third branching portion BP 3 .
  • Third valve 270 causes the refrigerant to flow through second bypass pipe 271 when the operation mode of air conditioning apparatus 1001 is the first mode or the third mode, and causes the refrigerant not to flow through second bypass pipe 271 when the operation mode of air conditioning apparatus 1001 is the second mode.
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 into first outdoor heat exchanger 211 and second outdoor heat exchanger 212 .
  • first outdoor heat exchanger 211 and second outdoor heat exchanger 212 the refrigerant dissipates heat through heat exchange with the outdoor air blown by outdoor blower 220 .
  • the refrigerant is decompressed in first valve 250 to enter the gas-liquid two-phase state and reaches third branching portion BP 3 .
  • Most of the refrigerant in the gas-liquid two-phase state which has reached third branching portion BP 3 flows through second bypass pipe 271 and third valve 270 to fourth branching portion BP 4 .
  • the rest of the refrigerant in the gas-liquid two-phase state which has reached third branching portion BP 3 flows through inner heat exchanger 260 to fourth branching portion BP 4 .
  • the refrigerant after merging at fourth branching portion BP 4 from the two flow paths flows into first indoor heat exchanger 111 and second indoor heat exchanger 112 .
  • first indoor heat exchanger 111 and second indoor heat exchanger 112 the refrigerant absorbs heat through heat exchange with the outside air blown by indoor blower 120 , thereby entering the gas state.
  • the gaseous refrigerant reaches first branching portion BP 1 .
  • second valve 280 is open, and accordingly, the gaseous refrigerant flows from first branching portion BP 1 through first flow path 11 and second flow path 12 to second branching portion BP 2 , as in Embodiment 1. Since the flow path resistance of first flow path 11 is smaller than the flow path resistance of second flow path 12 , most of the gaseous refrigerant flows through first flow path 11 .
  • the refrigerant that has flowed through first flow path 11 and the refrigerant that has flowed through second flow path 12 merge at second branching portion BP 2 and are sucked by compressor 230 .
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 to first branching portion BP 1 .
  • second valve 280 is closed, and accordingly, the refrigerant does not flow through first flow path 11 and flows into first indoor heat exchanger 111 and second indoor heat exchanger 112 .
  • the liquid refrigerant, the heat of which has been dissipated in first indoor heat exchanger 111 and second indoor heat exchanger 112 does not flow through second bypass pipe 271 and third valve 270 , and flows into inner heat exchanger 260 as in Embodiment 1.
  • the refrigerant is cooled further in inner heat exchanger 260 .
  • the refrigerant is decompressed in first valve 250 to enter the gas-liquid two-phase state, and flows into first outdoor heat exchanger 211 and second outdoor heat exchanger 212 .
  • the refrigerant the heat of which has been absorbed in first outdoor heat exchanger 211 and second outdoor heat exchanger 212 , flows through flow path switch 240 into inner heat exchanger 260 .
  • the refrigerant is heated in inner heat exchanger 260 to be gas refrigerant.
  • the refrigerant then flows through second branching portion BP 2 and is sucked by compressor 230 .
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 into first outdoor heat exchanger 211 and second outdoor heat exchanger 212 .
  • first outdoor heat exchanger 211 and second outdoor heat exchanger 212 the refrigerant dissipates heat through heat exchange with the outdoor air blown by outdoor blower 220 .
  • the refrigerant is decompressed in first valve 250 to enter the gas-liquid two-phase state and reaches third branching portion BP 3 .
  • Most of the refrigerant in the gas-liquid two-phase state which has reached third branching portion BP 3 flows through second bypass pipe 271 and third valve 270 to fourth branching portion BP 4 .
  • the rest of the refrigerant in the gas-liquid two-phase state which has reached third branching portion BP 3 flows through inner heat exchanger 260 to fourth branching portion BP 4 .
  • the refrigerant after merging at fourth branching portion BP 4 from the two flow paths flows into first indoor heat exchanger 111 and second indoor heat exchanger 112 .
  • first indoor heat exchanger 111 and second indoor heat exchanger 112 the refrigerant absorbs heat through heat exchange with the outside air blown by indoor blower 120 to enter the gas state.
  • the gaseous refrigerant reaches first branching portion BP 1 .
  • second valve 280 is closed, and accordingly, the refrigerant flows from first branching portion BP 1 through second flow path 12 to second branching portion BP 2 .
  • the refrigerant that has flowed to second branching portion BP 2 is sucked by compressor 230 .
  • Embodiment 2 in the first mode and the third mode, most of the refrigerant discharged from first valve 250 flows into first indoor heat exchanger 111 and second indoor heat exchanger 112 without flowing through inner heat exchanger 260 . This can reduce a pressure drop caused by the refrigerant flowing through inner heat exchanger 260 .
  • the degree of opening of first valve 250 is controlled such that first valve 250 is open.
  • the temperature of the refrigerant discharged from second heat exchange unit 110 cannot be lowered.
  • most of the refrigerant discharged from first valve 250 flows into second heat exchange unit 110 without flowing through inner heat exchanger 260 . Accordingly, even when first valve 250 has reached the fully-open state, the execution of the protective operation caused by the discharge temperature of compressor 230 exceeding a limit value can be avoided.
  • a solenoid valve may be used in place of a check valve as third valve 270 .
  • FIG. 6 shows a configuration of an air conditioning apparatus 1002 of Embodiment 3.
  • Air conditioning apparatus 1002 of FIG. 6 is different from air conditioning apparatus 1000 of the embodiment shown in FIG. 1 in the following point.
  • a refrigerant circuit RC 3 of air conditioning apparatus 1002 of Embodiment 3 includes a fourth valve 251 arranged in pipe 316 M, which is part of main pipe PM, between inner heat exchanger 260 and second heat exchange unit 110 .
  • Fourth valve 251 is formed of an electronic expansion valve.
  • air conditioning apparatus 1002 When the operation mode of air conditioning apparatus 1002 is the first mode or the second mode, fourth valve 251 is fully open. Accordingly, air conditioning apparatus 1002 of Embodiment 3 operates as in Embodiment 1.
  • first valve 250 When the operation mode of air conditioning apparatus 1002 is the third mode, first valve 250 is fully open, and fourth valve 251 decompresses the refrigerant flowing through pipe 316 M.
  • the operation mode of air conditioning apparatus 1002 is the first mode (cooling operation mode), and when the outside air temperature exceeds a specified value, the operation mode of air conditioning apparatus 1002 is switched to the third mode (high-load cooling operation mode).
  • the liquid refrigerant can be stored in inner heat exchanger 260 . Accordingly, the high pressure discharged by compressor 230 can be reduced, thus avoiding the execution of the protective operation due to a high discharge pressure of compressor 230 .
  • first heat exchange unit 210 and second heat exchange unit 110 includes two heat exchangers in the above embodiments, the present disclosure is not limited thereto.
  • Each of first heat exchange unit 210 and second heat exchange unit 110 may include one heat exchanger.
  • first bypass pipe PB 1 may be arranged between compressor 230 and first outdoor heat exchanger 211 in the X-axis direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A flow path switch is provided with a first opening to a fourth opening. A discharge side of a compressor is connected to the first opening. A first end of a first heat exchange unit is connected to the fourth opening. A first end of the second inner flow path is connected to the second opening. A first branching portion is connected to a first end of the second valve and the third opening. When an operation mode of an air conditioning apparatus is a first mode, the second valve is open, the first opening is connected to the fourth opening, and the second opening is connected to the third opening. When the operation mode of the air conditioning apparatus is a second mode, the second valve is closed, the first opening is connected to the third opening, and the second opening is connected to the fourth opening.

Description

    TECHNICAL FIELD
  • The present disclosure relates to an air conditioning apparatus.
  • BACKGROUND ART
  • European regulations on refrigerant require the use of carbon dioxide (CO2), which is natural refrigerant, also as refrigerant for use in a refrigeration cycle of an air conditioning apparatus. When the CO2 refrigerant is used, performance is reduced more due to its lower theoretical efficiency than when common refrigerant, such as R407c, is used. In order to reduce a performance decrease, in a known technique, an inner heat exchanger is used to increase a difference in evaporator enthalpy for improved performance.
  • For example, a refrigeration cycle apparatus of Japanese Patent Laying-Open No. 2003-194432 (PTL 1) operates as follows. In a cooling operation mode, high-temperature, high-pressure refrigerant discharged from a compressor is cooled in a heat-source-side heat exchanger and is further cooled in an inner heat exchanger. On the other hand, in a heating operation mode, high-temperature, high-pressure refrigerant discharged from the compressor is cooled in a use-side heat exchanger and is further decompressed in a decompressor, and is then flowed into the inner heat exchanger. In the heating operation mode, the inner heat exchanger is seldom used due to a small difference between the temperature of refrigerant flowing through a low-pressure-side flow path and the temperature of refrigerant flowing through a high-pressure-side flow path. Such a configuration allows the refrigerant to circulate in both of the cooling operation mode and the heating operation mode without a four-way valve newly provided.
  • CITATION LIST Patent Literature
  • PTL 1: Japanese Patent Laying-Open No. 2003-194432
  • SUMMARY OF INVENTION Technical Problem
  • The apparatus disclosed in PTL 1, however, has a problem as described below.
  • In the cooling operation mode, since the temperature of an external fluid subjected to heat exchange with CO2 refrigerant in an outdoor heat exchanger is equal to an outdoor air temperature (approximately 30° C. to 40° C.) in summertime, the refrigerant discharged from the compressor has an extremely high temperature. When the inner heat exchanger is used in the cooling operation mode, the discharge temperature of the compressor may rise further to exceed a limit value at which the compressor operates normally. In such a case, a compressor motor is damaged and refrigeration machine oil degrades, and accordingly, protection control, such as lowering the frequency of the compressor, is performed. As a result, the operating performance of the air conditioning apparatus decreases.
  • Moreover, in the cooling operation mode, the CO2 refrigerant is supercritical within the outdoor heat exchanger. Consequently, the operating performance of the air conditioning apparatus decreases more than when the CO2 refrigerant is used in a two-phase region. To compensate for such a decrease, the heat transfer area of the outdoor heat exchanger needs to be larger than the heat transfer area of an indoor heat exchanger, which causes a problem as described below. When the inner heat exchanger is used in the cooling operation mode, an amount of refrigerant required increases, increasing a cost and also increasing a risk in case of CO2 refrigerant leakage. In the heating operation mode, no inner heat exchanger is used, and accordingly, the amount of the refrigerant within the indoor heat exchanger increases. This increases a high pressure in the air conditioning apparatus, decreasing the performance of the air conditioning apparatus.
  • An object of the present disclosure is therefore to provide an air conditioning apparatus that has two operation modes and that can achieve high performance even when CO2 refrigerant is used.
  • Solution to Problem
  • An air conditioning apparatus of the present disclosure includes a refrigerant circuit which has a compressor, a flow path switch, a first heat exchange unit, a second heat exchange unit, an inner heat exchanger, a first valve, and a second valve, and in which refrigerant flows. The flow path switch is provided with a first opening, a second opening, a third opening, and a fourth opening. The inner heat exchanger is provided with a first inner flow path and a second inner flow path. A discharge side of the compressor is connected to the first opening of the flow path switch. A first end of the first heat exchange unit is connected to the fourth opening of the flow path switch. A second end of the first heat exchange unit is connected to a first end of the first valve. A second end of the first valve is connected to a first end of the first inner flow path of the inner heat exchanger. A second end of the first inner flow path of the inner heat exchanger is connected to a first end of the second heat exchange unit. A first end of the second inner flow path of the inner heat exchanger is connected to the second opening of the flow path switch. A second end of the second heat exchange unit is connected to a first branching portion. The first branching portion is connected to a first end of the second valve and the third opening of the flow path switch. A second end of the second valve is connected to a second branching portion. The second branching portion is connected to a suction side of the compressor and a second end of the second inner flow path of the inner heat exchanger. When an operation mode of the air conditioning apparatus is a first mode, the second valve is configured to open, the first opening is connected to the fourth opening, and the second opening is connected to the third opening. When the operation mode of the air conditioning apparatus is a second mode, the second valve is configured to close, the first opening is connected to the third opening, and the second opening is connected to the fourth opening.
  • Advantageous Effects of Invention
  • In the air conditioning apparatus of the present disclosure, when the operation mode of the air conditioning apparatus is the first mode, the second valve is open, the first opening is connected to the fourth opening, and the second opening is connected to the third opening. When the operation mode of the air conditioning apparatus is the second mode, the second valve is closed, the first opening is connected to the third opening, and the second opening is connected to the fourth opening.
  • Therefore, the air conditioning apparatus of the present disclosure has two operation modes and can achieve high performance even when CO2 refrigerant is used.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows a configuration of an air conditioning apparatus 1000 of Embodiment 1.
  • FIG. 2 shows a configuration of an air conditioning apparatus 1100 of a reference example.
  • FIG. 3 is a side view of an outdoor unit 200.
  • FIG. 4 is another side view of outdoor unit 200.
  • FIG. 5 shows a configuration of an air conditioning apparatus 1001 of Embodiment 2.
  • FIG. 6 shows a configuration of an air conditioning apparatus 1002 of Embodiment 3.
  • DESCRIPTION OF EMBODIMENTS
  • Embodiments will now be described with reference to the drawings.
  • Embodiment 1
  • FIG. 1 shows a configuration of an air conditioning apparatus 1000 of Embodiment 1.
  • Air conditioning apparatus 1000 includes an outdoor unit 200 and an indoor unit 100. Outdoor unit 200 includes a compressor 230, a first heat exchange unit 210, a flow path switch 240, a first valve 250, a second valve 280, an inner heat exchanger 260, and an outdoor blower 220. First heat exchange unit 210 includes a first outdoor heat exchanger 211 and a second outdoor heat exchanger 212.
  • Indoor unit 100 includes a second heat exchange unit 110 and an indoor blower 120. Second heat exchange unit 110 includes a first indoor heat exchanger 111 and a second indoor heat exchanger 112.
  • A refrigerant circuit RC1 includes compressor 230, flow path switch 240, first heat exchange unit 210, second heat exchange unit 110, inner heat exchanger 260, first valve 250, and second valve 280. Refrigerant enclosed in refrigerant circuit RC1 is CO2 refrigerant.
  • Flow path switch 240 is formed of a four-way valve. Flow path switch 240 is provided with a first opening P1, a second opening P2, a third opening P3, and a fourth opening P4. A first flow path, which connects first opening P1 to third opening P3 or fourth opening P4, and a second flow path, which connects second opening P2 to fourth opening P4 or third opening P3, are arranged in flow path switch 240.
  • Inner heat exchanger 260 is provided with a first inner flow path 261 a and a second inner flow path 261 b. Refrigerant flowing through first inner flow path 261 a and refrigerant flowing through second inner flow path 261 b are subjected to heat exchange. First inner flow path 261 a is parallel to second inner flow path 261 b. A first end of first inner flow path 261 a is arranged near a first end of second inner flow path 261 b, and a second end of first inner flow path 261 a is arranged near a second end of second inner flow path 261 b.
  • A discharge side of compressor 230 is connected to first opening P1 of flow path switch 240 by a pipe 315M. A first end of first heat exchange unit 210 is connected to fourth opening P4 of flow path switch 240 by a pipe 318M. A second end of first heat exchange unit 210 is connected to a first end of first valve 250 by a pipe 317M. A second end of first valve 250 is connected to the first end of first inner flow path 261 a of inner heat exchanger 260 by a pipe 317M. The second end of first inner flow path 261 a of inner heat exchanger 260 is connected to a first end of second heat exchange unit 110 by a pipe 316M. The first end of second inner flow path 261 b of inner heat exchanger 260 is connected to second opening P2 of flow path switch 240 by a pipe 312M. A second end of second heat exchange unit 110 is connected to a first branching portion BP1 by a pipe 310M. First branching portion BP1 is connected to a first end of second valve 280 by a first bypass pipe PB1. First branching portion BP1 is connected to third opening P3 of flow path switch 240 by a pipe 311M. A second end of second valve 280 is connected to a second branching portion BP2 by first bypass pipe PB1. Second branching portion BP2 is connected to a suction side of compressor 230 by a pipe 314M. Second branching portion BP2 is connected to the second end of second inner flow path 261 b of inner heat exchanger 260 by a pipe 313M.
  • Pipe 318M, pipe 317M, pipe 313M, pipe 314M, pipe 315M, pipe 316M, pipe 310M, pipe 311M, and pipe 312M constitute a main pipe PM.
  • Operation modes of air conditioning apparatus 1000 include a first mode, a second mode, and a third mode. The first mode is, for example, a cooling operation mode. The second mode is, for example, a heating operation mode. The third mode is, for example, a high-load cooling operation mode.
  • When the operation mode of air conditioning apparatus 1000 is the first mode and when an outside air temperature exceeds a specified value, the operation mode of air conditioning apparatus 1000 changes to the third mode. In this case, the frequency of compressor 230 remains unchanged. In the present embodiment, a high-load cooling operation is enabled without changing the frequency of compressor 230.
  • Compressor 230 compresses sucked refrigerant and discharges the compressed refrigerant.
  • Flow path switch 240 switches a flow path of the refrigerant in accordance with the operation mode of air conditioning apparatus 1000.
  • When the operation mode of air conditioning apparatus 1000 is the first mode or the third mode, first opening P1 is connected to fourth opening P4, and second opening P2 is connected to third opening P3. Thus, when the operation mode of air conditioning apparatus 1000 is the first mode or the third mode, compressor 230 is connected to first heat exchange unit 210, and inner heat exchanger 260 is connected to second heat exchange unit 110 and second valve 280.
  • When the operation mode of air conditioning apparatus 1000 is the second mode, first opening P1 is connected to third opening P3, and second opening P2 is connected to fourth opening P4. Thus, when the operation mode of air conditioning apparatus 1000 is the second mode, compressor 230 is connected to second heat exchange unit 110 and second valve 280, and inner heat exchanger 260 is connected to first heat exchange unit 210.
  • First heat exchange unit 210 operates as a condenser in the first mode and the third mode. First heat exchange unit 210 operates as an evaporator in the second mode.
  • Second heat exchange unit 110 operates as an evaporator in the first mode and the third mode. Second heat exchange unit 110 operates as a condenser in the second mode.
  • In the first mode and the third mode, inner heat exchanger 260 performs heat exchange between the refrigerant flowing from flow path switch 240 to compressor 230 and the refrigerant flowing from first valve 250 to second heat exchange unit 110. In the second mode, inner heat exchanger 260 performs heat exchange between the refrigerant flowing from flow path switch 240 to compressor 230, the refrigerant flowing from second heat exchange unit 110 to first valve 250, and the refrigerant from first valve 250.
  • First valve 250 is an electronic expansion valve.
  • Second valve 280 is a solenoid valve. Second valve 280 opens in the first mode. Second valve 280 closes in the second mode and the third mode.
  • Outdoor blower 220 blows the outdoor air to first outdoor heat exchanger 211 and second outdoor heat exchanger 212. Indoor blower 120 blows the indoor air to first indoor heat exchanger 111 and second indoor heat exchanger 112.
  • Description will be given of a flow of the refrigerant when the operation mode of the air conditioning apparatus is the first mode. As indicated by the broken line in FIG. 1 , the refrigerant flows in order of compressor 230, flow path switch 240, first heat exchange unit 210, first valve 250, inner heat exchanger 260, second heat exchange unit 110, and first branching portion BP1.
  • After first branching portion BP1, part of the refrigerant flows in order of second valve 280, second branching portion BP2, and compressor 230. The rest of the refrigerant flows in order of flow path switch 240, inner heat exchanger 260, second branching portion BP2, and compressor 230.
  • Description will be given of a flow of the refrigerant when the operation mode of the air conditioning apparatus is the second mode. As indicated by the solid line in FIG. 1 , the refrigerant flows in order of compressor 230, flow path switch 240, second heat exchange unit 110, inner heat exchanger 260, first valve 250, first heat exchange unit 210, flow path switch 240, inner heat exchanger 260, second branching portion BP2, and compressor 230.
  • Description will be given of a flow of the refrigerant when the operation mode of the air conditioning apparatus is the third mode. As indicated by the dotted line in FIG. 1 , all the refrigerant flows in order of compressor 230, flow path switch 240, first heat exchange unit 210, first valve 250, inner heat exchanger 260, second heat exchange unit 110, first branching portion BP1, flow path switch 240, inner heat exchanger 260, second branching portion BP2, and compressor 230.
  • FIG. 2 shows a configuration of an air conditioning apparatus 1100 of a reference example.
  • Air conditioning apparatus 1100 of the reference example is different from air conditioning apparatus 1000 of Embodiment 1 in that air conditioning apparatus 1100 of the reference example includes two compressors 230A, 230B, two flow path switches 240A, 240B, and two first valves 250A, 250B.
  • Air conditioning apparatus 1100 of the reference example is used, for example, in a train. Air conditioning apparatus 1100 of the reference example uses R407c, which is general refrigerant. Air conditioning apparatus 1100 of the reference example uses two compressors 230A, 230B to achieve the required performance.
  • When refrigerant is changed from R407c to CO2 refrigerant without changing a casing of air conditioning apparatus 1100 of the reference example, the theoretical efficiency of the air conditioning apparatus decreases. Accordingly, the air conditioning apparatus needs to include an inner heat exchanger.
  • When the air conditioning apparatus using the CO2 refrigerant includes two compressors as in the reference example, the air conditioning apparatus needs to include two inner heat exchangers in correspondence with the two compressors or include one inner heat exchanger and a complicated control mechanism. As a result, the cost of the air conditioning apparatus using the CO2 refrigerant increases.
  • The air conditioning apparatus using the CO2 refrigerant has a higher operating pressure, and thus, the thickness of each of a heat exchanger and a pipe needs to be increased. Accordingly, the weight of the air conditioning apparatus using the CO2 refrigerant is greater than the weight of air conditioning apparatus 1100 of the reference example.
  • The volume capacity (=evaporation latent heat×gaseous density) of CO2 reaches four to five times that of R407c which is general refrigerant, and accordingly, the stroke volume of the compressor (the internal volume of the compression chamber) can be reduced greatly. The compressor of the air conditioning apparatus using the CO2 refrigerant can thus be much smaller in size than the compressor for general refrigerant. Accordingly, the air conditioning apparatus using the CO2 refrigerant can include only a single compressor.
  • Thus, in terms of performance, cost, and weight, the air conditioning apparatus using the CO2 refrigerant according to the present embodiment includes one compressor and one inner heat exchanger, as shown in FIG. 1 .
  • FIGS. 3 and 4 are side views of outdoor unit 200.
  • An upper surface US of outdoor unit 200 has an arc shape in an X-axis direction, as shown in FIG. 3 . Outdoor unit 200 is highest in the central portion in the X-axis direction. In order to improve the performance of air conditioning apparatus 1000, first outdoor heat exchanger 211 and second outdoor heat exchanger 212 need to have a maximum possible size. In order to improve the efficiency of heat exchange by blowing the air to first outdoor heat exchanger 211 and second outdoor heat exchanger 212 by outdoor blower 220, outdoor blower 220 needs to be arranged between first outdoor heat exchanger 211 and second outdoor heat exchanger 212.
  • Outdoor blower 220 is arranged at the center of outdoor unit 200 in the X-axis direction. In the X-axis direction, first outdoor heat exchanger 211 is arranged on a first side of outdoor blower 220, and second outdoor heat exchanger 212 is arranged on a second side of outdoor blower 220. In the X-axis direction, compressor 230 is arranged between a first end E1 of outdoor unit 200 and first outdoor heat exchanger 211. In the X-axis direction, inner heat exchanger 260 is arranged between a second end E2 of outdoor unit 200 and second outdoor heat exchanger 212. As a result, compressor 230 and inner heat exchanger 260 are remote from each other in the X-axis direction.
  • As shown in FIG. 4 , in pipe 310M, a portion between an outlet of indoor unit 100 and first branching portion BP1 is arranged in a Y-axis direction. First bypass pipe PB1 is arranged in the X-axis direction. As compressor 230 and pipe 310M are arranged to provide a minimum possible distance between pipe 310M and compressor 230, first bypass pipe PB1 can have a length smaller than the length of pipe 312M and the length of pipe 313M. For example, in the X-axis direction, first bypass pipe PB1 is arranged between compressor 230 and first end E1 of the outdoor unit, as shown in FIG. 4 . It is premised here that the thickness of first bypass pipe PB1, the thickness of pipe 312M, and the thickness of pipe 313M are equal to each other.
  • Description will be given of an operation of air conditioning apparatus 1000 when the operation mode of air conditioning apparatus 1000 is the first mode.
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 into first outdoor heat exchanger 211 and second outdoor heat exchanger 212.
  • In first outdoor heat exchanger 211 and second outdoor heat exchanger 212, the refrigerant dissipates heat through heat exchange with the outdoor air blown by outdoor blower 220.
  • Subsequently, the refrigerant is decompressed in first valve 250 to enter a gas-liquid two-phase state. The refrigerant in the gas-liquid two-phase state flows through inner heat exchanger 260 into first indoor heat exchanger 111 and second indoor heat exchanger 112.
  • In first indoor heat exchanger 111 and second indoor heat exchanger 112, the refrigerant absorbs heat through heat exchange with the outside air blown by indoor blower 120, thereby entering the gas state.
  • The gaseous refrigerant reaches first branching portion BP1. In the first mode, second valve 280 is open, and accordingly, flow paths from first branching portion BP1 to second branching portion BP2 on the suction side of compressor 230 are a first flow path 11 and a second flow path 12.
  • First flow path 11 is a flow path via first bypass pipe PB1 and second valve 280. Second flow path 12 is a flow path via pipe 311M, flow path switch 240, pipe 312M, inner heat exchanger 260, and pipe 313M.
  • As the length of first bypass pipe PB1 is made smaller than the length of pipe 312M and the length of pipe 313M as shown in FIG. 4 , a flow path resistance LR2 of second flow path 12 is greater than a flow path resistance LR1 of first flow path 11.
  • Thus, the flow rate of the refrigerant flowing through first flow path 11 is F1×a1, and the flow rate of the refrigerant flowing through second flow path 12 is F1×a2, where F1 represents the flow rate of the gaseous refrigerant that has reached first branching portion BP1, and a1>a2.

  • a1=LR2/(LR1+LR2)  (1)

  • a2=LR1/(LR1+LR2)  (2)
  • At second branching portion BP2, the refrigerant that has flowed through first flow path 11 and the refrigerant that has flowed through second flow path 12 merge and are sucked by compressor 230. Since a larger amount of refrigerant flows through first flow path 11 having a smaller flow path resistance, an amount of the decrease in the pressure of second branching portion BP2 from the pressure of first branching portion BP1 can be reduced. As a result, the performance of air conditioning apparatus 1000 can be improved.
  • In the first mode, the refrigerant (refrigerant A) in the gas-liquid two-phase state from first valve 250 and the refrigerant (refrigerant B) that has flowed from second heat exchange unit 110 to second flow path 12 flow into inner heat exchanger 260. Refrigerant B has a smaller flow rate, and each of refrigerant A and refrigerant B is decompressed refrigerant. Thus, refrigerant A and refrigerant B are seldom subjected to heat exchange in inner heat exchanger 260. In the first mode, accordingly, inner heat exchanger 260 is not used.
  • Next, description will be given of an operation when the operation mode of air conditioning apparatus 1000 is the second mode.
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 to first branching portion BP1. In the second mode, second valve 280 is closed, and accordingly, the refrigerant does not flow through first flow path 11 and flows into first indoor heat exchanger 111 and second indoor heat exchanger 112. Liquid refrigerant, the heat of which has been dissipated in first indoor heat exchanger 111 and second indoor heat exchanger 112, is cooled further in inner heat exchanger 260.
  • Subsequently, the refrigerant is decompressed in first valve 250 to enter the gas-liquid two-phase state, and then, flows into first outdoor heat exchanger 211 and second outdoor heat exchanger 212. The refrigerant, the heat of which has been absorbed in first outdoor heat exchanger 211 and second outdoor heat exchanger 212, flows through flow path switch 240 into inner heat exchanger 260. The refrigerant is heated in inner heat exchanger 260 to be gas refrigerant. The refrigerant then flows through second branching portion BP2 and is sucked by compressor 230.
  • In the second mode, in inner heat exchanger 260, the liquid refrigerant (refrigerant C) from first indoor heat exchanger 111 and second indoor heat exchanger 112 and the refrigerant (refrigerant D) from first outdoor heat exchanger 211 and second outdoor heat exchanger 212 are subjected to heat exchange. Refrigerant C is cooled through heat dissipation to refrigerant D. Refrigerant D is heated through heat absorption from refrigerant C. In the second mode, thus, inner heat exchanger 260 is effectively used.
  • Next, description will be given of an operation of air conditioning apparatus 1000 when the operation mode of air conditioning apparatus 1000 is the third mode.
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 into first outdoor heat exchanger 211 and second outdoor heat exchanger 212.
  • In first outdoor heat exchanger 211 and second outdoor heat exchanger 212, the refrigerant dissipates heat through heat exchange with the outdoor air blown by outdoor blower 220.
  • Subsequently, the refrigerant is decompressed in first valve 250 to enter the gas-liquid two-phase state. The refrigerant in the gas-liquid two-phase state flows through inner heat exchanger 260 into first indoor heat exchanger 111 and second indoor heat exchanger 112.
  • In first indoor heat exchanger 111 and second indoor heat exchanger 112, the refrigerant absorbs heat through heat exchange with the outside air blown by indoor blower 120, thereby entering the gas state.
  • The gaseous refrigerant reaches first branching portion BP1. In the third mode, second valve 280 is closed, and accordingly, the flow path from first branching portion BP1 to second branching portion BP2 on the suction side of compressor 230 is only second flow path 12. Second flow path 12 is a flow path via pipe 311M, flow path switch 240, pipe 312M, inner heat exchanger 260, and pipe 313M.
  • The refrigerant that has flowed to second branching portion BP2 is sucked by compressor 230.
  • In the third mode, the refrigerant (refrigerant A) in the gas-liquid two-phase state from first valve 250 and the refrigerant (refrigerant B) that has flowed from second heat exchange unit 110 to second flow path 12 flow into inner heat exchanger 260. Each of refrigerant A and refrigerant B is decompressed refrigerant. Thus, refrigerant A and refrigerant B are seldom subjected to heat exchange in inner heat exchanger 260. In the third mode, accordingly, inner heat exchanger 260 is not used.
  • In the third mode, the gaseous refrigerant, which has absorbed heat from the outside air in first indoor heat exchanger 111 and second indoor heat exchanger 112, flows through second flow path 12 having a large flow path resistance, and accordingly, a large pressure drop occurs on the suction side of compressor 230. As a result, the circulation flow rate of the refrigerant decreases, resulting in decreased cooling performance of air conditioning apparatus 1000. When the outside air temperature exceeds a specified value, thus, a high pressure discharged from compressor 230 can be reduced by setting air conditioning apparatus 1000 to the third mode. This can avoid the execution of a protective operation due to a high discharge pressure of compressor 230.
  • According to the present embodiment, in terms of cost, weight, and the like, the inner heat exchanger is used in the heating operation in an air conditioning apparatus including one compressor and using the CO2 refrigerant. Thus, the performance of the air conditioning apparatus can be improved. In this air conditioning apparatus, a bypass path including a solenoid valve is provided at a portion through which low-pressure refrigerant flows in the cooling operation. As a result, a pressure loss at the low-pressure portion can be reduced, resulting in an increased efficiency of the air conditioning apparatus.
  • Embodiment 2
  • FIG. 5 shows a configuration of an air conditioning apparatus 1001 of Embodiment 2.
  • Air conditioning apparatus 1001 of FIG. 5 is different from air conditioning apparatus 1000 of the embodiment shown in FIG. 1 in the following point.
  • A refrigerant circuit RC2 of air conditioning apparatus 1001 of FIG. 5 includes a second bypass pipe 271 and a third valve 270.
  • A third branching portion BP3 between first valve 250 and inner heat exchanger 260 is connected to a fourth branching portion BP4 between inner heat exchanger 260 and second heat exchange unit 110 via third valve 270 by second bypass pipe 271.
  • Third valve 270 is formed of, for example, a check valve. The check valve causes the refrigerant to flow from third branching portion BP3 to fourth branching portion BP4, and interrupts a flow of the refrigerant from fourth branching portion BP4 to third branching portion BP3.
  • Third valve 270 causes the refrigerant to flow through second bypass pipe 271 when the operation mode of air conditioning apparatus 1001 is the first mode or the third mode, and causes the refrigerant not to flow through second bypass pipe 271 when the operation mode of air conditioning apparatus 1001 is the second mode.
  • Description will be given of an operation of air conditioning apparatus 1001 when the operation mode of air conditioning apparatus 1001 is the first mode.
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 into first outdoor heat exchanger 211 and second outdoor heat exchanger 212.
  • In first outdoor heat exchanger 211 and second outdoor heat exchanger 212, the refrigerant dissipates heat through heat exchange with the outdoor air blown by outdoor blower 220.
  • Subsequently, the refrigerant is decompressed in first valve 250 to enter the gas-liquid two-phase state and reaches third branching portion BP3. Most of the refrigerant in the gas-liquid two-phase state which has reached third branching portion BP3 flows through second bypass pipe 271 and third valve 270 to fourth branching portion BP4. The rest of the refrigerant in the gas-liquid two-phase state which has reached third branching portion BP3 flows through inner heat exchanger 260 to fourth branching portion BP4. The refrigerant after merging at fourth branching portion BP4 from the two flow paths flows into first indoor heat exchanger 111 and second indoor heat exchanger 112.
  • Subsequently, in first indoor heat exchanger 111 and second indoor heat exchanger 112, the refrigerant absorbs heat through heat exchange with the outside air blown by indoor blower 120, thereby entering the gas state.
  • The gaseous refrigerant reaches first branching portion BP1. In the first mode, second valve 280 is open, and accordingly, the gaseous refrigerant flows from first branching portion BP1 through first flow path 11 and second flow path 12 to second branching portion BP2, as in Embodiment 1. Since the flow path resistance of first flow path 11 is smaller than the flow path resistance of second flow path 12, most of the gaseous refrigerant flows through first flow path 11. The refrigerant that has flowed through first flow path 11 and the refrigerant that has flowed through second flow path 12 merge at second branching portion BP2 and are sucked by compressor 230.
  • Next, description will be given of an operation of air conditioning apparatus 1001 when the operation mode of air conditioning apparatus 1001 is the second mode.
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 to first branching portion BP1. In the second mode, second valve 280 is closed, and accordingly, the refrigerant does not flow through first flow path 11 and flows into first indoor heat exchanger 111 and second indoor heat exchanger 112. The liquid refrigerant, the heat of which has been dissipated in first indoor heat exchanger 111 and second indoor heat exchanger 112, does not flow through second bypass pipe 271 and third valve 270, and flows into inner heat exchanger 260 as in Embodiment 1. The refrigerant is cooled further in inner heat exchanger 260.
  • Subsequently, the refrigerant is decompressed in first valve 250 to enter the gas-liquid two-phase state, and flows into first outdoor heat exchanger 211 and second outdoor heat exchanger 212. The refrigerant, the heat of which has been absorbed in first outdoor heat exchanger 211 and second outdoor heat exchanger 212, flows through flow path switch 240 into inner heat exchanger 260. The refrigerant is heated in inner heat exchanger 260 to be gas refrigerant. The refrigerant then flows through second branching portion BP2 and is sucked by compressor 230.
  • Next, description will be given of an operation of air conditioning apparatus 1001 when the operation mode of air conditioning apparatus 1001 is the third mode.
  • High-temperature, high-pressure refrigerant discharged from compressor 230 flows through flow path switch 240 into first outdoor heat exchanger 211 and second outdoor heat exchanger 212.
  • In first outdoor heat exchanger 211 and second outdoor heat exchanger 212, the refrigerant dissipates heat through heat exchange with the outdoor air blown by outdoor blower 220.
  • Subsequently, the refrigerant is decompressed in first valve 250 to enter the gas-liquid two-phase state and reaches third branching portion BP3. Most of the refrigerant in the gas-liquid two-phase state which has reached third branching portion BP3 flows through second bypass pipe 271 and third valve 270 to fourth branching portion BP4. The rest of the refrigerant in the gas-liquid two-phase state which has reached third branching portion BP3 flows through inner heat exchanger 260 to fourth branching portion BP4. The refrigerant after merging at fourth branching portion BP4 from the two flow paths flows into first indoor heat exchanger 111 and second indoor heat exchanger 112.
  • In first indoor heat exchanger 111 and second indoor heat exchanger 112, the refrigerant absorbs heat through heat exchange with the outside air blown by indoor blower 120 to enter the gas state.
  • The gaseous refrigerant reaches first branching portion BP1. In the third mode, second valve 280 is closed, and accordingly, the refrigerant flows from first branching portion BP1 through second flow path 12 to second branching portion BP2. The refrigerant that has flowed to second branching portion BP2 is sucked by compressor 230.
  • In Embodiment 2, in the first mode and the third mode, most of the refrigerant discharged from first valve 250 flows into first indoor heat exchanger 111 and second indoor heat exchanger 112 without flowing through inner heat exchanger 260. This can reduce a pressure drop caused by the refrigerant flowing through inner heat exchanger 260.
  • When the outside air temperature is extremely high in the cooling operation, the circulation flow rate of the refrigerant is large, resulting in an extremely high temperature of the refrigerant discharged from second heat exchange unit 110. In order to avoid such a situation, the degree of opening of first valve 250 is controlled such that first valve 250 is open. When the degree of opening of first valve 250 reaches the fully open state, the temperature of the refrigerant discharged from second heat exchange unit 110 cannot be lowered. In Embodiment 2, most of the refrigerant discharged from first valve 250 flows into second heat exchange unit 110 without flowing through inner heat exchanger 260. Accordingly, even when first valve 250 has reached the fully-open state, the execution of the protective operation caused by the discharge temperature of compressor 230 exceeding a limit value can be avoided.
  • A solenoid valve may be used in place of a check valve as third valve 270.
  • Embodiment 3
  • FIG. 6 shows a configuration of an air conditioning apparatus 1002 of Embodiment 3.
  • Air conditioning apparatus 1002 of FIG. 6 is different from air conditioning apparatus 1000 of the embodiment shown in FIG. 1 in the following point.
  • A refrigerant circuit RC3 of air conditioning apparatus 1002 of Embodiment 3 includes a fourth valve 251 arranged in pipe 316M, which is part of main pipe PM, between inner heat exchanger 260 and second heat exchange unit 110.
  • Fourth valve 251 is formed of an electronic expansion valve.
  • When the operation mode of air conditioning apparatus 1002 is the first mode or the second mode, fourth valve 251 is fully open. Accordingly, air conditioning apparatus 1002 of Embodiment 3 operates as in Embodiment 1.
  • When the operation mode of air conditioning apparatus 1002 is the third mode, first valve 250 is fully open, and fourth valve 251 decompresses the refrigerant flowing through pipe 316M.
  • When the operation mode of air conditioning apparatus 1002 is the first mode (cooling operation mode), and when the outside air temperature exceeds a specified value, the operation mode of air conditioning apparatus 1002 is switched to the third mode (high-load cooling operation mode).
  • As air conditioning apparatus 1002 is switched to the high-load cooling operation mode when the outside air temperature is extremely high, the liquid refrigerant can be stored in inner heat exchanger 260. Accordingly, the high pressure discharged by compressor 230 can be reduced, thus avoiding the execution of the protective operation due to a high discharge pressure of compressor 230.
  • Variations
  • The present disclosure is not limited to the embodiments described above and includes, for example, the following variations.
  • (1) Although each of first heat exchange unit 210 and second heat exchange unit 110 includes two heat exchangers in the above embodiments, the present disclosure is not limited thereto. Each of first heat exchange unit 210 and second heat exchange unit 110 may include one heat exchanger.
  • (2) In place of the arrangement in which first bypass pipe PB1 is arranged between compressor 230 and first end E1 of the outdoor unit in the X-axis direction, first bypass pipe PB1 may be arranged between compressor 230 and first outdoor heat exchanger 211 in the X-axis direction.
  • (3) Although the frequency of the compressor remains unchanged when the operation mode of air conditioning apparatus 1000, 1001, 1002 changes from the first mode to the third mode, the present disclosure is not limited thereto. When the operation mode of air conditioning apparatus 1000, 1001, 1002 changes from the first mode to the third mode, the frequency of the compressor may be changed, and control described in Embodiments 1 to 3 may be performed.
  • It is to be understood that the embodiments disclosed herein are presented for the purpose of illustration and non-restrictive in every respect. It is therefore intended that the scope of the present disclosure is defined by claims, not only by the embodiments described above, and encompasses all modifications and variations equivalent in meaning and scope to the claims.
  • REFERENCE SIGNS LIST
  • 11 first flow path; 12 second flow path; 100 indoor unit; 110 second heat exchange unit; 111 first indoor heat exchanger; 112 second indoor heat exchanger; 120 indoor blower; 200 outdoor unit; 210 first heat exchange unit; 211 first outdoor heat exchanger; 212 second outdoor heat exchanger; 220 outdoor blower; 230, 230A, 230B compressor; 240, 240A, 240B flow path switch; 250, 250A, 250B first valve; 251 fourth valve; 260 inner heat exchanger; 261 a first inner flow path; 261 b second inner flow path; 270 third valve; 271 second bypass pipe; 280 second valve; 310M, 311M, 312M, 313M, 314M, 315M, 316M, 317M, 318M pipe; 1000, 1001, 1002, 1100 air conditioning apparatus; BP1 first branching portion; BP2 second branching portion; BP3 third branching portion; BP4 fourth branching portion; E1 first end of outdoor unit; E2 second end of outdoor unit; P1 first opening; P2 second opening; P3 third opening; P4 fourth opening; PB1 first bypass pipe; RC1, RC2 refrigerant circuit; US upper surface.

Claims (17)

1. An air conditioning apparatus comprising a refrigerant circuit in which refrigerant flows, the refrigerant circuit having a compressor, a flow path switch, a first heat exchange unit, a second heat exchange unit, an inner heat exchanger, a first valve, and a second valve,
the flow path switch being provided with a first opening, a second opening, a third opening, and a fourth opening,
the inner heat exchanger being provided with a first inner flow path and a second inner flow path,
a discharge side of the compressor being connected to the first opening of the flow path switch,
a first end of the first heat exchange unit being connected to the fourth opening of the flow path switch,
a second end of the first heat exchange unit being connected to a first end of the first valve,
a second end of the first valve is connected to a first end of the first inner flow path of the inner heat exchanger,
a second end of the first inner flow path of the inner heat exchanger being connected to a first end of the second heat exchange unit,
a first end of the second inner flow path of the inner heat exchanger being connected to the second opening of the flow path switch,
a second end of the second heat exchange unit being connected to a first branching portion,
the first branching portion being connected to a first end of the second valve and the third opening of the flow path switch,
a second end of the second valve being connected to a second branching portion,
the second branching portion being connected to a suction side of the compressor and a second end of the second inner flow path of the inner heat exchanger,
when an operation mode of the air conditioning apparatus is a first mode, the second valve being configured to open, the first opening being connected to the fourth opening, and the second opening being connected to the third opening,
when the operation mode of the air conditioning apparatus is a second mode, the second valve being configured to close, the first opening being connected to the third opening, and the second opening being connected to the fourth opening.
2. The air conditioning apparatus according to claim 1, wherein
when the operation mode of the air conditioning apparatus is the first mode, the refrigerant flows in order of the compressor, the flow path switch, the first heat exchange unit, the first valve, the inner heat exchanger, the second heat exchange unit, and the first branching portion, and then, part of the refrigerant flows through a first flow path from the first branching portion via the second valve to the second branching portion, and rest of the refrigerant flows through a second flow path from the first branching portion via the flow path switch and the inner heat exchanger to the second branching portion, and then, the refrigerant in the first flow path and the refrigerant in the second flow path merge at the second branching portion and flow to the compressor, and
when the operation mode of the air conditioning apparatus is the second mode, the refrigerant flows in order of the compressor, the flow path switch, the second heat exchange unit, the inner heat exchanger, the first valve, the first heat exchange unit, the flow path switch, the inner heat exchanger, the second branching portion, and the compressor.
3. The air conditioning apparatus according to claim 2, wherein the first flow path has a flow path resistance smaller than a flow path resistance of the second flow path.
4. The air conditioning apparatus according to claim 3, wherein
the refrigerant circuit has a main pipe and a first bypass pipe, and
the main pipe is connected between the compressor and the flow path switch, between the flow path switch and the first heat exchange unit, between the first heat exchange unit and the inner heat exchanger via the first valve, between the inner heat exchanger and the second branching portion, between the second branching portion and the compressor, between the inner heat exchanger and the second heat exchange unit, between the second heat exchange unit and the first branching portion, between the first branching portion and the flow path switch, and between the flow path switch and the inner heat exchanger, and the first bypass pipe is connected between the first branching portion and the second branching portion via the second valve.
5. The air conditioning apparatus according to claim 4, wherein the first bypass pipe has a length smaller than a length of a pipe between the flow path switch and the inner heat exchanger and smaller than a length of a pipe between the inner heat exchanger and the second branching portion.
6. The air conditioning apparatus according to claim 5, wherein the first heat exchange unit has a first outdoor heat exchanger and a second outdoor heat exchanger.
7. The air conditioning apparatus according to claim 6, wherein
the compressor, the first outdoor heat exchanger, the second outdoor heat exchanger, an outdoor blower, the inner heat exchanger, and the first valve are housed in an outdoor unit,
an upper surface of the outdoor unit has an arc shape in a first axial direction,
the outdoor blower is arranged at a center of the outdoor unit in the first axial direction,
the first outdoor heat exchanger is arranged on a first side of the outdoor blower in the first axial direction, and the second outdoor heat exchanger is arranged on a second side of the outdoor blower,
the compressor is arranged between a first end of the outdoor unit and the first outdoor heat exchanger in the first axial direction, and
the inner heat exchanger is arranged between a second end of the outdoor unit and the second outdoor heat exchanger in the first axial direction.
8. The air conditioning apparatus according to claim 7, wherein
the first bypass pipe is arranged parallel to a first axis, and
the first bypass pipe is arranged between the compressor and the first end of the outdoor unit in the first axial direction.
9. The air conditioning apparatus according to claim 8, wherein part of the main pipe connected to the first branching portion is arranged parallel to a second axis perpendicular to the first axis.
10. The air conditioning apparatus according to claim 1, wherein the second heat exchange unit has a first indoor heat exchanger and a second indoor heat exchanger.
11. The air conditioning apparatus according to claim 4, wherein
the refrigerant circuit has a second bypass pipe and a third valve,
a third branching portion between the first valve and the inner heat exchanger is connected to a fourth branching portion between the inner heat exchanger and the second heat exchange unit via the third valve by the second bypass pipe, and
the third valve is configured to cause the refrigerant to flow through the second bypass pipe when the operation mode of the air conditioning apparatus is the first mode and cause the refrigerant, not to flow through the second bypass pipe when the operation mode of the air conditioning apparatus is the second mode.
12. The air conditioning apparatus according to claim 1, wherein when the operation mode of the air conditioning apparatus is a third mode, the second valve is configured to be closed, the first opening is connected to the fourth opening, and the second opening is connected to the third opening.
13. The air conditioning apparatus according to claim 12, wherein when the operation mode of the air conditioning apparatus is the third mode, all the refrigerant flows in order of the compressor, the flow path switch, the first heat exchange unit, the first valve, the inner heat exchanger, the second heat exchange unit, the first branching portion, the flow path switch, the inner heat exchanger, the second branching portion, and the compressor.
14. The air conditioning apparatus according to claim 4, wherein
the refrigerant circuit has a fourth valve arranged in the main pipe between the inner heat exchanger and the second heat exchange unit, wherein
when the operation mode of the air conditioning apparatus is the first mode or the second mode, the fourth valve is configured to be fully open, and
when the operation mode of the air conditioning apparatus is the third mode, the first valve is configured to be fully open, and the fourth valve is configured to decompress the refrigerant.
15. The air conditioning apparatus according to claim 12, wherein when an outside air temperature exceeds a specified value, the operation mode of the air conditioning apparatus changes from the first mode to the third mode.
16. The air conditioning apparatus according to claim 15, wherein when the outside air temperature exceeds the specified value, a frequency of the compressor remains unchanged.
17. The air conditioning apparatus according to claim 1, wherein the refrigerant is CO2 refrigerant.
US17/777,143 2020-01-09 2020-01-09 Air Conditioning Apparatus Abandoned US20220397318A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000494 WO2021140622A1 (en) 2020-01-09 2020-01-09 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
US20220397318A1 true US20220397318A1 (en) 2022-12-15

Family

ID=76787803

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/777,143 Abandoned US20220397318A1 (en) 2020-01-09 2020-01-09 Air Conditioning Apparatus

Country Status (4)

Country Link
US (1) US20220397318A1 (en)
EP (1) EP4089344A4 (en)
JP (1) JP7350892B2 (en)
WO (1) WO2021140622A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194432A (en) * 2001-10-19 2003-07-09 Matsushita Electric Ind Co Ltd Refrigeration cycle device
US20120006050A1 (en) * 2009-04-01 2012-01-12 Mitsubishi Electric Corporation Air-conditioning apparatus
US20120036887A1 (en) * 2009-05-08 2012-02-16 Mitsubishi Electric Corporation Air-conditioning apparatus
US20120151949A1 (en) * 2009-09-10 2012-06-21 Koji Yamashita Air conditioning device
US20120180515A1 (en) * 2009-10-19 2012-07-19 Mitsubishi Electric Corporation Heat medium relay unit and air-conditioning apparatus
US9494361B2 (en) * 2011-07-14 2016-11-15 Mitsubishi Electric Corporation Air-conditioning apparatus with improved defrost operation mode
US10054337B2 (en) * 2012-12-20 2018-08-21 Mitsubishi Electric Corporation Air-conditioning apparatus having indoor units and relay unit
US20190257554A1 (en) * 2016-10-28 2019-08-22 Mitsubishi Electric Corporation Air conditioner
US10619892B2 (en) * 2015-01-15 2020-04-14 Lg Electronics Inc. Air conditioning system
US20210348797A1 (en) * 2020-03-30 2021-11-11 Lg Electronics Inc. Heat pump and method for operating heat pump
US20230152015A1 (en) * 2021-11-17 2023-05-18 Samsung Electronics Co., Ltd. Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10065112A1 (en) * 2000-12-28 2002-07-11 Bosch Gmbh Robert Arrangement and method for cooling or heating
WO2012132172A1 (en) * 2011-03-28 2012-10-04 三菱電機株式会社 Air conditioning apparatus
CN103797309B (en) * 2011-09-13 2016-05-18 三菱电机株式会社 Refrigerating air-conditioning

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194432A (en) * 2001-10-19 2003-07-09 Matsushita Electric Ind Co Ltd Refrigeration cycle device
US20120006050A1 (en) * 2009-04-01 2012-01-12 Mitsubishi Electric Corporation Air-conditioning apparatus
US20120036887A1 (en) * 2009-05-08 2012-02-16 Mitsubishi Electric Corporation Air-conditioning apparatus
US20120151949A1 (en) * 2009-09-10 2012-06-21 Koji Yamashita Air conditioning device
US8943847B2 (en) * 2009-09-10 2015-02-03 Mitsubishi Electric Corporation Air conditioning apparatus
US20120180515A1 (en) * 2009-10-19 2012-07-19 Mitsubishi Electric Corporation Heat medium relay unit and air-conditioning apparatus
US9494361B2 (en) * 2011-07-14 2016-11-15 Mitsubishi Electric Corporation Air-conditioning apparatus with improved defrost operation mode
US10054337B2 (en) * 2012-12-20 2018-08-21 Mitsubishi Electric Corporation Air-conditioning apparatus having indoor units and relay unit
US10619892B2 (en) * 2015-01-15 2020-04-14 Lg Electronics Inc. Air conditioning system
US20190257554A1 (en) * 2016-10-28 2019-08-22 Mitsubishi Electric Corporation Air conditioner
US20210348797A1 (en) * 2020-03-30 2021-11-11 Lg Electronics Inc. Heat pump and method for operating heat pump
US20230152015A1 (en) * 2021-11-17 2023-05-18 Samsung Electronics Co., Ltd. Air conditioner

Also Published As

Publication number Publication date
JPWO2021140622A1 (en) 2021-07-15
EP4089344A4 (en) 2022-12-28
WO2021140622A1 (en) 2021-07-15
JP7350892B2 (en) 2023-09-26
EP4089344A1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
CN102016446B (en) refrigeration unit
KR20100121672A (en) Refrigeration device
JP2006078087A (en) Refrigeration equipment
CN111247377A (en) Refrigeration cycle device
JP4118254B2 (en) Refrigeration equipment
JP4407012B2 (en) Refrigeration equipment
WO2020071293A1 (en) Refrigeration cycle device
US7225635B2 (en) Refrigerant cycle apparatus
JP4751851B2 (en) Refrigeration cycle
JP4352327B2 (en) Ejector cycle
US20220397318A1 (en) Air Conditioning Apparatus
JP7229348B2 (en) refrigerator
JP2615496B2 (en) Two-stage compression refrigeration cycle
JP2005337577A5 (en)
KR100304583B1 (en) Heat pump unit with injection cycle
JP7353514B1 (en) Refrigeration cycle equipment
KR100504880B1 (en) Multi-air conditioner capable of heating and cooling simultaneously with supercooling- accumulator
KR100554566B1 (en) Cryogenic Heat Pump Cycles
JP2010112618A (en) Air conditioning device
US20250334310A1 (en) Heat source unit and refrigeration apparatus
JP2005226927A (en) Refrigerant cycle device
KR101914499B1 (en) Air conditioner
KR100585687B1 (en) Unitary air conditioner
WO2024123660A1 (en) Transcritical refrigeration system with gas cooler assembly
KR100360233B1 (en) Refrigerating cycle apparatus having vortex tube and air conditioner having the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SATO, MASANORI;SHINGU, WAHEI;SIGNING DATES FROM 20220324 TO 20220404;REEL/FRAME:059917/0842

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE