US20220397111A1 - Actuator - Google Patents
Actuator Download PDFInfo
- Publication number
- US20220397111A1 US20220397111A1 US17/751,882 US202217751882A US2022397111A1 US 20220397111 A1 US20220397111 A1 US 20220397111A1 US 202217751882 A US202217751882 A US 202217751882A US 2022397111 A1 US2022397111 A1 US 2022397111A1
- Authority
- US
- United States
- Prior art keywords
- sheet
- suspension plate
- plate
- inlet
- actuator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000725 suspension Substances 0.000 claims abstract description 86
- 238000009413 insulation Methods 0.000 claims description 21
- 238000005452 bending Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- 239000012530 fluid Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
- F04B43/043—Micropumps
- F04B43/046—Micropumps with piezoelectric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/12—Casings; Cylinders; Cylinder heads; Fluid connections
- F04B39/123—Fluid connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
- F04B45/047—Pumps having electric drive
Definitions
- the present disclosure relates to an actuator, in particular, to an actuator which is miniaturized, thin, and quiet.
- the actuators are key components that are used in, for example, micro pumps, nebulizers, inkjet heads, or industrial printers. Therefore, how to break through the bottleneck in the technological development of the actuators by a novel structure is the important content of development.
- One object of the present disclosure is to provide an actuator including a piezoelectric sheet in combination with a suspension plate.
- a pressure gradient is generated in the flow path designed in the actuator.
- the fluid is transmitted from the intake end to the discharge end through the difference of resistances exist between the intake end and the discharge end of the flow path, so as to overcome the problems occurring in known equipment or apparatus utilizing the pneumatic-power, such as too large in volume, hard to be miniaturized, unable to be portable, and generating loud noises during operation.
- Another object of the present disclosure is to provide an actuator wherein the suspension plate, the outer frame, the supporting element, the piezoelectric sheet, the inlet plate, and the resonance sheet are fabricated as a modular structure.
- the modular structure has a length, a width, and a height which are all of millimeter (mm) scale, micrometer ( ⁇ m) scale, or nanometer (nm) scale.
- a general embodiment of the present disclosure provides an actuator including a suspension plate, an outer frame, at least one supporting element, a piezoelectric sheet, an inlet plate, and a resonance sheet.
- the suspension plate has a first surface and a second surface, and the suspension plate is capable of bending and vibrating.
- the outer frame is disposed around an outer periphery of the suspension plate.
- the at least one supporting element is connected between the suspension plate and the outer frame to provide a flexible support for the suspension plate.
- the piezoelectric sheet is disposed above the first surface of the suspension plate.
- the inlet plate is disposed on the second surface of the suspension plate.
- the inlet plate has at least one inlet hole, at least one convergence channel, and a convergence chamber.
- the at least one inlet hole is configured to introduce a gas flow into the actuator, and the at least one convergence channel is corresponding to the at least one inlet hole for guiding the gas flow introduced from the at least one inlet hole to be converged into the convergence chamber formed by a central recess.
- the resonance sheet is disposed between the inlet plate and the suspension plate.
- the resonance sheet has a perforation corresponding to the convergence chamber of the inlet plate, and a movable portion is provided in the periphery of the perforation.
- the suspension plate, the outer frame, the at least one supporting element, the piezoelectric sheet, the inlet plate, and the resonance sheet are fabricated into a modular structure, and the modular structure has a length, a width, and a height.
- an actuator including a suspension plate, an outer frame, at least one supporting element, a piezoelectric sheet, an inlet plate, and a resonance sheet.
- the suspension plate has a first surface and a second surface, and the suspension plate is capable of bending and vibrating.
- the outer frame is disposed around an outer periphery of the suspension plate.
- the least one supporting element is connected between the suspension plate and the outer frame to provide a flexible support for the suspension plate.
- the piezoelectric sheet is disposed above the first surface of the suspension plate.
- the inlet plate is disposed on the second surface of the suspension plate.
- the inlet plate has at least one inlet hole, at least one convergence channel, and a convergence chamber.
- the at least one inlet hole is configured to introduce a gas flow into the actuator, and the at least one convergence channel is corresponding to the at least one inlet hole for guiding the gas flow introduced from the at least one inlet hole to be converged into the convergence chamber formed by a central recess.
- the resonance sheet is disposed between the inlet plate and the suspension plate. The resonance sheet has a perforation corresponding to the convergence chamber of the inlet plate, and a movable portion is provided in the periphery of the perforation.
- the suspension plate, the outer frame, the at least one supporting element, the piezoelectric sheet, the inlet plate, and the resonance sheet are fabricated into a modular structure, and the modular structure has a length in a range between 1 nm and 999 nm, a width in a range between 1 nm and 999 nm, and a height in a range between 1 nm and 999 nm.
- FIG. 1 illustrates a front exploded view of an actuator, having an inlet plate, a suspension plate, a resonance sheet, a first insulation sheet, a conductive sheet, and a second insulation sheet, according to an exemplary embodiment of the present disclosure
- FIG. 2 illustrates a rear exploded view of the actuator, having the inlet plate, the suspension plate, the resonance sheet, the first insulation sheet, the conductive sheet, and the second insulation sheet, of the exemplary embodiment of the present disclosure
- FIG. 3 illustrates a schematic view for the structure of the actuator of the exemplary embodiment of the present disclosure
- FIG. 4 illustrates a cross-sectional view of the actuator, having the inlet plate, the suspension plate, the resonance sheet, the first insulation sheet, the conductive sheet, and the second insulation sheet, of the exemplary embodiment of the present disclosure
- FIG. 5 A to FIG. 5 E illustrate schematic views showing the operation steps of the actuator shown in FIG. 4 .
- an actuator 1 including a suspension plate 11 , an outer frame 12 , at least one supporting element 13 , and a piezoelectric sheet is provided.
- the suspension plate 11 has a first surface 11 c and a second surface 11 b , and the suspension plate 11 is capable of vibrating and bending.
- the outer frame 12 is disposed around the outer periphery of the suspension plate 11 .
- the at least one supporting element 13 is connected between the suspension plate 11 and the outer frame 12 . In this embodiment, the two ends of each of the supporting elements 13 are connected to the outer frame 12 and the suspension plate 11 , respectively, to provide a flexible support for the suspension plate 11 .
- At least one clearance 15 is provided between the supporting element 13 , the suspension plate 11 , and the outer frame 12 , so as to allow the gas to pass through the at least one clearance 15 .
- the configurations and the number of the suspension plate 11 , the outer frame 12 , and the supporting element 13 are not limited to the aforementioned embodiments and can be varied according to practical application requirements.
- the outer frame 12 is disposed around the outer periphery of the suspension plate 11 and has a conductive pin 12 c protruding outwardly for electrical connection, but not limited thereto.
- the suspension plate 11 is a stepped structure. That is, in this embodiment, the second surface 11 b of the suspension plate 11 further has a protruding portion 11 a .
- the protruding portion 11 a may be, but not limited to, a round protruding structure.
- the second surface 11 b of the suspension plate 11 is coplanar with the second surface 12 a of the outer frame 12 , and the second surface 11 b of the suspension plate 11 is also coplanar with the second surface 13 a of the supporting element 13 .
- a specific depth is provided between the protruding portion 11 a of the suspension plate 11 and the second surface 12 a of the outer frame 12 , the protruding portion 11 a of the suspension plate 11 and the second surface 11 b of the suspension plate 11 , and the protruding portion 11 a of the suspension plate 11 and the second surface 13 a of the supporting element 13 , respectively.
- the first surface 11 c of the suspension plate 11 , the first surface 12 b of the outer frame 12 , and the first surface 13 b of the supporting element 13 form a flat coplanar structure, but not limited thereto.
- the piezoelectric sheet 14 is attached to the first surface 11 c of the suspension plate 11 .
- the configuration of the suspension plate 11 may be a square plate structure with double flat surfaces, but not limited thereto, and the configuration of the suspension plate 11 may be varied according to practical conditions.
- the suspension plate 11 , the supporting element 13 , and the outer frame 12 may be an integrally-formed structure and may be made from a metal plate, for example, but not limited to, a stainless steel plate.
- the side length of piezoelectric sheet 14 is shorter than the side length of the suspension plate 11 .
- the side length of piezoelectric sheet 14 is equal to the side length of the suspension plate 11 , and the piezoelectric sheet 14 is configured as a square plate structure corresponding to the suspension plate 11 , but not limited thereto.
- the piezoelectric sheet 14 may also have two electrodes formed by silver-palladium alloy doped with graphene materials. The electrodes are provided for reducing the resistance to increase the mobility of charge and increasing the thermal conductivity to dissipate heat quickly. The surface of one of the electrodes is coated with a coating of the thermal conduction layer, which also can increase the thermal conductivity to dissipate heat quickly.
- the surface of the other electrode is coated with an adhesive layer made of epoxy resin doped with conductive materials, so that the electrode can be adhered to the first surface 11 c of the suspension plate 11 through the adhesive layer for reducing the resistance to increase the charge mobility and increasing the thermal conductivity to dissipate heat quickly.
- the two electrodes are applied with a voltage to drive the suspension plate 11 to vibrate and bent, but not limited thereto.
- the configuration of the electrodes of the piezoelectric sheet 14 may be varied according to practical requirements.
- the actuator 1 further includes an inlet plate 16 , a resonance sheet 17 , a first insulation sheet 18 a , a second insulation sheet 18 b , and a conductive sheet 19 .
- the suspension plate 11 is disposed in correspondence to the resonance sheet 17 .
- the inlet plate 16 , the resonance sheet 17 , the outer frame 12 , the first insulation sheet 18 a , the conductive sheet 19 , and the second insulation sheet 18 b are sequentially stacked and assembled with each other.
- the cross-sectional view of the assembled structure of the actuator 1 is shown in FIG. 4 .
- the inlet plate 16 has at least one inlet hole 16 a .
- the number of the inlet hole 16 a is preferably four, but not limited thereto.
- the inlet hole 16 a penetrates through the inlet plate 16 , so that the gas outside the actuator 1 can flow into the actuator 1 from the at least one inlet hole 16 a in response to the atmospheric pressure outside the actuator 1 .
- the inlet plate 16 has at least one convergence channel 16 b .
- the convergence channels 16 b converges into a convergence chamber 16 c formed by a central recess, and the convergence chamber 16 c is in communication with the convergence channels 16 b .
- the inlet plate 16 has a first surface 16 d which may be coated with a coating doped with graphene materials to increase thermal conductivity for dissipating heat quickly, but not limited thereto.
- the coating material on the surface of the inlet plate 16 may be varied according to different requirements.
- the at least one convergence channel 16 b provided on the first surface 16 d of the inlet plate 16 is corresponding to the at least one inlet hole 16 a , so that the gas flow entering the convergence channel 16 b through the at least one inlet hole 16 a can be guided and converged into the convergence chamber 16 c , so as to deliver the gas flow.
- the inlet plate 16 is integrally formed with the inlet hole 16 a , the convergence channel 16 b , and the convergence chamber 16 c .
- the convergence chamber 16 c is formed by a central recess for converging and storing the gas temporarily.
- the inlet plate 16 is made of stainless steel, but not limited thereto.
- the depth of the convergence chamber 16 c formed by the central recess is substantially equal to the depth of the convergence channel 16 b , but not limited thereto.
- the resonance sheet 17 is made of a flexible material, but not limited thereto.
- the resonance sheet 17 has a perforation 17 c in correspondence to the convergence chamber 16 c of the inlet plate 16 , so as to allow the gas in the convergence chamber to pass through the resonance sheet 17 through the perforation 17 c .
- the resonance sheet 17 is made of copper, but not limited thereto.
- the actuator 1 having the suspension plate 11 , the outer frame 12 , the supporting element 13 , the piezoelectric sheet 14 , the inlet plate 16 , and the resonance sheet 17 is fabricated as a modular structure, and the modular structure has a length L, a width W, and a height H.
- the modular structure has the length in a range between 1 mm and 999 mm, the width in a range between 1 mm and 999 mm, and the height in a range between 1 mm and 999 mm, but not limited thereto. In some embodiments, the modular structure has the length in a range between 1 ⁇ m and 999 ⁇ m, the width in a range between 1 ⁇ m and 999 ⁇ m, and the height in a range between 1 ⁇ m and 999 ⁇ m, but not limited thereto.
- the modular structure has the length in a range between 1 nm and 999 nm, the width in a range between 1 nm and 999 nm, and the height in a range between 1 nm and 999 nm.
- the actuator 1 in the following descriptions is not limited to the scale of millimeter, micrometer, or nanometer. The scale in the manufacturing process may be varied as millimeter, micrometer, or nanometer scale, depending on different requirements.
- the first insulation sheet 18 a , the conductive sheet 19 , and the second insulation sheet 18 b of the actuator 1 are sequentially disposed under the frame 12 , and the shape of these elements is also substantially in correspondence to the shape of the outer frame 12 .
- the first insulation sheet 18 a and the second insulation sheet 18 b are made of an insulation material (such as plastic, but not limited thereto), so as to provide the function of insulation.
- the conductive sheet 19 is made of a conductive material, for example, but not limited to, a metal, so as to provide electrical conduction effect.
- the conductive sheet 19 may also have a conductive pin 19 a so as to provide electrical conduction effect.
- the conductive pin 12 c is electrically connected to one of the electrodes of the piezoelectric sheet 14
- the conductive pin 19 a is electrically connected to the other electrode of the piezoelectric sheet 14 .
- the inlet plate 16 , the resonance sheet 17 , the outer frame 12 , the first insulation sheet 18 a , the conductive sheet 19 , and the second insulation sheet 18 b are sequentially stacked with each other to form a device for fluid transmission.
- a gap h is located between the resonance sheet 17 and the outer frame 12 , and a filling material, for example, but not limited to, a conductive adhesive, is filled into the gap h between the resonance sheet 122 and the periphery of the outer frame 1232 of the piezoelectric actuator 123 .
- the height of the outer frame 12 may be increased to provide a gap between the outer frame 12 and the resonance sheet 17 , but not limited thereto.
- the resonance sheet 17 has a movable portion 17 a and a fixed portion 17 b .
- the movable portion 17 a and the inlet plate 16 above the movable portion 17 a together form a chamber for converging the gas.
- a first chamber 10 is further formed between the resonance sheet 17 , the suspension plate 11 , the supporting element 13 , and the outer frame 12 for storing the gas temporarily.
- the first chamber 10 is in communication with the convergence chamber 16 c formed by the central recess of the inlet plate 16 through the perforation 17 c of the resonance sheet 17 .
- the periphery of the first chamber 10 are in communication with the clearance 15 between the supporting elements 13 , so that the first chamber 10 is in communication with the flow path.
- FIG. 1 , FIG. 2 , FIG. 4 , and FIG. 5 A to FIG. 5 E When the piezoelectric sheet 14 is driven by a voltage, the piezoelectric sheet 14 starts to bend and vibrate vertically and reciprocatingly through taking the supporting elements 13 as pivots. As shown in FIG. 5 A , when the piezoelectric sheet 14 is driven by a voltage and bends downwardly, the resonance sheet 17 will vertically vibrate along with the piezoelectric sheet 14 in a reciprocating manner since the resonance sheet 17 is a light and thin sheet. That is, in this embodiment, the portion of the resonance sheet 17 corresponding to the convergence chamber 16 c will bend and vibrate along with the piezoelectric sheet 14 .
- the portion of the resonance sheet 17 corresponding to the convergence chamber 16 c is the movable portion 17 a of the resonance sheet 17 . Therefore, when the piezoelectric sheet 14 bends downwardly, the movable portion 17 a of the resonance sheet 17 corresponding to the convergence chamber 16 c also bends downwardly along with the piezoelectric sheet 14 in response to the introduction and pushing of the gas and the driving of the piezoelectric sheet 14 . Hence, the gas outside the actuator 1 flows into the inlet plate 16 through the at least one inlet hole 16 a of the inlet plate 16 , and the gas is converged into the convergence chamber 16 c through the at least one convergence channel 16 b .
- the gas flows into the first chamber 10 through the perforation 17 c of the resonance sheet 17 corresponding to the convergence chamber 16 c .
- the resonance sheet 17 will also resonate with the piezoelectric sheet 14 as driven by the vibration of the piezoelectric sheet 14 , thereby performing vertical vibration in a reciprocating manner.
- the piezoelectric sheet 14 bends downwardly, the movable portion 17 a of the resonance sheet 17 also vibrates downwardly and attaches to the protruding portion 11 a of the suspension plate 11 .
- the volume of the first chamber 10 is compressed through the deformation of the resonance sheet 17 , and the communication space in the first chamber 10 is sealed, so as to force the gas in the first chamber 10 to be pushed and flowed toward the periphery of the first chamber 10 to pass through the clarence 15 between the supporting elements 13 of the piezoelectric sheet 14 and flowed downwardly. Thereafter, as shown in FIG.
- the movable portion 17 a of the resonance sheet 17 bends and vibrates upwardly and recovers to its original position, and the piezoelectric sheet 14 is driven to vibrate and bend upwardly, thereby the volume of the first chamber 10 is compressed.
- the gas in the first chamber 10 still flows toward the periphery of the first chamber 10 .
- the gas contiguously enters the convergence chamber 16 c through the convergence channels 16 b from the at least one inlet hole 16 a of the inlet plate 16 .
- the movable portion 17 a of the resonance sheet 17 moves upwardly in resonance with the upwardly vibration of the suspension plate 11 .
- the gas is contiguously converged into the convergence chamber 16 c from the at least one inlet hole 16 a of the inlet plate 16 .
- the movable portion 17 a of the resonance sheet 17 also recovers to its original position.
- the maximum distance of the vertical displacement of the vibration can be increased through changing the gap h between the resonance sheet 17 and the outer frame 12 .
- providing the gap h between the resonance sheet 17 and the outer frame 12 allows the vibration of the resonance sheet 17 to have a greater amplitude of up-and-down displacement.
- a pressure gradient can be generated in the flow path designed in the actuator 1 , so as to transmit the gas flow rapidly.
- the gas is transmitted from the intake end to the discharge end through the resistance difference between the intake end and the discharge end of the flow path, so as to complete the gas transmission.
- the actuator 1 still can push the gas into the flow path continuously even in the condition that the discharge end is under a pressure, and the noise generated by the actuator 1 can be reduced as well. Accordingly, by repeating the operation steps of the actuator 1 shown in FIG. 5 A to FIG. 5 E , a gas transmission from the outside of the actuator 1 to the inside of the actuator 1 can be achieved.
- a pressure gradient is generated in the flow path designed in the actuator, so as to allow the fluid to flow rapidly.
- the fluid is transmitted from the intake end to the discharge end continuously through the difference of the resistances exist between the intake end and the discharge end of the flow path, so as to allow the fluid to flow rapidly and transmit continuously, thereby the fluid can be transmitted rapidly and quietly.
- the entire volume of the actuator can be reduced, so that the actuator can be miniaturized even to millimeter scale, micrometer scale, or nanometer scale.
- the present invention can achieve great heat dissipation performance through coating a doped coating material on the surface of the inlet plate and the electrodes of the piezoelectric sheet.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
- Vehicle Body Suspensions (AREA)
- Valve Device For Special Equipments (AREA)
- Fluid-Driven Valves (AREA)
- Actuator (AREA)
Abstract
An actuator includes a suspension plate, an outer frame, one or more supporting elements, a piezoelectric sheet, an inlet plate, and a resonance sheet. The suspension plate, the outer frame, the supporting element, the piezoelectric sheet, the inlet plate, and the resonance sheet are fabricated as a modular structure, and the modular structure has a length, a width, and a height.
Description
- This non-provisional application claims priority under 35 U.S.C. § 119(a) to Patent Application No. 110121456 filed in Taiwan, R.O.C. on Jun. 11, 2021, the entire contents of which are hereby incorporated by reference.
- The present disclosure relates to an actuator, in particular, to an actuator which is miniaturized, thin, and quiet.
- With the advancement of science and technology, products used in many sectors such as pharmaceutical industries, computer techniques, printing industries, or energy industries are all developed toward elaboration and miniaturization. The actuators are key components that are used in, for example, micro pumps, nebulizers, inkjet heads, or industrial printers. Therefore, how to break through the bottleneck in the technological development of the actuators by a novel structure is the important content of development.
- For example, in medical industries, many equipment or apparatuses (such as blood pressure meters or portable or wearable equipment or apparatuses) are driven by pneumatic-power. Such apparatus usually utilizes a motor and a pneumatic valve to achieve the purpose of fluid transmission. However, owing to the bulk volume of the traditional motor and fluid valve, the entire volume of these apparatuses cannot be reduced. As a result, the object of miniaturizing these apparatuses and making them portable cannot be accomplished. Moreover, during operations of the traditional motor and fluid valve, the motor and fluid valves usually generate noise, have poor heat dissipation performances, and make the use of these apparatuses not convenient and comfortable.
- Therefore, how to develop a device or an apparatus to improve and address above problem, make traditional device or apparatus driven by pneumatic-power to become smaller, to be miniaturized, to be more quiet, and to dissipate heat more quickly, thereby providing an actuator which is portable and can be used conveniently and comfortably, is an issue of concern recently.
- One object of the present disclosure is to provide an actuator including a piezoelectric sheet in combination with a suspension plate. Through the fluid fluctuation generated by the piezoelectric sheet under a high-frequency vibration, a pressure gradient is generated in the flow path designed in the actuator. As a result, the fluid is transmitted from the intake end to the discharge end through the difference of resistances exist between the intake end and the discharge end of the flow path, so as to overcome the problems occurring in known equipment or apparatus utilizing the pneumatic-power, such as too large in volume, hard to be miniaturized, unable to be portable, and generating loud noises during operation.
- Another object of the present disclosure is to provide an actuator wherein the suspension plate, the outer frame, the supporting element, the piezoelectric sheet, the inlet plate, and the resonance sheet are fabricated as a modular structure. The modular structure has a length, a width, and a height which are all of millimeter (mm) scale, micrometer (μm) scale, or nanometer (nm) scale.
- To achieve the aforementioned object(s), a general embodiment of the present disclosure provides an actuator including a suspension plate, an outer frame, at least one supporting element, a piezoelectric sheet, an inlet plate, and a resonance sheet. The suspension plate has a first surface and a second surface, and the suspension plate is capable of bending and vibrating. The outer frame is disposed around an outer periphery of the suspension plate. The at least one supporting element is connected between the suspension plate and the outer frame to provide a flexible support for the suspension plate. The piezoelectric sheet is disposed above the first surface of the suspension plate. The inlet plate is disposed on the second surface of the suspension plate. The inlet plate has at least one inlet hole, at least one convergence channel, and a convergence chamber. The at least one inlet hole is configured to introduce a gas flow into the actuator, and the at least one convergence channel is corresponding to the at least one inlet hole for guiding the gas flow introduced from the at least one inlet hole to be converged into the convergence chamber formed by a central recess. The resonance sheet is disposed between the inlet plate and the suspension plate. The resonance sheet has a perforation corresponding to the convergence chamber of the inlet plate, and a movable portion is provided in the periphery of the perforation. The suspension plate, the outer frame, the at least one supporting element, the piezoelectric sheet, the inlet plate, and the resonance sheet are fabricated into a modular structure, and the modular structure has a length, a width, and a height.
- To achieve the aforementioned object(s), another general embodiment of the present disclosure provides an actuator including a suspension plate, an outer frame, at least one supporting element, a piezoelectric sheet, an inlet plate, and a resonance sheet. The suspension plate has a first surface and a second surface, and the suspension plate is capable of bending and vibrating. The outer frame is disposed around an outer periphery of the suspension plate. The least one supporting element is connected between the suspension plate and the outer frame to provide a flexible support for the suspension plate. The piezoelectric sheet is disposed above the first surface of the suspension plate. The inlet plate is disposed on the second surface of the suspension plate. The inlet plate has at least one inlet hole, at least one convergence channel, and a convergence chamber. The at least one inlet hole is configured to introduce a gas flow into the actuator, and the at least one convergence channel is corresponding to the at least one inlet hole for guiding the gas flow introduced from the at least one inlet hole to be converged into the convergence chamber formed by a central recess. The resonance sheet is disposed between the inlet plate and the suspension plate. The resonance sheet has a perforation corresponding to the convergence chamber of the inlet plate, and a movable portion is provided in the periphery of the perforation. The suspension plate, the outer frame, the at least one supporting element, the piezoelectric sheet, the inlet plate, and the resonance sheet are fabricated into a modular structure, and the modular structure has a length in a range between 1 nm and 999 nm, a width in a range between 1 nm and 999 nm, and a height in a range between 1 nm and 999 nm.
- The disclosure will become more fully understood from the detailed description given herein below, for illustration only and thus not limitative of the disclosure, wherein:
-
FIG. 1 illustrates a front exploded view of an actuator, having an inlet plate, a suspension plate, a resonance sheet, a first insulation sheet, a conductive sheet, and a second insulation sheet, according to an exemplary embodiment of the present disclosure; -
FIG. 2 illustrates a rear exploded view of the actuator, having the inlet plate, the suspension plate, the resonance sheet, the first insulation sheet, the conductive sheet, and the second insulation sheet, of the exemplary embodiment of the present disclosure; -
FIG. 3 illustrates a schematic view for the structure of the actuator of the exemplary embodiment of the present disclosure; -
FIG. 4 illustrates a cross-sectional view of the actuator, having the inlet plate, the suspension plate, the resonance sheet, the first insulation sheet, the conductive sheet, and the second insulation sheet, of the exemplary embodiment of the present disclosure; and -
FIG. 5A toFIG. 5E illustrate schematic views showing the operation steps of the actuator shown inFIG. 4 . - The present disclosure will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of different embodiments of this disclosure are presented herein for the purpose of illustration and description only, and it is not intended to limit the scope of the present disclosure.
- Please refer to
FIG. 1 ,FIG. 2 , andFIG. 4 . According to one embodiment of the present disclosure, anactuator 1 including asuspension plate 11, anouter frame 12, at least one supportingelement 13, and a piezoelectric sheet is provided. Thesuspension plate 11 has afirst surface 11 c and asecond surface 11 b, and thesuspension plate 11 is capable of vibrating and bending. Theouter frame 12 is disposed around the outer periphery of thesuspension plate 11. The at least one supportingelement 13 is connected between thesuspension plate 11 and theouter frame 12. In this embodiment, the two ends of each of the supportingelements 13 are connected to theouter frame 12 and thesuspension plate 11, respectively, to provide a flexible support for thesuspension plate 11. Moreover, at least oneclearance 15 is provided between the supportingelement 13, thesuspension plate 11, and theouter frame 12, so as to allow the gas to pass through the at least oneclearance 15. It is noted that, the configurations and the number of thesuspension plate 11, theouter frame 12, and the supportingelement 13 are not limited to the aforementioned embodiments and can be varied according to practical application requirements. Moreover, theouter frame 12 is disposed around the outer periphery of thesuspension plate 11 and has aconductive pin 12 c protruding outwardly for electrical connection, but not limited thereto. - In this embodiment, the
suspension plate 11 is a stepped structure. That is, in this embodiment, thesecond surface 11 b of thesuspension plate 11 further has a protrudingportion 11 a. The protrudingportion 11 a may be, but not limited to, a round protruding structure. Thesecond surface 11 b of thesuspension plate 11 is coplanar with thesecond surface 12 a of theouter frame 12, and thesecond surface 11 b of thesuspension plate 11 is also coplanar with thesecond surface 13 a of the supportingelement 13. Moreover, a specific depth is provided between the protrudingportion 11 a of thesuspension plate 11 and thesecond surface 12 a of theouter frame 12, the protrudingportion 11 a of thesuspension plate 11 and thesecond surface 11 b of thesuspension plate 11, and the protrudingportion 11 a of thesuspension plate 11 and thesecond surface 13 a of the supportingelement 13, respectively. Thefirst surface 11 c of thesuspension plate 11, thefirst surface 12 b of theouter frame 12, and thefirst surface 13 b of the supportingelement 13 form a flat coplanar structure, but not limited thereto. - In this embodiment, the
piezoelectric sheet 14 is attached to thefirst surface 11 c of thesuspension plate 11. In some other embodiments, the configuration of thesuspension plate 11 may be a square plate structure with double flat surfaces, but not limited thereto, and the configuration of thesuspension plate 11 may be varied according to practical conditions. In some embodiments, thesuspension plate 11, the supportingelement 13, and theouter frame 12 may be an integrally-formed structure and may be made from a metal plate, for example, but not limited to, a stainless steel plate. In some other embodiments, the side length ofpiezoelectric sheet 14 is shorter than the side length of thesuspension plate 11. In further embodiments, the side length ofpiezoelectric sheet 14 is equal to the side length of thesuspension plate 11, and thepiezoelectric sheet 14 is configured as a square plate structure corresponding to thesuspension plate 11, but not limited thereto. It is noted that, in this embodiment, thepiezoelectric sheet 14 may also have two electrodes formed by silver-palladium alloy doped with graphene materials. The electrodes are provided for reducing the resistance to increase the mobility of charge and increasing the thermal conductivity to dissipate heat quickly. The surface of one of the electrodes is coated with a coating of the thermal conduction layer, which also can increase the thermal conductivity to dissipate heat quickly. The surface of the other electrode is coated with an adhesive layer made of epoxy resin doped with conductive materials, so that the electrode can be adhered to thefirst surface 11 c of thesuspension plate 11 through the adhesive layer for reducing the resistance to increase the charge mobility and increasing the thermal conductivity to dissipate heat quickly. The two electrodes are applied with a voltage to drive thesuspension plate 11 to vibrate and bent, but not limited thereto. The configuration of the electrodes of thepiezoelectric sheet 14 may be varied according to practical requirements. - Please refer to
FIG. 1 andFIG. 2 . As shown in these figures, in this embodiment, theactuator 1 further includes aninlet plate 16, aresonance sheet 17, afirst insulation sheet 18 a, asecond insulation sheet 18 b, and aconductive sheet 19. Thesuspension plate 11 is disposed in correspondence to theresonance sheet 17. Theinlet plate 16, theresonance sheet 17, theouter frame 12, thefirst insulation sheet 18 a, theconductive sheet 19, and thesecond insulation sheet 18 b are sequentially stacked and assembled with each other. The cross-sectional view of the assembled structure of theactuator 1 is shown inFIG. 4 . - Please refer to
FIG. 1 andFIG. 2 . As shown inFIG. 1 , in this embodiment, theinlet plate 16 has at least oneinlet hole 16 a. The number of theinlet hole 16 a is preferably four, but not limited thereto. Theinlet hole 16 a penetrates through theinlet plate 16, so that the gas outside theactuator 1 can flow into theactuator 1 from the at least oneinlet hole 16 a in response to the atmospheric pressure outside theactuator 1. As shown inFIG. 2 , theinlet plate 16 has at least oneconvergence channel 16 b. Theconvergence channels 16 b converges into aconvergence chamber 16 c formed by a central recess, and theconvergence chamber 16 c is in communication with theconvergence channels 16 b. It is noted that, in this embodiment, theinlet plate 16 has afirst surface 16 d which may be coated with a coating doped with graphene materials to increase thermal conductivity for dissipating heat quickly, but not limited thereto. The coating material on the surface of theinlet plate 16 may be varied according to different requirements. The at least oneconvergence channel 16 b provided on thefirst surface 16 d of theinlet plate 16 is corresponding to the at least oneinlet hole 16 a, so that the gas flow entering theconvergence channel 16 b through the at least oneinlet hole 16 a can be guided and converged into theconvergence chamber 16 c, so as to deliver the gas flow. In this embodiment, theinlet plate 16 is integrally formed with theinlet hole 16 a, theconvergence channel 16 b, and theconvergence chamber 16 c. Theconvergence chamber 16 c is formed by a central recess for converging and storing the gas temporarily. In some embodiments, theinlet plate 16 is made of stainless steel, but not limited thereto. In some other embodiments, the depth of theconvergence chamber 16 c formed by the central recess is substantially equal to the depth of theconvergence channel 16 b, but not limited thereto. Theresonance sheet 17 is made of a flexible material, but not limited thereto. Moreover, theresonance sheet 17 has aperforation 17 c in correspondence to theconvergence chamber 16 c of theinlet plate 16, so as to allow the gas in the convergence chamber to pass through theresonance sheet 17 through theperforation 17 c. In some other embodiments, theresonance sheet 17 is made of copper, but not limited thereto. As shown inFIG. 3 , it is noted that, in this embodiment, theactuator 1 having thesuspension plate 11, theouter frame 12, the supportingelement 13, thepiezoelectric sheet 14, theinlet plate 16, and theresonance sheet 17 is fabricated as a modular structure, and the modular structure has a length L, a width W, and a height H. In one embodiment, the modular structure has the length in a range between 1 mm and 999 mm, the width in a range between 1 mm and 999 mm, and the height in a range between 1 mm and 999 mm, but not limited thereto. In some embodiments, the modular structure has the length in a range between 1 μm and 999 μm, the width in a range between 1 μm and 999 μm, and the height in a range between 1 μm and 999 μm, but not limited thereto. In some embodiments, the modular structure has the length in a range between 1 nm and 999 nm, the width in a range between 1 nm and 999 nm, and the height in a range between 1 nm and 999 nm. To simplify the description, theactuator 1 in the following descriptions is not limited to the scale of millimeter, micrometer, or nanometer. The scale in the manufacturing process may be varied as millimeter, micrometer, or nanometer scale, depending on different requirements. - In this embodiment, as shown in
FIG. 1 ,FIG. 2 , andFIG. 4 , thefirst insulation sheet 18 a, theconductive sheet 19, and thesecond insulation sheet 18 b of theactuator 1 are sequentially disposed under theframe 12, and the shape of these elements is also substantially in correspondence to the shape of theouter frame 12. In some embodiments, thefirst insulation sheet 18 a and thesecond insulation sheet 18 b are made of an insulation material (such as plastic, but not limited thereto), so as to provide the function of insulation. In this embodiment, theconductive sheet 19 is made of a conductive material, for example, but not limited to, a metal, so as to provide electrical conduction effect. In this embodiment, theconductive sheet 19 may also have aconductive pin 19 a so as to provide electrical conduction effect. Theconductive pin 12 c is electrically connected to one of the electrodes of thepiezoelectric sheet 14, and theconductive pin 19 a is electrically connected to the other electrode of thepiezoelectric sheet 14. - In this embodiment, as shown in
FIG. 4 , theinlet plate 16, theresonance sheet 17, theouter frame 12, thefirst insulation sheet 18 a, theconductive sheet 19, and thesecond insulation sheet 18 b are sequentially stacked with each other to form a device for fluid transmission. Moreover, in this embodiment, a gap h is located between theresonance sheet 17 and theouter frame 12, and a filling material, for example, but not limited to, a conductive adhesive, is filled into the gap h between the resonance sheet 122 and the periphery of the outer frame 1232 of the piezoelectric actuator 123. Therefore, a specific depth can be maintained between theresonance sheet 17 and thesecond surface 11 b of thesuspension plate 11, thereby the gas flow can be guided to flow more quickly. Moreover, since a proper distance is kept between the protrudingportion 11 a of thesuspension plate 11 and theresonance sheet 17, the contact possibility between these components can be decreased, and thus the noise can be reduced as well. In some other embodiments, the height of theouter frame 12 may be increased to provide a gap between theouter frame 12 and theresonance sheet 17, but not limited thereto. - Please further refer to
FIG. 1 ,FIG. 2 , andFIG. 4 . In this embodiment, theresonance sheet 17 has amovable portion 17 a and a fixedportion 17 b. After theinlet plate 16, theresonance sheet 17, and theouter frame 12 are sequentially stacked and assembled with each other, themovable portion 17 a and theinlet plate 16 above themovable portion 17 a together form a chamber for converging the gas. Afirst chamber 10 is further formed between theresonance sheet 17, thesuspension plate 11, the supportingelement 13, and theouter frame 12 for storing the gas temporarily. Thefirst chamber 10 is in communication with theconvergence chamber 16 c formed by the central recess of theinlet plate 16 through theperforation 17 c of theresonance sheet 17. The periphery of thefirst chamber 10 are in communication with theclearance 15 between the supportingelements 13, so that thefirst chamber 10 is in communication with the flow path. - Please refer to
FIG. 1 ,FIG. 2 ,FIG. 4 , andFIG. 5A toFIG. 5E . When thepiezoelectric sheet 14 is driven by a voltage, thepiezoelectric sheet 14 starts to bend and vibrate vertically and reciprocatingly through taking the supportingelements 13 as pivots. As shown inFIG. 5A , when thepiezoelectric sheet 14 is driven by a voltage and bends downwardly, theresonance sheet 17 will vertically vibrate along with thepiezoelectric sheet 14 in a reciprocating manner since theresonance sheet 17 is a light and thin sheet. That is, in this embodiment, the portion of theresonance sheet 17 corresponding to theconvergence chamber 16 c will bend and vibrate along with thepiezoelectric sheet 14. As a result, the portion of theresonance sheet 17 corresponding to theconvergence chamber 16 c is themovable portion 17 a of theresonance sheet 17. Therefore, when thepiezoelectric sheet 14 bends downwardly, themovable portion 17 a of theresonance sheet 17 corresponding to theconvergence chamber 16 c also bends downwardly along with thepiezoelectric sheet 14 in response to the introduction and pushing of the gas and the driving of thepiezoelectric sheet 14. Hence, the gas outside theactuator 1 flows into theinlet plate 16 through the at least oneinlet hole 16 a of theinlet plate 16, and the gas is converged into theconvergence chamber 16 c through the at least oneconvergence channel 16 b. Then, the gas flows into thefirst chamber 10 through theperforation 17 c of theresonance sheet 17 corresponding to theconvergence chamber 16 c. Thereafter, theresonance sheet 17 will also resonate with thepiezoelectric sheet 14 as driven by the vibration of thepiezoelectric sheet 14, thereby performing vertical vibration in a reciprocating manner. As shown inFIG. 5B , when thepiezoelectric sheet 14 bends downwardly, themovable portion 17 a of theresonance sheet 17 also vibrates downwardly and attaches to the protrudingportion 11 a of thesuspension plate 11. Because the distance between the regions except for the protrudingportion 11 a of thesuspension plate 11 and the fixedportion 17 b at the two sides of theresonance sheet 17 is not changed, the volume of thefirst chamber 10 is compressed through the deformation of theresonance sheet 17, and the communication space in thefirst chamber 10 is sealed, so as to force the gas in thefirst chamber 10 to be pushed and flowed toward the periphery of thefirst chamber 10 to pass through theclarence 15 between the supportingelements 13 of thepiezoelectric sheet 14 and flowed downwardly. Thereafter, as shown inFIG. 5C , themovable portion 17 a of theresonance sheet 17 bends and vibrates upwardly and recovers to its original position, and thepiezoelectric sheet 14 is driven to vibrate and bend upwardly, thereby the volume of thefirst chamber 10 is compressed. However, since thesuspension plate 11 is lifted upwardly, the gas in thefirst chamber 10 still flows toward the periphery of thefirst chamber 10. The gas contiguously enters theconvergence chamber 16 c through theconvergence channels 16 b from the at least oneinlet hole 16 a of theinlet plate 16. Thereafter, as shown inFIG. 5D , themovable portion 17 a of theresonance sheet 17 moves upwardly in resonance with the upwardly vibration of thesuspension plate 11. Therefore, the gas is contiguously converged into theconvergence chamber 16 c from the at least oneinlet hole 16 a of theinlet plate 16. Last, as shown inFIG. 5E , themovable portion 17 a of theresonance sheet 17 also recovers to its original position. Under such configuration, it is noted that, when theresonance sheet 17 performs the vertical vibration in a reciprocating manner, the maximum distance of the vertical displacement of the vibration can be increased through changing the gap h between theresonance sheet 17 and theouter frame 12. In other words, providing the gap h between theresonance sheet 17 and theouter frame 12 allows the vibration of theresonance sheet 17 to have a greater amplitude of up-and-down displacement. Therefore, a pressure gradient can be generated in the flow path designed in theactuator 1, so as to transmit the gas flow rapidly. Moreover, the gas is transmitted from the intake end to the discharge end through the resistance difference between the intake end and the discharge end of the flow path, so as to complete the gas transmission. Moreover, in one embodiment, theactuator 1 still can push the gas into the flow path continuously even in the condition that the discharge end is under a pressure, and the noise generated by theactuator 1 can be reduced as well. Accordingly, by repeating the operation steps of theactuator 1 shown inFIG. 5A toFIG. 5E , a gas transmission from the outside of theactuator 1 to the inside of theactuator 1 can be achieved. - According to one or some embodiments of the present disclosure, through the fluid fluctuation generated by the piezoelectric sheet under a high-frequency vibration, a pressure gradient is generated in the flow path designed in the actuator, so as to allow the fluid to flow rapidly. As a result, the fluid is transmitted from the intake end to the discharge end continuously through the difference of the resistances exist between the intake end and the discharge end of the flow path, so as to allow the fluid to flow rapidly and transmit continuously, thereby the fluid can be transmitted rapidly and quietly. Moreover, the entire volume of the actuator can be reduced, so that the actuator can be miniaturized even to millimeter scale, micrometer scale, or nanometer scale. Furthermore, the present invention can achieve great heat dissipation performance through coating a doped coating material on the surface of the inlet plate and the electrodes of the piezoelectric sheet.
- The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
Claims (8)
1. An actuator comprising:
a suspension plate having a first surface and a second surface, wherein the suspension plate is capable of bending and vibrating;
an outer frame disposed around an outer periphery of the suspension plate;
at least one supporting element connected between the suspension plate and the outer frame to provide a flexible support for the suspension plate;
a piezoelectric sheet disposed above the first surface of the suspension plate;
an inlet plate disposed on the second surface of the suspension plate, wherein the inlet plate has at least one inlet hole, at least one convergence channel, and a convergence chamber; the at least one inlet hole is configured to introduce a gas flow into the actuator, and the at least one convergence channel is corresponding to the at least one inlet hole for guiding the gas flow introduced from the at least one inlet hole to be converged into the convergence chamber; and
a resonance sheet disposed between the inlet plate and the suspension plate, wherein the resonance sheet has a perforation corresponding to the convergence chamber of the inlet plate, and a movable portion is provided in a periphery of the perforation;
wherein the suspension plate, the outer frame, the at least one supporting element, the piezoelectric sheet, the inlet plate, and the resonance sheet are fabricated as a modular structure, and the modular structure has a length, a width, and a height.
2. The actuator according to claim 1 , wherein a first chamber is provided between the resonance sheet, the suspension plate, the at least one supporting element, and the outer frame, so that the piezoelectric sheet is driven and bent in the first chamber; when the suspension plate vibrates, the gas flow is introduced into the actuator from the at least one inlet hole of the inlet plate, converged into the convergence chamber through the at least one convergence channel, flows through the perforation of the resonance sheet and enters the first chamber, thereby the suspension plate and the movable portion of the resonance sheet generates resonance effect for transmitting the gas flow.
3. The actuator according to claim 1 , wherein the modular structure has the length in a range between 1 mm and 999 mm, the width in a range between 1 mm and 999 mm, and the height in a range between 1 mm and 999 mm.
4. The actuator according to claim 1 , wherein the modular structure has the length in a range between 1 μm and 999 μm, the width in a range between 1 μm and 999 μm, and the height in a range between 1 μm and 999 μm.
5. The actuator according to claim 1 , wherein the modular structure has the length in a range between 1 nm and 999 nm, the width in a range between 1 nm and 999 nm, and the height in a range between 1 nm and 999 nm.
6. The actuator according to claim 1 , wherein the suspension plate is square-shaped and has a protruding portion.
7. The actuator according to claim 1 , wherein the actuator further comprises a conductive sheet, a first insulation sheet, and a second insulation sheet, and wherein the inlet plate, the resonance sheet, the outer frame, the first insulation sheet, the conductive sheet, and the second insulation sheet are sequentially stacked and assembled.
8. An actuator comprising:
a suspension plate having a first surface and a second surface, wherein the suspension plate is capable of bending and vibrating;
an outer frame disposed around an outer periphery of the suspension plate;
at least one supporting element connected between the suspension plate and the outer frame to provide a flexible support for the suspension plate;
a piezoelectric sheet disposed above the first surface of the suspension plate;
an inlet plate disposed on the second surface of the suspension plate, wherein the inlet plate has at least one inlet hole, at least one convergence channel, and a convergence chamber; the at least one inlet hole is configured to introduce a gas flow into the actuator, and the at least one convergence channel is corresponding to the at least one inlet hole for guiding the gas flow introduced from the at least one inlet hole to be converged into the convergence chamber; and
a resonance sheet disposed between the inlet plate and the suspension plate, wherein the resonance sheet has a perforation corresponding to the convergence chamber of the inlet plate, and a movable portion is provided in a periphery of the perforation;
wherein the suspension plate, the outer frame, the at least one supporting element, the piezoelectric sheet, the inlet plate, and the resonance sheet are fabricated as a modular structure, and the modular structure has a length in a range between 1 nm and 999 nm, a width in a range between 1 nm and 999 nm, and a height in a range between 1 nm and 999 nm.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110121456 | 2021-06-11 | ||
| TW110121456A TWI785646B (en) | 2021-06-11 | 2021-06-11 | Actuator |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20220397111A1 true US20220397111A1 (en) | 2022-12-15 |
Family
ID=84364321
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/751,882 Abandoned US20220397111A1 (en) | 2021-06-11 | 2022-05-24 | Actuator |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20220397111A1 (en) |
| CN (1) | CN115467812A (en) |
| TW (1) | TWI785646B (en) |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070138914A1 (en) * | 2005-12-15 | 2007-06-21 | Alps Electric Co., Ltd. | Wiring structure of vibrator, and piezoelectric pump |
| US20130058810A1 (en) * | 2011-09-06 | 2013-03-07 | Murata Manufacturing Co., Ltd. | Fluid control device |
| US9255714B2 (en) * | 2011-10-11 | 2016-02-09 | Conrad S. Mikulec | Cookery air purification and exhaust system |
| US20160126444A1 (en) * | 2013-05-29 | 2016-05-05 | Michael Förg | Piezoelectric actuator |
| US20160348666A1 (en) * | 2014-02-21 | 2016-12-01 | Murata Manufacturing Co., Ltd. | Blower |
| US20170222122A1 (en) * | 2016-01-29 | 2017-08-03 | Microjet Technology Co., Ltd. | Piezoelectric actuator |
| US20180202428A1 (en) * | 2017-01-13 | 2018-07-19 | Microjet Technology Co., Ltd. | Air motor |
| US20190067550A1 (en) * | 2017-08-22 | 2019-02-28 | Microjet Technology Co., Ltd. | Actuator |
| US20200064079A1 (en) * | 2017-12-18 | 2020-02-27 | University Of South Carolina | Manufacturable metal-graphene interface for highly efficient and durable heat exchanger components |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109424525B (en) * | 2017-08-22 | 2021-02-19 | 研能科技股份有限公司 | Actuator |
| TWI650482B (en) * | 2017-08-22 | 2019-02-11 | 研能科技股份有限公司 | Actuator |
| CN109424526B (en) * | 2017-08-22 | 2021-02-19 | 研能科技股份有限公司 | Actuator |
| TWI689664B (en) * | 2017-08-25 | 2020-04-01 | 研能科技股份有限公司 | Air actuatung diversion device |
| TWI681120B (en) * | 2018-05-21 | 2020-01-01 | 研能科技股份有限公司 | Micro gas driving apparatus |
| TWI775103B (en) * | 2020-06-30 | 2022-08-21 | 研能科技股份有限公司 | Piezoelectric actuator |
-
2021
- 2021-06-11 TW TW110121456A patent/TWI785646B/en active
-
2022
- 2022-04-27 CN CN202210455894.8A patent/CN115467812A/en active Pending
- 2022-05-24 US US17/751,882 patent/US20220397111A1/en not_active Abandoned
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070138914A1 (en) * | 2005-12-15 | 2007-06-21 | Alps Electric Co., Ltd. | Wiring structure of vibrator, and piezoelectric pump |
| US20130058810A1 (en) * | 2011-09-06 | 2013-03-07 | Murata Manufacturing Co., Ltd. | Fluid control device |
| US9255714B2 (en) * | 2011-10-11 | 2016-02-09 | Conrad S. Mikulec | Cookery air purification and exhaust system |
| US20160126444A1 (en) * | 2013-05-29 | 2016-05-05 | Michael Förg | Piezoelectric actuator |
| US20160348666A1 (en) * | 2014-02-21 | 2016-12-01 | Murata Manufacturing Co., Ltd. | Blower |
| US20170222122A1 (en) * | 2016-01-29 | 2017-08-03 | Microjet Technology Co., Ltd. | Piezoelectric actuator |
| US20180202428A1 (en) * | 2017-01-13 | 2018-07-19 | Microjet Technology Co., Ltd. | Air motor |
| US20190067550A1 (en) * | 2017-08-22 | 2019-02-28 | Microjet Technology Co., Ltd. | Actuator |
| US20200064079A1 (en) * | 2017-12-18 | 2020-02-27 | University Of South Carolina | Manufacturable metal-graphene interface for highly efficient and durable heat exchanger components |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202249313A (en) | 2022-12-16 |
| TWI785646B (en) | 2022-12-01 |
| CN115467812A (en) | 2022-12-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10644221B2 (en) | Piezoelectric actuator electrode arrangement | |
| JP6693923B2 (en) | Piezoelectric actuator and small fluid control device using the same | |
| CN206211877U (en) | Piezoelectric actuator and micro fluid control device suitable for piezoelectric actuator | |
| CN206035774U (en) | microfluidic control device | |
| TWI689664B (en) | Air actuatung diversion device | |
| US11536261B2 (en) | Micro pump | |
| TWI650482B (en) | Actuator | |
| CN107795465B (en) | Micro fluid control device | |
| JP6574464B2 (en) | Small fluid control device | |
| CN109723626B (en) | Gas delivery device | |
| US11608823B2 (en) | Micro pump | |
| US20220397111A1 (en) | Actuator | |
| US11342494B2 (en) | Piezoelectric actuator and piezoelectric actuating plate thereof | |
| CN109424525B (en) | Actuator | |
| CN108278196B (en) | fluid control device | |
| CN109424526B (en) | Actuator | |
| TWM553498U (en) | Actuator | |
| TWI775103B (en) | Piezoelectric actuator | |
| CN207135005U (en) | Piezo Actuators and Piezo Actuation Plates | |
| TWM581636U (en) | Micro gas delivery device | |
| TWM553376U (en) | Flow-guiding device of actuating gas | |
| CN108880320B (en) | Piezo Actuators and Piezo Actuators | |
| CN107800326A (en) | Piezoelectric actuator and micro fluid control device suitable for piezoelectric actuator | |
| TWI706082B (en) | Actuator structure and micro-fluid control device using the same | |
| CN109424527B (en) | Actuating gas deflector |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| AS | Assignment |
Owner name: MICROJET TECHNOLOGY CO., LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOU, HAO-JAN;HAN, YUNG-LUNG;HUANG, CHI-FENG;AND OTHERS;SIGNING DATES FROM 20230619 TO 20230815;REEL/FRAME:064690/0458 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |