[go: up one dir, main page]

US20220311974A1 - Work vehicle fleet with intuitive vision system - Google Patents

Work vehicle fleet with intuitive vision system Download PDF

Info

Publication number
US20220311974A1
US20220311974A1 US17/673,026 US202217673026A US2022311974A1 US 20220311974 A1 US20220311974 A1 US 20220311974A1 US 202217673026 A US202217673026 A US 202217673026A US 2022311974 A1 US2022311974 A1 US 2022311974A1
Authority
US
United States
Prior art keywords
work vehicle
model
cameras
camera
display area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/673,026
Inventor
Brian M. Huenink
Jeremy B. Shuler
Jake Flanders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deere and Co
Original Assignee
Deere and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deere and Co filed Critical Deere and Co
Priority to US17/673,026 priority Critical patent/US20220311974A1/en
Assigned to DEERE & COMPANY reassignment DEERE & COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHULER, JEREMY B., HUENINK, BRIAN M., FLANDERS, JAKE
Publication of US20220311974A1 publication Critical patent/US20220311974A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/28Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with an adjustable field of view
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/23Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
    • B60R1/27Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view providing all-round vision, e.g. using omnidirectional cameras
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B76/00Parts, details or accessories of agricultural machines or implements, not provided for in groups A01B51/00 - A01B75/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • B60R1/0605Rear-view mirror arrangements mounted on vehicle exterior specially adapted for mounting on trucks, e.g. by C-shaped support means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/12Mirror assemblies combined with other articles, e.g. clocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • H04N5/232
    • H04N5/247
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/008Tanks, chassis or related parts
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D75/00Accessories for harvesters or mowers
    • A01D75/18Safety devices for parts of the machines
    • A01D75/185Avoiding collisions with obstacles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D90/00Vehicles for carrying harvested crops with means for selfloading or unloading
    • A01D90/10Unloading means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/005Special arrangements or adaptations of the spraying or distributing parts, e.g. adaptations or mounting of the spray booms, mounting of the nozzles, protection shields
    • A01M7/0071Construction of the spray booms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0082Undercarriages, frames, mountings, couplings, tanks
    • A01M7/0085Tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/12Mirror assemblies combined with other articles, e.g. clocks
    • B60R2001/1253Mirror assemblies combined with other articles, e.g. clocks with cameras, video cameras or video screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/004Arrangements for holding or mounting articles, not otherwise provided for characterised by position outside the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • B60R2300/101Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using cameras with adjustable capturing direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • B60R2300/105Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using multiple cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/20Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of display used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/20Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of display used
    • B60R2300/202Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of display used displaying a blind spot scene on the vehicle part responsible for the blind spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/303Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using joined images, e.g. multiple camera images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/304Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using merged images, e.g. merging camera image with stored images
    • B60R2300/305Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using merged images, e.g. merging camera image with stored images merging camera image with lines or icons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/60Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective
    • B60R2300/607Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective from a bird's eye viewpoint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/70Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by an event-triggered choice to display a specific image among a selection of captured images
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/10Automotive applications

Definitions

  • This disclosure generally relates a work vehicle system and method, and more specifically to a multi-camera vision or video display system and method for a work vehicle or fleet of work vehicles.
  • a given work vehicle may be a sizable and complex machine, requiring a relatively high level of operator skill to control the various functions of the work vehicle, in many instances including the movement of boom-mounted implements or other end effectors.
  • the disclosure provides a work vehicle vision system and method for a work vehicle and/or a fleet of work vehicles.
  • the disclosure provides a work vehicle fleet with a first model of work vehicle and a second model of work vehicle, different than the first model of work vehicle.
  • the first model of work vehicle includes a first operator cabin; a first set of display devices within the first operator cabin defining a plurality of display areas arranged at a first side of the first model of work vehicle, a second side of the first model of work vehicle, and a central location of the first model of work vehicle between the first and second sides relative to a first operator FOV; a first set of cameras carried by the first model of work vehicle and coupled to the first set of display devices to display feeds at the plurality of display areas, the first set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the first operator FOV; and a first controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the first controller is configured to display a standard set of feeds from the associated first
  • the second model of work vehicle includes a second operator cabin; a second set of display devices within the second operator cabin defining a plurality of display areas arranged at a first side of the second model of work vehicle, a second side of the second model of work vehicle, and a central location of the second model of work vehicle between the first and second sides relative to a second operator FOV; a second set of cameras carried by the second model of work vehicle and coupled to the second set of display devices to display feeds at the plurality of display areas, the second set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the second operator FOV; and a second controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the second controller is configured to display the standard set of feeds from the associated first side, second side, and central location of the second set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side
  • the disclosure provides a work vehicle fleet vision system.
  • the a work vehicle fleet vision system includes a first set of display devices within a first operator cabin of a first model of work vehicle defining a plurality of display areas arranged at a first side of the first model of work vehicle, a second side of the first model of work vehicle, and a central location of the first model of work vehicle between the first and second sides relative to a first operator FOV; a first set of cameras carried by the first model of work vehicle and coupled to the first set of display devices to display feeds at the plurality of display areas, the first set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the first operator FOV; a first controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the first controller is configured to display a standard set of feeds from the associated first side, second side, and central location of the first set of cameras at the first set of
  • FIGS. 1A-1C are views of a first example work vehicle with a vision system in accordance with an embodiment of this disclosure
  • FIG. 2 is a view of a second example work vehicle with the vision system in accordance with an embodiment of this disclosure
  • FIGS. 3A and 3B are cabin views of a display arrangement of the vision system in an example work vehicle in accordance with an embodiment of this disclosure
  • FIG. 4 is an example schematic block diagram of the vision system in accordance with an embodiment of this disclosure.
  • FIGS. 5A-5E are schematic example plan view representations of various fields of view (FOVs) associated with the vision system in accordance with an embodiment of this disclosure.
  • FIG. 6 is an example display generated by the vision system in accordance with an embodiment of this disclosure.
  • This disclosure generally relates to work vehicle multi-camera vision or video display system that enables an operator of a work vehicle to intuitively monitor multiple camera feeds providing different views around and/or within the work vehicle.
  • the following describes one or more example embodiments of the disclosed vision system, method, work vehicle, or fleet, as shown in the accompanying figures of the drawings described briefly above. Various modifications to the example embodiments may be contemplated by one of skill in the art.
  • work vehicles are utilized to perform tasks in various types of environments. Operators are often required to carefully navigate such environment, while performing various tasks and avoiding surrounding structures, neighboring work vehicles, and other obstacles. Visibility from the operator station or cabin of the work vehicle may be limited by the chassis of the work vehicle, by the positioning of the work implements relative to the cabin, or other visual hinderances, as well as by unfamiliar displays and systems. For this reason, work vehicles may be equipped with camera systems or “vision systems” providing operators with a display arrangement on which the camera feeds are presented for operator viewing.
  • the multi-camera vision system includes multiple cameras mounted at different locations about a given work vehicle to capture camera (live video) feeds of the work vehicle's surrounding environment from various different vantage points, viewpoints or viewing angles.
  • Embodiments of the multi-camera vision system may include at least one, if not multiple rear, forward, left side, right side, and interior (e.g., in operational, filling, loading, unloading areas) vehicle cameras, depending upon work vehicle size, type, and other factors.
  • the vehicle-mounted cameras (or, more simply, “vehicle cameras”) can each capture any desired portion or region of a work vehicle's surrounding environment, whether generally located to the front, to a side, or to the rear of the work vehicle.
  • Embodiments of the multi-camera vision system further include a controller and at least one display device, which functions within a cabin or other operator station of the work vehicle.
  • the controller supplies the display device with appropriate signals (video output signals) to generate a multi-camera display on a screen of the display device.
  • a highly intuitive multi-camera display is thus created enabling an operator of a work vehicle to readily appreciate the availability of multiple camera feeds, to simultaneously monitor the content of each camera feed, and to intuitively determine the camera feeds being presented on the various display devices.
  • the present disclosure is directed to an integrated system and method that enhance operational performance by intelligently showing needed information and/or imagery in a consistent and repeatable manner across cab platforms and products.
  • many large and medium sized agricultural machines have common visibility themes that may accommodated by a platform implemented as a vision system or method across fleets of similar or different machines, thereby creating a familiarity and expectation for the operator from one machine to the other.
  • Selected views may optimally reduce the need for an operator to swivel or leave the cab as often, thereby saving time, mitigating fatigue, and improving effectiveness and efficiency.
  • This further results in improved operator experience that may be mapped and relatable from machine to machine to reduce set up time.
  • the system is flexible to accommodate supplemental views for unique visual perspectives without an added secondary video system that would otherwise be required.
  • operators of different machine platforms can view feeds of similar areas around or features of each machine in similar or common display areas within the operator cabin.
  • the vision system provides improved visibility during transport and in field to prevent damage to machines and property, aid in operation, and gain trust and validation in automation via a collection of standardized views.
  • one or more display devices may be provided along a forward upper headliner within the cabin to provide optimal views in the forward direction within an ergonomic field of view of the operator.
  • the positioning of the display devices enable an operator to focus in the forward view on the task at hand with less distractions of physical contortions or frequent stopping to access job quality, spatial awareness, and the like.
  • the present disclosure provides a modular or scalable solution that may be used across multiple platforms with varying needs to provide a backbone that may then be iterated upon to rapidly adapt to customer display needs.
  • the vision system may be configurable and have the capability to determine the operational context and implement an appropriate configuration to automatically render the images and information that are most appropriate or useful for the context.
  • information may be provided by the vision system within themes or situations of operation (e.g., planting, tilling, harvest, transport, etc.) to provide the most useful views and/or to reduce the setup time for each specific operation at different operator fields of view (e.g., a forward view for a transport situation, straight ahead view for a working situation, and/or an implement view when using an implement).
  • themes or situations of operation e.g., planting, tilling, harvest, transport, etc.
  • different camera groupings for each field of view can be selected and displayed in an intuitive manner for the operator.
  • the term “surrounding environment” is utilized in a broad sense to refer to a work environment or area located outside of a work vehicle, whether generally located to the front, to a side, or to the rear of the work vehicle, or any combination thereof.
  • the term “display” refers an image or “picture” generated on the screen of a display device, while the term “display device” refers to an image-generating device on which a display (e.g., the below-described multi-camera display) is presented.
  • front may be defined relative to the orientation of an operator when seated in the operator station (e.g., cabin) of the work vehicle in a forward-facing position.
  • FIGS. 1A-1C are views of a self-propelled work vehicle (or sprayer) 100 on which an intuitive work vehicle vision system 102 may be implemented for enhanced operator visibility.
  • the view of FIG. 1A is an isometric view of the work vehicle 100 ;
  • the view of FIG. 1B is a plan view of the work vehicle 100 ;
  • the view of FIG. 1C is a side view of the work vehicle 100 .
  • the vision system 102 may be considered to include a controller (or control system) 104 , one or more operator interfaces 106 , a set of cameras 108 , a display arrangement 110 , and one or more sensors 112 , each of which will be described in greater detail below after an introduction of the other components of the work vehicle 100 .
  • the vision system 102 may be implemented in any type of work vehicle.
  • other work vehicles may have similar controllers, cameras, display arrangements, and sensors that provide a common “look and feel” across different vehicles, including other models and types of vehicles.
  • the vision system 102 may provide a common and consistent set of views to increase operator confidence and consistency when changing vehicles.
  • the work vehicle 100 as a sprayer is equipped with various types of apparatuses to perform a work function (e.g., spraying), including in this example, a spray system 120 with spray booms 122 mounted to the rear or aft end of a chassis 124 .
  • the chassis 124 of the work vehicle 100 is supported by a number of ground-engaging wheels 126 , which are driven by an engine (not shown in detail) contained in an engine compartment adjacent an operator station or cabin 128 of the work vehicle 100 .
  • the spray system 120 includes a spray material delivery arrangement carried by the chassis 124 with one or more supply tanks 130 that hold and supply spray solution (or other liquid material) for distribution.
  • the spray solution is distributed via a number of spray system equipment (e.g., nozzles, valves, feed pipes, supply pipes, lines, flexible tubing, etc.) as the work vehicle 100 travels over the field under operator command or under autonomous command.
  • spray system equipment e.g., nozzles, valves, feed pipes, supply pipes, lines,
  • segments of the spray booms 122 are folded, such as for transport or storage. Upon deployment, the segments of the spray booms 122 are extended from each side of the work vehicle 100 in a generally transverse orientation.
  • the term “longitudinal” refers to a generally axis of travel of the vehicle 100 (e.g., from front to back); and the term “transverse” refers to the direction parallel to a longitudinal axis (e.g., side to side).
  • the spray booms 122 are folded, such as for transport or storage.
  • the work vehicle 100 may have additional systems and components typical for such vehicles, including a propulsion system, a steering system, a braking system, and various actuation systems that facilitate operation of the work vehicle 100 based on operator commands (e.g., via operator interface 106 ).
  • the controller 104 generally implements operation of the vision system 102 , as well as other systems and components of the work vehicle 100 , including any of the functions described herein.
  • the controller 104 may be configured as computing devices with associated processor devices and memory architectures.
  • the controller 104 may encompass or may be associated with any practical number of processors (central and graphical processing units), control computers, navigational equipment pieces, computer-readable memories, power supplies, storage devices, interface cards, and other standardized components.
  • the controller may also include or cooperate with any number of firmware and software programs or computer-readable instructions designed to carry-out the various process tasks, calculations, and control/display functions described herein.
  • Such computer-readable instructions may be stored within a non-volatile sector of a memory associated with the controller.
  • the memory can encompass any number and type of storage media suitable for storing computer-readable code or instructions, as well as other data utilized to support the operation of the multi-camera vision system.
  • the memory may be integrated into the controller 104 in embodiments as, for example, a system-in-package, a system-on-a-chip, or another type of microelectronic package or module.
  • the controller 104 may be configured to execute various computational and control functionality with respect to the vehicle 100 .
  • the controller 104 may be in electronic, hydraulic, or other communication with various other systems or devices of the vehicle 100 , including via a CAN bus (not shown).
  • the controller 104 may be in electronic or hydraulic communication with various actuators, sensors, and other devices within (or outside of) the vehicle 100 .
  • the controller 104 may include or otherwise access various types of datastores, including at least one datastore associated with the vision system 102 .
  • the controller 104 may be configured to receive input commands and to interface with an operator via the operator interface 106 , including typical steering, acceleration, velocity, transmission, and wheel braking controls, as well as other suitable controls.
  • the operator interface 106 may be configured in a variety of ways and may include one or more joysticks, various switches or levers, one or more buttons, a touchscreen interface, a keyboard, a speaker, a microphone associated with a speech recognition system, or various other human-machine interface devices.
  • the vision system 102 may include a set of cameras 108 arranged around and within the work vehicle 100 .
  • additional cameras may be provided and/or one or more of the cameras discussed below may be omitted.
  • video cameras capturing imagery falling within the visible band of the electromagnetic spectrum other types of imaging devices (e.g., infrared cameras) can also be integrated into the multi-camera vision system in alternative implementations, with the imagery captured by such devices presented on the below-described multi-camera display accordingly.
  • the vehicle cameras 108 are operably coupled to (that is, in signal communication with) the controllers 104 with either wireless or wired data connections.
  • the set of cameras 108 includes a number of depicted cameras 108 a - 108 g , as best shown by FIG. 1B with associated field of views (FOVs).
  • FOVs field of views
  • the set of cameras 108 may include a front camera 108 a positioned on a relative forward part of the chassis 124 of the vehicle 100 and oriented in a forward direction of travel.
  • the front camera 108 a may provide a relatively wide angle FOV to capture views of machine clearance and/or objects immediately in front of the work vehicle 100 .
  • the set of cameras 108 may further include left and right front forward-facing cameras 108 b positioned on a relative front or forward part of the side of the vehicle 100 and oriented in a forward direction of travel.
  • the left and right front forward-facing cameras 108 b provide and relatively narrow angle FOVs to capture views of machine clearance, obstacle, implements, and the like.
  • the set of cameras 108 may further include left and right rear forward-facing cameras 108 c positioned on a relative rear part of the side of the vehicle and oriented in a forward direction of travel.
  • the left and right rear forward-facing cameras 108 c provide relatively wide FOVs for views of machine clearance, particularly when encountering relatively narrow roadways, oncoming attractions, and other obstructions.
  • the set of cameras 108 may further include left and right “mirror” cameras 108 d positioned on a forward or middle part of the side of the vehicle 100 (e.g., in respective positions corresponding to side mirrors of an automobile) and oriented in a rearward direction of travel.
  • the left and right mirror cameras 108 d provide views of along the sides of the work vehicle 100 .
  • the set of cameras 108 may further include left and right intersection cameras 108 e positioned on a relatively forward or part of the side or hood of the vehicle 100 and oriented in a side-to-side or along transverse axis to the direction of travel.
  • the left and right intersection cameras 108 e provide views around any obstructions, particularly at intersections or upon entering roadways.
  • the set of cameras 108 may further include one or more “C-post” cameras 108 f positioned on the sides of the vehicle cabin 128 and oriented in a side-to-side or along transverse axis to the direction of travel.
  • the left and right C-post cameras 108 f provide views along an extended boom 122 , e.g., during a spraying operation.
  • the set of cameras 108 may further include at least one rear camera 108 g that positioned on a rear portion of the vehicle 100 and oriented rearward.
  • the rear camera 108 g may be adjustable and generally provides views of trailing traffic and any center section or portion of towed implements (e.g., sprayers) at the rear of the vehicle.
  • One or more of the cameras 108 depicted in FIG. 1 may be omitted, and/or one or more cameras may be added.
  • the cameras may further include one or more cameras associated with implements or working apparatuses (e.g., to load or unload bins or tanks 130 ).
  • the vision system 102 includes the display arrangement 110 with one or more display devices render displays based on commands from the controller 104 .
  • the display devices of the display arrangement 110 may be otherwise standard display devices within the cabin 128 , such as LCD or LED screens.
  • the display devices of display arrangement 110 may be mounted on the cab console, window-mounted, or head-mounted.
  • other output devices may be utilized to convey all or a portion of the information discussed below, including analog or digital gauges, other graphical or textual displays, and audio or haptic mechanisms. Examples of the displays generated by the controller 104 and rendered on the display arrangement 110 are discussed in greater detail below.
  • the vision system 102 may, in some examples, include one or more sensors 112 that facilitate any of the operation described herein.
  • the sensors 112 may include environment sensors that collect information about the environment of the work vehicle 100 ; position sensors that collect information associated with the location, velocity, acceleration, heading, and/or orientation of the work vehicle 100 ; and/or vehicle sensors that collect information associated with the various components, systems, and/or implements on the work vehicle 100 .
  • the vision system 102 operates to display selected feeds from the cameras 108 on the various display devices of display arrangement 110 based on display signals from the controller 104 , which in turn are based on operator inputs via the operator interface 106 , sensor data from sensors 112 , stored data, and/or other information.
  • the vision system 102 may be implemented across similar or otherwise dissimilar work vehicles, including the work vehicle discussed below with reference to FIG. 2 .
  • FIG. 2 is a schematic view of another agricultural work vehicle 200 in which a vision system 202 analogous to the vision system 102 discussed above and below may be implemented.
  • the work vehicle 200 is in the form of a harvester with various apparatuses to perform a work task (e.g., harvesting), including a corn head that functions to process corn.
  • the vision system 202 of vehicle 200 performs the functions and generates analogous views to the vision system 102 of vehicle 100 .
  • many of the analogous components e.g., controller, operator interface, display arrangement, and sensors
  • the vision system 202 is merely presented as a further example of how the vision system according to the disclosure herein may be applied across vehicles and vehicle models.
  • settings for the vision systems 102 , 202 may be shared via a cloud-based data transfer and/or via key fobs or other operator-based identification. Due to the disparate functions and vehicle configurations, the vision system 202 of FIG. 2 may not have an identical set of cameras 208 as those of the vision system 102 of FIG.
  • the cameras 208 (schematically shown) of vision system 202 may include a front camera 208 a oriented at the front of the vehicle 200 and facing forward; left and right front forward-facing cameras 208 b positioned on a relative front or forward part of the side of the vehicle 200 and oriented in a forward direction; left and right rear forward-facing cameras 208 c positioned on a relative rear part of the side of the vehicle 200 and oriented in a forward; left and right mirror cameras 208 d positioned on a forward or middle part of the side of the vehicle 200 (e.g., in respective positions corresponding to side mirrors of an automobile) and oriented in a rearward direction; left and right intersection cameras 208 e positioned on a relatively forward or part of the side or hood of the vehicle 200 and oriented in a side-to-side or along transverse axis; cabin cameras 208 f positioned on the sides of the vehicle
  • the vision systems 102 , 202 may be implemented on any type machine, including within agriculture, construction, or forestry industries. Additional examples include tractors, loaders, forager, tillers, dump trucks, backhoes, loaders, graders, dozers, scrapers, skid steers, feller bunders, and the like.
  • FIGS. 3A and 3B provide examples of the display arrangement 110 in cabin 128 discussed above with reference to FIG. 1 , although the configuration depicted therein may also be applicable to the vision system of other work vehicles.
  • the display arrangement 110 may be considered three primary display devices 140 a , 140 b , 140 c , which may be embodied as separate display devices and/or as a larger, single display device with individual screens or screen portions.
  • the primary display devices 140 a , 140 b , 140 c may be considered to include a first (or left) primary display device 140 a , a second (or right) primary display device 140 b , and a third (or center) primary display device 140 c .
  • FIG. 1 The views of FIGS. 3A and 3B provide examples of the display arrangement 110 in cabin 128 discussed above with reference to FIG. 1 , although the configuration depicted therein may also be applicable to the vision system of other work vehicles.
  • the display arrangement 110 may be considered three primary display devices 140 a , 140
  • the primary display devices 140 a , 140 b , 140 c are aligned horizontally, along a transverse axis, on the roof or on an upper portion of the windshield.
  • the first and second primary display devices 140 a , 140 b may be arranged on the C-posts on either side of the windshield, and the third primary display device 140 c may be arranged on the roof or an upper portion of the windshield.
  • the primary display devices 140 a , 140 b , 140 c provide intuitive views of the surrounding environment and/or within the work vehicle based in a manner that improves the spatial awareness and understanding of the operator.
  • a number of additional or auxiliary display devices 142 , 144 may be provided that depict various types of information associated with the work vehicle, the task, the environment, and/or the fleet.
  • the display devices 142 , 144 may render information such as job quality, job settings, automation status, visibility, control or convenience configuration, state or configuration feedback, management data, platform or vehicle-specific information, infotainment, and the like.
  • a block diagram illustrates an embodiment of the vision system 102 implemented by the controller 104 (as well as operator interface 106 , cameras 108 , display arrangement 110 , and sensors 112 ).
  • the controller 104 may be considered a vehicle controller, a dedicated controller, or a combination of controllers.
  • the controller 104 may be organized as one or more functional units or modules (e.g., software, hardware, or combinations thereof).
  • each of such modules may be implemented with processing architecture such as a processor 114 and memory 116 , as well as suitable communication interfaces.
  • the controller 104 may implement the modules and/or functionality with the processor 114 based on programs or instructions stored in memory 116 .
  • the consideration and implementation of the vision system 102 by the controller 104 are continuous, e.g., constantly active.
  • the activation may be selective, e.g., enabled or disabled based on input from the operator or other considerations.
  • the controller 104 may receive input data in a number of forms and/or from a number of sources, including the operator interface 106 , cameras 108 , and sensors 112 , as well as various datastores, stored separately or in memory 116 . Moreover, such input data may also come in from other systems or controllers, either internal or external to the work vehicle 100 . This input data may represent any data sufficient to select and display the camera feeds on the appropriate display device 140 a , 140 b , 140 c in a manner that provides an intuitive operator experience across work vehicles.
  • the controller 104 may receive camera feeds from the various cameras 108 representing the live video feed from each camera 108 . At times, the controller 104 may receive input data from a number of cameras 108 that may be stitched together into a single video feed. Moreover, an individual camera 108 may be used to provide more than one video feed (e.g., breaking up a field of view into multiple feeds and/or separating out a feed into feeds with various levels of zoom or focus). The controller 104 may also receive sensor information from sensors 112 and/or operator input information from the operator interface 106 ; and/or platform or framework data from a datastore or memory 116 .
  • the controller 104 may also provide and/or consider the camera feeds with respect to other systems associated with the work vehicle 100 (or fleet of vehicles).
  • the images of the camera feeds may be used in autonomous or semi-autonomous control operations.
  • such images may be remotely viewed or evaluated by a control or fleet operation.
  • the vision system 102 may have a preset or baseline setting that is common from vehicle to vehicle and/or from model to model.
  • the preset baseline setting may result in analogous views being rendered on particular display devices, including modifying such views based on common conditions and/or situations.
  • Such preset or baseline settings may be modified by the operator and/or owner of the work vehicle 100 .
  • the vision system 102 may receive operator information via the operator interface 106 or from another source (e.g., a key fob, smartphone, or remote communication).
  • the operator settings may specify operator preferences for the displays discussed herein.
  • the controller 104 further receives sensor information, and such information may be evaluated to determine a present situation (or “mode”) for the vehicle 100 .
  • Situation information may also be provided via the operator interface 106 .
  • the situations may include, as examples, a transport situation, an intersection situation, a folding/unfolding/parking situation, a working situation, and/or a filling/levels situation, which are discussed in greater detail below. Additional situations may be considered, including a fault situation, a preparation situation, a warm-up situation, and the like.
  • the sensor information used to determine the situation may include vehicle speed, vehicle direction, gear, status of implements, and the like.
  • the controller 104 selects from the camera feeds and renders selected camera feeds on selected display devices 140 a , 140 b , 140 c .
  • the controller 104 may activate a selected feed (e.g., activate or power the assigned camera) upon selecting the feed.
  • the display devices 140 a , 140 b , 140 c are generally arranged in a left, right, and center configuration, respectively.
  • the feeds assigned to each display device are selected to collectively maintain an intuitive left, right, and center configuration.
  • center views e.g., either forward or rearward facing
  • side views e.g., forward or rearward facing
  • first and second display devices 140 a , 140 b are typically rendered on the first and second display devices 140 a , 140 b , as appropriate for the left and right views.
  • the controller 104 selects the camera feeds based on the determined situation, discussed above.
  • the displays rendered on the display devices 140 a , 140 b , 140 c may be modified to present the feeds that are most appropriate or relevant to the situation. Examples are provided below with reference to FIGS. 5A-5E .
  • the vision system 102 may be applicable to a work vehicle fleet in which each work vehicle (e.g., vehicles 100 , 200 ) has a set of display devices within the operator cabin, each defining a plurality of display areas arranged at a first side of the respective work vehicle (e.g., device 140 a ), a second side of the respective work vehicle (e.g., device 140 b ), and a central location of the respective work vehicle (e.g., device 140 c ) between the first and second sides relative to an operator FOV (e.g., each operator FOV for the respective vehicle); a set of cameras (e.g., cameras 108 ) carried by each work vehicle, each set of cameras having a respective at least one camera at or trained on the first side, the second side and the central location between the first and second sides relative to each operator FOV; and a controller 104 configured to display a standard set of feeds from the associated first side, second side, and central location of each set of cameras at the first set of display
  • each work vehicle
  • the vision system 102 may be implemented across different models or platforms to provide a consistent “look and feel” for an operator or operators.
  • the sprayer and harvester have analogous camera positions, display areas, and views or feeds provided to the operator.
  • the vision system 102 may be applicable to a work vehicle with an operator cabin defining a first operator field of view (FOV) aligned with a longitudinal axis extending in a travel direction of the work vehicle and a second operator FOV extending along a transverse axis at an angle to the longitudinal axis; one or more display devices within the operator cabin defining a plurality of display areas arranged at a first side, a second side and a central location between the first and second sides relative to the first operator FOV; a plurality of cameras carried by the work vehicle and coupled to the one or more displays to display feeds at the plurality of display areas, the plurality of cameras including: a first set of the plurality of cameras at or trained on the first side, the second side and the central location between the first and second sides relative to the first operator FOV; and a second set of the plurality of cameras at or trained on a first side, a second side and a central location between the first and second sides relative to the second operator FOV; and a controller having
  • the controller 104 upon determining the appropriate settings, the situation, and/or context information, the controller 104 generates display commands for each display device 140 a , 140 b , 140 c that to render the selected view, particularly of one or more work apparatuses performing a function. Upon generating the display signals and rending the displays, the controller 104 continues to collect information and update the display devices 140 a , 140 b , 140 c.
  • FIGS. 5A-5E are schematic representations of example fields of view (FOVs) associated with the work vehicle (e.g., vehicle 100 ) in various situations, although other are possible and/or not all FOVs are required.
  • FOVs fields of view
  • each FOV is associated with a camera (e.g., cameras 108 ), and FOVs are depicted at situations in which the associated camera is active, on, and/or being displayed on one or more of the display devices (e.g., display devices 140 a , 140 b , 140 c ).
  • the FOV of a particular camera may be modified, e.g., by adjusting the focal length or the orientation of the respective camera.
  • non-working modes e.g., transport mode, intersection mode, and/or set-up mode
  • at least the mode depicted in FIG. 5D may be considered a “working mode.”
  • the mode depicted in FIG. 5E e.g., the filling mode
  • the vision system 102 may automatically determine the appropriate mode based on sensor information (e.g., based on speed; based on surroundings, such as roadway, field, or intersection; based on implement position; based on diagnostic, error, or alert codes; and the like).
  • an implementation of the vision system 102 is depicted when the work vehicle is in a “transport” situation or mode, e.g., when the work vehicle 100 is traveling down a roadway.
  • a transport situation left and right rear forward-facing cameras (e.g., rear forward-facing cameras 108 c of FIG. 1B ) are active such that the resulting FOVs are oriented along each side in a forward direction.
  • a rear camera e.g., rear camera 108 g of FIG. 1B
  • the resulting FOV is relatively centered and rearward facing.
  • the controller 104 may render the feed from the left rear forward-facing camera 108 c on the first or left primary display device 140 a , the feed from the right rear forward-facing camera 108 c on the second or right primary display device 140 b , and the feed from the rear camera 108 g on the third or center primary display device 140 c.
  • an implementation of the vision system 102 is depicted when the work vehicle 100 is in an “intersection” situation or mode, e.g., when the work vehicle 100 is approaching a roadway intersection or otherwise turning onto a roadway or other type of path.
  • a front camera e.g., camera 108 a of FIG. 1B
  • left and right mirror cameras e.g., cameras 108 d of FIG. 1B
  • left and right intersection cameras e.g., cameras 108 e of FIG. 1B
  • rear camera e.g., rear camera 108 g of FIG. 1B
  • the controller 104 may render the feed from the left intersection camera 108 e on the first or left primary display device 140 a , the feed from the right intersection camera 108 e on the second or right primary display device 140 b , and the feed from the rear camera 108 g on the third or center primary display device 140 c .
  • the feed from the left and right mirror cameras 108 d may be displayed with or in lieu of the intersection cameras 108 e on the first and second primary display devices 140 a , 140 b , respectively, and the feed from front camera 108 a may be displayed with or in lieu of the rear camera 108 g on the third primary display device 140 c.
  • FIG. 5C an implementation of the vision system 102 is depicted when the work vehicle 100 is in a folding/unfolding/parking (or “set-up”) situation or mode, e.g., when the work vehicle is folding or unfolding an implement such as sprayer boom, hooking up to other implements or apparatuses, and/or when parking or maneuvering.
  • set-up left and right C-post cameras (e.g., cameras 108 f of FIG. 1B ) and rear camera (e.g., camera 108 g of FIG. 1B ) may be active.
  • left and right C-post cameras e.g., cameras 108 f of FIG. 1B
  • rear camera e.g., camera 108 g of FIG. 1B
  • the controller 104 may render the feed from the left C-post camera 108 f on the first or left primary display device 140 a , the feed from the right C-post camera 108 f on the second or right primary display device 140 b , and the feed from the rear camera 108 g on the third or center primary display device 140 c.
  • FIG. 5D an implementation of the vision system 102 is depicted when the work vehicle 100 is in a “working” situation or mode, e.g., when the work vehicle 100 is performing a designated work task.
  • front camera e.g., camera 108 a of FIG. 1B
  • left and right front forward-facing cameras e.g., cameras 108 b of FIG. 1B
  • left and right mirror cameras e.g., cameras 108 d of FIG. 1B
  • rear camera e.g., camera 108 g
  • the controller 104 may render the feed from the left front forward-facing camera 108 d on the first or left primary display device 140 a , the feed from the right front forward-facing camera 108 b on the second or right primary display device 140 b , and the feed from the rear camera 108 g on the third or center primary display device 140 c .
  • the feed from the left and right mirror cameras 108 d may be displayed with or in lieu of the front forward-facing cameras 108 b on the first and second primary display devices 140 a , 140 b , respectively, and the feed from front camera 108 a may be displayed with or in lieu of the rear camera 108 g on the third primary display device 140 c.
  • an implementation of the vision system 102 when the work vehicle is in a “filling” situation or mode e.g., when the work vehicle is performing a being loaded (or unloaded) with material.
  • one or more front alignment cameras may be active to provide a view of a coupling or engagement with a source of material; and one or more tank or bin cameras may be active to provide an indication of the level material in the tank or bin.
  • the controller 104 may render the feed from the front alignment camera on one or both of the first and/or second primary display devices 140 a , 140 b , and the feed from the tank or bin camera on the third or center primary display device 140 c .
  • Similar or analogous views may also be initiated by one or more error or alert codes associated with a diagnostic system on the vehicle 100 .
  • an error code associated with an issue with a bin or tank e.g., a clog or empty signal
  • diagnostic codes associated with plugs, missed or skipped paths, or the like may initiate a view of the subject vehicle or implement element or aspect of the environment.
  • the vision system 102 depicted in FIGS. 5A-5E provides an experience for an operator that is consistent across situations. In other words, although the particular views or feeds change, the structure of left, right, and center views between the cameras 108 and the display devices 140 is maintained.
  • FIG. 6 depict one example implementation of the visual displays rendered on a first primary display device 172 (e.g., corresponding to display device 140 a of FIG. 4 ), a second primary display device 174 (e.g., corresponding to display device 140 b of FIG. 4 ), and a third primary display device 176 (e.g., corresponding to display device 140 a of FIG. 4 ).
  • the situation depicted on the primary display devices 172 , 174 , 176 in FIG. 6 corresponds to the transport situation of FIG. 5A .
  • the feed from the left rear forward-facing camera e.g., camera 108 c of FIG.
  • the feed from the right rear forward-facing camera (e.g., camera 108 c of FIG. 1B ) is rendered on the second or right primary display device 174
  • the feed from the rear camera (e.g., camera 108 g of FIG. 1B ) is rendered on the third or center primary display device 176 .
  • the vision system discussed herein may further be embodied as a method for a work vehicle.
  • the method includes initiating operation of the vision system; determining settings associated with the vision system; determining a situation of the work vehicle associated with the vision system; identifying selected feeds based on the situation and/or operator input; identifying context information associated with the selected feeds; generating display signals for selected display devices for the selected feeds; and displaying the selected feeds on selected display devices.
  • Embodiments of the multi-camera vision system can be utilized in conjunction with various different types of work vehicles; and, further, that the vehicle cameras can capture views of any portions or regions of the environment surrounding or adjacent a work vehicle. Further, description of the manner in which the multi-camera display and the associated display arrangement, display devices, and/or graphical user interfaces appear in the illustrated examples is provided purely by way of non-limiting illustration; noting that the “look and feel” of the displays on the display devices will inevitably vary among embodiments and may be customizable to customer or operator preferences.
  • the present disclosure provides a multi-camera vision system and method for a work vehicle that provide more intuitive and consistent operator experience.
  • a work vehicle fleet comprising: a first model of work vehicle comprising: a first operator cabin; a first set of display devices within the first operator cabin defining a plurality of display areas arranged at a first side of the first model of work vehicle, a second side of the first model of work vehicle, and a central location of the first model of work vehicle between the first and second sides relative to a first operator FOV; a first set of cameras carried by the first model of work vehicle and coupled to the first set of display devices to display feeds at the plurality of display areas, the first set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the first operator FOV; and a first controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the first controller is configured to display a standard set of feeds from the associated first side, second side, and central location of the first set of cameras at the first set of display devices so that the associated feeds
  • first operator cabin includes a first headliner and the display area at the central location of the first set of display devices is positioned on or in the first headliner; and wherein the second operator cabin includes a second headliner and the display area at the central location of the second set of display devices is positioned on or in the second headliner.
  • the first operator cabin further includes a first windshield at least partially bounded by a first side C-post and a second side C-post, and wherein the display area at the first side of the first set of display devices is positioned on the first side C-post in the first operator cabin and the display area at the second side of the first set of display devices is positioned on the second side C-post in the first operator cabin; and wherein the second operator cabin further includes a second windshield at least partially bounded by a first side C-post and a second side C-post, and wherein the display area at the first side of the second set of display devices is positioned on the first side C-post in the second operator cabin and the display area at the second side of the second set of display devices is positioned on the second side C-post in the second operator cabin.
  • the first set of cameras includes a first camera of the first set of cameras positioned on the first side of the first model of work vehicle facing forward, a second camera of the first set of cameras positioned on the second side of the first model of work vehicle facing forward, and a third camera of the first set of cameras positioned on a front portion of the first model of work vehicle facing forward; wherein the first controller, when traveling in a forward direction, automatically provides the feed from the first camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle, the feed from the second camera on the display area arranged on the second side of the first model of the work vehicle, and the feed from the third camera of the first set of cameras on the display area arranged at the central location of the first model of work vehicle; wherein the second set of cameras includes a first camera of the second set of cameras positioned on the first side of the second model of work vehicle facing forward, a second camera of the second set of cameras positioned on the second side of the second model of work vehicle
  • the first set of cameras includes a fourth camera of the first set of cameras positioned on a rear portion of the first model of work vehicle facing rearward; wherein the first controller, when traveling in the rearward direction, automatically provides the feed from the fourth camera of the first set of cameras on the display area arranged at the central location of the first model of work vehicle; wherein the second set of cameras includes a fourth camera of the second set of cameras positioned on a rear portion of the second model of work vehicle facing rearward; and wherein the second controller, when traveling in the rearward direction, automatically provides the feed from the fourth camera of the second set of cameras on the display area arranged at the central location of the second model of work vehicle.
  • the first set of cameras includes a fifth camera of the first set of cameras positioned on the first side of the first model of work vehicle facing rearward and a sixth camera of the first set of cameras positioned on the second side of the first model of work vehicle facing rearward; wherein the first controller, when traveling in the rearward direction, automatically provides the feed from the fifth camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the sixth camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle; wherein the second set of cameras includes a fifth camera of the second set of cameras positioned on the first side of the second model of work vehicle facing rearward and a sixth camera of the second set of cameras positioned on the second side of the second model of work vehicle facing rearward; and wherein the second controller, when traveling in the rearward direction, automatically provides the feed from the fifth camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle and
  • the first set of cameras includes a first side forward camera of the first set of cameras positioned on the first side of the first model of work vehicle facing forward, a second side forward camera of the first set of cameras positioned on the second side of the first model of work vehicle facing forward, a first side transverse camera of the first set of cameras positioned on the first side of the first model of work vehicle facing transversely outward, and a second side transverse camera of the first set of cameras positioned on the second side of the first model of work vehicle facing transversely outward; wherein, during a travel mode, the first controller automatically provides the feed from the first side forward camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the second side forward camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle; wherein, during an intersection mode, the first controller automatically provides the feed from the first side transverse camera of the first set of cameras on the display area arranged on the first side
  • first model of work vehicle includes a first implement and the first set of cameras includes a first implement camera on the first implement on the first side of the first model of work vehicle and a second implement camera on the first implement on the second side of the first model of work vehicle; and wherein the second model of work vehicle includes a second implement and the second set of cameras includes a first implement camera on the second implement on the first side of the second model of work vehicle and a second implement camera on the second implement on the second side of the second model of work vehicle.
  • the first controller automatically provides the feed from the first implement camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the second implement camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle; and wherein, during the working mode, the second controller automatically provides the feed from the first implement camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle and the feed from the second implement camera of the second set of cameras on the display area arranged on the second side of the second model of work vehicle.
  • the work vehicle fleet of example 1 further comprising an operator-based identifier storing operator settings for a first operator; and wherein each of the first controller and the second controller is configured to recognize and implement the operator settings for the first operator from the operator-based identifier.
  • a work vehicle fleet vision system comprising: a first set of display devices within a first operator cabin of a first model of work vehicle defining a plurality of display areas arranged at a first side of the first model of work vehicle, a second side of the first model of work vehicle, and a central location of the first model of work vehicle between the first and second sides relative to a first operator FOV; a first set of cameras carried by the first model of work vehicle and coupled to the first set of display devices to display feeds at the plurality of display areas, the first set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the first operator FOV; a first controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the first controller is configured to display a standard set of feeds from the associated first side, second side, and central location of the first set of cameras at the first set of display devices so that the associated feeds are arranged at the
  • the first set of cameras includes a first camera of the first set of cameras positioned on the first side of the first model of work vehicle facing forward, a second camera of the first set of cameras positioned on the second side of the first model of work vehicle facing forward, and a third camera of the first set of cameras positioned on a front portion of the first model of work vehicle facing forward; wherein the first controller, when traveling in a forward direction, automatically provides the feed from the first camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle, the feed from the second camera on the display area arranged on the second side of the first model of the work vehicle, and the feed from the third camera of the first set of cameras on the display area arranged at the central location of the first model of work vehicle; wherein the second set of cameras includes a first camera of the second set of cameras positioned on the first side of the second model of work vehicle facing forward, a second camera of the second set of cameras positioned on the second side of the second model of
  • certain aspects of the disclosed subject matter can be embodied as a method, system (e.g., a work machine control system included in a work machine), or computer program product. Accordingly, certain embodiments can be implemented entirely as hardware, entirely as software (including firmware, resident software, micro-code, etc.) or as a combination of software and hardware (and other) aspects. Furthermore, certain embodiments can take the form of a computer program product on a computer-usable storage medium having computer-usable program code embodied in the medium.
  • embodiments of the disclosure may consist of or include tangible, non-transitory storage media storing computer-readable instructions or code for performing one or more of the functions described throughout this document.
  • computer-readable storage media can be realized utilizing any currently-known or later-developed memory type, including various types of random access memory (RAM) and read-only memory (ROM).
  • embodiments of the present disclosure are open or “agnostic” to the particular memory technology employed, noting that magnetic storage solutions (hard disk drive), solid state storage solutions (flash memory), optimal storage solutions, and other storage solutions can all potentially contain computer-readable instructions for carrying-out the functions described herein.
  • the systems or devices described herein may also contain memory storing computer-readable instructions (e.g., as any combination of firmware or other software executing on an operating system) that, when executed by a processor or processing system, instruct the system or device to perform one or more functions described herein.
  • computer-readable instructions or code may be copied or distributed to the memory of a given computing system or device in various different manners, such as by transmission over a communications network including the Internet.
  • embodiments of the present disclosure should not be limited to any particular set of hardware or memory structure, or to the particular manner in which computer-readable instructions are stored, unless otherwise expressly specified herein.
  • a computer readable signal medium can include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal can take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof.
  • a computer readable signal medium can be non-transitory and can be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • lists with elements that are separated by conjunctive terms (e.g., “and”) and that are also preceded by the phrase “one or more of” or “at least one of” indicate configurations or arrangements that potentially include individual elements of the list, or any combination thereof.
  • “at least one of A, B, and C” or “one or more of A, B, and C” indicates the possibilities of only A, only B, only C, or any combination of two or more of A, B, and C (e.g., A and B; B and C; A and C; or A, B, and C).
  • module refers to any hardware, software, firmware, electronic control component, processing logic, and/or processor device, individually or in any combination, including without limitation: application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
  • ASIC application specific integrated circuit
  • module may be synonymous with unit, component, subsystem, sub-controller, circuitry, routine, element, structure, control section, and the like.
  • Embodiments of the present disclosure may be described herein in terms of functional and/or logical block components and various processing steps. It should be appreciated that such block components may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For example, an embodiment of the present disclosure may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices. In addition, those skilled in the art will appreciate that embodiments of the present disclosure may be practiced in conjunction with any number of work vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

A work vehicle fleet includes a first model of work vehicle and a second model of work vehicle, different than the first model. The first model includes a first set of display devices; a first set of cameras; and a first controller configured to display a standard set of feeds from the associated first side, second side, and central location of the first set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side, and the central location, respectively, relative to the first operator FOV. The second model includes a second set of display devices; a second set of cameras; and a second controller configured to display so that the associated feeds are arranged at the first side, the second side, and the central location, respectively, relative to the second operator FOV.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application is a nonprovisional application, and claims priority to, of both of U.S. Provisional Patent Application No. 63/165,677 filed Mar. 24, 2021 and U.S. Provisional Patent Application No. 63/175,334 filed Apr. 15, 2021, each of which is hereby incorporated by reference.
  • STATEMENT OF FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not applicable.
  • FIELD OF THE DISCLOSURE
  • This disclosure generally relates a work vehicle system and method, and more specifically to a multi-camera vision or video display system and method for a work vehicle or fleet of work vehicles.
  • BACKGROUND OF THE DISCLOSURE
  • Work vehicles utilized within construction, agriculture, forestry, mining, and other industries commonly operate in challenging work environments. Operators are often required to carefully navigate such work vehicles, while performing various tasks and avoiding surrounding structures, neighboring work vehicles, and other obstacles. A given work vehicle may be a sizable and complex machine, requiring a relatively high level of operator skill to control the various functions of the work vehicle, in many instances including the movement of boom-mounted implements or other end effectors.
  • Concurrently, visibility from the operator station or cabin of the work vehicle may be limited by the chassis of the work vehicle, by the positioning of implements relative to the cabin, or other visual hinderances. For this reason, certain work vehicles are now equipped with camera systems or “vision systems” providing operators with various views of the surrounding environment.
  • SUMMARY OF THE DISCLOSURE
  • The disclosure provides a work vehicle vision system and method for a work vehicle and/or a fleet of work vehicles.
  • In one aspect, the disclosure provides a work vehicle fleet with a first model of work vehicle and a second model of work vehicle, different than the first model of work vehicle. The first model of work vehicle includes a first operator cabin; a first set of display devices within the first operator cabin defining a plurality of display areas arranged at a first side of the first model of work vehicle, a second side of the first model of work vehicle, and a central location of the first model of work vehicle between the first and second sides relative to a first operator FOV; a first set of cameras carried by the first model of work vehicle and coupled to the first set of display devices to display feeds at the plurality of display areas, the first set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the first operator FOV; and a first controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the first controller is configured to display a standard set of feeds from the associated first side, second side, and central location of the first set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side, and the central location, respectively, relative to the first operator FOV. The second model of work vehicle includes a second operator cabin; a second set of display devices within the second operator cabin defining a plurality of display areas arranged at a first side of the second model of work vehicle, a second side of the second model of work vehicle, and a central location of the second model of work vehicle between the first and second sides relative to a second operator FOV; a second set of cameras carried by the second model of work vehicle and coupled to the second set of display devices to display feeds at the plurality of display areas, the second set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the second operator FOV; and a second controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the second controller is configured to display the standard set of feeds from the associated first side, second side, and central location of the second set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side, and the central location, respectively, relative to the second operator FOV.
  • In another aspect, the disclosure provides a work vehicle fleet vision system. The a work vehicle fleet vision system includes a first set of display devices within a first operator cabin of a first model of work vehicle defining a plurality of display areas arranged at a first side of the first model of work vehicle, a second side of the first model of work vehicle, and a central location of the first model of work vehicle between the first and second sides relative to a first operator FOV; a first set of cameras carried by the first model of work vehicle and coupled to the first set of display devices to display feeds at the plurality of display areas, the first set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the first operator FOV; a first controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the first controller is configured to display a standard set of feeds from the associated first side, second side, and central location of the first set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side and the central location, respectively, relative to the first operator FOV; a second set of display devices within a second operator cabin of a second model of work vehicle defining a plurality of display areas arranged at a first side of the second model of work vehicle, a second side of the second model of work vehicle, and a central location of the second model of work vehicle between the first and second sides relative to a second operator FOV; a second set of cameras carried by the second model of work vehicle and coupled to the second set of display devices to display feeds at the plurality of display areas, the second set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the second operator FOV; and a second controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the second controller is configured to display the standard set of feeds from the associated first side, second side, and central location of the second set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side and the central location, respectively, relative to the second operator FOV.
  • The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features and advantages will become apparent from the description, the drawings, and the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-1C are views of a first example work vehicle with a vision system in accordance with an embodiment of this disclosure;
  • FIG. 2 is a view of a second example work vehicle with the vision system in accordance with an embodiment of this disclosure;
  • FIGS. 3A and 3B are cabin views of a display arrangement of the vision system in an example work vehicle in accordance with an embodiment of this disclosure;
  • FIG. 4 is an example schematic block diagram of the vision system in accordance with an embodiment of this disclosure;
  • FIGS. 5A-5E are schematic example plan view representations of various fields of view (FOVs) associated with the vision system in accordance with an embodiment of this disclosure; and
  • FIG. 6 is an example display generated by the vision system in accordance with an embodiment of this disclosure.
  • Like reference symbols in the various drawings indicate like elements.
  • DETAILED DESCRIPTION
  • This disclosure generally relates to work vehicle multi-camera vision or video display system that enables an operator of a work vehicle to intuitively monitor multiple camera feeds providing different views around and/or within the work vehicle. The following describes one or more example embodiments of the disclosed vision system, method, work vehicle, or fleet, as shown in the accompanying figures of the drawings described briefly above. Various modifications to the example embodiments may be contemplated by one of skill in the art.
  • In the agriculture, construction, and forestry industries, work vehicles are utilized to perform tasks in various types of environments. Operators are often required to carefully navigate such environment, while performing various tasks and avoiding surrounding structures, neighboring work vehicles, and other obstacles. Visibility from the operator station or cabin of the work vehicle may be limited by the chassis of the work vehicle, by the positioning of the work implements relative to the cabin, or other visual hinderances, as well as by unfamiliar displays and systems. For this reason, work vehicles may be equipped with camera systems or “vision systems” providing operators with a display arrangement on which the camera feeds are presented for operator viewing.
  • This notwithstanding, it can be difficult to design a multi-camera vision system simultaneously providing an operator with multiple camera feeds, while further permitting the operator to readily receive and understand the feeds. Moreover, although many types of work vehicles have cameras, such views are conventionally very specific, such as views of a front hitch, a rear hitch, a discharge spout, and/or a seed or grain tank. However, these views typically only cover a portion of the overall operational need. Such needs may be dramatically different between operators, operations, and/or from one machine or model to the next. Additionally, operator attempts at obtaining preferred views in conventional systems may involve uncomfortable operator positions, leaving the cabin, using a spotter, or making assumptions about the vehicle environment. In a multi-camera system, it may be difficult for an operator to quickly ascertain the context of each view. Thus, if not properly designed, multi-camera vision systems can potentially intensify operator mental workload and increase heads-down time.
  • Overcoming many, if not all of the above-noted disadvantages, the systems and methods described herein enabling operators to monitor and navigate between multiple camera feeds associated with a work vehicle in a highly intuitive manner. In embodiments, the multi-camera vision system includes multiple cameras mounted at different locations about a given work vehicle to capture camera (live video) feeds of the work vehicle's surrounding environment from various different vantage points, viewpoints or viewing angles. Embodiments of the multi-camera vision system may include at least one, if not multiple rear, forward, left side, right side, and interior (e.g., in operational, filling, loading, unloading areas) vehicle cameras, depending upon work vehicle size, type, and other factors. The vehicle-mounted cameras (or, more simply, “vehicle cameras”) can each capture any desired portion or region of a work vehicle's surrounding environment, whether generally located to the front, to a side, or to the rear of the work vehicle.
  • Embodiments of the multi-camera vision system further include a controller and at least one display device, which functions within a cabin or other operator station of the work vehicle. During operation of the multi-camera vision system, the controller supplies the display device with appropriate signals (video output signals) to generate a multi-camera display on a screen of the display device. In the manner described herein, a highly intuitive multi-camera display is thus created enabling an operator of a work vehicle to readily appreciate the availability of multiple camera feeds, to simultaneously monitor the content of each camera feed, and to intuitively determine the camera feeds being presented on the various display devices. As such, the present disclosure is directed to an integrated system and method that enhance operational performance by intelligently showing needed information and/or imagery in a consistent and repeatable manner across cab platforms and products.
  • According to the present disclosure, many large and medium sized agricultural machines have common visibility themes that may accommodated by a platform implemented as a vision system or method across fleets of similar or different machines, thereby creating a familiarity and expectation for the operator from one machine to the other. Selected views may optimally reduce the need for an operator to swivel or leave the cab as often, thereby saving time, mitigating fatigue, and improving effectiveness and efficiency. This further results in improved operator experience that may be mapped and relatable from machine to machine to reduce set up time. Moreover, the system is flexible to accommodate supplemental views for unique visual perspectives without an added secondary video system that would otherwise be required. Thus, operators of different machine platforms can view feeds of similar areas around or features of each machine in similar or common display areas within the operator cabin. As a result, the vision system provides improved visibility during transport and in field to prevent damage to machines and property, aid in operation, and gain trust and validation in automation via a collection of standardized views.
  • In one example, one or more display devices may be provided along a forward upper headliner within the cabin to provide optimal views in the forward direction within an ergonomic field of view of the operator. The positioning of the display devices enable an operator to focus in the forward view on the task at hand with less distractions of physical contortions or frequent stopping to access job quality, spatial awareness, and the like. The present disclosure provides a modular or scalable solution that may be used across multiple platforms with varying needs to provide a backbone that may then be iterated upon to rapidly adapt to customer display needs. Moreover, the vision system may be configurable and have the capability to determine the operational context and implement an appropriate configuration to automatically render the images and information that are most appropriate or useful for the context. In some examples, information may be provided by the vision system within themes or situations of operation (e.g., planting, tilling, harvest, transport, etc.) to provide the most useful views and/or to reduce the setup time for each specific operation at different operator fields of view (e.g., a forward view for a transport situation, straight ahead view for a working situation, and/or an implement view when using an implement). In particular, different camera groupings for each field of view can be selected and displayed in an intuitive manner for the operator.
  • As appearing herein, the term “surrounding environment” is utilized in a broad sense to refer to a work environment or area located outside of a work vehicle, whether generally located to the front, to a side, or to the rear of the work vehicle, or any combination thereof. Further, the term “display” refers an image or “picture” generated on the screen of a display device, while the term “display device” refers to an image-generating device on which a display (e.g., the below-described multi-camera display) is presented. The terms “front,” “rear,” “right,” “central,” “left”, “forward”, and “rearward” may be defined relative to the orientation of an operator when seated in the operator station (e.g., cabin) of the work vehicle in a forward-facing position.
  • Additional details regarding the multi-camera vision or video display system and method for a work vehicle or fleet of work vehicles will be provided below.
  • FIGS. 1A-1C are views of a self-propelled work vehicle (or sprayer) 100 on which an intuitive work vehicle vision system 102 may be implemented for enhanced operator visibility. The view of FIG. 1A is an isometric view of the work vehicle 100; the view of FIG. 1B is a plan view of the work vehicle 100; and the view of FIG. 1C is a side view of the work vehicle 100. Generally, the vision system 102 may be considered to include a controller (or control system) 104, one or more operator interfaces 106, a set of cameras 108, a display arrangement 110, and one or more sensors 112, each of which will be described in greater detail below after an introduction of the other components of the work vehicle 100.
  • Although the vision system 102 is described with reference to a sprayer as the work vehicle 100 in FIGS. 1A-1C, the vision system 102 may be implemented in any type of work vehicle. In particular, other work vehicles may have similar controllers, cameras, display arrangements, and sensors that provide a common “look and feel” across different vehicles, including other models and types of vehicles. In effect, the vision system 102 may provide a common and consistent set of views to increase operator confidence and consistency when changing vehicles.
  • In the example of FIGS. 1A-1C, the work vehicle 100 as a sprayer is equipped with various types of apparatuses to perform a work function (e.g., spraying), including in this example, a spray system 120 with spray booms 122 mounted to the rear or aft end of a chassis 124. The chassis 124 of the work vehicle 100 is supported by a number of ground-engaging wheels 126, which are driven by an engine (not shown in detail) contained in an engine compartment adjacent an operator station or cabin 128 of the work vehicle 100. Although not shown in detail, the spray system 120 includes a spray material delivery arrangement carried by the chassis 124 with one or more supply tanks 130 that hold and supply spray solution (or other liquid material) for distribution. The spray solution is distributed via a number of spray system equipment (e.g., nozzles, valves, feed pipes, supply pipes, lines, flexible tubing, etc.) as the work vehicle 100 travels over the field under operator command or under autonomous command.
  • In the example of FIGS. 1A-1C, segments of the spray booms 122 are folded, such as for transport or storage. Upon deployment, the segments of the spray booms 122 are extended from each side of the work vehicle 100 in a generally transverse orientation. In the discussion herein, the term “longitudinal” refers to a generally axis of travel of the vehicle 100 (e.g., from front to back); and the term “transverse” refers to the direction parallel to a longitudinal axis (e.g., side to side). In the example of FIGS. 1A-1C, the spray booms 122 are folded, such as for transport or storage.
  • Although not shown or discussed in detail, the work vehicle 100 may have additional systems and components typical for such vehicles, including a propulsion system, a steering system, a braking system, and various actuation systems that facilitate operation of the work vehicle 100 based on operator commands (e.g., via operator interface 106).
  • Returning to the vision system 102, the controller 104 generally implements operation of the vision system 102, as well as other systems and components of the work vehicle 100, including any of the functions described herein. The controller 104 may be configured as computing devices with associated processor devices and memory architectures. The controller 104 may encompass or may be associated with any practical number of processors (central and graphical processing units), control computers, navigational equipment pieces, computer-readable memories, power supplies, storage devices, interface cards, and other standardized components. The controller may also include or cooperate with any number of firmware and software programs or computer-readable instructions designed to carry-out the various process tasks, calculations, and control/display functions described herein. Such computer-readable instructions may be stored within a non-volatile sector of a memory associated with the controller. The memory can encompass any number and type of storage media suitable for storing computer-readable code or instructions, as well as other data utilized to support the operation of the multi-camera vision system. The memory may be integrated into the controller 104 in embodiments as, for example, a system-in-package, a system-on-a-chip, or another type of microelectronic package or module.
  • As such, the controller 104 may be configured to execute various computational and control functionality with respect to the vehicle 100. The controller 104 may be in electronic, hydraulic, or other communication with various other systems or devices of the vehicle 100, including via a CAN bus (not shown). For example, the controller 104 may be in electronic or hydraulic communication with various actuators, sensors, and other devices within (or outside of) the vehicle 100. The controller 104 may include or otherwise access various types of datastores, including at least one datastore associated with the vision system 102.
  • In some embodiments, the controller 104 may be configured to receive input commands and to interface with an operator via the operator interface 106, including typical steering, acceleration, velocity, transmission, and wheel braking controls, as well as other suitable controls. The operator interface 106 may be configured in a variety of ways and may include one or more joysticks, various switches or levers, one or more buttons, a touchscreen interface, a keyboard, a speaker, a microphone associated with a speech recognition system, or various other human-machine interface devices.
  • As introduced above, the vision system 102 may include a set of cameras 108 arranged around and within the work vehicle 100. Although a number of example cameras 108 are discussed below, additional cameras may be provided and/or one or more of the cameras discussed below may be omitted. Further, while primarily described below as video cameras capturing imagery falling within the visible band of the electromagnetic spectrum, other types of imaging devices (e.g., infrared cameras) can also be integrated into the multi-camera vision system in alternative implementations, with the imagery captured by such devices presented on the below-described multi-camera display accordingly. The vehicle cameras 108 are operably coupled to (that is, in signal communication with) the controllers 104 with either wireless or wired data connections. The set of cameras 108 includes a number of depicted cameras 108 a-108 g, as best shown by FIG. 1B with associated field of views (FOVs).
  • The set of cameras 108 may include a front camera 108 a positioned on a relative forward part of the chassis 124 of the vehicle 100 and oriented in a forward direction of travel. The front camera 108 a may provide a relatively wide angle FOV to capture views of machine clearance and/or objects immediately in front of the work vehicle 100.
  • The set of cameras 108 may further include left and right front forward-facing cameras 108 b positioned on a relative front or forward part of the side of the vehicle 100 and oriented in a forward direction of travel. The left and right front forward-facing cameras 108 b provide and relatively narrow angle FOVs to capture views of machine clearance, obstacle, implements, and the like.
  • The set of cameras 108 may further include left and right rear forward-facing cameras 108 c positioned on a relative rear part of the side of the vehicle and oriented in a forward direction of travel. The left and right rear forward-facing cameras 108 c provide relatively wide FOVs for views of machine clearance, particularly when encountering relatively narrow roadways, oncoming attractions, and other obstructions.
  • The set of cameras 108 may further include left and right “mirror” cameras 108 d positioned on a forward or middle part of the side of the vehicle 100 (e.g., in respective positions corresponding to side mirrors of an automobile) and oriented in a rearward direction of travel. The left and right mirror cameras 108 d provide views of along the sides of the work vehicle 100.
  • The set of cameras 108 may further include left and right intersection cameras 108 e positioned on a relatively forward or part of the side or hood of the vehicle 100 and oriented in a side-to-side or along transverse axis to the direction of travel. The left and right intersection cameras 108 e provide views around any obstructions, particularly at intersections or upon entering roadways.
  • The set of cameras 108 may further include one or more “C-post” cameras 108 f positioned on the sides of the vehicle cabin 128 and oriented in a side-to-side or along transverse axis to the direction of travel. The left and right C-post cameras 108 f provide views along an extended boom 122, e.g., during a spraying operation.
  • The set of cameras 108 may further include at least one rear camera 108 g that positioned on a rear portion of the vehicle 100 and oriented rearward. The rear camera 108 g may be adjustable and generally provides views of trailing traffic and any center section or portion of towed implements (e.g., sprayers) at the rear of the vehicle.
  • One or more of the cameras 108 depicted in FIG. 1 may be omitted, and/or one or more cameras may be added. For example, although not shown, the cameras may further include one or more cameras associated with implements or working apparatuses (e.g., to load or unload bins or tanks 130).
  • In one particular example, the vision system 102 includes the display arrangement 110 with one or more display devices render displays based on commands from the controller 104. Generally, the display devices of the display arrangement 110 may be otherwise standard display devices within the cabin 128, such as LCD or LED screens. The display devices of display arrangement 110 may be mounted on the cab console, window-mounted, or head-mounted. In addition to display arrangement 110, other output devices may be utilized to convey all or a portion of the information discussed below, including analog or digital gauges, other graphical or textual displays, and audio or haptic mechanisms. Examples of the displays generated by the controller 104 and rendered on the display arrangement 110 are discussed in greater detail below.
  • As introduced above, the vision system 102 may, in some examples, include one or more sensors 112 that facilitate any of the operation described herein. For example, the sensors 112 may include environment sensors that collect information about the environment of the work vehicle 100; position sensors that collect information associated with the location, velocity, acceleration, heading, and/or orientation of the work vehicle 100; and/or vehicle sensors that collect information associated with the various components, systems, and/or implements on the work vehicle 100.
  • As described below, the vision system 102 operates to display selected feeds from the cameras 108 on the various display devices of display arrangement 110 based on display signals from the controller 104, which in turn are based on operator inputs via the operator interface 106, sensor data from sensors 112, stored data, and/or other information. As noted, the vision system 102 may be implemented across similar or otherwise dissimilar work vehicles, including the work vehicle discussed below with reference to FIG. 2.
  • Generally, FIG. 2 is a schematic view of another agricultural work vehicle 200 in which a vision system 202 analogous to the vision system 102 discussed above and below may be implemented. Generally, the work vehicle 200 is in the form of a harvester with various apparatuses to perform a work task (e.g., harvesting), including a corn head that functions to process corn.
  • Unless otherwise noted, the vision system 202 of vehicle 200 performs the functions and generates analogous views to the vision system 102 of vehicle 100. As such, many of the analogous components (e.g., controller, operator interface, display arrangement, and sensors) will not be described again. The vision system 202 is merely presented as a further example of how the vision system according to the disclosure herein may be applied across vehicles and vehicle models. In some examples, settings for the vision systems 102, 202, some of which are described below, may be shared via a cloud-based data transfer and/or via key fobs or other operator-based identification. Due to the disparate functions and vehicle configurations, the vision system 202 of FIG. 2 may not have an identical set of cameras 208 as those of the vision system 102 of FIG. 1. However, one or more analogous views may be provided for each vision system 102, 202. For example, the cameras 208 (schematically shown) of vision system 202 may include a front camera 208 a oriented at the front of the vehicle 200 and facing forward; left and right front forward-facing cameras 208 b positioned on a relative front or forward part of the side of the vehicle 200 and oriented in a forward direction; left and right rear forward-facing cameras 208 c positioned on a relative rear part of the side of the vehicle 200 and oriented in a forward; left and right mirror cameras 208 d positioned on a forward or middle part of the side of the vehicle 200 (e.g., in respective positions corresponding to side mirrors of an automobile) and oriented in a rearward direction; left and right intersection cameras 208 e positioned on a relatively forward or part of the side or hood of the vehicle 200 and oriented in a side-to-side or along transverse axis; cabin cameras 208 f positioned on the sides of the vehicle cabin and oriented in a side-to-side or along transverse axis; at least one rear camera 208 g that positioned on a rear portion of the vehicle 200 and oriented rearward; and an output camera 208 h oriented on the end of the output chute. Generally, the vision system 202 operates in a similar manner to the vision system 102 introduced above and discussed in greater detail below.
  • In addition to the work vehicles 100, 200 of FIGS. 1A-1C and FIG. 2, the vision systems 102, 202 may be implemented on any type machine, including within agriculture, construction, or forestry industries. Additional examples include tractors, loaders, forager, tillers, dump trucks, backhoes, loaders, graders, dozers, scrapers, skid steers, feller bunders, and the like.
  • The views of FIGS. 3A and 3B provide examples of the display arrangement 110 in cabin 128 discussed above with reference to FIG. 1, although the configuration depicted therein may also be applicable to the vision system of other work vehicles. In one example, the display arrangement 110 may be considered three primary display devices 140 a, 140 b, 140 c, which may be embodied as separate display devices and/or as a larger, single display device with individual screens or screen portions. The primary display devices 140 a, 140 b, 140 c may be considered to include a first (or left) primary display device 140 a, a second (or right) primary display device 140 b, and a third (or center) primary display device 140 c. In the example depicted by FIG. 3A, the primary display devices 140 a, 140 b, 140 c are aligned horizontally, along a transverse axis, on the roof or on an upper portion of the windshield. In the example depicted by FIG. 3B, the first and second primary display devices 140 a, 140 b may be arranged on the C-posts on either side of the windshield, and the third primary display device 140 c may be arranged on the roof or an upper portion of the windshield.
  • Generally, the primary display devices 140 a, 140 b, 140 c provide intuitive views of the surrounding environment and/or within the work vehicle based in a manner that improves the spatial awareness and understanding of the operator. A number of additional or auxiliary display devices 142, 144 may be provided that depict various types of information associated with the work vehicle, the task, the environment, and/or the fleet. The display devices 142, 144 may render information such as job quality, job settings, automation status, visibility, control or convenience configuration, state or configuration feedback, management data, platform or vehicle-specific information, infotainment, and the like.
  • Referring to FIG. 4, a block diagram illustrates an embodiment of the vision system 102 implemented by the controller 104 (as well as operator interface 106, cameras 108, display arrangement 110, and sensors 112). Generally, the controller 104 may be considered a vehicle controller, a dedicated controller, or a combination of controllers. In some examples, the controller 104 may be organized as one or more functional units or modules (e.g., software, hardware, or combinations thereof). As an example, each of such modules may be implemented with processing architecture such as a processor 114 and memory 116, as well as suitable communication interfaces. For example, the controller 104 may implement the modules and/or functionality with the processor 114 based on programs or instructions stored in memory 116. In some examples, the consideration and implementation of the vision system 102 by the controller 104 are continuous, e.g., constantly active. In other examples, the activation may be selective, e.g., enabled or disabled based on input from the operator or other considerations.
  • Generally, the controller 104 may receive input data in a number of forms and/or from a number of sources, including the operator interface 106, cameras 108, and sensors 112, as well as various datastores, stored separately or in memory 116. Moreover, such input data may also come in from other systems or controllers, either internal or external to the work vehicle 100. This input data may represent any data sufficient to select and display the camera feeds on the appropriate display device 140 a, 140 b, 140 c in a manner that provides an intuitive operator experience across work vehicles.
  • In particular, the controller 104 may receive camera feeds from the various cameras 108 representing the live video feed from each camera 108. At times, the controller 104 may receive input data from a number of cameras 108 that may be stitched together into a single video feed. Moreover, an individual camera 108 may be used to provide more than one video feed (e.g., breaking up a field of view into multiple feeds and/or separating out a feed into feeds with various levels of zoom or focus). The controller 104 may also receive sensor information from sensors 112 and/or operator input information from the operator interface 106; and/or platform or framework data from a datastore or memory 116.
  • In addition to the video feeds and images discussed below, the controller 104 may also provide and/or consider the camera feeds with respect to other systems associated with the work vehicle 100 (or fleet of vehicles). For example, the images of the camera feeds may be used in autonomous or semi-autonomous control operations. Moreover, such images may be remotely viewed or evaluated by a control or fleet operation.
  • Generally, the vision system 102 may have a preset or baseline setting that is common from vehicle to vehicle and/or from model to model. The preset baseline setting may result in analogous views being rendered on particular display devices, including modifying such views based on common conditions and/or situations. Such preset or baseline settings may be modified by the operator and/or owner of the work vehicle 100. In particular, the vision system 102 may receive operator information via the operator interface 106 or from another source (e.g., a key fob, smartphone, or remote communication). The operator settings may specify operator preferences for the displays discussed herein.
  • The controller 104 further receives sensor information, and such information may be evaluated to determine a present situation (or “mode”) for the vehicle 100. Situation information may also be provided via the operator interface 106. The situations may include, as examples, a transport situation, an intersection situation, a folding/unfolding/parking situation, a working situation, and/or a filling/levels situation, which are discussed in greater detail below. Additional situations may be considered, including a fault situation, a preparation situation, a warm-up situation, and the like. The sensor information used to determine the situation may include vehicle speed, vehicle direction, gear, status of implements, and the like.
  • Generally, the controller 104 selects from the camera feeds and renders selected camera feeds on selected display devices 140 a, 140 b, 140 c. In some examples, the controller 104 may activate a selected feed (e.g., activate or power the assigned camera) upon selecting the feed. As noted above, the display devices 140 a, 140 b, 140 c are generally arranged in a left, right, and center configuration, respectively. Generally, the feeds assigned to each display device are selected to collectively maintain an intuitive left, right, and center configuration. For example, “center” views (e.g., either forward or rearward facing) are typically rendered on the third display device 140 c, and “side” views (e.g., forward or rearward facing) are typically rendered on the first and second display devices 140 a, 140 b, as appropriate for the left and right views.
  • In one example, the controller 104 selects the camera feeds based on the determined situation, discussed above. In particular, as the situation changes, the displays rendered on the display devices 140 a, 140 b, 140 c may be modified to present the feeds that are most appropriate or relevant to the situation. Examples are provided below with reference to FIGS. 5A-5E.
  • As such, in effect, the vision system 102 may be applicable to a work vehicle fleet in which each work vehicle (e.g., vehicles 100, 200) has a set of display devices within the operator cabin, each defining a plurality of display areas arranged at a first side of the respective work vehicle (e.g., device 140 a), a second side of the respective work vehicle (e.g., device 140 b), and a central location of the respective work vehicle (e.g., device 140 c) between the first and second sides relative to an operator FOV (e.g., each operator FOV for the respective vehicle); a set of cameras (e.g., cameras 108) carried by each work vehicle, each set of cameras having a respective at least one camera at or trained on the first side, the second side and the central location between the first and second sides relative to each operator FOV; and a controller 104 configured to display a standard set of feeds from the associated first side, second side, and central location of each set of cameras at the first set of display areas so that the associated feeds are arranged at the first side, the second side and the central location, respectively, relative to the respective operator FOV. In other words, the vision system 102 may be implemented across different models or platforms to provide a consistent “look and feel” for an operator or operators. In the examples of FIGS. 1A-C and 2, the sprayer and harvester have analogous camera positions, display areas, and views or feeds provided to the operator.
  • Moreover, the vision system 102 may be applicable to a work vehicle with an operator cabin defining a first operator field of view (FOV) aligned with a longitudinal axis extending in a travel direction of the work vehicle and a second operator FOV extending along a transverse axis at an angle to the longitudinal axis; one or more display devices within the operator cabin defining a plurality of display areas arranged at a first side, a second side and a central location between the first and second sides relative to the first operator FOV; a plurality of cameras carried by the work vehicle and coupled to the one or more displays to display feeds at the plurality of display areas, the plurality of cameras including: a first set of the plurality of cameras at or trained on the first side, the second side and the central location between the first and second sides relative to the first operator FOV; and a second set of the plurality of cameras at or trained on a first side, a second side and a central location between the first and second sides relative to the second operator FOV; and a controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the control system is configured to: when the work vehicle is in a first mode of operation, display a first set of feeds from the associated first side, second side and central location of the first set of the plurality of cameras at the plurality of display areas so that the associated feeds are arranged at the first side, the second side and the central location, respectively, relative to the first operator FOV; and when the work vehicle is in a second mode of operation, display a second set of feeds from the associated first side, second side and central location of the second set of the plurality of cameras at the plurality of display areas so that the associated feeds are arranged at the first side, the second side and the central location, respectively, relative to the second operator FOV.
  • As such, upon determining the appropriate settings, the situation, and/or context information, the controller 104 generates display commands for each display device 140 a, 140 b, 140 c that to render the selected view, particularly of one or more work apparatuses performing a function. Upon generating the display signals and rending the displays, the controller 104 continues to collect information and update the display devices 140 a, 140 b, 140 c.
  • FIGS. 5A-5E are schematic representations of example fields of view (FOVs) associated with the work vehicle (e.g., vehicle 100) in various situations, although other are possible and/or not all FOVs are required. Typically, each FOV is associated with a camera (e.g., cameras 108), and FOVs are depicted at situations in which the associated camera is active, on, and/or being displayed on one or more of the display devices (e.g., display devices 140 a, 140 b, 140 c). It should be noted that, at times, the FOV of a particular camera may be modified, e.g., by adjusting the focal length or the orientation of the respective camera. Generally, the modes depicted in FIGS. 5A-5C may be considered “non-working modes” (e.g., transport mode, intersection mode, and/or set-up mode) and at least the mode depicted in FIG. 5D may be considered a “working mode.” Depending on the particular task, the mode depicted in FIG. 5E (e.g., the filling mode) may be considered a working or non-working mode. As noted above, the vision system 102 may automatically determine the appropriate mode based on sensor information (e.g., based on speed; based on surroundings, such as roadway, field, or intersection; based on implement position; based on diagnostic, error, or alert codes; and the like).
  • As shown in FIG. 5A, an implementation of the vision system 102 is depicted when the work vehicle is in a “transport” situation or mode, e.g., when the work vehicle 100 is traveling down a roadway. In the transport situation, left and right rear forward-facing cameras (e.g., rear forward-facing cameras 108 c of FIG. 1B) are active such that the resulting FOVs are oriented along each side in a forward direction. Further in the transport situation, a rear camera (e.g., rear camera 108 g of FIG. 1B) is active such that the resulting FOV is relatively centered and rearward facing. As one example of operation during the transport situation and additionally referring to FIGS. 1B and 4, the controller 104 may render the feed from the left rear forward-facing camera 108 c on the first or left primary display device 140 a, the feed from the right rear forward-facing camera 108 c on the second or right primary display device 140 b, and the feed from the rear camera 108 g on the third or center primary display device 140 c.
  • Referring to FIG. 5B, an implementation of the vision system 102 is depicted when the work vehicle 100 is in an “intersection” situation or mode, e.g., when the work vehicle 100 is approaching a roadway intersection or otherwise turning onto a roadway or other type of path. In the intersection situation, a front camera (e.g., camera 108 a of FIG. 1B), left and right mirror cameras (e.g., cameras 108 d of FIG. 1B), left and right intersection cameras (e.g., cameras 108 e of FIG. 1B), and rear camera (e.g., rear camera 108 g of FIG. 1B) may be active. As one example of operation during the intersection situation and additionally referring to FIGS. 1B and 4, the controller 104 may render the feed from the left intersection camera 108 e on the first or left primary display device 140 a, the feed from the right intersection camera 108 e on the second or right primary display device 140 b, and the feed from the rear camera 108 g on the third or center primary display device 140 c. Alternatively or additionally, the feed from the left and right mirror cameras 108 d may be displayed with or in lieu of the intersection cameras 108 e on the first and second primary display devices 140 a, 140 b, respectively, and the feed from front camera 108 a may be displayed with or in lieu of the rear camera 108 g on the third primary display device 140 c.
  • Referring to FIG. 5C, an implementation of the vision system 102 is depicted when the work vehicle 100 is in a folding/unfolding/parking (or “set-up”) situation or mode, e.g., when the work vehicle is folding or unfolding an implement such as sprayer boom, hooking up to other implements or apparatuses, and/or when parking or maneuvering. In an example set-up situation, left and right C-post cameras (e.g., cameras 108 f of FIG. 1B) and rear camera (e.g., camera 108 g of FIG. 1B) may be active. As one example of operation during the set-up situation and additionally referring to FIGS. 1B and 4, the controller 104 may render the feed from the left C-post camera 108 f on the first or left primary display device 140 a, the feed from the right C-post camera 108 f on the second or right primary display device 140 b, and the feed from the rear camera 108 g on the third or center primary display device 140 c.
  • Referring to FIG. 5D, an implementation of the vision system 102 is depicted when the work vehicle 100 is in a “working” situation or mode, e.g., when the work vehicle 100 is performing a designated work task. In an example working situation, front camera (e.g., camera 108 a of FIG. 1B), left and right front forward-facing cameras (e.g., cameras 108 b of FIG. 1B), left and right mirror cameras (e.g., cameras 108 d of FIG. 1B), and rear camera (e.g., camera 108 g) may be active. As one example of operation during the working situation and additionally referring to FIGS. 1B and 4, the controller 104 may render the feed from the left front forward-facing camera 108 d on the first or left primary display device 140 a, the feed from the right front forward-facing camera 108 b on the second or right primary display device 140 b, and the feed from the rear camera 108 g on the third or center primary display device 140 c. Alternatively or additionally, the feed from the left and right mirror cameras 108 d may be displayed with or in lieu of the front forward-facing cameras 108 b on the first and second primary display devices 140 a, 140 b, respectively, and the feed from front camera 108 a may be displayed with or in lieu of the rear camera 108 g on the third primary display device 140 c.
  • Referring to FIG. 5E, an implementation of the vision system 102 when the work vehicle is in a “filling” situation or mode, e.g., when the work vehicle is performing a being loaded (or unloaded) with material. In an example filling situation, one or more front alignment cameras may be active to provide a view of a coupling or engagement with a source of material; and one or more tank or bin cameras may be active to provide an indication of the level material in the tank or bin. As one example of operation during the working situation and additionally referring to FIG. 4, the controller 104 may render the feed from the front alignment camera on one or both of the first and/or second primary display devices 140 a, 140 b, and the feed from the tank or bin camera on the third or center primary display device 140 c. Similar or analogous views may also be initiated by one or more error or alert codes associated with a diagnostic system on the vehicle 100. For example, an error code associated with an issue with a bin or tank (e.g., a clog or empty signal) may initiate an automatic view of the bin or tank, as shown in FIG. 5E such that an operator may visually inspect the area. As further examples, diagnostic codes associated with plugs, missed or skipped paths, or the like may initiate a view of the subject vehicle or implement element or aspect of the environment.
  • Accordingly, the vision system 102 depicted in FIGS. 5A-5E provides an experience for an operator that is consistent across situations. In other words, although the particular views or feeds change, the structure of left, right, and center views between the cameras 108 and the display devices 140 is maintained.
  • The views of FIG. 6 depict one example implementation of the visual displays rendered on a first primary display device 172 (e.g., corresponding to display device 140 a of FIG. 4), a second primary display device 174 (e.g., corresponding to display device 140 b of FIG. 4), and a third primary display device 176 (e.g., corresponding to display device 140 a of FIG. 4). The situation depicted on the primary display devices 172, 174, 176 in FIG. 6 corresponds to the transport situation of FIG. 5A. As such, the feed from the left rear forward-facing camera (e.g., camera 108 c of FIG. 1B) is rendered on the first or left primary display device 172, the feed from the right rear forward-facing camera (e.g., camera 108 c of FIG. 1B) is rendered on the second or right primary display device 174, and the feed from the rear camera (e.g., camera 108 g of FIG. 1B) is rendered on the third or center primary display device 176.
  • The vision system discussed herein may further be embodied as a method for a work vehicle. In particular, the method includes initiating operation of the vision system; determining settings associated with the vision system; determining a situation of the work vehicle associated with the vision system; identifying selected feeds based on the situation and/or operator input; identifying context information associated with the selected feeds; generating display signals for selected display devices for the selected feeds; and displaying the selected feeds on selected display devices.
  • Embodiments of the multi-camera vision system can be utilized in conjunction with various different types of work vehicles; and, further, that the vehicle cameras can capture views of any portions or regions of the environment surrounding or adjacent a work vehicle. Further, description of the manner in which the multi-camera display and the associated display arrangement, display devices, and/or graphical user interfaces appear in the illustrated examples is provided purely by way of non-limiting illustration; noting that the “look and feel” of the displays on the display devices will inevitably vary among embodiments and may be customizable to customer or operator preferences.
  • Accordingly, the present disclosure provides a multi-camera vision system and method for a work vehicle that provide more intuitive and consistent operator experience.
  • Also, the following examples are provided, which are numbered for easier reference.
  • 1. A work vehicle fleet comprising: a first model of work vehicle comprising: a first operator cabin; a first set of display devices within the first operator cabin defining a plurality of display areas arranged at a first side of the first model of work vehicle, a second side of the first model of work vehicle, and a central location of the first model of work vehicle between the first and second sides relative to a first operator FOV; a first set of cameras carried by the first model of work vehicle and coupled to the first set of display devices to display feeds at the plurality of display areas, the first set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the first operator FOV; and a first controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the first controller is configured to display a standard set of feeds from the associated first side, second side, and central location of the first set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side, and the central location, respectively, relative to the first operator FOV; and a second model of work vehicle, different than the first model of work vehicle and comprising: a second operator cabin; a second set of display devices within the second operator cabin defining a plurality of display areas arranged at a first side of the second model of work vehicle, a second side of the second model of work vehicle, and a central location of the second model of work vehicle between the first and second sides relative to a second operator FOV; a second set of cameras carried by the second model of work vehicle and coupled to the second set of display devices to display feeds at the plurality of display areas, the second set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the second operator FOV; and a second controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the second controller is configured to display the standard set of feeds from the associated first side, second side, and central location of the second set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side, and the central location, respectively, relative to the second operator FOV.
  • 2 The work vehicle fleet of example 1, wherein the first operator cabin includes a first headliner and the display area at the central location of the first set of display devices is positioned on or in the first headliner; and wherein the second operator cabin includes a second headliner and the display area at the central location of the second set of display devices is positioned on or in the second headliner.
  • 3. The work vehicle fleet of example 2, wherein the first operator cabin further includes a first windshield at least partially bounded by a first side C-post and a second side C-post, and wherein the display area at the first side of the first set of display devices is positioned on the first side C-post in the first operator cabin and the display area at the second side of the first set of display devices is positioned on the second side C-post in the first operator cabin; and wherein the second operator cabin further includes a second windshield at least partially bounded by a first side C-post and a second side C-post, and wherein the display area at the first side of the second set of display devices is positioned on the first side C-post in the second operator cabin and the display area at the second side of the second set of display devices is positioned on the second side C-post in the second operator cabin.
  • 4. The work vehicle fleet of example 2, wherein the display area at the first side of the first set of display devices and the display area at the second side of the first set of display devices are positioned on the first headliner with the display area at the central location in between; and wherein the display area at the first side of the second set of display devices and the display area at the second side of the second set of display devices are positioned on the second headliner with the display area at the central location in between.
  • 5. The work vehicle fleet of example 1, wherein the first set of cameras includes a first camera of the first set of cameras positioned on the first side of the first model of work vehicle facing forward, a second camera of the first set of cameras positioned on the second side of the first model of work vehicle facing forward, and a third camera of the first set of cameras positioned on a front portion of the first model of work vehicle facing forward; wherein the first controller, when traveling in a forward direction, automatically provides the feed from the first camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle, the feed from the second camera on the display area arranged on the second side of the first model of the work vehicle, and the feed from the third camera of the first set of cameras on the display area arranged at the central location of the first model of work vehicle; wherein the second set of cameras includes a first camera of the second set of cameras positioned on the first side of the second model of work vehicle facing forward, a second camera of the second set of cameras positioned on the second side of the second model of work vehicle facing forward, and a third camera of the second set of cameras positioned on a front portion of the second model of work vehicle facing forward; and wherein the second controller, when traveling in the forward direction, automatically provides the feed from the first camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle, the feed from the second camera of the second set of cameras on the display area arranged on the second side of the second model of the work vehicle, and the feed from the third camera of the second set of cameras on the display area arranged at the central location of the second model of work vehicle.
  • 6. The work vehicle fleet of example 5, wherein the first set of cameras includes a fourth camera of the first set of cameras positioned on a rear portion of the first model of work vehicle facing rearward; wherein the first controller, when traveling in the rearward direction, automatically provides the feed from the fourth camera of the first set of cameras on the display area arranged at the central location of the first model of work vehicle; wherein the second set of cameras includes a fourth camera of the second set of cameras positioned on a rear portion of the second model of work vehicle facing rearward; and wherein the second controller, when traveling in the rearward direction, automatically provides the feed from the fourth camera of the second set of cameras on the display area arranged at the central location of the second model of work vehicle.
  • 7. The work vehicle fleet of example 6, wherein the first set of cameras includes a fifth camera of the first set of cameras positioned on the first side of the first model of work vehicle facing rearward and a sixth camera of the first set of cameras positioned on the second side of the first model of work vehicle facing rearward; wherein the first controller, when traveling in the rearward direction, automatically provides the feed from the fifth camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the sixth camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle; wherein the second set of cameras includes a fifth camera of the second set of cameras positioned on the first side of the second model of work vehicle facing rearward and a sixth camera of the second set of cameras positioned on the second side of the second model of work vehicle facing rearward; and wherein the second controller, when traveling in the rearward direction, automatically provides the feed from the fifth camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle and the feed from the sixth camera of the second set of cameras on the display area arranged on the second side of the second model of work vehicle.
  • 8. The work vehicle fleet of example 1, wherein the first set of cameras includes a first side forward camera of the first set of cameras positioned on the first side of the first model of work vehicle facing forward, a second side forward camera of the first set of cameras positioned on the second side of the first model of work vehicle facing forward, a first side transverse camera of the first set of cameras positioned on the first side of the first model of work vehicle facing transversely outward, and a second side transverse camera of the first set of cameras positioned on the second side of the first model of work vehicle facing transversely outward; wherein, during a travel mode, the first controller automatically provides the feed from the first side forward camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the second side forward camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle; wherein, during an intersection mode, the first controller automatically provides the feed from the first side transverse camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the second side transverse camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle; wherein the second set of cameras includes a first side forward camera of the second set of cameras positioned on the first side of the second model of work vehicle facing forward, a second side forward camera of the second set of cameras positioned on the second side of the second model of work vehicle facing forward, a first side transverse camera of the second set of cameras positioned on the first side of the second model of work vehicle facing transversely outward, and a second side transverse camera of the second set of cameras positioned on the second side of the second model of work vehicle facing transversely outward; wherein, during the travel mode, the second controller automatically provides the feed from the first side forward camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle and the feed from the second side forward camera of the second set of cameras on the display area arranged on the second side of the second model of work vehicle; and wherein, during the intersection mode, the second controller automatically provides the feed from the first side transverse camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle and the feed from the second side transverse camera of the second set of cameras on the display area arranged on the second side of the second model of work vehicle.
  • 9. The work vehicle fleet of example 8, wherein the first controller automatically switches from the travel mode to the interaction mode when the first model of work vehicle arrives at a first intersection; and wherein the second controller automatically switches from the travel mode to the interaction mode when the second model of work vehicle arrives at a second intersection.
  • 10. The work vehicle fleet of example 1, wherein the first model of work vehicle includes a first implement and the first set of cameras includes a first implement camera on the first implement on the first side of the first model of work vehicle and a second implement camera on the first implement on the second side of the first model of work vehicle; and wherein the second model of work vehicle includes a second implement and the second set of cameras includes a first implement camera on the second implement on the first side of the second model of work vehicle and a second implement camera on the second implement on the second side of the second model of work vehicle.
  • 11. The work vehicle fleet of example 10, wherein, during a working mode, the first controller automatically provides the feed from the first implement camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the second implement camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle; and wherein, during the working mode, the second controller automatically provides the feed from the first implement camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle and the feed from the second implement camera of the second set of cameras on the display area arranged on the second side of the second model of work vehicle.
  • 12. The work vehicle fleet of example 1, wherein the first model of work vehicle is a sprayer and the second model of work vehicle is a harvester.
  • 13. The work vehicle fleet of example 1, further comprising an operator-based identifier storing operator settings for a first operator; and wherein each of the first controller and the second controller is configured to recognize and implement the operator settings for the first operator from the operator-based identifier.
  • 14. A work vehicle fleet vision system, comprising: a first set of display devices within a first operator cabin of a first model of work vehicle defining a plurality of display areas arranged at a first side of the first model of work vehicle, a second side of the first model of work vehicle, and a central location of the first model of work vehicle between the first and second sides relative to a first operator FOV; a first set of cameras carried by the first model of work vehicle and coupled to the first set of display devices to display feeds at the plurality of display areas, the first set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the first operator FOV; a first controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the first controller is configured to display a standard set of feeds from the associated first side, second side, and central location of the first set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side and the central location, respectively, relative to the first operator FOV; a second set of display devices within a second operator cabin of a second model of work vehicle defining a plurality of display areas arranged at a first side of the second model of work vehicle, a second side of the second model of work vehicle, and a central location of the second model of work vehicle between the first and second sides relative to a second operator FOV; a second set of cameras carried by the second model of work vehicle and coupled to the second set of display devices to display feeds at the plurality of display areas, the second set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the second operator FOV; and a second controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the second controller is configured to display the standard set of feeds from the associated first side, second side, and central location of the second set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side and the central location, respectively, relative to the second operator FOV.
  • 15. The work vehicle fleet vision system of example 14, wherein the first set of cameras includes a first camera of the first set of cameras positioned on the first side of the first model of work vehicle facing forward, a second camera of the first set of cameras positioned on the second side of the first model of work vehicle facing forward, and a third camera of the first set of cameras positioned on a front portion of the first model of work vehicle facing forward; wherein the first controller, when traveling in a forward direction, automatically provides the feed from the first camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle, the feed from the second camera on the display area arranged on the second side of the first model of the work vehicle, and the feed from the third camera of the first set of cameras on the display area arranged at the central location of the first model of work vehicle; wherein the second set of cameras includes a first camera of the second set of cameras positioned on the first side of the second model of work vehicle facing forward, a second camera of the second set of cameras positioned on the second side of the second model of work vehicle facing forward, and a third camera of the second set of cameras positioned on a front portion of the second model of work vehicle facing forward; and wherein the second controller, when traveling in the forward direction, automatically provides the feed from the first camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle, the feed from the second camera of the second set of cameras on the display area arranged on the second side of the second model of the work vehicle, and the feed from the third camera of the second set of cameras on the display area arranged at the central location of the second model of work vehicle.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • As will be appreciated by one skilled in the art, certain aspects of the disclosed subject matter can be embodied as a method, system (e.g., a work machine control system included in a work machine), or computer program product. Accordingly, certain embodiments can be implemented entirely as hardware, entirely as software (including firmware, resident software, micro-code, etc.) or as a combination of software and hardware (and other) aspects. Furthermore, certain embodiments can take the form of a computer program product on a computer-usable storage medium having computer-usable program code embodied in the medium.
  • As will be appreciated by one skilled in the art, aspects of the disclosed subject matter can be described in terms of methods, systems (e.g., control or display systems deployed onboard or otherwise utilized in conjunction with work machines), and computer program products. With respect to computer program products, in particular, embodiments of the disclosure may consist of or include tangible, non-transitory storage media storing computer-readable instructions or code for performing one or more of the functions described throughout this document. As will be readily apparent, such computer-readable storage media can be realized utilizing any currently-known or later-developed memory type, including various types of random access memory (RAM) and read-only memory (ROM). Further, embodiments of the present disclosure are open or “agnostic” to the particular memory technology employed, noting that magnetic storage solutions (hard disk drive), solid state storage solutions (flash memory), optimal storage solutions, and other storage solutions can all potentially contain computer-readable instructions for carrying-out the functions described herein. Similarly, the systems or devices described herein may also contain memory storing computer-readable instructions (e.g., as any combination of firmware or other software executing on an operating system) that, when executed by a processor or processing system, instruct the system or device to perform one or more functions described herein. When locally executed, such computer-readable instructions or code may be copied or distributed to the memory of a given computing system or device in various different manners, such as by transmission over a communications network including the Internet. Generally, then, embodiments of the present disclosure should not be limited to any particular set of hardware or memory structure, or to the particular manner in which computer-readable instructions are stored, unless otherwise expressly specified herein.
  • A computer readable signal medium can include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal can take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium can be non-transitory and can be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • As used herein, unless otherwise limited or modified, lists with elements that are separated by conjunctive terms (e.g., “and”) and that are also preceded by the phrase “one or more of” or “at least one of” indicate configurations or arrangements that potentially include individual elements of the list, or any combination thereof. For example, “at least one of A, B, and C” or “one or more of A, B, and C” indicates the possibilities of only A, only B, only C, or any combination of two or more of A, B, and C (e.g., A and B; B and C; A and C; or A, B, and C).
  • As used herein, the term module refers to any hardware, software, firmware, electronic control component, processing logic, and/or processor device, individually or in any combination, including without limitation: application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality. The term module may be synonymous with unit, component, subsystem, sub-controller, circuitry, routine, element, structure, control section, and the like.
  • Embodiments of the present disclosure may be described herein in terms of functional and/or logical block components and various processing steps. It should be appreciated that such block components may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For example, an embodiment of the present disclosure may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices. In addition, those skilled in the art will appreciate that embodiments of the present disclosure may be practiced in conjunction with any number of work vehicles.
  • The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. Explicitly referenced embodiments herein were chosen and described in order to best explain the principles of the disclosure and their practical application, and to enable others of ordinary skill in the art to understand the disclosure and recognize many alternatives, modifications, and variations on the described example(s). Accordingly, various embodiments and implementations other than those explicitly described are within the scope of the following claims.

Claims (20)

What is claimed is:
1. A work vehicle fleet comprising:
a first model of work vehicle comprising:
a first operator cabin;
a first set of display devices within the first operator cabin defining a plurality of display areas arranged at a first side of the first model of work vehicle, a second side of the first model of work vehicle, and a central location of the first model of work vehicle between the first and second sides relative to a first operator FOV;
a first set of cameras carried by the first model of work vehicle and coupled to the first set of display devices to display feeds at the plurality of display areas, the first set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the first operator FOV; and
a first controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the first controller is configured to display a standard set of feeds from the associated first side, second side, and central location of the first set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side, and the central location, respectively, relative to the first operator FOV; and
a second model of work vehicle, different than the first model of work vehicle and comprising:
a second operator cabin;
a second set of display devices within the second operator cabin defining a plurality of display areas arranged at a first side of the second model of work vehicle, a second side of the second model of work vehicle, and a central location of the second model of work vehicle between the first and second sides relative to a second operator FOV;
a second set of cameras carried by the second model of work vehicle and coupled to the second set of display devices to display feeds at the plurality of display areas, the second set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the second operator FOV; and
a second controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the second controller is configured to display the standard set of feeds from the associated first side, second side, and central location of the second set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side, and the central location, respectively, relative to the second operator FOV.
2. The work vehicle fleet of claim 1,
wherein the first operator cabin includes a first headliner and the display area at the central location of the first set of display devices is positioned on or in the first headliner; and
wherein the second operator cabin includes a second headliner and the display area at the central location of the second set of display devices is positioned on or in the second headliner.
3. The work vehicle fleet of claim 2,
wherein the first operator cabin further includes a first windshield at least partially bounded by a first side C-post and a second side C-post, and wherein the display area at the first side of the first set of display devices is positioned on the first side C-post in the first operator cabin and the display area at the second side of the first set of display devices is positioned on the second side C-post in the first operator cabin; and
wherein the second operator cabin further includes a second windshield at least partially bounded by a first side C-post and a second side C-post, and wherein the display area at the first side of the second set of display devices is positioned on the first side C-post in the second operator cabin and the display area at the second side of the second set of display devices is positioned on the second side C-post in the second operator cabin.
4. The work vehicle fleet of claim 2,
wherein the display area at the first side of the first set of display devices and the display area at the second side of the first set of display devices are positioned on the first headliner with the display area at the central location in between; and
wherein the display area at the first side of the second set of display devices and the display area at the second side of the second set of display devices are positioned on the second headliner with the display area at the central location in between.
5. The work vehicle fleet of claim 1,
wherein the first set of cameras includes a first camera of the first set of cameras positioned on the first side of the first model of work vehicle facing forward, a second camera of the first set of cameras positioned on the second side of the first model of work vehicle facing forward, and a third camera of the first set of cameras positioned on a front portion of the first model of work vehicle facing forward;
wherein the first controller, when traveling in a forward direction, automatically provides the feed from the first camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle, the feed from the second camera on the display area arranged on the second side of the first model of the work vehicle, and the feed from the third camera of the first set of cameras on the display area arranged at the central location of the first model of work vehicle;
wherein the second set of cameras includes a first camera of the second set of cameras positioned on the first side of the second model of work vehicle facing forward, a second camera of the second set of cameras positioned on the second side of the second model of work vehicle facing forward, and a third camera of the second set of cameras positioned on a front portion of the second model of work vehicle facing forward; and
wherein the second controller, when traveling in the forward direction, automatically provides the feed from the first camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle, the feed from the second camera of the second set of cameras on the display area arranged on the second side of the second model of the work vehicle, and the feed from the third camera of the second set of cameras on the display area arranged at the central location of the second model of work vehicle.
6. The work vehicle fleet of claim 5,
wherein the first set of cameras includes a fourth camera of the first set of cameras positioned on a rear portion of the first model of work vehicle facing rearward;
wherein the first controller, when traveling in the rearward direction, automatically provides the feed from the fourth camera of the first set of cameras on the display area arranged at the central location of the first model of work vehicle;
wherein the second set of cameras includes a fourth camera of the second set of cameras positioned on a rear portion of the second model of work vehicle facing rearward; and
wherein the second controller, when traveling in the rearward direction, automatically provides the feed from the fourth camera of the second set of cameras on the display area arranged at the central location of the second model of work vehicle.
7. The work vehicle fleet of claim 6,
wherein the first set of cameras includes a fifth camera of the first set of cameras positioned on the first side of the first model of work vehicle facing rearward and a sixth camera of the first set of cameras positioned on the second side of the first model of work vehicle facing rearward;
wherein the first controller, when traveling in the rearward direction, automatically provides the feed from the fifth camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the sixth camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle;
wherein the second set of cameras includes a fifth camera of the second set of cameras positioned on the first side of the second model of work vehicle facing rearward and a sixth camera of the second set of cameras positioned on the second side of the second model of work vehicle facing rearward; and
wherein the second controller, when traveling in the rearward direction, automatically provides the feed from the fifth camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle and the feed from the sixth camera of the second set of cameras on the display area arranged on the second side of the second model of work vehicle.
8. The work vehicle fleet of claim 1,
wherein the first set of cameras includes a first side forward camera of the first set of cameras positioned on the first side of the first model of work vehicle facing forward, a second side forward camera of the first set of cameras positioned on the second side of the first model of work vehicle facing forward, a first side transverse camera of the first set of cameras positioned on the first side of the first model of work vehicle facing transversely outward, and a second side transverse camera of the first set of cameras positioned on the second side of the first model of work vehicle facing transversely outward;
wherein, during a travel mode, the first controller automatically provides the feed from the first side forward camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the second side forward camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle;
wherein, during an intersection mode, the first controller automatically provides the feed from the first side transverse camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the second side transverse camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle;
wherein the second set of cameras includes a first side forward camera of the second set of cameras positioned on the first side of the second model of work vehicle facing forward, a second side forward camera of the second set of cameras positioned on the second side of the second model of work vehicle facing forward, a first side transverse camera of the second set of cameras positioned on the first side of the second model of work vehicle facing transversely outward, and a second side transverse camera of the second set of cameras positioned on the second side of the second model of work vehicle facing transversely outward;
wherein, during the travel mode, the second controller automatically provides the feed from the first side forward camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle and the feed from the second side forward camera of the second set of cameras on the display area arranged on the second side of the second model of work vehicle; and
wherein, during the intersection mode, the second controller automatically provides the feed from the first side transverse camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle and the feed from the second side transverse camera of the second set of cameras on the display area arranged on the second side of the second model of work vehicle.
9. The work vehicle fleet of claim 8,
wherein the first controller automatically switches from the travel mode to the interaction mode when the first model of work vehicle arrives at a first intersection; and
wherein the second controller automatically switches from the travel mode to the interaction mode when the second model of work vehicle arrives at a second intersection.
10. The work vehicle fleet of claim 1,
wherein the first model of work vehicle includes a first implement and the first set of cameras includes a first implement camera on the first implement on the first side of the first model of work vehicle and a second implement camera on the first implement on the second side of the first model of work vehicle; and
wherein the second model of work vehicle includes a second implement and the second set of cameras includes a first implement camera on the second implement on the first side of the second model of work vehicle and a second implement camera on the second implement on the second side of the second model of work vehicle.
11. The work vehicle fleet of claim 10,
wherein, during a working mode, the first controller automatically provides the feed from the first implement camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the second implement camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle; and
wherein, during the working mode, the second controller automatically provides the feed from the first implement camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle and the feed from the second implement camera of the second set of cameras on the display area arranged on the second side of the second model of work vehicle.
12. The work vehicle fleet of claim 1, wherein the first model of work vehicle is a sprayer and the second model of work vehicle is a harvester.
13. The work vehicle fleet of claim 1,
further comprising an operator-based identifier storing operator settings for a first operator; and
wherein each of the first controller and the second controller is configured to recognize and implement the operator settings for the first operator from the operator-based identifier.
14. A work vehicle fleet vision system, comprising:
a first set of display devices within a first operator cabin of a first model of work vehicle defining a plurality of display areas arranged at a first side of the first model of work vehicle, a second side of the first model of work vehicle, and a central location of the first model of work vehicle between the first and second sides relative to a first operator FOV;
a first set of cameras carried by the first model of work vehicle and coupled to the first set of display devices to display feeds at the plurality of display areas, the first set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the first operator FOV;
a first controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the first controller is configured to display a standard set of feeds from the associated first side, second side, and central location of the first set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side and the central location, respectively, relative to the first operator FOV;
a second set of display devices within a second operator cabin of a second model of work vehicle defining a plurality of display areas arranged at a first side of the second model of work vehicle, a second side of the second model of work vehicle, and a central location of the second model of work vehicle between the first and second sides relative to a second operator FOV;
a second set of cameras carried by the second model of work vehicle and coupled to the second set of display devices to display feeds at the plurality of display areas, the second set of cameras having a respective at least one camera at or trained on the first side, the second side, and the central location between the first and second sides relative to the second operator FOV; and
a second controller having processing architecture configured to control, or receive control instructions regarding, the selection of feeds to display at the plurality of display areas, the second controller is configured to display the standard set of feeds from the associated first side, second side, and central location of the second set of cameras at the first set of display devices so that the associated feeds are arranged at the first side, the second side and the central location, respectively, relative to the second operator FOV.
15. The work vehicle fleet vision system of claim 14,
wherein the first set of cameras includes a first camera of the first set of cameras positioned on the first side of the first model of work vehicle facing forward, a second camera of the first set of cameras positioned on the second side of the first model of work vehicle facing forward, and a third camera of the first set of cameras positioned on a front portion of the first model of work vehicle facing forward;
wherein the first controller, when traveling in a forward direction, automatically provides the feed from the first camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle, the feed from the second camera on the display area arranged on the second side of the first model of the work vehicle, and the feed from the third camera of the first set of cameras on the display area arranged at the central location of the first model of work vehicle;
wherein the second set of cameras includes a first camera of the second set of cameras positioned on the first side of the second model of work vehicle facing forward, a second camera of the second set of cameras positioned on the second side of the second model of work vehicle facing forward, and a third camera of the second set of cameras positioned on a front portion of the second model of work vehicle facing forward; and
wherein the second controller, when traveling in the forward direction, automatically provides the feed from the first camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle, the feed from the second camera of the second set of cameras on the display area arranged on the second side of the second model of the work vehicle, and the feed from the third camera of the second set of cameras on the display area arranged at the central location of the second model of work vehicle.
16. The work vehicle fleet vision system of claim 15,
wherein the first set of cameras includes a fourth camera of the first set of cameras positioned on a rear portion of the first model of work vehicle facing rearward;
wherein the first controller, when traveling in the rearward direction, automatically provides the feed from the fourth camera of the first set of cameras on the display area arranged at the central location of the first model of work vehicle;
wherein the second set of cameras includes a fourth camera of the second set of cameras positioned on a rear portion of the second model of work vehicle facing rearward; and
wherein the second controller, when traveling in the rearward direction,
automatically provides the feed from the fourth camera of the second set of cameras on the display area arranged at the central location of the second model of work vehicle.
17. The work vehicle fleet vision system of claim 16,
wherein the first set of cameras includes a fifth camera of the first set of cameras positioned on the first side of the first model of work vehicle facing rearward and a sixth camera of the first set of cameras positioned on the second side of the first model of work vehicle facing rearward;
wherein the first controller, when traveling in the rearward direction, automatically provides the feed from the fifth camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the sixth camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle;
wherein the second set of cameras includes a fifth camera of the second set of cameras positioned on the first side of the second model of work vehicle facing rearward and a sixth camera of the second set of cameras positioned on the second side of the second model of work vehicle facing rearward; and
wherein the second controller, when traveling in the rearward direction, automatically provides the feed from the fifth camera of the second set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the sixth camera of the second set of cameras on the display area arranged on the second side of the second model of work vehicle.
18. The work vehicle fleet vision system of claim 14,
wherein the first model of work vehicle includes a first implement and the first set of cameras includes a first implement camera on the first implement on the first side of the first model of work vehicle and a second implement camera on the first implement on the second side of the first model of work vehicle; and
wherein the second model of work vehicle includes a second implement and the second set of cameras includes a first implement camera on the second implement on the first side of the second model of work vehicle and a second implement camera on the second implement on the second side of the second model of work vehicle.
19. The work vehicle fleet vision system of claim 18,
wherein, during a working mode, the first controller automatically provides the feed from the first implement camera of the first set of cameras on the display area arranged on the first side of the first model of work vehicle and the feed from the second implement camera of the first set of cameras on the display area arranged on the second side of the first model of work vehicle; and
wherein, during the working mode, the second controller automatically provides the feed from the first implement camera of the second set of cameras on the display area arranged on the first side of the second model of work vehicle and the feed form the second implement camera of the second set of cameras on the display area arranged on the second side of the second model of work vehicle.
20. The work vehicle fleet vision system of claim 14,
further comprising an operator-based identifier storing operator settings for a first operator; and
wherein each of the first controller and the second controller is configured to recognize and implement the operator settings for the first operator from the operator-based identifier.
US17/673,026 2021-03-24 2022-02-16 Work vehicle fleet with intuitive vision system Abandoned US20220311974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/673,026 US20220311974A1 (en) 2021-03-24 2022-02-16 Work vehicle fleet with intuitive vision system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163165677P 2021-03-24 2021-03-24
US202163175334P 2021-04-15 2021-04-15
US17/673,026 US20220311974A1 (en) 2021-03-24 2022-02-16 Work vehicle fleet with intuitive vision system

Publications (1)

Publication Number Publication Date
US20220311974A1 true US20220311974A1 (en) 2022-09-29

Family

ID=83364251

Family Applications (4)

Application Number Title Priority Date Filing Date
US17/673,026 Abandoned US20220311974A1 (en) 2021-03-24 2022-02-16 Work vehicle fleet with intuitive vision system
US17/673,038 Active 2042-02-16 US11993209B2 (en) 2021-03-24 2022-02-16 Work vehicle vision system with contextual task icons
US17/673,032 Active US11772562B2 (en) 2021-03-24 2022-02-16 Intuitive work vehicle vision system for enhanced operator visibility
US18/366,463 Active US12097806B2 (en) 2021-03-24 2023-08-07 Intuitive work vehicle vision system for enhanced operator visibility

Family Applications After (3)

Application Number Title Priority Date Filing Date
US17/673,038 Active 2042-02-16 US11993209B2 (en) 2021-03-24 2022-02-16 Work vehicle vision system with contextual task icons
US17/673,032 Active US11772562B2 (en) 2021-03-24 2022-02-16 Intuitive work vehicle vision system for enhanced operator visibility
US18/366,463 Active US12097806B2 (en) 2021-03-24 2023-08-07 Intuitive work vehicle vision system for enhanced operator visibility

Country Status (3)

Country Link
US (4) US20220311974A1 (en)
BR (2) BR102022003807A2 (en)
DE (3) DE102022206817A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12097806B2 (en) 2021-03-24 2024-09-24 Deere & Company Intuitive work vehicle vision system for enhanced operator visibility
US20240359626A1 (en) * 2022-01-06 2024-10-31 Sumitomo Heavy Industries, Ltd. Surround view monitor system, and work machine
EP4549216A1 (en) * 2023-10-30 2025-05-07 CLAAS KGaA mbH Vehicle cabin with a visualisation device, agricultural working machine and method
US20250204298A1 (en) * 2023-12-20 2025-06-26 Raul Mendoza Cazares Agricultural vehicle with visual monitoring system
US12434634B2 (en) * 2023-01-25 2025-10-07 Toyota Jidosha Kabushiki Kaisha Display control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230311769A1 (en) * 2022-03-31 2023-10-05 Cnh Industrial America Llc System and method for an agricultural applicator
DE102024120759B3 (en) * 2024-07-22 2025-10-30 Mekra Lang Gmbh & Co. Kg Indirect vision system and commercial vehicle with vision system

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170315771A1 (en) * 2016-04-28 2017-11-02 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for selectively displaying images in an autonomous vehicle
US10259383B1 (en) * 2016-12-09 2019-04-16 Ambarella, Inc. Rear collision alert system
US10324461B2 (en) * 2014-07-30 2019-06-18 Yanmar Co., Ltd. Remote control apparatus
US10450169B2 (en) * 2015-09-01 2019-10-22 Tadano Ltd. Surrounding display device for traveling crane
US10589679B1 (en) * 2016-10-28 2020-03-17 Zoox, Inc. Providing visual references to prevent motion sickness in vehicles
US10668854B2 (en) * 2017-02-09 2020-06-02 Komatsu Ltd. Work vehicle and display device
US20200407948A1 (en) * 2018-03-20 2020-12-31 Sumitomo Construction Machinery Co., Ltd. Shovel
US20210155167A1 (en) * 2019-11-27 2021-05-27 Magna Electronics Inc. Vehicular camera monitoring system
US11040660B2 (en) * 2018-01-17 2021-06-22 Japan Display Inc. Monitor display system and display method of the same
US20210246635A1 (en) * 2018-09-03 2021-08-12 Komatsu Ltd. Display system for work machine
US20210291733A1 (en) * 2018-10-31 2021-09-23 Komatsu Ltd. Display control system and display control method
US20210377492A1 (en) * 2020-05-26 2021-12-02 Cnh Industrial America Llc System and method for automatically controlling a display system for a work vehicle
US20220118915A1 (en) * 2020-10-16 2022-04-21 Magna Mirrors Of America, Inc. Vehicular full mirror display system with auxiliary forward and rearward views
US20220212602A1 (en) * 2019-06-28 2022-07-07 Kubota Corporation Harvester, System, Program, Recording Medium, and Method
US11447928B2 (en) * 2017-05-31 2022-09-20 Komatsu Ltd. Display system, display method, and remote control system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013208525A1 (en) 2012-01-12 2014-08-14 Hitachi Construction Machinery Co., Ltd. Periphery monitoring device for self-propelled industrial machine
JP5529943B2 (en) * 2012-09-21 2014-06-25 株式会社小松製作所 Work vehicle periphery monitoring system and work vehicle
JP6692744B2 (en) * 2014-04-25 2020-05-13 住友建機株式会社 Construction machinery
JP6727971B2 (en) 2016-07-19 2020-07-22 株式会社クボタ Work vehicle
US10412889B2 (en) * 2017-12-05 2019-09-17 Deere & Company Combine harvester control information for a remote user with visual feed
EP3779066B1 (en) 2018-03-26 2023-10-25 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Shovel
JP7239291B2 (en) 2018-09-28 2023-03-14 株式会社小松製作所 Work vehicle surroundings monitoring system and work vehicle surroundings monitoring method
JP7242292B2 (en) 2018-12-26 2023-03-20 株式会社クボタ work vehicle
WO2020218454A1 (en) 2019-04-26 2020-10-29 住友建機株式会社 Display device, shovel, information processing device
US11615707B2 (en) 2019-05-29 2023-03-28 Deere & Company Guidance display system for work vehicles and work implements
US10882468B1 (en) 2019-10-29 2021-01-05 Deere & Company Work vehicle composite panoramic vision systems
DE102021200028A1 (en) 2020-02-06 2021-08-12 Deere & Company AGRICULTURAL HARVESTER WITH PREHEATING WEED DETECTION AND COLLECTION SYSTEM
US11647686B2 (en) 2020-03-26 2023-05-16 Deere & Company System and method for communicating the presence of proximate objects in a working area
US20220311974A1 (en) 2021-03-24 2022-09-29 Deere & Company Work vehicle fleet with intuitive vision system

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10324461B2 (en) * 2014-07-30 2019-06-18 Yanmar Co., Ltd. Remote control apparatus
US10450169B2 (en) * 2015-09-01 2019-10-22 Tadano Ltd. Surrounding display device for traveling crane
US20170315771A1 (en) * 2016-04-28 2017-11-02 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for selectively displaying images in an autonomous vehicle
US10589679B1 (en) * 2016-10-28 2020-03-17 Zoox, Inc. Providing visual references to prevent motion sickness in vehicles
US10259383B1 (en) * 2016-12-09 2019-04-16 Ambarella, Inc. Rear collision alert system
US10668854B2 (en) * 2017-02-09 2020-06-02 Komatsu Ltd. Work vehicle and display device
US11447928B2 (en) * 2017-05-31 2022-09-20 Komatsu Ltd. Display system, display method, and remote control system
US11040660B2 (en) * 2018-01-17 2021-06-22 Japan Display Inc. Monitor display system and display method of the same
US20200407948A1 (en) * 2018-03-20 2020-12-31 Sumitomo Construction Machinery Co., Ltd. Shovel
US20210246635A1 (en) * 2018-09-03 2021-08-12 Komatsu Ltd. Display system for work machine
US20210291733A1 (en) * 2018-10-31 2021-09-23 Komatsu Ltd. Display control system and display control method
US20220212602A1 (en) * 2019-06-28 2022-07-07 Kubota Corporation Harvester, System, Program, Recording Medium, and Method
US20210155167A1 (en) * 2019-11-27 2021-05-27 Magna Electronics Inc. Vehicular camera monitoring system
US20210377492A1 (en) * 2020-05-26 2021-12-02 Cnh Industrial America Llc System and method for automatically controlling a display system for a work vehicle
US20220118915A1 (en) * 2020-10-16 2022-04-21 Magna Mirrors Of America, Inc. Vehicular full mirror display system with auxiliary forward and rearward views

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12097806B2 (en) 2021-03-24 2024-09-24 Deere & Company Intuitive work vehicle vision system for enhanced operator visibility
US20240359626A1 (en) * 2022-01-06 2024-10-31 Sumitomo Heavy Industries, Ltd. Surround view monitor system, and work machine
US12434634B2 (en) * 2023-01-25 2025-10-07 Toyota Jidosha Kabushiki Kaisha Display control device
EP4549216A1 (en) * 2023-10-30 2025-05-07 CLAAS KGaA mbH Vehicle cabin with a visualisation device, agricultural working machine and method
US20250204298A1 (en) * 2023-12-20 2025-06-26 Raul Mendoza Cazares Agricultural vehicle with visual monitoring system

Also Published As

Publication number Publication date
BR102022003803A2 (en) 2022-12-13
US11993209B2 (en) 2024-05-28
DE102022206814A1 (en) 2023-08-17
DE102022206817A1 (en) 2023-08-17
US20220306000A1 (en) 2022-09-29
BR102022003807A2 (en) 2022-12-13
DE102022206818A1 (en) 2023-08-17
US20220305999A1 (en) 2022-09-29
US12097806B2 (en) 2024-09-24
US20230406211A1 (en) 2023-12-21
US11772562B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
US12097806B2 (en) Intuitive work vehicle vision system for enhanced operator visibility
US10668854B2 (en) Work vehicle and display device
CN107627957B (en) Working vehicle
US11072368B2 (en) Dynamically augmented bird's-eye view
AU2013218883B2 (en) Periphery monitoring device for transportation vehicle
CN110733303A (en) Hitching auxiliary system
JP7183121B2 (en) work vehicle
DE102016210824A1 (en) Mounting aid with pan / zoom view and virtual plan view
DE102019104258B4 (en) Reversing system for vehicle with trailer hitch and vehicle
CN115341613A (en) System and method for truck loading assistance for a work machine
CN112805207A (en) User adjustable trajectory for automatic vehicle reversing
JP2017074871A (en) Vehicle obstacle detection device
JP6401141B2 (en) Vehicle obstacle detection device
EP3913148B1 (en) Mobile work machine state detection and visualization system
JP7208812B2 (en) electronic controller
US20200207273A1 (en) Surround view by drones
US11846947B2 (en) Systems and methods for an implement imaging system
BR102022003802A2 (en) MULTI-CAMERA VISION SYSTEM USED ON BOARD A WORK VEHICLE
JP7505378B2 (en) Work vehicle control system
DE102015113251A1 (en) SYSTEM AND METHOD FOR ENTERING AN INSPECTED BACKWARD ROUTE
EP4524332A1 (en) Work vehicle including a work area visualization system
EP3918589B1 (en) A method for adjusting a display view of a vision aid system
DE102020216132A1 (en) Main control unit for outputting a control signal as a function of a composite overall image relating to surroundings of a vehicle
KR20230166128A (en) Vehicle display with offset camera view
WO2022071495A1 (en) Combine, image display system, image display method, image display program, and recording medium having image display program recorded thereon

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEERE & COMPANY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUENINK, BRIAN M.;SHULER, JEREMY B.;FLANDERS, JAKE;SIGNING DATES FROM 20220121 TO 20220126;REEL/FRAME:059025/0868

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION