[go: up one dir, main page]

US20220267822A1 - Methods for producing polypeptides by regulating polypeptide association - Google Patents

Methods for producing polypeptides by regulating polypeptide association Download PDF

Info

Publication number
US20220267822A1
US20220267822A1 US17/520,368 US202117520368A US2022267822A1 US 20220267822 A1 US20220267822 A1 US 20220267822A1 US 202117520368 A US202117520368 A US 202117520368A US 2022267822 A1 US2022267822 A1 US 2022267822A1
Authority
US
United States
Prior art keywords
amino acid
antibody
polypeptide
acid residue
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/520,368
Inventor
Tomoyuki Igawa
Hiroyuki Tsunoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37073456&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20220267822(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Priority to US17/520,368 priority Critical patent/US20220267822A1/en
Assigned to CHUGAI SEIYAKU KABUSHIKI KAISHA reassignment CHUGAI SEIYAKU KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IGAWA, TOMOYUKI, TSUNODA, HIROYUKI
Publication of US20220267822A1 publication Critical patent/US20220267822A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific

Definitions

  • the present invention relates to methods for producing polypeptides by regulating the intramolecular or intermolecular association of each molecule, polypeptides whose intramolecular or intermolecular association is regulated, and pharmaceutical compositions and the like containing such polypeptides as an active ingredient.
  • MDX-210 which is currently under clinical trial investigation, is an IgG-type bispecific antibody that retargets Fc ⁇ RI-expressing monocytes and such to HER-2/neu-expressing cancer cells (see Non-Patent Document 1).
  • antibodies are produced using genetic recombination techniques.
  • One specific technique involves the cloning of a DNA encoding an antibody protein from antibody-producing cells, such as hybridomas or sensitized lymphocytes that produce antibodies or a phage library presenting antibody genes, and the insertion of such into a suitable vector, which is then transfected into host cells for antibody production.
  • Production of IgG type bispecific antibodies using genetic recombination techniques involves the introduction of a total of four types of genes into cells, in which these genes of H chains and L chains constitute two types of IgGs of interest, and the secretion of the antibodies by coexpression.
  • VH H chain variable region
  • VL L chain variable region
  • An objective of the present invention is to provide a method for regulating polypeptide association, polypeptides whose association is regulated, and methods for producing such polypeptides.
  • Another objective is to provide methods for efficiently producing one of the conformational isomers of sc(Fv)2.
  • the present inventors selected VH and VL of the antibodies as peptides to be subjected for the regulation of association, and carried out dedicated research on methods that allow the association between these VH and VL to be regulated.
  • the inventors discovered that the association between VH and VL can be regulated by substituting amino acids present at the VH-VL interface with charged amino acids. This, in turn, leads to a more efficient formation of the heterologous molecules than the above-mentioned methods that utilize the knob and hole techniques.
  • substitution with only one type of amino acid present at each side of the VH-VL interface allows for the efficient production of a heterologous molecule. From the viewpoint of antigenicity, fewer amino acid substitutions are preferred. In an embodiment of the present invention, a mere substitution of one amino acid present at the VH-VL interface enables the efficient formation of heterologous molecules.
  • associations between VH and VL can be regulated by the findings discovered by the present inventors.
  • the present invention can be applied not only to the regulation of association between VH and VL, but can also be applied to the regulation of associations among arbitrary polypeptides.
  • the present inventors confirmed that function is actually retained in bispecific antibodies obtained by the methods for regulating association of the present invention.
  • the present inventors succeeded in developing methods that can regulate the association between arbitrary polypeptides, and thus completed the present invention.
  • the present invention relates to methods for regulating polypeptide association, polypeptides whose association is regulated, and methods for producing such polypeptides, and more specifically the invention provides:
  • FIG. 1 depicts models of the Fv region of humanized SB04. Part (A) depicts H39 and L38, which are amino acid residues at the VH-VL interface, and part (B) depicts H45 and L44, which are amino acid residues at the VH-VL interface.
  • FIG. 2 is a photograph depicting the results of an assay evaluating the associations between H and L chains in H39 and L38-modified antibodies. These results demonstrate that for all modified antibodies, the associated proportion of the antibody of interest is increased when compared to the wild type.
  • M molecular marker; 1: humanized XB12 H chain (Q)+humanized XB12 L chain (Q); 2: humanized XB12 H chain (Q)+humanized SB04 L chain (Q); 3: wild type: humanized XB12 H chain (Q)+humanized XB12 L chain (Q)+humanized SB04 L chain (Q); 4: D variant: humanized XB12 H chain (D)+humanized XB12 L chain (Q)+humanized SB04 L chain (D); 5: E variant: humanized XB12 H chain (E)+humanized XB12 L chain (Q)+humanized SB04 L chain (E); 6: R variant: humanized XB12 H chain (R)+humanized XB12 L chain (Q)+humanized SB04 L chain (R); and 7: K variant: humanized XB12 H chain (K)+humanized XB12 L chain (Q)+humanized SB04 L chain (K)
  • FIG. 3 depicts the results of an assay evaluating coagulation activity in H39 and L38-modified antibodies. The results demonstrate that the bispecific antibody whose XB12 H chain (H39) and SB04 L chain (L38) have been modified to Glu has a coagulation activity equal to or greater than that of the wild-type.
  • FIG. 4 depicts the results of an assay evaluating Factor IXa binding activity in H39 and L38-modified antibodies. The results demonstrate that all modified antibodies have a binding activity equivalent to that of the wild-type.
  • FIG. 5 shows the results of an assay evaluating Factor X binding activity in H39 and L38-modified antibodies. The results show that all modified antibodies have a binding activity equivalent to that of the wild-type.
  • FIG. 6 is a photograph depicting the results of an assay evaluating the association between the H and L chains in the L44-modified antibodies. The results demonstrate that for all modified antibodies, the associated proportion of the antibody of interest is increased when compared to that of the wild type.
  • FIG. 7 depicts the results of an assay evaluating coagulation activity in L44-modified antibodies. The results demonstrate that all modified antibodies have coagulation activity greater than that of the wild-type.
  • FIG. 8 depicts the results of an assay evaluating Factor X binding activity in L44-modified antibodies. The results demonstrate that all modified antibodies have a binding activity equivalent to that of the wild type.
  • FIG. 9 is a photograph depicting the results of an assay evaluating the association between the H and L chains in H39, L38, and L44-modified antibodies. The results demonstrate that for all modified antibodies, associated proportion of the antibody of interest is increased when compared to that of the wild type.
  • FIG. 10 depicts the results of an assay evaluating coagulation activity in H39, L38, and L44-modified antibodies.
  • the results demonstrate that bispecific antibodies whose XB12 H chain (H39) and SB04 L chain (L38, L44) have been modified have a coagulation activity equal to or greater than that of the wild type.
  • FIG. 11 depicts the results of an assay evaluating Factor IXa binding activity in H39, L38, and L44-modified antibodies. The results demonstrate that all modified antibodies have a binding activity equivalent to that of the wild type.
  • FIG. 12 presents a schematic diagram of examples of the conformations of an sc(Fv)2 having two types of heavy chain variable regions (VH1 and VH2) and two types of light chain variable regions (VL1 and VL2).
  • An sc(Fv)2 having the structure of (a) is mainly present as two types of conformational isomers shown in (b).
  • FIG. 13 depicts the results of separating peak 1 and peak 2 corresponding to the conformational isomers of u2-wz4, by cation exchange chromatography.
  • FIG. 14 depicts the results of peptide mapping of peak 1 and peak 2 separated by cation exchange chromatography.
  • FIG. 15 is a photograph depicting the results of a reduced SDS-PAGE assay performed after subtilisin treatment of u2-wz4 before separation of peak 1 and peak 2, which are conformational isomers of u2-wz4. The conformations corresponding to the obtained bands are shown on the right.
  • FIG. 16 depicts the difference in degradation patterns after limited proteolysis by subtilisin, which is caused by differences in the conformation of a bivalent scFv and single chain antibody.
  • the bivalent ScFv structure the minibody fragment in the dotted frame is formed.
  • FIG. 17 depicts the results of a gel filtration chromatography assay after limited proteolysis by subtilisin on u2-wz4 before separation and on peak 1 and peak 2, which are conformational isomers of u2-wz4.
  • the elution positions of the minibody peaks are shown by arrows.
  • FIG. 18 depicts the results of a gel filtration chromatography assay on u2-wz4, variant v1, and variant v3 after purification through an MG10-GST fusion protein-immobilized column.
  • FIG. 19 depicts the results of a cation exchange chromatography assay on u2-wz4, variant v1, and variant v3.
  • FIG. 20 is a photograph depicting the results of isoelectric focusing of u2-wz4, peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 21 depicts the results of gel filtration analyses performed after protease-limited proteolysis of peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 22 depicts the results of an assay evaluating the TPO-like agonist activity of peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 23 depicts the results of DSC analyses of peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 24 depicts the percentage of monomers recovered by gel filtration chromatographic analysis in thermal acceleration tests of peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 25 depicts the conformational isomer content percentage obtained by cation exchange chromatographic analysis in thermal acceleration tests of peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 26 depicts the results of an assay evaluating the coagulation activities of humanized bispecific antibodies (humanized A69 (hA69-PFL)/humanized B26 (hB26-PF)/humanized BBA (hAL-AQ)). The results demonstrate that the coagulation activities are equivalent to or greater than those of chimeric bispecific antibodies.
  • FIG. 27 presents a schematic diagram describing the method for improving the efficiency of the formation of bispecific antibody by modifying the H-chain constant region.
  • the numbers indicating the positions of modification are based on the EU numbering system (Kabat E A et al. 1991. Sequences of Proteins of Immunological Interest. NIH).
  • FIG. 28 depicts chromatograms of IEX analysis of humanized bispecific antibodies (IgG4-type) whose CH3 interface has been modified.
  • FIG. 29 depicts the formation ratio of A-Homo, BiAb, and B-Homo obtained by IEX analysis of humanized bispecific antibodies (IgG4-type) whose CH3 interface has been modified.
  • FIG. 30 depicts the percentage of monomer recovered after thermal acceleration tests at 60° C.-1 W on BiAb purified from humanized bispecific antibodies (IgG4-type) whose CH3 interface has been modified.
  • FIG. 31 depicts the results of an assay evaluating coagulation activity of humanized bispecific antibodies (IgG4-type) whose CH3 interface has been modified. The results demonstrate that the coagulation activities are equivalent to that of the unmodified bispecific antibody.
  • FIG. 32 depicts the formation ratio obtained through IEX analysis for A-Homo, BiAb, and B-Homo, which are humanized bispecific antibodies (IgG1-type) whose CH3 interface has been modified.
  • the present invention relates to methods for regulating the association of polypeptides or association of heteromultimers composed of polypeptides.
  • the present invention provides methods for regulating polypeptide association, such methods including the step of modifying amino acid residues in an original peptide forming an interface so as to inhibit the association within the polypeptide.
  • polypeptides ordinarily refers to peptides and proteins whose length is about ten amino acids or longer.
  • Polypeptides are ordinarily derived from organisms but are not particularly limited thereto, and for example, they may be composed of an artificially designed sequence. They may also be any of naturally derived polypeptides, synthetic polypeptides, recombinant polypeptides, or such. Additionally, fragments of the above-mentioned polypeptides are also included in the polypeptides of the present invention.
  • polypeptide association refers to, for example, a condition in which two or more polypeptide regions interact.
  • regulating association refers to regulating to achieve a desired association condition, and more specifically refers to regulating so that undesirable associations are not formed in the polypeptides.
  • the term “interface” ordinarily refers to the association surface that results from association (interaction), and amino acid residues that form the interface are ordinarily one or more amino acid residues included in the polypeptide regions which participate in the association, and are more preferably amino acid residues that approach each other during association and are involved in the interaction. More specifically, this interaction includes, for example, instances where the amino acid residues come close during the association to form hydrogen bonds, electrostatic interactions, or salt bridges with each other.
  • amino acid residues forming an interface more specifically refers to amino acid residues included in the polypeptide region that constitutes the interface.
  • polypeptide regions constituting the interface refer to polypeptide regions responsible for selective binding within or between molecules such as in antibodies, ligands, receptors, or substrates. More specifically, in antibodies, such examples include heavy chain variable regions and light chain variable regions.
  • Modification of amino acid residues in the methods of the present invention specifically refers to substituting original amino acid residue(s) for other amino acid residue(s), deleting original amino acid residue(s), adding new amino acid residue(s), and such, but preferably refers to substituting one or more original amino acid residues for other amino acid residues.
  • polypeptides preferably refers to polypeptides that form two or more types of conformational isomers.
  • Conformational isomers are proteins whose amino acid sequences are identical but their three-dimensional (tertiary) structures are different. Ordinarily, among conformational isomers, at least either one of chemical or physical properties is also different.
  • a preferred embodiment of the present invention relates to methods for preferentially (efficiently) obtaining desirable conformational isomers from among two or more types of potential conformational isomers. More specifically, an embodiment relates to methods for modifying the one or more amino acid residues that form an interface between the polypeptides so as to inhibit an association between polypeptides forming one or more types of conformational isomers from among those polypeptides that may form two or more types of conformational isomers.
  • first to fourth peptide regions exist in a polypeptide, and any two of these regions can associate
  • the following cases are conceivable where mainly three types of conformational isomers can exist: (1) the first and second polypeptide regions associate and the third and fourth polypeptide regions associate, (2) the first and third polypeptide regions associate, and the second and fourth polypeptide regions associate, and (3) the first and fourth polypeptide regions associate, and the second and third polypeptide regions associate.
  • polypeptide formational isomer
  • amino acid residues forming the interfaces present in the first, third, or fourth polypeptide regions are modified so that association of the first polypeptide region with the third and fourth polypeptide regions is inhibited.
  • the methods of the present invention also relates to methods for regulating heteromultimer association, such methods including the step of modifying amino acid residues that form the interface between the original polypeptides, such that the association between the polypeptides is inhibited.
  • heteromultimer refers to a protein multimer composed of more than one type of polypeptide, in which the polypeptides can associate with each other. More specifically, a “heteromultimer” includes at least a first polypeptide and a second polypeptide; in this context, the second polypeptide is a molecule which differs from the first polypeptide by at least one amino acid residue. Furthermore, without particular limitation, the heteromultimers preferably have binding specificity toward at least two different types of ligands, antigens, receptors, substrates, or such. In addition to a “heterodimer” formed by a first and second polypeptide, another different type of polypeptide may exist in the heteromultimer. More specifically, “heteromultimers” of the present invention are not limited to heterodimers and include for example heterotrimers and heterotetramers.
  • Preferred embodiments of the above-mentioned methods are methods of modifying amino acid residues that form the interface between polypeptides in heteromultimers that may form two or more types of multimers, such that association between polypeptides forming one or more types of multimers is inhibited.
  • the following multimers can mainly exist: (1) multimers in which the first and second polypeptides are associated and the third and fourth polypeptides are associated, (2) multimers in which the first and third polypeptides are associated and the second and fourth polypeptides are associated, or (3) multimers in which the first and fourth polypeptides are associated and the second and third polypeptides are associated.
  • amino acid residues included in the first, third, or fourth polypeptide can be modified so that association of the first polypeptide with the third and fourth polypeptides is inhibited.
  • Preferred embodiments of the methods of the present invention for regulating polypeptide association include, for example, methods in which modification of amino acid residues forming the interface of polypeptides include introducing amino acid residue mutations to the interface so that two or more amino acid residues forming an interface will have the same type of charge.
  • the amino acid residues that are to be modified are preferably two or more amino acid residues that come close to each other during association in the region between the polypeptide regions that form the interface.
  • Amino acid residues that come close to each other during association can be identified, for example, by analyzing the three dimensional structures of the polypeptides, and investigating the amino acid sequences of the polypeptide regions forming the interface when these polypeptides associate. Amino acid residues that come close to each other at the interface will be preferred targets for “modifications” in the methods of the present invention.
  • amino acids are known to be charged amino acids.
  • lysine (K), arginine (R), and histidine (H) are known as positively charged amino acids (cationic amino acids) whereas aspartate (D), glutamate (E), and such are known as negatively charged amino acids (anionic amino acids). Therefore, in the context of the present invention, amino acids carrying the same type of charge preferably refer to amino acids that are either positively charged or negatively charged.
  • all of the mutated amino acid residues are preferably modified to have the same type of charges, but the methods are not necessarily limited to such cases.
  • the methods are not necessarily limited to such cases.
  • a number of amino acid residues are introduced by the modification, there may be a few uncharged amino acid residues among these amino acid residues.
  • the number of amino acid residues that undergo modification in the methods of the present invention is not particularly limited. However, when modifying the variable region(s) of an antibody, it is preferable that only a few amino acid residues are modified so as not to decrease the antigen binding activity or increase the antigenicity of the resulting antibody.
  • the methods of the present invention can regulate association by modifying one or both of the two amino acid residues that come close to each other at the interface, as indicated in the Examples described below.
  • the term “few” as used in the above-mentioned context refers to about one to ten for example, preferably about one to five, more preferably about one to three, and even more preferably about one to two.
  • amino acid residues that are introduced by modification are preferably all selected from among the above-mentioned positively charged amino acids, or, alternatively, are all selected from among the above-mentioned negatively charged amino acids.
  • preferred amino acid residues to be introduced include glutamic acid (E), asparagine (D), lysine (K), arginine (R), or histidine (H).
  • an interface-forming amino acid residue (X) in an original polypeptide (before modification) when an interface-forming amino acid residue (X) in an original polypeptide (before modification) is already charged, it is preferable that the amino acid residue that comes close to and faces this amino acid residue (X) during association is modified to be the same amino acid residue (or an amino acid residue with the same type of charge) as the amino acid residue (X). In this embodiment, it is only necessary to modify one of the amino acid residues that form the interface.
  • Preferred embodiments of the methods of the present invention for regulating association include methods in which modification of amino acid residues forming the interface of the polypeptides that feature the introduction of amino acid residue mutations to the interface such that the amino acid residues forming a hydrophobic core present at the interface are transformed into charged amino acid residues.
  • hydrophobic core refers to a part of a polypeptide that is formed by an assembly of hydrophobic amino acid side chains at the interior of the associated polypeptides.
  • hydrophobic amino acids include alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, and valine.
  • amino acid residues other than hydrophobic amino acids for example tyrosine
  • This hydrophobic core together with a hydrophilic surface, in which hydrophilic amino acid side chains are exposed to the exterior, becomes a driving force for promoting association of water-soluble polypeptides.
  • hydrophobic amino acids of two different domains When hydrophobic amino acids of two different domains are present on a molecular surface and are exposed to water molecules, the entropy will increase and the free energy will increase. Accordingly, the two domains will associate with each other to decrease the free energy and become stable, and hydrophobic amino acids at the interface will be buried into the interior of the molecule to form a hydrophobic core.
  • the present invention relates to methods for regulating association that feature the step of modifying amino acid residues involved with the formation of the hydrophobic core at the interface into charged amino acid residues.
  • Examples of charged amino acid residues suitable for use in the methods described above preferably include glutamic acid (E), aspartic acid (D), lysine (K), arginine (R), and histidine (H).
  • the methods of the present invention for regulating association can be used as methods for preferentially obtaining (producing) antibodies (polypeptides) of interest and in the production of antibodies, antibody fragments, polypeptides having antibody-like activity, and the like.
  • the term “antibody” is used in the broadest sense, and includes monoclonal antibodies, polyclonal antibodies, and mutant antibodies (chimeric antibodies, humanized antibodies, minibodies (including antibody fragments), and multispecific antibodies), so long as they exhibit a desired biological activity.
  • the “antibody” can be a polypeptide or heteromultimer.
  • Preferred antibodies include monoclonal antibodies, chimeric antibodies, humanized antibodies, and minibodies, such as antibody fragments.
  • multispecific antibody refers to an antibody that may bind specifically to different types of epitopes. More specifically, multispecific antibodies are antibodies having specificity to at least two different types of epitopes, and, in addition to antibodies recognizing different antigens, antibodies recognizing different epitopes on the same antigen are also included. For example, when the antigens are heterologous receptors, multispecific antibodies can recognize different domains constituting the heterologous receptors; alternatively, when the antigens are monomers, multispecific antibodies recognize multiple sites on the monomer antigens. Ordinarily, such molecules bind to two antigens (bispecific antibodies; used in the present description to have the same meaning as “dual-specific antibodies”), but they may even have specificity toward more antigens (for example three types).
  • the antibodies of the present invention include antibodies whose amino acid sequences have been modified by amino acid substitutions, deletions, additions, and/or insertions, or chimerization, humanization, and such.
  • amino acid sequence modifications such as amino acid substitutions, deletions, additions, and/or insertions, and humanization and chimerization, can be achieved by methods known to those skilled in the art.
  • the amino acid sequences of the antibody variable and constant regions may also be modified by amino acid substitutions, deletions, additions, and/or insertions, or chimerization, humanization and the like.
  • the antibodies of the present invention may be derived from any animal, such as a mouse, human, rat, rabbit, goat, or camel. Furthermore, the antibodies may be modified, for example, chimeric antibodies, and in particular, modified antibodies that include amino acid substitutions in their sequence, such as humanized antibodies.
  • the antibodies may be any type of antibody, such as antibody modification products linked with various molecules, antibody fragments, and minibodies.
  • Chimeric antibodies are antibodies prepared by combining sequences derived from different animals.
  • An example is an antibody having heavy and light chain variable (V) regions from a mouse antibody and heavy and light chain constant (C) regions from a human antibody.
  • Chimeric antibodies can be prepared by known methods. To obtain such chimeric antibodies, for example, a DNA encoding an antibody V region may be ligated with a DNA encoding a human antibody C region; the resulting ligation product can be inserted into an expression vector; and the construct can be introduced into a host to produce the chimeric antibody.
  • Humanized antibodies are also referred to as reshaped human antibodies, and can be obtained by substituting the complementarity determining region (CDR) of a human antibody for the CDR of an antibody derived from a nonhuman mammal, for example, a mouse.
  • CDR complementarity determining region
  • Methods for identifying CDRs are known in the art (Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md.; Chothia et al., Nature (1989) 342:877).
  • General genetic recombination techniques suitable for this purpose are also known (see European Patent Application EP 125023; and WO 96/02576).
  • the CDR of a mouse antibody can be determined by known methods, and a DNA can be prepared such that it encodes an antibody in which the CDR is ligated with the framework region (FR) of a human antibody.
  • a humanized antibody can then be produced using a system that uses conventional expression vectors.
  • DNAs can be synthesized by PCR, using as primers several oligonucleotides designed to include portions that overlap the ends of both the CDR and FR regions (see the method described in WO 98/13388).
  • Human antibody FRs linked via CDRs are selected such that the CDRs form a suitable antigen binding site.
  • amino acids in the FRs of an antibody variable region may be substituted so that the CDRs of the reshaped human antibody can form a suitable antigen binding site (Sato, K. et al., Cancer Res. (1993) 53:851-856).
  • Modifiable amino acid residues in the FRs include portions that directly bind to an antigen via non-covalent bonds (Amit et al., Science (1986) 233: 747-53), portions that have some impact or effect on the CDR structure (Chothia et al., J. Mol. Biol. (1987) 196: 901-17), and portions involved in the interaction between VH and VL (EP 239400).
  • the C regions of these antibodies are preferably derived from human antibodies.
  • Cy1, Cy2, Cy3, and Cy4 can be used for the H chain, while C ⁇ and C ⁇ can be used for the L chain.
  • the human antibody C region may be modified as required to improve antibody or production stability.
  • a chimeric antibody of the present invention preferably includes a variable region of an antibody derived from a nonhuman mammal and a constant region of a human antibody.
  • a humanized antibody preferably includes CDRs of an antibody derived from a nonhuman mammal and FRs and C regions of a human antibody. The variable regions are described in detail in (3)-3.
  • the constant regions of the human antibodies include specific amino acid sequences, which vary depending on the isotype of the antibody, for example, IgG (IgG1, IgG2, IgG3, and IgG4), IgM, IgA, IgD, and IgE.
  • the constant regions used to prepare the humanized antibodies of the present invention may be the constant regions of antibodies of any isotype.
  • a constant region of human IgG is preferably used, though the invention is not limited thereto.
  • the FRs derived from a human antibody, which are used to prepare the humanized antibodies, are not particularly limited, and thus may be derived from an antibody of any isotype.
  • variable and constant regions of chimeric or humanized antibodies of the present invention may be modified by deletion, substitution, insertion, and/or addition, so long as the antibodies exhibit the same binding specificity as that of the original antibodies.
  • minibodies are useful as the antibodies because of their in vivo kinetic characteristics and low-cost production using E. coli , plant cells, or such.
  • Antibody fragments are one type of minibody.
  • minibodies includes antibodies that include an antibody fragment as a partial structural unit.
  • the minibodies of the present invention are not particularly limited by their structure nor their method of production, so long as they have antigen binding activity. Some minibodies have an activity greater than that of a whole antibody (Orita et al., Blood (2005) 105:562-566).
  • the “antibody fragments” are not particularly limited, so long as they are a portion of a whole antibody (for example, whole IgG).
  • the antibody fragments preferably include a heavy chain variable region (VH) or a light chain variable region (VL). Examples of preferred antibody fragments are: Fab, F(ab′)2, Fab′, and Fv.
  • the amino acid sequence of a VH or VL in an antibody fragment may be modified by substitution, deletion, addition, and/or insertion. Furthermore, some portions of a VH and VL may be deleted, so long as the resulting fragments retain their antigen binding ability.
  • Fv is a minimal antibody fragment composed of the complete antigen recognition and binding sites.
  • Fv is a dimer (VH-VL dimer) composed of one unit of VH and one unit of VL bound very strongly by non-covalent bonding.
  • An antigen binding site is formed on the surface of the VH-VL dimer by the three complementarity determining regions (CDRs) of each variable region. Six CDRs confer an antigen binding site to the antibody.
  • variable region or half of an Fv composed of only three antigen-specific CDRs
  • variable regions of an antibody fragment may also be chimerized or humanized.
  • the minibodies preferably include both VH and VL.
  • suitable minibodies include antibody fragments such as Fab, Fab′, F(ab′)2, and Fv, and scFv (single-chain Fv), which can be prepared using antibody fragments, (Huston et al., Proc. Natl. Acad. Sci. USA (1988) 85: 5879-83; Plickthun “The Pharmacology of Monoclonal Antibodies” Vol. 113, Resenburg and Moore (eds.), Springer Verlag, New York, pp. 269-315, (1994)); diabodies (Holliger et al., Proc. Natl. Acad. Sci.
  • An antibody fragment can be prepared by treating an antibody with an enzyme, for example, a protease such as papain or pepsin (see Morimoto et al., J. Biochem. Biophys. Methods (1992) 24: 107-17; Brennan et al., Science (1985) 229:81).
  • an enzyme for example, a protease such as papain or pepsin (see Morimoto et al., J. Biochem. Biophys. Methods (1992) 24: 107-17; Brennan et al., Science (1985) 229:81).
  • antibody fragments can also be produced by genetic recombination based on its amino acid sequence.
  • a minibody having a structure that results from modification of an antibody fragment can be prepared using antibody fragments obtained by enzyme treatment or genetic recombination.
  • the minibody may be expressed in appropriate host cells (see, for example, Co et al., J. Immunol. (1994) 152: 2968-76; Better and Horwitz, Methods Enzymol. (1989) 178: 476-96; Pluckthun and Skerra, Methods Enzymol. (1989) 178: 497-515; Lamoyi, Methods Enzymol. (1986) 121: 652-63; Rousseaux et al., Methods Enzymol. (1986) 121: 663-9; Bird and Walker, Trends Biotechnol. (1991) 9: 132-7).
  • scFVs are single-chain polypeptides that include two variable regions linked together via a linker or such, as required.
  • the two variable regions in an scFv are typically one VH and one VL, but an scFv may include two VH or two VL.
  • scFv polypeptides include a linker between the VH and VL domains, thereby forming a paired portion of VH and VL required for antigen binding.
  • a peptide linker composed of ten or more amino acids is typically used as the linker between VH and VL when forming an intramolecular paired portion between VH and VL.
  • linkers of the scFv of the present invention are not limited to such peptide linkers, so long as they do not inhibit the formation of an scFv.
  • linkers of the scFv of the present invention are not limited to such peptide linkers, so long as they do not inhibit the formation of an scFv.
  • diabodies refers to bivalent antibody fragments constructed by gene fusion (P. Holliger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993); EP 404,097; WO93/11161 and such).
  • Diabodies are dimers composed of two polypeptide chains, wherein each polypeptide chain includes within the same chain a light chain variable region (VL) and a heavy chain variable region (VH) connected with a linker short enough to disable interaction of these two regions, for example a linker of about five amino acid residues.
  • VL and VH encoded on the same polypeptide chain will form a dimer because the linker between VL and VH is too short to form a single chain V region fragment. Therefore, the resulting diabody has two antigen-binding sites.
  • VL and VH directed against two different epitopes (a and b) are expressed simultaneously as combinations of VLa-VHb and VLb-VHa connected with a linker of about five residues, they are secreted as bispecific db.
  • the two different epitopes may be epitopes at two different sites on the same antigen, or epitopes at two different sites, each on two different antigens.
  • diabodies include two molecules of scFvs, they thus composed of four variable regions, and as a result have two antigen binding sites.
  • linkers forming a connection between VH and VL in each scFv molecules are linkers of about five amino acids when used as peptide linkers.
  • scFv linkers for diabody formation are not limited to such peptide linkers so long as they do not interfere with scFv expression and diabody formation.
  • polypeptides or heteromultimers subjected to the methods of the present invention include polypeptides or heteromultimers composed of antibody heavy chain variable regions and light chain variable regions. More preferably, preferred embodiments of the present invention are methods for regulating association when polypeptides or heteromultimers of the present invention include two or more types of heavy chain variable regions and two or more types of light chain variable regions. Such polypeptides or heteromultimers are preferably those that recognize two or more types of epitopes, and examples include multispecific antibodies.
  • examples of multispecific antibodies in the present invention include bispecific antibodies.
  • preferred embodiments of the present invention relate to, for example, methods for regulating association of bispecific antibodies composed of two types of heavy chain variable regions (first heavy chain and second heavy chain) and two types of light chain variable regions (first light chain and second light chain).
  • first heavy chain refers to one of the two H chains forming the antibody
  • second H chain refers to the other H chain that is different from the first H chain. That is, of the two H chains, one of them can be arbitrarily defined as the first H chain and the other can be defined as the second H chain.
  • first light chain refers to one of the two L chains forming the bispecific antibody
  • second L chain refers to the other L chain that is different from the first L chain. Of the two L chains, one of them can be arbitrarily defined as the first L chain and the other can be defined as the second L chain.
  • the first L chain and the first H chain are derived from the same antibody that recognizes a certain antigen (or epitope), and the second L chain and the second H chain are also derived from the same antibody that recognizes a certain antigen (or epitope).
  • the L chain-H chain pair formed by the first H chain and L chain is called as the first pair
  • the L chain-H chain pair formed by the second H chain and L chain is called as the second pair.
  • An antigen (or epitope) used to produce the antibody from which the second pair derives is preferably different from the antigen used to produce the antibody from which the first pair is derives.
  • antigens recognized by the first pair and the second pair may be the same but different antigens (or epitopes) are preferred to be recognized.
  • the H chains and L chains of the first pair and second pair preferably have amino acid sequences that differ from each other.
  • the first and the second pair may recognize a completely different antigen, or they may recognize different sites (different epitopes) on the same antigen.
  • one of them may recognize an antigen such as a protein, peptide, gene, or sugar, and the other may recognize cytotoxic substances such as radioactive substances, chemotherapeutic agents, or cell-derived toxins.
  • those specific H chains and L chains may be arbitrary determined to be the first pair and second pair.
  • bispecific antibodies are not necessarily limited to antibodies composed of two types of heavy chains and two types of light chains, and for example, they may be antibodies (for example, sc(Fv)2) having a structure in which two types of heavy chain variable regions and two types of light chain variable regions are linked to form a single chain.
  • an antibody of the present invention As for the genes encoding the H chain or L chain of antibodies before introduction of mutations by methods of the present invention (herein, it may be simply referred to as “an antibody of the present invention”), known sequences can be used, or they can be obtained by methods known to those skilled in the art. For example, they may be obtained from an antibody library, or they may be obtained by cloning genes encoding the antibody from hybridomas producing monoclonal antibodies.
  • antibody libraries many antibody libraries are already well known, and since methods for producing antibody libraries are known, those skilled in the art can appropriately obtain antibody libraries.
  • antibody phage libraries one can refer to the literature such as Clackson et al., Nature 1991, 352: 624-8; Marks et al., J. Mol. Biol. 1991, 222: 581-97; Waterhouses et al., Nucleic Acids Res. 1993, 21: 2265-6; Griffiths et al., EMBO J. 1994, 13: 3245-60; Vaughan et al., Nature Biotechnology 1996, 14: 309-14; and Japanese Patent Kohyo Publication No.
  • JP-A H20-504970 (unexamined Japanese national phase publication corresponding to a non-Japanese international publication).
  • known methods such as methods that use eukaryotic cells as libraries (WO95/15393) and ribosome display methods, may be used.
  • techniques to obtain human antibodies by panning using human antibody libraries are also known.
  • variable regions of human antibodies can be expressed on the surface of phages as single chain antibodies (scFvs) using phage display methods, and phages that bind to antigens can be selected. Genetic analysis of the selected phages can determine the DNA sequences encoding the variable regions of human antibodies that bind to the antigens.
  • suitable expression vectors can be produced based on these sequences to obtain human antibodies. These methods are already well known, and one can refer to WO92/01047, WO92/20791, WO93/06213, WO93/11236, WO93/19172, WO95/01438, and WO95/15388.
  • known techniques may be used, involving the use of desired antigens or cells expressing the desired antigens as sensitizing antigens, using these to perform immunizations according to conventional immunization methods, fusing the immune cells thus obtained with known parent cells by ordinary cell fusion methods, screening monoclonal antibody producing cells (hybridomas) by ordinary screening methods, synthesizing cDNAs of antibody variable regions (V regions) from mRNAs of the obtained hybridomas using reverse transcriptase, and linking them with DNAs encoding the desired antibody constant regions (C regions).
  • V regions antibody variable regions
  • C regions desired antibody constant regions
  • sensitizing antigens for obtaining the above-mentioned antibody genes encoding the H chains and L chains include both complete antigens with immunogenicity and incomplete antigens composed of haptens and such that do not show antigenicity.
  • full length proteins and partial peptides of proteins of interest can be used.
  • substances composed of polysaccharides, nucleic acids, lipids, and such may become antigens.
  • Antigens can be prepared by methods known to those skilled in the art, and they can be prepared, for example, by the following methods using baculoviruses (for example, WO98/46777).
  • Hybridomas can be produced, for example, the following methods of Milstein et al. (G. Kohler and C. Milstein, Methods Enzymol. 1981, 73: 3-46), and such.
  • the immunogenicity of an antigen When the immunogenicity of an antigen is low, it can be linked to a macromolecule that has immunogenicity, such as albumin, and then used for immunization.
  • a macromolecule that has immunogenicity such as albumin
  • antigens with other molecules if necessary, they can be converted into soluble antigens.
  • transmembrane molecules such as receptors
  • portions of the extracellular regions of the receptors can be used as a fragment, or cells expressing transmembrane molecules on their cell surface may be used as immunogens.
  • Antibody-producing cells can be obtained by immunizing animals using suitable sensitizing antigens described above. Alternatively, antibody-producing cells can be prepared by in vitro immunization of lymphocytes that can produce antibodies. Various mammals can be used as the animals for immunization, where rodents, lagomorphas and primates are generally used. Examples of such animals include mice, rats, and hamsters for rodents, rabbits for lagomorphas, and monkeys including the cynomolgus monkey, rhesus monkey, hamadryas, and chimpanzees for primates.
  • transgenic animals carrying human antibody gene repertoires are also known, and human antibodies can be obtained by using these animals (see WO96/34096; Mendez et al., Nat. Genet. 1997, 15: 146-56).
  • desired human antibodies having binding activity against antigens can be obtained by in vitro sensitization of human lymphocytes with desired antigens or cells expressing the desired antigens, and then fusing the sensitized lymphocytes with human myeloma cells such as U266 (see Japanese Patent Application Kokoku Publication No. (JP-B) H1-59878 (examined, approved Japanese patent application published for opposition)).
  • desired human antibodies can be obtained by immunizing transgenic animals carrying a complete repertoire of human antibody genes, with desired antigens (see WO93/12227, WO92/03918, WO94/02602, WO96/34096, and WO96/33735).
  • Animal immunization can be carried out by appropriately diluting and suspending a sensitizing antigen in Phosphate-Buffered Saline (PBS), physiological saline, or such, and forming an emulsion by mixing an adjuvant if necessary, followed by an intraperitoneal or subcutaneous injection into animals. After that, the sensitizing antigen mixed with Freund's incomplete adjuvant is preferably administered several times every four to 21 days. Antibody production can be confirmed by measuring the target antibody titer in animal sera using conventional methods.
  • PBS Phosphate-Buffered Saline
  • physiological saline physiological saline
  • Antibody production can be confirmed by measuring the target antibody titer in animal sera using conventional methods.
  • Antibody-producing cells obtained from lymphocytes or animals immunized with a desired antigen can be fused with myeloma cells to generate hybridomas using conventional fusing agents (for example, polyethylene glycol) (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, 1986, 59-103).
  • fusing agents for example, polyethylene glycol
  • hybridoma cells can be cultured and grown, and the binding specificity of the antibody produced from these hybridomas can be measured using known analysis methods, such as immunoprecipitation, radioimmunoassay (RIA), and enzyme-linked immunosorbent assay (ELISA). Thereafter, hybridomas that produce antibodies of interest whose specificity, affinity, or activity has been determined can be subcloned by methods such as limiting dilution.
  • genes encoding the selected antibodies can be cloned from hybridomas or antibody-producing cells (sensitized lymphocytes, and such) using probes that may specifically bind to the antibodies (for example, oligonucleotides complementary to sequences encoding the antibody constant regions). Cloning from mRNA using RT-PCR is also possible.
  • Immunoglobulins are classified into five different classes, IgA, IgD, IgE, IgG and IgM. These classes are further divided into several subclasses (isotypes) (for example, IgG-1, IgG-2, IgG-3, and IgG-4; IgA-1 and IgA-2; and such). H chains and L chains used in the present invention to produce antibodies are not particularly limited and may derive from antibodies belonging to any of these classes or subclasses; however, IgG is particularly preferred.
  • H-chain-encoding genes and L-chain-encoding genes using genetic engineering techniques.
  • Genetically modified antibodies such as chimeric antibodies, humanized antibodies that have been artificially modified for the purpose of decreasing heterologous antigenicity and such against humans, can be appropriately produced if necessary for antibodies such as mouse antibodies, rat antibodies, rabbit antibodies, hamster antibodies, sheep antibodies, and camel antibodies.
  • Chimeric antibodies are antibodies composed of a nonhuman mammal antibody H chain and L chain variable regions, such as mouse antibody, and the H chain and L chain constant regions of human antibody.
  • a humanized antibody which is also called a reshaped human antibody, can be synthesized by PCR from a number of oligonucleotides produced so that they have overlapping portions at the ends of DNA sequences designed to link the complementarity determining regions (CDRs) of an antibody of a nonhuman mammal such as a mouse.
  • the obtained DNA can be ligated to a DNA encoding a human antibody constant region.
  • the ligated DNA can be incorporated into an expression vector, and the vector can be introduced into a host to produce the antibody (see EP239400 and WO96/02576).
  • Human antibody FRs that are ligated via the CDR are selected when the CDR forms a favorable antigen-binding site. If necessary, amino acids in the framework region of an antibody variable region may be substituted such that the CDR of the reshaped human antibody forms an appropriate antigen-binding site (K. Sato et al., Cancer Res. 1993, 53: 851-856).
  • antibodies may be modified to improve their biological properties, for example, antigenic affinity. Such modifications can be carried out using methods such as site-directed mutagenesis (see for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488), PCR mutagenesis, and cassette mutagenesis.
  • mutant antibodies whose biological properties have been improved show amino acid sequence homology and/or similarity of 70% or higher, more preferably 80% or higher, and even more preferably 90% or higher (for example, 95% or higher, 97%, 98%, 99%, etc.), when compared to the amino acid sequence of the original antibody variable region.
  • sequence homology and/or similarity is defined as the ratio of amino acid residues that are homologous (same residue) or similar (amino acid residues classified into the same group based on the general properties of amino acid side chains) to the original antibody residues, after the sequence homology value has been maximized by sequence alignment and gap introduction, if necessary.
  • amino acid residues are classified into groups based on the characteristics of their side chains: (1) hydrophobic: alanine, isoleucine, norleucine, valine, methionine, and leucine; (2) neutral hydrophilic: asparagine, glutamine, cysteine, threonine, and serine; (3) acidic: aspartic acid, and glutamic acid; (4) basic: arginine, histidine, and lysine; (5) residues that affect the orientation of the chain: glycine, and proline; and (6) aromatic: tyrosine, tryptophan, and phenylalanine.
  • CDRs complementarity determining regions
  • H chain and L chain variable regions interact to form the antigen binding site(s) of an antibody.
  • CDRs complementarity determining regions
  • one of these variable regions is known to have the ability to recognize and bind to the antigen, although the affinity will be lower than when all binding sites are included. Therefore, antibody genes of the present invention encoding the H chain and L chain only have to encode fragment portions having each of the antigen binding sites of H chain and L chain, and polypeptides encoded by these genes only have to maintain affinity with the desired antigens.
  • the methods of the present invention for regulating association allow one to preferentially (efficiently) obtain, for example, the desired bispecific antibodies as described above. More specifically, desired bispecific antibodies which are heteromultimers can be efficiently formed from a mixture of monomers.
  • IgG-type bispecific antibodies composed of two types of heavy chain variable regions (VH1 and VH2) and two types of light chain variable regions (VL1 and VL2) are described in detail; however, the methods of the present invention can be applied similarly to other heteromultimers.
  • VH1 first heavy chain variable region
  • VL1 first light chain variable region
  • VH2 second heavy chain variable region
  • VL2 second light chain variable region
  • the desired antibody molecule can be preferentially obtained if the regulation is carried out in a manner to inhibit the association between polypeptides, for example, VH1 and VL2 and/or VH2 and VL1.
  • An example includes modifying amino acid residues forming the interfaces between the polypeptide of VH1 and the polypeptide of VL2, and/or the polypeptide of VH2 and the polypeptide of VL1 as described above so as to inhibit the associations between these polypeptides.
  • associations between the heavy chains (VH1 and VH2) or between the light chains (VL1 and VL2) can also be suppressed using the methods of the present invention for regulating association.
  • Heavy chain variable regions are ordinarily composed of three CDR regions and FR regions as described above.
  • amino acid residues subjected to “modification” can be appropriately selected from among amino acid residues positioned in the CDR regions or FR regions.
  • modification of the amino acid residues in the CDR regions can decrease affinity towards antigens. Therefore, in the present invention, amino acid residues subjected to “modification” are not particularly limited but are preferred to be appropriately selected from among amino acid residues positioned in the FR regions.
  • variable region FRs of the antibodies of organisms can be appropriately obtained by those skilled in the art using public databases. More specifically, amino acid sequence information of the FR regions can be obtained by means described later in the Examples.
  • amino acid residues that come close to each other at the interface of FRs during association in the bispecific antibodies indicated in the following Examples include glutamine (Q) at position 39 in the heavy chain variable region (FR2 region) (for example, at position 39 in the amino acid sequence of SEQ ID NO: 6), and the opposing (contacting) glutamine (Q) at position 38 on the light chain variable region (FR2 region) (for example, at position 44 in the amino acid sequence of SEQ ID NO: 8).
  • favorable examples include leucine (L) at position 45 in the heavy chain variable region (FR2) (for example, at position 45 in the amino acid sequence of SEQ ID NO: 6), and the opposing proline (P) at position 44 in the light chain variable region (FR2) (for example, at position 50 in the amino acid sequence of SEQ ID NO: 8).
  • L leucine
  • P proline
  • desired antibodies can be preferentially obtained by modifying these amino acid residues and performing the methods of the present invention.
  • association of antibody variable regions can be regulated for VH-VL association of antibodies other than those indicated in the Examples by modifying amino acid residues corresponding to the above-mentioned amino acid residues.
  • the present invention provides antibodies (polypeptides (for example, sc(Fv)2), heteromultimers (for example IgG-type antibodies or such) composed of heavy chain variable regions and light chain variable regions, which are antibodies whose amino acid residues of (1) and (2), or (3) and (4) described below carry the same kind of charges:
  • amino acid sequences of SEQ ID NOs: 6 and 8 are mentioned above to exemplify a more specific example of the positions of the amino acid residues that are subjected to modification in the present invention. Accordingly, the present invention is not limited to cases where the heavy chain variable regions or light chain variable regions have these amino acid sequences.
  • amino acid residues of (1) and (2), and (3) and (4) mentioned above come close to each other during association as indicated in FIG. 1 and in the following Examples.
  • Those skilled in the art can identify the positions corresponding to the above-mentioned amino acid residues of (1) to (4) in the desired heavy chain variable regions or light chain variable regions using homology modeling and such, using commercially available softwares. Once identified, the amino acid residues of these positions can be appropriately subjected to modification.
  • charged amino acid residues are preferably selected, for example, from amino acid residues included in either one of the following groups:
  • antibodies polypeptides, heteromultimers, and such having heavy chain variable regions and light chain variable regions, in which either one of the amino acid residues of the following (3) or (4) is a charged amino acid residue.
  • the side chains of the amino acid residues indicated in (3) and (4) shown below may come close to each other to form a hydrophobic core:
  • charged amino acid residues are preferably, for example, glutamic acid (E), aspartic acid (D), lysine (K), arginine (R), or histidine (H).
  • the above-mentioned amino acid residues of (1) to (4) are (1) glutamine (Q), (2) glutamine (Q), (3) leucine (L), and (4) proline (P), respectively, in humans and mice. Therefore, in preferred embodiments of the present invention, these amino acid residues are subjected to modification (for example, substitution to charged amino acids).
  • the types of the above-mentioned amino acid residues of (1) to (4) are not necessarily limited to the above-mentioned amino acid residues, and may be other amino acids that correspond to these amino acids.
  • an amino acid on the light chain variable region corresponding to position 44 in the amino acid sequence of SEQ ID NO: 8 may be, for example, histidine (H).
  • the present invention provides methods for suppressing association between heavy chains or between a heavy chain and a light chain by introducing electrostatic repulsion to the interface of the heavy chain or light chain constant region.
  • amino acid residues contacting each other at the interface of heavy chain constant regions include regions corresponding to positions 377 (356) and 470 (439), positions 378 (357) and 393 (370), and positions 427 (399) and 440 (409) in the CH3 region.
  • amino acid residues that contact each other at the interface between a heavy chain constant region and a light chain constant region include regions corresponding to position 221 (position 213) of the CH1 region and position 123 of the CL region. Numbering in the antibody constant regions is based on the document by Kabat et al. (Kabat E A et al. 1991. Sequences of Proteins of Immunological Interest. NIH), and the EU numbering is shown in parenthesis for the heavy chain constant regions.
  • association of antibody heavy chains will be regulated and desired antibodies can be preferentially obtained by modifying these amino acid residues and performing the methods of the present invention.
  • the present invention provides antibodies having two or more types of heavy chain CH3 regions and Fc region-binding proteins (for example, IgG-type antibodies, minibodies (Alt M et al. FEBS Letters 1999; 454: 90-94), immunoadhesin (Non-Patent Document 2), and such), in which one to three pairs of amino acid residues in the first heavy chain CH3 region, selected from the pairs of amino acid residues indicated in (1) to (3) below, carry the same type of charge:
  • amino acid residues included in the heavy chain CH3 region at positions 356 and 439 according to the EU numbering system (2) amino acid residues included in the heavy chain CH3 region at positions 357 and 370 according to the EU numbering system; and (3) amino acid residues included in the heavy chain CH3 region at positions 399 and 409 according to the EU numbering system.
  • the present invention provides an antibody in which pairs of the amino acid residues in the second heavy chain CH3 region that are different from the first heavy chain CH3 region mentioned above, are selected from the aforementioned pairs of amino acid residues of (1) to (3) wherein the one to three pairs of amino acid residues corresponding to the aforementioned pairs of amino acid residues of (1) to (3) carrying the same type of charge in the first heavy chain CH3 region mentioned above, carry opposite charges from the corresponding amino acid residues in the first heavy chain CH3 region mentioned above.
  • Each of the amino acid residues indicated above in (1) to (3) come close to each other during association, as shown in FIG. 27 and in the Examples described below.
  • Those skilled in the art can find out the positions corresponding to the above-mentioned amino acid residues of (1) to (3) in a desired heavy chain CH3 region or heavy chain constant region by homology modeling and such using commercially available software, and amino acid residues of these positions can be appropriately subjected to modification.
  • charged amino acid residues are preferably selected, for example, from amino acid residues included in either one of the following groups:
  • the phrase “carrying the same charge” means, for example, that all of the two or more amino acid residues composed of the amino acid residues included in either one of (a) or (b) mentioned above.
  • the phrase “carrying opposite charges” means, for example, that when at least one of the amino acid residues among two or more amino acid residues is composed of amino acid residues included in either one of the above-mentioned groups of (a) or (b), and the remaining amino acid residues are composed of the amino acid residues included in the other group.
  • the antibodies mentioned above may have their first heavy chain CH3 region and second heavy chain CH3 region crosslinked by disulfide bonds.
  • amino acid residues subjected to “modification” are not limited to the above-mentioned amino acid residues of the antibody variable regions or the antibody constant regions.
  • Those skilled in the art can identify the amino acid residues that form the interface in mutant polypeptides or heteromultimers using homology modeling and such, using commercially available software; amino acid residues of these positions can then be subjected to modification so as to regulate the association.
  • substitution of an amino acid side chain present in one of the H chain variable regions to a larger side chain (knob) and substitution of the opposing amino acid side chain present in the variable region of the other H chain to a smaller side chain (hole) promotes association between VH1 and VL1, and/or VH2 and VL2 such that the knob is placed into the hole.
  • the association between polypeptides VH1 and VL2, and/or VH2 and VL1 can be further suppressed.
  • sc(Fv)2 composed of two types of heavy chain variable regions (H1 and H2) and two types of light chain variable regions (L1 and L2) will be described more precisely as an example.
  • sc(Fv)2 is a single chain polypeptide in which two heavy chain variable regions (VH1 and VH2) and two light chain variable regions (VL1 and VL2) are linked by linkers. More specifically, sc(Fv)2 is a minibody in which four antibody variable regions are linked with a linker and such to produce a single chain. Ordinarily, sc(Fv)2 is an antibody in which four variable regions, two light chain variable regions and two heavy chain variable regions, are linked by linkers to produce a single chain (Hudson et al., J. Immunol. Methods 1999; 231:177-189).
  • sc(Fv)2 can be produced by methods known to those skilled in the art, for example, by linking scFvs with linkers.
  • scFv includes antibody VH and VL, and these regions are present in a single polypeptide chain (for a review on scFv, see Pluckthun “The Pharmacology of Monoclonal Antibodies” Vol. 113 (Rosenburg and Moore ed. (Springer Verlag, New York) pp. 269-315, 1994).
  • the order of the two VHs and the two VLs is not particularly limited to the above-mentioned arrangement and may be in any order, including for example, the following arrangements.
  • sc(Fv)2 may also include amino acid sequences other than those of the antibody variable regions and linkers.
  • variable regions of the above-mentioned antibodies may be full-length variable regions or partial sequences of the variable regions, so long as the affinity to antigens is maintained.
  • amino acid sequences in the variable regions may contain substitutions, deletions, additions, insertions, or such.
  • they may be converted to chimeric or humanized antibodies to decrease antigenicity.
  • Arbitrary peptide linkers or synthetic linker compounds that can be introduced by genetic engineering can be used as linkers that link the variable regions of an antibody, but peptide linkers are preferred in the present invention.
  • the length of the peptide linkers is not particularly limited, and can be suitably selected according to the purpose by those skilled in the art. The length is preferably twelve amino acids or more (with no particular upper limit, normally 30 amino acids or less, and preferably 20 amino acids or less), and particularly preferably 15 amino acids. When three peptide linkers are included in sc(Fv)2, all of the peptide linkers used may have the same length, or peptide linkers of different lengths may be used.
  • peptide linkers examples include:
  • sc(Fv)2 include for example the following sc(Fv)2: [VH] peptide linker (15 amino acids) [VL] peptide linkers (15 amino acids) [VH] peptide linkers (15 amino acids) [VL].
  • Synthetic linkers that can be used include crosslinking agents that are routinely used to crosslink peptides, for example, N-hydroxy succinimide (NHS), disuccinimidyl suberate (DSS), bis(succinimidyl) suberate (BS 3 ), dithiobis(succinimidyl propionate) (DSP), dithiobis(succinimidyl propionate) (DTSSP), ethylene glycol bis(succinimidyl succinate) (EGS), ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo-DST), bis[2-(succinimidoxycarbonyloxy)ethyl] sulfone (BSOCOES), and bis[2-(succinimidoxycarbonyloxy)ethyl] sulfone
  • linkers to be used may all be of the same type or different types.
  • single chain diabody-type and bivalent scFv-type exist as conformational isomers of sc(Fv)2.
  • bivalent scFv-type in the present invention refers to sc(Fv)2 having a structure in which variable region 1 and variable region 2 are associated, as well as variable region 3 and variable region 4 are associated.
  • single chain diabody-type refers to sc(Fv)2 having a structure in which variable region 1 and variable region 4 are associated, as well as variable region 2 and variable region 3 are associated.
  • An example of a single chain diabody-type is an sc(Fv)2 having the structure shown on the right in FIG. 12( b )
  • an example of a bivalent scFv-type is an sc(Fv)2 having the structure shown on the left in FIG. 12( b ) .
  • Whether an sc(Fv)2 has a single chain diabody-type structure or a bivalent scFv-type structure can be analyzed, for example, by protease-limited proteolysis.
  • the analysis can be carried out by a method such as the following.
  • subtilisin A a type of protease that can partially and restrictively degrade the linker portions of an sc(Fv)2.
  • the bivalent scFv-type and single chain diabody-type can be differentiated by analyzing the reaction products.
  • reaction products can be analyzed, for example, by gel filtration chromatography. Furthermore, using chromatography, the proportions of bivalent sc(Fv)2 and single chain diabody conformations present in sc(Fv)2 can be evaluated quantitatively based on peak areas.
  • the methods of the present invention for regulating association can be suitably used for the above-mentioned sc(Fv)2 when one wishes to preferentially obtain the desired form, that is either one the single chain diabody-form or bivalent scFv-form.
  • sc(Fv)2 has the structure VH1-(linker)-VL1-(linker)-VH2-(linker)-VL2, and one wishes to preferentially obtain bivalent scFv-type sc(Fv)2 using the methods of the present invention for regulating association, it is necessary to only suppress the association, for example, between VH1 and VL2, and/or VH2 and VL1 (For example, mutations are introduced so that amino acid residues forming the interface between VH1 and VL2 will carry the same type of charge).
  • the present invention can also be carried out similarly when sc(Fv)2 is a monospecific antibody.
  • each of the VH and VL domains can be cross linked by disulfide bonds (Clin. Cancer Res. 1996 February; 2(2):245-52).
  • the methods of the present invention for regulating association allow, for example, for the efficient production of antibodies or polypeptides that are active.
  • activities include binding activity, neutralizing activity, cytotoxic activity, agonist activity, antagonist activity, and enzyme activity and such.
  • Agonist activity is an activity that induces some kind of changes in physiological activity through binding of an antibody to an antigen, such as a receptor, which causes signal transduction or such in cells.
  • physiological activity examples include growth activity, survival activity, differentiation activity, transcriptional activity, membrane transport activity, binding activity, proteolytic activity, phosphorylation/dephosphorylation activity, redox activity, transfer activity, nucleolytic activity, dehydration activity, cell death-inducing activity, and apoptosis-inducing activity and such, but are not limited thereto.
  • Antibodies or polypeptides that recognize the desired antigens or bind to the desired receptors can be produced efficiently by the methods of the present invention.
  • antigens are not particularly limited, and any type of antigen can be used.
  • antigens include receptors or their fragments, cancer antigens, MHC antigens, and differentiation antigens and the like, but are not particularly limited thereto.
  • the receptors include receptors belonging to the hematopoietic factor receptor family, cytokine receptor family, tyrosine kinase-type receptor family, serine/threonine kinase-type receptor family, TNF receptor family, G protein-coupled receptor family, GPI-anchored receptor family, tyrosine phosphatase-type receptor family, adhesion factor family, hormone receptor family, and such. Reports on the receptors belonging to these receptor families and their characteristics can be found in various sources of documents, for example, in Cooke B A., King R J B., van der Molen H J. ed. New Comprehensive Biochemistry Vol. 18B “Hormones and their Actions Part II” pp.
  • Examples of specific receptors belonging to the above-mentioned receptor families include human or mouse erythropoietin (EPO) receptor, human or mouse granulocyte-colony stimulating factor (G-CSF) receptor, human or mouse thrombopoietin (TPO) receptor, human or mouse insulin receptor, human or mouse Flt-3 ligand receptor, human or mouse platelet-derived growth factor (PDGF) receptor, human or mouse interferon (IFN)- ⁇ or - ⁇ receptor, human or mouse leptin receptor, human or mouse growth hormone (GH) receptor, human or mouse interleukin (IL)-10 receptor, human or mouse insulin-like growth factor (IGF)-I receptor, human or mouse leukemia inhibitory factor (LIF) receptor, and human or mouse ciliary neurotrophic factor (CNTF) receptor (hEPOR: Simon, S.
  • EPO erythropoietin
  • G-CSF granulocyte-colony stimulating factor
  • TPO thrombopoietin
  • hFlt-3 Small, D. et al. (1994) Proc. Natl. Acad. Sci. USA. 91, 459-463; hPDGFR: Gronwald, R G K. et al. (1988) Proc. Natl. Acad. Sci. USA. 85, 3435-3439; hIFN ⁇ / ⁇ R: Uze, G. et al. (1990) Cell 60, 225-234; and Novick, D. et al. (1994) Cell 77, 391-400).
  • Cancer antigens are antigens that are expressed as cells become malignant, and are also called tumor-specific antigens. Furthermore, abnormal sugar chains that appear on cell surfaces and protein molecules when the cells become cancerous are also cancer antigens and are specifically called as carcinoma associated carbohydrate antigen. Examples of cancer antigens include CA19-9, CA15-3, and sialyl SSEA-1 (SLX).
  • MHC antigens can be classified broadly into MHC class I antigens and MHC class II antigens: MHC class I antigens include HLA-A, -B, -C, -E, -F, -G and -H; and MHC class II antigens include HLA-DR, -DQ, and -DP.
  • Differentiation antigens include CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8, CD10, CD11a, CD11b, CD11c, CD13, CD14, CD15s, CD16, CD18, CD19, CD20, CD21, CD23, CD25, CD28, CD29, CD30, CD32, CD33, CD34, CD35, CD38, CD40, CD41a, CD41b, CD42a, CD42b, CD43, CD44, CD45, CD45RO, CD48, CD49a, CD49b, CD49c, CD49d, CD49e, CD49f, CD51, CD54, CD55, CD56, CD57, CD58, CD61, CD62E, CD62L, CD62P, CD64, CD69, CD71, CD73, CD95, CD102, CD106, CD122, CD126, and CDw130.
  • the present invention also provides for mutant polypeptides or heteromultimers whose association is regulated by the methods of the present invention. More specifically, the present invention relates to polypeptides or heteromultimers that are obtained by methods of the present invention for regulating associations.
  • Preferred embodiments of the present invention provide mutant polypeptides that have modifications made to the amino acid residues that form the interface in the original polypeptides so as to inhibit the association within the polypeptides.
  • inventions of the present invention provide heteromultimers that have modifications made to amino acid residues forming the interface between the original polypeptides such that the association between the polypeptides is inhibited.
  • original polypeptides refer to polypeptides in the condition before modification by the methods of the present invention where association is regulated.
  • mutant polypeptides of the present invention is a mutant in which the original polypeptide can form two types of conformational isomers.
  • heteromultimers is a multimer in which the original polypeptide can form two or more types of multimers.
  • Mutant polypeptides or heteromultimers whose association is regulated by the above-mentioned methods of the present invention for regulating association are also included in the present invention. More specifically, in preferred embodiments of the above-described methods for regulating association, a polypeptide or heteromultimer whose association is regulated is also a preferred embodiment of the present invention.
  • the present invention also provides methods for producing polypeptides or heteromultimers in which association of polypeptides or heteromultimers is regulated.
  • Preferred embodiments of the production methods of the present invention provides methods for producing polypeptides having mutations in the amino acid residues forming the interface in the polypeptides so that polypeptide association is regulated, wherein the methods for producing the mutant polypeptides include the steps of:
  • the present invention provides methods for producing heteromultimers whose amino acid residues that form the interface between polypeptides have mutations that allow for the regulation of the heteromultimer association, wherein the methods for producing heteromultimers include the steps of:
  • a method including the step of using the above-described methods of the present invention for regulating association to modify nucleic acids encoding amino acid residues forming the interface in (between) polypeptides from the original nucleic acids so that polypeptide association will be inhibited is also a preferred embodiment of the above-mentioned production methods of the present invention.
  • modify nucleic acids in the above-mentioned methods of the present invention refers to modifying nucleic acids so that they correspond to amino acid residues introduced by the “modifications” of the present invention. More specifically, it refers to modifying the nucleic acids encoding the original (pre-modified) amino acid residues to the nucleic acids encoding the amino acid residues that are to be introduced by the modification. Ordinarily, it means performing gene manipulations or mutation treatment that would result in at least one nucleotide insertion, deletion, or substitution to the original nucleic acid so that codons encoding amino acid residues of interest is formed.
  • codons encoding the original amino acid residues are substituted with codons encoding the amino acid residues that are to be introduced by the modification.
  • Such nucleic acid modification can be performed suitably by those skilled in the art using known techniques such as site-specific mutagenesis and PCR mutagenesis.
  • nucleic acids of the present invention are ordinarily carried by (inserted into) suitable vectors and then introduced into host cells.
  • suitable vectors are not particularly limited so long as the inserted nucleic acid is stably maintained.
  • the cloning vector is preferably a pBluescript vector (Stratagene) and such, but various commercially available vectors may be used.
  • Expression vectors are particularly useful as vectors for producing the polypeptides of the present invention. Expression vectors are not particularly limited so long as they can express polypeptides in test tubes, E. coli , cultured cells, or individual organisms.
  • preferred vectors include pBEST vector (Promega) for expression in test tubes, pET vector (Invitrogen) for E. coli , pME18S-FL3 vector (GenBank Accession No. AB009864) for cultured cells, and pME18S vector (Mol. Cell Biol. 8:466-472(1998)) for individual organisms. Insertion of a DNA of the present invention into vectors can be performed by standard methods such as ligase reactions using restriction enzyme sites (Current protocols in Molecular Biology edit. Ausubel et at (1987) Publish. John Wiley & Sons. Section 11.4-11.11).
  • the above-mentioned host cells are not particularly limited, and various host cells can be used, depending on the purpose.
  • Cells used for expressing the polypeptides include bacterial cells (for example, Streptococcus, Staphylococcus, E. coli, Streptomyces , and Bacillus subtilis ), fungal cells (for example, yeast and Aspergillus ), insect cells (for example, Drosophila S2 and Spodoptera SF9), animal cells (for example, CHO, COS, HeLa, C127, 3T3, BHK, HEK293, Bowes melanoma cell), and plant cells.
  • bacterial cells for example, Streptococcus, Staphylococcus, E. coli, Streptomyces , and Bacillus subtilis
  • fungal cells for example, yeast and Aspergillus
  • insect cells for example, Drosophila S2 and Spodoptera SF9
  • animal cells for example, CHO, COS, HeLa,
  • Vectors can be introduced into host cells using known methods, such as the calcium phosphate precipitation method, electroporation method (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9.1-9.9), lipofectamine method (GIBCO-BRL), and microinjection method.
  • suitable secretion signals can be incorporated into the polypeptides of interest. These signals may be intrinsic or foreign to the polypeptides of interest.
  • the polypeptides of the present invention When the polypeptides of the present invention are secreted into the culture media, the polypeptides produced by the above-mentioned method can be harvested by collecting the media. When the polypeptides of the present invention are produced inside cells, first, the cells are lysed, and then these polypeptides are collected.
  • polypeptides of the present invention can be collected and purified from recombinant cell cultures by using known methods, including ammonium sulfate or ethanol precipitation, acidic extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxyapatite chromatography, and lectin chromatography.
  • the present invention relates to compositions (pharmaceutical agents) composed of a mutant polypeptide or heteromultimer of the present invention and a pharmaceutically acceptable carrier.
  • compositions ordinarily refer to pharmaceutical agents for treating or preventing, or testing and diagnosing diseases.
  • compositions of the present invention can be formulated by methods known to those skilled in the art.
  • such pharmaceutical compositions can be used parenterally, as injections which are sterile solutions or suspensions including an antibody along with water or another pharmaceutically acceptable liquid.
  • such compositions may be formulated as unit doses that meet the requirements for the preparation of pharmaceuticals by appropriately combining the antibody with pharmaceutically acceptable carriers or media, specifically with sterile water, physiological saline, a vegetable oil, emulsifier, suspension, detergent, stabilizer, flavoring agent, excipient, vehicle, preservative, binder, or such.
  • the amount of active ingredient is adjusted such that the dose falls within an appropriately pre-determined range.
  • Sterile compositions for injection can be formulated using vehicles such as distilled water for injection, according to standard protocols for formulation.
  • Aqueous solutions for injection include, for example, physiological saline and isotonic solutions containing dextrose or other adjuvants (for example, D-sorbitol, D-mannose, D-mannitol, and sodium chloride).
  • dextrose or other adjuvants for example, D-sorbitol, D-mannose, D-mannitol, and sodium chloride.
  • solubilizers for example, alcohols (ethanol and such), polyalcohols (propylene glycol, polyethylene glycol, and such), non-ionic detergents (polysorbate 80TM, HCO-50, and such), may be used in combination.
  • Oils include sesame and soybean oils.
  • Benzyl benzoate and/or benzyl alcohol can be used in combination as solubilizers.
  • Buffers for example, phosphate buffer and sodium acetate buffer
  • soothing agents for example, procaine hydrochloride
  • stabilizers for example, benzyl alcohol and phenol
  • antioxidants can also be combined.
  • Prepared injectables are generally filled into appropriate ampules.
  • compositions of the present invention are preferably administered parenterally.
  • the compositions may be injections, transnasal compositions, transpulmonary compositions or transdermal compositions.
  • such compositions can be administered systemically or locally by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or such.
  • the administration methods can be appropriately selected in consideration of a patient's age and symptoms.
  • the dose of a pharmaceutical composition composed of an antibody or a polynucleotide encoding an antibody may be, for example, from 0.0001 to 1000 mg/kg for each administration. Alternatively, the dose may be, for example, from 0.001 to 100,000 mg per patient. However, the doses are not limited to the ranges described above.
  • the doses and administration methods vary depending on a patient's weight, age, symptoms, and such. Those skilled in the art can select appropriate doses and administration methods in consideration of the factors described above.
  • polypeptides or heteromultimers of the present invention can be formulated by combining with other pharmaceutical components as necessary.
  • the present invention also provides nucleic acids that encode the mutant polypeptides of the present invention or the heteromultimers of the present invention. Further, vectors that carry these nucleic acids are also included in the present invention.
  • the present invention provides host cells carrying the above described nucleic acids.
  • the host cells are not particularly limited and include, for example, E. coli and various animal cells.
  • the host cells may be used, for example, as a production system to produce and express the antibodies or the polypeptides of the present invention.
  • In vitro and in vivo production systems are available for polypeptide production systems. Production systems that use eukaryotic cells or prokaryotic cells are examples of in vitro production systems.
  • Eukaryotic cells that can be used as a host cell include, for example, animal cells, plant cells, and fungal cells.
  • Animal cells include: mammalian cells, for example, CHO (J. Exp. Med. (1995)108, 945), COS, 3T3, myeloma, BHK (baby hamster kidney), HeLa, and Vero; amphibian cells such as Xenopus laevis oocytes (Valle, et al. (1981) Nature 291, 338-340); and insect cells (e.g., Sf9, Sf21, and Tn5).
  • CHO-DG44, CHO-DX11B, COST cells, and BHK cells can be suitably used.
  • Vectors can be introduced into a host cell by, for example, calcium phosphate methods, the DEAE-dextran methods, methods using cationic liposome DOTAP (Boehringer-Mannheim), electroporation methods, or lipofection methods.
  • Plant cells include, for example, Nicotiana tabacum -derived cells known as a protein production system. Calluses can be cultured from these cells to produce the antibodies of the present invention.
  • Known protein production systems are those using fungal cells including yeast cells, for example, cells of genus Saccharomyces such as Saccharomyces cerevisiae and Saccharomyces pombe ; and cells of filamentous fungi, for example, genus Aspergillus such as Aspergillus niger . These cells can be used as a host to produce the antibodies of the present invention.
  • Bacterial cells can be used in the prokaryotic production systems. Examples of bacterial cells include Bacillus subtilis as well as E. coli described above. Such cells can be used to produce the antibodies of the present invention.
  • the polynucleotide encoding an antibody of the present invention may be expressed by culturing the host cells transformed with the expression vector containing the polynucleotide.
  • the culture can be performed using known methods. For example, when using animal cells as a host, DMEM, MEM, RPMI 1640, or IMDM may be used as the culture medium, and may be used with or without serum supplements such as FBS or fetal calf serum (FCS). Serum-free cultures are also acceptable.
  • the preferred pH is about 6 to 8 during the course of culturing. Incubation is carried out typically at a temperature of about 30 to 40° C. for about 15 to 200 hours. Medium is exchanged, aerated, or agitated, as necessary.
  • production systems using animal or plant hosts may be used as systems for producing polypeptides in vivo.
  • a polynucleotide of interest is introduced into an animal or plant and the polypeptide is produced in the body of the animal or plant and then collected.
  • the “hosts” of the present invention includes such animals and plants.
  • Animals to be used for the production system include mammals or insects. Mammals such as goats, pigs, sheep, mice, and cattle may be used (Vicki Glaser SPECTRUM Biotechnology Applications (1993)). Alternatively, the mammals may be transgenic animals.
  • a polynucleotide encoding an antibody of the present invention may be prepared as a fusion gene with a gene encoding a polypeptide specifically produced in milk, such as the goat ⁇ -casein gene.
  • Polynucleotide fragments containing the fusion gene are injected into goat embryos, which are then introduced back to female goats.
  • the desired antibody can be obtained from milk produced by the transgenic goats, which are born from the goats that received the embryos, or from their offspring.
  • Appropriate hormones may be administered to increase the volume of milk containing the antibody produced by the transgenic goats (Ebert et al., Bio/Technology 12: 699-702 (1994)).
  • Insects such as silkworms, may also be used for producing the antibodies of the present invention.
  • Baculoviruses carrying a polynucleotide encoding an antibody of interest can be used to infect silkworms, and the antibody of interest can be obtained from the body fluids (Susumu et al., Nature 315: 592-594 (1985)).
  • Plants used for producing the antibodies of the present invention include, for example, tobacco.
  • a polynucleotide encoding an antibody of interest is inserted into a plant expression vector, for example, pMON 530, and then the vector is introduced into a bacterium, such as Agrobacterium tumefaciens .
  • the bacteria are then used to infect tobacco such as Nicotiana tabacum , and the desired antibodies can be recovered from the leaves (Ma et al., Eur. J. Immunol. 24: 131-138 (1994)).
  • the resulting antibody may be isolated from the inside or outside (such as the medium and milk) of host cells, and purified as a substantially pure and homogenous antibody. Methods are not limited to any specific method and any standard method for isolating and purifying antibodies may be used. Antibodies may be isolated and purified, by selecting an appropriate combination of, for example, chromatographic columns, filtration, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, and others.
  • Chromatographies include, for example, affinity chromatographies, ion exchange chromatographies, hydrophobic chromatographies, gel filtrations, reverse-phase chromatographies, and adsorption chromatographies (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatographies can be carried out using liquid phase chromatographies such as HPLC and FPLC. Examples of the affinity chromatography columns include protein A columns and protein G columns. Examples of the proteins A columns include Hyper D, POROS, and Sepharose F. F. (Pharmacia).
  • An antibody can be modified freely and peptide portions can be deleted from it by treating the antibody with an appropriate protein modifying enzyme before or after antibody purification, as necessary.
  • protein modifying enzymes include, for example, trypsins, chymotrypsins, lysyl endopeptidases, protein kinases, and glucosidases.
  • the present invention also includes methods for producing the mutant polypeptides or heteromultimers of the present invention, such methods including the steps of culturing the host cells of the present invention as described above and recovering the polypeptides from such cell culture.
  • Hybridomas having a binding activity to Factor IXa were selected using the culture supernatant collected on day 8 or day 9 after fusion, and measuring binding activity against Factor IXa by ELISA shown in 1-2.
  • hybridomas that did not have neutralizing activity against Factor IXa were selected by measuring the ability of hybridoma to neutralize the enzyme activity of Factor IXa, according to the method shown in 5-3.
  • Hybridomas were cloned with two rounds of limiting dilution by plating cells into a 96-well culture plate at one cell per well to establish hybridoma XB12 that produced anti-Factor IXa antibodies.
  • Factor IXa ⁇ diluted to 1 ⁇ g/mL with coating buffer 100 mM sodium bicarbonate, pH9.6, 0.02% sodium azide
  • coating buffer 100 mM sodium bicarbonate, pH9.6, 0.02% sodium azide
  • diluent buffer 50 mM Tris-HCl, pH8.1, 1% bovine serum albumin, 1 mM MgCl 2 , 0.15 M NaCl, 0.05% Tween® 20, 0.02% sodium azide
  • mouse anti-serum or hybridoma culture supernatant diluted in the diluent buffer was added to the plate at 100 ⁇ L/well and incubated at room temperature for one hour.
  • the plate was washed three times, then alkaline phosphatase-labeled goat anti-mouse IgG (H+L) (Zymed Laboratories) diluted at 1/2000 with the diluent buffer was added at 100 ⁇ L/well. This was incubated at room temperature for one hour. The plate was washed six times, chromogenic substrate Blue-PhosTM Phosphate Substrate (Kirkegaard & Perry Laboratories) was added at 100 ⁇ L/well, and was then incubated at room temperature for 20 minutes. After adding Blue-PhosTM Stop Solution (Kirkegaard & Perry Laboratories) at 100 ⁇ L/well, the absorbance at 595 nm was measured with a Microplate Reader Model 3550 (Bio-Rad Laboratories).
  • Phospholipid (Sigma-Aldrich) was dissolved in distilled water for injection, and then sonicated to prepare a 400 ⁇ g/mL phospholipid solution.
  • TBSB tris buffer saline solution containing 0.1% bovine serum albumin
  • Factor IXa ⁇ Enzyme Research Laboratories
  • 5 ⁇ L of 400 ⁇ g/mL phospholipid solution 5 ⁇ L of T
  • Factor X diluted in PBS( ⁇ ) was administered intravenously at 20 or 40 ⁇ g/head as a final immunization.
  • mouse spleen cells were fused with mouse myeloma P3U1 cells according to a standard method using PEG1500.
  • Fused cells suspended in 10% FBS/RPMI1640 medium were seeded in a 96-well culture plate, and hybridomas were selectively cultured by replacing the medium with a HAT selection medium at 1, 2, 3, and 5 days after the fusion.
  • Binding activity against Factor X was measured by ELISA described in 2-2, using the culture supernatant collected on the eighth day after fusion. Hybridomas having Factor X-binding activity were selected, and their activities to neutralize Factor Xa enzymatic activity were measured according to the method described in 2-3. Hybridomas that were incapable of neutralizing the enzyme activity of Factor Xa were cloned using two rounds of limiting dilution to establish hybridoma SB04 that produced anti-Factor X antibodies.
  • Factor X diluted to 1 ⁇ g/mL with a coating buffer was dispensed into Nunc-Immuno plate at 100 ⁇ L/well, and then incubated overnight at 4° C. After three washes with PBS( ⁇ ) containing Tween® 20, the plate was blocked with the diluent buffer at room temperature for 2 hours. After removal of the buffer, mouse antiserum or hybridoma culture supernatant diluted with the diluent buffer was added to the plate, and incubated at room temperature for 1 hour.
  • the plate was washed three times, then alkaline phosphatase-labeled goat anti-mouse IgG (H+L) diluted to 1/2000 with the diluent buffer was added, and incubated at room temperature for 1 hour.
  • the plate was washed six times, after which a colorimetric substrate Blue-PhosTM Phosphate Substrate (Kirkegaard & Perry Laboratories) was added at 100 ⁇ L/well.
  • the plate was then incubated at room temperature for 20 minutes. After adding Blue-PhosTM Stop Solution (Kirkegaard & Perry Laboratories) at 100 ⁇ L/well, the absorbance at 595 nm was measured on a Microplate Reader Model 3550 (Bio-Rad Laboratories).
  • TBSB containing 2.78 mM CaCl 2
  • RNA was extracted from hybridoma XB12 that produced anti-F.IXa antibody or hybridoma SB04 that produced anti-F.X antibody using QIAGEN® RNeasy® Mini Kit (QIAGEN) according to the method described in the instruction manual.
  • the total RNA was dissolved in 40 ⁇ L of sterile water.
  • Single-stranded cDNA was synthesized by RT-PCR using the SuperScript cDNA synthesis system (Invitrogen) with 1-2 ⁇ g of the purified RNA as template according to the method described in the instruction manual.
  • HB primer mixture and HF primer mixture described in the report by Krebber et al. were prepared as amplification primers for the mouse antibody H chain variable region (VH) cDNA.
  • VH mouse antibody H chain variable region
  • 25 ⁇ L of the reaction solution 2.5 ⁇ L of cDNA solution prepared in 3-1, KOD plus buffer (Toyobo), 0.2 mM dNTPs, 1.5 mM MgCl 2 , 0.75 units DNA polymerase KOD plus (Toyobo) was prepared.
  • PCR was performed using a thermal cycler GeneAmp PCR system 9700 (Perkin Elmer) under either with condition A (heating at 98° C. for 3 minutes, followed by 32 cycles of reacting at 98° C. for 20 seconds, 58° C. for 20 seconds, and 72° C. for 30 seconds per cycle) or condition B (heating at 94° C. for 3 minutes, followed by 5 cycles of reacting at 94° C. for 20 seconds, 46° C. for 20 seconds, and 68° C. for 30 seconds per cycle, and 30 cycles of reacting at 94° C. for 20 seconds, 58° C. for 20 seconds, and 72° C. for 30 seconds per cycle), depending on the amplification efficiency of the cDNA fragment.
  • condition A heating at 98° C. for 3 minutes, followed by 32 cycles of reacting at 98° C. for 20 seconds, 58° C. for 20 seconds, and 72° C. for 30 seconds per cycle
  • condition B heating at 94° C. for 3 minutes, followed by 5 cycles of
  • a primer (primer VH-5′ end) in which the (Gly4Ser)2-linker sequence of primer HB was modified to a sequence having Sfi I cleavage sites was prepared.
  • reaction solution (20 ⁇ L) (1 ⁇ L of purified solution of amplified VH cDNA fragment prepared in 3-2, KOD plus buffer (TOYOBO), 0.2 mM dNTPs, 1.5 mM MgCl 2 , 0.5 units DNA polymerase KOD plus (TOYOBO)) was prepared.
  • PCR was performed either with condition A (heating at 98° C. for 3 minutes, followed by 32 cycles of reacting at 98° C. for 20 seconds, 58° C. for 20 seconds, and 72° C. for 30 seconds per cycle) or condition B (heating at 94° C.
  • VL mouse antibody L chain variable region
  • PCR was performed according to the amplification efficiency of the fragments, under conditions of heating at 94° C. for 3 min followed by 5 cycles of reaction (reacting at 94° C. for 20 seconds, 46° C. for 20 seconds, and 68° C. for 30 seconds per cycle, and 30 cycles of reacting at 94° C. for 20 seconds, 58° C. for 20 seconds, and 72° C. for 30 seconds per cycle.
  • the reaction solution was subjected to 1% agarose gel electrophoresis.
  • Amplified fragments of the desired size (about 400 bp) were purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and were eluted with 30 ⁇ L of sterile water.
  • the fragments are in a state in which the primer LF-derived (Gly4Ser)3-linker sequence is added to their C termini.
  • a primer (primer VL-3′ end) where the primer LF (Gly4Ser)3-linker sequence was modified to a sequence having Sfi I cleavage site was prepared.
  • reaction solution was subjected to 1% agarose gel electrophoresis.
  • Amplified fragments of the desired size (about 400 bp) were purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and were eluted with 30 ⁇ L of sterile water.
  • the knobs-into-holes technique of IgG1 (Non-Patent Document 3) was utilized to produce the bispecific IgG antibody of interest, to allow heteromolecule formation in each H chain, and an amino acid substituent in which the CH3 portion of the IgG4 is substituted was prepared.
  • Type a (IgG4 ⁇ a) is an IgG4 substituted at Y349C and T366W
  • type b (IgG4 ⁇ b) is an IgG4 substituted at E356C, T366S, L368A, and Y407V.
  • a substitution (-ppcpScp-->-ppcpPcp-) was also introduced at the hinge regions of both substituted IgG4s.
  • a respective H chain or L chain region incorporated to a tetracycline-induced type vector pcDNA4 (Invitrogen) (pcDNA4-g4H or pcDNA4-g4L) was prepared, i.e. a suitable mouse antibody variable region (VH or VL) and a human IgG4 ⁇ a constant region (SEQ ID NO: 9) or ⁇ constant region (SEQ ID NO: 10) incorporated into the downstream of the signal sequence (IL3ss) used for animal cells (Proc. Natl. Acad. Sci. USA. 1984; 81: 1075).
  • Eco RV and Not I were used to digest pcDNA4 at the restriction enzyme cleavage sites that are present in the multi-cloning site.
  • the right arm H chain- or L chain-expression unit (about 1.6 kb or about 1.0 kb respectively) of a chimeric bispecific antibody having suitable antibody variable regions was digested with Xho I (Takara Bio).
  • the antibody was then purified with the QIAquick PCR Purification Kit (QIAGEN) according to the method described in the instruction manual, and reacted with DNA polymerase KOD (TOYOBO) at 72° C. for 10 minutes in a reaction solution composition described in the instruction manual to blunt the ends.
  • the blunt-ended fragments were purified with QIAquick PCR Purification Kit (QIAGEN) according to the method described in the instruction manual, and digested with Not I (Takara Bio).
  • the Not I/blunt ended fragments (about 1.6 kb or 1.0 kb respectively) and the Eco RV/Not I-digested pcDNA4 were subjected to ligation reaction using Ligation High (TOYOBO), according to the method described in the instruction manual.
  • An E. coli DH5 ⁇ strain (Competent high DH5 ⁇ (TOYOBO)) was transformed with the above-described reaction solution. >From the ampicillin-resistant clones thus obtained, respective plasmid DNAs were isolated using QIAprep Spin Miniprep Kit (QIAGEN).
  • the respective H chain or L chain region incorporated to the ecdysone analogue inducible type vector pIND (Invitrogen) (pIND-g4H or pIND-g4L) was prepared, i.e. a suitable mouse antibody variable region (VH or VL) and a human IgG4 ⁇ b constant region (SEQ ID NO: 11) or x constant region incorporated into the downstream of the signal sequence (IL3ss) used for animal cells (EMBO. J. 1987; 6: 2939). Respective plasmid DNAs were then isolated.
  • the tetracycline-induced type expression plasmid prepared in 3-4 (pcDNA4-g4H or pcDNA4-g4L) was digested with Sfi I, and the reaction solution was subjected to 1% agarose gel electrophoresis. Fragments (approximately 5 kb) lacking the original antibody variable region part (VH or VL) were purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 30 ⁇ L of sterile water.
  • QIAquick Gel Extraction Kit QIAquick Gel Extraction Kit
  • An E. coli DH5 ⁇ strain (Competent high DH5 ⁇ (TOYOBO)) was transformed with the above-described reaction solution.
  • Nucleotide sequences for each DNA fragment were determined using a BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) and DNA sequencer ABI PRISM 3100 Genetic Analyzer (Applied Biosystems), according to the method described in the instruction manual. A group of sequences determined by the present method were analyzed using an analysis software, GENETYX-SV/RC Version 6.1 (Genetyx).
  • Anti-F.IXa antibody chimeric H chain expression vector, anti-F.IXa antibody chimeric L chain expression vector, anti-F.X antibody chimeric H chain expression vector, and anti-F.X antibody chimeric L chain expression vector were named pcDNA4-g4 XB12H, pcDNA4-g4 XB12L, pIND-g4 SB04H, and pIND-g4 SB04L, respectively.
  • Expression of the right arm antibody HL molecule expression vectors (pcDNA4-g4 XB12H and pcDNA4-g4 XB12L) is induced by tetracycline. In the absence of tetracycline, Tet repressor-encoding plasmid pcDNA6/TR (Invitrogen) is required to completely suppress their expressions. Furthermore, expression of the left arm antibody HL molecule expression vectors (pINE-g4 SB04H and pIND-g4 SB04L) was induced by an insect hormone ecdysone analogue (ponasterone A).
  • plasmid pVgRXR (Invitrogen), which encodes the ecdysone receptor and retinoid X receptor that react with ponasterone A, was required to induce expression. Therefore, for the transfection of animal cells, a mixture of six types of plasmid DNAs in total was prepared. For 10 mL of cell culture, 3 ⁇ g each of pcDNA4-g4 XB12H, pcDNA4-g4 XB12L, pIND-g4 SB04H and pIND-g4 SB04L, as well as 18 ⁇ g each of pcDNA6/TR and pVgRXR were used.
  • Human fetal renal carcinoma cell-derived HEK293H strain (Invitrogen) was suspended in a DMEM medium (Invitrogen) containing 10% FCS (MOREGATE), and 10 mL of this was seeded at a cell density of 5 ⁇ 10 5 cells/mL in each dish used for adhesive cells (10-cm diameter, CORNING) and cultured for a day and night in a CO 2 incubator (37° C., 5% CO 2 ).
  • the plasmid DNA mixture prepared in 4-1 was added to a mixture of transfection reagents, 75.8 ⁇ L of Lipofectaine 2000 (Invitrogen) and 2708 ⁇ L of Opti-MEM I medium (Invitrogen), and left to stand at room temperature for 20 minutes. The resulting mixture was added to the cells in each well and incubated for 4 to 5 hours in a CO 2 incubator (37° C., 5% CO 2 ).
  • Culture medium was removed by suction from the transfected cell culture as described above, and then 10 mL of a CHO-S-SFM-II (Invitrogen) medium containing 1 ⁇ g/mL tetracycline (Wako Pure Chemical Industries) was added. This mixture was incubated for one day in a CO 2 incubator (37° C., 5% CO 2 ) to induce primary expression of the right arm antibody HL molecule.
  • a CO 2 incubator 37° C., 5% CO 2
  • the culture supernatant was recovered and centrifuged (approximately 2000 g for 5 min at room temperature) to remove the cells, and then sterilized by passing through a 0.22 ⁇ m filter MILLEX®-GV (Millipore). The sample was stored at 4° C. until use.
  • rProtein A Sepharose Fast Flow (Amersham Biosciences) was added to 10 mL of the culture supernatant obtained according to the method described in Example 4-3, and the solution was mixed by overturning at 4° C. for 4 hours. The solution was transferred to an Ultrafree®.-MC 0.22 ⁇ m filter cup (Millipore) and after washing 3 times with 500 ⁇ L of TBS containing 0.01% Tween® 20, the rProtein A Sepharose resin was suspended in 100 ⁇ L of 10 mM HCl containing 0.01% Tween® 20 at pH 2.0 and left to stand for 2 minutes. Then, the antibody was eluted, and the eluate was immediately neutralized by adding 5 ⁇ L of 1 M Tris-HCl, pH 8.0.
  • Goat anti-human IgG (Biosource International) was adjusted to 1 ⁇ g/mL with a coating buffer, and immobilized to a Nunc-Immuno plate (Nunc). After blocking with a diluent buffer (D.B.), a sample of the culture supernatant suitably diluted with D.B. was added. Furthermore, as a standard for calculating the antibody concentration, human IgG4 (humanized anti-TF antibody, see WO 99/51743) diluted with D.B. in a three-fold dilution series up to eleven stages starting from 2000 ng/mL was added similarly. After 3 washes, goat anti-human IgG, alkaline phosphatase (Biosource International) was reacted.
  • D.B. diluent buffer
  • human IgG4 humanized anti-TF antibody
  • Anti-factor IXa antibody XB12 and anti-factor X antibody SB04 which were the most effective in shortening blood coagulation time, were subjected to humanization as follows.
  • XB12-H chain variable region KABATID-020619 (Kabat Database) (Mariette et al., Arthritis Rheum. 1993; 36: 1315-1324)
  • XB12-L chain variable region EMBL Accession No. X61642 (IMGT Database) (Mark et al., J. Mol. Biol. 1991; 222: 581-597.)
  • SB04-H chain variable region KABATID-025255 (Kabat Database) (Demaison et al.,
  • CDR complementarity determining regions
  • the web homology search site publicly disclosed by NCBI http://www.ncbi.nln.nih.gov/BLAST/ was used to search for secretory signal sequences of human antibodies that are highly homologous to the human antibodies of (1)-(4).
  • the following secretory signal sequences obtained by the search were used.
  • Twelve synthetic oligoDNAs of about 50 bases were prepared from a nucleotide sequence encoding the amino acid sequence from the secretory signal sequence to the antibody variable region, such that about 20 bases of their 3′-end anneal with each other. Furthermore, a primer annealing to the 5′-end of an antibody variable region gene and having the XhoI cleavage sequence, and a primer annealing to the 3′-end of an antibody variable region gene and having the SfiI cleavage sequence were prepared.
  • each of a primer annealing to the 5′-end and a primer annealing to the 3′-end of the antibody gene were added at 10 ⁇ M, and the antibody variable region genes were amplified by 35 cycles of reacting at 94° C. for 30 seconds, 55° C. for 30 seconds, and 72° C. for 1 min and then reacting at 72° C. for 5 minutes. After PCR, the entire reaction solution was subjected to 1% agarose gel electrophoresis.
  • Amplified fragments having the size of interest were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 30 ⁇ L of sterile water. These fragments were cloned using the pGEM-T Easy Vector System (Promega) according to the method described in the instruction manual. Nucleotide sequences for each of the DNA fragments were determined using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) and an ABI PRISM 3700 DNA Sequencer (Applied Biosystems) according to the method described in the instruction manual.
  • a plasmid confirmed to have the correct humanized antibody variable region gene sequence was then digested with EcoRI and SfiI and the reaction solution was subjected to 1% agarose gel electrophoresis.
  • DNA fragments having the size of interest (approximately 400 bp) were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 304 of sterile water.
  • the humanized XB12 antibody gene fragment (H chain variable region or L chain variable region) digested with EcoRI and SfiI, and the tetracycline-induced type expression plasmid (pcDNA4-g4H, pcDNA4-g4L) digested with EcoRI and SfiI were subjected to ligation reaction using Rapid DNA Ligation Kit (Roche Diagnostics) according to the method described in the instruction manual.
  • the humanized SB04 antibody gene fragment digested with EcoRI and SfiI H chain variable region or L chain variable region
  • the ecdysone analogue induced type expression plasmid (pIND-g4H, pIND-g4L) digested with EcoRI and SfiI were subjected to ligation reaction using the Rapid DNA Ligation Kit (Roche Diagnostics) according to the method described in the instruction manual. A portion of each of the reaction mixture was used to transform DH5 ⁇ strain E. coli (TOYOBO).
  • an expression vector was prepared as follows for expression as an ordinary humanized antibody, but not as a bispecific antibody. Plasmids (pCAG-g4H, pCAG-g ⁇ ) with an insert of wild type antibody constant regions to pCAGGS having a chicken ⁇ -actin promoter (Niwa et al. 1991 Gene, 108: 193-199) were digested with XhoI and SfiI to prepare expression plasmids that carry humanized XB12 antibody gene fragment (H chain variable region or L chain variable region) or humanized SB04 antibody gene fragment (H chain variable region or L chain variable region) collected after digesting the bispecific antibody expression vector mentioned above with XhoI and SfiI. DNA ligation reaction was performed using the Rapid DNA Ligation Kit (Roche Diagnostics), and E. coli DH5 ⁇ strain (TOYOBO) was transformed.
  • the genes were transfected and expression was induced in HEK293H according to the methods described in Examples 4-2 and 4-3, using 4 types of humanized bispecific antibody expression vectors as well as pcDNA6/TR and pVgRXR. Further, antibody purification and quantification of antibody concentration were conducted according to the methods shown in Examples 4-4 and 4-5.
  • Example 6-3 Expression of an ordinary humanized antibody, which is not a bispecific antibody, was accomplished by transfecting genes to HEK293H according to the method shown in Example 4-2, using humanized H chain antibody expression vector and humanized L chain antibody expression vector prepared in Example 6-3. After gene transfection, cells were washed by addition and removal of 10 mL of CHO-S-SFM-II medium (Invitrogen), then 10 mL of CHO-S-SFM-II was added, and then the cells were cultured for 3 days in a CO 2 incubator (37° C., 5% CO 2 ) for secretion of the humanized antibodies.
  • CHO-S-SFM-II medium Invitrogen
  • a humanized bispecific antibody (humanized XB12 antibody (VH:hXB12f-A, VL:hXBVL)/humanized SB04 antibody (VH:hSB04e, VL:hSBVL-F3f)) having the same activity as XB12/SB04 was obtained.
  • Each antibody variable regions sequences is shown in the following SEQ ID NOs.
  • humanized XB12 antibody VH (hXB12f-A) SEQ ID NO: 1 (nucleotide sequence), SEQ ID NO: 2 (amino acid sequence) (2) humanized XB12 antibody VL (hXBVL) SEQ ID NO: 3 (nucleotide sequence), SEQ ID NO: 4 (amino acid sequence) (3) humanized SB04 antibody VH (hSB04e) SEQ ID NO: 5 (nucleotide sequence), SEQ ID NO: 6 (amino acid sequence) (4) humanized SB04 antibody VL (hSBVL-F3f) SEQ ID NO: 7 (nucleotide sequence), SEQ ID NO: 8 (amino acid sequence)
  • An antibody Fv region model was prepared by homology modeling using MOE software (Chemical Computing Group Inc.) to confirm the amino acid residues at the VH-VL interface of the humanized SB04 antibody.
  • the amino acids of H39 and L38 at the VH-VL interface are both glutamine (Gin) and formation of hydrogen bonds by the side chains of both residues was confirmed ( FIG. 1A ).
  • the amino acids of H45 and L44 were leucine (Leu) and proline (Pro), respectively, the side chains of both residues were very close to each other and were found to form a hydrophobic core ( FIG. 1B ).
  • the amino acid residues at these two positions have been reported to be highly conserved in human antibodies (Vargas-Madrazo E et al. J. Mol.
  • H39 glutamine of humanized XB12H chain and L38 glutamine of humanized SB04 L chain were substituted based on the findings in Example 7. Specifically, to inhibit hydrogen bonding of the glutamine side chains and to allow electrostatic repulsion, both amino acids (H39 and L38) were substituted with lysine (Lys) or arginine (Arg) carrying a positive charge on their side chain, or to glutamic acid (Glu) or aspartic acid (Asp) which carry a negative charge on their side chain.
  • Example 4-2 To assess the regulation of H chain and L chain association, gene transfection into HEK293H was performed according to the method shown in Example 4-2 using 3 types of prepared antibody expression vectors: humanized XB12H chain (H39-modified), humanized SB04 L chain (L38-modified), and wild-type humanized XB12 L chain. The antibodies were then secreted into the culture supernatant. Next, antibody purification and quantification of antibody concentration were carried out according to the methods of Examples 4-4 and 4-5.
  • Two-hundred ng of purified antibodies were reduced in a sample buffer (TEFCO), applied to a 14% SDS-PAGE mini gel (TEFCO), and then subjected to electrophoresis. After electrophoresis, the gels were subjected to immobilization treatment by soaking in 7% acetic acid solution containing 10% methanol for 30 minutes, and then stained by soaking in SYPRO® Ruby protein gel stain solution (BIO-RAD) for one day and night.
  • TEZO® Ruby protein gel stain solution BIO-RAD
  • the gels were subjected to decolorization treatment by soaking in 7% acetic acid solution containing 10% methanol for 1 hour and the image was analyzed using a fluorescence imager FluorImager SI (Amersham Biosciences) and the image was obtained. The obtained image was used to calculate the fluorescence intensities of the H chain and L chain bands using ImageQuant ver. 4.2 (Amersham Biosciences).
  • the results are shown in FIG. 2 .
  • the proportion (%) of the XB12-L chain of interest was calculated according to the formula “XB12-L chain/total amount of L chain (XB12-L chain+SB04-L chain) ⁇ 100” using the calculated fluorescence intensity values.
  • the proportion was 50% when the amino acids of the humanized XB12 H chain (H39) and humanized SB04 L chain (L38) were glutamine (Gln) as in the wild type, whereas the proportion of the humanized XB12L chain increased when H39 and L38 were substituted. In the case of substitution to glutamic acid (Glu), this proportion was found to increase 1.6 times to 82%.
  • Example 4-2 To assess the binding activity to Factor IXa and Factor X, gene transfection into HEK293H and secretion of antibodies into the culture supernatant was performed according to the method described in Example 4-2, using humanized XB12 H chain (H39-modified) and wild-type humanized XB12L chain antibody expression vector, or wild-type humanized SB04 H chain and humanized SB04 L chain (L38-modified) antibody expression vector. Furthermore, antibody purification and quantification of antibody concentration were carried out according to the methods of Examples 4-4 and 4-5.
  • proline of humanized SB04 L chain was substituted to an amino acid carrying a charge on its side chain.
  • proline present in the hydrophobic core of the VH-VL interface was substituted to lysine (Lys) or arginine (Arg) carrying positive charge on their side chain, and glutamic acid (Glu) carrying a negative charge on its side chain was substituted to aspartic acid (Asp).
  • Substitution of the humanized antibody gene was performed using QuickChange Site-Directed Mutagenesis Kit (Stratagene), and mutations were introduced according to the method described in the instruction manual. Each humanized antibody gene fragment having amino acid substitutions were inserted into a bispecific antibody expression vector used in Example 6-2 or into an ordinary antibody expression vector.
  • Example 4-2 To assess the regulation of H chain and L chain association, gene transfection into HEK293H was performed according to the method of Example 4-2, using 3 types of prepared antibody expression vectors, humanized SB04 L chain (L44-modified), wild-type humanized XB12H chain, and wild-type humanized XB12 L chain, and the antibodies were secreted into the culture supernatant. Furthermore, antibody purification and quantification of antibody concentration were carried out according to the methods of Examples 4-4 and 4-5.
  • Two-hundred ng of purified antibodies were reduced in a sample buffer (TEFCO), applied to a 14% SDS-PAGE mini gel (TEFCO), and then subjected to electrophoresis. After electrophoresis, the gels were subjected to immobilization treatment by soaking in 7% acetic acid solution containing 10% methanol for 30 minutes, and then stained by soaking in SYPRO® Ruby protein gel stain solution (BIO-RAD) for one day and night.
  • TEZO® Ruby protein gel stain solution BIO-RAD
  • the gels were subjected to decolorization treatment by soaking in 7% acetic acid solution containing 10% methanol for 1 hour and the image was analyzed using a fluorescence imager FluorImager SI (Amersham Biosciences) and the images were obtained. The obtained images were used to calculate the fluorescence intensities of the H chain and L chain bands using ImageQuant ver. 4.2 (Amersham Biosciences).
  • the results are shown in FIG. 6 .
  • the proportion (%) of the XB12-L chain of interest was calculated according to the formula “XB12-L chain/total amount of L chain (XB12-L chain+SB04-L chain) ⁇ 100” using the calculated fluorescence intensity values.
  • the proportion was 47% when the amino acid of the humanized SB04 L chain (L44) was proline (Pro) as in the wild type, whereas the proportion of the humanized XB12L chain increased when L44 was substituted, and this proportion was found to increase 1.8-1.9 times to 86-90%.
  • Example 4 To assess the binding activity against Factor X, gene transfection into HEK293H and secretion of antibodies into the culture supernatant was performed according to the method described in Example 4-2, using wild-type humanized SB04 H chain and humanized SB04 L chain (L44-modified) antibody expression vector. Furthermore, quantification of antibody concentration in the culture supernatant was carried out according to the method of Example 4-5.
  • H39 of humanized XB12 H chain and L38 and L44 of humanized SB04 L chain were substituted with amino acids carrying a charge on their side chain based on the findings of Examples 8 and 9.
  • both amino acids at H39 of humanized XB12 H chain and L38 of humanized SB04 L chain were substituted with glutamic acid (Glu), which was found to be most effective in Example 8, and proline present at L44 of humanized SB04 L chain was substituted to lysine (Lys) or arginine (Arg) carrying a positive charge in their side chain, or to glutamic acid (Glu) or aspartic acid (Asp) carrying a negative charge in their side chain.
  • Glu glutamic acid
  • Example 4-2 To assess the regulation of H chain and L chain association, gene transfection into HEK293H was performed according to the method of Example 4-2, using 3 types of antibody expression vectors: modified humanized SB04 L chain, modified humanized XB12 H chain, and wild-type humanized XB12 L chain. The antibodies were then secreted into the culture supernatant. Furthermore, antibody purification and quantification of antibody concentration were carried out according to the methods of Examples 4-4 and 4-5.
  • Two-hundred ng of purified antibodies were reduced in a sample buffer (TEFCO), applied to a 14% SDS-PAGE mini gel (TEFCO), and then subjected to electrophoresis. After electrophoresis, the gels were subjected to immobilization treatment by soaking in 7% acetic acid solution containing 10% methanol for 30 minutes, and then stained by soaking in SYPRO® Ruby protein gel stain solution (BIO-RAD) for one day and night.
  • TEZO® Ruby protein gel stain solution BIO-RAD
  • the gels were subjected to decolorization treatment by soaking in 7% acetic acid solution containing 10% methanol for one hour and the image was analyzed using a fluorescence imager FluorImager SI (Amersham Biosciences) and the images were obtained. The obtained images were used to calculate the fluorescence intensities of the H chain and L chain bands using ImageQuant ver. 4.2 (Amersham Biosciences).
  • the results are shown in FIG. 9 .
  • the proportion (%) of the XB12-L chain of interest was calculated according to the formula “XB12-L chain/total amount of L chain (XB12-L chain+SB04-L chain) ⁇ 100” using the calculated fluorescence intensity values.
  • the proportion was 82% when both amino acids of the humanized XB12 H chain (H39) and humanized SB04 L chain (L38) was modified to glutamic acid (Glu) and the humanized SB04 L chain (L44) was proline (Pro) as in the wild type, whereas the proportion of the humanized XB12L chain increased to 94-96% when L44 was substituted in addition to the substitution of both amino acids of the humanized XB12 H chain (H39) and humanized SB04 L chain (L38) to glutamic acid (Glu). This increase in proportion was greater than the 86-90% observed when L44 alone was substituted in Example 9.
  • Example 4-2 To assess the binding activity against Factor X, gene transfection into HEK293H and secretion of antibodies into the culture supernatant was performed according to the method described in Example 4-2 using wild-type humanized SB04 H chain and modified humanized SB04 L chain antibody expression vector. Furthermore, quantification of antibody concentration in the culture supernatant was carried out according to the method of Example 4-5.
  • u2-wz4 which is a humanized anti-MpI antibody
  • This gene was prepared by PCR using a nucleotide sequence encoding the linker sequence (GlyGlyGlyGlySer) ⁇ 3 so that it will comprise a nucleotide sequence composed of VH-linker sequence-VL-linker sequence-VH-linker sequence-VL (see SEQ ID NO: 12; and SEQ ID NO: 286 of WO2005/56604).
  • cell lines with stable expression was prepared by constructing an expression vector by cloning a DNA fragment into expression vector pCXND3, and introducing the gene into CHO-DG44 cells. More specifically, 0.75 mL of a mixture of the expression vector (20 ⁇ g) and CHO-DG44 cells (1 ⁇ 10 7 cells/mL) suspended in PBS was placed on ice for 10 minutes and transferred to a cuvette, and then a pulse was applied at 1.5 kV and 25 ⁇ FD using a Gene Pulser Xcell (BioRad).
  • cells subjected to electroporation treatment were selected by placing them into CHO-S-SFMII medium (Invitrogen) containing 500 ⁇ g/mL Geneticin (Invitrogen), and an u2-wz4-producing CHO cell line was established.
  • CHO-S-SFMII medium Invitrogen
  • Geneticin Invitrogen
  • the purification from the culture supernatant was carried out using a fusion protein of GST and MG10 (Gln213 to Ala231 in the amino acid sequence of human MpI) which is an epitope recognized by the antibody.
  • the MG10-GST fusion protein was purified using Glutathione Sepharose 4B (Amersham Biosciences) according to the supplier's protocol. Then, the purified MG10-GST fusion protein was immobilized onto HiTrap NHS-activated HP (Amersham Biosciences) to prepare an affinity column, according to the supplier's protocol.
  • hVB22B u2-wz4 sc(Fv)2 is an sc(Fv)2 composed of the sequence VH 1 -linker-VL 2 -linker-VH 3 -linker-VL 4 , as shown in FIG.
  • VB22B sc(Fv)2 which are the bivalent scFv-type in which each pairs of VH 1 and VL 2 , and VH 3 and VL 4 forms a Fv, and the single chain diabody-type in which each pairs of and VL4, and VH2 and VL3 form a Fv.
  • Mobile phase B 20 mM sodium phosphate, 500 mM NaCl, pH 7.5
  • the molecular weight of peak 1 and peak 2 were measured using a Q-TOF-type mass spectrometer (Q T of Ultima, Micro Mass). Sample solutions were infused into Q-TOF, and deconvolution of the obtained polyvalent ion spectra (+) using the included software (MassLynx) gave results showing that the molecular weight of peak 1 and peak 2 are 53768 Da and 53769 Da, respectively. This showed that peak 1 and peak 2 have the same molecular weight.
  • Peptide mapping was performed on peak 1 and peak 2. After reductive denaturation and carboxymethylation, peptide fragments were obtained by digestion using trypsin, and peptide maps were obtained by reverse-phase chromatography (YMC-Pack-ODS). Comparing the peptide maps of peak 1 and peak 2, the mapping patterns of peak 1 and peak 2 were the same as shown in FIG. 14 , therefore, the amino acid primary structure was found to be the same.
  • peak 1 and peak 2 have the same molecular weight according to TOF-MASS measurements, and peak 1 and peak 2 have the same mapping patterns, peak 1 and peak 2 were found to be conformational isomers having different three dimensional structures.
  • hVB22B u2-wz4 sc(Fv)2 is an sc(Fv)2 comprising the sequence, VH 1 -linker-VL 2 -linker-VH 3 -linker-VL 4 , as shown in FIG. 12 , depending on the combination of Fvs (molecules comprising non-covalent bonds between VH and VL), 2 kinds of conformational isomers can exist.
  • the isomers are the bivalent scFv-type in which each pairs of VH 1 and VL 2 , and VH 3 and VL 4 forms a Fv, and the single chain diabody-type in which each pairs of VH 1 and VL 4 , and VH 2 and VL 3 forms a Fv. Peak 1 and peak 2 were considered to have either one of the conformations; the bivalent scFv-type or the single chain diabody-type.
  • protease-limited proteolysis was developed as an analysis method for identifying the two types of conformational isomers. Since the linker portion of sc(Fv)2 has a relatively free structure, it is considered to have low resistance to proteases, and peak 1, peak 2, and hVB22B u2-wz4 sc(Fv)2 (The ratio of peak 1:peak 2 is approximately 1:4) were reacted with subtilisin A, a type of protease, under the following conditions:
  • minibody peaks was not observed at all in peak 2, whereas, minibody peaks (approximately half the molecular weight) were observed for peak 1.
  • hVB22B u2-wz4 sc(Fv)2 bulk which is a mixture of peak 1 and peak 2 showed low-molecular weight peaks whose amount correspond to the abundance ratio of peak 1. Therefore, these results identified peak 1 as a bivalent scFv-type and peak 2 as a single chain diabody-type.
  • VH/VL interface-modified sc(Fv)2 was prepared by the following method to confirm whether the formation of conformational isomers of sc(Fv)2 could be regulated through regulation of the association by the VH/VL interface modification to sc(Fv)2, which is a minibody.
  • Gln at position 39 of VH (position 39 in the amino acid sequence of SEQ ID NO: 13; see SEQ ID NO: 289 of WO2005/56604), and Gln at position 38 of VL (position 43 in the amino acid sequence of SEQ ID NO: 14; see SEQ ID NO: 289 of WO2005/56604) which are amino acids that form the VH/VL interface of u2-wz4 were modified as follows.
  • v1 the hVB22B u2-wz4(v1) sc(Fv)2 gene
  • the nucleotide sequence is shown in SEQ ID NO: 15
  • the amino acid sequence encoded by the nucleotide sequence is shown in SEQ ID NO: 16
  • v3 the hVB22B u2-wz4(v3) sc(Fv)2 gene
  • the nucleotide sequence is shown in SEQ ID NO: 17, and the amino acid sequence encoded by the nucleotide sequence is shown in SEQ ID NO: 18
  • Gln at position 39 of VH1 (genetic codon: CAG) was modified to Glu
  • Gln at position 38 of VL2 (genetic codon: CAG) was modified to Lys
  • Gln at position 39 of VH3 (genetic codon: CAG) was modified to Lys (genetic codon: AAG)
  • Gln at position 38 of VL4 was modified to Glu (genetic codon: GAG) was produced.
  • Gene modification was carried out by introducing point mutations using QuikChange Site-Directed Mutagenesis Kit (STRATAGENE) according to the manufacturer's protocol. After confirming the nucleotide sequences of each genes, stable cell lines were prepared by constructing expression vectors by cloning DNA fragments into expression vector pCXND3, and introducing the gene into CHO-DG44 cells. The v1-producing CHO cell line and v3-producing CHO cell line were established according to the method shown in Example 11.
  • STRATAGENE QuikChange Site-Directed Mutagenesis Kit
  • Monomeric molecules of variants v1 and v3 were purified according to the method of Example 11 using the MG10-GST fusion protein immobilized column.
  • the results of gel filtration chromatography shown in FIG. 18 showed that for variants v1 and v3, the dimers and larger aggregates decreased in the culture supernatant and the proportion of monomers increased from 59% (u2-wz4 before modification) to 89% for v1 and 77% for v3. It seems that modification of amino acids at the VH/VL interface inhibits unfavorable associations by charge repulsion and promotes favorable association in variants v1 and v3. Accordingly, efficient expression of the monomeric molecules was successfully accomplished by this regulation of the association.
  • the ratios of conformational isomers present in the obtained VH/VL interface-modified v1 and v3, and in the unmodified u2-wz4 were analyzed by cation exchange chromatography and isoelectric focusing. The conformations were identified by the protease-limited proteolysis method.
  • PhastGel Dry IEF gel (Amersham Biosciences) was swollen for 30 minutes in the gel swelling solution described below. First, the samples were applied to the swollen gel, and subjected to electrophoresis using the PhastSystem under the following conditions. After electrophoresis, the gel was soaked for 30 minutes in a 20% TCA solution, then subjected to a five-minute wash for three times or more in milliQ water, and then to Coomassie stained or silver stained depending on the protein concentration of the samples.
  • Coomassie staining 0.02% CBB containing 0.1% CuSO 4 (w/v) was used as the solution for staining, and 30% methanol containing 10% acetic acid was used for decolorization.
  • Silver staining Silver stain kit, Protein (Amersham Biosciences) was used and staining was performed according to the standard protocol attached to the kit.
  • reaction solution was analyzed by gel filtration chromatography under the following conditions:
  • RPMI1640 Invitrogen
  • RPMI1640 1% Fetal Bovine Serum
  • RPMI1640 10% Fetal Bovine Serum to 4 ⁇ 10 5 cells/mL
  • 404 of rhTPO (R&D) or the conformational isomer sample was added to each well at various concentrations and, and the cells were cultured at 37° C. under 5% CO 2 for 24 hours.
  • agonist activity of VH/VL interface-modified v1 and v3 were evaluated.
  • Agonist activity differs greatly between the conformational isomers, and as shown in FIG. 12 , peak 2 having a single chain diabody conformation showed a very high agonist activity, whereas the activity of peak 1 having a bivalent scFv conformation was decreased significantly.
  • variant v1 showed the same activity as peak 2, and variant v3 showed nearly the same activity as peak 1. Accordingly, biological activities also confirmed that variant v1 formed a single chain diabody conformation, and variant v3 forms a bivalent scFv conformation.
  • Tm value the denaturation transition temperature
  • Solution conditions 20 mM sodium citrate, pH 6.0
  • the accelerated samples were analyzed by gel filtration chromatography and cation exchange chromatography under the following conditions.
  • the results of gel filtration chromatography analysis confirmed that the monomer recovery rate is nearly the same for peak 2 purified from u2-wz4 and variant v1, and the stability of association was nearly the same.
  • the monomer recovery rate was also nearly the same for peak 1 purified from u2-wz4 and variant v3, and the stability of association was nearly the same in both conformational isomers.
  • the present Example demonstrated that one of the two types of conformational isomers alone can be expressed at 100% by using the VH/VL interface modifications applied to v1 and v3.
  • a known method for VH/VL-interface regulation for obtaining a single chain antibody having the conformation of interest is a method of regulating the conformations of bispecific diabodies using the knobs-into-holes technique (Protein Sci. 1997 April; 6(4):781-8, Remodeling domain interfaces to enhance heterodimer formation, Zhu Z, Presta L G, Zapata G, Carter P). It is reported that this method increases the percentage of formation of the heterodimer conformation of interest from 72% to 92% by modifying amino acids at a total of four positions per VH/VL interface.
  • the present invention succeeded in obtaining the conformation of interest at 100% and without decreasing the thermal stability and the stability of the conformational isomer by modifying amino acids at four positions.
  • the bispecific antibody (Japanese Patent Application No. 2005-112514) composed of a combination of anti-Factor IXa antibody A69-VH, anti-Factor X antibody B26-VH, and hybrid L chain (BBA), which was the most effective in shortening blood coagulation time, was subjected to humanization as follows.
  • A69-H chain variable region KABATID-000064 (Kabat Database) (Kipps et al., J. Clin. Invest. 1991; 87:2087-2096)
  • B26-H chain variable region EMBL Accession No. AB063872 (IMGT Database) (Unpublished data)
  • BBA-L chain variable region KABATID-024300 (Kabat Database) (Welschof et al., J. Immunol. Method 1995; 179:203-214)
  • CDR complementarity determining regions
  • the web homology search site publicly disclosed by NCBI http://www.ncbi.nlm.nih.gov/BLAST/ was used to search secretory signal sequences of human antibodies that are highly homologous to the human antibodies of (1)-(3). The following secretory signal sequences obtained by the search were used.
  • A69-H chain variable region GenBank Accession No. AF062257
  • B26-H chain variable region GenBank Accession No. AAC18248
  • BBA-L chain variable region GenBank Accession No. AAA59100
  • Twelve synthetic oligoDNAs of about 50 bases were prepared from a nucleotide sequence encoding the amino acid sequence from the secretory signal sequence to the antibody variable region, such that about 20 bases of their 3′-end anneal with each other. Furthermore, a primer annealing to the 5′-end of an antibody variable region gene and having the XhoI cleavage sequence, and a primer annealing to the 3′-end of an antibody variable region gene, having the SfiI cleavage sequence and also encoding the 5′-end sequence of the intron sequence were prepared.
  • each of the synthetic oligoDNAs prepared at 2.5 ⁇ M were mixed, and 1 ⁇ TaKaRa Ex Taq Buffer, 0.4 mM dNTPs, and 0.5 units TaKaRa Ex Taq (all from Takara Shuzo) were added to prepare 48 ⁇ L of a reaction solution. After heating this at 94° C. for 5 minutes, 2 cycles of reacting at 94° C. for 2 minutes, 55° C. for 2 minutes, and 72° C. for 2 minutes were performed to assemble and elongate each of the synthetic oligoDNAs.
  • the H-chain variable region fragment-inserted plasmid and the L-chain variable region fragment-inserted plasmid, each of which were confirmed to have the correct humanized antibody variable region gene sequence, were digested with XhoI and SfiI, and EcoRI respectively. Then, the reaction solution was subjected to 1% agarose gel electrophoresis. DNA fragments having the size of interest (approximately 400 bp) were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 30 ⁇ L of sterile water. Then, expression vectors for animal cells were prepared as follows.
  • a CH3 portion amino acid-substituted IgG4 was used by referring to the knobs-into-holes technique of IgG1 (Non-Patent Document 3). Furthermore, to promote H chain dimer formation, amino acid substitution (-ppcpScp-->-ppcpPcp-) was also introduced to the hinge.
  • Humanized A69 H chain expression vector was prepared by inserting humanized A69 H chain variable region antibody gene fragment into an expression vector prepared by inserting Y349C and T366W-substituted constant region gene to pCAGGS comprising a chicken ⁇ -actin promoter (Niwa et al.
  • Humanized B26 H chain expression vector was prepared by inserting humanized B26 H chain variable region antibody gene fragment into an expression vector prepared by inserting E356C, T366S, L368A, and Y407V-substituted constant region gene to pCAGGS.
  • Plasmid (pCAG-gKDNA) prepared by inserting a wild type antibody L chain constant region to pCAGGS was digested with EcoRI to prepare expression vectors inserted with humanized BBA L chain variable region antibody gene fragment. Ligation reaction was performed using Rapid DNA Ligation Kit (Roche Diagnostics), and DH5 ⁇ strain E. coli (TOYOBO) was transformed.
  • Humanized bispecific antibodies were expressed according to the method described in Example 4-2 or according to the following method.
  • Human fetal renal carcinoma cell-derived HEK293H strain (Invitrogen) was suspended in a DMEM medium (Invitrogen) containing 10% FCS (Invitrogen), and 10 mL of this was seeded at a cell density of 5-6 ⁇ 10 5 cells/mL in each dish used for adhesive cells (10-cm diameter, CORNING) and cultured for one day and night in a CO 2 incubator (37° C., 5% CO 2 ). Then, the medium was removed by suction, and 6.9 mL of CHO-S-SFM-II (Invitrogen) medium was added.
  • the plasmid DNA mixture solution prepared in 14-2 (total of 13.8 ⁇ g) was mixed with 20.7 ⁇ L of 1 ⁇ g/mL Polyethylenimine (Polysciences Inc.) and 690 ⁇ L of CHO-S-SFMII medium, left to stand at room temperature for 10 minutes, then the cells were seeded into each dish and incubated in a CO 2 incubator (37° C., 5% CO 2 ) for 4-5 hours. Thereafter, 6.9 mL of CHO-S-SFM-II medium was added and then the cells were incubated in a CO 2 incubator for 3 days.
  • the culture supernatant was recovered, then cells were removed by centrifugation (at approximately 2000 g for 5 minutes at room temperature), and the solution was sterilized by passing it through a 0.22 ⁇ m filter MILLEX®-GV (Millipore). The sample was stored at 4° C. until use.
  • Protein A was immobilized on Sensor Chip CMS (BIACORE) using BIAcore3000 (BIACORE). More specifically, Protein A-immobilized sensor chip was prepared according to the manufacturer's protocol by reacting an activated sensor chip with a Protein A solution diluted to 50 ⁇ g/mL with 10 mM aqueous sodium acetate solution (pH 4.0, BIACORE) at 5 ⁇ L/min for 30 minutes, and then performing a blocking operation. This sensor chip was used to measure the concentration of the culture supernatant and the purified product using BIAcore Q.
  • HBS-EP Buffer (BIACORE) was used for the immobilization of the sensor chip and for the measurements of concentration.
  • human IgG4 humanized anti-TF antibody, see WO 99/51743
  • HBS-EP Buffer in a two-fold dilution series up to six stages beginning at 2000 ng/mL was used.
  • humanized A69/humanized BBA antibody, humanized B26/humanized BBA antibody, and humanized A69/humanized B26/humanized BBA bispecific antibody were expressed, these 3 types of antibodies were separated, and amino acid modifications that decrease the isoelectric point of the humanized A69 H chain variable region and increase the isoelectric point of the humanized B26 H chain variable region were carried out in order to purify the bispecific antibody alone.
  • mutations were introduced to the humanized antibody variable region using a QuikChange Site-Directed Mutagenesis Kit (Stratagene) according to the method described in the instruction manual.
  • the H-chain variable region fragment-inserted plasmid and L-chain variable region fragment-inserted plasmid were confirmed to have the humanized antibody variable region gene sequence of interest were digested with XhoI and SfiI, and EcoRI respectively.
  • the reaction solution was subjected to 1% agarose gel electrophoresis.
  • DNA fragments having the size of interest (approximately 400 bp) were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 30 ⁇ L of sterile water.
  • expression vectors for animal cells were prepared according to the method described in Example 14-2.
  • Humanized bispecific antibody was prepared according to the method described in Example 14-3, and blood coagulation activity was evaluated according to the method described in Example 5.
  • humanized bispecific antibody humanized A69 (hA69-PFL)/humanized B26 (hB26-PF)/humanized BBA (hAL-AQ)
  • hA69-PFL humanized A69
  • hB26-PF humanized B26
  • hAL-AQ humanized BBA
  • humanized A69 antibody VH (hA69-PFL) SEQ ID NO: 19 (nucleotide sequence), SEQ ID NO: 20 (amino acid sequence)
  • humanized B26 antibody VH (hB26-PF) SEQ ID NO: 21 (nucleotide sequence), SEQ ID NO: 22 (amino acid sequence)
  • humanized BBA antibody VL (hAL-AQ) SEQ ID NO: 23 (nucleotide sequence), SEQ ID NO: 24 (amino acid sequence)
  • Each H-chain constant region was amplified by PCR using the human IgG1 and human IgG4 H-chain constant region genes as templates and using a 5′-end primer designed so that the nucleotide sequence encoding two amino acids (Ala-Ser) in the N-terminal side of the H-chain constant region will be an NheI recognition sequence (GCTAGC) and a primer that anneals to the 3′-end and that carries a NotI recognizing site.
  • GCTAGC NheI recognition sequence
  • pBCH comprising an IgG1 constant region gene
  • pBCH4 IgG4 comprising a constant region gene linked to a vector prepared by digesting pBluescriptKS+ vector (TOYOBO) with NheI and Not I (both from TaKaRa) were prepared.
  • PCR was performed using a primer that is complementary to the 5′-end nucleotide sequence of the H-chain variable region of the humanized A69 antibody and humanized B26 antibody and that has a Kozak sequence (CCACC) and an EcoRI recognition sequence, and a primer on the 3′-end nucleotide sequence having an NheI recognition sequence, and the obtained PCR products were inserted into pBCH or pBCH4 digested with EcoRI and NheI (both from TaKaRa) and the variable regions and the constant regions were linked.
  • CCACC Kozak sequence
  • NheI both from TaKaRa
  • H-chain gene fragment-inserted plasmid was confirmed to have the H-chain constant region gene sequence of interest and then was digested with EcoRI and NotI (both from TaKaRa). The reaction solution was subjected to 1% agarose gel electrophoresis. H-chain gene fragments having the size of interest (approximately 1400 bp) were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 304 of sterile water.
  • QIAGEN QIAquick Gel Extraction Kit
  • KiH indicates the variant described in Non-Patent Document 3 prepared using the Knobs-into-holes technique.
  • IgG4-type wild type, KiH, s1, s2, s3, w1, w2, w3, s1C, s2C, s3C, w3C, and w3C2 were analyzed by cation exchange chromatography (IEX), and the formation efficiency of bispecific antibody (hereinafter referred to as BiAb) was evaluated.
  • IEX cation exchange chromatography
  • the conditions for the cation exchange chromatographic analysis were as follows, and the ratio of the peak areas of A-Homo, a homodimer of humanized A69 antibody, BiAb, a heterodimer of humanized A69 antibody and humanized B26 antibody, and B-Homo, a homodimer of humanized B26 antibody were calculated.
  • BiAbs were purified by collecting BiAb peak fractions from the IEX analyses described above.
  • the BiAb fractions were concentrated using Amicon Ultra, MWCO 10000 (Millipore), then dialyzed overnight against 20 mM sodium acetate, 150 mM NaCl, pH6.0 while cooling, and then recovered.
  • BiAb concentrations were made uniform at 0.1 mg/mL, initial samples and samples at 60° C. for one week (60° C.-1 week) were individually dispensed into vials in duplicates, and stability tests were performed on the 60° C.-1 week samples.
  • the IEX chromatograms of the IgG4-type wild type, s1, s2, s3, and w1 are shown in FIG. 28 , and the percentages of formation of A-Homo, BiAb, and B-Homo by the wild type, KiH, s1, s2, s3, w1, w2, w3, s1C, s2C, s3C, w3C, and w3C2 are shown in FIG. 29 .
  • the monomer recovery rates after 60° C. for one week are shown in FIG. 30 .
  • every one of the CH3 interface-modified variants found in the present Example was successful in greatly improving the efficiency of the intended BiAb formation as compared to the wild type.
  • high BiAb formation efficiency of 90% or more was achieved by modification of s2, s3, w1, w2, w3, and s1C at a total of two or four positions which is fewer compared to KiH (six modified positions), which the risk of antigenicity is considered to be low.
  • KiH sixteen modified positions
  • s2, s3, w3, w3C, and w3C2 have high BiAb formation efficiency of 90% or more and also have higher thermal stability (higher percentage of monomer recovery) than KiH, and s3, s2c, s3C, w3C, and w3C2 have much higher thermal stability than the wild type, and they will be useful for developing stable pharmaceutical formulations.
  • the present Example demonstrated that by modifying the amino acids at H-chain positions 356, 357, 370, 399, 409, and 439 in the CH3 interface to introduce charge-induced molecular repulsion, efficiency of the intended BiAb formation could be greatly improved. It also showed that by introducing disulfide bonds and such modifications individually or in combination, BiAb formation efficiency could be greatly improved with fewer modifications than in KiH, and that BiAb formation efficiency could be greatly improved with higher stability than in KiH, and even more with a higher thermal stability than in the wild type.
  • Coagulation activity was assessed according to the method described in Example 5, using CH3 interface-modified IgG4-type bispecific antibodies (s1, s2, s3, w1, w2, and w3) purified in Example 16. As shown in FIG. 31 , since coagulation activity did not change even when the amino acids at the constant region CH3 interface was modified, modification of CH3 interface amino acids were shown not to affect the structure of the variable regions involved in reacting with the antigens.
  • IgG1-type wild type, KiH, w1, w2, and w3 were analyzed by cation exchange chromatography (IEX), and BiAb formation efficiency was evaluated.
  • the conditions of the cation exchange chromatographic analysis are as follows, and the ratio of the peak areas of A-Homo, a homodimer of humanized A69 antibody, BiAb, a heterodimer of humanized A69 antibody and humanized B26 antibody, and B-Homo, a homodimer of humanized B26 antibody were calculated.
  • the percentages of formation of A-Homo, BiAb, and B-Homo by the IgG1-type wild type, KiH, w1, w2, and w3 are shown in FIG. 32 .
  • Alike IgG4-type the efficiency of the intended BiAb formation greatly improved in every one of them as compared to the wild type.
  • high BiAb formation efficiency of 90% or more was achieved by modification at four positions, which is less than that of KiH, and the risk of antigenicity is considered to be small.
  • the present Example showed that the method of modifying the amino acids at H-chain positions 356, 357, 370, 399, 409, and 439 in the CH3 interface can be applied not only to antibody constant region subclass IgG4, but also to the IgG1, and is applicable to IgG antibodies in general.
  • the methods of the present invention find exceptional utility in regulating association without changing the structure and function (activity) of the original polypeptides. Thus, there is little effect on antigenicity. Accordingly, bispecific antibodies that actually maintain activity can be obtained efficiently by following the methods of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

In the course of the present invention, it was discovered that one could regulate association between polypeptides by modifying amino acid residues that form the interface during the association to amino acids carrying the same type of charge. In this context, the present invention enables efficient formation of heterologous molecules. For example, the present invention can be suitably applied to the preparation of bispecific antibodies.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 15/782,256, filed on Oct. 12, 2017, which is a continuation of U.S. application Ser. No. 11/910,128, filed on Oct. 7, 2008 (now U.S. Pat. No. 10,011,858), which is the National Stage of International Application No. PCT/JP2006/306803, filed on Mar. 31, 2006, which claims the benefit of Japanese Patent Applications Serial No. 2005/101105, filed on Mar. 31, 2005, and Serial No. 2005/378266, filed on Dec. 28, 2005. The contents of all of the foregoing applications are hereby incorporated by reference in their entireties.
  • SEQUENCE LISTING
  • This application contains a Sequence Listing that has been submitted electronically as an ASCII text file named SequenceListing.txt. The ASCII text file, created on Oct. 20, 2021, is 127 kilobytes in size. The material in the ASCII text file is hereby incorporated by reference in its entirety.
  • TECHNICAL FIELD
  • The present invention relates to methods for producing polypeptides by regulating the intramolecular or intermolecular association of each molecule, polypeptides whose intramolecular or intermolecular association is regulated, and pharmaceutical compositions and the like containing such polypeptides as an active ingredient.
  • BACKGROUND ART
  • Due to their highly stable nature in blood and relatively few side effects, antibodies have been receiving much attention as pharmaceuticals. Of particular note are bispecific antibodies that can simultaneously recognize two types of antigens. MDX-210, which is currently under clinical trial investigation, is an IgG-type bispecific antibody that retargets FcγRI-expressing monocytes and such to HER-2/neu-expressing cancer cells (see Non-Patent Document 1). In general, antibodies are produced using genetic recombination techniques. One specific technique involves the cloning of a DNA encoding an antibody protein from antibody-producing cells, such as hybridomas or sensitized lymphocytes that produce antibodies or a phage library presenting antibody genes, and the insertion of such into a suitable vector, which is then transfected into host cells for antibody production. Production of IgG type bispecific antibodies using genetic recombination techniques involves the introduction of a total of four types of genes into cells, in which these genes of H chains and L chains constitute two types of IgGs of interest, and the secretion of the antibodies by coexpression. In this type of system, expression of the wild type H chains and L chains constituting genes leads to random covalent bonding between two types of H chains and non-covalent bonding between H and L chains, and thus, the proportion of the bispecific antibody of interest becomes very small. More particularly, only one out of ten types produced is the bispecific antibody of interest, rendering the production efficiency quite low. Decreased efficiency in the production of the antibody of interest is not only an obstacle for purifying the antibody of interest, but also increases the nonuniformity, such as the lot-to-lot differences, which, in turn, leads to swelling production costs.
  • Preferential secretion of IgGs with a heterologous combination of H chains by introducing amino acid substitutions into the IgG H chain CH3 region has been reported as a means to improve the efficiency of bispecific antibody production (see Patent Document 1 and Non-Patent Documents 2 and 3). This method involves induction of promotion of heterologous H chain formation and inhibition of homogeneous H chain formation by substituting an amino acid side chain present in the CH3 region of one of the H chains to a larger side chain (knob), and substituting the amino acid side chain present in the CH3 region of the other H chain to a smaller side chain (hole), such that the knob is placed into the hole. A finding that uses a similar “knob” and “hole” at the interface where the H chain variable region (hereinafter referred to as VH) associates with the L chain variable region (hereinafter referred to as VL) has also been reported (see Non-Patent Document 4). According to the report by Zhe et al., substitution of two types of amino acids present at the VH-VL interface (four types for both chains) promotes the formation of the heterologous molecule 1.28 times more efficiently (wild type: 72%, and modified type: 92%). Meanwhile, substitution of one type of amino acid (two types for both chains) results in the same level of efficiency as the wild type. However, the method of setting a knob and a hole in VH and VL does not sufficiently promote the formation of heterologous molecules.
    • [Patent Document 1] International publication WO 96/27011
    • [Non-Patent Document 1] Segal D M et al., Current Opinion in Immunology, 1999, Vol. 11, p. 558-562.
    • [Non-Patent Document 2] Ridgway J B et al., Protein Engineering, 1996, Vol. 9, p. 617-621.
    • [Non-Patent Document 3] Merchant A M et al., Nature Biotechnology, 1998, Vol. 16, p. 677-681.
    • [Non-Patent Document 4] Zhe Z et al., Protein Science, 1997, Vol. 6, p. 781-788.
    DISCLOSURE OF THE INVENTION Problems to be Solved by the Present Invention
  • The present invention was achieved in view of the above circumstances. An objective of the present invention is to provide a method for regulating polypeptide association, polypeptides whose association is regulated, and methods for producing such polypeptides. In one embodiment, it is an objective of the present invention to provide methods for efficiently producing bispecific antibodies by regulating association at the VH-VL interface. Another objective is to provide methods for efficiently producing one of the conformational isomers of sc(Fv)2.
  • Means for Solving the Problems
  • The present inventors selected VH and VL of the antibodies as peptides to be subjected for the regulation of association, and carried out dedicated research on methods that allow the association between these VH and VL to be regulated.
  • As a result, the inventors discovered that the association between VH and VL can be regulated by substituting amino acids present at the VH-VL interface with charged amino acids. This, in turn, leads to a more efficient formation of the heterologous molecules than the above-mentioned methods that utilize the knob and hole techniques.
  • Surprisingly, according to the methods of the present invention, substitution with only one type of amino acid present at each side of the VH-VL interface (a total of two amino acids for VH and VL) allows for the efficient production of a heterologous molecule. From the viewpoint of antigenicity, fewer amino acid substitutions are preferred. In an embodiment of the present invention, a mere substitution of one amino acid present at the VH-VL interface enables the efficient formation of heterologous molecules.
  • Accordingly, associations between VH and VL can be regulated by the findings discovered by the present inventors. The present invention can be applied not only to the regulation of association between VH and VL, but can also be applied to the regulation of associations among arbitrary polypeptides.
  • Furthermore, the present inventors confirmed that function is actually retained in bispecific antibodies obtained by the methods for regulating association of the present invention.
  • As described above, the present inventors succeeded in developing methods that can regulate the association between arbitrary polypeptides, and thus completed the present invention.
  • The present invention relates to methods for regulating polypeptide association, polypeptides whose association is regulated, and methods for producing such polypeptides, and more specifically the invention provides:
  • [1] a method for producing a polypeptide comprising a mutation in an amino acid residue forming a polypeptide interface such that polypeptide association will be regulated, wherein the method comprises:
    (a) modifying a nucleic acid encoding an amino acid residue forming the polypeptide interface from the original nucleic acid, such that polypeptide association will be inhibited;
    (b) culturing host cells such that said nucleic acid is expressed; and
    (c) recovering said polypeptide from the host cell culture;
    [2] a method for producing a heteromultimer comprising a mutation in an amino acid residue forming an interface between polypeptides such that heteromultimer association will be regulated, wherein the method comprises:
    (a) modifying a nucleic acid encoding an amino acid residue forming the interface between polypeptides from the original nucleic acid, such that the association between polypeptides will be inhibited;
    (b) culturing host cells such that said nucleic acid is expressed; and
    (c) recovering said heteromultimer from the host cell culture;
    [3] the method of [1], wherein a nucleic acid encoding an amino acid residue forming a polypeptide interface is modified from the original nucleic acid, so that the polypeptide association forming one or more types of conformational isomers will be inhibited in a polypeptide that may form two or more types of conformational isomers;
    [4] the method of [2], wherein a nucleic acid encoding an amino acid residue forming an interface between polypeptides is modified from the original nucleic acid, so that the association between polypeptides forming one or more types of multimers will be inhibited in a heteromultimer that may form two or more types of multimers;
    [5] the method of [1] or [2], wherein the modification of step (a) is modifying the original nucleic acid so that an amino acid residue mutation is introduced to the interface such that two or more amino acid residues forming the interface will carry the same type of charge;
    [6] the method of [5], wherein the introduced amino acid residue is glutamic acid (E);
    [7] the method of [5], wherein the introduced amino acid residue is aspartic acid (D);
    [8] the method of [5], wherein the introduced amino acid residue is lysine (K);
    [9] the method of [5], wherein the introduced amino acid residue is arginine (R);
    [10] the method of [5], wherein the introduced amino acid residue is histidine (H);
    [11] the method of [1] or [2], wherein the modification of step (a) is modifying the original nucleic acid so that an amino acid residue mutation is introduced to the interface such that an amino acid residue forming a hydrophobic core present in the interface will become charged amino acid residues;
    [12] the method of [11], wherein the introduced amino acid residue is glutamic acid (E);
    [13] the method of [11], wherein the introduced amino acid residue is aspartic acid (D);
    [14] the method of [11], wherein the introduced amino acid residue is lysine (K);
    [15] the method of [11], wherein the introduced amino acid residue is arginine (R);
    [16] the method of [11], wherein the introduced amino acid residue is histidine (H);
    [17] the method of [1] or [2], wherein the interface of the polypeptide is formed by an antibody heavy chain variable region and light chain variable region;
    [18] the method of [1] or [2], wherein the polypeptide interface is formed by two or more types of heavy chain variable regions;
    [19] the method of [1] or [2], wherein the polypeptide interface is formed by an antibody heavy chain constant region and light chain constant region;
    [20] the method of [1] or [2], wherein the polypeptide interface is formed by two or more types of heavy chain constant regions;
    [21] the method of [1] wherein the polypeptide is a single chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by linkers;
    [22] the method of [2], wherein the heteromultimer is a multi-specific antibody comprising two or more types of heavy chain variable regions and two or more types of light chain variable regions;
    [23] the method of [22], wherein the heteromultimer is a bispecific antibody;
    [24] a mutant polypeptide or heteromultimer produced by the method of [1] or [2];
    [25] a mutant polypeptide, comprising a modification made to an amino acid residue forming an interface in the original polypeptide such that the association within said polypeptide is inhibited;
    [26] a heteromultimer, comprising a modification made to an amino acid residue forming an interface between the original polypeptides such that the association between said polypeptides is inhibited;
    [27] the mutant polypeptide of [25], wherein the original polypeptide may form two or more types of conformational isomers;
    [28] the heteromultimer of [26], wherein the original polypeptides may form two or more types of multimers;
    [29] the mutant polypeptide of [25] or the heteromultimer of [26], wherein said modification of the amino acid residues forming a polypeptide interface is introducing an amino acid residue mutation to the interface such that two or more amino acid residues forming the interface will carry the same type of charge;
    [30] the mutant polypeptide or heteromultimer of [29], wherein the introduced amino acid residue is glutamic acid (E);
    [31] the mutant polypeptide or heteromultimer of [29], wherein the introduced amino acid residue is aspartic acid (D);
    [32] the mutant polypeptide or heteromultimer of [29], wherein the introduced amino acid residue is lysine (K);
    [33] the mutant polypeptide or heteromultimer of [29], wherein the introduced amino acid residue is arginine (R);
    [34] the mutant polypeptide or heteromultimer of [29], wherein the introduced amino acid residue is histidine (H);
    [35] the mutant polypeptide of [25] or the heteromultimer of [26], wherein the modification of amino acid residues forming the polypeptide interface is introducing an amino acid residue mutation to the interface such that an amino acid residue forming a hydrophobic core present in the interface will become charged amino acid residues;
    [36] the mutant polypeptide or heteromultimer of [35], wherein the introduced amino acid residue is glutamic acid (E);
    [37] the mutant polypeptide or heteromultimer of [35], wherein the introduced amino acid residue is aspartic acid (D);
    [38] the mutant polypeptide or heteromultimer of [35], wherein the introduced amino acid residue is lysine (K);
    [39] the mutant polypeptide or heteromultimer of [35], wherein the introduced amino acid residue is arginine (R);
    [40] the mutant polypeptide or heteromultimer of [35], wherein the introduced amino acid residue is histidine (H);
    [41] the mutant polypeptide of [25] or the heteromultimer of [26], wherein the polypeptide interface is formed by an antibody heavy chain variable region and light chain variable region;
    [42] the mutant polypeptide of [25] or the heteromultimer of [26], wherein the polypeptide interface is formed by two or more types of heavy chain variable regions;
    [43] the mutant polypeptide of [25] or the heteromultimer of [26], wherein the polypeptide interface is formed by an antibody heavy chain constant region and light chain constant region;
    [44] the mutant polypeptide of [25] or the heteromultimer of [26], wherein the polypeptide interface is formed by two of more types of heavy chain constant regions;
    [45] the mutant polypeptide of [25], wherein the polypeptide is a single chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by linkers;
    [46] the heteromultimer of [26], wherein the heteromultimer is a multispecific antibody comprising two or more types of heavy chain variable regions and two or more types of light chain variable regions;
    [47] the heteromultimer of [46], wherein the heteromultimer is a bispecific antibody;
    [48] a composition comprising the mutant polypeptide of [25] or the heteromultimer of [26], and a pharmaceutically acceptable carrier;
    [49] a nucleic acid encoding the mutant polypeptide of [25] or the heteromultimer of [26];
    [50] a host cell comprising the nucleic acid of [49];
    [51] a method for producing the mutant polypeptide of [25] or the heteromultimer of [26], which comprises the steps of culturing the host cell of [50], and recovering the polypeptide from the cell culture;
    [52] a method for regulating polypeptide association, which comprises modifying an amino acid residue forming an interface in the original polypeptide such that the association within the polypeptide is inhibited;
    [53] a method for regulating heteromultimer association, which comprises modifying amino acid residues forming an interface between the original polypeptides such that the association between the polypeptides is inhibited;
    [54] the method of [52], which comprises modifying an amino acid residue forming an interface in a polypeptide, such that the association of a polypeptide forming one or more types of conformational isomers will be inhibited in a polypeptide that may form two or more types of conformational isomers;
    [55] the method of [53], which comprises modifying amino acid residues forming an interface between polypeptides, such that the association between polypeptides that form one or more types of conformational isomers will be inhibited in a heteromultimer that may form two or more types of multimers;
    [56] the method of [52] or [53], wherein said modification of an amino acid residue forming a polypeptide interface is introducing an amino acid residue mutation to the interface such that two or more amino acid residues forming the interface will have the same type of charge;
    [57] the method of [56], wherein the introduced amino acid residue is glutamic acid (E);
    [58] the method of [56], wherein the introduced amino acid residue is aspartic acid (D);
    [59] the method of [56], wherein the introduced amino acid residue is lysine (K);
    [60] the method of [56], wherein the introduced amino acid residue is arginine (R);
    [61] the method of [56], wherein the introduced amino acid residue is histidine (H);
    [62] the method of [52] or [53], wherein said modification of amino acid residues forming a polypeptide interface is introducing an amino acid residue mutation to the interface such that an amino acid residue forming a hydrophobic core present in the interface will become charged amino acid residues;
    [63] the method of [62], wherein the introduced amino acid residue is glutamic acid (E);
    [64] the method of [62], wherein the introduced amino acid residue is aspartic acid (D);
    [65] the method of [62], wherein the introduced amino acid residue is lysine (K);
    [66] the method of [62], wherein the introduced amino acid residue is arginine (R;
    [67] the method of [62], wherein the introduced amino acid residue is histidine (H);
    [68] the method of [52] or [53], wherein the polypeptide interface is formed by an antibody heavy chain variable region and light chain variable region;
    [69] the method of [52] or [53], wherein the polypeptide interface is formed by two or more types of heavy chain variable regions;
    [70] the method of [52] or [53], wherein the polypeptide interface is formed by an antibody heavy chain constant region and light chain constant region;
    [71] the method of [52] or [53], wherein the polypeptide interface is formed by two or more types of heavy chain constant regions;
    [72] the method of [52], wherein the polypeptide is a single chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by linkers;
    [73] the method of [53], wherein the heteromultimer is a multispecific antibody comprising two types or more of heavy chain variable regions and two types or more of light chain variable regions;
    [74] the method of [73], wherein the heteromultimer is a bispecific antibody;
    [75] an antibody comprising a heavy chain variable region and a light chain variable region, wherein the following amino acid residues of (1) and (2) carry the same type of charge:
    (1) an amino acid residue which is included in the heavy chain variable region and corresponds to position 39 (glutamine) in the amino acid sequence of SEQ ID NO: 6; and
    (2) an amino acid residue which is included in the light chain variable region and corresponds to position 44 (glutamine) in the amino acid sequence of SEQ ID NO: 8;
    [76] an antibody comprising a heavy chain variable region and a light chain variable region, wherein the following amino acid residues of (1) and (2) carry the same type of charge:
    (1) an amino acid residue which is included in the heavy chain variable region and corresponds to position 45 (leucine) in the amino acid sequence of SEQ ID NO: 6; and
    (2) an amino acid residue which is included in the light chain variable region and corresponds to position 50 (proline) in the amino acid sequence of SEQ ID NO: 8;
    [77] an antibody comprising a heavy chain variable region and a light chain variable region, wherein either one of the following amino acid residues of (1) or (2) is a charged amino acid residue:
    (1) an amino acid residue which is included in the heavy chain variable region and corresponds to position 45 (leucine) in the amino acid sequence of SEQ ID NO: 6; and
    (2) an amino acid residue which is included in the light chain variable region and corresponds to position 50 (proline) in the amino acid sequence of SEQ ID NO: 8;
    [78] the antibody of [75] or [76], wherein amino acid residues carrying the same type of charge are selected from amino acid residues included in the group of either (a) or (b):
    (a) glutamic acid (E) and aspartic acid (D); or
    (b) lysine (K), arginine (R), and histidine (H);
    [79] the antibody of [77], wherein said charged amino acid residue is glutamic acid (E), aspartic acid (D), lysine (K), arginine (R), or histidine (H);
    [80] the antibody of any one of [75] to [77], wherein the polypeptide is a single chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by linkers;
    [81] the antibody of any one of [75] to [77], wherein the polypeptide is a multispecific antibody comprising two or more types of heavy chain variable regions and two or more types of light chain variable regions;
    [82] the antibody of [81], wherein the polypeptide is a bispecific antibody;
    [83] a composition comprising the antibody of any one of [75] to [77] and a pharmaceutically acceptable carrier;
    [84] a nucleic acid encoding a polypeptide constituting the antibody of any one of [75] to [77];
    [85] a host cell comprising the nucleic acid of [84];
    [86] the method for producing the antibodies of any one of [75] to [77], which comprises the steps of culturing the host cell of [85] and recovering the polypeptides from the cell culture;
    [87] an antibody comprising two or more types of heavy chain CH3 regions, wherein one to three pair(s) of amino acid residues in the first heavy chain CH3 region is/are selected from the pair(s) of amino acid residues indicated in (1) to (3) that carry the same type of charge:
    (1) amino acid residues included in the heavy chain CH3 region at positions 356 and 439 according to the EU numbering system;
    (2) amino acid residues included in the heavy chain CH3 region at positions 357 and 370 according to the EU numbering system; and
    (3) amino acid residues included in the heavy chain CH3 region at positions 399 and 409 according to the EU numbering system;
    [88] the antibody of [87], in which pairs of the amino acid residues in the second heavy chain CH3 region are selected from the pairs of amino acid residues of (1) to (3), wherein the one to three pairs of amino acid residues corresponding to the pairs of amino acid residues of (1) to (3) carrying the same type of charge in said first heavy chain CH3 region, carry opposite charges from the corresponding amino acid residues in said first heavy chain CH3 region;
    [89] the antibody of [87], wherein said amino acid residues carrying the same type of charge are selected from the amino acid residues included in the group of either (a) or (b):
    (a) glutamic acid (E) and aspartic acid (D); or
    (b) lysine (K), arginine (R), and histidine (H);
    [90] the antibody of [87], wherein said first heavy chain CH3 region and the second heavy chain CH3 region are crosslinked by a disulfide bond;
    [91] the antibody of [87], wherein the antibody comprises two or more types of heavy chain constant regions;
    [92] the antibody of [87], wherein the multispecific antibody comprises two or more types of heavy chain variable regions and two or more types of light chain variable regions;
    [93] the antibody of [92], which is a bispecific antibody;
    [94] a composition comprising the antibody of [87] and a pharmaceutically acceptable carrier;
    [95] a nucleic acid encoding a polypeptide constituting the antibody of [87];
    [96] a host cell comprising the nucleic acid of [95]; and
    [97] a method for producing the antibody of [87], which comprises the steps of culturing the host cell of [96], and recovering the polypeptides from the cell culture.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts models of the Fv region of humanized SB04. Part (A) depicts H39 and L38, which are amino acid residues at the VH-VL interface, and part (B) depicts H45 and L44, which are amino acid residues at the VH-VL interface.
  • FIG. 2 is a photograph depicting the results of an assay evaluating the associations between H and L chains in H39 and L38-modified antibodies. These results demonstrate that for all modified antibodies, the associated proportion of the antibody of interest is increased when compared to the wild type.
  • Description of the Lanes:
  • M: molecular marker;
    1: humanized XB12 H chain (Q)+humanized XB12 L chain (Q);
    2: humanized XB12 H chain (Q)+humanized SB04 L chain (Q);
    3: wild type: humanized XB12 H chain (Q)+humanized XB12 L chain (Q)+humanized SB04 L chain (Q);
    4: D variant: humanized XB12 H chain (D)+humanized XB12 L chain (Q)+humanized SB04 L chain (D);
    5: E variant: humanized XB12 H chain (E)+humanized XB12 L chain (Q)+humanized SB04 L chain (E);
    6: R variant: humanized XB12 H chain (R)+humanized XB12 L chain (Q)+humanized SB04 L chain (R); and
    7: K variant: humanized XB12 H chain (K)+humanized XB12 L chain (Q)+humanized SB04 L chain (K)
  • FIG. 3 depicts the results of an assay evaluating coagulation activity in H39 and L38-modified antibodies. The results demonstrate that the bispecific antibody whose XB12 H chain (H39) and SB04 L chain (L38) have been modified to Glu has a coagulation activity equal to or greater than that of the wild-type.
  • FIG. 4 depicts the results of an assay evaluating Factor IXa binding activity in H39 and L38-modified antibodies. The results demonstrate that all modified antibodies have a binding activity equivalent to that of the wild-type.
  • FIG. 5 shows the results of an assay evaluating Factor X binding activity in H39 and L38-modified antibodies. The results show that all modified antibodies have a binding activity equivalent to that of the wild-type.
  • FIG. 6 is a photograph depicting the results of an assay evaluating the association between the H and L chains in the L44-modified antibodies. The results demonstrate that for all modified antibodies, the associated proportion of the antibody of interest is increased when compared to that of the wild type.
  • Description of the Lanes:
  • 1: wild type: humanized XB12 H chain+humanized XB12 L chain (P)+humanized SB04 L chain (P);
    2: D variant: humanized XB12 H chain+humanized XB12 L chain (P)+humanized SB04 L chain (D);
    3: E variant: humanized XB12 H chain+humanized XB12 L chain (P)+humanized SB04 L chain (E);
    4: R variant: humanized XB12 H chain+humanized XB12 L chain (P)+humanized SB04 L chain (R); and
    5: K variant: humanized XB12 H chain+humanized XB12 L chain (P)+humanized SB04 L chain (K)
  • FIG. 7 depicts the results of an assay evaluating coagulation activity in L44-modified antibodies. The results demonstrate that all modified antibodies have coagulation activity greater than that of the wild-type.
  • FIG. 8 depicts the results of an assay evaluating Factor X binding activity in L44-modified antibodies. The results demonstrate that all modified antibodies have a binding activity equivalent to that of the wild type.
  • FIG. 9 is a photograph depicting the results of an assay evaluating the association between the H and L chains in H39, L38, and L44-modified antibodies. The results demonstrate that for all modified antibodies, associated proportion of the antibody of interest is increased when compared to that of the wild type.
  • Description of the Lanes:
  • 1: wild type: humanized XB12 H chain (H39: Q)+humanized XB12 L chain (L38: Q)+humanized SB04 L chain (L38: Q, L44: P);
    2: E+D variant: humanized XB12 H chain (H39: E)+humanized XB12 L chain (L38: Q)+humanized SB04 L chain (L38: E, L44: D);
    3: E+E variant: humanized XB12 H chain (H39: E)+humanized XB12 L chain (L38: Q)+humanized SB04 L chain (L38: E, L44: E);
    4: E+R variant: humanized XB12 H chain (H39: E)+humanized XB12 L chain (L38: Q)+humanized SB04 L chain (L38: E, L44: R);
    5: E+K variant: humanized XB12 H chain (H39: E)+humanized XB12 L chain (L38: Q)+humanized SB04 L chain (L38: E, L44: K); and M: molecular marker
  • FIG. 10 depicts the results of an assay evaluating coagulation activity in H39, L38, and L44-modified antibodies. The results demonstrate that bispecific antibodies whose XB12 H chain (H39) and SB04 L chain (L38, L44) have been modified have a coagulation activity equal to or greater than that of the wild type.
  • FIG. 11 depicts the results of an assay evaluating Factor IXa binding activity in H39, L38, and L44-modified antibodies. The results demonstrate that all modified antibodies have a binding activity equivalent to that of the wild type.
  • FIG. 12 presents a schematic diagram of examples of the conformations of an sc(Fv)2 having two types of heavy chain variable regions (VH1 and VH2) and two types of light chain variable regions (VL1 and VL2). An sc(Fv)2 having the structure of (a) is mainly present as two types of conformational isomers shown in (b).
  • FIG. 13 depicts the results of separating peak 1 and peak 2 corresponding to the conformational isomers of u2-wz4, by cation exchange chromatography.
  • FIG. 14 depicts the results of peptide mapping of peak 1 and peak 2 separated by cation exchange chromatography.
  • FIG. 15 is a photograph depicting the results of a reduced SDS-PAGE assay performed after subtilisin treatment of u2-wz4 before separation of peak 1 and peak 2, which are conformational isomers of u2-wz4. The conformations corresponding to the obtained bands are shown on the right.
  • FIG. 16 depicts the difference in degradation patterns after limited proteolysis by subtilisin, which is caused by differences in the conformation of a bivalent scFv and single chain antibody. In the case of the bivalent ScFv structure, the minibody fragment in the dotted frame is formed.
  • FIG. 17 depicts the results of a gel filtration chromatography assay after limited proteolysis by subtilisin on u2-wz4 before separation and on peak 1 and peak 2, which are conformational isomers of u2-wz4. The elution positions of the minibody peaks are shown by arrows.
  • FIG. 18 depicts the results of a gel filtration chromatography assay on u2-wz4, variant v1, and variant v3 after purification through an MG10-GST fusion protein-immobilized column.
  • FIG. 19 depicts the results of a cation exchange chromatography assay on u2-wz4, variant v1, and variant v3.
  • FIG. 20 is a photograph depicting the results of isoelectric focusing of u2-wz4, peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 21 depicts the results of gel filtration analyses performed after protease-limited proteolysis of peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 22 depicts the results of an assay evaluating the TPO-like agonist activity of peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 23 depicts the results of DSC analyses of peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 24 depicts the percentage of monomers recovered by gel filtration chromatographic analysis in thermal acceleration tests of peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 25 depicts the conformational isomer content percentage obtained by cation exchange chromatographic analysis in thermal acceleration tests of peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3.
  • FIG. 26 depicts the results of an assay evaluating the coagulation activities of humanized bispecific antibodies (humanized A69 (hA69-PFL)/humanized B26 (hB26-PF)/humanized BBA (hAL-AQ)). The results demonstrate that the coagulation activities are equivalent to or greater than those of chimeric bispecific antibodies.
  • FIG. 27 presents a schematic diagram describing the method for improving the efficiency of the formation of bispecific antibody by modifying the H-chain constant region. The numbers indicating the positions of modification are based on the EU numbering system (Kabat E A et al. 1991. Sequences of Proteins of Immunological Interest. NIH).
  • FIG. 28 depicts chromatograms of IEX analysis of humanized bispecific antibodies (IgG4-type) whose CH3 interface has been modified.
  • FIG. 29 depicts the formation ratio of A-Homo, BiAb, and B-Homo obtained by IEX analysis of humanized bispecific antibodies (IgG4-type) whose CH3 interface has been modified.
  • FIG. 30 depicts the percentage of monomer recovered after thermal acceleration tests at 60° C.-1 W on BiAb purified from humanized bispecific antibodies (IgG4-type) whose CH3 interface has been modified.
  • FIG. 31 depicts the results of an assay evaluating coagulation activity of humanized bispecific antibodies (IgG4-type) whose CH3 interface has been modified. The results demonstrate that the coagulation activities are equivalent to that of the unmodified bispecific antibody.
  • FIG. 32 depicts the formation ratio obtained through IEX analysis for A-Homo, BiAb, and B-Homo, which are humanized bispecific antibodies (IgG1-type) whose CH3 interface has been modified.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • The present invention relates to methods for regulating the association of polypeptides or association of heteromultimers composed of polypeptides.
  • First, the present invention provides methods for regulating polypeptide association, such methods including the step of modifying amino acid residues in an original peptide forming an interface so as to inhibit the association within the polypeptide.
  • In the present invention, the term “polypeptides” ordinarily refers to peptides and proteins whose length is about ten amino acids or longer. Polypeptides are ordinarily derived from organisms but are not particularly limited thereto, and for example, they may be composed of an artificially designed sequence. They may also be any of naturally derived polypeptides, synthetic polypeptides, recombinant polypeptides, or such. Additionally, fragments of the above-mentioned polypeptides are also included in the polypeptides of the present invention.
  • In the present invention, the phrase “polypeptide association” refers to, for example, a condition in which two or more polypeptide regions interact.
  • In the present invention, the phrase “regulating association” refers to regulating to achieve a desired association condition, and more specifically refers to regulating so that undesirable associations are not formed in the polypeptides.
  • In the present invention, the term “interface” ordinarily refers to the association surface that results from association (interaction), and amino acid residues that form the interface are ordinarily one or more amino acid residues included in the polypeptide regions which participate in the association, and are more preferably amino acid residues that approach each other during association and are involved in the interaction. More specifically, this interaction includes, for example, instances where the amino acid residues come close during the association to form hydrogen bonds, electrostatic interactions, or salt bridges with each other.
  • In the present invention, the phrase, “amino acid residues forming an interface” more specifically refers to amino acid residues included in the polypeptide region that constitutes the interface. For example, polypeptide regions constituting the interface refer to polypeptide regions responsible for selective binding within or between molecules such as in antibodies, ligands, receptors, or substrates. More specifically, in antibodies, such examples include heavy chain variable regions and light chain variable regions.
  • “Modification” of amino acid residues in the methods of the present invention specifically refers to substituting original amino acid residue(s) for other amino acid residue(s), deleting original amino acid residue(s), adding new amino acid residue(s), and such, but preferably refers to substituting one or more original amino acid residues for other amino acid residues.
  • In the present invention, the term “polypeptides” preferably refers to polypeptides that form two or more types of conformational isomers. Conformational isomers are proteins whose amino acid sequences are identical but their three-dimensional (tertiary) structures are different. Ordinarily, among conformational isomers, at least either one of chemical or physical properties is also different.
  • A preferred embodiment of the present invention relates to methods for preferentially (efficiently) obtaining desirable conformational isomers from among two or more types of potential conformational isomers. More specifically, an embodiment relates to methods for modifying the one or more amino acid residues that form an interface between the polypeptides so as to inhibit an association between polypeptides forming one or more types of conformational isomers from among those polypeptides that may form two or more types of conformational isomers.
  • For example, when the first to fourth peptide regions exist in a polypeptide, and any two of these regions can associate, the following cases are conceivable where mainly three types of conformational isomers can exist: (1) the first and second polypeptide regions associate and the third and fourth polypeptide regions associate, (2) the first and third polypeptide regions associate, and the second and fourth polypeptide regions associate, and (3) the first and fourth polypeptide regions associate, and the second and third polypeptide regions associate.
  • Under the above-mentioned circumstance, when one wishes to preferentially obtain a polypeptide (conformational isomer) associated with the interaction of (1), for example, amino acid residues forming the interfaces present in the first, third, or fourth polypeptide regions are modified so that association of the first polypeptide region with the third and fourth polypeptide regions is inhibited.
  • The methods of the present invention also relates to methods for regulating heteromultimer association, such methods including the step of modifying amino acid residues that form the interface between the original polypeptides, such that the association between the polypeptides is inhibited.
  • In the present invention, the term “heteromultimer” refers to a protein multimer composed of more than one type of polypeptide, in which the polypeptides can associate with each other. More specifically, a “heteromultimer” includes at least a first polypeptide and a second polypeptide; in this context, the second polypeptide is a molecule which differs from the first polypeptide by at least one amino acid residue. Furthermore, without particular limitation, the heteromultimers preferably have binding specificity toward at least two different types of ligands, antigens, receptors, substrates, or such. In addition to a “heterodimer” formed by a first and second polypeptide, another different type of polypeptide may exist in the heteromultimer. More specifically, “heteromultimers” of the present invention are not limited to heterodimers and include for example heterotrimers and heterotetramers.
  • Preferred embodiments of the above-mentioned methods are methods of modifying amino acid residues that form the interface between polypeptides in heteromultimers that may form two or more types of multimers, such that association between polypeptides forming one or more types of multimers is inhibited.
  • For example, when any two of the polypeptides can associate in the protein multimers composed of the first to fourth polypeptides, the following multimers can mainly exist: (1) multimers in which the first and second polypeptides are associated and the third and fourth polypeptides are associated, (2) multimers in which the first and third polypeptides are associated and the second and fourth polypeptides are associated, or (3) multimers in which the first and fourth polypeptides are associated and the second and third polypeptides are associated.
  • Under the above-mentioned circumstance, when one wishes to preferentially obtain multimers associated with the interaction of (1), for example, amino acid residues included in the first, third, or fourth polypeptide can be modified so that association of the first polypeptide with the third and fourth polypeptides is inhibited.
  • Preferred embodiments of the methods of the present invention for regulating polypeptide association include, for example, methods in which modification of amino acid residues forming the interface of polypeptides include introducing amino acid residue mutations to the interface so that two or more amino acid residues forming an interface will have the same type of charge.
  • In the methods mentioned above, by modifying two or more amino acid residues involved in an association at the interface such that they carry the same kind of charge, repulsive forces among those charges will inhibit association among these amino acid residues.
  • Therefore, in the method mentioned above, the amino acid residues that are to be modified are preferably two or more amino acid residues that come close to each other during association in the region between the polypeptide regions that form the interface.
  • Amino acid residues that come close to each other during association can be identified, for example, by analyzing the three dimensional structures of the polypeptides, and investigating the amino acid sequences of the polypeptide regions forming the interface when these polypeptides associate. Amino acid residues that come close to each other at the interface will be preferred targets for “modifications” in the methods of the present invention.
  • Some amino acids are known to be charged amino acids. Generally, lysine (K), arginine (R), and histidine (H) are known as positively charged amino acids (cationic amino acids) whereas aspartate (D), glutamate (E), and such are known as negatively charged amino acids (anionic amino acids). Therefore, in the context of the present invention, amino acids carrying the same type of charge preferably refer to amino acids that are either positively charged or negatively charged.
  • In the methods of the present invention, all of the mutated amino acid residues are preferably modified to have the same type of charges, but the methods are not necessarily limited to such cases. For example, when a number of amino acid residues are introduced by the modification, there may be a few uncharged amino acid residues among these amino acid residues.
  • The number of amino acid residues that undergo modification in the methods of the present invention is not particularly limited. However, when modifying the variable region(s) of an antibody, it is preferable that only a few amino acid residues are modified so as not to decrease the antigen binding activity or increase the antigenicity of the resulting antibody. The methods of the present invention can regulate association by modifying one or both of the two amino acid residues that come close to each other at the interface, as indicated in the Examples described below. The term “few” as used in the above-mentioned context refers to about one to ten for example, preferably about one to five, more preferably about one to three, and even more preferably about one to two.
  • In a preferred embodiment, the amino acid residues that are introduced by modification (i.e., subjected to modification) are preferably all selected from among the above-mentioned positively charged amino acids, or, alternatively, are all selected from among the above-mentioned negatively charged amino acids.
  • Furthermore, in the present invention, preferred amino acid residues to be introduced include glutamic acid (E), asparagine (D), lysine (K), arginine (R), or histidine (H).
  • In another preferred embodiment of the present invention, when an interface-forming amino acid residue (X) in an original polypeptide (before modification) is already charged, it is preferable that the amino acid residue that comes close to and faces this amino acid residue (X) during association is modified to be the same amino acid residue (or an amino acid residue with the same type of charge) as the amino acid residue (X). In this embodiment, it is only necessary to modify one of the amino acid residues that form the interface.
  • Preferred embodiments of the methods of the present invention for regulating association include methods in which modification of amino acid residues forming the interface of the polypeptides that feature the introduction of amino acid residue mutations to the interface such that the amino acid residues forming a hydrophobic core present at the interface are transformed into charged amino acid residues.
  • In general, the term “hydrophobic core” refers to a part of a polypeptide that is formed by an assembly of hydrophobic amino acid side chains at the interior of the associated polypeptides. Examples of hydrophobic amino acids include alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, and valine. Furthermore, amino acid residues other than hydrophobic amino acids (for example tyrosine) may be involved in the formation of a hydrophobic core. This hydrophobic core together with a hydrophilic surface, in which hydrophilic amino acid side chains are exposed to the exterior, becomes a driving force for promoting association of water-soluble polypeptides. When hydrophobic amino acids of two different domains are present on a molecular surface and are exposed to water molecules, the entropy will increase and the free energy will increase. Accordingly, the two domains will associate with each other to decrease the free energy and become stable, and hydrophobic amino acids at the interface will be buried into the interior of the molecule to form a hydrophobic core.
  • When polypeptide associations take place, modification of hydrophobic amino acids forming the hydrophobic core to charged polar amino acids inhibits the formation of the hydrophobic core, and as a result, inhibits the polypeptide association.
  • Those skilled in the art can identify the organized sites (regions) and such, as well as the presence of the hydrophobic core, by analyzing the amino acid sequence of the desired polypeptides. Thus, the present invention relates to methods for regulating association that feature the step of modifying amino acid residues involved with the formation of the hydrophobic core at the interface into charged amino acid residues.
  • Examples of charged amino acid residues suitable for use in the methods described above preferably include glutamic acid (E), aspartic acid (D), lysine (K), arginine (R), and histidine (H).
  • The methods of the present invention for regulating association can be used as methods for preferentially obtaining (producing) antibodies (polypeptides) of interest and in the production of antibodies, antibody fragments, polypeptides having antibody-like activity, and the like.
  • Herein, the term “antibody” is used in the broadest sense, and includes monoclonal antibodies, polyclonal antibodies, and mutant antibodies (chimeric antibodies, humanized antibodies, minibodies (including antibody fragments), and multispecific antibodies), so long as they exhibit a desired biological activity. Furthermore, in the context of the present invention, the “antibody” can be a polypeptide or heteromultimer. Preferred antibodies include monoclonal antibodies, chimeric antibodies, humanized antibodies, and minibodies, such as antibody fragments.
  • In the context of the present invention, the term “multispecific antibody” (used in the present description to have the same meaning as “polyspecific antibody”) refers to an antibody that may bind specifically to different types of epitopes. More specifically, multispecific antibodies are antibodies having specificity to at least two different types of epitopes, and, in addition to antibodies recognizing different antigens, antibodies recognizing different epitopes on the same antigen are also included. For example, when the antigens are heterologous receptors, multispecific antibodies can recognize different domains constituting the heterologous receptors; alternatively, when the antigens are monomers, multispecific antibodies recognize multiple sites on the monomer antigens. Ordinarily, such molecules bind to two antigens (bispecific antibodies; used in the present description to have the same meaning as “dual-specific antibodies”), but they may even have specificity toward more antigens (for example three types).
  • In addition to the antibodies described above, the antibodies of the present invention include antibodies whose amino acid sequences have been modified by amino acid substitutions, deletions, additions, and/or insertions, or chimerization, humanization, and such. Such amino acid sequence modifications, such as amino acid substitutions, deletions, additions, and/or insertions, and humanization and chimerization, can be achieved by methods known to those skilled in the art. When the antibodies of the present invention are prepared as recombinant antibodies, likewise, the amino acid sequences of the antibody variable and constant regions may also be modified by amino acid substitutions, deletions, additions, and/or insertions, or chimerization, humanization and the like.
  • The antibodies of the present invention may be derived from any animal, such as a mouse, human, rat, rabbit, goat, or camel. Furthermore, the antibodies may be modified, for example, chimeric antibodies, and in particular, modified antibodies that include amino acid substitutions in their sequence, such as humanized antibodies. The antibodies may be any type of antibody, such as antibody modification products linked with various molecules, antibody fragments, and minibodies.
  • “Chimeric antibodies” are antibodies prepared by combining sequences derived from different animals. An example is an antibody having heavy and light chain variable (V) regions from a mouse antibody and heavy and light chain constant (C) regions from a human antibody. Chimeric antibodies can be prepared by known methods. To obtain such chimeric antibodies, for example, a DNA encoding an antibody V region may be ligated with a DNA encoding a human antibody C region; the resulting ligation product can be inserted into an expression vector; and the construct can be introduced into a host to produce the chimeric antibody.
  • “Humanized antibodies” are also referred to as reshaped human antibodies, and can be obtained by substituting the complementarity determining region (CDR) of a human antibody for the CDR of an antibody derived from a nonhuman mammal, for example, a mouse. Methods for identifying CDRs are known in the art (Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md.; Chothia et al., Nature (1989) 342:877). General genetic recombination techniques suitable for this purpose are also known (see European Patent Application EP 125023; and WO 96/02576). For example, the CDR of a mouse antibody can be determined by known methods, and a DNA can be prepared such that it encodes an antibody in which the CDR is ligated with the framework region (FR) of a human antibody. A humanized antibody can then be produced using a system that uses conventional expression vectors. Such DNAs can be synthesized by PCR, using as primers several oligonucleotides designed to include portions that overlap the ends of both the CDR and FR regions (see the method described in WO 98/13388). Human antibody FRs linked via CDRs are selected such that the CDRs form a suitable antigen binding site. If required, amino acids in the FRs of an antibody variable region may be substituted so that the CDRs of the reshaped human antibody can form a suitable antigen binding site (Sato, K. et al., Cancer Res. (1993) 53:851-856). Modifiable amino acid residues in the FRs include portions that directly bind to an antigen via non-covalent bonds (Amit et al., Science (1986) 233: 747-53), portions that have some impact or effect on the CDR structure (Chothia et al., J. Mol. Biol. (1987) 196: 901-17), and portions involved in the interaction between VH and VL (EP 239400).
  • When the antibodies of the present invention are chimeric antibodies or humanized antibodies, the C regions of these antibodies are preferably derived from human antibodies. For example, Cy1, Cy2, Cy3, and Cy4 can be used for the H chain, while Cκ and Cλ can be used for the L chain. Meanwhile, the human antibody C region may be modified as required to improve antibody or production stability. A chimeric antibody of the present invention preferably includes a variable region of an antibody derived from a nonhuman mammal and a constant region of a human antibody. A humanized antibody preferably includes CDRs of an antibody derived from a nonhuman mammal and FRs and C regions of a human antibody. The variable regions are described in detail in (3)-3. The constant regions of the human antibodies include specific amino acid sequences, which vary depending on the isotype of the antibody, for example, IgG (IgG1, IgG2, IgG3, and IgG4), IgM, IgA, IgD, and IgE. The constant regions used to prepare the humanized antibodies of the present invention may be the constant regions of antibodies of any isotype. A constant region of human IgG is preferably used, though the invention is not limited thereto. The FRs derived from a human antibody, which are used to prepare the humanized antibodies, are not particularly limited, and thus may be derived from an antibody of any isotype.
  • The variable and constant regions of chimeric or humanized antibodies of the present invention may be modified by deletion, substitution, insertion, and/or addition, so long as the antibodies exhibit the same binding specificity as that of the original antibodies.
  • Since their antigenicity in the human body has been attenuated, chimeric and humanized antibodies using human-derived sequences are expected to find utility when administered to humans for therapeutic purposes or such.
  • In addition, minibodies are useful as the antibodies because of their in vivo kinetic characteristics and low-cost production using E. coli, plant cells, or such.
  • Antibody fragments are one type of minibody. The term “minibodies” includes antibodies that include an antibody fragment as a partial structural unit. The minibodies of the present invention are not particularly limited by their structure nor their method of production, so long as they have antigen binding activity. Some minibodies have an activity greater than that of a whole antibody (Orita et al., Blood (2005) 105:562-566). Herein, the “antibody fragments” are not particularly limited, so long as they are a portion of a whole antibody (for example, whole IgG). However, the antibody fragments preferably include a heavy chain variable region (VH) or a light chain variable region (VL). Examples of preferred antibody fragments are: Fab, F(ab′)2, Fab′, and Fv. The amino acid sequence of a VH or VL in an antibody fragment may be modified by substitution, deletion, addition, and/or insertion. Furthermore, some portions of a VH and VL may be deleted, so long as the resulting fragments retain their antigen binding ability. For example, of the antibody fragments described above, “Fv” is a minimal antibody fragment composed of the complete antigen recognition and binding sites. “Fv” is a dimer (VH-VL dimer) composed of one unit of VH and one unit of VL bound very strongly by non-covalent bonding. An antigen binding site is formed on the surface of the VH-VL dimer by the three complementarity determining regions (CDRs) of each variable region. Six CDRs confer an antigen binding site to the antibody. However, even one variable region (or half of an Fv composed of only three antigen-specific CDRs) has the ability to recognize and bind to an antigen, although its affinity is lower than that of the complete binding site. Thus, molecules smaller than Fv are also included in the context of antibody fragments of the present invention. The variable regions of an antibody fragment may also be chimerized or humanized.
  • The minibodies preferably include both VH and VL. Examples of suitable minibodies include antibody fragments such as Fab, Fab′, F(ab′)2, and Fv, and scFv (single-chain Fv), which can be prepared using antibody fragments, (Huston et al., Proc. Natl. Acad. Sci. USA (1988) 85: 5879-83; Plickthun “The Pharmacology of Monoclonal Antibodies” Vol. 113, Resenburg and Moore (eds.), Springer Verlag, New York, pp. 269-315, (1994)); diabodies (Holliger et al., Proc. Natl. Acad. Sci. USA (1993) 90:6444-8; EP 404097; WO93/11161; Johnson et al., Method in Enzymology (1991) 203: 88-98; Holliger et al., Protein Engineering (1996) 9:299-305; Perisic et al., Structure (1994) 2:1217-26; John et al., Protein Engineering (1999) 12(7):597-604; Atwell et al., Mol. Immunol. (1996) 33:1301-12); sc(Fv)2 (Hudson et al, J Immunol. Methods (1999) 231:177-89; Orita et al., Blood (2005) 105:562-566); triabodies (Journal of Immunological Methods (1999) 231: 177-89); and tandem diabodies (Cancer Research (2000) 60:4336-41).
  • An antibody fragment can be prepared by treating an antibody with an enzyme, for example, a protease such as papain or pepsin (see Morimoto et al., J. Biochem. Biophys. Methods (1992) 24: 107-17; Brennan et al., Science (1985) 229:81). Alternatively, antibody fragments can also be produced by genetic recombination based on its amino acid sequence.
  • A minibody having a structure that results from modification of an antibody fragment can be prepared using antibody fragments obtained by enzyme treatment or genetic recombination. Alternatively, after constructing a gene which encodes a whole minibody, and introducing the construct into an expression vector, the minibody may be expressed in appropriate host cells (see, for example, Co et al., J. Immunol. (1994) 152: 2968-76; Better and Horwitz, Methods Enzymol. (1989) 178: 476-96; Pluckthun and Skerra, Methods Enzymol. (1989) 178: 497-515; Lamoyi, Methods Enzymol. (1986) 121: 652-63; Rousseaux et al., Methods Enzymol. (1986) 121: 663-9; Bird and Walker, Trends Biotechnol. (1991) 9: 132-7).
  • The above described scFVs are single-chain polypeptides that include two variable regions linked together via a linker or such, as required. The two variable regions in an scFv are typically one VH and one VL, but an scFv may include two VH or two VL. In general, scFv polypeptides include a linker between the VH and VL domains, thereby forming a paired portion of VH and VL required for antigen binding. A peptide linker composed of ten or more amino acids is typically used as the linker between VH and VL when forming an intramolecular paired portion between VH and VL. However, the linkers of the scFv of the present invention are not limited to such peptide linkers, so long as they do not inhibit the formation of an scFv. To review scFv, see Pluckthun “The Pharmacology of Monoclonal Antibody”, Vol. 113 (Rosenburg and Moore ed., Springer Verlag, NY, pp. 269-315 (1994)).
  • The term, “diabodies (db)” refers to bivalent antibody fragments constructed by gene fusion (P. Holliger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993); EP 404,097; WO93/11161 and such). Diabodies are dimers composed of two polypeptide chains, wherein each polypeptide chain includes within the same chain a light chain variable region (VL) and a heavy chain variable region (VH) connected with a linker short enough to disable interaction of these two regions, for example a linker of about five amino acid residues. VL and VH encoded on the same polypeptide chain will form a dimer because the linker between VL and VH is too short to form a single chain V region fragment. Therefore, the resulting diabody has two antigen-binding sites. Herein, when VL and VH directed against two different epitopes (a and b) are expressed simultaneously as combinations of VLa-VHb and VLb-VHa connected with a linker of about five residues, they are secreted as bispecific db. In this case, the two different epitopes may be epitopes at two different sites on the same antigen, or epitopes at two different sites, each on two different antigens.
  • Since diabodies include two molecules of scFvs, they thus composed of four variable regions, and as a result have two antigen binding sites. When the objective is to form a diabody, unlike as in the case with scFvs that do not form dimers, ordinarily, linkers forming a connection between VH and VL in each scFv molecules are linkers of about five amino acids when used as peptide linkers. However, scFv linkers for diabody formation are not limited to such peptide linkers so long as they do not interfere with scFv expression and diabody formation.
  • Examples of preferred polypeptides or heteromultimers subjected to the methods of the present invention include polypeptides or heteromultimers composed of antibody heavy chain variable regions and light chain variable regions. More preferably, preferred embodiments of the present invention are methods for regulating association when polypeptides or heteromultimers of the present invention include two or more types of heavy chain variable regions and two or more types of light chain variable regions. Such polypeptides or heteromultimers are preferably those that recognize two or more types of epitopes, and examples include multispecific antibodies.
  • More preferably, examples of multispecific antibodies in the present invention include bispecific antibodies.
  • More specifically, preferred embodiments of the present invention relate to, for example, methods for regulating association of bispecific antibodies composed of two types of heavy chain variable regions (first heavy chain and second heavy chain) and two types of light chain variable regions (first light chain and second light chain).
  • Describing the “bispecific antibodies” of the preferred embodiments of the present invention more precisely, the above-mentioned “first heavy chain” refers to one of the two H chains forming the antibody, and the second H chain refers to the other H chain that is different from the first H chain. That is, of the two H chains, one of them can be arbitrarily defined as the first H chain and the other can be defined as the second H chain. Similarly, the “first light chain” refers to one of the two L chains forming the bispecific antibody, and the “second L chain” refers to the other L chain that is different from the first L chain. Of the two L chains, one of them can be arbitrarily defined as the first L chain and the other can be defined as the second L chain. Ordinarily, the first L chain and the first H chain are derived from the same antibody that recognizes a certain antigen (or epitope), and the second L chain and the second H chain are also derived from the same antibody that recognizes a certain antigen (or epitope). Herein, the L chain-H chain pair formed by the first H chain and L chain is called as the first pair, and the L chain-H chain pair formed by the second H chain and L chain is called as the second pair. An antigen (or epitope) used to produce the antibody from which the second pair derives is preferably different from the antigen used to produce the antibody from which the first pair is derives. More specifically, antigens recognized by the first pair and the second pair may be the same but different antigens (or epitopes) are preferred to be recognized. Herein, the H chains and L chains of the first pair and second pair preferably have amino acid sequences that differ from each other. When the first pair and the second pair recognize different epitopes, the first and the second pair may recognize a completely different antigen, or they may recognize different sites (different epitopes) on the same antigen. Furthermore, one of them may recognize an antigen such as a protein, peptide, gene, or sugar, and the other may recognize cytotoxic substances such as radioactive substances, chemotherapeutic agents, or cell-derived toxins. However, when one wishes to produce an antibody having pairs formed by specific combinations of H chains and L chains, those specific H chains and L chains may be arbitrary determined to be the first pair and second pair.
  • The above-mentioned “bispecific antibodies” are not necessarily limited to antibodies composed of two types of heavy chains and two types of light chains, and for example, they may be antibodies (for example, sc(Fv)2) having a structure in which two types of heavy chain variable regions and two types of light chain variable regions are linked to form a single chain.
  • As for the genes encoding the H chain or L chain of antibodies before introduction of mutations by methods of the present invention (herein, it may be simply referred to as “an antibody of the present invention”), known sequences can be used, or they can be obtained by methods known to those skilled in the art. For example, they may be obtained from an antibody library, or they may be obtained by cloning genes encoding the antibody from hybridomas producing monoclonal antibodies.
  • Regarding antibody libraries, many antibody libraries are already well known, and since methods for producing antibody libraries are known, those skilled in the art can appropriately obtain antibody libraries. For example, regarding antibody phage libraries, one can refer to the literature such as Clackson et al., Nature 1991, 352: 624-8; Marks et al., J. Mol. Biol. 1991, 222: 581-97; Waterhouses et al., Nucleic Acids Res. 1993, 21: 2265-6; Griffiths et al., EMBO J. 1994, 13: 3245-60; Vaughan et al., Nature Biotechnology 1996, 14: 309-14; and Japanese Patent Kohyo Publication No. (JP-A) H20-504970 (unexamined Japanese national phase publication corresponding to a non-Japanese international publication). In addition, known methods, such as methods that use eukaryotic cells as libraries (WO95/15393) and ribosome display methods, may be used. Furthermore, techniques to obtain human antibodies by panning using human antibody libraries are also known. For example, variable regions of human antibodies can be expressed on the surface of phages as single chain antibodies (scFvs) using phage display methods, and phages that bind to antigens can be selected. Genetic analysis of the selected phages can determine the DNA sequences encoding the variable regions of human antibodies that bind to the antigens. Once the DNA sequences of scFvs that bind to the antigens is revealed, suitable expression vectors can be produced based on these sequences to obtain human antibodies. These methods are already well known, and one can refer to WO92/01047, WO92/20791, WO93/06213, WO93/11236, WO93/19172, WO95/01438, and WO95/15388.
  • As for methods for obtaining genes encoding antibodies from hybridomas, known techniques may be used, involving the use of desired antigens or cells expressing the desired antigens as sensitizing antigens, using these to perform immunizations according to conventional immunization methods, fusing the immune cells thus obtained with known parent cells by ordinary cell fusion methods, screening monoclonal antibody producing cells (hybridomas) by ordinary screening methods, synthesizing cDNAs of antibody variable regions (V regions) from mRNAs of the obtained hybridomas using reverse transcriptase, and linking them with DNAs encoding the desired antibody constant regions (C regions).
  • More specifically, without being particular limited to the following examples, sensitizing antigens for obtaining the above-mentioned antibody genes encoding the H chains and L chains include both complete antigens with immunogenicity and incomplete antigens composed of haptens and such that do not show antigenicity. For example, full length proteins and partial peptides of proteins of interest can be used. In addition, it is known that substances composed of polysaccharides, nucleic acids, lipids, and such may become antigens. Thus, there are no particular limitations on antigens of the antibodies of the present invention. Antigens can be prepared by methods known to those skilled in the art, and they can be prepared, for example, by the following methods using baculoviruses (for example, WO98/46777). Hybridomas can be produced, for example, the following methods of Milstein et al. (G. Kohler and C. Milstein, Methods Enzymol. 1981, 73: 3-46), and such. When the immunogenicity of an antigen is low, it can be linked to a macromolecule that has immunogenicity, such as albumin, and then used for immunization. Furthermore, by linking antigens with other molecules if necessary, they can be converted into soluble antigens. When transmembrane molecules such as receptors are used as antigens, portions of the extracellular regions of the receptors can be used as a fragment, or cells expressing transmembrane molecules on their cell surface may be used as immunogens.
  • Antibody-producing cells can be obtained by immunizing animals using suitable sensitizing antigens described above. Alternatively, antibody-producing cells can be prepared by in vitro immunization of lymphocytes that can produce antibodies. Various mammals can be used as the animals for immunization, where rodents, lagomorphas and primates are generally used. Examples of such animals include mice, rats, and hamsters for rodents, rabbits for lagomorphas, and monkeys including the cynomolgus monkey, rhesus monkey, hamadryas, and chimpanzees for primates. In addition, transgenic animals carrying human antibody gene repertoires are also known, and human antibodies can be obtained by using these animals (see WO96/34096; Mendez et al., Nat. Genet. 1997, 15: 146-56). Instead of using such transgenic animals, for example, desired human antibodies having binding activity against antigens can be obtained by in vitro sensitization of human lymphocytes with desired antigens or cells expressing the desired antigens, and then fusing the sensitized lymphocytes with human myeloma cells such as U266 (see Japanese Patent Application Kokoku Publication No. (JP-B) H1-59878 (examined, approved Japanese patent application published for opposition)). Furthermore, desired human antibodies can be obtained by immunizing transgenic animals carrying a complete repertoire of human antibody genes, with desired antigens (see WO93/12227, WO92/03918, WO94/02602, WO96/34096, and WO96/33735).
  • Animal immunization can be carried out by appropriately diluting and suspending a sensitizing antigen in Phosphate-Buffered Saline (PBS), physiological saline, or such, and forming an emulsion by mixing an adjuvant if necessary, followed by an intraperitoneal or subcutaneous injection into animals. After that, the sensitizing antigen mixed with Freund's incomplete adjuvant is preferably administered several times every four to 21 days. Antibody production can be confirmed by measuring the target antibody titer in animal sera using conventional methods.
  • Antibody-producing cells obtained from lymphocytes or animals immunized with a desired antigen can be fused with myeloma cells to generate hybridomas using conventional fusing agents (for example, polyethylene glycol) (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, 1986, 59-103). When required, hybridoma cells can be cultured and grown, and the binding specificity of the antibody produced from these hybridomas can be measured using known analysis methods, such as immunoprecipitation, radioimmunoassay (RIA), and enzyme-linked immunosorbent assay (ELISA). Thereafter, hybridomas that produce antibodies of interest whose specificity, affinity, or activity has been determined can be subcloned by methods such as limiting dilution.
  • Next, genes encoding the selected antibodies can be cloned from hybridomas or antibody-producing cells (sensitized lymphocytes, and such) using probes that may specifically bind to the antibodies (for example, oligonucleotides complementary to sequences encoding the antibody constant regions). Cloning from mRNA using RT-PCR is also possible.
  • Immunoglobulins are classified into five different classes, IgA, IgD, IgE, IgG and IgM. These classes are further divided into several subclasses (isotypes) (for example, IgG-1, IgG-2, IgG-3, and IgG-4; IgA-1 and IgA-2; and such). H chains and L chains used in the present invention to produce antibodies are not particularly limited and may derive from antibodies belonging to any of these classes or subclasses; however, IgG is particularly preferred.
  • Herein, it is possible to modify H-chain-encoding genes and L-chain-encoding genes using genetic engineering techniques. Genetically modified antibodies, such as chimeric antibodies, humanized antibodies that have been artificially modified for the purpose of decreasing heterologous antigenicity and such against humans, can be appropriately produced if necessary for antibodies such as mouse antibodies, rat antibodies, rabbit antibodies, hamster antibodies, sheep antibodies, and camel antibodies. Chimeric antibodies are antibodies composed of a nonhuman mammal antibody H chain and L chain variable regions, such as mouse antibody, and the H chain and L chain constant regions of human antibody. They can be obtained by ligating the DNA encoding a variable region of a mouse antibody to the DNA encoding a constant region of a human antibody, incorporating them into an expression vector, and introducing the vector into a host for production of the antibody. A humanized antibody, which is also called a reshaped human antibody, can be synthesized by PCR from a number of oligonucleotides produced so that they have overlapping portions at the ends of DNA sequences designed to link the complementarity determining regions (CDRs) of an antibody of a nonhuman mammal such as a mouse. The obtained DNA can be ligated to a DNA encoding a human antibody constant region. The ligated DNA can be incorporated into an expression vector, and the vector can be introduced into a host to produce the antibody (see EP239400 and WO96/02576). Human antibody FRs that are ligated via the CDR are selected when the CDR forms a favorable antigen-binding site. If necessary, amino acids in the framework region of an antibody variable region may be substituted such that the CDR of the reshaped human antibody forms an appropriate antigen-binding site (K. Sato et al., Cancer Res. 1993, 53: 851-856).
  • In addition to the humanization techniques described above, antibodies may be modified to improve their biological properties, for example, antigenic affinity. Such modifications can be carried out using methods such as site-directed mutagenesis (see for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488), PCR mutagenesis, and cassette mutagenesis. In general, mutant antibodies whose biological properties have been improved show amino acid sequence homology and/or similarity of 70% or higher, more preferably 80% or higher, and even more preferably 90% or higher (for example, 95% or higher, 97%, 98%, 99%, etc.), when compared to the amino acid sequence of the original antibody variable region. Herein, sequence homology and/or similarity is defined as the ratio of amino acid residues that are homologous (same residue) or similar (amino acid residues classified into the same group based on the general properties of amino acid side chains) to the original antibody residues, after the sequence homology value has been maximized by sequence alignment and gap introduction, if necessary. Generally, naturally-occurring amino acid residues are classified into groups based on the characteristics of their side chains: (1) hydrophobic: alanine, isoleucine, norleucine, valine, methionine, and leucine; (2) neutral hydrophilic: asparagine, glutamine, cysteine, threonine, and serine; (3) acidic: aspartic acid, and glutamic acid; (4) basic: arginine, histidine, and lysine; (5) residues that affect the orientation of the chain: glycine, and proline; and (6) aromatic: tyrosine, tryptophan, and phenylalanine.
  • Ordinarily, a total of six complementarity determining regions (CDRs; hypervariable regions) present in the H chain and L chain variable regions interact to form the antigen binding site(s) of an antibody. Even one of these variable regions is known to have the ability to recognize and bind to the antigen, although the affinity will be lower than when all binding sites are included. Therefore, antibody genes of the present invention encoding the H chain and L chain only have to encode fragment portions having each of the antigen binding sites of H chain and L chain, and polypeptides encoded by these genes only have to maintain affinity with the desired antigens.
  • The methods of the present invention for regulating association, allow one to preferentially (efficiently) obtain, for example, the desired bispecific antibodies as described above. More specifically, desired bispecific antibodies which are heteromultimers can be efficiently formed from a mixture of monomers.
  • Herein below, the case of IgG-type bispecific antibodies composed of two types of heavy chain variable regions (VH1 and VH2) and two types of light chain variable regions (VL1 and VL2) are described in detail; however, the methods of the present invention can be applied similarly to other heteromultimers.
  • When one wishes to obtain a bispecific antibody that recognizes one of the epitopes with a first heavy chain variable region (VH1) and a first light chain variable region (VL1) and the other epitope with a second heavy chain variable region (VH2) and a second light chain variable region (VL2), expressing each of the four types of chains to produce this antibody may theoretically produce 10 types of antibody molecules.
  • In this case, the desired antibody molecule can be preferentially obtained if the regulation is carried out in a manner to inhibit the association between polypeptides, for example, VH1 and VL2 and/or VH2 and VL1.
  • An example includes modifying amino acid residues forming the interfaces between the polypeptide of VH1 and the polypeptide of VL2, and/or the polypeptide of VH2 and the polypeptide of VL1 as described above so as to inhibit the associations between these polypeptides.
  • Furthermore, associations between the heavy chains (VH1 and VH2) or between the light chains (VL1 and VL2) can also be suppressed using the methods of the present invention for regulating association.
  • Heavy chain variable regions are ordinarily composed of three CDR regions and FR regions as described above. In a preferred embodiment of the present invention, amino acid residues subjected to “modification” can be appropriately selected from among amino acid residues positioned in the CDR regions or FR regions. Generally, modification of the amino acid residues in the CDR regions can decrease affinity towards antigens. Therefore, in the present invention, amino acid residues subjected to “modification” are not particularly limited but are preferred to be appropriately selected from among amino acid residues positioned in the FR regions.
  • As for the desired polypeptides whose association is to be regulated by the methods of the present invention, those skilled in the art can appropriately find out the types of amino acid residues that come close to each other at the interface of FRs during association.
  • Furthermore, sequences that can be used as variable region FRs of the antibodies of organisms, such as humans or mice, can be appropriately obtained by those skilled in the art using public databases. More specifically, amino acid sequence information of the FR regions can be obtained by means described later in the Examples.
  • Specific examples of amino acid residues that come close to each other at the interface of FRs during association in the bispecific antibodies indicated in the following Examples include glutamine (Q) at position 39 in the heavy chain variable region (FR2 region) (for example, at position 39 in the amino acid sequence of SEQ ID NO: 6), and the opposing (contacting) glutamine (Q) at position 38 on the light chain variable region (FR2 region) (for example, at position 44 in the amino acid sequence of SEQ ID NO: 8). Furthermore, favorable examples include leucine (L) at position 45 in the heavy chain variable region (FR2) (for example, at position 45 in the amino acid sequence of SEQ ID NO: 6), and the opposing proline (P) at position 44 in the light chain variable region (FR2) (for example, at position 50 in the amino acid sequence of SEQ ID NO: 8). These positions are numbered according to the document by Kabat et al. (Kabat E A et al. 1991. Sequence of Proteins of Immunological Interest. NIH).
  • As indicated in the following Examples, desired antibodies can be preferentially obtained by modifying these amino acid residues and performing the methods of the present invention.
  • Since these amino acid residues are known to be highly conserved in humans and mice (J. Mol. Recognit. 2003; 16: 113-120), association of antibody variable regions can be regulated for VH-VL association of antibodies other than those indicated in the Examples by modifying amino acid residues corresponding to the above-mentioned amino acid residues.
  • More specifically, in a preferred embodiment, the present invention provides antibodies (polypeptides (for example, sc(Fv)2), heteromultimers (for example IgG-type antibodies or such) composed of heavy chain variable regions and light chain variable regions, which are antibodies whose amino acid residues of (1) and (2), or (3) and (4) described below carry the same kind of charges:
  • (1) an amino acid residue which is included in the heavy chain variable region and corresponds to position 39 in the amino acid sequence of SEQ ID NO: 6;
    (2) an amino acid residue which is included in the light chain variable region and corresponds to position 44 in the amino acid sequence of SEQ ID NO: 8;
    (3) an amino acid residue which is included in the heavy chain variable region and corresponds to position 45 in the amino acid sequence of SEQ ID NO: 6; and
    (4) an amino acid residue which is included in the light chain variable region and corresponds to position 50 in the amino acid sequence of SEQ ID NO: 8.
  • The amino acid sequences of SEQ ID NOs: 6 and 8 are mentioned above to exemplify a more specific example of the positions of the amino acid residues that are subjected to modification in the present invention. Accordingly, the present invention is not limited to cases where the heavy chain variable regions or light chain variable regions have these amino acid sequences.
  • Each of the amino acid residues of (1) and (2), and (3) and (4) mentioned above come close to each other during association as indicated in FIG. 1 and in the following Examples. Those skilled in the art can identify the positions corresponding to the above-mentioned amino acid residues of (1) to (4) in the desired heavy chain variable regions or light chain variable regions using homology modeling and such, using commercially available softwares. Once identified, the amino acid residues of these positions can be appropriately subjected to modification.
  • In the antibodies mentioned above, “charged amino acid residues” are preferably selected, for example, from amino acid residues included in either one of the following groups:
  • (a) glutamic acid (E) and aspartic acid (D); and
    (b) lysine (K), arginine (R), and histidine (H).
  • Furthermore the present invention provides antibodies (polypeptides, heteromultimers, and such) having heavy chain variable regions and light chain variable regions, in which either one of the amino acid residues of the following (3) or (4) is a charged amino acid residue. The side chains of the amino acid residues indicated in (3) and (4) shown below may come close to each other to form a hydrophobic core:
  • (3) an amino acid residue which is included in the heavy chain variable region and corresponds to position 45 in the amino acid sequence of SEQ ID NO: 6; and
    (4) an amino acid residue which is included in the light chain variable region and corresponds to position 50 in the amino acid sequence of SEQ ID NO: 8.
  • In the above-mentioned antibodies, “charged amino acid residues” are preferably, for example, glutamic acid (E), aspartic acid (D), lysine (K), arginine (R), or histidine (H).
  • Ordinarily, the above-mentioned amino acid residues of (1) to (4) are (1) glutamine (Q), (2) glutamine (Q), (3) leucine (L), and (4) proline (P), respectively, in humans and mice. Therefore, in preferred embodiments of the present invention, these amino acid residues are subjected to modification (for example, substitution to charged amino acids). The types of the above-mentioned amino acid residues of (1) to (4) are not necessarily limited to the above-mentioned amino acid residues, and may be other amino acids that correspond to these amino acids. For example, in the case of humans, an amino acid on the light chain variable region corresponding to position 44 in the amino acid sequence of SEQ ID NO: 8 may be, for example, histidine (H). Those skilled in the art can find out the type of amino acid residue corresponding to any position on SEQ ID NO: 8 by referring to disclosed publications and such (for example, J. Mol. Recognit. 2003; 16:113-120), and can appropriately modify these amino acid residues (for example, substitution to charged amino acids).
  • Methods for producing the above-mentioned antibodies, and methods of the present invention for regulating association which feature modifying the amino acid residues of (1) to (4) mentioned above are also preferred embodiments of the present invention.
  • In another embodiment, the present invention provides methods for suppressing association between heavy chains or between a heavy chain and a light chain by introducing electrostatic repulsion to the interface of the heavy chain or light chain constant region. Examples of amino acid residues contacting each other at the interface of heavy chain constant regions include regions corresponding to positions 377 (356) and 470 (439), positions 378 (357) and 393 (370), and positions 427 (399) and 440 (409) in the CH3 region. Examples of amino acid residues that contact each other at the interface between a heavy chain constant region and a light chain constant region include regions corresponding to position 221 (position 213) of the CH1 region and position 123 of the CL region. Numbering in the antibody constant regions is based on the document by Kabat et al. (Kabat E A et al. 1991. Sequences of Proteins of Immunological Interest. NIH), and the EU numbering is shown in parenthesis for the heavy chain constant regions.
  • As indicated in the following Examples, association of antibody heavy chains will be regulated and desired antibodies can be preferentially obtained by modifying these amino acid residues and performing the methods of the present invention.
  • More specifically, in a preferred embodiment, the present invention provides antibodies having two or more types of heavy chain CH3 regions and Fc region-binding proteins (for example, IgG-type antibodies, minibodies (Alt M et al. FEBS Letters 1999; 454: 90-94), immunoadhesin (Non-Patent Document 2), and such), in which one to three pairs of amino acid residues in the first heavy chain CH3 region, selected from the pairs of amino acid residues indicated in (1) to (3) below, carry the same type of charge:
  • (1) amino acid residues included in the heavy chain CH3 region at positions 356 and 439 according to the EU numbering system;
    (2) amino acid residues included in the heavy chain CH3 region at positions 357 and 370 according to the EU numbering system; and
    (3) amino acid residues included in the heavy chain CH3 region at positions 399 and 409 according to the EU numbering system.
  • In a more preferred embodiment, the present invention provides an antibody in which pairs of the amino acid residues in the second heavy chain CH3 region that are different from the first heavy chain CH3 region mentioned above, are selected from the aforementioned pairs of amino acid residues of (1) to (3) wherein the one to three pairs of amino acid residues corresponding to the aforementioned pairs of amino acid residues of (1) to (3) carrying the same type of charge in the first heavy chain CH3 region mentioned above, carry opposite charges from the corresponding amino acid residues in the first heavy chain CH3 region mentioned above.
  • Each of the amino acid residues indicated above in (1) to (3) come close to each other during association, as shown in FIG. 27 and in the Examples described below. Those skilled in the art can find out the positions corresponding to the above-mentioned amino acid residues of (1) to (3) in a desired heavy chain CH3 region or heavy chain constant region by homology modeling and such using commercially available software, and amino acid residues of these positions can be appropriately subjected to modification.
  • In the antibodies mentioned above, “charged amino acid residues” are preferably selected, for example, from amino acid residues included in either one of the following groups:
  • (a) glutamic acid (E) and aspartic acid (D); and
    (b) lysine (K), arginine (R), and histidine (H).
  • In the above-mentioned antibodies, the phrase “carrying the same charge” means, for example, that all of the two or more amino acid residues composed of the amino acid residues included in either one of (a) or (b) mentioned above. The phrase “carrying opposite charges” means, for example, that when at least one of the amino acid residues among two or more amino acid residues is composed of amino acid residues included in either one of the above-mentioned groups of (a) or (b), and the remaining amino acid residues are composed of the amino acid residues included in the other group.
  • In a preferred embodiment, the antibodies mentioned above may have their first heavy chain CH3 region and second heavy chain CH3 region crosslinked by disulfide bonds.
  • In the present invention, amino acid residues subjected to “modification” are not limited to the above-mentioned amino acid residues of the antibody variable regions or the antibody constant regions. Those skilled in the art can identify the amino acid residues that form the interface in mutant polypeptides or heteromultimers using homology modeling and such, using commercially available software; amino acid residues of these positions can then be subjected to modification so as to regulate the association.
  • The methods of the present invention, although not mandatory, can be carried out in combination with known techniques. For example, in addition to “modifications” of the present invention to promote association between VH1 and VL1, and/or VH2 and VL2, substitution of an amino acid side chain present in one of the H chain variable regions to a larger side chain (knob) and substitution of the opposing amino acid side chain present in the variable region of the other H chain to a smaller side chain (hole) promotes association between VH1 and VL1, and/or VH2 and VL2 such that the knob is placed into the hole. As a result, the association between polypeptides VH1 and VL2, and/or VH2 and VL1 can be further suppressed.
  • The methods of the present invention for regulating association can be carried out suitably when preferentially (efficiently) obtaining desired sc(Fv)2s. Hereinafter, the case of sc(Fv)2 composed of two types of heavy chain variable regions (H1 and H2) and two types of light chain variable regions (L1 and L2) will be described more precisely as an example.
  • Generally, sc(Fv)2 is a single chain polypeptide in which two heavy chain variable regions (VH1 and VH2) and two light chain variable regions (VL1 and VL2) are linked by linkers. More specifically, sc(Fv)2 is a minibody in which four antibody variable regions are linked with a linker and such to produce a single chain. Ordinarily, sc(Fv)2 is an antibody in which four variable regions, two light chain variable regions and two heavy chain variable regions, are linked by linkers to produce a single chain (Hudson et al., J. Immunol. Methods 1999; 231:177-189).
  • sc(Fv)2 can be produced by methods known to those skilled in the art, for example, by linking scFvs with linkers. scFv includes antibody VH and VL, and these regions are present in a single polypeptide chain (for a review on scFv, see Pluckthun “The Pharmacology of Monoclonal Antibodies” Vol. 113 (Rosenburg and Moore ed. (Springer Verlag, New York) pp. 269-315, 1994).
  • An antibody in which two VHs and two VLs are arranged in the order of VH, VL, VH, VL ([VH] linker [VL] linker [VH] linker [VL]) starting from the N-terminal side of a single chain polypeptide is preferred.
  • The order of the two VHs and the two VLs is not particularly limited to the above-mentioned arrangement and may be in any order, including for example, the following arrangements.
  • [VL] linker [VH] linker [VH] linker [VL]
    [VH] linker [VL] linker [VL] linker [VH]
    [VH] linker [VH] linker [VL] linker [VL]
    [VL] linker [VL] linker [VH] linker [VH]
    [VL] linker [VH] linker [VL] linker [VH]
  • sc(Fv)2 may also include amino acid sequences other than those of the antibody variable regions and linkers.
  • The variable regions of the above-mentioned antibodies may be full-length variable regions or partial sequences of the variable regions, so long as the affinity to antigens is maintained. Furthermore, the amino acid sequences in the variable regions may contain substitutions, deletions, additions, insertions, or such. For example, they may be converted to chimeric or humanized antibodies to decrease antigenicity.
  • Arbitrary peptide linkers or synthetic linker compounds that can be introduced by genetic engineering (for example, see disclosed in Protein Engineering, 9(3), 299-305, 1996) can be used as linkers that link the variable regions of an antibody, but peptide linkers are preferred in the present invention. The length of the peptide linkers is not particularly limited, and can be suitably selected according to the purpose by those skilled in the art. The length is preferably twelve amino acids or more (with no particular upper limit, normally 30 amino acids or less, and preferably 20 amino acids or less), and particularly preferably 15 amino acids. When three peptide linkers are included in sc(Fv)2, all of the peptide linkers used may have the same length, or peptide linkers of different lengths may be used.
  • Examples of peptide linkers include:
  • Ser
    Gly•Ser
    Gly•Gly•Ser
    Ser•Gly•Gly
    Gly•Gly•Gly•Ser
    Ser•Gly•Gly•Gly
    Gly•Gly•Gly•Gly•Ser
    Ser•Gly•Gly•Gly•Gly
    Gly•Gly•Gly•Gly•Gly•Ser
    Ser•Gly•Gly•Gly•Gly•Gly
    Gly•Gly•Gly•Gly•Gly•Gly•Ser
    Ser•Gly•Gly•Gly•Gly•Gly•Gly
    (Gly•Gly•Gly•Gly•Ser)n
    (Ser•Gly•Gly•Gly•Gly)n

    [where n is an integer of 1 or more]. However, the length and sequence of the peptide linkers can be suitably selected according to the purpose by those skilled in the art.
  • Preferred embodiments of sc(Fv)2 include for example the following sc(Fv)2: [VH] peptide linker (15 amino acids) [VL] peptide linkers (15 amino acids) [VH] peptide linkers (15 amino acids) [VL].
  • Synthetic linkers (chemical crosslinking agents) that can be used include crosslinking agents that are routinely used to crosslink peptides, for example, N-hydroxy succinimide (NHS), disuccinimidyl suberate (DSS), bis(succinimidyl) suberate (BS3), dithiobis(succinimidyl propionate) (DSP), dithiobis(succinimidyl propionate) (DTSSP), ethylene glycol bis(succinimidyl succinate) (EGS), ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo-DST), bis[2-(succinimidoxycarbonyloxy)ethyl] sulfone (BSOCOES), and bis[2-(succinimidoxycarbonyloxy)ethyl] sulfone (sulfo-BSOCOES). These crosslinking agents are commercially available.
  • Ordinarily, three linkers are required to link four antibody variable regions together and the linkers to be used may all be of the same type or different types.
  • Furthermore, for example, single chain diabody-type and bivalent scFv-type exist as conformational isomers of sc(Fv)2.
  • When the arrangement in sc(Fv)2 is in the order [variable region 1] (linker 1) [variable region 2] (linker 2) [variable region 3] (linker 3) [variable region 4], bivalent scFv-type in the present invention refers to sc(Fv)2 having a structure in which variable region 1 and variable region 2 are associated, as well as variable region 3 and variable region 4 are associated. In the present invention, single chain diabody-type refers to sc(Fv)2 having a structure in which variable region 1 and variable region 4 are associated, as well as variable region 2 and variable region 3 are associated.
  • An example of a single chain diabody-type is an sc(Fv)2 having the structure shown on the right in FIG. 12(b), and an example of a bivalent scFv-type is an sc(Fv)2 having the structure shown on the left in FIG. 12(b).
  • Whether an sc(Fv)2 has a single chain diabody-type structure or a bivalent scFv-type structure can be analyzed, for example, by protease-limited proteolysis. For example, the analysis can be carried out by a method such as the following.
  • Limited proteolysis of a test sc(Fv)2 is carried out using subtilisin A, a type of protease that can partially and restrictively degrade the linker portions of an sc(Fv)2.
  • When the sc(Fv)2 is the single chain diabody-type, no matter which linker among the three linkers possessed by the sc(Fv)2 is cleaved, the apparent molecular weight will not change due to interaction between the VH and VL.
  • On the other hand, when the sc(Fv)2 is a bivalent scFv-type, molecular species having half of the original molecular weight will be produced when the central linker is cleaved.
  • Therefore, the bivalent scFv-type and single chain diabody-type can be differentiated by analyzing the reaction products.
  • The reaction products can be analyzed, for example, by gel filtration chromatography. Furthermore, using chromatography, the proportions of bivalent sc(Fv)2 and single chain diabody conformations present in sc(Fv)2 can be evaluated quantitatively based on peak areas.
  • The methods of the present invention for regulating association can be suitably used for the above-mentioned sc(Fv)2 when one wishes to preferentially obtain the desired form, that is either one the single chain diabody-form or bivalent scFv-form.
  • More specifically, when sc(Fv)2 has the structure VH1-(linker)-VL1-(linker)-VH2-(linker)-VL2, and one wishes to preferentially obtain bivalent scFv-type sc(Fv)2 using the methods of the present invention for regulating association, it is necessary to only suppress the association, for example, between VH1 and VL2, and/or VH2 and VL1 (For example, mutations are introduced so that amino acid residues forming the interface between VH1 and VL2 will carry the same type of charge).
  • Alternatively, when one wishes to preferentially obtain single-chain diabody type sc(Fv)2, it is necessary to only inhibit the association, for example, between VH1 and VL1, and/or VH2 and VL2 (For example, mutations are introduced so that amino acid residues forming the interface between VH1 and VL1 will carry the same type of charges).
  • The present invention can also be carried out similarly when sc(Fv)2 is a monospecific antibody.
  • In addition to these techniques, each of the VH and VL domains can be cross linked by disulfide bonds (Clin. Cancer Res. 1996 February; 2(2):245-52).
  • The methods of the present invention for regulating association allow, for example, for the efficient production of antibodies or polypeptides that are active. Examples of such activities include binding activity, neutralizing activity, cytotoxic activity, agonist activity, antagonist activity, and enzyme activity and such. Agonist activity is an activity that induces some kind of changes in physiological activity through binding of an antibody to an antigen, such as a receptor, which causes signal transduction or such in cells. Examples of the physiological activity include growth activity, survival activity, differentiation activity, transcriptional activity, membrane transport activity, binding activity, proteolytic activity, phosphorylation/dephosphorylation activity, redox activity, transfer activity, nucleolytic activity, dehydration activity, cell death-inducing activity, and apoptosis-inducing activity and such, but are not limited thereto.
  • Antibodies or polypeptides that recognize the desired antigens or bind to the desired receptors can be produced efficiently by the methods of the present invention.
  • The antigens are not particularly limited, and any type of antigen can be used. Examples of antigens include receptors or their fragments, cancer antigens, MHC antigens, and differentiation antigens and the like, but are not particularly limited thereto.
  • Examples of the receptors include receptors belonging to the hematopoietic factor receptor family, cytokine receptor family, tyrosine kinase-type receptor family, serine/threonine kinase-type receptor family, TNF receptor family, G protein-coupled receptor family, GPI-anchored receptor family, tyrosine phosphatase-type receptor family, adhesion factor family, hormone receptor family, and such. Reports on the receptors belonging to these receptor families and their characteristics can be found in various sources of documents, for example, in Cooke B A., King R J B., van der Molen H J. ed. New Comprehensive Biochemistry Vol. 18B “Hormones and their Actions Part II” pp. 1-46 (1988) Elsevier Science Publishers BV., New York, USA; Patthy L. (1990) Cell, 61: 13-14; Ullrich A., et al. (1990) Cell, 61: 203-212; Massagul J. (1992) Cell, 69: 1067-1070; Miyajima A., et al. (1992) Annu. Rev. Immunol., 10: 295-331; Taga T. and Kishimoto T. (1992) FASEB J., 7: 3387-3396; Fantl W I., et al. (1993) Annu. Rev. Biochem., 62: 453-481; Smith C A., et al. (1994) Cell, 76: 959-962; Flower D R. (1999) Biochim. Biophys. Acta, 1422: 207-234; Miyasaka M. ed. Cell Technology, Handbook Series “Handbook for adhesion factors” (1994) Shujunsha, Tokyo, Japan; and such. Examples of specific receptors belonging to the above-mentioned receptor families include human or mouse erythropoietin (EPO) receptor, human or mouse granulocyte-colony stimulating factor (G-CSF) receptor, human or mouse thrombopoietin (TPO) receptor, human or mouse insulin receptor, human or mouse Flt-3 ligand receptor, human or mouse platelet-derived growth factor (PDGF) receptor, human or mouse interferon (IFN)-α or -β receptor, human or mouse leptin receptor, human or mouse growth hormone (GH) receptor, human or mouse interleukin (IL)-10 receptor, human or mouse insulin-like growth factor (IGF)-I receptor, human or mouse leukemia inhibitory factor (LIF) receptor, and human or mouse ciliary neurotrophic factor (CNTF) receptor (hEPOR: Simon, S. et al. (1990) Blood 76, 31-35; mEPOR: D'Andrea, A D. et al. (1989) Cell 57, 277-285; hG-CSFR: Fukunaga, R. et al. (1990) Proc. Natl. Acad. Sci. USA. 87, 8702-8706; mG-CSFR: Fukunaga, R. et al. (1990) Cell 61, 341-350; hTPOR: Vigon, I. et al. (1992) 89, 5640-5644; mTPOR: Skoda, R C. et al. (1993) 12, 2645-2653; hInsR: Ullrich, A. et al. (1985) Nature 313, 756-761; hFlt-3: Small, D. et al. (1994) Proc. Natl. Acad. Sci. USA. 91, 459-463; hPDGFR: Gronwald, R G K. et al. (1988) Proc. Natl. Acad. Sci. USA. 85, 3435-3439; hIFN α/β R: Uze, G. et al. (1990) Cell 60, 225-234; and Novick, D. et al. (1994) Cell 77, 391-400).
  • Cancer antigens are antigens that are expressed as cells become malignant, and are also called tumor-specific antigens. Furthermore, abnormal sugar chains that appear on cell surfaces and protein molecules when the cells become cancerous are also cancer antigens and are specifically called as carcinoma associated carbohydrate antigen. Examples of cancer antigens include CA19-9, CA15-3, and sialyl SSEA-1 (SLX).
  • MHC antigens can be classified broadly into MHC class I antigens and MHC class II antigens: MHC class I antigens include HLA-A, -B, -C, -E, -F, -G and -H; and MHC class II antigens include HLA-DR, -DQ, and -DP.
  • Differentiation antigens include CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8, CD10, CD11a, CD11b, CD11c, CD13, CD14, CD15s, CD16, CD18, CD19, CD20, CD21, CD23, CD25, CD28, CD29, CD30, CD32, CD33, CD34, CD35, CD38, CD40, CD41a, CD41b, CD42a, CD42b, CD43, CD44, CD45, CD45RO, CD48, CD49a, CD49b, CD49c, CD49d, CD49e, CD49f, CD51, CD54, CD55, CD56, CD57, CD58, CD61, CD62E, CD62L, CD62P, CD64, CD69, CD71, CD73, CD95, CD102, CD106, CD122, CD126, and CDw130.
  • The present invention also provides for mutant polypeptides or heteromultimers whose association is regulated by the methods of the present invention. More specifically, the present invention relates to polypeptides or heteromultimers that are obtained by methods of the present invention for regulating associations.
  • Preferred embodiments of the present invention provide mutant polypeptides that have modifications made to the amino acid residues that form the interface in the original polypeptides so as to inhibit the association within the polypeptides.
  • Other embodiments of the present invention provide heteromultimers that have modifications made to amino acid residues forming the interface between the original polypeptides such that the association between the polypeptides is inhibited.
  • In the present invention, the phrase “original polypeptides” refer to polypeptides in the condition before modification by the methods of the present invention where association is regulated.
  • An example of the above-mentioned mutant polypeptides of the present invention is a mutant in which the original polypeptide can form two types of conformational isomers. Furthermore, an example of the above-mentioned heteromultimers is a multimer in which the original polypeptide can form two or more types of multimers.
  • Mutant polypeptides or heteromultimers whose association is regulated by the above-mentioned methods of the present invention for regulating association are also included in the present invention. More specifically, in preferred embodiments of the above-described methods for regulating association, a polypeptide or heteromultimer whose association is regulated is also a preferred embodiment of the present invention.
  • The present invention also provides methods for producing polypeptides or heteromultimers in which association of polypeptides or heteromultimers is regulated.
  • Preferred embodiments of the production methods of the present invention provides methods for producing polypeptides having mutations in the amino acid residues forming the interface in the polypeptides so that polypeptide association is regulated, wherein the methods for producing the mutant polypeptides include the steps of:
  • (a) modifying nucleic acids encoding the amino acid residues that form an interface in the polypeptides from the original nucleic acids, so as to inhibit the association in the polypeptides;
    (b) culturing host cells so that these nucleic acids are expressed; and
    (c) recovering the polypeptides from the host cell culture.
  • In other embodiments, the present invention provides methods for producing heteromultimers whose amino acid residues that form the interface between polypeptides have mutations that allow for the regulation of the heteromultimer association, wherein the methods for producing heteromultimers include the steps of:
  • (a) modifying nucleic acids encoding the amino acid residues forming an interface between polypeptides from the original nucleic acids, so as to inhibit the association between the polypeptides;
    (b) culturing host cells so that these nucleic acids are expressed; and
    (c) recovering the heteromultimers from the host cell culture.
  • A method including the step of using the above-described methods of the present invention for regulating association to modify nucleic acids encoding amino acid residues forming the interface in (between) polypeptides from the original nucleic acids so that polypeptide association will be inhibited is also a preferred embodiment of the above-mentioned production methods of the present invention.
  • The phrase “modify nucleic acids” in the above-mentioned methods of the present invention refers to modifying nucleic acids so that they correspond to amino acid residues introduced by the “modifications” of the present invention. More specifically, it refers to modifying the nucleic acids encoding the original (pre-modified) amino acid residues to the nucleic acids encoding the amino acid residues that are to be introduced by the modification. Ordinarily, it means performing gene manipulations or mutation treatment that would result in at least one nucleotide insertion, deletion, or substitution to the original nucleic acid so that codons encoding amino acid residues of interest is formed. More specifically, codons encoding the original amino acid residues are substituted with codons encoding the amino acid residues that are to be introduced by the modification. Such nucleic acid modification can be performed suitably by those skilled in the art using known techniques such as site-specific mutagenesis and PCR mutagenesis.
  • Furthermore, nucleic acids of the present invention are ordinarily carried by (inserted into) suitable vectors and then introduced into host cells. These vectors are not particularly limited so long as the inserted nucleic acid is stably maintained. For example, when using E. coli as the host, the cloning vector is preferably a pBluescript vector (Stratagene) and such, but various commercially available vectors may be used. Expression vectors are particularly useful as vectors for producing the polypeptides of the present invention. Expression vectors are not particularly limited so long as they can express polypeptides in test tubes, E. coli, cultured cells, or individual organisms. For example, preferred vectors include pBEST vector (Promega) for expression in test tubes, pET vector (Invitrogen) for E. coli, pME18S-FL3 vector (GenBank Accession No. AB009864) for cultured cells, and pME18S vector (Mol. Cell Biol. 8:466-472(1998)) for individual organisms. Insertion of a DNA of the present invention into vectors can be performed by standard methods such as ligase reactions using restriction enzyme sites (Current protocols in Molecular Biology edit. Ausubel et at (1987) Publish. John Wiley & Sons. Section 11.4-11.11).
  • The above-mentioned host cells are not particularly limited, and various host cells can be used, depending on the purpose. Cells used for expressing the polypeptides include bacterial cells (for example, Streptococcus, Staphylococcus, E. coli, Streptomyces, and Bacillus subtilis), fungal cells (for example, yeast and Aspergillus), insect cells (for example, Drosophila S2 and Spodoptera SF9), animal cells (for example, CHO, COS, HeLa, C127, 3T3, BHK, HEK293, Bowes melanoma cell), and plant cells. Vectors can be introduced into host cells using known methods, such as the calcium phosphate precipitation method, electroporation method (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9.1-9.9), lipofectamine method (GIBCO-BRL), and microinjection method.
  • For secreting host cell-expressed polypeptides into the lumen of the endoplasmic reticulum, periplasmic space, or extracellular environment, suitable secretion signals can be incorporated into the polypeptides of interest. These signals may be intrinsic or foreign to the polypeptides of interest.
  • When the polypeptides of the present invention are secreted into the culture media, the polypeptides produced by the above-mentioned method can be harvested by collecting the media. When the polypeptides of the present invention are produced inside cells, first, the cells are lysed, and then these polypeptides are collected.
  • The polypeptides of the present invention can be collected and purified from recombinant cell cultures by using known methods, including ammonium sulfate or ethanol precipitation, acidic extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxyapatite chromatography, and lectin chromatography.
  • The present invention relates to compositions (pharmaceutical agents) composed of a mutant polypeptide or heteromultimer of the present invention and a pharmaceutically acceptable carrier.
  • In the present invention, pharmaceutical compositions ordinarily refer to pharmaceutical agents for treating or preventing, or testing and diagnosing diseases.
  • The pharmaceutical compositions of the present invention can be formulated by methods known to those skilled in the art. For example, such pharmaceutical compositions can be used parenterally, as injections which are sterile solutions or suspensions including an antibody along with water or another pharmaceutically acceptable liquid. For example, such compositions may be formulated as unit doses that meet the requirements for the preparation of pharmaceuticals by appropriately combining the antibody with pharmaceutically acceptable carriers or media, specifically with sterile water, physiological saline, a vegetable oil, emulsifier, suspension, detergent, stabilizer, flavoring agent, excipient, vehicle, preservative, binder, or such. In such preparations, the amount of active ingredient is adjusted such that the dose falls within an appropriately pre-determined range.
  • Sterile compositions for injection can be formulated using vehicles such as distilled water for injection, according to standard protocols for formulation.
  • Aqueous solutions for injection include, for example, physiological saline and isotonic solutions containing dextrose or other adjuvants (for example, D-sorbitol, D-mannose, D-mannitol, and sodium chloride). Appropriate solubilizers, for example, alcohols (ethanol and such), polyalcohols (propylene glycol, polyethylene glycol, and such), non-ionic detergents (polysorbate 80™, HCO-50, and such), may be used in combination.
  • Oils include sesame and soybean oils. Benzyl benzoate and/or benzyl alcohol can be used in combination as solubilizers. Buffers (for example, phosphate buffer and sodium acetate buffer), soothing agents (for example, procaine hydrochloride), stabilizers (for example, benzyl alcohol and phenol), and/or antioxidants can also be combined. Prepared injectables are generally filled into appropriate ampules.
  • The pharmaceutical compositions of the present invention are preferably administered parenterally. For example, the compositions may be injections, transnasal compositions, transpulmonary compositions or transdermal compositions. For example, such compositions can be administered systemically or locally by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or such.
  • The administration methods can be appropriately selected in consideration of a patient's age and symptoms. The dose of a pharmaceutical composition composed of an antibody or a polynucleotide encoding an antibody may be, for example, from 0.0001 to 1000 mg/kg for each administration. Alternatively, the dose may be, for example, from 0.001 to 100,000 mg per patient. However, the doses are not limited to the ranges described above. The doses and administration methods vary depending on a patient's weight, age, symptoms, and such. Those skilled in the art can select appropriate doses and administration methods in consideration of the factors described above.
  • The polypeptides or heteromultimers of the present invention can be formulated by combining with other pharmaceutical components as necessary.
  • The present invention also provides nucleic acids that encode the mutant polypeptides of the present invention or the heteromultimers of the present invention. Further, vectors that carry these nucleic acids are also included in the present invention.
  • The present invention provides host cells carrying the above described nucleic acids. The host cells are not particularly limited and include, for example, E. coli and various animal cells. The host cells may be used, for example, as a production system to produce and express the antibodies or the polypeptides of the present invention. In vitro and in vivo production systems are available for polypeptide production systems. Production systems that use eukaryotic cells or prokaryotic cells are examples of in vitro production systems.
  • Eukaryotic cells that can be used as a host cell include, for example, animal cells, plant cells, and fungal cells. Animal cells include: mammalian cells, for example, CHO (J. Exp. Med. (1995)108, 945), COS, 3T3, myeloma, BHK (baby hamster kidney), HeLa, and Vero; amphibian cells such as Xenopus laevis oocytes (Valle, et al. (1981) Nature 291, 338-340); and insect cells (e.g., Sf9, Sf21, and Tn5). In the expression of the antibodies of the present invention, CHO-DG44, CHO-DX11B, COST cells, and BHK cells can be suitably used. Among animal cells, CHO cells are particularly preferable for large-scale expression. Vectors can be introduced into a host cell by, for example, calcium phosphate methods, the DEAE-dextran methods, methods using cationic liposome DOTAP (Boehringer-Mannheim), electroporation methods, or lipofection methods.
  • Plant cells include, for example, Nicotiana tabacum-derived cells known as a protein production system. Calluses can be cultured from these cells to produce the antibodies of the present invention. Known protein production systems are those using fungal cells including yeast cells, for example, cells of genus Saccharomyces such as Saccharomyces cerevisiae and Saccharomyces pombe; and cells of filamentous fungi, for example, genus Aspergillus such as Aspergillus niger. These cells can be used as a host to produce the antibodies of the present invention.
  • Bacterial cells can be used in the prokaryotic production systems. Examples of bacterial cells include Bacillus subtilis as well as E. coli described above. Such cells can be used to produce the antibodies of the present invention.
  • When producing an antibody using a host cell of the present invention, the polynucleotide encoding an antibody of the present invention may be expressed by culturing the host cells transformed with the expression vector containing the polynucleotide. The culture can be performed using known methods. For example, when using animal cells as a host, DMEM, MEM, RPMI 1640, or IMDM may be used as the culture medium, and may be used with or without serum supplements such as FBS or fetal calf serum (FCS). Serum-free cultures are also acceptable. The preferred pH is about 6 to 8 during the course of culturing. Incubation is carried out typically at a temperature of about 30 to 40° C. for about 15 to 200 hours. Medium is exchanged, aerated, or agitated, as necessary.
  • On the other hand, production systems using animal or plant hosts may be used as systems for producing polypeptides in vivo. For example, a polynucleotide of interest is introduced into an animal or plant and the polypeptide is produced in the body of the animal or plant and then collected. The “hosts” of the present invention includes such animals and plants.
  • Animals to be used for the production system include mammals or insects. Mammals such as goats, pigs, sheep, mice, and cattle may be used (Vicki Glaser SPECTRUM Biotechnology Applications (1993)). Alternatively, the mammals may be transgenic animals.
  • For example, a polynucleotide encoding an antibody of the present invention may be prepared as a fusion gene with a gene encoding a polypeptide specifically produced in milk, such as the goat β-casein gene. Polynucleotide fragments containing the fusion gene are injected into goat embryos, which are then introduced back to female goats. The desired antibody can be obtained from milk produced by the transgenic goats, which are born from the goats that received the embryos, or from their offspring. Appropriate hormones may be administered to increase the volume of milk containing the antibody produced by the transgenic goats (Ebert et al., Bio/Technology 12: 699-702 (1994)).
  • Insects such as silkworms, may also be used for producing the antibodies of the present invention. Baculoviruses carrying a polynucleotide encoding an antibody of interest can be used to infect silkworms, and the antibody of interest can be obtained from the body fluids (Susumu et al., Nature 315: 592-594 (1985)).
  • Plants used for producing the antibodies of the present invention include, for example, tobacco. When tobacco is used, a polynucleotide encoding an antibody of interest is inserted into a plant expression vector, for example, pMON 530, and then the vector is introduced into a bacterium, such as Agrobacterium tumefaciens. The bacteria are then used to infect tobacco such as Nicotiana tabacum, and the desired antibodies can be recovered from the leaves (Ma et al., Eur. J. Immunol. 24: 131-138 (1994)).
  • The resulting antibody may be isolated from the inside or outside (such as the medium and milk) of host cells, and purified as a substantially pure and homogenous antibody. Methods are not limited to any specific method and any standard method for isolating and purifying antibodies may be used. Antibodies may be isolated and purified, by selecting an appropriate combination of, for example, chromatographic columns, filtration, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, and others.
  • Chromatographies include, for example, affinity chromatographies, ion exchange chromatographies, hydrophobic chromatographies, gel filtrations, reverse-phase chromatographies, and adsorption chromatographies (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatographies can be carried out using liquid phase chromatographies such as HPLC and FPLC. Examples of the affinity chromatography columns include protein A columns and protein G columns. Examples of the proteins A columns include Hyper D, POROS, and Sepharose F. F. (Pharmacia).
  • An antibody can be modified freely and peptide portions can be deleted from it by treating the antibody with an appropriate protein modifying enzyme before or after antibody purification, as necessary. Such protein modifying enzymes include, for example, trypsins, chymotrypsins, lysyl endopeptidases, protein kinases, and glucosidases.
  • In another preferred embodiment, the present invention also includes methods for producing the mutant polypeptides or heteromultimers of the present invention, such methods including the steps of culturing the host cells of the present invention as described above and recovering the polypeptides from such cell culture.
  • All prior art references cited herein are incorporated by reference into the present specification.
  • EXAMPLES
  • Herein below, the present invention will be specifically described with reference to Examples; however, the invention should not be construed as being limited thereto.
  • [Example 1] Production of Non-Neutralizing Antibodies Against Factor IXa (F.IXa) 1-1. Immunization and Hybridoma Production
  • Eight BALB/c mice (male, starting immunization at 6 weeks of age, Japan Charles River) and 5 MRL/lpr mice (male, starting immunization at 6 weeks of age, Japan Charles River) were immunized as described below with Factor IXaβ (Enzyme Research Laboratories, Inc.). Factor IXaβ emulsified in FCA (Freund's complete adjuvant H37 Ra (Difco laboratories)) was administered subcutaneously at 40 μg/head as primary immunization. Two weeks later, Factor IXaβ emulsified in FIA (Freund's incomplete adjuvant (Difco laboratories)) was administered subcutaneously at 40 μg/head. Thereafter, boosters were given at one week intervals, a total of 3 to 7 times. After the elevation in serum antibody titer against factor IXaβ was confirmed by ELISA (enzyme linked immunosorbent assay) shown in 1-2, factor IXaβ diluted in PBS(−) (phosphate buffered saline that does not contain calcium ions and magnesium ions) was administered intravenously at 40 μg/head. Three days after the final immunization, mouse spleen cells and mouse myeloma cells P3X63Ag8U.1 (referred to as P3U1, ATCC CRL-1597) were fused, following conventional procedures using PEG1500 (Roche Diagnostics). Selective culturing of hybridomas was performed by plating fused cells suspended in RPMI1640 medium (Invitrogen) containing 10% FBS (Invitrogen) (hereinafter referred to as 10% FBS/RPMI1640) onto a 96-well culture plate and substituting the medium with HAT selection medium (10% FBS/RPMI1640/2% HAT 50× concentrate (Dainippon Pharmaceutical)/5% BM-Condimed H1 (Roche Diagnostics)) at 1, 2, 3, and 5 days after fusion. Hybridomas having a binding activity to Factor IXa were selected using the culture supernatant collected on day 8 or day 9 after fusion, and measuring binding activity against Factor IXa by ELISA shown in 1-2. Then hybridomas that did not have neutralizing activity against Factor IXa were selected by measuring the ability of hybridoma to neutralize the enzyme activity of Factor IXa, according to the method shown in 5-3. Hybridomas were cloned with two rounds of limiting dilution by plating cells into a 96-well culture plate at one cell per well to establish hybridoma XB12 that produced anti-Factor IXa antibodies.
  • 1-2. Factor IXa ELISA
  • Factor IXaβ diluted to 1 μg/mL with coating buffer (100 mM sodium bicarbonate, pH9.6, 0.02% sodium azide) was dispensed into Nunc-Immuno plate (Nunc-Immuno™ 96 MicroWell™ plates MaxiSorp™ (Nalge Nunc International)) at 100 μL/well, and then incubated overnight at 4° C. After three washes with PBS(−) containing Tween® 20, the plate was blocked with diluent buffer (50 mM Tris-HCl, pH8.1, 1% bovine serum albumin, 1 mM MgCl2, 0.15 M NaCl, 0.05% Tween® 20, 0.02% sodium azide) at room temperature for two hours. After buffer removal, mouse anti-serum or hybridoma culture supernatant diluted in the diluent buffer was added to the plate at 100 μL/well and incubated at room temperature for one hour. The plate was washed three times, then alkaline phosphatase-labeled goat anti-mouse IgG (H+L) (Zymed Laboratories) diluted at 1/2000 with the diluent buffer was added at 100 μL/well. This was incubated at room temperature for one hour. The plate was washed six times, chromogenic substrate Blue-Phos™ Phosphate Substrate (Kirkegaard & Perry Laboratories) was added at 100 μL/well, and was then incubated at room temperature for 20 minutes. After adding Blue-Phos™ Stop Solution (Kirkegaard & Perry Laboratories) at 100 μL/well, the absorbance at 595 nm was measured with a Microplate Reader Model 3550 (Bio-Rad Laboratories).
  • 1-3. Factor IXa Neutralizing Activity Measurements
  • Phospholipid (Sigma-Aldrich) was dissolved in distilled water for injection, and then sonicated to prepare a 400 μg/mL phospholipid solution. 40 μL of tris buffer saline solution containing 0.1% bovine serum albumin (herein after referred to as TBSB), 10 μL of 30 ng/mL Factor IXaβ (Enzyme Research Laboratories), 5 μL of 400 μg/mL phospholipid solution, 5 μL of TBSB containing 100 mM CaCl2) and 20 mM MgCl2, and 10 μL of hybridoma culture supernatant were mixed in a 96-well plate, and then incubated at room temperature for one hour. 20 μL of 50 mg/mL Factor X (Enzyme Research Laboratories) and 10 μL of 3 U/mL Factor Villa (American diagnostica) were added to this mixed solution, and then were reacted at room temperature for 30 minutes. 10 μL of 0.5 M EDTA was added to stop the reaction. Fifty μL of S-2222 solution (Chromogenix) was added to the reaction solution, which was then incubated at room temperature for 30 minutes, followed by measuring the absorbance at measurement wavelength of 405 nm and control wavelength of 655 nm on a Microplate Reader Model 3550 (Bio-Rad Laboratories, Inc.).
  • [Example 2] Preparation of Non-Neutralizing Antibodies Against Factor X (F.X) 2-1. Immunization and Hybridoma Preparation
  • Eight BALB/c mice (male, starting immunization at 6 weeks of age, Japan Charles River) and 5 MRL/lpr mice (male, starting immunization at 6 weeks of age, Japan Charles River) were immunized with factor X (Enzyme Research Laboratories) as described below. For the initial immunization, factor X emulsified with FCA was subcutaneously administered at 40 μg/head. Two weeks later, factor X emulsified with FIA was subcutaneously administered at 20 or 40 μg/head. Thereafter, a total of 3 to 6 boosters were given at one week intervals. After the elevation of the titer of a serum antibody against Factor X was confirmed by ELISA as described in 2-2, Factor X diluted in PBS(−) was administered intravenously at 20 or 40 μg/head as a final immunization. Three days after the final immunization, mouse spleen cells were fused with mouse myeloma P3U1 cells according to a standard method using PEG1500. Fused cells suspended in 10% FBS/RPMI1640 medium were seeded in a 96-well culture plate, and hybridomas were selectively cultured by replacing the medium with a HAT selection medium at 1, 2, 3, and 5 days after the fusion. Binding activity against Factor X was measured by ELISA described in 2-2, using the culture supernatant collected on the eighth day after fusion. Hybridomas having Factor X-binding activity were selected, and their activities to neutralize Factor Xa enzymatic activity were measured according to the method described in 2-3. Hybridomas that were incapable of neutralizing the enzyme activity of Factor Xa were cloned using two rounds of limiting dilution to establish hybridoma SB04 that produced anti-Factor X antibodies.
  • 2-2. Factor X ELISA
  • Factor X diluted to 1 μg/mL with a coating buffer was dispensed into Nunc-Immuno plate at 100 μL/well, and then incubated overnight at 4° C. After three washes with PBS(−) containing Tween® 20, the plate was blocked with the diluent buffer at room temperature for 2 hours. After removal of the buffer, mouse antiserum or hybridoma culture supernatant diluted with the diluent buffer was added to the plate, and incubated at room temperature for 1 hour. The plate was washed three times, then alkaline phosphatase-labeled goat anti-mouse IgG (H+L) diluted to 1/2000 with the diluent buffer was added, and incubated at room temperature for 1 hour. The plate was washed six times, after which a colorimetric substrate Blue-Phos™ Phosphate Substrate (Kirkegaard & Perry Laboratories) was added at 100 μL/well. The plate was then incubated at room temperature for 20 minutes. After adding Blue-Phos™ Stop Solution (Kirkegaard & Perry Laboratories) at 100 μL/well, the absorbance at 595 nm was measured on a Microplate Reader Model 3550 (Bio-Rad Laboratories).
  • 2-3. Measurement of Factor Xa Neutralizing Activity
  • Ten μL of hybridoma culture supernatant diluted to 1/5 with TBSB was mixed with 40 μL of TBCP (TBSB containing 2.78 mM CaCl2), 22.2 μM phospholipids (phosphatidylcholine:phosphatidylserine=75:25, Sigma-Aldrich)) containing 250 pg/mL of Factor Xa (Enzyme Research Laboratories) and incubated at room temperature for 1 hour. To this mixed solution, 50 μL of TBCP containing 20 μg/mL prothrombin (Enzyme Research Laboratories) and 100 ng/mL activated coagulation factor V (Factor Va (Haematologic Technologies)) were added, and reacted at room temperature for 10 minutes. The reaction was stopped with the addition of 10 μL of 0.5 M EDTA. To this reaction solution, 50 μL of 1 mM S-2238 solution (Chromogenix) was added, followed by incubation at room temperature for 30 minutes, at which point absorbance was measured at 405 nm on a Microplate Reader Model 3550 (Bio-Rad Laboratories, Inc.).
  • [Example 3] Construction of Chimeric Bispecific Antibody Expression Vectors
  • 3-1. Preparation of Antibody Variable Region-Encoding DNA Fragments from Hybridomas
  • Total RNA was extracted from hybridoma XB12 that produced anti-F.IXa antibody or hybridoma SB04 that produced anti-F.X antibody using QIAGEN® RNeasy® Mini Kit (QIAGEN) according to the method described in the instruction manual. The total RNA was dissolved in 40 μL of sterile water. Single-stranded cDNA was synthesized by RT-PCR using the SuperScript cDNA synthesis system (Invitrogen) with 1-2 μg of the purified RNA as template according to the method described in the instruction manual.
  • 3-2. PCR Amplification of Antibody H-Chain Variable Region and Sequence Analysis
  • HB primer mixture and HF primer mixture described in the report by Krebber et al. (J. Immunol. Methods 1997; 201:35-55) were prepared as amplification primers for the mouse antibody H chain variable region (VH) cDNA. Using 0.5 μL each of 100 μM HB primer mixture and 100 μM HF primer mixture, 25 μL of the reaction solution (2.5 μL of cDNA solution prepared in 3-1, KOD plus buffer (Toyobo), 0.2 mM dNTPs, 1.5 mM MgCl2, 0.75 units DNA polymerase KOD plus (Toyobo)) was prepared. PCR was performed using a thermal cycler GeneAmp PCR system 9700 (Perkin Elmer) under either with condition A (heating at 98° C. for 3 minutes, followed by 32 cycles of reacting at 98° C. for 20 seconds, 58° C. for 20 seconds, and 72° C. for 30 seconds per cycle) or condition B (heating at 94° C. for 3 minutes, followed by 5 cycles of reacting at 94° C. for 20 seconds, 46° C. for 20 seconds, and 68° C. for 30 seconds per cycle, and 30 cycles of reacting at 94° C. for 20 seconds, 58° C. for 20 seconds, and 72° C. for 30 seconds per cycle), depending on the amplification efficiency of the cDNA fragment. After PCR, the reaction solution was subjected to 1% agarose gel electrophoresis. Amplified fragments having the size of interest (approximately 400 bp) were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 30 μL of sterile water. The nucleotide sequence of each DNA fragment was determined by a DNA sequencer ABI PRISM 3100 Genetic Analyzer (Applied Biosystems) using a BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) according to the method described in the instruction manual. The group of sequences determined by this method was analyzed comparatively using an analysis software GENETYX-SV/RC Version 6.1 (Genetyx), and those having a different sequence were selected.
  • 3-3. Preparations of Antibody Variable Region DNA Fragments for Cloning
  • The following procedure was performed to add restriction enzyme Sfi I cleavage sites for cloning to both ends of the fragments of antibody variable region that were amplified.
  • To amplify the Sfi I cleavage site added to the VH fragments (Sfi I-VH), a primer (primer VH-5′ end) in which the (Gly4Ser)2-linker sequence of primer HB was modified to a sequence having Sfi I cleavage sites was prepared. Using 0.5 μL each of the 10 μM sequence-specific primer VH-5′ end and 10 μM primer scfor (J. Immunol. Methods 1997; 201: 35-55), a reaction solution (20 μL) (1 μL of purified solution of amplified VH cDNA fragment prepared in 3-2, KOD plus buffer (TOYOBO), 0.2 mM dNTPs, 1.5 mM MgCl2, 0.5 units DNA polymerase KOD plus (TOYOBO)) was prepared. Using a thermal cycler GeneAmp PCR system 9700 (Perkin Elmer), PCR was performed either with condition A (heating at 98° C. for 3 minutes, followed by 32 cycles of reacting at 98° C. for 20 seconds, 58° C. for 20 seconds, and 72° C. for 30 seconds per cycle) or condition B (heating at 94° C. for 3 min followed by 5 cycles of reacting at 94° C. for 20 seconds, 46° C. for 20 seconds, and 68° C. for 30 seconds per cycle, and 30 cycles of reacting at 94° C. for 20 seconds, 58° C. for 20 seconds, and 72° C. for 30 seconds per cycle), depending on the amplification efficiency for the fragments. After PCR, the reaction solution was subjected to 1% agarose gel electrophoresis. Amplified fragments of the desired size (about 400 bp) were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 30 μL of sterile water.
  • To amplify the mouse antibody L chain variable region (VL) cDNA fragments, 0.5 μL each of the 100 μM LB primer mixture and 100 μM LF primer mixture described in the report by Krebber et al. (J. Immunol. Methods 1997; 201: 35-55) was used first, and a reaction solution (25 μL) (2.5 μL of cDNA solution prepared in 3-1, KOD plus buffer (TOYOBO), 0.2 mM dNTPs, 1.5 mM MgCl2, 0.75 units DNA polymerase KOD plus (TOYOBO)) was prepared. Using a thermal cycler GeneAmp PCR system 9700 (Perkin Elmer), PCR was performed according to the amplification efficiency of the fragments, under conditions of heating at 94° C. for 3 min followed by 5 cycles of reaction (reacting at 94° C. for 20 seconds, 46° C. for 20 seconds, and 68° C. for 30 seconds per cycle, and 30 cycles of reacting at 94° C. for 20 seconds, 58° C. for 20 seconds, and 72° C. for 30 seconds per cycle. After the PCR, the reaction solution was subjected to 1% agarose gel electrophoresis. Amplified fragments of the desired size (about 400 bp) were purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and were eluted with 30 μL of sterile water. The fragments are in a state in which the primer LF-derived (Gly4Ser)3-linker sequence is added to their C termini. In order to add an Sfi I cleavage site to the C termini of the fragments, a primer (primer VL-3′ end) where the primer LF (Gly4Ser)3-linker sequence was modified to a sequence having Sfi I cleavage site was prepared. To amplify the Sfi I cleavage site-added VL fragments (Sfi I-VL), 0.5 μL each of the 10 μM VL-3′ end primer mixture and 10 μM scback primer was used, and 20 μL of a reaction solution (1 μL of a solution of purified VL cDNA amplification fragment, KOD plus buffer (TOYOBO), 0.2 mM dNTPs, 1.5 mM MgCl2, 0.5 units DNA polymerase KOD plus (TOYOBO)) was prepared. PCR was performed using a thermal cycler GeneAmp PCR system 9700 (Perkin Elmer) under conditions of heating at 94° C. for 3 min followed by 5 cycles of reaction (reacting at 94° C. for 20 seconds, 46° C. for 20 seconds, and 68° C. for 30 seconds per cycle, and 30 cycles of reacting at 94° C. for 20 seconds, 58° C. for 20 seconds, and 72° C. for 30 seconds per cycle. After the PCR, the reaction solution was subjected to 1% agarose gel electrophoresis. Amplified fragments of the desired size (about 400 bp) were purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and were eluted with 30 μL of sterile water.
  • Purified Sfi I-VH and Sfi I-VL fragments were digested with Sfi I (Takara Bio) at 50° C. for overnight in a reaction solution prepared according to the method described in the instruction manual. Subsequently, the reaction solution was purified using a QIAquick PCR Purification Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 30 μL of Buffer EB included in the kit.
  • 3-4. Human IgG4-Mouse Chimeric Bispecific IgG Antibody Expression Plasmid
  • The knobs-into-holes technique of IgG1 (Non-Patent Document 3) was utilized to produce the bispecific IgG antibody of interest, to allow heteromolecule formation in each H chain, and an amino acid substituent in which the CH3 portion of the IgG4 is substituted was prepared. Type a (IgG4γa) is an IgG4 substituted at Y349C and T366W, and type b (IgG4γb) is an IgG4 substituted at E356C, T366S, L368A, and Y407V. Furthermore, a substitution (-ppcpScp-->-ppcpPcp-) was also introduced at the hinge regions of both substituted IgG4s. Most become heteromolecules using this technique; however, this does not necessarily apply to L chains, and the generation of unnecessary antibody molecules may affect subsequent activity measurements. Therefore, in this method those that are inducible by different pharmaceuticals were used as the expression vectors for each HL molecule to separately express the arms of each antibody molecule (called as HL molecule) which have various specificities, and to efficiently produce the bispecific IgG antibody of interest within cells.
  • As an expression vector for one arm of the antibody molecule (referred to as right arm HL molecule for convenience), a respective H chain or L chain region incorporated to a tetracycline-induced type vector pcDNA4 (Invitrogen) (pcDNA4-g4H or pcDNA4-g4L) was prepared, i.e. a suitable mouse antibody variable region (VH or VL) and a human IgG4γa constant region (SEQ ID NO: 9) or κ constant region (SEQ ID NO: 10) incorporated into the downstream of the signal sequence (IL3ss) used for animal cells (Proc. Natl. Acad. Sci. USA. 1984; 81: 1075). First, Eco RV and Not I (Takara Bio) were used to digest pcDNA4 at the restriction enzyme cleavage sites that are present in the multi-cloning site. The right arm H chain- or L chain-expression unit (about 1.6 kb or about 1.0 kb respectively) of a chimeric bispecific antibody having suitable antibody variable regions was digested with Xho I (Takara Bio). The antibody was then purified with the QIAquick PCR Purification Kit (QIAGEN) according to the method described in the instruction manual, and reacted with DNA polymerase KOD (TOYOBO) at 72° C. for 10 minutes in a reaction solution composition described in the instruction manual to blunt the ends. The blunt-ended fragments were purified with QIAquick PCR Purification Kit (QIAGEN) according to the method described in the instruction manual, and digested with Not I (Takara Bio). The Not I/blunt ended fragments (about 1.6 kb or 1.0 kb respectively) and the Eco RV/Not I-digested pcDNA4 were subjected to ligation reaction using Ligation High (TOYOBO), according to the method described in the instruction manual. An E. coli DH5α strain (Competent high DH5α (TOYOBO)) was transformed with the above-described reaction solution. >From the ampicillin-resistant clones thus obtained, respective plasmid DNAs were isolated using QIAprep Spin Miniprep Kit (QIAGEN).
  • According to the above-described method, as for the other arm (referred to herein as left arm HL molecule for convenience) of the antibody molecule, the respective H chain or L chain region incorporated to the ecdysone analogue inducible type vector pIND (Invitrogen) (pIND-g4H or pIND-g4L) was prepared, i.e. a suitable mouse antibody variable region (VH or VL) and a human IgG4γb constant region (SEQ ID NO: 11) or x constant region incorporated into the downstream of the signal sequence (IL3ss) used for animal cells (EMBO. J. 1987; 6: 2939). Respective plasmid DNAs were then isolated.
  • 3-5. Construction of Bispecific Antibody Expression Vectors
  • The tetracycline-induced type expression plasmid prepared in 3-4 (pcDNA4-g4H or pcDNA4-g4L) was digested with Sfi I, and the reaction solution was subjected to 1% agarose gel electrophoresis. Fragments (approximately 5 kb) lacking the original antibody variable region part (VH or VL) were purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 30 μL of sterile water. The fragments, and the corresponding Sfi I-VH or Sfi-VL fragment derived from the Sfi I-digested anti-F.IXa antibody XB12 prepared in 3-3, were subjected to ligation reaction using the Quick Ligation Kit (New England Biolabs) according to the method described in the instruction manual. An E. coli DH5α strain (Competent high DH5α (TOYOBO)) was transformed with the above-described reaction solution. Next, fragments obtained by removing the antibody variable region part (VH or VL), using a technique similar to that described above from the Sfi I-digested ecdysone analogue-induced type expression plasmid (pIND-g4H or pIND-g4L) prepared in 3-4, and the corresponding Sfi I-digested anti-F.X antibody SB04-derived Sfi I-VH or Sfi I-VL fragment prepared in 3-3 were incorporated by a similar method.
  • Nucleotide sequences for each DNA fragment were determined using a BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) and DNA sequencer ABI PRISM 3100 Genetic Analyzer (Applied Biosystems), according to the method described in the instruction manual. A group of sequences determined by the present method were analyzed using an analysis software, GENETYX-SV/RC Version 6.1 (Genetyx).
  • From the clones of interest, the respective plasmid DNAs were isolated using a QIAprep Spin Miniprep Kit (QIAGEN), and then dissolved in 100 μL of sterile water. Anti-F.IXa antibody chimeric H chain expression vector, anti-F.IXa antibody chimeric L chain expression vector, anti-F.X antibody chimeric H chain expression vector, and anti-F.X antibody chimeric L chain expression vector were named pcDNA4-g4 XB12H, pcDNA4-g4 XB12L, pIND-g4 SB04H, and pIND-g4 SB04L, respectively.
  • [Example 4] Production of Chimeric Bispecific Antibodies 4-1. Preparation of DNA Solutions
  • Expression of the right arm antibody HL molecule expression vectors (pcDNA4-g4 XB12H and pcDNA4-g4 XB12L) is induced by tetracycline. In the absence of tetracycline, Tet repressor-encoding plasmid pcDNA6/TR (Invitrogen) is required to completely suppress their expressions. Furthermore, expression of the left arm antibody HL molecule expression vectors (pINE-g4 SB04H and pIND-g4 SB04L) was induced by an insect hormone ecdysone analogue (ponasterone A). Thus, plasmid pVgRXR (Invitrogen), which encodes the ecdysone receptor and retinoid X receptor that react with ponasterone A, was required to induce expression. Therefore, for the transfection of animal cells, a mixture of six types of plasmid DNAs in total was prepared. For 10 mL of cell culture, 3 μg each of pcDNA4-g4 XB12H, pcDNA4-g4 XB12L, pIND-g4 SB04H and pIND-g4 SB04L, as well as 18 μg each of pcDNA6/TR and pVgRXR were used.
  • 4-2. Transfection of Animal Cells
  • Human fetal renal carcinoma cell-derived HEK293H strain (Invitrogen) was suspended in a DMEM medium (Invitrogen) containing 10% FCS (MOREGATE), and 10 mL of this was seeded at a cell density of 5×105 cells/mL in each dish used for adhesive cells (10-cm diameter, CORNING) and cultured for a day and night in a CO2 incubator (37° C., 5% CO2). The plasmid DNA mixture prepared in 4-1 was added to a mixture of transfection reagents, 75.8 μL of Lipofectaine 2000 (Invitrogen) and 2708 μL of Opti-MEM I medium (Invitrogen), and left to stand at room temperature for 20 minutes. The resulting mixture was added to the cells in each well and incubated for 4 to 5 hours in a CO2 incubator (37° C., 5% CO2).
  • 4-3. Induction of Bispecific IgG Antibody Expression
  • Culture medium was removed by suction from the transfected cell culture as described above, and then 10 mL of a CHO-S-SFM-II (Invitrogen) medium containing 1 μg/mL tetracycline (Wako Pure Chemical Industries) was added. This mixture was incubated for one day in a CO2 incubator (37° C., 5% CO2) to induce primary expression of the right arm antibody HL molecule. Subsequently, after removing the medium by suction and washing with 10 mL of CHO-S-SFM-II medium, and adding 10 mL of a CHO-S-SFM-II medium containing 5 μM of ponasterone A (Invitrogen), this was incubated in a CO2 incubator (37° C., 5% CO2) for 3 days, and secondary expression of the left arm antibody HL molecule was induced so that the bispecific IgG antibody was secreted into the medium. The culture supernatant was recovered and centrifuged (approximately 2000 g for 5 min at room temperature) to remove the cells, and then sterilized by passing through a 0.22 μm filter MILLEX®-GV (Millipore). The sample was stored at 4° C. until use.
  • 4-4. Antibody Purification
  • One hundred μL of rProtein A Sepharose Fast Flow (Amersham Biosciences) was added to 10 mL of the culture supernatant obtained according to the method described in Example 4-3, and the solution was mixed by overturning at 4° C. for 4 hours. The solution was transferred to an Ultrafree®.-MC 0.22 μm filter cup (Millipore) and after washing 3 times with 500 μL of TBS containing 0.01% Tween® 20, the rProtein A Sepharose resin was suspended in 100 μL of 10 mM HCl containing 0.01% Tween® 20 at pH 2.0 and left to stand for 2 minutes. Then, the antibody was eluted, and the eluate was immediately neutralized by adding 5 μL of 1 M Tris-HCl, pH 8.0.
  • 4-5. Quantification of Human IgG Concentration
  • Goat anti-human IgG (Biosource International) was adjusted to 1 μg/mL with a coating buffer, and immobilized to a Nunc-Immuno plate (Nunc). After blocking with a diluent buffer (D.B.), a sample of the culture supernatant suitably diluted with D.B. was added. Furthermore, as a standard for calculating the antibody concentration, human IgG4 (humanized anti-TF antibody, see WO 99/51743) diluted with D.B. in a three-fold dilution series up to eleven stages starting from 2000 ng/mL was added similarly. After 3 washes, goat anti-human IgG, alkaline phosphatase (Biosource International) was reacted. After 5 washes, the color was developed using Sigma 104® phosphatase substrate (Sigma-Aldrich) as a substrate, and the absorbance at 405 nm was measured on an absorbance reader Model 3550 (Bio-Rad Laboratories) with a reference wavelength of 655 nm. Using the Microplate Manager III (Bio-Rad Laboratories) software, human IgG concentration in the culture supernatant was calculated from the standard curve.
  • [Example 5] Plasma Coagulation Assay
  • To elucidate whether a bispecific antibody corrects the coagulation ability of hemophilia A blood, effects of the bispecific antibody on activated partial thromboplastin time (APTT) were examined using Factor VIII-deficient plasma. A mixed solution comprising 50 μL of an antibody solution at various concentrations, 50 μL of Factor VIII-deficient plasma (Biomerieux), and 50 μL of APTT reagent (Dade Behring) was heated at 37° C. for 3 minutes. Coagulation reaction was initiated by adding 50 μL of 20 mM CaCl2) (Dade Behring) to this mixed solution. The time required for coagulation was measured with CR-A (Amelung)-connected KC10A (Amelung).
  • Using a calibration curve produced by defining the coagulation time for Factor VIII-deficient plasma as 0% and the coagulation for normal plasma as 100%, Factor VIII-like activity (%) of a bispecific antibody was calculated from the coagulation time measured when bispecific antibody was added.
  • [Example 6] Humanization of Bispecific Antibody
  • Anti-factor IXa antibody XB12 and anti-factor X antibody SB04, which were the most effective in shortening blood coagulation time, were subjected to humanization as follows.
  • 6-1. Homology Search of Human Antibodies
  • Using a database constructed using amino acid sequence data of human antibodies from publicly disclosed Kabat Database (ftp://ftp.ebi.ac.uk/pub/databases/kabat/) and IMGT Database (http://imgt.cines.fr/), a homology search was carried out separately for the mouse XB12-H chain variable region, mouse XB12-L chain variable region, mouse SB04-H chain variable region, and mouse SB04-L chain variable region. The results confirmed that they have high homologies to the human antibody sequences shown below, and it was thus decided that the framework region (hereinafter abbreviated as FR) of humanized antibodies would be used.
  • (1) XB12-H chain variable region: KABATID-020619 (Kabat Database) (Mariette et al., Arthritis Rheum. 1993; 36: 1315-1324)
    (2) XB12-L chain variable region: EMBL Accession No. X61642 (IMGT Database) (Mark et al., J. Mol. Biol. 1991; 222: 581-597.)
    (3) SB04-H chain variable region: KABATID-025255 (Kabat Database) (Demaison et al.,
  • Immunogetetics 1995; 42: 342-352)
  • (4) SB04-L chain variable region: EMBL Accession No. AB064111 (IMGT Database) (Unpublished data)
  • Humanized antibodies in which complementarity determining regions (hereinafter abbreviated as CDR) of each mouse antibody were grafted into the FRs of human antibodies (1)-(4) were prepared.
  • Also, the web homology search site publicly disclosed by NCBI (http://www.ncbi.nln.nih.gov/BLAST/) was used to search for secretory signal sequences of human antibodies that are highly homologous to the human antibodies of (1)-(4). The following secretory signal sequences obtained by the search were used.
  • (1) XB12-H chain variable region: GenBank Accession No. AF062120
    (2) XB12-L chain variable region: GenBank Accession No. M74019
    (3) SB04-H chain variable region: GenBank Accession No. BC019337
    (4) SB04-L chain variable region: GenBank Accession No. AY204756.
  • 6-2. Construction of Humanized Antibody Gene Expression Vector
  • Twelve synthetic oligoDNAs of about 50 bases were prepared from a nucleotide sequence encoding the amino acid sequence from the secretory signal sequence to the antibody variable region, such that about 20 bases of their 3′-end anneal with each other. Furthermore, a primer annealing to the 5′-end of an antibody variable region gene and having the XhoI cleavage sequence, and a primer annealing to the 3′-end of an antibody variable region gene and having the SfiI cleavage sequence were prepared.
  • One μL each of the synthetic oligoDNAs prepared at 2.5 μM were mixed, and 1×TaKaRa Ex Taq Buffer, 0.4 mM dNTPs, and 0.5 units TaKaRa Ex Taq (all from Takara Shuzo) were added to prepare a 48 μL reaction solution. After keeping this at 94° C. for 5 minutes, 2 cycles of reacting at 94° C. for 2 minutes, 55° C. for 2 minutes, and 72° C. for 2 minutes were performed to assemble and elongate each of the synthetic oligoDNAs. Next, 1 μL each of a primer annealing to the 5′-end and a primer annealing to the 3′-end of the antibody gene were added at 10 μM, and the antibody variable region genes were amplified by 35 cycles of reacting at 94° C. for 30 seconds, 55° C. for 30 seconds, and 72° C. for 1 min and then reacting at 72° C. for 5 minutes. After PCR, the entire reaction solution was subjected to 1% agarose gel electrophoresis. Amplified fragments having the size of interest (approximately 400 bp) were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 30 μL of sterile water. These fragments were cloned using the pGEM-T Easy Vector System (Promega) according to the method described in the instruction manual. Nucleotide sequences for each of the DNA fragments were determined using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) and an ABI PRISM 3700 DNA Sequencer (Applied Biosystems) according to the method described in the instruction manual.
  • A plasmid confirmed to have the correct humanized antibody variable region gene sequence was then digested with EcoRI and SfiI and the reaction solution was subjected to 1% agarose gel electrophoresis. DNA fragments having the size of interest (approximately 400 bp) were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 304 of sterile water. Furthermore, after the EcoRI and SfiI digestion of the tetracycline-induced type expression plasmids (pcDNA4-g4H, pcDNA4-g4L) and the ecdysone analogue induced type expression plasmids (pIND-g4H, pIND-g4L) prepared in Example 3-3, fragments comprising the antibody constant region (approximately 5 kb) were purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 304 of sterile water. The humanized XB12 antibody gene fragment (H chain variable region or L chain variable region) digested with EcoRI and SfiI, and the tetracycline-induced type expression plasmid (pcDNA4-g4H, pcDNA4-g4L) digested with EcoRI and SfiI were subjected to ligation reaction using Rapid DNA Ligation Kit (Roche Diagnostics) according to the method described in the instruction manual. In addition, the humanized SB04 antibody gene fragment digested with EcoRI and SfiI (H chain variable region or L chain variable region), and the ecdysone analogue induced type expression plasmid (pIND-g4H, pIND-g4L) digested with EcoRI and SfiI were subjected to ligation reaction using the Rapid DNA Ligation Kit (Roche Diagnostics) according to the method described in the instruction manual. A portion of each of the reaction mixture was used to transform DH5α strain E. coli (TOYOBO).
  • Furthermore, an expression vector was prepared as follows for expression as an ordinary humanized antibody, but not as a bispecific antibody. Plasmids (pCAG-g4H, pCAG-gκ) with an insert of wild type antibody constant regions to pCAGGS having a chicken β-actin promoter (Niwa et al. 1991 Gene, 108: 193-199) were digested with XhoI and SfiI to prepare expression plasmids that carry humanized XB12 antibody gene fragment (H chain variable region or L chain variable region) or humanized SB04 antibody gene fragment (H chain variable region or L chain variable region) collected after digesting the bispecific antibody expression vector mentioned above with XhoI and SfiI. DNA ligation reaction was performed using the Rapid DNA Ligation Kit (Roche Diagnostics), and E. coli DH5α strain (TOYOBO) was transformed.
  • 6-3. Preparation of Humanized Bispecific Antibody
  • The genes were transfected and expression was induced in HEK293H according to the methods described in Examples 4-2 and 4-3, using 4 types of humanized bispecific antibody expression vectors as well as pcDNA6/TR and pVgRXR. Further, antibody purification and quantification of antibody concentration were conducted according to the methods shown in Examples 4-4 and 4-5.
  • 6-4. Preparation of Humanized Antibodies
  • Expression of an ordinary humanized antibody, which is not a bispecific antibody, was accomplished by transfecting genes to HEK293H according to the method shown in Example 4-2, using humanized H chain antibody expression vector and humanized L chain antibody expression vector prepared in Example 6-3. After gene transfection, cells were washed by addition and removal of 10 mL of CHO-S-SFM-II medium (Invitrogen), then 10 mL of CHO-S-SFM-II was added, and then the cells were cultured for 3 days in a CO2 incubator (37° C., 5% CO2) for secretion of the humanized antibodies.
  • 6-5. Activity Assessment of Humanized Bispecific Antibody and Modification of Antibody Sequence
  • To assess the plasma coagulation ability of the prepared humanized bispecific antibody and chimeric bispecific antibody XB12/SB04, effects of the antibodies on APTT were examined using F. VIII-deficient plasma according to the method of Example 5. Amino acids of the human antibody FR were modified to increase activities of humanized bispecific antibodies whose blood coagulation capability has been reduced. In addition, the cysteine residues in the CDR3 of XB12 antibody VH, whose possible drop in thermostability is a concern, were modified to alanine. Specifically, mutations were introduced into the humanized antibody variable region using the QuikChange Site-Directed Mutagenesis Kit (Stratagene) according to the method described in the instruction manual. By repeating amino acid modifications to the FR sequence and assessment of blood coagulation ability, a humanized bispecific antibody (humanized XB12 antibody (VH:hXB12f-A, VL:hXBVL)/humanized SB04 antibody (VH:hSB04e, VL:hSBVL-F3f)) having the same activity as XB12/SB04 was obtained. Each antibody variable regions sequences is shown in the following SEQ ID NOs.
  • (1) humanized XB12 antibody VH (hXB12f-A) SEQ ID NO: 1 (nucleotide sequence), SEQ ID NO: 2 (amino acid sequence)
    (2) humanized XB12 antibody VL (hXBVL) SEQ ID NO: 3 (nucleotide sequence), SEQ ID NO: 4 (amino acid sequence)
    (3) humanized SB04 antibody VH (hSB04e) SEQ ID NO: 5 (nucleotide sequence), SEQ ID NO: 6 (amino acid sequence)
    (4) humanized SB04 antibody VL (hSBVL-F3f) SEQ ID NO: 7 (nucleotide sequence), SEQ ID NO: 8 (amino acid sequence)
  • [Example 7] Modeling of Humanized Antibody
  • An antibody Fv region model was prepared by homology modeling using MOE software (Chemical Computing Group Inc.) to confirm the amino acid residues at the VH-VL interface of the humanized SB04 antibody. The amino acids of H39 and L38 at the VH-VL interface are both glutamine (Gin) and formation of hydrogen bonds by the side chains of both residues was confirmed (FIG. 1A). The amino acids of H45 and L44 were leucine (Leu) and proline (Pro), respectively, the side chains of both residues were very close to each other and were found to form a hydrophobic core (FIG. 1B). The amino acid residues at these two positions have been reported to be highly conserved in human antibodies (Vargas-Madrazo E et al. J. Mol. Recognit. 2003, 16: 113-120). Numbering of these antibodies such as H39, L38, H45, and L44 were based on the literature of Kabat et al. (Kabat E A et al. 1991. Sequences of Proteins of Immunological Interest. NIH).
  • [Example 8] Preparation and Assessment of H39 and L38 Amino Acid-Modified Humanized Antibody 8-1. Construction of an Expression Vector of H39 and L38-Modified Antibody
  • To inhibit the association between humanized XB12 H chain and humanized SB04 L chain, H39 glutamine of humanized XB12H chain and L38 glutamine of humanized SB04 L chain were substituted based on the findings in Example 7. Specifically, to inhibit hydrogen bonding of the glutamine side chains and to allow electrostatic repulsion, both amino acids (H39 and L38) were substituted with lysine (Lys) or arginine (Arg) carrying a positive charge on their side chain, or to glutamic acid (Glu) or aspartic acid (Asp) which carry a negative charge on their side chain. Substitution of the humanized antibody gene was performed using QuickChange Site-Directed Mutagenesis Kit (Stratagene), and mutations were introduced according to the method described in the instruction manual. Each humanized antibody gene fragment carrying amino acid substitutions was inserted into a bispecific antibody expression vector used in Example 6-2 or into an ordinary antibody expression vector.
  • 8-2. Preparation of Antibodies for Association Regulation Assessment and Association Regulation Assessment of the Antibodies
  • To assess the regulation of H chain and L chain association, gene transfection into HEK293H was performed according to the method shown in Example 4-2 using 3 types of prepared antibody expression vectors: humanized XB12H chain (H39-modified), humanized SB04 L chain (L38-modified), and wild-type humanized XB12 L chain. The antibodies were then secreted into the culture supernatant. Next, antibody purification and quantification of antibody concentration were carried out according to the methods of Examples 4-4 and 4-5.
  • Two-hundred ng of purified antibodies were reduced in a sample buffer (TEFCO), applied to a 14% SDS-PAGE mini gel (TEFCO), and then subjected to electrophoresis. After electrophoresis, the gels were subjected to immobilization treatment by soaking in 7% acetic acid solution containing 10% methanol for 30 minutes, and then stained by soaking in SYPRO® Ruby protein gel stain solution (BIO-RAD) for one day and night. Subsequently, the gels were subjected to decolorization treatment by soaking in 7% acetic acid solution containing 10% methanol for 1 hour and the image was analyzed using a fluorescence imager FluorImager SI (Amersham Biosciences) and the image was obtained. The obtained image was used to calculate the fluorescence intensities of the H chain and L chain bands using ImageQuant ver. 4.2 (Amersham Biosciences).
  • The results are shown in FIG. 2. The proportion (%) of the XB12-L chain of interest was calculated according to the formula “XB12-L chain/total amount of L chain (XB12-L chain+SB04-L chain)×100” using the calculated fluorescence intensity values. The proportion was 50% when the amino acids of the humanized XB12 H chain (H39) and humanized SB04 L chain (L38) were glutamine (Gln) as in the wild type, whereas the proportion of the humanized XB12L chain increased when H39 and L38 were substituted. In the case of substitution to glutamic acid (Glu), this proportion was found to increase 1.6 times to 82%.
  • 8-3. Preparation of Bispecific Antibodies for Coagulation Activity Assessment and Coagulation Activity Assessment of the Antibodies
  • To assess the coagulation activity, gene transfection into HEK293H and induction of expression were carried out according to the methods described in Examples 4-2 and 4-3, using the prepared humanized XB12 H chain (H39-modified) and humanized SB04 L chain (L38-modified) bispecific antibody expression vector and wild-type humanized XB12 L chain and humanized SB04 H chain bispecific antibody expression vector, pcDNA6/TR and pVgRXR. Furthermore, antibody purification and quantification of antibody concentration were carried out according to the methods of Examples 4-4 and 4-5.
  • Assessment of coagulation activity was performed according to the method shown in Example 5, and the results are shown in FIG. 3. Glutamic acid (Glu: E)-modified antibody whose proportion increased up to 82% in the association regulation assessment was found to show a coagulation activity greater than or equal to that of the wild type.
  • 8-4. Preparation of Antibodies for Binding Activity Assessment
  • To assess the binding activity to Factor IXa and Factor X, gene transfection into HEK293H and secretion of antibodies into the culture supernatant was performed according to the method described in Example 4-2, using humanized XB12 H chain (H39-modified) and wild-type humanized XB12L chain antibody expression vector, or wild-type humanized SB04 H chain and humanized SB04 L chain (L38-modified) antibody expression vector. Furthermore, antibody purification and quantification of antibody concentration were carried out according to the methods of Examples 4-4 and 4-5.
  • Assessment of binding activity against Factor IXa and Factor X were performed according to the methods described in Examples 1-2 and 2-2. The results are shown in FIG. 4 and FIG. 5. It was confirmed that substitution of amino acids at H39 and L38 did not alter the binding activity.
  • These results suggested that by modifying H39 of XB12 H chain and L38 of SB04 L chain, the proportion of bispecific antibodies of interest could be increased without decreasing biological activities, including binding activity to antigens and coagulation activity that substitute for Factor VIII. So far, including the methods using knob and hole, there are no reported cases where the association was regulated by introducing only a single amino acid mutation in a polypeptide without decreasing the function. Accordingly, the findings of the present invention are considered to be the first of such kind.
  • [Example 9] Preparation and Assessment of L44 Amino Acid-Modified Humanized Antibody 9-1. Construction of an Expression Vector L44-Modified Antibody
  • To inhibit the association between humanized XB12 H chain and humanized SB04 L chain, based on the findings in Example 7, L44 proline of humanized SB04 L chain was substituted to an amino acid carrying a charge on its side chain. Specifically, proline present in the hydrophobic core of the VH-VL interface was substituted to lysine (Lys) or arginine (Arg) carrying positive charge on their side chain, and glutamic acid (Glu) carrying a negative charge on its side chain was substituted to aspartic acid (Asp). Substitution of the humanized antibody gene was performed using QuickChange Site-Directed Mutagenesis Kit (Stratagene), and mutations were introduced according to the method described in the instruction manual. Each humanized antibody gene fragment having amino acid substitutions were inserted into a bispecific antibody expression vector used in Example 6-2 or into an ordinary antibody expression vector.
  • 9-2. Preparation of Antibodies for Association Regulation Assessment and Association Regulation Assessment of the Antibodies
  • To assess the regulation of H chain and L chain association, gene transfection into HEK293H was performed according to the method of Example 4-2, using 3 types of prepared antibody expression vectors, humanized SB04 L chain (L44-modified), wild-type humanized XB12H chain, and wild-type humanized XB12 L chain, and the antibodies were secreted into the culture supernatant. Furthermore, antibody purification and quantification of antibody concentration were carried out according to the methods of Examples 4-4 and 4-5.
  • Two-hundred ng of purified antibodies were reduced in a sample buffer (TEFCO), applied to a 14% SDS-PAGE mini gel (TEFCO), and then subjected to electrophoresis. After electrophoresis, the gels were subjected to immobilization treatment by soaking in 7% acetic acid solution containing 10% methanol for 30 minutes, and then stained by soaking in SYPRO® Ruby protein gel stain solution (BIO-RAD) for one day and night. Subsequently, the gels were subjected to decolorization treatment by soaking in 7% acetic acid solution containing 10% methanol for 1 hour and the image was analyzed using a fluorescence imager FluorImager SI (Amersham Biosciences) and the images were obtained. The obtained images were used to calculate the fluorescence intensities of the H chain and L chain bands using ImageQuant ver. 4.2 (Amersham Biosciences).
  • The results are shown in FIG. 6. The proportion (%) of the XB12-L chain of interest was calculated according to the formula “XB12-L chain/total amount of L chain (XB12-L chain+SB04-L chain)×100” using the calculated fluorescence intensity values. The proportion was 47% when the amino acid of the humanized SB04 L chain (L44) was proline (Pro) as in the wild type, whereas the proportion of the humanized XB12L chain increased when L44 was substituted, and this proportion was found to increase 1.8-1.9 times to 86-90%.
  • 9-3. Preparation of Bispecific Antibodies for Coagulation Activity Assessment and Coagulation Activity Assessment of the Antibodies
  • To assess the coagulation activity, gene transfection into HEK293H and induction of expression were carried out according to the methods described in Examples 4-2 and 4-3, using the prepared humanized SB04 L chain (L44-modified) bispecific antibody expression vector and wild-type humanized XB12 H chain, humanized XB12 L chain, and humanized SB04 H chain bispecific antibody expression vector, pcDNA6/TR and pVgRXR. Furthermore, antibody purification and quantification of antibody concentration were carried out according to the methods of Examples 4-4 and 4-5.
  • Assessment of coagulation activity was performed according to the method shown in Example 5, and the results are shown in FIG. 7. All modified antibodies whose proportion had increased in the association regulation assessment were found to show a coagulation activity greater than that of the wild type.
  • 9-4. Preparation of Antibodies for Binding Activity Assessment
  • To assess the binding activity against Factor X, gene transfection into HEK293H and secretion of antibodies into the culture supernatant was performed according to the method described in Example 4-2, using wild-type humanized SB04 H chain and humanized SB04 L chain (L44-modified) antibody expression vector. Furthermore, quantification of antibody concentration in the culture supernatant was carried out according to the method of Example 4-5.
  • Assessment of binding activity against Factor X was performed using the culture supernatant according to the method described in Example 2-2. The results are shown in FIG. 8. It was confirmed that substitution of amino acid at L44 does not change the binding activity.
  • These results suggested that by modifying the amino acid at one position, L44, in the SB04 L chain, the proportion of bispecific antibodies of interest could be increased without decreasing biological activities, including binding activity to the antigens and coagulation activity that substitute for Factor VIII. So far, including the methods using knob and hole, there are no reported cases where the association was regulated by introducing only a single amino acid in a polypeptide without decreasing the function. Thus, the findings of the instant invention are considered to be the first of such kind.
  • [Example 10] Preparation and Assessment of H39 and L38, and L44 Amino Acid-Modified Humanized Antibody 10-1. Construction of an Expression Vector of H39 and L38, and L44-Modified Antibody
  • To inhibit the association between humanized XB12 H chain and humanized SB04 L chain, H39 of humanized XB12 H chain and L38 and L44 of humanized SB04 L chain were substituted with amino acids carrying a charge on their side chain based on the findings of Examples 8 and 9. Specifically, both amino acids at H39 of humanized XB12 H chain and L38 of humanized SB04 L chain were substituted with glutamic acid (Glu), which was found to be most effective in Example 8, and proline present at L44 of humanized SB04 L chain was substituted to lysine (Lys) or arginine (Arg) carrying a positive charge in their side chain, or to glutamic acid (Glu) or aspartic acid (Asp) carrying a negative charge in their side chain. Substitution of the humanized antibody gene was performed using QuickChange Site-Directed Mutagenesis Kit (Stratagene), and mutations were introduced according to the method described in the instruction manual. Each humanized antibody gene fragment carrying amino acid substitutions was inserted into the bispecific antibody expression vector used in Example 6-2 or an ordinary antibody expression vector.
  • 10-2. Preparation of Antibodies for Association Regulation Assessment and Association Regulation Assessment of the Antibodies
  • To assess the regulation of H chain and L chain association, gene transfection into HEK293H was performed according to the method of Example 4-2, using 3 types of antibody expression vectors: modified humanized SB04 L chain, modified humanized XB12 H chain, and wild-type humanized XB12 L chain. The antibodies were then secreted into the culture supernatant. Furthermore, antibody purification and quantification of antibody concentration were carried out according to the methods of Examples 4-4 and 4-5.
  • Two-hundred ng of purified antibodies were reduced in a sample buffer (TEFCO), applied to a 14% SDS-PAGE mini gel (TEFCO), and then subjected to electrophoresis. After electrophoresis, the gels were subjected to immobilization treatment by soaking in 7% acetic acid solution containing 10% methanol for 30 minutes, and then stained by soaking in SYPRO® Ruby protein gel stain solution (BIO-RAD) for one day and night. Subsequently, the gels were subjected to decolorization treatment by soaking in 7% acetic acid solution containing 10% methanol for one hour and the image was analyzed using a fluorescence imager FluorImager SI (Amersham Biosciences) and the images were obtained. The obtained images were used to calculate the fluorescence intensities of the H chain and L chain bands using ImageQuant ver. 4.2 (Amersham Biosciences).
  • The results are shown in FIG. 9. The proportion (%) of the XB12-L chain of interest was calculated according to the formula “XB12-L chain/total amount of L chain (XB12-L chain+SB04-L chain)×100” using the calculated fluorescence intensity values. The proportion was 82% when both amino acids of the humanized XB12 H chain (H39) and humanized SB04 L chain (L38) was modified to glutamic acid (Glu) and the humanized SB04 L chain (L44) was proline (Pro) as in the wild type, whereas the proportion of the humanized XB12L chain increased to 94-96% when L44 was substituted in addition to the substitution of both amino acids of the humanized XB12 H chain (H39) and humanized SB04 L chain (L38) to glutamic acid (Glu). This increase in proportion was greater than the 86-90% observed when L44 alone was substituted in Example 9.
  • 10-3. Preparation of Bispecific Antibodies for Coagulation Activity Assessment and Coagulation Activity Assessment of the Antibodies
  • To assess the coagulation activity, gene transfection into HEK293H and induction of expression were carried out according to the methods described in Examples 4-2 and 4-3, using the prepared modified humanized XB12 H chain, humanized XB12 L chain, and humanized SB04 H chain bispecific antibody expression vector and wild-type humanized XB12 H chain, humanized XB12 L chain, and humanized SB04 H chain bispecific antibody expression vector, pcDNA6/TR and pVgRXR. Furthermore, antibody purification and quantification of antibody concentration were carried out according to the methods of Examples 4-4 and 4-5.
  • Assessment of coagulation activity was performed according to the method shown in Example 5, and the results are shown in FIG. 10. All modified antibodies whose proportion had increased in the association regulation assessment were found to show a coagulation activity equivalent to that of the wild type.
  • 10-4. Preparation of Antibodies for Binding Activity Assessment
  • To assess the binding activity against Factor X, gene transfection into HEK293H and secretion of antibodies into the culture supernatant was performed according to the method described in Example 4-2 using wild-type humanized SB04 H chain and modified humanized SB04 L chain antibody expression vector. Furthermore, quantification of antibody concentration in the culture supernatant was carried out according to the method of Example 4-5.
  • Assessment of binding activity against Factor X was performed using the culture supernatant according to the method described in Example 2-2. The results are shown in FIG. 11. It was confirmed that substitution of both amino acids at L38 and L44 did not alter the binding activity.
  • These results suggested that by modifying the amino acids at H39 of the XB12 H chain and L38 and L44 in the SB04 L chain, the proportion of bispecific antibodies of interest can be increased without decreasing biological activities which are binding activity to antigens and coagulation activity that substitute for Factor VIII. The proportion of the bispecific antibody was found to increase as the number of amino acids modified at the interface increased.
  • [Example 11] Separation and Structure Determination of Structural Isomers of hVB22B u2-Wz4 sc(Fv)2
  • 11-1. Preparation of Humanized Anti-Human MpI Antibody hVB22B u2-Wz4 sc(Fv)2
  • Methods for producing hVB22B u2-wz4 sc(Fv)2 (hereinafter referred to as u2-wz4) which is a humanized anti-MpI antibody is described in WO2005/56604. This gene was prepared by PCR using a nucleotide sequence encoding the linker sequence (GlyGlyGlyGlySer)×3 so that it will comprise a nucleotide sequence composed of VH-linker sequence-VL-linker sequence-VH-linker sequence-VL (see SEQ ID NO: 12; and SEQ ID NO: 286 of WO2005/56604). After the nucleotide sequence of the gene was confirmed, cell lines with stable expression was prepared by constructing an expression vector by cloning a DNA fragment into expression vector pCXND3, and introducing the gene into CHO-DG44 cells. More specifically, 0.75 mL of a mixture of the expression vector (20 μg) and CHO-DG44 cells (1×107 cells/mL) suspended in PBS was placed on ice for 10 minutes and transferred to a cuvette, and then a pulse was applied at 1.5 kV and 25 μFD using a Gene Pulser Xcell (BioRad). After a recovery period of 10 minutes at room temperature, cells subjected to electroporation treatment were selected by placing them into CHO-S-SFMII medium (Invitrogen) containing 500 μg/mL Geneticin (Invitrogen), and an u2-wz4-producing CHO cell line was established.
  • Since the humanized antibody, hVB22B u2-wz4 sc(Fv)2, does not have a Flag tag added, the purification from the culture supernatant was carried out using a fusion protein of GST and MG10 (Gln213 to Ala231 in the amino acid sequence of human MpI) which is an epitope recognized by the antibody. The MG10-GST fusion protein was purified using Glutathione Sepharose 4B (Amersham Biosciences) according to the supplier's protocol. Then, the purified MG10-GST fusion protein was immobilized onto HiTrap NHS-activated HP (Amersham Biosciences) to prepare an affinity column, according to the supplier's protocol. The culture supernatant of CHO cells expressing the humanized antibody, hVB22B u2-wz4 sc(Fv)2, was loaded onto the MG10-GST fusion protein-immobilized column, humanized antibody hVB22B u2-wz4 sc(Fv)2 was adsorbed to the column, and then was eluted with 100 mM Glycine-HCl (pH 3.5), 0.01% Tween80. The eluted fractions were immediately neutralized with 1 M Tris-HCl (pH7.4), and the monomer was purified by gel filtration chromatography using HiLoad 16/60 Superdex200 pg (Amersham Biosciences). 20 mM citrate buffer (pH7.5) containing 300 mM NaCl and 0.01% Tween 80 was used in the gel filtration chromatography.
  • 11-2. Separation and Purification of Conformational Isomers of hVB22B u2-Wz4 sc(Fv)2
  • Since hVB22B u2-wz4 sc(Fv)2 is an sc(Fv)2 composed of the sequence VH1-linker-VL2-linker-VH3-linker-VL4, as shown in FIG. 12, depending on the combination of Fvs (molecules having non-covalent bonds between VH and VL), 2 kinds of conformational isomers can exist, as in VB22B sc(Fv)2, which are the bivalent scFv-type in which each pairs of VH1 and VL2, and VH3 and VL4 forms a Fv, and the single chain diabody-type in which each pairs of and VL4, and VH2 and VL3 form a Fv.
  • Result of examination of the separation of conformational isomers of hVB22B u2-wz4 sc(Fv)2 suggested that each component of hVB22B u2-wz4 sc(Fv)2 can be separated by cation exchange chromatography using Bio Assist S (TOSOH) under the following elution conditions.
  • Mobile phase A: 20 mM sodium phosphate, pH7.5
  • Mobile phase B: 20 mM sodium phosphate, 500 mM NaCl, pH 7.5
  • Flow rate: 0.8 mL/min
  • Gradient: B 0% to B 35% (30 minutes)
  • Under the above-mentioned conditions, hVB22B u2-wz4 sc(Fv)2 was separated into two peaks. The chromatogram shown in FIG. 13 was obtained, and starting from the shorter retention time, the peaks were named peak 1 and peak 2.
  • The molecular weight of peak 1 and peak 2 were measured using a Q-TOF-type mass spectrometer (Q T of Ultima, Micro Mass). Sample solutions were infused into Q-TOF, and deconvolution of the obtained polyvalent ion spectra (+) using the included software (MassLynx) gave results showing that the molecular weight of peak 1 and peak 2 are 53768 Da and 53769 Da, respectively. This showed that peak 1 and peak 2 have the same molecular weight.
  • Peptide mapping was performed on peak 1 and peak 2. After reductive denaturation and carboxymethylation, peptide fragments were obtained by digestion using trypsin, and peptide maps were obtained by reverse-phase chromatography (YMC-Pack-ODS). Comparing the peptide maps of peak 1 and peak 2, the mapping patterns of peak 1 and peak 2 were the same as shown in FIG. 14, therefore, the amino acid primary structure was found to be the same.
  • Since hVB22B u2-wz4 sc(Fv)2 is not glycosylated, peak 1 and peak 2 have the same molecular weight according to TOF-MASS measurements, and peak 1 and peak 2 have the same mapping patterns, peak 1 and peak 2 were found to be conformational isomers having different three dimensional structures.
  • Since hVB22B u2-wz4 sc(Fv)2 is an sc(Fv)2 comprising the sequence, VH1-linker-VL2-linker-VH3-linker-VL4, as shown in FIG. 12, depending on the combination of Fvs (molecules comprising non-covalent bonds between VH and VL), 2 kinds of conformational isomers can exist. Namely, the isomers are the bivalent scFv-type in which each pairs of VH1 and VL2, and VH3 and VL4 forms a Fv, and the single chain diabody-type in which each pairs of VH1 and VL4, and VH2 and VL3 forms a Fv. Peak 1 and peak 2 were considered to have either one of the conformations; the bivalent scFv-type or the single chain diabody-type.
  • Protease-limited proteolysis was developed as an analysis method for identifying the two types of conformational isomers. Since the linker portion of sc(Fv)2 has a relatively free structure, it is considered to have low resistance to proteases, and peak 1, peak 2, and hVB22B u2-wz4 sc(Fv)2 (The ratio of peak 1:peak 2 is approximately 1:4) were reacted with subtilisin A, a type of protease, under the following conditions:
  • 20 mM sodium citrate, 150 mM NaCl, pH7.5
  • hVB22B u2-wz4 sc(Fv)2 peak 1 or peak 2: 0.15 mg/mL
  • Subtilisin A: 10 μg/mL
  • 37° C., 30 minutes
  • After the reaction, reductive SDS-PAGE was performed using Phastgel Homogeneous 12.5%. As a result, as shown in FIG. 15, hVB22B u2-wz4 sc(Fv)2 bulk, peak 1, and peak 2 all showed the same band patterns. The use of the above-mentioned reaction conditions was found to enable partial and limited digestion of the linker portions of hVB22B u2-wz4 sc(Fv)2, since specific bands for each of the fragments that appeared to be produced by the digestion of the three linker portions of hVB22B u2-wz4 sc(Fv)2 were obtained.
  • When one of the three linkers is cleaved in the bivalent scFv-type and single chain diabody-type conformations, as shown in FIG. 16, under native conditions, the apparent molecular weight will not change no matter which linker among the three is cleaved in the single chain diabody-type conformation due to non-covalent bonding between VH and VL. However, in the bivalent scFv-type when the central linker is cleaved, molecular species having half the molecular weight will be produced. Therefore, hVB22B u2-wz4 sc(Fv)2 bulk, peak 1, and peak 2 whose linkers were partially cleaved by the above-mentioned reaction conditions were analyzed by gel filtration chromatography using TSK Super SW2000 (TOSOH). Gel filtration chromatography was performed under the following conditions:
  • Mobile phase: DPBS(−) pH7.4
  • Flow rate: 0.2 mL/min
  • As a result, as shown in FIG. 17, minibody peaks was not observed at all in peak 2, whereas, minibody peaks (approximately half the molecular weight) were observed for peak 1. hVB22B u2-wz4 sc(Fv)2 bulk which is a mixture of peak 1 and peak 2 showed low-molecular weight peaks whose amount correspond to the abundance ratio of peak 1. Therefore, these results identified peak 1 as a bivalent scFv-type and peak 2 as a single chain diabody-type.
  • [Example 12] Preparation, Conformational Isomer Analysis, and Identification of VH/VL Interface-Modified Sc(Fv)2 12-1. Preparation of VH/VL Interface-Modified Sc(Fv)2
  • VH/VL interface-modified sc(Fv)2 was prepared by the following method to confirm whether the formation of conformational isomers of sc(Fv)2 could be regulated through regulation of the association by the VH/VL interface modification to sc(Fv)2, which is a minibody.
  • Gln at position 39 of VH (position 39 in the amino acid sequence of SEQ ID NO: 13; see SEQ ID NO: 289 of WO2005/56604), and Gln at position 38 of VL (position 43 in the amino acid sequence of SEQ ID NO: 14; see SEQ ID NO: 289 of WO2005/56604) which are amino acids that form the VH/VL interface of u2-wz4 were modified as follows. First, the hVB22B u2-wz4(v1) sc(Fv)2 gene (hereinafter referred to as v1; the nucleotide sequence is shown in SEQ ID NO: 15, and the amino acid sequence encoded by the nucleotide sequence is shown in SEQ ID NO: 16), in which Gln at position 39 of VH1 (genetic codon: CAG) was modified to Glu (genetic codon: GAG), Gln at position 38 of VL2 (genetic codon: CAG) was modified to Glu (genetic codon: GAG), Gln at position 39 of VH3 (genetic codon: CAG) was modified to Lys (genetic codon: AAG), and Gln at position 38 of VL4 (genetic codon: CAG) was modified to Lys (genetic codon: AAG), was produced. Furthermore, the hVB22B u2-wz4(v3) sc(Fv)2 gene (hereinafter referred to as v3; the nucleotide sequence is shown in SEQ ID NO: 17, and the amino acid sequence encoded by the nucleotide sequence is shown in SEQ ID NO: 18), in which Gln at position 39 of VH1 (genetic codon: CAG) was modified to Glu (genetic codon: GAG), Gln at position 38 of VL2 (genetic codon: CAG) was modified to Lys (genetic codon: AAG), Gln at position 39 of VH3 (genetic codon: CAG) was modified to Lys (genetic codon: AAG), and Gln at position 38 of VL4 (genetic codon: CAG) was modified to Glu (genetic codon: GAG), was produced. Gene modification was carried out by introducing point mutations using QuikChange Site-Directed Mutagenesis Kit (STRATAGENE) according to the manufacturer's protocol. After confirming the nucleotide sequences of each genes, stable cell lines were prepared by constructing expression vectors by cloning DNA fragments into expression vector pCXND3, and introducing the gene into CHO-DG44 cells. The v1-producing CHO cell line and v3-producing CHO cell line were established according to the method shown in Example 11.
  • Monomeric molecules of variants v1 and v3 were purified according to the method of Example 11 using the MG10-GST fusion protein immobilized column. The results of gel filtration chromatography shown in FIG. 18 showed that for variants v1 and v3, the dimers and larger aggregates decreased in the culture supernatant and the proportion of monomers increased from 59% (u2-wz4 before modification) to 89% for v1 and 77% for v3. It seems that modification of amino acids at the VH/VL interface inhibits unfavorable associations by charge repulsion and promotes favorable association in variants v1 and v3. Accordingly, efficient expression of the monomeric molecules was successfully accomplished by this regulation of the association.
  • 12-2. Conformational Isomer Analysis and Identification of VH/VL Interface-Modified Sc(Fv)2
  • The ratios of conformational isomers present in the obtained VH/VL interface-modified v1 and v3, and in the unmodified u2-wz4 were analyzed by cation exchange chromatography and isoelectric focusing. The conformations were identified by the protease-limited proteolysis method.
  • Cation exchange chromatography was performed as follows:
  • Column: TSK-gel Bioassist S, 4.6 mmϕ×50 mm (TOSOH)
  • Flow rate: 0.8 mL/min
  • Detection wavelength: 220 nm
  • Elution condition:
      • Eluent A: 20 mmol/L Phosphate buffer (pH 7.0)
      • Eluent B: 20 mmol/L Phosphate buffer/500 mmol/L NaCl (pH7.0) Gradient:
  • Time (minutes) B %
    0  0
    5  0
    25  30
    25.1 100
    35 100
    35.1  0
  • Isoelectric focusing was performed as follows. PhastGel Dry IEF gel (Amersham Biosciences) was swollen for 30 minutes in the gel swelling solution described below. First, the samples were applied to the swollen gel, and subjected to electrophoresis using the PhastSystem under the following conditions. After electrophoresis, the gel was soaked for 30 minutes in a 20% TCA solution, then subjected to a five-minute wash for three times or more in milliQ water, and then to Coomassie stained or silver stained depending on the protein concentration of the samples. In Coomassie staining, 0.02% CBB containing 0.1% CuSO4 (w/v) was used as the solution for staining, and 30% methanol containing 10% acetic acid was used for decolorization. In silver staining, Silver stain kit, Protein (Amersham Biosciences) was used and staining was performed according to the standard protocol attached to the kit.
  • <Gel Swelling Solution>
  • Pharmalyte 8.5-10  80 μL
    Biolyte 7-9  10 μL
    Biolyte 3-9  10 μL
    20% Glycerol 2.0 mL
  • <Electrophoresis Program>
  • SAMPLE APPLICATION DOWN AT step 2  0 Vh
    SAMPLE APPLICATION UP AT step 3  0 Vh
    Step
    1 2000 V 2.5 mA 3.5 W 15° C.  75 Vh
    Step
    2 200 V 2.5 mA 3.5 W 15° C.  15 Vh
    Step
    3 2000 V 2.5 mA 3.5 W 15° C. 410 Vh
  • Conformations were identified under the following conditions by the protease-limited proteolysis method. Peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, and variant v1 and variant v3 were allowed to react using subtilisin A under the following conditions:
  • 20 mM sodium citrate, 150 mM NaCl, pH7.5
  • hVB22B u2-wz4 sc(Fv)2 peak 1 or peak 2: 0.15 mg/mL
  • Subtilisin A: 10 μg/mL
  • 37° C., 30 minutes
  • The obtained reaction solution was analyzed by gel filtration chromatography under the following conditions:
  • Column: TSKgel Super2000sw (TOSOH)
  • Eluent: 50 mM sodium phosphate, 300 mM KCl, pH7.0
  • Flow rate: 0.2 mL/min
  • Detection: 220 nm
  • From the results of conformational isomer analysis by cation exchange chromatography and isoelectric focusing shown in FIGS. 19 and 20, u2-wz4 was found to be expressed as a mixture of both conformational isomers in which 24% is the bivalent scFv-type and 76% is the single chain diabody-type, whereas 100% of variant v1 was expressed as the single chain diabody-type conformational isomer, and 100% of variant v3 was expressed as the bivalent scFv-type conformational isomer. Furthermore, as shown in FIG. 21, the results of protease-limited proteolysis showed that the minibody peaks are found in variant v3 as in peak 1 purified from u2-wz4 and that the minibody peaks are absent in variant v1 as in peak 2 purified from u2-wz4. This data confirms that variant v1 is expressed as a single chain diabody-type conformational isomer and variant v3 is expressed as a bivalent scFv-type conformational isomer.
  • [Example 13] Activity Assessment and Stability Assessment of VH/VL Interface-Modified Sc(Fv)2 13-1. Assessment of Biological Activity of VH/VL Interface-Modified Sc(Fv)2
  • It has been reported in literature (Blood 2005; 105:562-566) that anti-human MpI antibody VB22B sc(Fv)2 shows TPO-like agonist activity. Accordingly, the TPO-like agonist activity of the separated conformational isomers was assessed using BaF3-human MpI or BaF3-monkey MpI that indicates TPO-dependent growth.
  • Each cell was washed twice with RPMI1640 (Invitrogen) containing 1% Fetal Bovine Serum (Invitrogen), then suspended in RPMI1640 containing 10% Fetal Bovine Serum to 4×105 cells/mL, and then dispensed into a 96-well plate at 60 μL/well. 404 of rhTPO (R&D) or the conformational isomer sample was added to each well at various concentrations and, and the cells were cultured at 37° C. under 5% CO2 for 24 hours. Immediately after adding WST-8 reagent (Cell Count Reagent SF, Nakalai Tesque) at 10 μL/well, the absorbance at 450 nm (control: 655 nm) was measured on Benchmark Plus, and the absorbance at 450 nm (control: 655 nm) was measured again after culturing for 2 hours. Since WST-8 reagent exhibits a chromogenic reaction at 450 nm depending on the number of viable cells, TPO-like agonist activity was assessed using the change in absorption during the 2 hours as an indicator.
  • The results of assessing TPO-like agonist activity in BaF3-human MpI and BaF3-monkey MpI using the purified VB22B sc(Fv)2 conformational isomer are shown individually in FIG. 17. Comparison of agonist activity of the conformational isomers of peak 1 and peak 2 indicated that peak 2 possessed a significantly higher activity. This suggested that in order for anti-MpI antibody sc(Fv)2 to exert TPO-like agonist activity, it has to form a single chain diabody conformation.
  • According to the method indicated in Example 1, agonist activity of VH/VL interface-modified v1 and v3 were evaluated. Agonist activity differs greatly between the conformational isomers, and as shown in FIG. 12, peak 2 having a single chain diabody conformation showed a very high agonist activity, whereas the activity of peak 1 having a bivalent scFv conformation was decreased significantly. As shown in FIG. 22, variant v1 showed the same activity as peak 2, and variant v3 showed nearly the same activity as peak 1. Accordingly, biological activities also confirmed that variant v1 formed a single chain diabody conformation, and variant v3 forms a bivalent scFv conformation.
  • 13-2. Assessment of Stability of VH/VL Interface-Modified Sc(Fv)2
  • To assess the stability of peak 1 purified from u2-wz4, peak 2 purified from u2-wz4, variant v1, and variant v3, the denaturation transition temperature (Tm value) was measured using differential scanning calorimetry under the following conditions.
  • DSC: N-DSCII (Applied Thermodynamics)
  • Elution conditions: 20 mM sodium citrate, 300 mM NaCl, pH7.0
  • Protein concentration: 0.1 mg/mL
  • Scanning speed: 1° C./minute
  • The results of the respective DSC measurements are shown in FIG. 23. The Tm values for peak 2 purified from uw-wz4 and variant v1 had nearly the same Tm values as the unmodified form, and their stabilities were found to be the same. Between peak 1 purified from u2-wz4 and variant v3, variant v3 showed slightly lower stability. As an example of interface regulation performed according to methods that utilize the knob-into-hole technique, there is a report (Acta. Pharmacol. Sin. 2005 26(6): 649-58) that in the heterologous association of IgG CH3 domains, the Tm value for the unmodified CH3 domain is 80.4° C., whereas the Tm value for the modified CH3 domain is 69.4° C., and the Tm value decreases by a large amount and the stability decreases. In contrast, it was confirmed in the present invention that association can be regulated without decreasing the stability.
  • Next, stability assessment was performed by thermal acceleration tests under the following conditions on peak 1 purified from u2-wz4 and peak 2 purified from u2-wz4, and on VH/VL interface-modified variants v1 and v3.
  • <Thermal Acceleration Conditions>
  • Solution conditions: 20 mM sodium citrate, pH 6.0
  • Protein concentration: 0.25 mg/mL
  • Acceleration conditions: 40° C.—6 days, 12 days
  • The accelerated samples were analyzed by gel filtration chromatography and cation exchange chromatography under the following conditions.
  • As shown in FIG. 24, the results of gel filtration chromatography analysis confirmed that the monomer recovery rate is nearly the same for peak 2 purified from u2-wz4 and variant v1, and the stability of association was nearly the same. The monomer recovery rate was also nearly the same for peak 1 purified from u2-wz4 and variant v3, and the stability of association was nearly the same in both conformational isomers.
  • As indicated in FIG. 25, as a result of cation exchange chromatography analysis, purified peak 1 in the unmodified form isomerized to peak 2 by an isomerization reaction, and purified peak 2 in the unmodified form isomerized to peak 1 by an isomerization reaction, whereas the VH/VL interface-modified v1 and v2 did not undergo an isomerization reaction even after the thermal acceleration. It was found out that applying modifications to the VH/VL interface allow one of the two types of conformational isomers alone to be expressed at 100%, and in addition, the respective conformational isomers obtained do not undergo an isomerization reaction and can be stably stored.
  • The present Example demonstrated that one of the two types of conformational isomers alone can be expressed at 100% by using the VH/VL interface modifications applied to v1 and v3. A known method for VH/VL-interface regulation for obtaining a single chain antibody having the conformation of interest is a method of regulating the conformations of bispecific diabodies using the knobs-into-holes technique (Protein Sci. 1997 April; 6(4):781-8, Remodeling domain interfaces to enhance heterodimer formation, Zhu Z, Presta L G, Zapata G, Carter P). It is reported that this method increases the percentage of formation of the heterodimer conformation of interest from 72% to 92% by modifying amino acids at a total of four positions per VH/VL interface. In contrast, the present invention succeeded in obtaining the conformation of interest at 100% and without decreasing the thermal stability and the stability of the conformational isomer by modifying amino acids at four positions.
  • [Example 14] Humanization of Bispecific Antibody Carrying a Hybrid L Chain
  • The bispecific antibody (Japanese Patent Application No. 2005-112514) composed of a combination of anti-Factor IXa antibody A69-VH, anti-Factor X antibody B26-VH, and hybrid L chain (BBA), which was the most effective in shortening blood coagulation time, was subjected to humanization as follows.
  • 14-1. Homology Search of Humanized Antibodies
  • Using database constructed by obtaining amino acid sequence data of human antibodies from publicly disclosed Kabat Database (ftp://ftp.ebi.ac.uk/pub/databases/kabat/) and IMGT Database (http://imgt.cines.fr/), homology search was carried out separately for the mouse A69-H chain variable region (amino acid sequence: SEQ ID NO: 57), mouse B26-H chain variable region (amino acid sequence: SEQ ID NO: 58), and mouse BBA-L chain variable region (amino acid sequence: SEQ ID NO: 59). The results confirmed that they have high homologies to the human antibody sequences shown below, and it was thus decided that they would be used as the framework region (hereinafter abbreviated as FR) of humanized antibodies.
  • (1) A69-H chain variable region: KABATID-000064 (Kabat Database) (Kipps et al., J. Clin. Invest. 1991; 87:2087-2096)
    (2) B26-H chain variable region: EMBL Accession No. AB063872 (IMGT Database) (Unpublished data)
    (3) BBA-L chain variable region: KABATID-024300 (Kabat Database) (Welschof et al., J. Immunol. Method 1995; 179:203-214) Humanized antibodies in which complementarity determining regions (hereinafter abbreviated as CDR) of each mouse antibody were grafted into the FRs of human antibodies (1)-(3) were prepared.
  • Also, the web homology search site publicly disclosed by NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) was used to search secretory signal sequences of human antibodies that are highly homologous to the human antibodies of (1)-(3). The following secretory signal sequences obtained by the search were used.
  • (1) A69-H chain variable region: GenBank Accession No. AF062257
    (2) B26-H chain variable region: GenBank Accession No. AAC18248
    (3) BBA-L chain variable region: GenBank Accession No. AAA59100
  • 14-2. Construction of Humanized Antibody Gene Expression Vector
  • Twelve synthetic oligoDNAs of about 50 bases were prepared from a nucleotide sequence encoding the amino acid sequence from the secretory signal sequence to the antibody variable region, such that about 20 bases of their 3′-end anneal with each other. Furthermore, a primer annealing to the 5′-end of an antibody variable region gene and having the XhoI cleavage sequence, and a primer annealing to the 3′-end of an antibody variable region gene, having the SfiI cleavage sequence and also encoding the 5′-end sequence of the intron sequence were prepared.
  • 1 μL each of the synthetic oligoDNAs prepared at 2.5 μM were mixed, and 1×TaKaRa Ex Taq Buffer, 0.4 mM dNTPs, and 0.5 units TaKaRa Ex Taq (all from Takara Shuzo) were added to prepare 48 μL of a reaction solution. After heating this at 94° C. for 5 minutes, 2 cycles of reacting at 94° C. for 2 minutes, 55° C. for 2 minutes, and 72° C. for 2 minutes were performed to assemble and elongate each of the synthetic oligoDNAs. Next, 1 μL (10 μM each) of primers annealing to the 5′-end and to the 3′-end of the antibody gene were added, and the antibody variable region genes were amplified by 35 cycles of reacting at 94° C. for 30 seconds, 55° C. for 30 seconds, and 72° C. for 1 min and then reacting at 75° C. for 5 minutes. After PCR, the whole amount of the reaction solution was subjected to 1% agarose gel electrophoresis. Amplified fragments having the size of interest (approximately 400 bp) were purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and were eluted with 30 μL of sterile water. These fragments were cloned using the pGEM-T Easy Vector System (Promega) according to the method described in the instruction manual. Nucleotide sequence of each of the DNA fragments was determined using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) and ABI PRISM 3730xL DNA Sequencer (Applied Biosystems) according to the method described in the instruction manual.
  • The H-chain variable region fragment-inserted plasmid and the L-chain variable region fragment-inserted plasmid, each of which were confirmed to have the correct humanized antibody variable region gene sequence, were digested with XhoI and SfiI, and EcoRI respectively. Then, the reaction solution was subjected to 1% agarose gel electrophoresis. DNA fragments having the size of interest (approximately 400 bp) were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 30 μL of sterile water. Then, expression vectors for animal cells were prepared as follows. To preferentially express IgG4 whose H chains are of a heterologous combination, a CH3 portion amino acid-substituted IgG4 was used by referring to the knobs-into-holes technique of IgG1 (Non-Patent Document 3). Furthermore, to promote H chain dimer formation, amino acid substitution (-ppcpScp-->-ppcpPcp-) was also introduced to the hinge. Humanized A69 H chain expression vector was prepared by inserting humanized A69 H chain variable region antibody gene fragment into an expression vector prepared by inserting Y349C and T366W-substituted constant region gene to pCAGGS comprising a chicken β-actin promoter (Niwa et al. 1991 Gene, 108: 193-199). Humanized B26 H chain expression vector was prepared by inserting humanized B26 H chain variable region antibody gene fragment into an expression vector prepared by inserting E356C, T366S, L368A, and Y407V-substituted constant region gene to pCAGGS. Plasmid (pCAG-gKDNA) prepared by inserting a wild type antibody L chain constant region to pCAGGS was digested with EcoRI to prepare expression vectors inserted with humanized BBA L chain variable region antibody gene fragment. Ligation reaction was performed using Rapid DNA Ligation Kit (Roche Diagnostics), and DH5α strain E. coli (TOYOBO) was transformed.
  • 14-3. Preparation of Humanized Bispecific Antibodies
  • Humanized bispecific antibodies were expressed according to the method described in Example 4-2 or according to the following method. Human fetal renal carcinoma cell-derived HEK293H strain (Invitrogen) was suspended in a DMEM medium (Invitrogen) containing 10% FCS (Invitrogen), and 10 mL of this was seeded at a cell density of 5-6×105 cells/mL in each dish used for adhesive cells (10-cm diameter, CORNING) and cultured for one day and night in a CO2 incubator (37° C., 5% CO2). Then, the medium was removed by suction, and 6.9 mL of CHO-S-SFM-II (Invitrogen) medium was added. The plasmid DNA mixture solution prepared in 14-2 (total of 13.8 μg) was mixed with 20.7 μL of 1 μg/mL Polyethylenimine (Polysciences Inc.) and 690 μL of CHO-S-SFMII medium, left to stand at room temperature for 10 minutes, then the cells were seeded into each dish and incubated in a CO2 incubator (37° C., 5% CO2) for 4-5 hours. Thereafter, 6.9 mL of CHO-S-SFM-II medium was added and then the cells were incubated in a CO2 incubator for 3 days. The culture supernatant was recovered, then cells were removed by centrifugation (at approximately 2000 g for 5 minutes at room temperature), and the solution was sterilized by passing it through a 0.22 μm filter MILLEX®-GV (Millipore). The sample was stored at 4° C. until use.
  • Next, antibodies were purified according to the method described in Example 4-4, and the antibody concentration was quantified according to the method described in Example 4-5 or according to the following method. Protein A was immobilized on Sensor Chip CMS (BIACORE) using BIAcore3000 (BIACORE). More specifically, Protein A-immobilized sensor chip was prepared according to the manufacturer's protocol by reacting an activated sensor chip with a Protein A solution diluted to 50 μg/mL with 10 mM aqueous sodium acetate solution (pH 4.0, BIACORE) at 5 μL/min for 30 minutes, and then performing a blocking operation. This sensor chip was used to measure the concentration of the culture supernatant and the purified product using BIAcore Q. HBS-EP Buffer (BIACORE) was used for the immobilization of the sensor chip and for the measurements of concentration. As a standard for concentration measurements, human IgG4 (humanized anti-TF antibody, see WO 99/51743) diluted with HBS-EP Buffer in a two-fold dilution series up to six stages beginning at 2000 ng/mL was used.
  • 14-4. Activity Assessment of Humanized Bispecific Antibodies and Modification of Antibody Sequence
  • To assess the plasma coagulation abilities of the prepared humanized bispecific antibody and the chimeric bispecific antibody (A69/B26/BBA), the effects of the antibodies on APTT were examined using F. VIII-deficient plasma according to the method of Example 5. A humanized bispecific antibody whose blood coagulation ability had decreased was subjected to amino acid modifications in the human antibody FR in order to increase its activity. During expression and secretion 3 types of antibodies, humanized A69/humanized BBA antibody, humanized B26/humanized BBA antibody, and humanized A69/humanized B26/humanized BBA bispecific antibody were expressed, these 3 types of antibodies were separated, and amino acid modifications that decrease the isoelectric point of the humanized A69 H chain variable region and increase the isoelectric point of the humanized B26 H chain variable region were carried out in order to purify the bispecific antibody alone. Specifically, mutations were introduced to the humanized antibody variable region using a QuikChange Site-Directed Mutagenesis Kit (Stratagene) according to the method described in the instruction manual. The H-chain variable region fragment-inserted plasmid and L-chain variable region fragment-inserted plasmid were confirmed to have the humanized antibody variable region gene sequence of interest were digested with XhoI and SfiI, and EcoRI respectively. The reaction solution was subjected to 1% agarose gel electrophoresis. DNA fragments having the size of interest (approximately 400 bp) were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 30 μL of sterile water. Then, expression vectors for animal cells were prepared according to the method described in Example 14-2. Humanized bispecific antibody was prepared according to the method described in Example 14-3, and blood coagulation activity was evaluated according to the method described in Example 5.
  • By repeated amino acid modifications of the FR sequence and assessment of blood coagulation ability, humanized bispecific antibody (humanized A69 (hA69-PFL)/humanized B26 (hB26-PF)/humanized BBA (hAL-AQ)) having the same level of activity as the chimeric bispefic antibody (A69/B26/BBA) was obtained (FIG. 26). Each of the antibody variable region sequences are indicated in the following SEQ ID NOs.
  • (1) humanized A69 antibody VH (hA69-PFL) SEQ ID NO: 19 (nucleotide sequence), SEQ ID NO: 20 (amino acid sequence)
    (2) humanized B26 antibody VH (hB26-PF) SEQ ID NO: 21 (nucleotide sequence), SEQ ID NO: 22 (amino acid sequence)
    (3) humanized BBA antibody VL (hAL-AQ) SEQ ID NO: 23 (nucleotide sequence), SEQ ID NO: 24 (amino acid sequence)
  • [Example 15] Selection of Amino Acid Modification Positions in the Constant Region to Improve the Formation Efficiency of a Bispecific Antibody
  • Aiming for the increase in the formation efficiency of a bispecific antibody, a heterodimer, by using charge repulsion, examinations were carried out by modifying amino acids present at the constant region CH3 interface. First, from the crystal structure of the CH3 region (Protein Data bank, PDB code 10QX), pairs of amino acids that interact electrostatically during CH3 homodimer formation were searched. As a result, at the interface during CH3 homodimer formation, 3 pairs, H- chain positions 356 and 439, positions 357 and 370, and positions 399 and 409 (the numbers are based on the EU numbering system (Kabat E A et al. 1991. Sequences of Proteins of Immunological Interest. NIH)), were found to be interacting electrostatically where each of the amino acids carry a positive charge and a negative charge, and these were selected as the positions for modification. It was postulated that heterodimer formation would be promoted by a modification method that carries out a modification by switching the charge of pairs of positively and negatively charged amino acids. The principle of this regulation is described in FIG. 27. Experiments were also performed with modifications that simultaneously introduce disulfide bonds to the CH3 interface. The positions of the modified amino acids are summarized in Table 1.
  • [Example 16] Amino Acid Modifications at the Interface of Humanized Bispecific Antibody Constant Region CH3
  • To modify the amino acids at the H-chain constant region CH3 interface selected in Example 15, the following operation was performed. Each H-chain constant region was amplified by PCR using the human IgG1 and human IgG4 H-chain constant region genes as templates and using a 5′-end primer designed so that the nucleotide sequence encoding two amino acids (Ala-Ser) in the N-terminal side of the H-chain constant region will be an NheI recognition sequence (GCTAGC) and a primer that anneals to the 3′-end and that carries a NotI recognizing site. Then, pBCH (comprising an IgG1 constant region gene) and pBCH4 (IgG4 comprising a constant region gene) linked to a vector prepared by digesting pBluescriptKS+ vector (TOYOBO) with NheI and Not I (both from TaKaRa) were prepared. PCR was performed using a primer that is complementary to the 5′-end nucleotide sequence of the H-chain variable region of the humanized A69 antibody and humanized B26 antibody and that has a Kozak sequence (CCACC) and an EcoRI recognition sequence, and a primer on the 3′-end nucleotide sequence having an NheI recognition sequence, and the obtained PCR products were inserted into pBCH or pBCH4 digested with EcoRI and NheI (both from TaKaRa) and the variable regions and the constant regions were linked. Next, to modify amino acids present at the H-chain constant region CH3 interface, mutations were introduced to the H-chain constant regions using QuikChange Site-Directed Mutagenesis Kit (Stratagene) according to the method described in the instruction manual. The H-chain gene fragment-inserted plasmid was confirmed to have the H-chain constant region gene sequence of interest and then was digested with EcoRI and NotI (both from TaKaRa). The reaction solution was subjected to 1% agarose gel electrophoresis. H-chain gene fragments having the size of interest (approximately 1400 bp) were purified using QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the instruction manual, and eluted with 304 of sterile water. Then, the fragments were inserted into pCAGGS digested with EcoRI and NotI to prepare expression plasmids. Preparation of humanized bispecific antibodies was performed following the method described in Example 14-3. The positions of modified amino acids are summarized in Table 1. The EU numbering system (Kabat E A et al. 1991. Sequences of Proteins of Immunological Interest. NIH) was employed for the numbers of the modified positions shown in Table 1. The alphabet in front of the number of the modified position is the one-letter code representation for the amino acid before modification, and the alphabet after the number indicates the one letter code representation of the amino acid after modification.
  • TABLE 1
    Humanized A69 antibody H-chain constant region Humanized A26 antibody H-chain constant region
    SEQ ID NO SEQ ID NO
    Name Modified position of the amino acid Modified position of the amino acid
    IgG4 wild type 25 25
    KiH Y349C, T366W  9 E356C, T366S, L368A, Y407V 11
    s1 R409D 26 D399K 27
    s2 K370E 28 E357K 29
    s3 K439E 30 E356K 31
    w1 R409D, K370E 32 D399K, E357K 33
    w2 R409D, K439E 34 D399K, E356K 35
    w3 K370E, K439E 36 E357K, E356K 37
    s1C R409D, Y349C 38 D399K, S354C 39
    s2C K370E, Y349C 40 E357K, S354C 41
    s3C K439E, Y349C 42 E356K, S354C 43
    w3C K370E, K439E, Y349C 44 E357K, E356K, S354C 45
    w3C2 K370E, K439E, S354C 46 E357K, E356K, Y349C 47
    IgG1 wild type 48 48
    KiH Y349C, T366W 49 D356C, T366S, L368A, Y407V 50
    w1 R409D, K370E 51 D399K, E357K 52
    w2 R409D, K439E 53 D399K, E356K 54
    w3 K370E, K439E 55 E357K, E356K 56
  • In the Table shown above, KiH indicates the variant described in Non-Patent Document 3 prepared using the Knobs-into-holes technique.
  • [Example 17] Assessment of Formation Efficiency and Stability of the CH3 Interface-Modified Bispecific Antibodies (IgG4-Type)
  • IgG4-type wild type, KiH, s1, s2, s3, w1, w2, w3, s1C, s2C, s3C, w3C, and w3C2 were analyzed by cation exchange chromatography (IEX), and the formation efficiency of bispecific antibody (hereinafter referred to as BiAb) was evaluated. The conditions for the cation exchange chromatographic analysis were as follows, and the ratio of the peak areas of A-Homo, a homodimer of humanized A69 antibody, BiAb, a heterodimer of humanized A69 antibody and humanized B26 antibody, and B-Homo, a homodimer of humanized B26 antibody were calculated.
  • Column: ProPac WCX-10, 4×250 nm, (Dionex)
  • Mobile phase: A: 10 mmol/L NaH2PO4/Na2HPO4, pH6.25
      • B: 10 mmol/L NaH2PO4/Na2HPO4, 500 mmol/L NaCl, pH6.25
        Flow rate: 1.0 mL/min
        Gradient: 10% B (5 min)-->(40 min)-->60% B-->(5 min)-->100% B (5 min)
    Detection: 220 nm
  • For Wild type, KiH, s2, s3, s1C, s2C, s3C, w3C, and w3C2, BiAbs were purified by collecting BiAb peak fractions from the IEX analyses described above. The BiAb fractions were concentrated using Amicon Ultra, MWCO 10000 (Millipore), then dialyzed overnight against 20 mM sodium acetate, 150 mM NaCl, pH6.0 while cooling, and then recovered. BiAb concentrations were made uniform at 0.1 mg/mL, initial samples and samples at 60° C. for one week (60° C.-1 week) were individually dispensed into vials in duplicates, and stability tests were performed on the 60° C.-1 week samples. Gel filtration chromatographic (SEC) analysis was performed, and the rate of recovery of the monomer peak was calculated (60° C.-1 week sample monomer peak area/initial sample monomer peak area×100). Conditions for the gel filtration chromatographic analyses were as follows:
  • Column: Super3000 (TOSOH)
  • Mobile phase: 50 mM sodium phosphate, 300 mM KCl, pH7.0
    Flow rate: 0.2 mL/min
  • Detection: 220 nm
  • The IEX chromatograms of the IgG4-type wild type, s1, s2, s3, and w1 are shown in FIG. 28, and the percentages of formation of A-Homo, BiAb, and B-Homo by the wild type, KiH, s1, s2, s3, w1, w2, w3, s1C, s2C, s3C, w3C, and w3C2 are shown in FIG. 29. The monomer recovery rates after 60° C. for one week are shown in FIG. 30.
  • As shown in FIGS. 28 and 29, efficiency of the intended BiAb formation improved greatly as compared to the wild type for every one of the CH3 interface-modified variants found in the present Example. Since CH3 is in the constant region, when making modifications to the native amino acids, the modified positions are desirably kept to minimum from the viewpoint of antigenicity. For introduction of knobs and holes, in KiH, a total of four positions in the both H chains are modified and in addition two positions are modified for disulfide bond introduction, and a total of six positions are modified. Therefore, as shown in FIG. 29, the efficiency of BiAb formation is high. However, the results of stability tests shown in FIG. 30 shows that thermal stability is significantly lowered compared to the wild type even though a disulfide bond is introduced. To develop antibodies into medical pharmaceuticals, stable formulations are necessary and thus, a higher thermal stability is more desirable.
  • On the other hand, every one of the CH3 interface-modified variants found in the present Example was successful in greatly improving the efficiency of the intended BiAb formation as compared to the wild type. Among these variants, for example, high BiAb formation efficiency of 90% or more was achieved by modification of s2, s3, w1, w2, w3, and s1C at a total of two or four positions which is fewer compared to KiH (six modified positions), which the risk of antigenicity is considered to be low. Furthermore, the results of stability tests shown in FIG. 30 showed that among the variants, for example, s2, s3, w3, w3C, and w3C2 have high BiAb formation efficiency of 90% or more and also have higher thermal stability (higher percentage of monomer recovery) than KiH, and s3, s2c, s3C, w3C, and w3C2 have much higher thermal stability than the wild type, and they will be useful for developing stable pharmaceutical formulations.
  • The present Example demonstrated that by modifying the amino acids at H- chain positions 356, 357, 370, 399, 409, and 439 in the CH3 interface to introduce charge-induced molecular repulsion, efficiency of the intended BiAb formation could be greatly improved. It also showed that by introducing disulfide bonds and such modifications individually or in combination, BiAb formation efficiency could be greatly improved with fewer modifications than in KiH, and that BiAb formation efficiency could be greatly improved with higher stability than in KiH, and even more with a higher thermal stability than in the wild type.
  • [Example 18] Coagulation Activity Assessment of CH3 Interface-Modified Bispecific Antibodies
  • Coagulation activity was assessed according to the method described in Example 5, using CH3 interface-modified IgG4-type bispecific antibodies (s1, s2, s3, w1, w2, and w3) purified in Example 16. As shown in FIG. 31, since coagulation activity did not change even when the amino acids at the constant region CH3 interface was modified, modification of CH3 interface amino acids were shown not to affect the structure of the variable regions involved in reacting with the antigens.
  • [Example 19] Assessment of the Formation Efficiency of CH3 Interface-Modified Bispecific Antibodies (IgG1-Type)
  • IgG1-type wild type, KiH, w1, w2, and w3 were analyzed by cation exchange chromatography (IEX), and BiAb formation efficiency was evaluated. The conditions of the cation exchange chromatographic analysis are as follows, and the ratio of the peak areas of A-Homo, a homodimer of humanized A69 antibody, BiAb, a heterodimer of humanized A69 antibody and humanized B26 antibody, and B-Homo, a homodimer of humanized B26 antibody were calculated.
  • Column: ProPac WCX-10, 4×250 nm, (Dionex)
  • Mobile phase: A: 10 mmol/L NaH2PO4/Na2HPO4, pH6.25
      • B: 10 mmol/L NaH2PO4/Na2HPO4, 500 mmol/L NaCl, pH6.25
        Flow rate: 1.0 mL/min
        Gradient: 10% B (5 min)-->(40 min)-->60% B-->(5 min)-->100% B (5 min)
    Detection: 220 nm
  • The percentages of formation of A-Homo, BiAb, and B-Homo by the IgG1-type wild type, KiH, w1, w2, and w3 are shown in FIG. 32. Alike IgG4-type, the efficiency of the intended BiAb formation greatly improved in every one of them as compared to the wild type. As in the IgG4-types, high BiAb formation efficiency of 90% or more was achieved by modification at four positions, which is less than that of KiH, and the risk of antigenicity is considered to be small. The present Example showed that the method of modifying the amino acids at H- chain positions 356, 357, 370, 399, 409, and 439 in the CH3 interface can be applied not only to antibody constant region subclass IgG4, but also to the IgG1, and is applicable to IgG antibodies in general.
  • INDUSTRIAL APPLICABILITY
  • In that the present invention requires only a small number of amino acid substitutions, the methods of the present invention find exceptional utility in regulating association without changing the structure and function (activity) of the original polypeptides. Thus, there is little effect on antigenicity. Accordingly, bispecific antibodies that actually maintain activity can be obtained efficiently by following the methods of the present invention.

Claims (97)

1. A method for producing a polypeptide comprising a mutation in an amino acid residue forming a polypeptide interface such that polypeptide association will be regulated, wherein the method comprises:
(a) modifying a nucleic acid encoding an amino acid residue forming the polypeptide interface from the original nucleic acid, such that polypeptide association will be inhibited;
(b) culturing host cells such that said nucleic acid is expressed; and
(c) recovering said polypeptide from the host cell culture.
2. A method for producing a heteromultimer comprising a mutation in an amino acid residue forming an interface between polypeptides such that heteromultimer association will be regulated, wherein the method comprises:
(a) modifying a nucleic acid encoding an amino acid residue forming the interface between polypeptides from the original nucleic acid, such that the association between polypeptides will be inhibited;
(b) culturing host cells such that said nucleic acid is expressed; and
(c) recovering said heteromultimer from the host cell culture.
3. The method of claim 1, wherein a nucleic acid encoding an amino acid residue forming a polypeptide interface is modified from the original nucleic acid, so that the polypeptide association forming one or more types of conformational isomers will be inhibited in a polypeptide that may form two or more types of conformational isomers.
4. The method of claim 2, wherein a nucleic acid encoding an amino acid residue forming an interface between polypeptides is modified from the original nucleic acid, so that the association between polypeptides forming one or more types of multimers will be inhibited in a heteromultimer that may form two or more types of multimers.
5. The method of claim 1, wherein the modification of step (a) is modifying the original nucleic acid so that an amino acid residue mutation is introduced to the interface such that two or more amino acid residues forming the interface will carry the same type of charge.
6. The method of claim 5, wherein the introduced amino acid residue is glutamic acid (E).
7. The method of claim 5, wherein the introduced amino acid residue is aspartic acid (D).
8. The method of claim 5, wherein the introduced amino acid residue is lysine (K).
9. The method of claim 5, wherein the introduced amino acid residue is arginine (R).
10. The method of claim 5, wherein the introduced amino acid residue is histidine (H).
11. The method of claim 1, wherein the modification of step (a) is modifying the original nucleic acid so that an amino acid residue mutation is introduced to the interface such that an amino acid residue forming a hydrophobic core present in the interface will become charged amino acid residues.
12. The method of claim 11, wherein the introduced amino acid residue is glutamic acid (E).
13. The method of claim 11, wherein the introduced amino acid residue is aspartic acid (D).
14. The method of claim 11, wherein the introduced amino acid residue is lysine (K).
15. The method of claim 11, wherein the introduced amino acid residue is arginine (R).
16. The method of claim 11, wherein the introduced amino acid residue is histidine (H).
17. The method of claim 1, wherein the interface of the polypeptide is formed by an antibody heavy chain variable region and light chain variable region.
18. The method of claim 1, wherein the polypeptide interface is formed by two or more types of heavy chain variable regions.
19. The method of claim 1, wherein the polypeptide interface is formed by an antibody heavy chain constant region and light chain constant region.
20. The method of claim 1, wherein the polypeptide interface is formed by two or more types of heavy chain constant regions.
21. The method of claim 1, wherein the polypeptide is a single chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by linkers.
22. The method of claim 2, wherein the heteromultimer is a multi-specific antibody comprising two or more types of heavy chain variable regions and two or more types of light chain variable regions.
23. The method of claim 22, wherein the heteromultimer is a bispecific antibody.
24. A mutant polypeptide or heteromultimer produced by the method of claim 1.
25. A mutant polypeptide, comprising a modification made to an amino acid residue forming an interface in the original polypeptide such that the association within said polypeptide is inhibited.
26. A heteromultimer, comprising a modification made to an amino acid residue forming an interface between the original polypeptides such that the association between said polypeptides is inhibited.
27. The mutant polypeptide of claim 25, wherein the original polypeptide may form two or more types of conformational isomers.
28. The heteromultimer of claim 26, wherein the original polypeptides may form two or more types of multimers.
29. The mutant polypeptide of claim 25, wherein said modification of the amino acid residues forming a polypeptide interface is introducing an amino acid residue mutation to the interface such that two or more amino acid residues forming the interface will carry the same type of charge.
30. The mutant polypeptide or heteromultimer of claim 29, wherein the introduced amino acid residue is glutamic acid (E).
31. The mutant polypeptide or heteromultimer of claim 29, wherein the introduced amino acid residue is aspartic acid (D).
32. The mutant polypeptide or heteromultimer of claim 29, wherein the introduced amino acid residue is lysine (K).
33. The mutant polypeptide or heteromultimer of claim 29, wherein the introduced amino acid residue is arginine (R).
34. The mutant polypeptide or heteromultimer of claim 29, wherein the introduced amino acid residue is histidine (H).
35. The mutant polypeptide of claim 25, wherein the modification of amino acid residues forming the polypeptide interface is introducing an amino acid residue mutation to the interface such that an amino acid residue forming a hydrophobic core present in the interface will become charged amino acid residues.
36. The mutant polypeptide or heteromultimer of claim 35, wherein the introduced amino acid residue is glutamic acid (E).
37. The mutant polypeptide or heteromultimer of claim 35, wherein the introduced amino acid residue is aspartic acid (D).
38. The mutant polypeptide or heteromultimer of claim 35, wherein the introduced amino acid residue is lysine (K).
39. The mutant polypeptide or heteromultimer of claim 35, wherein the introduced amino acid residue is arginine (R).
40. The mutant polypeptide or heteromultimer of claim 35, wherein the introduced amino acid residue is histidine (H).
41. The mutant polypeptide of claim 25, wherein the polypeptide interface is formed by an antibody heavy chain variable region and light chain variable region.
42. The mutant polypeptide of claim 25, wherein the polypeptide interface is formed by two or more types of heavy chain variable regions.
43. The mutant polypeptide of claim 25, wherein the polypeptide interface is formed by an antibody heavy chain constant region and light chain constant region.
44. The mutant polypeptide of claim 25, wherein the polypeptide interface is formed by two of more types of heavy chain constant regions.
45. The mutant polypeptide of claim 25, wherein the polypeptide is a single chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by linkers.
46. The heteromultimer of claim 26, wherein the heteromultimer is a multi specific antibody comprising two or more types of heavy chain variable regions and two or more types of light chain variable regions.
47. The heteromultimer of claim 46, wherein the heteromultimer is a bispecific antibody.
48. A composition comprising the mutant polypeptide of claim 25, and a pharmaceutically acceptable carrier.
49. A nucleic acid encoding the mutant polypeptide of claim 25.
50. A host cell comprising the nucleic acid of claim 49.
51. A method for producing the mutant polypeptide of claim 25, which comprises the steps of culturing the host cell, and recovering the polypeptide from the cell culture.
52. A method for regulating polypeptide association, which comprises modifying an amino acid residue forming an interface in the original polypeptide such that the association within the polypeptide is inhibited.
53. A method for regulating heteromultimer association, which comprises modifying amino acid residues forming an interface between the original polypeptides such that the association between the polypeptides is inhibited.
54. The method of claim 52, which comprises modifying an amino acid residue forming an interface in a polypeptide, such that the association of a polypeptide forming one or more types of conformational isomers will be inhibited in a polypeptide that may form two or more types of conformational isomers.
55. The method of claim 53, which comprises modifying amino acid residues forming an interface between polypeptides, such that the association between polypeptides that form one or more types of conformational isomers will be inhibited in a heteromultimer that may form two or more types of multimers.
56. The method of claim 52, wherein said modification of an amino acid residue forming a polypeptide interface is an amino acid residue mutation to the interface such that two or more amino acid residues forming the interface will have the same type of charge.
57. The method of claim 56, wherein the introduced amino acid residue is glutamic acid (E).
58. The method of claim 56, wherein the introduced amino acid residue is aspartic acid (D).
59. The method of claim 56, wherein the introduced amino acid residue is lysine (K).
60. The method of claim 56, wherein the introduced amino acid residue is arginine (R).
61. The method of claim 56, wherein the introduced amino acid residue is histidine (H).
62. The method of claim 52, wherein said modification of amino acid residues forming a polypeptide interface is introducing an amino acid residue mutation to the interface such that an amino acid residue forming a hydrophobic core present in the interface will become charged amino acid residues.
63. The method of claim 62, wherein the introduced amino acid residue is glutamic acid (E).
64. The method of claim 62, wherein the introduced amino acid residue is aspartic acid (D).
65. The method of claim 62, wherein the introduced amino acid residue is lysine (K).
66. The method of claim 62, wherein the introduced amino acid residue is arginine (R).
67. The method of claim 62, wherein the introduced amino acid residue is histidine (H).
68. The method of claim 52, wherein the polypeptide interface is formed by an antibody heavy chain variable region and light chain variable region.
69. The method of claim 52, wherein the polypeptide interface is formed by two or more types of heavy chain variable regions.
70. The method of claim 52, wherein the polypeptide interface is formed by an antibody heavy chain constant region and light chain constant region.
71. The method of claim 52, wherein the polypeptide interface is formed by two or more types of heavy chain constant regions.
72. The method of claim 52, wherein the polypeptide is a single chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by linkers.
73. The method of claim 53, wherein the heteromultimer is a multispecific antibody comprising two types or more of heavy chain variable regions and two types or more of light chain variable regions.
74. The method of claim 73, wherein the heteromultimer is a bispecific antibody.
75. An antibody comprising a heavy chain variable region and a light chain variable region, wherein the following amino acid residues of (1) and (2) carry the same type of charge:
(1) an amino acid residue which is included in the heavy chain variable region and corresponds to position 39 in the amino acid sequence of SEQ ID NO: 6; and
(2) an amino acid residue which is included in the light chain variable region and corresponds to position 44 in the amino acid sequence of SEQ ID NO: 8.
76. An antibody comprising a heavy chain variable region and a light chain variable region, wherein the following amino acid residues of (1) and (2) carry the same type of charge:
(1) an amino acid residue which is included in the heavy chain variable region and corresponds to position 45 in the amino acid sequence of SEQ ID NO: 6; and
(2) an amino acid residue which is included in the light chain variable region and corresponds to position 50 in the amino acid sequence of SEQ ID NO: 8.
77. An antibody comprising a heavy chain variable region and a light chain variable region, wherein either one of the following amino acid residues of (1) or (2) is a charged amino acid residue:
(1) an amino acid residue which is included in the heavy chain variable region and corresponds to position 45 in the amino acid sequence of SEQ ID NO: 6; and
(2) an amino acid residue which is included in the light chain variable region and corresponds to position 50 in the amino acid sequence of SEQ ID NO: 8.
78. The antibody of claim 75, wherein amino acid residues carrying the same type of charge are selected from amino acid residues included in the group of either (a) or (b):
(a) glutamic acid (E) and aspartic acid (D); or
(b) lysine (K), arginine (R), and histidine (H).
79. The antibody of claim 77, wherein said charged amino acid residue is glutamic acid (E), aspartic acid (D), lysine (K), arginine (R), or histidine (H).
80. The antibody of claim 75, wherein the polypeptide is a single chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by linkers.
81. The antibody of claim 75, wherein the polypeptide is a multispecific antibody comprising two or more types of heavy chain variable regions and two or more types of light chain variable regions.
82. The antibody of claim 81, wherein the polypeptide is a bispecific antibody.
83. A composition comprising the antibody of claim 75 and a pharmaceutically acceptable carrier.
84. A nucleic acid encoding a polypeptide constituting the antibody of claim 75.
85. A host cell comprising the nucleic acid of claim 84.
86. The method for producing the antibodies of claim 75, which comprises the steps of culturing the host cell and recovering the polypeptides from the cell culture.
87. An antibody comprising two or more types of heavy chain CH3 regions, wherein one to three pair(s) of amino acid residues in the first heavy chain CH3 region is/are selected from the pair(s) of amino acid residues indicated in (1) to (3) that carry the same type of charge:
(1) amino acid residues included in the heavy chain CH3 region at positions 356 and 439 according to the EU numbering system;
(2) amino acid residues included in the heavy chain CH3 region at positions 357 and 370 according to the EU numbering system; and
(3) amino acid residues included in the heavy chain CH3 region at positions 399 and 409 according to the EU numbering system.
88. The antibody of claim 87, in which pairs of the amino acid residues in the second heavy chain CH3 region are selected from the pairs of amino acid residues of (1) to (3), wherein the one to three pairs of amino acid residues corresponding to the pairs of amino acid residues of (1) to (3) carrying the same type of charge in said first heavy chain CH3 region, carry opposite charges from the corresponding amino acid residues in said first heavy chain CH3 region.
89. The antibody of claim 87, wherein said amino acid residues carrying the same type of charge are selected from the amino acid residues included in the group of either (a) or (b):
(a) glutamic acid (E) and aspartic acid (D); or
(b) lysine (K), arginine (R), and histidine (H).
90. The antibody of claim 87, wherein said first heavy chain CH3 region and the second heavy chain CH3 region are crosslinked by a disulfide bond.
91. The antibody of claim 87, wherein the antibody comprises two or more types of heavy chain constant regions.
92. The antibody of claim 87, wherein the multispecific antibody comprises two or more types of heavy chain variable regions and two or more types of light chain variable regions.
93. The antibody of claim 92, which is a bispecific antibody.
94. A composition comprising the antibody of claim 87 and a pharmaceutically acceptable carrier.
95. A nucleic acid encoding a polypeptide constituting the antibody of claim 87.
96. A host cell comprising the nucleic acid of claim 95.
97. A method for producing the antibody of claim 87, which comprises the steps of culturing the host cell of claim 96, and recovering the polypeptides from the cell culture.
US17/520,368 2005-03-31 2021-11-05 Methods for producing polypeptides by regulating polypeptide association Pending US20220267822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/520,368 US20220267822A1 (en) 2005-03-31 2021-11-05 Methods for producing polypeptides by regulating polypeptide association

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005101105 2005-03-31
JP2005-101105 2005-03-31
JP2005-378266 2005-12-28
JP2005378266 2005-12-28
PCT/JP2006/306803 WO2006106905A1 (en) 2005-03-31 2006-03-31 Process for production of polypeptide by regulation of assembly
US91012808A 2008-10-07 2008-10-07
US15/782,256 US11168344B2 (en) 2005-03-31 2017-10-12 Methods for producing polypeptides by regulating polypeptide association
US17/520,368 US20220267822A1 (en) 2005-03-31 2021-11-05 Methods for producing polypeptides by regulating polypeptide association

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/782,256 Division US11168344B2 (en) 2005-03-31 2017-10-12 Methods for producing polypeptides by regulating polypeptide association

Publications (1)

Publication Number Publication Date
US20220267822A1 true US20220267822A1 (en) 2022-08-25

Family

ID=37073456

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/910,128 Active 2029-06-26 US10011858B2 (en) 2005-03-31 2006-03-31 Methods for producing polypeptides by regulating polypeptide association
US15/782,256 Active 2028-11-15 US11168344B2 (en) 2005-03-31 2017-10-12 Methods for producing polypeptides by regulating polypeptide association
US17/520,368 Pending US20220267822A1 (en) 2005-03-31 2021-11-05 Methods for producing polypeptides by regulating polypeptide association

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/910,128 Active 2029-06-26 US10011858B2 (en) 2005-03-31 2006-03-31 Methods for producing polypeptides by regulating polypeptide association
US15/782,256 Active 2028-11-15 US11168344B2 (en) 2005-03-31 2017-10-12 Methods for producing polypeptides by regulating polypeptide association

Country Status (11)

Country Link
US (3) US10011858B2 (en)
EP (3) EP3050963B1 (en)
JP (2) JP5620626B2 (en)
KR (1) KR101374454B1 (en)
CN (1) CN101198698B (en)
AU (1) AU2006232287B2 (en)
CA (1) CA2603408C (en)
DK (1) DK3050963T3 (en)
ES (1) ES2592271T3 (en)
TW (2) TWI671403B (en)
WO (1) WO2006106905A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US11851476B2 (en) 2011-10-31 2023-12-26 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
US12116414B2 (en) 2007-09-26 2024-10-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US12180279B2 (en) 2017-10-30 2024-12-31 Hoffmann-La Roche Inc. Method for in vivo generation of multispecific antibodies from monospecific antibodies
US12297290B2 (en) 2017-10-20 2025-05-13 Hoffmann-La Roche Inc. Method for generating multispecific antibodies from monospecific antibodies
US12359001B2 (en) 2015-04-01 2025-07-15 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US12415857B2 (en) 2021-06-25 2025-09-16 Chugai Seiyaku Kabushiki Kaisha Anti-CTLA-4 antibody and use thereof
US12421322B2 (en) 2017-11-01 2025-09-23 Chugai Seiyaku Kabushiki Kaisha Antibody variant and isoform with lowered biological activity
US12460014B2 (en) 2016-04-28 2025-11-04 Chugai Seiyaku Kabushiki Kaisha Antibody-containing preparation
US12473375B2 (en) 2006-03-31 2025-11-18 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies

Families Citing this family (852)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754208B2 (en) 2001-01-17 2010-07-13 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
CN105884893A (en) 2002-07-18 2016-08-24 莫鲁斯有限公司 Recombinant Production Of Mixtures Of Antibodies
JP4794301B2 (en) 2003-06-11 2011-10-19 中外製薬株式会社 Antibody production method
AU2003271174A1 (en) 2003-10-10 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
TW200530269A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
JPWO2005056602A1 (en) * 2003-12-12 2008-03-06 中外製薬株式会社 Screening method for modified antibodies having agonist activity
EP1710255A4 (en) * 2003-12-12 2008-09-24 Chugai Pharmaceutical Co Ltd Modified antibodies recognising receptor trimers or higher multimers
WO2006106903A1 (en) * 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha sc(Fv)2 STRUCTURAL ISOMERS
CN101198698B (en) 2005-03-31 2014-03-19 中外制药株式会社 Process for production of polypeptide by regulation of assembly
EP2824183B1 (en) * 2005-04-08 2020-07-29 Chugai Seiyaku Kabushiki Kaisha Methods for producing bispecific antibodies
JP5085322B2 (en) * 2005-06-10 2012-11-28 中外製薬株式会社 Pharmaceutical composition containing sc (Fv) 2
WO2006132363A1 (en) * 2005-06-10 2006-12-14 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
PT1912675E (en) 2005-07-25 2014-05-09 Emergent Product Dev Seattle B-cell reduction using cd37-specific and cd20-specific binding molecules
ES2395969T3 (en) * 2006-03-24 2013-02-18 Merck Patent Gmbh Genetically modified heterodimeric protein domains
JP5144499B2 (en) * 2006-03-31 2013-02-13 中外製薬株式会社 Antibody modification method for purifying bispecific antibodies
MX380352B (en) 2006-06-12 2025-03-12 Aptevo Res & Development Llc SINGLE-CHAIN MULTIVALENT BINDING PROTEINS WITH EFFECTOR FUNCTION.
SI2066694T1 (en) 2006-09-29 2016-02-29 Oncomed Pharmaceuticals, Inc. Compositions and methods for diagnosing and treating cancer
AU2008234248C1 (en) 2007-03-29 2015-01-22 Genmab A/S Bispecific antibodies and methods for production thereof
CA2688275A1 (en) * 2007-05-31 2008-12-04 Genmab A/S Stable igg4 antibodies
RU2526512C2 (en) 2007-09-26 2014-08-20 Чугаи Сейяку Кабусики Кайся Modified constant region of antibody
WO2009072604A1 (en) 2007-12-05 2009-06-11 Chugai Seiyaku Kabushiki Kaisha Anti-nr10 antibody and use thereof
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US8227577B2 (en) * 2007-12-21 2012-07-24 Hoffman-La Roche Inc. Bivalent, bispecific antibodies
US8242247B2 (en) 2007-12-21 2012-08-14 Hoffmann-La Roche Inc. Bivalent, bispecific antibodies
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
AU2009204501B2 (en) * 2008-01-07 2015-02-12 Amgen Inc. Method for making antibody Fc-heterodimeric molecules using electrostatic steering effects
RS51975B (en) 2008-04-11 2012-02-29 Emergent Product Development Seattle Llc. CD37 IMMUNOTHERAPEUTIC PRODUCT AND ITS COMBINATION WITH BIFUNCTIONAL CHEMOTHERAPEUTIC AGENTS
CA2721052C (en) 2008-04-11 2023-02-21 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
TWI440469B (en) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
US8268314B2 (en) 2008-10-08 2012-09-18 Hoffmann-La Roche Inc. Bispecific anti-VEGF/anti-ANG-2 antibodies
JP5717624B2 (en) 2009-03-19 2015-05-13 中外製薬株式会社 Antibody constant region variants
EP2409990A4 (en) 2009-03-19 2013-01-23 Chugai Pharmaceutical Co Ltd Antibody constant region variant
CN102369215B (en) 2009-04-02 2015-01-21 罗切格利卡特公司 Multispecific antibodies comprising full length antibodies and single chain fab fragments
WO2010112194A1 (en) 2009-04-02 2010-10-07 F. Hoffmann-La Roche Ag Antigen-binding polypeptides and multispecific antibodies comprising them
SI2417156T1 (en) 2009-04-07 2015-06-30 Roche Glycart Ag Trivalent, bispecific antibodies
CA2757531A1 (en) 2009-04-07 2010-10-14 Roche Glycart Ag Bispecific anti-erbb-3/anti-c-met antibodies
SG175078A1 (en) 2009-04-07 2011-11-28 Roche Glycart Ag Bispecific anti-erbb-1/anti-c-met antibodies
WO2010129304A2 (en) 2009-04-27 2010-11-11 Oncomed Pharmaceuticals, Inc. Method for making heteromultimeric molecules
CN102448985B (en) * 2009-05-27 2015-08-05 霍夫曼-拉罗奇有限公司 Three or four specific antibodies
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US8703132B2 (en) * 2009-06-18 2014-04-22 Hoffmann-La Roche, Inc. Bispecific, tetravalent antigen binding proteins
WO2011028952A1 (en) * 2009-09-02 2011-03-10 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
MX2012003396A (en) 2009-09-16 2012-04-10 Genentech Inc Coiled coil and/or tether containing protein complexes and uses thereof.
WO2011037158A1 (en) 2009-09-24 2011-03-31 中外製薬株式会社 Modified antibody constant regions
BR112012006326A2 (en) 2009-09-29 2016-11-16 Roche Glycart Ag bispecific antibody, pharmaceutical composition, nucleic acid sequence, expression vector, prokaryotic or eukaryotic host cell and invention
TR201818814T4 (en) 2009-10-16 2019-01-21 Oncomed Pharm Inc Therapeutic combination and use of Dll4 antagonist antibodies and anti-hypertensive agents.
JP2013511281A (en) * 2009-11-23 2013-04-04 アムジェン インコーポレイテッド Monomeric antibody Fc
ES2777901T3 (en) * 2009-12-25 2020-08-06 Chugai Pharmaceutical Co Ltd Polypeptide Modification Method to Purify Polypeptide Multimers
EP2530109A4 (en) 2010-01-29 2013-08-28 Toray Industries Polylactic acid-based resin sheet
WO2011108714A1 (en) 2010-03-04 2011-09-09 中外製薬株式会社 Antibody constant region variant
TWI426920B (en) 2010-03-26 2014-02-21 Hoffmann La Roche Bispecific, bivalent anti-VEGF/anti-ANG-2 antibody
AR080793A1 (en) 2010-03-26 2012-05-09 Roche Glycart Ag BISPECIFIC ANTIBODIES
US9150663B2 (en) * 2010-04-20 2015-10-06 Genmab A/S Heterodimeric antibody Fc-containing proteins and methods for production thereof
JP2019048814A (en) * 2010-04-20 2019-03-28 ゲンマブ エー/エス Heterodimeric antibody Fc-containing protein and method for producing the same
AU2016219622A1 (en) * 2010-04-20 2016-09-15 Genmab A/S Heterodimeric antibody FC-containing proteins and methods for production thereof
AU2013203221B2 (en) * 2010-04-20 2016-06-02 Genmab A/S Heterodimeric antibody FC-containing proteins and methods for production thereof
WO2011143545A1 (en) 2010-05-14 2011-11-17 Rinat Neuroscience Corporation Heterodimeric proteins and methods for producing and purifying them
IL299365A (en) 2010-05-27 2023-02-01 Genmab As Monoclonal antibodies aganist her2
CN103052649B (en) 2010-07-29 2015-12-16 Xencor公司 Antibodies with modified isoelectric points
CN103068846B9 (en) 2010-08-24 2016-09-28 弗·哈夫曼-拉罗切有限公司 Bispecific antibodies comprising disulfide-stabilized Fv fragments
JP5753903B2 (en) 2010-08-24 2015-07-22 ロシュ グリクアート アーゲー Activable bispecific antibody
US8551479B2 (en) 2010-09-10 2013-10-08 Oncomed Pharmaceuticals, Inc. Methods for treating melanoma
AU2011325833C1 (en) 2010-11-05 2017-07-13 Zymeworks Bc Inc. Stable heterodimeric antibody design with mutations in the Fc domain
KR101962483B1 (en) 2010-11-17 2019-03-29 추가이 세이야쿠 가부시키가이샤 Multi-specific antigen-binding molecule having alternative function to function of blood coagulation factor VIII
WO2012069466A1 (en) 2010-11-24 2012-05-31 Novartis Ag Multispecific molecules
EP4279513A3 (en) * 2010-11-30 2024-02-28 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
CN103328632A (en) 2010-11-30 2013-09-25 中外制药株式会社 Antigen-binding molecules that repeatedly bind to multiple molecules of antigen
SG191153A1 (en) 2010-12-23 2013-07-31 Hoffmann La Roche Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
WO2012133782A1 (en) 2011-03-30 2012-10-04 中外製薬株式会社 Retention of antigen-binding molecules in blood plasma and method for modifying immunogenicity
CN112812184A (en) 2011-02-25 2021-05-18 中外制药株式会社 Fc gamma RIIb specific Fc antibodies
BR112013020338A2 (en) 2011-02-28 2016-10-18 Hoffmann La Roche monovalent antigen binding protein, pharmaceutical composition, use of monovalent antigen binding protein, method for treating a patient in need of therapy, method for preparing a monovalent antigen binding protein, nucleic acid, vector and cell hostess
WO2012116926A1 (en) 2011-02-28 2012-09-07 F. Hoffmann-La Roche Ag Antigen binding proteins
JP6101638B2 (en) 2011-03-03 2017-03-22 ザイムワークス,インコーポレイテッド Multivalent heteromultimer scaffold design and construction
EP4520771A3 (en) 2011-04-20 2025-07-16 Genmab A/S Bispecifc antibodies against her2
US20140170149A1 (en) 2011-04-20 2014-06-19 Genmab A/S Bispecific antibodies against her2 and cd3
DK2714738T3 (en) 2011-05-24 2019-01-28 Zyngenia Inc MULTIVALENT AND MONOVALENT MULTISPECIFIC COMPLEXES AND THEIR APPLICATIONS
CN109517059B (en) 2011-06-30 2023-03-28 中外制药株式会社 Heterodimerised polypeptides
UA117901C2 (en) 2011-07-06 2018-10-25 Ґенмаб Б.В. METHOD FOR STRENGTHENING THE EFFECTORAL FUNCTION OF THE ORIGINAL POLYEPEPTIDE, ITS OPTIONS AND THEIR APPLICATIONS
KR101681818B1 (en) 2011-08-23 2016-12-01 로슈 글리카트 아게 Bispecific antibodies specific for t-cell activating antigens and a tumor antigen and methods of use
GB201116092D0 (en) 2011-09-16 2011-11-02 Bioceros B V Antibodies and uses thereof
PT3485903T (en) 2011-09-23 2023-02-17 Mereo Biopharma 5 Inc Vegf/dll4 binding agents and uses thereof
CA2845147A1 (en) 2011-09-23 2013-03-28 Roche Glycart Ag Bispecific anti-egfr/anti igf-1r antibodies
CA2791109C (en) 2011-09-26 2021-02-16 Merus B.V. Generation of binding molecules
TW201817745A (en) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 Therapeutic antigen-binding molecule having an FcRn binding domain that promotes antigen clearance
WO2013047748A1 (en) 2011-09-30 2013-04-04 中外製薬株式会社 Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
EP2752200B1 (en) * 2011-09-30 2023-11-01 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule inducing immune response to target antigen
US12466897B2 (en) 2011-10-10 2025-11-11 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
DK2771364T3 (en) 2011-10-27 2019-08-19 Genmab As PREPARATION OF HETERODIMERED PROTEINS
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
KR20230143201A (en) 2011-11-30 2023-10-11 추가이 세이야쿠 가부시키가이샤 Drug containing carrier into cell for forming immune complex
US10633451B2 (en) 2012-02-03 2020-04-28 Hoffmann-La Roche Inc. Bispecific antibody molecules with antigen-transfected T-cells and their use in medicine
EP4624490A3 (en) 2012-02-09 2025-11-05 Chugai Seiyaku Kabushiki Kaisha Modified fc region of antibody
CN104105711B (en) 2012-02-10 2018-11-30 弗·哈夫曼-拉罗切有限公司 Single-chain antibody and other heteromultimerics
KR20220136441A (en) 2012-02-24 2022-10-07 추가이 세이야쿠 가부시키가이샤 Antigen-binding molecule for promoting disappearance of antigen via FcγRIIB
CN104245738B (en) 2012-04-05 2018-02-02 弗·哈夫曼-拉罗切有限公司 For people TWEAK and people IL17 bispecific antibody and application thereof
PT2838917T (en) 2012-04-20 2019-09-12 Merus Nv Methods and means for the production of heterodimeric ig-like molecules
US9212227B2 (en) 2012-04-30 2015-12-15 Janssen Biotech, Inc. ST2L antibody antagonists for the treatment of ST2L-mediated inflammatory pulmonary conditions
US9969813B2 (en) 2012-05-10 2018-05-15 Bioatla, Llc Multi-specific monoclonal antibodies
EP2855531A1 (en) 2012-05-24 2015-04-08 F. Hoffmann-La Roche AG Multispecific antibodies
US20150166654A1 (en) 2012-05-30 2015-06-18 Chugai Seiyaku Kabushiki Kaisha Target tissue-specific antigen-binding molecule
US11142563B2 (en) 2012-06-14 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified Fc region
WO2014004586A1 (en) 2012-06-25 2014-01-03 Zymeworks Inc. Process and methods for efficient manufacturing of highly pure asymmetric antibodies in mammalian cells
EP2867254B1 (en) 2012-06-27 2017-10-25 F. Hoffmann-La Roche AG Method for making antibody fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
KR20150023889A (en) 2012-06-27 2015-03-05 에프. 호프만-라 로슈 아게 Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
ES2600154T3 (en) 2012-07-04 2017-02-07 F. Hoffmann-La Roche Ag Anti-theophylline antibodies and methods of use
BR112014030844A2 (en) 2012-07-04 2019-10-15 Hoffmann La Roche humanized anti-biotin antibody, pharmaceutical formulation and antibody use
CA2871112C (en) 2012-07-04 2020-05-12 F. Hoffmann-La Roche Ag Covalently linked antigen-antibody conjugates
SG11201408646VA (en) 2012-07-06 2015-01-29 Genmab Bv Dimeric protein with triple mutations
EP3632462A1 (en) 2012-07-06 2020-04-08 Genmab B.V. Dimeric protein with triple mutations
WO2014012082A2 (en) 2012-07-13 2014-01-16 Zymeworks Inc. Multivalent heteromultimer scaffold design an constructs
PE20150361A1 (en) 2012-07-13 2015-03-14 Roche Glycart Ag ANTI-VEGF / ANTI-ANG-2 BISPECIFIC ANTIBODIES AND THEIR USE IN THE TREATMENT OF EYE VASCULAR DISEASES
CN102851338A (en) * 2012-07-25 2013-01-02 苏州康宁杰瑞生物科技有限公司 Method for preparing homodimer protein mixture by using charge repulsive interaction
WO2014030728A1 (en) 2012-08-24 2014-02-27 中外製薬株式会社 Fcγriib-specific fc region variant
KR101963231B1 (en) 2012-09-11 2019-03-28 삼성전자주식회사 Protein complex for preparing bispecific antibodies and method using thereof
PL2900694T3 (en) 2012-09-27 2018-12-31 Merus N.V. Bispecific igg antibodies as t cell engagers
WO2014055784A1 (en) 2012-10-03 2014-04-10 Zymeworks Inc. Methods of quantitating heavy and light chain polypeptide pairs
EP2904016B1 (en) 2012-10-08 2018-11-14 Roche Glycart AG Fc-free antibodies comprising two fab-fragments and methods of use
CA2889638A1 (en) 2012-10-31 2014-05-08 Oncomed Pharmaceuticals, Inc. Methods and monitoring of treatment with a dll4 antagonist
KR102152481B1 (en) * 2012-11-05 2020-09-04 젠야쿠코교가부시키가이샤 Antibody and antibody composition production method
DK2922872T3 (en) 2012-11-21 2019-01-02 Janssen Biotech Inc BISPECIFIC EGFR / C-MET ANTIBODIES
US20170275367A1 (en) 2012-11-21 2017-09-28 Janssen Biotech, Inc. Bispecific EGFR/C-Met Antibodies
UY35148A (en) * 2012-11-21 2014-05-30 Amgen Inc HETERODIMERIC IMMUNOGLOBULINS
US9914785B2 (en) 2012-11-28 2018-03-13 Zymeworks Inc. Engineered immunoglobulin heavy chain-light chain pairs and uses thereof
EP2925785A4 (en) 2012-11-28 2016-11-16 Zymeworks Inc HEAVY-DUTY LIGHT-CHAINS PAIRS OF IMMUNOGLOBULIN HANDLING AND THEIR USES
DK2940135T5 (en) 2012-12-27 2021-09-20 Chugai Pharmaceutical Co Ltd Heterodimerized polypeptide
KR20210096697A (en) 2013-01-10 2021-08-05 젠맵 비. 브이 Human igg1 fc region variants and uses thereof
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
CN105051069B (en) 2013-01-14 2019-12-10 Xencor股份有限公司 Novel heterodimeric proteins
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US9738722B2 (en) 2013-01-15 2017-08-22 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
US10077315B2 (en) 2013-02-05 2018-09-18 Engmab Sàrl Bispecific antibodies against CD3 and BCMA
EP2762496A1 (en) 2013-02-05 2014-08-06 EngMab AG Method for the selection of antibodies against BCMA
EP2762497A1 (en) 2013-02-05 2014-08-06 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
JP2016509014A (en) 2013-02-08 2016-03-24 ステムセントリックス, インコーポレイテッド New multispecific construct
KR20180023035A (en) 2013-02-26 2018-03-06 로슈 글리카트 아게 Bispecific t cell activating antigen binding molecules
EP3444278A1 (en) 2013-02-26 2019-02-20 Roche Glycart AG Bispecific t cell activating antigen binding molecules
WO2014142591A1 (en) * 2013-03-13 2014-09-18 (주) 아이벤트러스 Protein in which electrical interaction is introduced within hydrophobic interaction site and preparation method therefor
US9168300B2 (en) 2013-03-14 2015-10-27 Oncomed Pharmaceuticals, Inc. MET-binding agents and uses thereof
US10544187B2 (en) 2013-03-15 2020-01-28 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
MX2015013163A (en) 2013-03-15 2016-04-04 Zyngenia Inc Multivalent and monovalent multispecific complexes and their uses.
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
WO2014151422A1 (en) 2013-03-15 2014-09-25 Janssen Biotech, Inc. Interferon alpha and omega antibody antagonists
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
EP2970435B1 (en) 2013-03-15 2020-08-12 Eli Lilly and Company Methods for producing fabs and bi-specific antibodies
EA201591495A1 (en) 2013-03-18 2016-05-31 Биосерокс Продактс Б.В. HUMANIZED ANTIBODIES AGAINST CD134 (OX40) AND APPLICATIONS OF THE SPECIFIED ANTIBODIES
CN113621057A (en) 2013-04-02 2021-11-09 中外制药株式会社 Fc region variants
UA118028C2 (en) 2013-04-03 2018-11-12 Рош Глікарт Аг Bispecific antibodies specific for fap and dr5, antibodies specific for dr5 and methods of use
EP2981286A4 (en) * 2013-04-05 2016-08-24 Hoffmann La Roche ANTI-IL-4 ANTIBODIES AND BISPECIFIC ANTIBODIES AND USES THEREOF
EP2789630A1 (en) 2013-04-09 2014-10-15 EngMab AG Bispecific antibodies against CD3e and ROR1
CN105164157B (en) 2013-04-29 2024-05-28 豪夫迈·罗氏有限公司 FC-receptor binding modified asymmetric antibodies and methods of use
SG11201508910WA (en) 2013-04-29 2015-11-27 Hoffmann La Roche Fcrn-binding abolished anti-igf-1r antibodies and their use in the treatment of vascular eye diseases
JP2016528167A (en) 2013-04-29 2016-09-15 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Human FcRn binding modified antibody and method of use
US9879081B2 (en) 2013-06-25 2018-01-30 Samsung Electronics Co., Ltd. Protein complex, bispecific antibody including the protein complex, and method of preparation thereof
NZ715896A (en) 2013-07-05 2022-02-25 Genmab As Humanized or chimeric cd3 antibodies
AU2014325063B2 (en) * 2013-09-27 2019-10-31 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
CN105765063B (en) 2013-09-30 2021-05-07 中外制药株式会社 Methods of preparing antigen-binding molecules using altered helper phages
KR20160044060A (en) 2013-10-11 2016-04-22 에프. 호프만-라 로슈 아게 Multispecific domain exchanged common variable light chain antibodies
HRP20211234T1 (en) 2013-11-06 2021-11-26 Janssen Biotech, Inc. Anti-ccl17 antibodies
CN105940107B (en) 2013-11-11 2021-06-15 中外制药株式会社 Antigen-binding molecules containing altered antibody variable regions
CN105980557B (en) 2013-12-04 2020-04-07 中外制药株式会社 Antigen binding molecules with variable antigen binding capacity depending on concentration of compound and libraries thereof
PE20210107A1 (en) 2013-12-17 2021-01-19 Genentech Inc ANTI-CD3 ANTIBODIES AND METHODS OF USE
MX2016007208A (en) 2013-12-20 2016-07-21 Hoffmann La Roche HUMANIZED ANTI-Tau(pS422) ANTIBODIES AND METHODS OF USE.
BR112016014945A2 (en) 2014-01-03 2018-01-23 F. Hoffmann-La Roche Ag conjugate, pharmaceutical formulation and use
EP3089996B1 (en) 2014-01-03 2021-07-28 F. Hoffmann-La Roche AG Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles
EP3089758B1 (en) 2014-01-03 2021-01-27 F.Hoffmann-La Roche Ag Covalently linked helicar-anti-helicar antibody conjugates and uses thereof
BR112016015589A2 (en) 2014-01-06 2017-10-31 Hoffmann La Roche monovalent transit modules for the blood-brain barrier
WO2015107015A1 (en) 2014-01-15 2015-07-23 F. Hoffmann-La Roche Ag Fc-region variants with improved protein a-binding
EP3835318B1 (en) 2014-01-15 2025-10-29 F. Hoffmann-La Roche AG Fc-region variants with modified fcrn- and maintained protein a-binding properties
JOP20200094A1 (en) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc Antibody Molecules of PD-1 and Their Uses
JOP20200096A1 (en) 2014-01-31 2017-06-16 Children’S Medical Center Corp Antibody molecules to tim-3 and uses thereof
ES2816624T3 (en) 2014-02-28 2021-04-05 Merus Nv Antibodies that bind EGFR and ERBB3
RS66392B1 (en) 2014-02-28 2025-02-28 Merus Nv AN ANTIBODY THAT BINDS ERBB-2 AND ERBB-3
US9732154B2 (en) 2014-02-28 2017-08-15 Janssen Biotech, Inc. Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia
CA2936962C (en) 2014-03-14 2024-03-05 Novartis Ag Antibody molecules to lag-3 and uses thereof
ES2939760T3 (en) 2014-03-15 2023-04-26 Novartis Ag Cancer treatment using a chimeric receptor for antigens
EP3122781B1 (en) 2014-03-28 2020-01-01 Xencor, Inc. Bispecific antibodies that bind to cd38 and cd3
EP4570917A3 (en) 2014-04-02 2025-09-03 F. Hoffmann-La Roche AG Method for detecting multispecific antibody light chain mispairing
UA117289C2 (en) 2014-04-02 2018-07-10 Ф. Хоффманн-Ля Рош Аг MULTISPECIFIC ANTIBODY
CA2943943C (en) 2014-04-07 2023-01-10 Chugai Seiyaku Kabushiki Kaisha Immunoactivating antigen-binding molecule
KR102546875B1 (en) 2014-05-02 2023-06-26 모멘타 파머슈티컬스 인코포레이티드 Compositions and methods related to engineered fc constructs
BR112016026299A2 (en) 2014-05-13 2018-02-20 Chugai Seiyaku Kabushiki Kaisha The T-lymph cell redirection antigen joint molecule to the cell which has an immunosuppressive function
WO2015181805A1 (en) 2014-05-28 2015-12-03 Zymeworks Inc. Modified antigen binding polypeptide constructs and uses thereof
EP3154584B1 (en) 2014-06-03 2021-08-04 XBiotech Inc. Compositions and methods for treating and preventing staphylococcus aureus infections
TWI713453B (en) 2014-06-23 2020-12-21 美商健生生物科技公司 Interferon alpha and omega antibody antagonists
CA2947504A1 (en) 2014-06-26 2015-12-30 F. Hoffmann-La Roche Ag Anti-brdu antibodies and methods of use
AR100978A1 (en) 2014-06-26 2016-11-16 Hoffmann La Roche ANTI-Tau HUMANIZED ANTIBODY BRAIN LAUNCHERS (pS422) AND USES OF THE SAME
ME03665B (en) 2014-07-11 2020-10-20 Genmab As Antibodies binding axl
JP2017528433A (en) 2014-07-21 2017-09-28 ノバルティス アーゲー Low immunoenhancing dose of mTOR inhibitor and CAR combination
JP7054622B2 (en) 2014-07-21 2022-04-14 ノバルティス アーゲー Treatment of cancer with humanized anti-BCMA chimeric antigen receptor
EP3722316A1 (en) 2014-07-21 2020-10-14 Novartis AG Treatment of cancer using a cd33 chimeric antigen receptor
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
ES2781175T3 (en) 2014-07-31 2020-08-31 Novartis Ag Optimized subset of T cells containing a chimeric antigen receptor
DK3177643T3 (en) 2014-08-04 2019-07-15 Hoffmann La Roche Bispecific T cell activating antigen binding molecules
EP2982692A1 (en) 2014-08-04 2016-02-10 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
US10851149B2 (en) 2014-08-14 2020-12-01 The Trustees Of The University Of Pennsylvania Treatment of cancer using GFR α-4 chimeric antigen receptor
ES2791248T3 (en) 2014-08-19 2020-11-03 Novartis Ag Anti-CD123 chimeric antigen receptor (CAR) for use in cancer treatment
SG11201701599UA (en) 2014-09-05 2017-03-30 Janssen Pharmaceutica Nv Cd123 binding agents and uses thereof
SG11201701867SA (en) 2014-09-09 2017-04-27 Janssen Biotech Inc Combination therapies with anti-cd38 antibodies
US9751946B2 (en) 2014-09-12 2017-09-05 Genentech, Inc. Anti-CLL-1 antibodies and immunoconjugates
AU2015318008B2 (en) 2014-09-15 2021-05-20 Amgen Inc. Bi-specific anti-CGRP receptor/PAC1 receptor antigen binding proteins and uses thereof
US10577417B2 (en) 2014-09-17 2020-03-03 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
TWI700300B (en) 2014-09-26 2020-08-01 日商中外製藥股份有限公司 Antibodies that neutralize substances with the function of FVIII coagulation factor (FVIII)
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
TWI701435B (en) 2014-09-26 2020-08-11 日商中外製藥股份有限公司 Method to determine the reactivity of FVIII
JP6708635B2 (en) 2014-10-09 2020-06-10 エンクマフ エスアーエールエル Bispecific antibodies to CD3ε and ROR1
CA2964367C (en) 2014-10-14 2024-01-30 Novartis Ag Antibody molecules to pd-l1 and uses thereof
ES2808153T3 (en) 2014-10-31 2021-02-25 Mereo Biopharma 5 Inc Combination therapy for disease treatment
HUE045466T2 (en) 2014-11-06 2019-12-30 Hoffmann La Roche Fc region variants with modified FcRn binding and methods of application
KR20170076697A (en) 2014-11-06 2017-07-04 에프. 호프만-라 로슈 아게 Fc-region variants with modified fcrn- and protein a-binding properties
WO2016076345A1 (en) 2014-11-11 2016-05-19 中外製薬株式会社 Library of antigen-binding molecules including modified antibody variable region
DK3221356T3 (en) 2014-11-20 2020-11-02 Hoffmann La Roche T cell activating bispecific antigen binding molecules against folr1 and cd3
DK4141032T3 (en) 2014-11-20 2024-08-05 Hoffmann La Roche Combination therapy with T-cell-activating bispecific antigen-binding molecules and PD-1 axis-binding antagonists
DK3221357T3 (en) 2014-11-20 2020-08-10 Hoffmann La Roche Common light chains and methods of use
EP3023437A1 (en) 2014-11-20 2016-05-25 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
AU2015353416C1 (en) 2014-11-26 2022-01-27 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CD38
EP3223845B1 (en) 2014-11-26 2021-05-19 Xencor, Inc. Heterodimeric antibodies that bind cd3 and cd20
US20180334490A1 (en) 2014-12-03 2018-11-22 Qilong H. Wu Methods for b cell preconditioning in car therapy
WO2016087416A1 (en) 2014-12-03 2016-06-09 F. Hoffmann-La Roche Ag Multispecific antibodies
WO2016089960A1 (en) 2014-12-04 2016-06-09 Janssen Biotech, Inc. Anti-cd38 antibodies for treatment of acute myeloid leukemia
IL278014B2 (en) 2014-12-19 2023-10-01 Chugai Pharmaceutical Co Ltd Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use
EP3233907B1 (en) 2014-12-19 2021-03-03 Genmab A/S Rodent bispecific heterodimeric proteins
AR103162A1 (en) 2014-12-19 2017-04-19 Chugai Pharmaceutical Co Ltd ANTI-C5 ANTIBODIES AND METHODS FOR USE
EP3237449A2 (en) 2014-12-22 2017-11-01 Xencor, Inc. Trispecific antibodies
MA41375A (en) 2015-01-22 2017-11-28 Lilly Co Eli BISPECIFIC IGG ANTIBODIES AND THEIR PREPARATION PROCESSES
SG10201907215QA (en) 2015-02-05 2019-09-27 Chugai Pharmaceutical Co Ltd Antibodies Comprising An Ion Concentration Dependent Antigen-Binding Domain, Fc Region Variants, Il-8-Binding Antibodies, And Uses Therof
BR112017014067B1 (en) 2015-02-27 2021-01-12 Chugai Seiyaku Kabushiki Kaisha uses of an il-6 receptor antibody to treat il-6-related diseases
US10227411B2 (en) 2015-03-05 2019-03-12 Xencor, Inc. Modulation of T cells with bispecific antibodies and FC fusions
JP6961490B2 (en) 2015-04-08 2021-11-05 ノバルティス アーゲー CD20 therapy, CD22 therapy, and combination therapy with CD19 chimeric antigen receptor (CAR) expressing cells
CN107454906B (en) 2015-04-17 2022-05-27 豪夫迈·罗氏有限公司 Combination therapy using coagulation factors and multispecific antibodies
US12128069B2 (en) 2015-04-23 2024-10-29 The Trustees Of The University Of Pennsylvania Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
CN107847594B (en) 2015-05-06 2022-04-15 詹森生物科技公司 Prostate-specific membrane antigen (PSMA) bispecific binding agents and uses thereof
MA42136A (en) 2015-05-20 2018-03-28 Janssen Biotech Inc ANTI-CD38 ANTIBODIES FOR THE TREATMENT OF LIGHT CHAIN AMYLOIDOSIS AND OTHER CD38 POSITIVE HEMATOLOGICAL MALIGNANT TUMORS
CN107849132B (en) 2015-06-16 2022-03-08 豪夫迈·罗氏有限公司 Humanized and affinity matured antibodies against FcRH5 and methods of use
EP3310378B1 (en) 2015-06-16 2024-01-24 F. Hoffmann-La Roche AG Anti-cll-1 antibodies and methods of use
US10668149B2 (en) 2015-06-22 2020-06-02 Janssen Biotech, Inc. Combination therapies for heme malignancies with anti-CD38 antibodies and survivin inhibitors
EP3313441B1 (en) 2015-06-24 2024-02-21 Janssen Biotech, Inc. Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38
CN113929779B (en) 2015-06-24 2025-02-25 豪夫迈·罗氏有限公司 Humanized anti-Tau (pS422) antibodies and methods of use
EP3319996B1 (en) 2015-07-09 2024-01-03 Genmab A/S Bispecific and multispecific antibodies and method for isolation of such
ME03772B (en) 2015-07-10 2021-04-20 Genmab As AXL-SPECIFIC ANTIBODY-DRUG CONJUGATES FOR CANCER TREATMENT
LT3115376T (en) 2015-07-10 2018-11-12 Merus N.V. Human cd3 binding antibody
EA201890305A1 (en) 2015-07-15 2018-07-31 Генмаб А/С HUMANIZED OR CHIMERIC CD3 ANTIBODIES
WO2017019896A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to pd-1
US20180207273A1 (en) 2015-07-29 2018-07-26 Novartis Ag Combination therapies comprising antibody molecules to tim-3
DK3317301T3 (en) 2015-07-29 2021-06-28 Immutep Sas COMBINATION THERAPIES INCLUDING ANTIBODY MOLECULES AGAINST LAYER-3
CA2992797A1 (en) 2015-08-03 2017-02-09 Engmab Sarl Monoclonal antibodies against bcma
EA201890434A1 (en) 2015-08-05 2018-10-31 Янссен Байотек, Инк. ANTIBODIES TO CD154 AND METHODS OF THEIR APPLICATION
IL298041B2 (en) 2015-08-17 2025-10-01 Janssen Pharmaceutica Nv Anti-bcma antibodies, bispecific antigen binding molecules that bind bcma and cd3, and uses thereof
MA42821A (en) * 2015-09-15 2018-07-25 Amgen Inc TETRAVALENT TETRASPECIFIC AND BISPECIFIC BISPECIFIC ANTIGEN BINDING PROTEINS AND USES THEREOF
BR112018005573A2 (en) 2015-09-21 2019-01-22 Aptevo Research And Development Llc "cd3 binding polypeptides"
AU2016326609B2 (en) 2015-09-23 2023-03-09 Mereo Biopharma 5, Inc. Methods and compositions for treatment of cancer
MA43053A (en) 2015-09-30 2018-08-08 Janssen Biotech Inc ANTAGONIST ANTIBODIES BINDING SPECIFICALLY TO HUMAN CD40 AND METHODS OF USE
AR106188A1 (en) 2015-10-01 2017-12-20 Hoffmann La Roche ANTI-CD19 HUMANIZED HUMAN ANTIBODIES AND METHODS OF USE
WO2017055385A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xgd2 bispecific t cell activating antigen binding molecules
WO2017055392A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
WO2017055399A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Cellular based fret assay for the determination of simultaneous binding
WO2017055314A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific anti-cd19xcd3 t cell activating antigen binding molecules
KR20180073561A (en) 2015-10-02 2018-07-02 에프. 호프만-라 로슈 아게 Double specific anti-CEAXCD3 T cell activating antigen binding molecules
WO2017055393A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules
EP3150637A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Multispecific antibodies
CN107949574A (en) 2015-10-02 2018-04-20 豪夫迈·罗氏有限公司 Bispecific T cell activation antigen binding molecules
WO2017055395A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xrob04 bispecific t cell activating antigen binding molecules
WO2017055391A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific t cell activating antigen binding molecules binding mesothelin and cd3
RS62258B1 (en) 2015-10-02 2021-09-30 Hoffmann La Roche Bispecific antibodies specific for pd1 and tim3
CN108283001B (en) 2015-10-08 2022-08-19 酵活有限公司 Antigen binding polypeptide constructs comprising kappa and lambda light chains and uses thereof
US11939394B2 (en) 2015-10-23 2024-03-26 Merus N.V. Binding molecules that inhibit cancer growth
MX2018004721A (en) 2015-10-23 2018-07-06 Eureka Therapeutics Inc CHEMICAL CONSTRUCTIONS ANTIBODY / T-CELL RECEIVER AND USES OF THE SAME.
JP6949016B2 (en) 2015-10-29 2021-10-13 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Antivariant Fc region antibody and usage
BR112018008908A2 (en) 2015-11-02 2018-11-27 Janssen Pharmaceutica Nv anti-il1rap antibodies, bispecific antigen-binding molecules that bind il1rap and cd3, and their uses
PH12018500950B1 (en) 2015-11-03 2023-09-20 Janssen Biotech Inc Subcutaneous formulations of anti-cd38 antibodies and their uses
BR112018008891A8 (en) 2015-11-03 2019-02-26 Janssen Biotech Inc antibodies that specifically bind to pd-1 and tim-3 and their uses
WO2017086419A1 (en) 2015-11-18 2017-05-26 中外製薬株式会社 Method for enhancing humoral immune response
JP6931329B2 (en) 2015-11-18 2021-09-01 中外製薬株式会社 Combination therapy using T cell redirection antigen-binding molecule for cells with immunosuppressive function
US20190144554A1 (en) 2015-12-01 2019-05-16 Genmab B.V. Anti-dr5 antibodies and methods of use thereof
WO2017100372A1 (en) 2015-12-07 2017-06-15 Xencor, Inc. Heterodimeric antibodies that bind cd3 and psma
KR102850929B1 (en) 2015-12-09 2025-08-27 에프. 호프만-라 로슈 아게 Type II anti-CD20 antibodies to reduce the formation of anti-drug antibodies
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
CR20180365A (en) 2015-12-16 2018-09-28 Amgen Inc PROTEINS OF UNION TO THE ANTI-TL1A / ANTI-TNF-a BISPECTIVE ANTIGEN AND ITS USES
BR112018012344A2 (en) 2015-12-17 2018-12-04 Janssen Biotech Inc antibodies that specifically bind to hla-dr and their uses
WO2017106656A1 (en) 2015-12-17 2017-06-22 Novartis Ag Antibody molecules to pd-1 and uses thereof
KR20180094977A (en) 2015-12-17 2018-08-24 노파르티스 아게 Combinations of c-Met inhibitors and antibody molecules for PD-1 and uses thereof
CA3002422C (en) 2015-12-18 2024-04-16 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use
EP3393504B1 (en) 2015-12-22 2025-09-24 Novartis AG Mesothelin chimeric antigen receptor (car) and antibody against pd-l1 inhibitor for combined use in anticancer therapy
EP3394098A4 (en) 2015-12-25 2019-11-13 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
WO2017110980A1 (en) 2015-12-25 2017-06-29 中外製薬株式会社 Antibody having enhanced activity, and method for modifying same
CN106661117B (en) * 2015-12-30 2020-11-17 深圳先进技术研究院 IgG hybrid anti-TNF alpha and IL-17A bispecific antibodies
ES2837428T3 (en) 2016-01-08 2021-06-30 Hoffmann La Roche CEA-Positive Cancer Treatment Procedures Using PD-1 Axis Binding Antagonists and Anti-CEA / Anti-CD3 Bispecific Antibodies
US20210198368A1 (en) 2016-01-21 2021-07-01 Novartis Ag Multispecific molecules targeting cll-1
EP3423572B1 (en) 2016-03-02 2023-11-29 Momenta Pharmaceuticals, Inc. Methods related to engineered fc constructs
WO2017149515A1 (en) 2016-03-04 2017-09-08 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
US11072666B2 (en) 2016-03-14 2021-07-27 Chugai Seiyaku Kabushiki Kaisha Cell injury inducing therapeutic drug for use in cancer therapy
JP7082604B2 (en) 2016-03-21 2022-06-08 マレンゴ・セラピューティクス,インコーポレーテッド Multispecific and multifunctional molecules and their use
JP7015244B2 (en) 2016-03-22 2022-02-02 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Protease-activated T cell bispecific molecule
EP3432924A1 (en) 2016-03-23 2019-01-30 Novartis AG Cell secreted minibodies and uses thereof
AU2017250358B2 (en) 2016-04-15 2023-06-01 Alpine Immune Sciences, Inc. ICOS ligand variant immunomodulatory proteins and uses thereof
IL262366B2 (en) 2016-04-15 2024-07-01 Alpine Immune Sciences Inc Cd80 variant immunomodulatory proteins and uses thereof
EP3443096B1 (en) 2016-04-15 2023-03-01 Novartis AG Compositions and methods for selective expression of chimeric antigen receptors
IL314779A (en) 2016-04-20 2024-10-01 Regeneron Pharma Preparations and methods for preparing antibodies based on the use of expression-enhancing loci
US11530277B2 (en) 2016-04-20 2022-12-20 Regeneron Pharmaceuticals, Inc. Compositions and methods for making antibodies based on use of an expression-enhancing locus
CR20180509A (en) 2016-05-02 2019-02-15 Hoffmann La Roche CONTORSBODY - A BIND OF DIANA MONOCATENARY
NZ749279A (en) 2016-05-23 2025-08-29 Momenta Pharmaceuticals Inc Compositions and methods related to engineered fc constructs
US20210177896A1 (en) 2016-06-02 2021-06-17 Novartis Ag Therapeutic regimens for chimeric antigen receptor (car)- expressing cells
AU2018276419A1 (en) 2016-06-02 2019-10-17 F. Hoffmann-La Roche Ag Type II anti-CD20 antibody and anti-CD20/CD3 bispecific antibody for treatment of cancer
EP3252078A1 (en) 2016-06-02 2017-12-06 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
WO2017218707A2 (en) 2016-06-14 2017-12-21 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
KR102376582B1 (en) 2016-06-17 2022-03-18 추가이 세이야쿠 가부시키가이샤 Anti-myostatin antibodies and methods of use
US10316088B2 (en) 2016-06-28 2019-06-11 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
WO2018002181A1 (en) 2016-06-28 2018-01-04 Umc Utrecht Holding B.V. TREATMENT OF IgE-MEDIATED DISEASES WITH ANTIBODIES THAT SPECIFICALLY BIND CD38
JP6983824B2 (en) 2016-07-04 2021-12-17 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft New antibody format
MX2018015853A (en) 2016-07-14 2019-08-21 Genmab As Multispecific antibodies against cd40 and cd137.
CN110461315B (en) 2016-07-15 2025-05-02 诺华股份有限公司 Treatment and prevention of cytokine release syndrome using chimeric antigen receptors in combination with kinase inhibitors
TWI781108B (en) 2016-07-20 2022-10-21 比利時商健生藥品公司 Anti- gprc5d antibodies, bispecific antigen binding molecules that bind gprc5d and cd3, and uses thereof
WO2018022945A1 (en) 2016-07-28 2018-02-01 Alpine Immune Sciences, Inc. Cd112 variant immunomodulatory proteins and uses thereof
IL316970A (en) 2016-07-28 2025-01-01 Novartis Ag Combination therapies of chimeric antigen receptors and pd-1 inhibitors
EP3491013A1 (en) 2016-07-28 2019-06-05 Alpine Immune Sciences, Inc. Cd155 variant immunomodulatory proteins and uses thereof
KR20190036551A (en) 2016-08-01 2019-04-04 노파르티스 아게 Treatment of Cancer Using Chimeric Antigen Receptors in Combination with Inhibitors of PRO-M2 Macrophage Molecules
CN109689099B (en) 2016-08-05 2023-02-28 中外制药株式会社 Composition for preventing or treating IL-8 related diseases
KR102587941B1 (en) 2016-08-12 2023-10-11 얀센 바이오테크 인코포레이티드 Engineered antibodies and other Fc-domain containing molecules with improved agonism and effector functions
CA3033665A1 (en) 2016-08-12 2018-02-15 Janssen Biotech, Inc. Fc engineered anti-tnfr superfamily member antibodies having enhanced agonistic activity and methods of using them
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
EP3509637B1 (en) 2016-09-06 2024-11-27 Chugai Seiyaku Kabushiki Kaisha Methods of using a bispecific antibody that recognizes coagulation factor ix and/or activated coagulation factor ix and coagulation factor x and/or activated coagulation factor x
ES2897217T3 (en) 2016-09-30 2022-02-28 Hoffmann La Roche Bispecific antibodies against p95HER2
JP6785372B2 (en) 2016-09-30 2020-11-18 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft SPR-based double bond assay for functional analysis of multispecific molecules
WO2018067992A1 (en) 2016-10-07 2018-04-12 Novartis Ag Chimeric antigen receptors for the treatment of cancer
MA46534A (en) 2016-10-14 2019-08-21 Xencor Inc FC HETERODIMERIC FUSION PROTEIN IL15 / IL15R
JOP20190097A1 (en) 2016-10-27 2019-04-28 Janssen Pharmaceutica Nv Immunoglobulins and their uses
KR20190070977A (en) 2016-11-01 2019-06-21 젠맵 비. 브이 Polypeptide variants and uses thereof
CN110167964B (en) 2016-11-02 2023-12-01 百时美施贵宝公司 Combination of bispecific antibodies and immunologic drugs targeting BCMA and CD3 for the treatment of multiple myeloma
CN109923128A (en) 2016-11-15 2019-06-21 基因泰克公司 Administration for being treated with anti-CD20/ AntiCD3 McAb bispecific antibody
TW201829463A (en) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 anti-HLA-G antibody and use thereof
MX2019005772A (en) 2016-11-23 2019-10-02 Bioverativ Therapeutics Inc Mono- and bispecific antibodies binding to coagulation factor ix and coagulation factor x.
AU2017367695A1 (en) 2016-12-02 2019-06-13 Juno Therapeutics, Inc. Engineered B cells and related compositions and methods
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
WO2018122053A1 (en) 2016-12-29 2018-07-05 F. Hoffmann-La Roche Ag Anti-angiopoietin-2 antibody formulation
US11220531B2 (en) 2017-01-06 2022-01-11 Janssen Biotech, Inc. Engineered Fc constructs
US11535662B2 (en) 2017-01-26 2022-12-27 Novartis Ag CD28 compositions and methods for chimeric antigen receptor therapy
KR20250140128A (en) 2017-02-10 2025-09-24 젠맵 비. 브이 Polypeptide variants and uses thereof
WO2018151820A1 (en) 2017-02-16 2018-08-23 Elstar Therapeutics, Inc. Multifunctional molecules comprising a trimeric ligand and uses thereof
WO2018155611A1 (en) 2017-02-24 2018-08-30 中外製薬株式会社 Pharmaceutical composition, antigen-binding molecules, treatment method, and screening method
JP7116736B2 (en) 2017-03-02 2022-08-10 ノバルティス アーゲー engineered heterodimeric proteins
IL322509A (en) 2017-03-09 2025-10-01 Genmab As Antibodies against pd-l1
WO2018162517A1 (en) 2017-03-10 2018-09-13 F. Hoffmann-La Roche Ag Method for producing multispecific antibodies
US11732022B2 (en) 2017-03-16 2023-08-22 Alpine Immune Sciences, Inc. PD-L2 variant immunomodulatory proteins and uses thereof
KR20250083578A (en) 2017-03-16 2025-06-10 알파인 이뮨 사이언시즈, 인코포레이티드 Cd80 variant immunomodulatory proteins and uses thereof
HUE064136T2 (en) 2017-03-16 2024-02-28 Alpine Immune Sciences Inc Pd-l1 variant immunomodulatory proteins and uses thereof
TW201836636A (en) 2017-03-31 2018-10-16 公立大學法人奈良縣立醫科大學 Medicinal composition usable for preventing and/or treating blood coagulation factor ix abnormality, comprising multispecific antigen binding molecule replacing function of blood coagulation factor viii
UA127586C2 (en) 2017-03-31 2023-10-25 Ґенмаб Холдінґ Б.В. BISPECIFIC ANTI-CD37 ANTIBODIES, MONOCLONAL ANTI-CD37 ANTIBODIES AND METHODS OF THEIR APPLICATION
IL269656B2 (en) 2017-03-31 2024-06-01 Merus Nv Erbb-2 and erbb3 binding bispecific antibodies for use in the treatment of cells that have an nrg1 fusion gene
KR20200020662A (en) 2017-04-03 2020-02-26 온콜로지, 인크. How to Treat Cancer Using PS-Targeted Antibodies with Immuno-Oncology Agent
AU2018247767B2 (en) 2017-04-03 2025-01-30 F. Hoffmann-La Roche Ag Antibodies binding to STEAP-1
JP7426825B2 (en) 2017-04-03 2024-02-02 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Immunoconjugate of anti-PD-1 antibody and mutant IL-2 or IL-15
CN110382525B (en) 2017-04-03 2023-10-20 豪夫迈·罗氏有限公司 Immunoconjugate
US11285207B2 (en) 2017-04-05 2022-03-29 Hoffmann-La Roche Inc. Bispecific antibodies specifically binding to PD1 and LAG3
BR112019021411A2 (en) 2017-04-13 2020-05-05 Hoffmann La Roche methods to treat or slow the progression of cancer and to improve function, uses of an immunoconjugate, an agonist, an antagonist, compositions, kit and invention
AU2018258045B2 (en) 2017-04-26 2024-02-29 Eureka Therapeutics, Inc. Chimeric antibody/T-cell receptor constructs and uses thereof
US20200055948A1 (en) 2017-04-28 2020-02-20 Novartis Ag Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
EP3615068A1 (en) 2017-04-28 2020-03-04 Novartis AG Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
JP7185884B2 (en) 2017-05-02 2022-12-08 国立研究開発法人国立精神・神経医療研究センター METHOD FOR PREDICTING AND DETERMINING THERAPEUTIC EFFECT OF IL-6 AND NEUTROPHIL-RELATED DISEASE
EP3625264B9 (en) 2017-05-17 2023-10-25 Merus N.V. Combination of an erbb-2/erbb-3 bispecific antibody with endocrine therapy for breast cancer
WO2018222901A1 (en) 2017-05-31 2018-12-06 Elstar Therapeutics, Inc. Multispecific molecules that bind to myeloproliferative leukemia (mpl) protein and uses thereof
WO2018226580A2 (en) 2017-06-05 2018-12-13 Janssen Biotech, Inc. Antibodies that specifically bind pd-1 and methods of use
US11149094B2 (en) 2017-06-05 2021-10-19 Janssen Biotech, Inc. Engineered multispecific antibodies and other multimeric proteins with asymmetrical CH2-CH3 region mutations
JP2020522543A (en) 2017-06-07 2020-07-30 ゲンマブ ビー.ブイ. Therapeutic antibody based on a mutated IgG hexamer
UY37758A (en) 2017-06-12 2019-01-31 Novartis Ag METHOD OF MANUFACTURING OF BIESPECTIFIC ANTIBODIES, BISPECTIFIC ANTIBODIES AND THERAPEUTIC USE OF SUCH ANTIBODIES
GB201709970D0 (en) 2017-06-22 2017-08-09 Kymab Ltd Bispecific antigen-binding molecules
MY204117A (en) 2017-06-22 2024-08-08 Novartis Ag Antibody molecules to cd73 and uses thereof
MX2019015738A (en) 2017-06-27 2020-02-20 Novartis Ag Dosage regimens for anti-tim-3 antibodies and uses thereof.
WO2019006472A1 (en) 2017-06-30 2019-01-03 Xencor, Inc. Targeted heterodimeric fc fusion proteins containing il-15/il-15ra and antigen binding domains
AR112603A1 (en) 2017-07-10 2019-11-20 Lilly Co Eli BIS SPECIFIC ANTIBODIES CONTROL POINT INHIBITORS
SG11201913137VA (en) 2017-07-11 2020-01-30 Compass Therapeutics Llc Agonist antibodies that bind human cd137 and uses thereof
AU2018302283B2 (en) 2017-07-20 2025-07-10 Novartis Ag Dosage regimens of anti-LAG-3 antibodies and uses thereof
AU2018309339C1 (en) 2017-08-04 2025-08-21 BioNTech SE Binding agents binding to PD-L1 and CD137 and use thereof
PL3665198T3 (en) 2017-08-09 2025-06-09 Merus N.V. Antibodies that bind egfr and cmet
WO2019035938A1 (en) 2017-08-16 2019-02-21 Elstar Therapeutics, Inc. Multispecific molecules that bind to bcma and uses thereof
CA3071236A1 (en) * 2017-09-29 2019-04-04 Chugai Seiyaku Kabushiki Kaisha Multispecific antigen-binding molecule having blood coagulation factor viii (fviii) cofactor function-substituting activity, and pharmaceutical formulation containing said molecule as active ingredient
CA3077509A1 (en) 2017-10-10 2019-04-18 Alpine Immune Sciences, Inc. Ctla-4 variant immunomodulatory proteins and uses thereof
IL320945A (en) 2017-10-18 2025-07-01 Alpine Immune Sciences Inc Variant icos ligand immunomodulatory proteins and related compositions and methods
WO2019089753A2 (en) 2017-10-31 2019-05-09 Compass Therapeutics Llc Cd137 antibodies and pd-1 antagonists and uses thereof
WO2019086394A1 (en) 2017-11-01 2019-05-09 F. Hoffmann-La Roche Ag The compbody - a multivalent target binder
CN111246884A (en) 2017-11-01 2020-06-05 豪夫迈·罗氏有限公司 Novel Antigen Binding Molecules Containing Trimers of TNF Family Ligands
BR112020006443A2 (en) 2017-11-01 2020-09-29 F. Hoffmann-La Roche Ag bispecific antibodies, isolated nucleic acid, vector or host cell, method for producing a bispecific antibody and for treating an individual, pharmaceutical composition and use of the antibody
EP3704146B1 (en) 2017-11-01 2021-12-15 F. Hoffmann-La Roche AG Trifab-contorsbody
AU2018366199A1 (en) 2017-11-08 2020-05-28 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-PD-1 sequences
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
CA3081602A1 (en) 2017-11-16 2019-05-23 Novartis Ag Combination therapies
EP3713961A2 (en) 2017-11-20 2020-09-30 Compass Therapeutics LLC Cd137 antibodies and tumor antigen-targeting antibodies and uses thereof
MX2020005160A (en) 2017-11-28 2020-08-20 Chugai Pharmaceutical Co Ltd Ligand-binding molecule having adjustable ligand-binding activity.
JP7357616B2 (en) 2017-12-05 2023-10-06 中外製薬株式会社 Antigen-binding molecules comprising engineered antibody variable regions that bind to CD3 and CD137
MA51291A (en) 2017-12-19 2020-10-28 Xencor Inc MODIFIED IL-2 FC FUSION PROTEINS
WO2019122052A2 (en) 2017-12-21 2019-06-27 F. Hoffmann-La Roche Ag Antibodies binding to hla-a2/wt1
CN109957026A (en) * 2017-12-22 2019-07-02 成都恩沐生物科技有限公司 Covalent multi-specificity antibody
EP3728327A1 (en) 2017-12-22 2020-10-28 F. Hoffmann-La Roche AG Depletion of light chain mispaired antibody variants by hydrophobic interaction chromatography
US11667713B2 (en) 2017-12-28 2023-06-06 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
AU2019205273B2 (en) 2018-01-03 2024-04-04 Alpine Immune Sciences, Inc. Multi-domain immunomodulatory proteins and methods of use thereof
WO2019139987A1 (en) 2018-01-09 2019-07-18 Elstar Therapeutics, Inc. Calreticulin binding constructs and engineered t cells for the treatment of diseases
US12398209B2 (en) 2018-01-22 2025-08-26 Janssen Biotech, Inc. Methods of treating cancers with antagonistic anti-PD-1 antibodies
EP3743440A1 (en) 2018-01-24 2020-12-02 Genmab B.V. Polypeptide variants and uses thereof
EP3746116A1 (en) 2018-01-31 2020-12-09 Novartis AG Combination therapy using a chimeric antigen receptor
TW202311746A (en) 2018-02-02 2023-03-16 美商再生元醫藥公司 System and method for characterizing protein dimerization
CN119733046A (en) 2018-02-06 2025-04-01 豪夫迈·罗氏有限公司 Treatment of eye diseases
CN118772288A (en) 2018-02-08 2024-10-15 豪夫迈·罗氏有限公司 Bispecific antigen binding molecules and methods of use
TWI829667B (en) 2018-02-09 2024-01-21 瑞士商赫孚孟拉羅股份公司 Antibodies binding to gprc5d
US20200399373A1 (en) 2018-02-14 2020-12-24 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule and combination
EP3762406A2 (en) 2018-03-09 2021-01-13 Askgene Pharma, Inc. Cytokine prodrugs
SG11202008399QA (en) 2018-03-12 2020-09-29 Genmab As Antibodies
WO2019178364A2 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
US12152073B2 (en) 2018-03-14 2024-11-26 Marengo Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
CA3096052A1 (en) 2018-04-04 2019-10-10 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
AR115052A1 (en) 2018-04-18 2020-11-25 Hoffmann La Roche MULTI-SPECIFIC ANTIBODIES AND THE USE OF THEM
SG11202010159RA (en) 2018-04-18 2020-11-27 Xencor Inc Il-15/il-15ra heterodimeric fc fusion proteins and uses thereof
MX2020010910A (en) 2018-04-18 2021-02-09 Xencor Inc Pd-1 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and pd-1 antigen binding domains and uses thereof.
CA3097741A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Tim-3 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and tim-3 antigen binding domains
AR114789A1 (en) 2018-04-18 2020-10-14 Hoffmann La Roche ANTI-HLA-G ANTIBODIES AND THE USE OF THEM
WO2019210153A1 (en) 2018-04-27 2019-10-31 Novartis Ag Car t cell therapies with enhanced efficacy
AU2019264217A1 (en) 2018-05-03 2020-12-17 Genmab B.V. Antibody variant combinations and uses thereof
MA52571A (en) * 2018-05-08 2021-03-17 Amgen Inc BISPECIFIC ANTIBODIES WITH LABELS MATCHED TO CLIVABLE C-TERMINAL LOADS
SG11202011308VA (en) 2018-05-14 2020-12-30 Werewolf Therapeutics Inc Activatable cytokine polypeptides and methods of use thereof
JP7460609B2 (en) 2018-05-14 2024-04-02 ウェアウルフ セラピューティクス, インコーポレイテッド Activable interleukin-2 polypeptides and methods of use thereof
CA3100118A1 (en) 2018-05-16 2019-11-21 Janssen Biotech, Inc. Bcma/cd3 and gprdc5d/cd3 bispecific antibodies for use in cancer therapy
JP2021525243A (en) 2018-05-21 2021-09-24 コンパス セラピューティクス リミテッド ライアビリティ カンパニー Compositions and Methods for Promoting Killing of Target Cells by NK Cells
WO2019226658A1 (en) 2018-05-21 2019-11-28 Compass Therapeutics Llc Multispecific antigen-binding compositions and methods of use
HRP20230449T1 (en) 2018-05-23 2023-07-21 Celgene Corporation ANTI-PROLIFERATIVE COMPOUNDS AND BISPECIFIC ANTIBODIES AGAINST BCMA AND CD3 FOR COMBINED USE
US11866499B2 (en) 2018-05-24 2024-01-09 Janssen Biotech, Inc. Monospecific and multispecific anti-TMEFF2 antibodies and their uses
JOP20190116A1 (en) 2018-05-24 2019-11-24 Janssen Biotech Inc CD33 antibody, and CD33 bis-specific antibody 33 (CD33) / CD3 and their uses
JP7530299B2 (en) 2018-05-24 2024-08-07 ヤンセン バイオテツク,インコーポレーテツド Anti-CD3 antibodies and uses thereof
EP3802609A2 (en) 2018-05-24 2021-04-14 Janssen Biotech, Inc. Psma binding agents and uses thereof
US20210213063A1 (en) 2018-05-25 2021-07-15 Novartis Ag Combination therapy with chimeric antigen receptor (car) therapies
US20210214459A1 (en) 2018-05-31 2021-07-15 Novartis Ag Antibody molecules to cd73 and uses thereof
CN118459594A (en) 2018-06-01 2024-08-09 诺华股份有限公司 Binding molecules to BCMA and uses thereof
AU2019276578A1 (en) 2018-06-01 2021-01-14 Compugen Ltd Anti-PVRIG/anti-TIGIT bispecific antibodies and methods of use
EP3805757A4 (en) 2018-06-04 2022-03-23 Chugai Seiyaku Kabushiki Kaisha METHOD FOR DETECTING A COMPLEX
TWI890660B (en) 2018-06-13 2025-07-21 瑞士商諾華公司 Bcma chimeric antigen receptors and uses thereof
CN112513081A (en) 2018-06-14 2021-03-16 生物蛋白有限公司 Multispecific antibody constructs
US12065476B2 (en) 2018-06-15 2024-08-20 Alpine Immune Sciences, Inc. PD-1 variant immunomodulatory proteins and uses thereof
KR20210022004A (en) 2018-06-18 2021-03-02 안위타 바이오사이언시스, 인코포레이티드 Anti-mesothelin constructs and uses thereof
MX2020013798A (en) 2018-06-19 2021-08-11 Atarga Llc Antibody molecules to complement component 5 and uses thereof.
WO2019244973A1 (en) 2018-06-20 2019-12-26 中外製薬株式会社 Method for activating immune response of target cell and composition therefor
US12275797B2 (en) 2018-06-22 2025-04-15 Genmab Holding B.V. Anti-CD37 antibodies and anti-CD20 antibodies, compositions and methods of use thereof
CN112955465A (en) 2018-07-03 2021-06-11 马伦戈治疗公司 anti-TCR antibody molecules and uses thereof
AR116109A1 (en) 2018-07-10 2021-03-31 Novartis Ag DERIVATIVES OF 3- (5-AMINO-1-OXOISOINDOLIN-2-IL) PIPERIDINE-2,6-DIONA AND USES OF THE SAME
JP7534281B2 (en) 2018-07-13 2024-08-14 ジェンマブ エー/エス Trogocytosis-mediated therapy using CD38 antibodies
MY205398A (en) 2018-07-13 2024-10-19 Genmab As Variants of cd38 antibody and uses thereof
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
US12459980B2 (en) 2018-07-25 2025-11-04 AskGene Pharma, Inc. IL-21 prodrugs and methods of use thereof
EP3845558A4 (en) 2018-08-29 2022-05-18 Chugai Seiyaku Kabushiki Kaisha ANTIBODY HALF-MOLECULE, AND METHOD FOR INHIBITING HOMODIMERE FORMATION OF THE ANTIBODY HALF-MOLECULE
GB2576914A (en) 2018-09-06 2020-03-11 Kymab Ltd Antigen-binding molecules comprising unpaired variable domains produced in mammals
WO2020068774A1 (en) 2018-09-24 2020-04-02 The Medical College Of Wisconsin, Inc. System and method for the development of cd30 bispecific antibodies for immunotherapy of cd30+ malignancies
US20220002370A1 (en) 2018-09-27 2022-01-06 Xilio Development, Inc. Masked cytokine polypeptides
CA3115096A1 (en) 2018-10-03 2020-04-09 Xencor, Inc. Il-12 heterodimeric fc-fusion proteins
BR112021006055A2 (en) 2018-10-04 2021-07-20 Genmab Holding B.V. pharmaceutical composition, use of the pharmaceutical composition, and, methods for inducing cell death or for inhibiting the growth and/or proliferation of a tumor cell and for treating an individual.
MA53862A (en) 2018-10-12 2022-01-19 Xencor Inc FC FUSION PROTEINS OF IL-15/IL-15RALPHA TARGETTING PD-1 AND USES IN COMBINATION THERAPIES INVOLVING THE SAME
CA3114728C (en) 2018-10-29 2024-05-14 F. Hoffmann-La Roche Ag Antibody formulation
CN120983617A (en) 2018-11-06 2025-11-21 健玛保 Antibody formulations
CN119735694A (en) 2018-11-13 2025-04-01 指南针制药有限责任公司 Multispecific binding constructs against checkpoint molecules and their uses
AU2019389151B2 (en) 2018-11-30 2025-07-24 Alpine Immune Sciences, Inc. CD86 variant immunomodulatory proteins and uses thereof
US20220041719A1 (en) 2018-12-05 2022-02-10 Morphosys Ag Multispecific antigen-binding molecules
TWI874341B (en) 2018-12-18 2025-03-01 美商健生生物科技公司 Methods of producing heterodimeric antibodies
GB201820687D0 (en) 2018-12-19 2019-01-30 Kymab Ltd Antagonists
EP3897853A1 (en) 2018-12-20 2021-10-27 Xencor, Inc. Targeted heterodimeric fc fusion proteins containing il-15/il-15ra and nkg2d antigen binding domains
KR20210106437A (en) 2018-12-20 2021-08-30 노파르티스 아게 Dosage regimens and pharmaceutical combinations comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
JP2022514280A (en) 2018-12-20 2022-02-10 ノバルティス アーゲー Extended low-dose regimen for MDM2 inhibitors
PE20211603A1 (en) 2018-12-21 2021-08-18 Hoffmann La Roche ANTIBODIES THAT JOIN CD3
WO2020128049A1 (en) 2018-12-21 2020-06-25 Kymab Limited Fixaxfx bispecific antibody with common light chain
CN113795508A (en) 2018-12-24 2021-12-14 赛诺菲 Multispecific binding proteins with mutant Fab domains
CN113412123A (en) 2018-12-28 2021-09-17 豪夫迈·罗氏有限公司 peptide-MHC-I-antibody fusion proteins for therapeutic use in patients with enhanced immune response
TWI852977B (en) 2019-01-10 2024-08-21 美商健生生物科技公司 Prostate neoantigens and their uses
AU2020208828A1 (en) 2019-01-15 2021-08-05 Janssen Biotech, Inc. Anti-TNF antibody compositions and methods for the treatment of juvenile idiopathic arthritis
PH12021551676A1 (en) 2019-01-18 2022-03-07 Janssen Biotech Inc Gprc5d chimeric antigen receptors and cells expressing the same
BR112021014267A2 (en) 2019-01-23 2022-02-15 Janssen Biotech Inc Anti-tnf antibody compositions and methods for the treatment of psoriatic arthritis
US12479817B2 (en) 2019-02-15 2025-11-25 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
US10871640B2 (en) 2019-02-15 2020-12-22 Perkinelmer Cellular Technologies Germany Gmbh Methods and systems for automated imaging of three-dimensional objects
AU2020222345B2 (en) 2019-02-15 2022-11-17 Novartis Ag 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
AU2020226904B2 (en) 2019-02-21 2025-05-01 Marengo Therapeutics, Inc. Anti-TCR antibody molecules and uses thereof
CN119039441A (en) 2019-02-21 2024-11-29 马伦戈治疗公司 Antibody molecules that bind to NKP30 and uses thereof
JP7706373B2 (en) 2019-02-21 2025-07-11 マレンゴ・セラピューティクス,インコーポレーテッド Multifunctional molecules that bind to calreticulin and uses thereof
CN119661722A (en) 2019-02-21 2025-03-21 马伦戈治疗公司 Multifunctional molecules that bind to T cell-associated cancer cells and their uses
CA3130628A1 (en) 2019-02-21 2020-08-27 Marengo Therapeutics, Inc. Multifunctional molecules that bind to t cells and uses thereof to treat autoimmune disorders
US20220088075A1 (en) 2019-02-22 2022-03-24 The Trustees Of The University Of Pennsylvania Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors
CA3131654A1 (en) 2019-02-26 2020-09-03 Janssen Biotech, Inc. Combination therapies and patient stratification with bispecific anti-egfr/c-met antibodies
BR112021016955A2 (en) 2019-03-01 2021-11-23 Xencor Inc Composition, nucleic acid composition, expression vector composition, expression vector, host cell, methods of producing an ectonucleotide pyrophosphatase/phosphodiesterase family 3 member binding domain and of treating a cancer, anti-enpp3 antibody , and, heterodimeric antibody
WO2020183245A2 (en) 2019-03-11 2020-09-17 Janssen Pharmaceutica Nv ANTI-Vβ17/ANTI-CD123 BISPECIFIC ANTIBODIES
MA55282A (en) 2019-03-14 2022-01-19 Janssen Biotech Inc MANUFACTURING METHODS FOR THE PRODUCTION OF ANTI-TNF ANTIBODY COMPOSITIONS
CN113825765A (en) 2019-03-14 2021-12-21 詹森生物科技公司 Method for producing anti-IL 12/IL23 antibody composition
EP3938391A1 (en) 2019-03-14 2022-01-19 Janssen Biotech, Inc. Methods for producing anti-tnf antibody compositions
JP7662529B2 (en) 2019-03-14 2025-04-15 ヤンセン バイオテツク,インコーポレーテツド Methods for Producing Anti-TNF Antibody Compositions
CN121159688A (en) 2019-03-19 2025-12-19 中外制药株式会社 Antigen binding molecules comprising an antigen binding domain whose binding activity to an antigen varies as a function of MTA and libraries for obtaining the antigen binding domain
JP7412440B2 (en) 2019-03-29 2024-01-12 エフ. ホフマン-ラ ロシュ アーゲー How to make avido-conjugated multispecific antibodies
EP3948281A1 (en) 2019-03-29 2022-02-09 F. Hoffmann-La Roche AG Spr-based binding assay for the functional analysis of multivalent molecules
JP2022527790A (en) 2019-03-29 2022-06-06 アターガ,エルエルシー Anti-FGF23 antibody molecule
CA3136888A1 (en) 2019-04-19 2020-10-22 Janssen Biotech, Inc. Methods of treating prostate cancer with an anti- psma/cd3 antibody
CN113767114A (en) 2019-04-25 2021-12-07 豪夫迈·罗氏有限公司 Activatable therapeutic multispecific polypeptides with extended half-lives
TW202106715A (en) 2019-04-25 2021-02-16 瑞士商赫孚孟拉羅股份公司 Therapeutic multispecific polypeptides activated by polypeptide chain exchange
MX2021012871A (en) 2019-04-25 2021-11-17 Hoffmann La Roche Generation of antibody-derived polypeptides by polypeptide chain exchange.
CA3139508A1 (en) 2019-05-08 2020-11-12 Janssen Biotech, Inc. Materials and methods for modulating t cell mediated immunity
JP2022531894A (en) 2019-05-09 2022-07-12 ゲンマブ ビー.ブイ. Administration regimen of anti-DR5 antibody combination for use in the treatment of cancer
EP3969907B1 (en) 2019-05-13 2025-09-24 F. Hoffmann-La Roche AG Interference-suppressed pharmacokinetic immunoassay
WO2020230091A1 (en) 2019-05-14 2020-11-19 Janssen Biotech, Inc. Combination therapies with bispecific anti-egfr/c-met antibodies and third generation egfr tyrosine kinase inhibitors
EP3969035A4 (en) 2019-05-14 2023-06-21 Werewolf Therapeutics, Inc. SEPARATION CHARACTERISTIC GROUPS, ASSOCIATED PROCESSES AND USE
EP3972993A1 (en) 2019-05-21 2022-03-30 Novartis AG Variant cd58 domains and uses thereof
US20220396631A1 (en) 2019-05-21 2022-12-15 Lu HUANG Trispecific binding molecules against bcma and uses thereof
JP7489407B2 (en) 2019-05-21 2024-05-23 ノバルティス アーゲー CD19 binding molecules and uses thereof
WO2020245676A1 (en) 2019-06-03 2020-12-10 Janssen Biotech, Inc. Anti-tnf antibody compositions, and methods for the treatment of psoriatic arthritis
BR112021023735A2 (en) 2019-06-05 2022-01-04 Chugai Pharmaceutical Co Ltd Antibody cleavage site binding molecule
AU2020291012B2 (en) 2019-06-12 2025-09-25 AskGene Pharma, Inc. Novel IL-15 prodrugs and methods of use thereof
WO2020254357A1 (en) 2019-06-19 2020-12-24 F. Hoffmann-La Roche Ag Method for the generation of a protein expressing cell by targeted integration using cre mrna
CA3141039A1 (en) 2019-06-26 2020-12-30 Simon Auslaender Mammalian cell lines with sirt-1 gene knockout
JP2022538139A (en) 2019-07-02 2022-08-31 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Immune complex comprising mutant interleukin-2 and anti-CD8 antibody
PH12021552960A1 (en) 2019-07-10 2022-07-25 Chugai Pharmaceutical Co Ltd Claudin-6 binding molecules and uses thereof
AU2020311432A1 (en) 2019-07-11 2022-02-03 Tavotek Biotherapeutics (Hong Kong) Limited Agents that interfere with thymic stromal lymphopoietin (TSLP)-receptor signaling
AU2020313521A1 (en) 2019-07-12 2022-02-17 Janssen Pharmaceutica Nv Binding agents and uses thereof
AR119393A1 (en) 2019-07-15 2021-12-15 Hoffmann La Roche ANTIBODIES THAT BIND NKG2D
CN115175932B (en) 2019-07-16 2025-10-31 赛诺菲 Neutralizing anti-beta amyloid antibodies for the treatment of alzheimer's disease
PE20220649A1 (en) 2019-07-26 2022-04-28 Janssen Biotech Inc PROTEINS COMPRISING KALLYCREIN-RELATED PEPTIDASE 2 ANTIGEN-BINDING DOMAINS AND THEIR USES
GB201910900D0 (en) 2019-07-31 2019-09-11 Scancell Ltd Modified fc-regions to enhance functional affinity of antibodies and antigen binding fragments thereof
PE20220394A1 (en) 2019-07-31 2022-03-18 Hoffmann La Roche ANTIBODIES THAT BIND TO GPRC5D
JP2022543551A (en) 2019-07-31 2022-10-13 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Antibody that binds to GPRC5D
US12215148B2 (en) 2019-08-08 2025-02-04 Regeneron Pharmaceuticals, Inc. Antigen binding molecule formats
US20220306714A1 (en) 2019-08-12 2022-09-29 AskGene Pharma, Inc. Il-2 fusion proteins that preferentially bind il-2ralpha
CA3148121A1 (en) 2019-08-15 2021-02-18 Janssen Biotech, Inc. Materials and methods for improved single chain variable fragments
JP2022545439A (en) 2019-08-21 2022-10-27 アスクジーン・ファーマ・インコーポレイテッド NOVEL IL-21 PRODRUGS AND METHODS OF USE THEREOF
CA3153785A1 (en) 2019-09-28 2021-04-01 AskGene Pharma, Inc. Cytokine prodrugs and dual-prodrugs
TW202128757A (en) 2019-10-11 2021-08-01 美商建南德克公司 Pd-1 targeted il-15/il-15ralpha fc fusion proteins with improved properties
KR20220103947A (en) 2019-10-21 2022-07-25 노파르티스 아게 Combination Therapy with Venetoclax and TIM-3 Inhibitors
CN114786680A (en) 2019-10-21 2022-07-22 诺华股份有限公司 TIM-3 inhibitors and uses thereof
AU2020379735A1 (en) 2019-11-05 2022-05-26 Regeneron Pharmaceuticals, Inc. N-terminal SCFV multispecific binding molecules
US20220411529A1 (en) 2019-11-06 2022-12-29 Genmab B.V. Antibody variant combinations and uses thereof
MX2022005666A (en) 2019-11-14 2022-10-07 Werewolf Therapeutics Inc ACTIVABLE CYTOKINE POLYPEPTIDES AND METHODS OF USE THEREOF.
US20210145878A1 (en) 2019-11-18 2021-05-20 Janssen Biotech, Inc. Anti-cd79 chimeric antigen receptors, car-t cells, and uses thereof
AR120566A1 (en) 2019-11-26 2022-02-23 Novartis Ag CHIMERIC ANTIGEN RECEPTORS AND THEIR USES
KR20220130687A (en) 2019-12-11 2022-09-27 시락 게엠베하 인터내셔날 Multispecific binding molecules comprising LTBR and EDB binding domains and uses thereof
MX2022007635A (en) 2019-12-18 2022-07-19 Hoffmann La Roche Antibodies binding to hla-a2/mage-a4.
WO2021122733A1 (en) 2019-12-18 2021-06-24 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
WO2021127495A1 (en) 2019-12-20 2021-06-24 Regeneron Pharmaceuticals, Inc. Novel il2 agonists and methods of use thereof
JP2023506958A (en) 2019-12-20 2023-02-20 ノバルティス アーゲー Combination of the anti-TIM-3 antibody MBG453 and the anti-TGF-beta antibody NIS793 with or without decitabine or the anti-PD-1 antibody spartalizumab for treating myelofibrosis and myelodysplastic syndrome
IL294226B2 (en) 2019-12-27 2025-05-01 Chugai Pharmaceutical Co Ltd Anti-ctla-4 antibody and use thereof
EP4085251B1 (en) 2020-01-02 2024-07-31 F. Hoffmann-La Roche AG Method for determining the amount of a therapeutic antibody in the brain
WO2021138407A2 (en) 2020-01-03 2021-07-08 Marengo Therapeutics, Inc. Multifunctional molecules that bind to cd33 and uses thereof
GB2609554B (en) 2020-01-03 2025-08-20 Marengo Therapeutics Inc Anti-TCR antibody molecules and uses thereof
WO2021142471A1 (en) 2020-01-11 2021-07-15 AskGene Pharma, Inc. Novel masked cytokines and methods of use thereof
KR20220130724A (en) 2020-01-16 2022-09-27 젠맵 에이/에스 Formulations of CD38 antibodies and uses thereof
IL293752A (en) 2020-01-17 2022-08-01 Novartis Ag A combination containing a tim-3 inhibitor and a substance that causes hypomethylation for use in the treatment of myeloplastic syndrome or chronic myelomonocytic leukemia
CN115298322A (en) 2020-01-17 2022-11-04 贝克顿迪金森公司 Methods and compositions for single-cell secretomics
IL272194A (en) 2020-01-22 2021-07-29 Yeda Res & Dev Multispecific antibodies for use in treating diseases
IL272389A (en) 2020-01-30 2021-08-31 Yeda Res & Dev Articles of manufacture comprising anti pd-l1 antibodies and their use in therapy
JP2023512071A (en) 2020-01-30 2023-03-23 ウモジャ バイオファーマ, インコーポレイテッド Bispecific transduction enhancer
WO2021155916A1 (en) 2020-02-04 2021-08-12 BioNTech SE Treatment involving antigen vaccination and binding agents binding to pd-l1 and cd137
JOP20220184A1 (en) 2020-02-12 2023-01-30 Janssen Biotech Inc TREATMENT OF PATIENTS HAVING c-MET EXON 14 SKIPPING MUTATIONS
TW202144388A (en) 2020-02-14 2021-12-01 美商健生生物科技公司 Neoantigens expressed in ovarian cancer and their uses
TW202144389A (en) 2020-02-14 2021-12-01 美商健生生物科技公司 Neoantigens expressed in multiple myeloma and their uses
KR20220147109A (en) 2020-02-27 2022-11-02 노파르티스 아게 Methods for making chimeric antigen receptor-expressing cells
EP4233893A3 (en) 2020-03-13 2023-09-27 Janssen Biotech, Inc. Materials and methods for binding siglec-3/cd33
KR20220154757A (en) 2020-03-18 2022-11-22 젠맵 에이/에스 Antibodies that bind to B7H4
WO2021190980A1 (en) 2020-03-22 2021-09-30 Quadrucept Bio Limited Multimers for viral strain evolution
WO2021195513A1 (en) 2020-03-27 2021-09-30 Novartis Ag Bispecific combination therapy for treating proliferative diseases and autoimmune disorders
CN120058957A (en) 2020-03-30 2025-05-30 国立大学法人三重大学 Bispecific Antibodies
CA3173587A1 (en) 2020-03-31 2021-10-07 Chugai Seiyaku Kabushiki-Kaisha Dll3-targeting multispecific antigen-binding molecules and uses thereof
KR20220161375A (en) 2020-03-31 2022-12-06 추가이 세이야쿠 가부시키가이샤 Methods for Making Multispecific Antigen Binding Molecules
PE20230111A1 (en) 2020-04-15 2023-01-27 Hoffmann La Roche IMMUNOCONJUGATES
IL297200A (en) 2020-04-15 2022-12-01 Voyager Therapeutics Inc Tau binding compounds
CA3180350A1 (en) 2020-04-16 2021-10-21 Janssen Biotech, Inc Systems, materials, and methods for reversed-phase high performance liquid chromatography (rp-hplc) for monitoring formation of multi-specific molecules
GB202005879D0 (en) 2020-04-22 2020-06-03 Petmedix Ltd Heterodimeric proteins
JP2023523011A (en) 2020-04-24 2023-06-01 マレンゴ・セラピューティクス,インコーポレーテッド Multifunctional molecules that bind to T cell-associated cancer cells and uses thereof
CN113563473A (en) 2020-04-29 2021-10-29 三生国健药业(上海)股份有限公司 Tetravalent bispecific antibody, preparation method and application thereof
US20230172923A1 (en) 2020-04-30 2023-06-08 Bristol-Myers Squibb Company Methods of treating cytokine-related adverse events
WO2021220215A1 (en) 2020-05-01 2021-11-04 Novartis Ag Engineered immunoglobulins
PE20230494A1 (en) 2020-05-08 2023-03-23 Alpine Immune Sciences Inc APRIL AND BAFF INHIBITORY IMMUNOMODULATOR PROTEINS AND METHODS OF USE THEREOF
IL297986A (en) 2020-05-08 2023-01-01 Genmab As Bispecific antibodies against cd3 and cd20
AU2021272291A1 (en) 2020-05-11 2023-02-02 Janssen Biotech, Inc. Methods for treating multiple myeloma
EP4149524A1 (en) 2020-05-11 2023-03-22 F. Hoffmann-La Roche AG Combination therapy with modified pbmcs and an immunoconjugate
WO2021231447A1 (en) 2020-05-12 2021-11-18 Regeneron Pharmaceuticals, Inc. Novel il10 agonists and methods of use thereof
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
KR20230014719A (en) 2020-05-22 2023-01-30 추가이 세이야쿠 가부시키가이샤 Antibodies that neutralize substances with coagulation factor VIII (F.VIII) alternative activity
CR20220594A (en) 2020-05-27 2023-01-17 Janssen Biotech Inc PROTEINS COMPRISING CD3 ANTIGEN BINDING DOMAINS AND USES THEREOF
GB202008860D0 (en) 2020-06-11 2020-07-29 Univ Oxford Innovation Ltd BTLA antibodies
BR112022025856A2 (en) 2020-06-19 2023-01-10 Hoffmann La Roche ANTIBODY THAT BINDS CD3 AND CD19, POLYNUCLEOTIDE ISOLATED, HOST CELL, METHOD OF PRODUCING AN ANTIBODY THAT BINDS CD3 AND CD19, PHARMACEUTICAL COMPOSITION, USE OF THE ANTIBODY, METHOD FOR TREATING A DISEASE IN A SUBJECT AND INVENTION
WO2021255146A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3 and cea
JP2023529981A (en) 2020-06-19 2023-07-12 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Immunostimulatory Fc domain binding molecules
PE20230616A1 (en) 2020-06-19 2023-04-14 Hoffmann La Roche ANTIBODIES THAT BIND CD3 AND FOLR1
PE20230835A1 (en) 2020-06-19 2023-05-19 Hoffmann La Roche ANTIBODIES THAT BIND CD3
WO2021260528A1 (en) 2020-06-23 2021-12-30 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
US12295997B2 (en) 2020-07-06 2025-05-13 Janssen Biotech, Inc. Prostate neoantigens and their uses
CR20230009A (en) 2020-07-16 2023-01-25 Novartis Ag Anti-betacellulin antibodies, fragments thereof, and multi-specific binding molecules
WO2022018294A1 (en) 2020-07-23 2022-01-27 Genmab B.V. A combination of anti-dr5 antibodies and an immunomodulatory imide drug for use in treating multiple myeloma
WO2022026592A2 (en) 2020-07-28 2022-02-03 Celltas Bio, Inc. Antibody molecules to coronavirus and uses thereof
AR123083A1 (en) 2020-07-29 2022-10-26 Janssen Biotech Inc PROTEINS INCLUDING HLA-G ANTIGEN BINDING DOMAINS AND THEIR USES
IL300225A (en) 2020-07-31 2023-03-01 Chugai Pharmaceutical Co Ltd Pharmaceutical composition including cell expressing chimeric receptor
WO2022029573A1 (en) 2020-08-03 2022-02-10 Novartis Ag Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
KR20230060501A (en) 2020-08-03 2023-05-04 얀센 바이오테크 인코포레이티드 Materials and methods for multidirectional biotransportation in viral therapeutics
EP4192859A1 (en) 2020-08-06 2023-06-14 BioNTech SE Binding agents for coronavirus s protein
CA3190987A1 (en) 2020-08-10 2022-02-17 Janssen Biotech, Inc. Materials and methods for producing bioengineered virus specific lymphocytes
AU2021329378A1 (en) 2020-08-19 2023-03-23 Xencor, Inc. Anti-CD28 compositions
KR20230074487A (en) 2020-08-26 2023-05-30 마렝고 테라퓨틱스, 인크. How to detect TRBC1 or TRBC2
AU2021331076A1 (en) 2020-08-26 2023-04-06 Marengo Therapeutics, Inc. Antibody molecules that bind to NKp30 and uses thereof
WO2022046920A2 (en) 2020-08-26 2022-03-03 Marengo Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
WO2022044248A1 (en) 2020-08-28 2022-03-03 中外製薬株式会社 Heterodimer fc polypeptide
EP4204020A1 (en) 2020-08-31 2023-07-05 Advanced Accelerator Applications International S.A. Method of treating psma-expressing cancers
WO2022043557A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
CN116472060A (en) 2020-09-02 2023-07-21 健玛保 Antibody therapy
AU2021342343A1 (en) 2020-09-10 2023-04-13 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
JP2023542291A (en) 2020-09-10 2023-10-06 ジェンマブ エー/エス Bispecific antibodies against CD3 and CD20 in combination therapy to treat diffuse large B-cell lymphoma
EP4210743A1 (en) 2020-09-10 2023-07-19 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating follicular lymphoma
JP2023541858A (en) 2020-09-10 2023-10-04 ジェンマブ エー/エス Bispecific antibodies against CD3 and CD20 for treating chronic lymphocytic leukemia
BR112023004321A2 (en) 2020-09-10 2023-04-04 Genmab As METHOD FOR TREATMENT OF DIFFUSED GRAND B-CELL LYMPHOMA IN A HUMAN SUBJECT
EP4210742A1 (en) 2020-09-10 2023-07-19 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating follicular lymphoma
WO2022056197A1 (en) 2020-09-11 2022-03-17 Janssen Biotech, Inc. Immune targeting molecules and uses thereof
EP4211170A4 (en) 2020-09-11 2024-10-09 Janssen Biotech, Inc. Methods and compositions for modulating beta chain mediated immunity
AU2021342284A1 (en) 2020-09-14 2023-04-20 Sutro Biopharma, Inc. Method for large scale production of antibodies using a cell-free protein synthesis system
CN116391037A (en) 2020-09-24 2023-07-04 豪夫迈·罗氏有限公司 Mammalian cell lines with gene knockouts
US20230365714A1 (en) 2020-10-02 2023-11-16 Genmab A/S Antibodies capable of binding to ror2 and bispecific antibodies binding to ror2 and cd3
KR20230086765A (en) 2020-10-13 2023-06-15 얀센 바이오테크 인코포레이티드 Bio-engineered T cell mediated immunity, substances and other methods for modulating clusters of differentiation IV and/or VIII
EP4232479A1 (en) 2020-10-22 2023-08-30 Janssen Biotech, Inc. Proteins comprising delta-like ligand 3 (dll3) antigen binding domains and their uses
MX2023004598A (en) 2020-10-23 2023-06-29 Asher Biotherapeutics Inc Fusions with cd8 antigen binding molecules for modulating immune cell function.
EP4237003A4 (en) 2020-10-28 2025-07-09 Janssen Biotech Inc Compositions and methods for modulating delta-gamma chain-mediated immunity
CA3196766A1 (en) 2020-11-02 2022-05-05 Attralus, Inc. Sap fc fusion proteins and methods of use
WO2022098638A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
MX2023005130A (en) 2020-11-04 2023-05-25 Genentech Inc SUBCUTANEOUS DOSE OF ANTI-CD20/ANTI-CD3 BISPECIFIC ANTIBODIES.
US20240025993A1 (en) 2020-11-06 2024-01-25 Novartis Ag Cd19 binding molecules and uses thereof
AU2021374083A1 (en) 2020-11-06 2023-06-01 Novartis Ag Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies
CN117120477A (en) 2020-11-10 2023-11-24 上海齐鲁制药研究中心有限公司 Bispecific antibodies against claudin 18A2 and CD3 and their applications
IL302700A (en) 2020-11-13 2023-07-01 Novartis Ag Combined treatments with cells expressing chimeric antigens (vehicle)
TW202235431A (en) 2020-11-25 2022-09-16 美商艾希利歐發展股份有限公司 Tumor-specific cleavable linkers
CR20230263A (en) 2020-12-17 2023-08-21 Hoffmann La Roche Anti-hla-g antibodies and use thereof
CN116601175A (en) 2020-12-18 2023-08-15 豪夫迈·罗氏有限公司 Precursor Proteins and Kits for Targeted Therapies
CN116670282A (en) 2020-12-22 2023-08-29 豪夫迈·罗氏有限公司 XBP 1-targeting oligonucleotides
JP2024503826A (en) 2021-01-06 2024-01-29 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Combination therapy using PD1-LAG3 bispecific antibody and CD20 T cell bispecific antibody
WO2022148853A1 (en) 2021-01-11 2022-07-14 F. Hoffmann-La Roche Ag Immunoconjugates
US20240076355A1 (en) 2021-01-14 2024-03-07 AskGene Pharma, Inc. Interferon Prodrugs and Methods of Making and Using the Same
CA3210246A1 (en) 2021-01-28 2022-08-04 Janssen Biotech, Inc. Psma binding proteins and uses thereof
US20240141060A1 (en) 2021-01-29 2024-05-02 Novartis Ag Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
EP4284819A1 (en) 2021-02-01 2023-12-06 Askgene Pharma, Inc. Chimeric molecules comprising an il-10 or tgf-beta agonist polypeptide
CR20230398A (en) 2021-02-16 2023-11-15 Janssen Pharmaceutica Nv Trispecific antibody targeting bcma, gprc5d, and cd3
KR20230145423A (en) 2021-02-16 2023-10-17 얀센 바이오테크 인코포레이티드 Materials and methods for improved linker targeting
WO2022178103A1 (en) 2021-02-17 2022-08-25 AskGene Pharma, Inc. Il-2 receptor beta subunit mutants
CN116888473A (en) 2021-02-18 2023-10-13 豪夫迈·罗氏有限公司 Method for resolving complex, multi-step antibody interactions
WO2022184659A1 (en) 2021-03-01 2022-09-09 Quadrucept Bio Limited Antibody domains & multimers
CA3212665A1 (en) 2021-03-09 2022-09-15 Xencor, Inc. Heterodimeric antibodies that bind cd3 and cldn6
IL305700A (en) 2021-03-09 2023-11-01 Janssen Biotech Inc Treatment of cancers lacking egfr-activating mutations
KR20230154311A (en) 2021-03-10 2023-11-07 젠코어 인코포레이티드 Heterodimeric antibodies binding to CD3 and GPC3
KR20230156921A (en) 2021-03-12 2023-11-15 젠맵 에이/에스 Non-activating antibody variants
KR20230160874A (en) 2021-03-24 2023-11-24 얀센 바이오테크 인코포레이티드 Trispecific antibody targeting CD79b, CD20 and CD3
TW202304986A (en) 2021-03-24 2023-02-01 美商健生生物科技公司 Antibody targeting cd22 and cd79b
AR125212A1 (en) 2021-03-24 2023-06-28 Janssen Biotech Inc PROTEINS INCLUDING CD3 ANTIGEN-BINDING DOMAINS AND THEIR USES
JP2024514077A (en) 2021-03-31 2024-03-28 江▲蘇▼恒瑞医▲薬▼股▲フン▼有限公司 Truncated TACI polypeptides and fusion proteins thereof and uses
TW202304979A (en) 2021-04-07 2023-02-01 瑞士商諾華公司 USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
KR20240004462A (en) 2021-04-08 2024-01-11 마렝고 테라퓨틱스, 인크. Multifunctional molecules that bind to TCR and their uses
CN115925967A (en) 2021-04-22 2023-04-07 广东菲鹏制药股份有限公司 Bispecific multifunctional fusion polypeptide
EP4330282A1 (en) 2021-04-30 2024-03-06 F. Hoffmann-La Roche AG Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
TW202244059A (en) 2021-04-30 2022-11-16 瑞士商赫孚孟拉羅股份公司 Dosing for treatment with anti-cd20/anti-cd3 bispecific antibody
MX2023012974A (en) 2021-05-04 2023-11-15 Regeneron Pharma Multispecific fgf21 receptor agonists and their uses.
CN117597365A (en) 2021-05-04 2024-02-23 再生元制药公司 Multispecific FGF21 receptor agonist and application thereof
KR20240004949A (en) 2021-05-07 2024-01-11 젠맵 에이/에스 Pharmaceutical composition comprising a bispecific antibody that binds B7H4 and CD3
CA3216795A1 (en) 2021-05-07 2022-11-10 Alpine Immune Sciences, Inc. Methods of dosing and treatment with a taci-fc fusion immunomodulatory protein
MX2023013165A (en) 2021-05-12 2023-11-30 Jiangsu Hengrui Pharmaceuticals Co Ltd Antigen binding molecule specifically binding to rankl and ngf, and medical use thereof.
WO2022237882A1 (en) 2021-05-14 2022-11-17 江苏恒瑞医药股份有限公司 Antigen-binding molecule
KR20240007171A (en) 2021-05-14 2024-01-16 제넨테크, 인크. Methods for treating CD20 positive proliferative disorders using mosunetuzumab and polatuzumab vedotin
AR125874A1 (en) 2021-05-18 2023-08-23 Novartis Ag COMBINATION THERAPIES
TW202309094A (en) 2021-05-18 2023-03-01 美商健生生物科技公司 Methods for identifying cancer patients for combination treatment
KR20240024829A (en) 2021-05-19 2024-02-26 애셔 바이오테라퓨틱스, 인크. IL-21 polypeptide and targeted constructs
CN117500829A (en) 2021-06-18 2024-02-02 豪夫迈·罗氏有限公司 Bispecific anti-CCL 2 antibodies
TW202315891A (en) 2021-06-21 2023-04-16 丹麥商珍美寶股份有限公司 Binding agent dosing schedule
CA3219360A1 (en) 2021-06-22 2022-12-29 Novartis Ag Bispecific antibodies for use in treatment of hidradenitis suppurativa
CA3220353A1 (en) 2021-06-25 2022-12-29 Chugai Seiyaku Kabushiki Kaisha Use of anti-ctla-4 antibody
CR20240026A (en) 2021-06-25 2024-03-14 Chugai Pharmaceutical Co Ltd Anti–ctla-4 antibody
KR20240028452A (en) 2021-07-02 2024-03-05 제넨테크, 인크. Methods and compositions for treating cancer
KR20240034215A (en) 2021-07-09 2024-03-13 얀센 바이오테크 인코포레이티드 Manufacturing Methods for Producing Anti-IL12/IL23 Antibody Compositions
EP4367136A1 (en) 2021-07-09 2024-05-15 Janssen Biotech, Inc. Manufacturing methods for producing anti-tnf antibody compositions
IL309996A (en) 2021-07-09 2024-03-01 Janssen Biotech Inc Manufacturing methods for producing anti-tnf antibody compositions
MX2024000501A (en) 2021-07-14 2024-01-31 Jiangsu Hengrui Pharmaceuticals Co Ltd Antigen-binding molecule specifically binding to hgfr and eger, and pharmaceutical use thereof.
EP4373862A1 (en) * 2021-07-19 2024-05-29 Chugai Seiyaku Kabushiki Kaisha Protease-mediated target specific cytokine delivery using fusion polypeptide
EP4373851A2 (en) 2021-07-19 2024-05-29 Regeneron Pharmaceuticals, Inc. Il12 receptor agonists and methods of use thereof
AU2022315528A1 (en) 2021-07-22 2023-10-19 F. Hoffmann-La Roche Ag Heterodimeric fc domain antibodies
WO2023006809A1 (en) 2021-07-27 2023-02-02 Morphosys Ag Combinations of antigen binding molecules
MX2024001214A (en) 2021-07-28 2024-02-12 Hoffmann La Roche Methods and compositions for treating cancer.
US20250270314A1 (en) 2021-08-02 2025-08-28 Tavotek Biotech (Suzhou) Ltd Anti-cdh17 monoclonal and bispecific antibodies and uses thereof
US20250277051A1 (en) 2021-08-02 2025-09-04 Hangzhou Unogen Biotech, Ltd Anti-cd38 antibodies, anti-cd3 antibodies, and bispecific antibodies, and uses thereof
JP2024534787A (en) 2021-08-16 2024-09-26 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Novel IL27 receptor agonists and methods of use thereof
JP2024533234A (en) 2021-09-06 2024-09-12 ジェンマブ エー/エス Antibodies having the ability to bind to CD27, variants thereof and uses thereof
US20240409634A1 (en) 2021-09-13 2024-12-12 Janssen Biotech, Inc. CD33 x Vd2 MULTISPECIFIC ANTIBODIES FOR THE TREATMENT OF CANCER
IL286430A (en) 2021-09-14 2023-04-01 Yeda Res & Dev Multispecific antibodies for use in treating diseases
WO2023044483A2 (en) 2021-09-20 2023-03-23 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
WO2023046071A1 (en) 2021-09-23 2023-03-30 江苏恒瑞医药股份有限公司 Anti-klb antibodies and uses
WO2023046322A1 (en) 2021-09-24 2023-03-30 Janssen Pharmaceutica Nv Proteins comprising cd20 binding domains, and uses thereof
JPWO2023053282A1 (en) 2021-09-29 2023-04-06
TW202325745A (en) * 2021-09-29 2023-07-01 美商莫德斯醫療公司 Antigen binding polypeptides, antigen binding polypeptide complexes and methods of use thereof
JP2024536870A (en) 2021-09-30 2024-10-08 江▲蘇▼恒瑞医▲薬▼股▲フン▼有限公司 Anti-IL23 antibody fusion proteins and uses
MX2024003615A (en) 2021-10-08 2024-04-09 Genmab As Antibodies binding to cd30 and cd3.
KR20240082388A (en) 2021-10-08 2024-06-10 추가이 세이야쿠 가부시키가이샤 Method for preparing prefilled syringe formulations
WO2023062048A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag Alternative pd1-il7v immunoconjugates for the treatment of cancer
WO2023062050A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag New interleukin-7 immunoconjugates
JP2024538148A (en) 2021-10-18 2024-10-18 タボテック バイオセラピューティクス(ホンコン)リミティド Anti-EGFR antibodies, anti-cMET antibodies, anti-VEGF antibodies, multispecific antibodies and uses thereof
WO2023073599A1 (en) 2021-10-28 2023-05-04 Novartis Ag Engineered fc variants
CN119390841A (en) 2021-11-01 2025-02-07 詹森生物科技公司 Compositions and methods for modulating beta chain-mediated immunity
KR20240099376A (en) 2021-11-03 2024-06-28 얀센 바이오테크 인코포레이티드 Cancer Treatment and Methods to Improve Efficacy of BCMAXCD3 Bispecific Antibodies
JP2024544534A (en) 2021-11-11 2024-12-03 リジェネロン・ファーマシューティカルズ・インコーポレイテッド CD20-PD1 binding molecules and methods of use thereof
US20250034559A1 (en) 2021-11-17 2025-01-30 Voyager Therapeutics, Inc. Compositions and methods for the treatment of tau-related disorders
MX2024006205A (en) 2021-11-22 2024-08-19 Janssen Biotech Inc COMPOSITIONS COMPRISING MULTISPECIFIC BINDING AGENTS BOOSTED FOR AN IMMUNE RESPONSE.
CN118284809A (en) 2021-11-25 2024-07-02 豪夫迈·罗氏有限公司 Quantification of small amounts of antibody byproducts
EP4445911A4 (en) 2021-12-06 2025-10-22 Beijing Solobio Genetechnology Co Ltd BISPECIFIC ANTIBODY WITH SPECIFIC BINDING TO KLEBSIELLA PNEUMONIAE O2 AND O1 ANTIGENS AND COMPOSITION
US20230183360A1 (en) 2021-12-09 2023-06-15 Janssen Biotech, Inc. Use of Amivantamab to Treat Colorectal Cancer
AR127887A1 (en) 2021-12-10 2024-03-06 Hoffmann La Roche ANTIBODIES THAT BIND CD3 AND PLAP
AU2022424002A1 (en) 2021-12-29 2024-06-13 Bristol-Myers Squibb Company Generation of landing pad cell lines
IL314068A (en) 2022-01-24 2024-09-01 Novimmune Sa Composition and methods for the selective activation of cytokine signaling pathways
AU2023214116A1 (en) 2022-01-28 2024-07-18 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
JP2025503177A (en) 2022-01-28 2025-01-30 ジェンマブ エー/エス Bispecific antibodies against CD3 and CD20 in combination therapy for treating diffuse large B-cell lymphoma - Patents.com
JP2025505611A (en) 2022-02-07 2025-02-28 江蘇恒瑞医薬股▲ふん▼有限公司 Antigen-binding molecule that specifically binds to PSMA and CD3 and its medical uses
US20230383010A1 (en) 2022-02-07 2023-11-30 Visterra, Inc. Anti-idiotype antibody molecules and uses thereof
TW202342057A (en) 2022-02-07 2023-11-01 美商健生生物科技公司 Methods for reducing infusion-related reactions in patients treated with egfr/met bispecific antibodies
WO2023151661A1 (en) 2022-02-11 2023-08-17 江苏恒瑞医药股份有限公司 Immunoconjugate and use thereof
JP2025508066A (en) 2022-03-07 2025-03-21 ノビミューン エスアー CD28 Bispecific Antibodies for Targeted T Cell Activation - Patent application
US20250215083A1 (en) 2022-03-14 2025-07-03 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Antigen-binding molecule specifically binding to gprc5d and cd3 and medical use thereof
EP4493592A1 (en) 2022-03-14 2025-01-22 LamKap Bio gamma AG Bispecific gpc3xcd28 and gpc3xcd3 antibodies and their combination for targeted killing of gpc3 positive malignant cells
WO2023174521A1 (en) 2022-03-15 2023-09-21 Genmab A/S Binding agents binding to epcam and cd137
EP4496631A1 (en) 2022-03-23 2025-01-29 F. Hoffmann-La Roche AG Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
CN119213023A (en) 2022-03-29 2024-12-27 恩格姆生物制药公司 ILT3 and CD3 binding agents and methods of use thereof
TW202404637A (en) 2022-04-13 2024-02-01 瑞士商赫孚孟拉羅股份公司 Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use
WO2023198839A2 (en) 2022-04-13 2023-10-19 Genmab A/S Bispecific antibodies against cd3 and cd20
JP2025513335A (en) 2022-04-19 2025-04-24 エフ. ホフマン-ラ ロシュ アーゲー Improved Producer Cells
IL316174A (en) 2022-04-26 2024-12-01 Novartis Ag Multispecific antibodies targeting il-13 and il-18
US20250340668A1 (en) 2022-05-11 2025-11-06 Regeneron Pharmaceuticals, Inc. Multispecific binding molecule proproteins and uses thereof
EP4522657A1 (en) 2022-05-12 2025-03-19 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
CN119365215A (en) 2022-05-12 2025-01-24 健玛保 Binding agents capable of binding CD27 in combination therapies
US20250295809A1 (en) 2022-05-13 2025-09-25 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
JP2025519158A (en) 2022-05-27 2025-06-24 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Interleukin-2 proprotein and uses thereof
EP4532526A1 (en) 2022-06-03 2025-04-09 F. Hoffmann-La Roche AG Improved production cells
US20230391844A1 (en) 2022-06-04 2023-12-07 Regeneron Pharmaceuticals, Inc. Interleukin-2 proproteins and uses thereof
WO2023246885A1 (en) 2022-06-23 2023-12-28 江苏恒瑞医药股份有限公司 Antigen-binding molecule specifically binding to dll3 and cd3, and pharmaceutical use thereof
JP2025522814A (en) 2022-06-30 2025-07-17 ヤンセン バイオテツク,インコーポレーテツド Use of anti-EGFR/anti-MET antibodies to treat gastric or esophageal cancer
WO2024020429A1 (en) 2022-07-22 2024-01-25 Lyell Immunopharma, Inc. Immune cell therapy
JP2025528068A (en) 2022-08-03 2025-08-26 ボイジャー セラピューティクス インコーポレイテッド Compositions and methods for crossing the blood-brain barrier
TW202413437A (en) 2022-08-05 2024-04-01 大陸商江蘇恆瑞醫藥股份有限公司 Antigen binding molecules specifically binding to gucy2c and cd3 and their medical uses
US20240067691A1 (en) 2022-08-18 2024-02-29 Regeneron Pharmaceuticals, Inc. Interferon receptor agonists and uses thereof
JP2025529805A (en) 2022-08-18 2025-09-09 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Interferon proproteins and uses thereof
CN120019071A (en) 2022-09-15 2025-05-16 沃雅戈治疗公司 TAU-binding compounds
AU2023356958A1 (en) 2022-10-04 2025-04-03 Alpine Immune Sciences, Inc. Mutated taci-fc fusion proteins for use in the treatment of autoantibody-mediated diseases
TW202423969A (en) 2022-10-10 2024-06-16 瑞士商赫孚孟拉羅股份公司 Combination therapy of a gprc5d tcb and proteasome inhibitors
TW202430211A (en) 2022-10-10 2024-08-01 瑞士商赫孚孟拉羅股份公司 Combination therapy of a gprc5d tcb and imids
TW202423970A (en) 2022-10-10 2024-06-16 瑞士商赫孚孟拉羅股份公司 Combination therapy of a gprc5d tcb and cd38 antibodies
JP2025535744A (en) 2022-10-12 2025-10-28 エフ. ホフマン-ラ ロシュ アーゲー Methods for classifying cells
JP2025535386A (en) 2022-10-20 2025-10-24 北京三▲諾▼佳邑生物技▲術▼有限▲責▼任公司 Combinations of antibodies and bispecific antibodies that specifically bind to TRAIL or FasL
IL320152A (en) 2022-10-21 2025-06-01 Novimmune Sa Pd-l1xcd28 bispecific antibodies for immune checkpoint-dependent t cell activation
WO2024089551A1 (en) 2022-10-25 2024-05-02 Janssen Biotech, Inc. Msln and cd3 binding agents and methods of use thereof
EP4612177A1 (en) 2022-10-31 2025-09-10 Genmab A/S Cd38 antibodies and uses thereof
KR20250096769A (en) 2022-11-01 2025-06-27 상하이 치루 파마슈티컬 리서치 앤 디벨롭먼트 센터 리미티드 Bispecific antibodies to glypican-3 and uses thereof
CN120077073A (en) 2022-11-02 2025-05-30 健玛保 Bispecific antibodies against CD3 and CD20 for the treatment of rischet syndrome
CN120282797A (en) 2022-11-02 2025-07-08 詹森生物科技公司 Methods of treating cancer
WO2024100170A1 (en) 2022-11-11 2024-05-16 F. Hoffmann-La Roche Ag Antibodies binding to hla-a*02/foxp3
WO2024104988A1 (en) 2022-11-15 2024-05-23 F. Hoffmann-La Roche Ag Recombinant binding proteins with activatable effector domain
WO2024104933A1 (en) 2022-11-15 2024-05-23 F. Hoffmann-La Roche Ag Antigen binding molecules
CN120265651A (en) 2022-11-25 2025-07-04 中外制药株式会社 Methods for producing proteins
CN120077072A (en) 2022-11-29 2025-05-30 江苏恒瑞医药股份有限公司 CLDN18.2/4-1BB binding protein and medical application thereof
WO2024119193A2 (en) 2022-12-02 2024-06-06 AskGene Pharma, Inc. Mutant il-2 polypeptides and il-2 prodrugs
EP4634220A2 (en) 2022-12-16 2025-10-22 Regeneron Pharmaceuticals, Inc. Antigen-binding molecules that bind to aav particles and uses
CN120476149A (en) 2022-12-23 2025-08-12 成都恩沐生物科技有限公司 Multispecific peptide complex targeting GPRC5D
WO2024138191A1 (en) 2022-12-23 2024-06-27 Regeneron Pharmaceuticals, Inc. Ace2 fusion proteins and uses thereof
CN120344665A (en) * 2022-12-27 2025-07-18 中外制药株式会社 Peptides with controlled association
EP4649088A1 (en) 2023-01-13 2025-11-19 Regeneron Pharmaceuticals, Inc. Il12 receptor agonists and methods of use thereof
US20240247069A1 (en) 2023-01-13 2024-07-25 Regeneron Pharmaceuticals, Inc. Fgfr3 binding molecules and methods of use thereof
CN120676957A (en) 2023-01-20 2025-09-19 豪夫迈·罗氏有限公司 Recombinant Fc domain-IL 2 variant polypeptides and combination therapies with membrane-anchored antigen binding polypeptides
WO2024156672A1 (en) 2023-01-25 2024-08-02 F. Hoffmann-La Roche Ag Antibodies binding to csf1r and cd3
WO2024163009A1 (en) 2023-01-31 2024-08-08 Genentech, Inc. Methods and compositions for treating urothelial bladder cancer
WO2024163494A1 (en) 2023-01-31 2024-08-08 F. Hoffmann-La Roche Ag Methods and compositions for treating non-small cell lung cancer and triple-negative breast cancer
WO2024168061A2 (en) 2023-02-07 2024-08-15 Ayan Therapeutics Inc. Antibody molecules binding to sars-cov-2
IL322592A (en) 2023-02-09 2025-10-01 Janssen Biotech Inc Anti-v beta 17/anti-cd123 bispecific antibodies
KR20250153801A (en) 2023-02-21 2025-10-27 지앙수 헨그루이 파마슈티컬스 컴퍼니 리미티드 IL-36R binding protein and its medical uses
US20240287186A1 (en) 2023-02-28 2024-08-29 Regeneron Pharmaceuticals, Inc. T cell activators and methods of use thereof
KR20250156759A (en) 2023-02-28 2025-11-03 리제너론 파아마슈티컬스, 인크. Multivalent antispike protein binding molecules and uses thereof
WO2024184287A1 (en) 2023-03-06 2024-09-12 F. Hoffmann-La Roche Ag Combination therapy of an anti-egfrviii/anti-cd3 antibody and an tumor-targeted 4-1bb agonist
CN120835901A (en) 2023-03-13 2025-10-24 豪夫迈·罗氏有限公司 Combination therapy using PD1-LAG3 bispecific antibodies and HLA-G T cell bispecific antibodies
AU2024236678A1 (en) 2023-03-13 2025-10-30 Janssen Biotech, Inc. Combination therapies with bi-specific anti-egfr/c-met antibodies and anti-pd-1 antibodies
CN120917044A (en) 2023-04-03 2025-11-07 豪夫迈·罗氏有限公司 Agonist split antibody
WO2024208777A1 (en) 2023-04-03 2024-10-10 F. Hoffmann-La Roche Ag All-in-one agonistic antibodies
WO2024208898A1 (en) 2023-04-05 2024-10-10 Genmab A/S Pharmaceutical compositions comprising antibodies binding to cd30 and cd3
AU2024252604A1 (en) 2023-04-11 2025-10-23 BioRay Pharmaceutical Co., Ltd. Anti-ror1 antibody and drug conjugate thereof
US20240368297A1 (en) 2023-04-13 2024-11-07 Genmab A/S Methods of treating lymphoma with bispecific antibodies against cd3 and cd20
AR132623A1 (en) 2023-05-08 2025-07-16 Hoffmann La Roche TARGETED INTERFERON FUSION PROTEINS AND METHODS OF USE
US20240400687A1 (en) 2023-05-10 2024-12-05 Regeneron Pharmaceuticals, Inc. Cd20-pd1 binding molecules and methods of use thereof
WO2024238415A1 (en) 2023-05-12 2024-11-21 Regeneron Pharmaceuticals, Inc. Interferon receptor antagonists and uses thereof
US12410258B2 (en) 2023-05-12 2025-09-09 Ganmab A/S Antibodies capable of binding to OX40, variants thereof and uses thereof
AR132687A1 (en) 2023-05-16 2025-07-23 Hoffmann La Roche PD-1-REGULATED IL-2 IMMUNOCONJUGATES AND THEIR USES
CA3228195A1 (en) 2023-05-23 2025-06-30 Janssen Biotech, Inc. Methods for treatment of non-small cell lung cancer (nsclc)
WO2024258785A1 (en) 2023-06-11 2024-12-19 Regeneron Pharmaceuticals, Inc. Circularized antibody molecules
WO2024263195A1 (en) 2023-06-23 2024-12-26 Genentech, Inc. Methods for treatment of liver cancer
WO2024263904A1 (en) 2023-06-23 2024-12-26 Genentech, Inc. Methods for treatment of liver cancer
AR133071A1 (en) 2023-06-30 2025-08-20 Genmab As ANTIBODIES THAT BIND TO FIBROBLAST ACTIVATION PROTEIN a AND DEATH RECEPTOR 4
US12319747B2 (en) 2023-07-03 2025-06-03 Medicovestor, Inc. Methods of using anti-SP17 immunotherapeutics
WO2025021838A1 (en) 2023-07-26 2025-01-30 F. Hoffmann-La Roche Ag Antibodies binding to cd3
TW202521576A (en) 2023-07-30 2025-06-01 美商健生生物科技公司 Molecules that bind to mutant calreticulin and uses thereof
US20250163182A1 (en) 2023-08-07 2025-05-22 Janssen Biotech, Inc. Enpp3 and cd3 binding agents and methods of use thereof
WO2025032510A1 (en) 2023-08-07 2025-02-13 Janssen Biotech, Inc. Stabilized cd3 antigen binding agents and methods of use thereof
TW202523349A (en) 2023-08-07 2025-06-16 美商健生生物科技公司 Gucy2c antibodies and uses thereof
WO2025032071A1 (en) 2023-08-09 2025-02-13 F. Hoffmann-La Roche Ag Mono and multispecific anti-trem2 antibodies, methods and uses thereof
WO2025032069A1 (en) 2023-08-09 2025-02-13 F. Hoffmann-La Roche Ag Mono and multispecific anti-trem2 antibodies, methods and uses thereof
WO2025036892A1 (en) 2023-08-14 2025-02-20 Morphosys Ag Cycat halfbody molecules comprising sterically occluding moieties
GB202312575D0 (en) 2023-08-17 2023-10-04 Bivictrix Ltd Bispecific antibodies
WO2025042742A1 (en) 2023-08-18 2025-02-27 Bristol-Myers Squibb Company Compositions comprising antibodies that bind bcma and cd3 and methods of treatment
EP4630457A1 (en) 2023-08-18 2025-10-15 Regeneron Pharmaceuticals, Inc. Bispecific antigen-binding molecules and uses thereof
WO2025041077A1 (en) 2023-08-23 2025-02-27 Sanofi Ctla-4-based lysosomal degraders and uses thereof
WO2025052273A1 (en) 2023-09-05 2025-03-13 Janssen Biotech, Inc. Methods of treating non-small cell lung cancer
WO2025051895A1 (en) 2023-09-06 2025-03-13 Novimmune Sa Combination therapy with a cea x cd28 bispecific antibody and blocking anti-pd-1 antibodies for enhanced in vivo anti-tumor activity
WO2025059162A1 (en) 2023-09-11 2025-03-20 Dana-Farber Cancer Institute, Inc. Car-engager containing il-2 variants to enhance the functionality of car t cells
WO2025056180A1 (en) 2023-09-15 2025-03-20 BioNTech SE Methods of treatment using agents binding to epcam and cd137 in combination with pd-1 axis binding antagonists
WO2025068957A1 (en) 2023-09-29 2025-04-03 Novartis Ag Bispecific antibodies for use in lowering the risk of cardiovascular disease events in subjects known to be a carrier of clonal expansion of hematopoietic cell lines with somatic mutations
WO2025079020A1 (en) 2023-10-12 2025-04-17 Janssen Biotech, Inc. First line treatment in egfr exon 20 insertion-mutated advanced non-small cell lung cancer
WO2025082777A1 (en) 2023-10-17 2025-04-24 Morphosys Ag Dual-targeting of muc16 and mesothelin co-expressing tumor cells by functional complementation of cycat® halfbody molecules
WO2025085610A1 (en) 2023-10-18 2025-04-24 Janssen Biotech, Inc. Combination treatment of prostate cancers with two bispecific antibodies
US12364777B2 (en) 2023-10-20 2025-07-22 Medicovestor, Inc. Homodimeric antibodies for use in treating cancers and methods of use
TW202535406A (en) 2023-10-30 2025-09-16 美商壯生和壯生企業創新公司 A2a receptor antagonist for use in treating lung cancer
WO2025099632A1 (en) 2023-11-08 2025-05-15 Sanofi Cd25 based lysosomal degrader and uses thereof
WO2025106469A1 (en) 2023-11-14 2025-05-22 Regeneron Pharmaceuticals, Inc. Engineered heavy chain variable domains and uses thereof
WO2025108551A1 (en) 2023-11-23 2025-05-30 Mabylon Ag Multispecific anti-allergen antibodies and uses thereof
WO2025109206A1 (en) 2023-11-22 2025-05-30 Mabylon Ag Multispecific anti-allergen antibodies and uses thereof
WO2025114541A1 (en) 2023-11-30 2025-06-05 Genmab A/S Antibodies capable of binding to ox40 in combination therapy
US20250179137A1 (en) 2023-12-05 2025-06-05 Regeneron Pharmaceuticals, Inc. Il18 receptor agonists and methods of use thereof
WO2025122634A1 (en) 2023-12-05 2025-06-12 Voyager Therapeutics, Inc. Compositions and methods for the treatment of tau-related disorders
TW202535947A (en) 2023-12-08 2025-09-16 美商健生生物科技公司 CD33 ANTIBODIES, CD33/Vδ2 MULTISPECIFIC ANTIBODIES AND USES THEREOF
WO2025125386A1 (en) 2023-12-14 2025-06-19 F. Hoffmann-La Roche Ag Antibodies that bind to folr1 and methods of use
US12121587B1 (en) 2023-12-26 2024-10-22 Medicovestor, Inc. Dimeric antibodies
US12116410B1 (en) 2023-12-26 2024-10-15 Medicovestor, Inc. Methods of manufacturing dimeric antibodies
WO2025153988A1 (en) 2024-01-16 2025-07-24 Janssen Biotech, Inc. Use of amivantamab to treat colorectal cancer
WO2025155602A1 (en) 2024-01-16 2025-07-24 Genentech, Inc. Method of treating hemophilia a
WO2025158277A1 (en) 2024-01-22 2025-07-31 Janssen Biotech, Inc. Use of amivantamab to treat head and neck cancer
US12258396B1 (en) 2024-02-02 2025-03-25 Medicovestor, Inc. Methods of using immunotherapeutics that bind folate receptor alpha
US12378314B1 (en) 2024-02-02 2025-08-05 Medicovestor, Inc. Proteins that bind folate receptor alpha including fully-human antibodies
US12240900B1 (en) 2024-02-02 2025-03-04 Medicovestor, Inc. Nucleic acids, vectors, and cells that encode antibodies and other proteins that bind folate receptor alpha
GB202402048D0 (en) 2024-02-14 2024-03-27 Bivictrix Ltd Therapeutic antibodies
GB202402046D0 (en) 2024-02-14 2024-03-27 Bivictrix Ltd Therapeutic antibodies
WO2025181189A1 (en) 2024-03-01 2025-09-04 F. Hoffmann-La Roche Ag Antibodies binding to cd3
WO2025191459A1 (en) 2024-03-11 2025-09-18 Janssen Biotech, Inc. Use of bispecific anti-egfr/c-met antibodies to treat solid tumors
WO2025199243A1 (en) 2024-03-20 2025-09-25 Regeneron Pharmaceuticals, Inc. Trivalent multispecific binding molecules and methods of use thereof
WO2025202147A1 (en) 2024-03-27 2025-10-02 F. Hoffmann-La Roche Ag Interleukin-7 immunoconjugates
WO2025221736A2 (en) 2024-04-15 2025-10-23 Janssen Biotech, Inc. Ltbr binding molecules and uses thereof
WO2025219504A1 (en) 2024-04-19 2025-10-23 F. Hoffmann-La Roche Ag Treatment of ophthalmologic diseases
WO2025226541A2 (en) 2024-04-26 2025-10-30 Janssen Biotech, Inc. Klk2xcd3 antibody and an anti-cancer agent for treating prostate cancer
WO2025231372A2 (en) 2024-05-03 2025-11-06 Janssen Biotech, Inc. Methods for treating multiple myeloma with car-t cells and bispecific antibodies
WO2025231408A2 (en) 2024-05-03 2025-11-06 Janssen Biotech, Inc. Methods for treating multiple myeloma with car-t cells and bispecific antibodies
WO2025233825A1 (en) 2024-05-06 2025-11-13 Janssen Pharmaceutica Nv Enrichment of cells expressing a bird linker
WO2025240335A1 (en) 2024-05-13 2025-11-20 Regeneron Pharmaceuticals, Inc. Fgfr3 binding molecules and methods of use thereof
WO2025237931A1 (en) 2024-05-15 2025-11-20 F. Hoffmann-La Roche Ag Recombinant binding proteins with conditionally activatable t cell and nk cell recruiting effector domains
US20250361309A1 (en) 2024-05-24 2025-11-27 Regeneron Pharmaceuticals, Inc. Tumor-targeted split il12 receptor agonists
US20250361317A1 (en) 2024-05-24 2025-11-27 Janssen Biotech, Inc. Bispecific antibody targeting emr2 (cd312) and the t-cell receptor trbv19
WO2025255452A2 (en) 2024-06-07 2025-12-11 Regeneron Pharmaceuticals, Inc. Antigen-binding molecules that bind to aav particles and uses thereof
WO2025255480A1 (en) 2024-06-07 2025-12-11 Regeneron Pharmaceuticals, Inc. Tetravalent multispecific binding molecules and methods of use thereof
WO2025259718A2 (en) 2024-06-11 2025-12-18 Regeneron Pharmaceuticals, Inc. Vegf antagonists and methods of use thereof

Family Cites Families (353)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144499B1 (en) 1970-08-29 1976-11-29
JPS5334319B2 (en) 1971-12-28 1978-09-20
JPS5717624B2 (en) 1974-04-17 1982-04-12
JPS59878B2 (en) 1975-09-04 1984-01-09 松下電工株式会社 sensor
US4208479A (en) 1977-07-14 1980-06-17 Syva Company Label modified immunoassays
JPS5912436B2 (en) 1980-08-05 1984-03-23 ファナック株式会社 Industrial robot safety mechanism
US4474893A (en) 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
US4444878A (en) 1981-12-21 1984-04-24 Boston Biomedical Research Institute, Inc. Bispecific antibody determinants
JPS58201994A (en) 1982-05-21 1983-11-25 Hideaki Hagiwara Method for producing antigen-specific human immunoglobulin
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
JPH0234615Y2 (en) 1986-08-08 1990-09-18
JPH06104071B2 (en) 1986-08-24 1994-12-21 財団法人化学及血清療法研究所 Factor IX Monoclonal antibody specific for conformation
US5004697A (en) 1987-08-17 1991-04-02 Univ. Of Ca Cationized antibodies for delivery through the blood-brain barrier
US5670373A (en) 1988-01-22 1997-09-23 Kishimoto; Tadamitsu Antibody to human interleukin-6 receptor
US5322678A (en) 1988-02-17 1994-06-21 Neorx Corporation Alteration of pharmacokinetics of proteins by charge modification
US6010902A (en) 1988-04-04 2000-01-04 Bristol-Meyers Squibb Company Antibody heteroconjugates and bispecific antibodies for use in regulation of lymphocyte activity
US5126250A (en) 1988-09-28 1992-06-30 Eli Lilly And Company Method for the reduction of heterogeneity of monoclonal antibodies
IL89491A0 (en) 1988-11-17 1989-09-10 Hybritech Inc Bifunctional chimeric antibodies
DE3920358A1 (en) 1989-06-22 1991-01-17 Behringwerke Ag BISPECIFIC AND OLIGO-SPECIFIC, MONO- AND OLIGOVALENT ANTI-BODY CONSTRUCTS, THEIR PRODUCTION AND USE
JPH0341033A (en) 1989-07-07 1991-02-21 Kyowa Hakko Kogyo Co Ltd Stable preparation containing motilins
GB8916400D0 (en) 1989-07-18 1989-09-06 Dynal As Modified igg3
WO1991008770A1 (en) 1989-12-11 1991-06-27 Immunomedics, Inc. Method for antibody targeting of diagnostic or therapeutic agents
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
TW212184B (en) 1990-04-02 1993-09-01 Takeda Pharm Industry Co Ltd
JPH05184383A (en) 1990-06-19 1993-07-27 Dainabotsuto Kk Bispecific antibody
ES2139598T3 (en) 1990-07-10 2000-02-16 Medical Res Council PROCEDURES FOR THE PRODUCTION OF SPECIFIC UNION COUPLE MEMBERS.
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
JPH05199894A (en) 1990-08-20 1993-08-10 Takeda Chem Ind Ltd Bi-specific antibody and antibody-containing medicine
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
JP2938569B2 (en) 1990-08-29 1999-08-23 ジェンファーム インターナショナル,インコーポレイティド Method for producing xenogeneic immunoglobulin and transgenic mouse
US5795965A (en) 1991-04-25 1998-08-18 Chugai Seiyaku Kabushiki Kaisha Reshaped human to human interleukin-6 receptor
JPH05304992A (en) 1991-06-20 1993-11-19 Takeda Chem Ind Ltd Hybridoma-monoclonal antibody and medicine containing antibody
US5637481A (en) 1993-02-01 1997-06-10 Bristol-Myers Squibb Company Expression vectors encoding bispecific fusion proteins and methods of producing biologically active bispecific fusion proteins in a mammalian cell
US6136310A (en) 1991-07-25 2000-10-24 Idec Pharmaceuticals Corporation Recombinant anti-CD4 antibodies for human therapy
EP0605522B1 (en) 1991-09-23 1999-06-23 Medical Research Council Methods for the production of humanized antibodies
EP1136556B1 (en) 1991-11-25 2005-06-08 Enzon, Inc. Method of producing multivalent antigen-binding proteins
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US5667988A (en) 1992-01-27 1997-09-16 The Scripps Research Institute Methods for producing antibody libraries using universal or randomized immunoglobulin light chains
JPH05203652A (en) 1992-01-28 1993-08-10 Fuji Photo Film Co Ltd Antibody enzyme immunoassay
JPH05213775A (en) 1992-02-05 1993-08-24 Otsuka Pharmaceut Co Ltd Bfa antibody
US6749853B1 (en) 1992-03-05 2004-06-15 Board Of Regents, The University Of Texas System Combined methods and compositions for coagulation and tumor treatment
JP3507073B2 (en) 1992-03-24 2004-03-15 ケンブリッジ アンティボディー テクノロジー リミティド Methods for producing members of a specific binding pair
US6129914A (en) 1992-03-27 2000-10-10 Protein Design Labs, Inc. Bispecific antibody effective to treat B-cell lymphoma and cell line
US5744446A (en) 1992-04-07 1998-04-28 Emory University Hybrid human/animal factor VIII
SG48760A1 (en) 1992-07-24 2003-03-18 Abgenix Inc Generation of xenogenetic antibodies
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
ZA936260B (en) * 1992-09-09 1994-03-18 Smithkline Beecham Corp Novel antibodies for conferring passive immunity against infection by a pathogen in man
US5837821A (en) 1992-11-04 1998-11-17 City Of Hope Antibody construct
EP0672142B1 (en) 1992-12-04 2001-02-28 Medical Research Council Multivalent and multispecific binding proteins, their manufacture and use
JPH06175590A (en) 1992-12-09 1994-06-24 Ricoh Res Inst Of Gen Electron Card-shaped display device
SG55079A1 (en) 1992-12-11 1998-12-21 Dow Chemical Co Multivalent single chain antibodies
GB9313509D0 (en) 1993-06-30 1993-08-11 Medical Res Council Chemisynthetic libraries
EP0660937A1 (en) 1993-07-01 1995-07-05 Dade International Inc. Process for the preparation of factor x depleted plasma
UA40577C2 (en) 1993-08-02 2001-08-15 Мерк Патент Гмбх Bispecific antigen molecule for lysis of tumor cells, method for preparing of bispecific antigen molecule, monoclonal antibody (variants), pharmaceutical preparation, pharmaceutical kit for lysis of tumor cells (variants), method of lysis of tumor cells
IL107742A0 (en) 1993-11-24 1994-02-27 Yeda Res & Dev Chemically-modified binding proteins
EP0731842A1 (en) 1993-12-03 1996-09-18 Medical Research Council Recombinant binding proteins and peptides
US6214613B1 (en) 1993-12-03 2001-04-10 Ashai Kasei Kogyo Kabushiki Kaisha Expression screening vector
US5945311A (en) 1994-06-03 1999-08-31 GSF--Forschungszentrumfur Umweltund Gesundheit Method for producing heterologous bi-specific antibodies
DE122009000068I2 (en) 1994-06-03 2011-06-16 Ascenion Gmbh Process for the preparation of heterologous bispecific antibodies
US8017121B2 (en) 1994-06-30 2011-09-13 Chugai Seiyaku Kabushika Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
JP4361133B2 (en) 1994-07-11 2009-11-11 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム Methods and compositions for specific coagulation of the vasculature
DE69535243T2 (en) 1994-07-13 2007-05-10 Chugai Seiyaku K.K. AGAINST HUMAN INTERLEUKIN-8 DIRECTED, RECONSTITUTED HUMAN ANTIBODY
DE69534530T2 (en) 1994-08-12 2006-07-06 Immunomedics, Inc. FOR B-CELL LYMPHOMA AND LEUKEMIA SPECIMEN IMMUNOCONJUGATES AND HUMAN ANTIBODIES
US6451523B1 (en) 1994-09-14 2002-09-17 Interneuron Pharmaceuticals, Inc. Detection of a leptin receptor variant and methods for regulating obesity
US6309636B1 (en) 1995-09-14 2001-10-30 Cancer Research Institute Of Contra Costa Recombinant peptides derived from the Mc3 anti-BA46 antibody, methods of use thereof, and methods of humanizing antibody peptides
EP0783893B1 (en) 1994-10-07 2012-04-04 Chugai Seiyaku Kabushiki Kaisha Inhibition of abnormal growth of synovial cells using il-6 antagonist as active ingredient
CA2203182C (en) 1994-10-21 2009-11-24 Asao Katsume Remedy for diseases caused by il-6 production
WO1996016673A1 (en) 1994-12-02 1996-06-06 Chiron Corporation Method of promoting an immune response with a bispecific antibody
US6485943B2 (en) * 1995-01-17 2002-11-26 The University Of Chicago Method for altering antibody light chain interactions
DE69611288T2 (en) * 1995-02-28 2001-07-19 The Procter & Gamble Company, Cincinnati PRODUCING A CARBONIC-FREE DRINK WITH IMPROVED MICROBIAL STABILITY
US5731168A (en) * 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
DE69637481T2 (en) 1995-04-27 2009-04-09 Amgen Fremont Inc. Human antibodies to IL-8 derived from immunized Xenomae
EP0823941A4 (en) 1995-04-28 2001-09-19 Abgenix Inc Human antibodies derived from immunized xenomice
JP4212111B2 (en) 1995-05-03 2009-01-21 バイオエンハンスメンツ リミテッド Bispecific antibodies whose binding ability is reversibly inhibited by photocleavable molecules
JP3946256B2 (en) 1995-09-11 2007-07-18 協和醗酵工業株式会社 Antibody to human interleukin 5 receptor α chain
CA2241564C (en) 1996-01-08 2013-09-03 Genentech, Inc. Wsx receptor and ligands
MA24512A1 (en) 1996-01-17 1998-12-31 Univ Vermont And State Agrienl PROCESS FOR THE PREPARATION OF ANTICOAGULATING AGENTS USEFUL IN THE TREATMENT OF THROMBOSIS
FR2745008A1 (en) 1996-02-20 1997-08-22 Ass Pour Le Dev De La Rech En MODIFIED NUCLEAR GLUCOCORTICOID RECEPTOR, DNA FRAGMENTS ENCODING SAID RECEPTOR, AND METHODS IN WHICH THEY ARE USED
JP3032287U (en) 1996-06-10 1996-12-17 幸喜 高橋 Human form
US20020147326A1 (en) 1996-06-14 2002-10-10 Smithkline Beecham Corporation Hexameric fusion proteins and uses therefor
US6211150B1 (en) 1996-07-19 2001-04-03 Amgen Inc. Analogs of cationic proteins
US6903194B1 (en) 1996-09-26 2005-06-07 Chungai Seiyaku Kabushiki Kaisha Antibody against human parathormone related peptides
JPH10165184A (en) 1996-12-16 1998-06-23 Tosoh Corp Methods for producing antibodies, genes and chimeric antibodies
US5990286A (en) 1996-12-18 1999-11-23 Techniclone, Inc. Antibodies with reduced net positive charge
US6323000B2 (en) 1996-12-20 2001-11-27 Clark A. Briggs Variant human α7 acetylcholine receptor subunit, and methods of production and uses thereof
ATE383430T1 (en) 1997-03-20 2008-01-15 Us Gov Health & Human Serv RECOMBINANT ANTIBODIES AND IMMUNE CONJUGATES TARGETED AT CD22-BEARING CELLS AND TUMORS
US6183744B1 (en) 1997-03-24 2001-02-06 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
US6306393B1 (en) 1997-03-24 2001-10-23 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
US6884879B1 (en) 1997-04-07 2005-04-26 Genentech, Inc. Anti-VEGF antibodies
US20070059302A1 (en) 1997-04-07 2007-03-15 Genentech, Inc. Anti-vegf antibodies
FR2761994B1 (en) 1997-04-11 1999-06-18 Centre Nat Rech Scient PREPARATION OF MEMBRANE RECEPTORS FROM EXTRACELLULAR BACULOVIRUSES
US20030207346A1 (en) 1997-05-02 2003-11-06 William R. Arathoon Method for making multispecific antibodies having heteromultimeric and common components
DK0979281T3 (en) 1997-05-02 2005-11-21 Genentech Inc Process for the preparation of multispecific antibodies with heteromultimers and common components
US20020062010A1 (en) 1997-05-02 2002-05-23 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
DE19725586C2 (en) 1997-06-17 1999-06-24 Gsf Forschungszentrum Umwelt Process for the preparation of cell preparations for immunization by means of heterologous intact bispecific and / or trispecific antibodies
AU8296098A (en) 1997-07-08 1999-02-08 Board Of Regents, The University Of Texas System Compositions and methods for homoconjugates of antibodies which induce growth arrest or apoptosis of tumor cells
US5980893A (en) 1997-07-17 1999-11-09 Beth Israel Deaconess Medical Center, Inc. Agonist murine monoclonal antibody as a stimulant for megakaryocytopoiesis
US6207805B1 (en) 1997-07-18 2001-03-27 University Of Iowa Research Foundation Prostate cell surface antigen-specific antibodies
US20020187150A1 (en) 1997-08-15 2002-12-12 Chugai Seiyaku Kabushiki Kaisha Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient
US6342220B1 (en) 1997-08-25 2002-01-29 Genentech, Inc. Agonist antibodies
ATE373712T1 (en) 1997-10-03 2007-10-15 Chugai Pharmaceutical Co Ltd NATURAL HUMAN ANTIBODIES
ES2299241T3 (en) 1998-03-17 2008-05-16 Chugai Seiyaku Kabushiki Kaisha PREVENTIVES OR REMEDIES FOR INFLAMMATORY INTESTINAL DISEASES CONTAINING ANTAGONIST ANTIBODIES OF THE IL-6 RECEIVER.
ATE512225T1 (en) 1998-04-03 2011-06-15 Chugai Pharmaceutical Co Ltd HUMANIZED ANTIBODY AGAINST HUMAN TISSUE FACTOR (TF) AND METHOD FOR CONSTRUCTING SUCH HUMANIZED ANTIBODY.
DE19819846B4 (en) 1998-05-05 2016-11-24 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Multivalent antibody constructs
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
US7081360B2 (en) 1998-07-28 2006-07-25 Cadus Technologies, Inc. Expression of G protein-coupled receptors with altered ligand binding and/or coupling properties
AU770555B2 (en) 1998-08-17 2004-02-26 Abgenix, Inc. Generation of modified molecules with increased serum half-lives
WO2000032634A1 (en) 1998-12-01 2000-06-08 Protein Design Labs, Inc. Humanized antibodies to gamma-interferon
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US6897044B1 (en) 1999-01-28 2005-05-24 Biogen Idec, Inc. Production of tetravalent antibodies
US6972125B2 (en) 1999-02-12 2005-12-06 Genetics Institute, Llc Humanized immunoglobulin reactive with B7-2 and methods of treatment therewith
AR030019A1 (en) 1999-05-18 2003-08-13 Smithkline Beecham Corp HUMAN MONOCLONAL ANTIBODIES AND FUNCTIONAL FRAGMENTS OF THE SAME, A PROCEDURE FOR THEIR PRODUCTION, PHARMACEUTICAL COMPOSITIONS THAT INCLUDE THEM, A NUCLEIC ACID ISOLATED MOLECULA, A RECOMBINANT PLASMIDE, A HOSPED DIFFERENT USE OF A MUSCLE
SK782002A3 (en) 1999-07-21 2003-08-05 Lexigen Pharm Corp FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens
AT411997B (en) 1999-09-14 2004-08-26 Baxter Ag FACTOR IX / FACTOR IXA ACTIVATING ANTIBODIES AND ANTIBODY DERIVATIVES
SE9903895D0 (en) 1999-10-28 1999-10-28 Active Biotech Ab Novel compounds
US20020028178A1 (en) 2000-07-12 2002-03-07 Nabil Hanna Treatment of B cell malignancies using combination of B cell depleting antibody and immune modulating antibody related applications
AU1290001A (en) 1999-11-18 2001-05-30 Oxford Biomedica (Uk) Limited Antibodies
AU2578401A (en) 1999-12-14 2001-06-25 Burnham Institute, The Bcl-g polypeptides, encoding nucleic acids and methods of use
AU2001256174A1 (en) 2000-03-01 2001-09-12 Christoph Gasche Mammalian interleukin-10 (il-10) receptor variants
TWI241345B (en) 2000-03-10 2005-10-11 Chugai Pharmaceutical Co Ltd Apoptosis inducing polypeptide
JP2003527849A (en) 2000-03-22 2003-09-24 キュラゲン コーポレイション Novel peptide and nucleic acid encoding the same
CN1981868A (en) 2000-03-31 2007-06-20 拜奥根Idec公司 Combined use of anti-cytokine antibodies or antagonists and anti-CD20 for treatment of B cell lymphoma
AU2001249835A1 (en) 2000-04-03 2001-10-15 Oxford Glycosciences (Uk) Ltd. Diagnosis and treatment of alzheimer's disease
AU2001246934A1 (en) 2000-04-17 2001-10-30 Chugai Seiyaku Kabushiki Kaisha Agonist antibodies
WO2001082899A2 (en) 2000-05-03 2001-11-08 Mbt Munich Biotechnology Ag Cationic diagnostic, imaging and therapeutic agents associated with activated vascular sites
EP1299419A2 (en) 2000-05-24 2003-04-09 Imclone Systems, Inc. Bispecific immunoglobulin-like antigen binding proteins and method of production
JP2004512262A (en) 2000-06-20 2004-04-22 アイデック ファーマスーティカルズ コーポレイション Non-radioactive anti-CD20 antibody / radiolabeled anti-CD22 antibody combination
CA2415100A1 (en) 2000-07-12 2002-01-17 Idec Pharmaceutical Corporation Treatment of b cell malignancies using combination of b cell depleting antibody and immune modulating antibody related applications
WO2002006838A1 (en) 2000-07-17 2002-01-24 Chugai Seiyaku Kabushiki Kaisha Method for screening ligand having biological activity
KR20040023565A (en) 2000-09-18 2004-03-18 아이덱 파마슈티칼즈 코포레이션 Combination therapy for treatment of autoimmune diseases using b cell depleting/immunoregulatory antibody combination
ES2332402T5 (en) 2000-10-12 2018-05-14 Genentech, Inc. Concentrated protein formulations of reduced viscosity
AU2002210917B2 (en) 2000-10-20 2006-05-18 Chugai Seiyaku Kabushiki Kaisha Degraded TPO agonist antibody
AU2002210918B2 (en) 2000-10-20 2006-03-16 Chugai Seiyaku Kabushiki Kaisha Degraded agonist antibody
US8034903B2 (en) 2000-10-20 2011-10-11 Chugai Seiyaku Kabushiki Kaisha Degraded TPO agonist antibody
EP2351838A1 (en) 2000-10-20 2011-08-03 Chugai Seiyaku Kabushiki Kaisha Crosslinking agonistic antibodies
AU2000279625A1 (en) 2000-10-27 2002-05-15 Chugai Seiyaku Kabushiki Kaisha Blood mmp-3 level-lowering agent containing il-6 antgonist as the active ingredient
ES2649037T3 (en) 2000-12-12 2018-01-09 Medimmune, Llc Molecules with prolonged half-lives, compositions and uses thereof
RU2003129528A (en) 2001-03-07 2005-04-10 Мерк Патент ГмбХ (DE) METHOD FOR EXPRESSION OF PROTEINS CONTAINING AN ANTIBODY HYBRID ISOTYPE AS A COMPONENT
AU2002307062A1 (en) 2001-04-02 2002-10-15 Purdue Pharma L.P. Thrombopoietin (tpo) synthebody for stimulation of platelet production
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
NZ529494A (en) 2001-04-13 2005-08-26 Biogen Idec Inc Antibodies to VLA-1
CA2451493C (en) 2001-06-22 2016-08-23 Chugai Seiyaku Kabushiki Kaisha Cell growth inhibitors containing anti-glypican 3 antibody
EP1399484B1 (en) 2001-06-28 2010-08-11 Domantis Limited Dual-specific ligand and its use
US6833441B2 (en) 2001-08-01 2004-12-21 Abmaxis, Inc. Compositions and methods for generating chimeric heteromultimers
US20030049203A1 (en) 2001-08-31 2003-03-13 Elmaleh David R. Targeted nucleic acid constructs and uses related thereto
JP2005507659A (en) 2001-10-15 2005-03-24 イミューノメディクス、インコーポレイテッド Direct targeting binding protein
NZ532526A (en) 2001-10-25 2007-01-26 Genentech Inc Compositions comprising a glycoprotein having a Fc region
US20030190705A1 (en) 2001-10-29 2003-10-09 Sunol Molecular Corporation Method of humanizing immune system molecules
DE10156482A1 (en) 2001-11-12 2003-05-28 Gundram Jung Bispecific antibody molecule
BR0307548A (en) * 2002-02-11 2006-01-17 Genentech Inc Method of producing an antibody variant, antibody variant, composition, isolated nucleic acid, vector, host cell, process for producing an antibody variant, and method of determining the antigen association coefficient of an antibody
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
WO2003074679A2 (en) 2002-03-01 2003-09-12 Xencor Antibody optimization
US7736652B2 (en) 2002-03-21 2010-06-15 The Regents Of The University Of California Antibody fusion proteins: effective adjuvants of protein vaccination
AU2003227504A1 (en) 2002-04-15 2003-10-27 Chugai Seiyaku Kabushiki Kaisha METHOD OF CONSTRUCTING scDb LIBRARY
DE60327199D1 (en) 2002-04-26 2009-05-28 Chugai Pharmaceutical Co Ltd PROCESS FOR SCREENING AGONISTIC ANTIBODIES
EP1510943A4 (en) 2002-05-31 2007-05-09 Celestar Lexico Sciences Inc Interaction predicting device
JP2004086862A (en) * 2002-05-31 2004-03-18 Celestar Lexico-Sciences Inc Apparatus, method and program for processing protein interaction information, and recording medium
AU2003239197A1 (en) 2002-06-07 2003-12-22 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Novel stable anti-cd22 antibodies
US20060141456A1 (en) 2002-06-12 2006-06-29 Cynthia Edwards Methods and compositions for milieu-dependent binding of a targeted agent to a target
CN105884893A (en) 2002-07-18 2016-08-24 莫鲁斯有限公司 Recombinant Production Of Mixtures Of Antibodies
JP2005535341A (en) 2002-08-15 2005-11-24 エピトミスク インコーポレーティッド Humanized rabbit antibody
US20060058511A1 (en) 2002-08-27 2006-03-16 Chugai Seiyaku Kabushiki Kaisha Method for stabilizing protein solution preparation
JP2004086682A (en) 2002-08-28 2004-03-18 Fujitsu Ltd Functional block design method and functional block design device
EP1561759B9 (en) 2002-10-11 2009-08-26 Chugai Seiyaku Kabushiki Kaisha Cell death-inducing agent
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
GB0224082D0 (en) 2002-10-16 2002-11-27 Celltech R&D Ltd Biological products
US7098189B2 (en) * 2002-12-16 2006-08-29 Kimberly-Clark Worldwide, Inc. Wound and skin care compositions
CA2511598C (en) 2002-12-24 2016-09-13 Rinat Neuroscience Corp. Anti-ngf antibodies and methods using same
AU2003303543A1 (en) 2002-12-26 2004-07-29 Chugai Seiyaku Kabushiki Kaisha Agonist antibody against heteroreceptor
DE602004021095D1 (en) 2003-01-21 2009-06-25 Chugai Pharmaceutical Co Ltd METHOD OF SCREENING THE LIGHT CHAIN OF AN ANTIBODY
JP2006517109A (en) 2003-02-07 2006-07-20 プロテイン デザイン ラブス インコーポレイテッド Amphiregulin antibodies and their use to treat cancer and psoriasis
JP2004279086A (en) 2003-03-13 2004-10-07 Konica Minolta Holdings Inc Radiation image conversion panel and method for manufacturing it
WO2004081048A1 (en) 2003-03-13 2004-09-23 Chugai Seiyaku Kabushiki Kaisha Ligand having agonistic activity to mutated receptor
US20070003556A1 (en) 2003-03-31 2007-01-04 Masayuki Tsuchiya Modified antibodies against cd22 and utilization thereof
JP2004321100A (en) 2003-04-25 2004-11-18 Rikogaku Shinkokai VARIANT OF PROTEIN COMPRISING Fc REGION OF IgG
GB2400851B (en) 2003-04-25 2004-12-15 Bioinvent Int Ab Identifying binding of a polypeptide to a polypeptide target
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
RU2337107C2 (en) 2003-05-02 2008-10-27 Ксенкор, Инк. OPTIMIZED Fc-VERSIONS THAT HAVE ALTERED BINDING TO FcγR AND METHODS FOR THEIR PRODUCTION
WO2004106375A1 (en) 2003-05-30 2004-12-09 Merus Biopharmaceuticals B.V. I.O. Fab library for the preparation of anti vegf and anti rabies virus fabs
RS20150135A1 (en) 2003-05-30 2015-08-31 Genentech Inc. TREATMENT WITH ANTI-VEGF ANTIBODIES
NZ543712A (en) 2003-06-05 2008-06-30 Genentech Inc Combination therapy for B cell disorders
JP4794301B2 (en) 2003-06-11 2011-10-19 中外製薬株式会社 Antibody production method
EP1636264A2 (en) 2003-06-24 2006-03-22 MERCK PATENT GmbH Tumour necrosis factor receptor molecules with reduced immunogenicity
US20050033029A1 (en) 2003-06-30 2005-02-10 Jin Lu Engineered anti-target immunoglobulin derived proteins, compositions, methods and uses
US7297336B2 (en) 2003-09-12 2007-11-20 Baxter International Inc. Factor IXa specific antibodies displaying factor VIIIa like activity
JP2005101105A (en) 2003-09-22 2005-04-14 Canon Inc Positioning apparatus, exposure apparatus, and device manufacturing method
US20060134105A1 (en) 2004-10-21 2006-06-22 Xencor, Inc. IgG immunoglobulin variants with optimized effector function
JP2005112514A (en) 2003-10-06 2005-04-28 Tadano Ltd Expansion boom
AU2003271174A1 (en) 2003-10-10 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
WO2005035754A1 (en) 2003-10-14 2005-04-21 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
AU2004290070A1 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. Neonatal Fc receptor (FcRn)-binding polypeptide variants, dimeric Fc binding proteins and methods related thereto
EP1701979A2 (en) 2003-12-03 2006-09-20 Xencor, Inc. Optimized antibodies that target the epidermal growth factor receptor
SI2383295T1 (en) 2003-12-10 2015-07-31 E.R. Squibb & Sons, L.L.C. IP-10 antibodies and their uses
KR101151477B1 (en) 2003-12-10 2012-06-22 메다렉스, 인코포레이티드 Interferon alpha antibodies and their uses
TW200530269A (en) 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
EP1710255A4 (en) 2003-12-12 2008-09-24 Chugai Pharmaceutical Co Ltd Modified antibodies recognising receptor trimers or higher multimers
JPWO2005056602A1 (en) 2003-12-12 2008-03-06 中外製薬株式会社 Screening method for modified antibodies having agonist activity
TW200530266A (en) 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Method of reinforcing antibody activity
AU2004297109A1 (en) 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha Cell death inducing agent
AR048210A1 (en) 2003-12-19 2006-04-12 Chugai Pharmaceutical Co Ltd A PREVENTIVE AGENT FOR VASCULITIS.
EP1697748A4 (en) 2003-12-22 2007-07-04 Centocor Inc Methods for generating multimeric molecules
TW200540186A (en) 2003-12-25 2005-12-16 Kirin Brewery Mutants of anti-CD40 antibody
BRPI0418286A (en) 2003-12-30 2007-05-02 Merck Patent Gmbh il-7 fusion proteins
US20050266425A1 (en) 2003-12-31 2005-12-01 Vaccinex, Inc. Methods for producing and identifying multispecific antibodies
NZ548702A (en) 2004-01-09 2009-06-26 Pfizer Antibodies to MAdCAM
AR048335A1 (en) 2004-03-24 2006-04-19 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENTS FOR INTERNAL EAR DISORDERS CONTAINING AN IL-6 ANTAGONIST AS AN ACTIVE INGREDIENT
EP2053062A1 (en) 2004-03-24 2009-04-29 Xencor, Inc. Immunoglobin variants outside the Fc region
JP4799405B2 (en) 2004-04-09 2011-10-26 中外製薬株式会社 Cell death inducer
WO2005112564A2 (en) 2004-04-15 2005-12-01 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Germline and sequence variants of humanized antibodies and methods of making and using them
TW200605906A (en) 2004-05-11 2006-02-16 Chugai Pharmaceutical Co Ltd Remedy for thrombopenia
KR100620554B1 (en) 2004-06-05 2006-09-06 한국생명공학연구원 Humanized antibody against TA-72
AR049390A1 (en) 2004-06-09 2006-07-26 Wyeth Corp ANTIBODIES AGAINST HUMAN INTERLEUQUINE-13 AND USES OF THE SAME
US20060019342A1 (en) 2004-06-25 2006-01-26 Medimmune, Inc. Increasing the production of recombinant antibodies in mammalian cells by site-directed mutagenesis
DE102004032634A1 (en) 2004-07-06 2006-02-16 Sms Demag Ag Method and device for measuring and controlling the flatness and / or the strip tensions of a stainless steel strip or a stainless steel foil during cold rolling in a multi-roll stand, in particular in a 20-roll Sendizimir rolling mill
PT1674111E (en) 2004-07-09 2010-12-15 Chugai Pharmaceutical Co Ltd Anti-glypican 3 antibody
DK2471813T3 (en) 2004-07-15 2015-03-02 Xencor Inc Optimized Fc variants
EP1789446A2 (en) 2004-09-02 2007-05-30 Genentech, Inc. Heteromultimeric molecules
MX2007002883A (en) 2004-09-13 2007-06-15 Macrogenics Inc Humanized antibodies against west nile virus and therapeutic and prophylactic uses thereof.
WO2006031994A2 (en) 2004-09-14 2006-03-23 Xencor, Inc. Monomeric immunoglobulin fc domains
US20080233131A1 (en) 2004-09-14 2008-09-25 Richard John Stebbings Vaccine
US7563443B2 (en) 2004-09-17 2009-07-21 Domantis Limited Monovalent anti-CD40L antibody polypeptides and compositions thereof
TWI309240B (en) 2004-09-17 2009-05-01 Hoffmann La Roche Anti-ox40l antibodies
EP1810979B1 (en) 2004-09-22 2012-06-20 Kyowa Hakko Kirin Co., Ltd. STABILIZED HUMAN IgG4 ANTIBODIES
WO2006047350A2 (en) 2004-10-21 2006-05-04 Xencor, Inc. IgG IMMUNOGLOBULIN VARIANTS WITH OPTIMIZED EFFECTOR FUNCTION
AU2005299716B2 (en) 2004-10-22 2012-09-06 Amgen Inc. Methods for refolding of recombinant antibodies
US7462697B2 (en) 2004-11-08 2008-12-09 Epitomics, Inc. Methods for antibody engineering
US7632497B2 (en) 2004-11-10 2009-12-15 Macrogenics, Inc. Engineering Fc Antibody regions to confer effector function
CA2586803C (en) 2004-12-14 2012-12-11 Ge Healthcare Bio-Sciences Ab Purification of immunoglobulins
US20090061485A1 (en) 2004-12-22 2009-03-05 Chugai Seiyaku Kabushiki Kaisha Method of Producing an Antibody Using a Cell in Which the Function of Fucose Transporter Is Inhibited
US8728828B2 (en) 2004-12-22 2014-05-20 Ge Healthcare Bio-Sciences Ab Purification of immunoglobulins
WO2006071877A2 (en) 2004-12-27 2006-07-06 Progenics Pharmaceuticals (Nevada), Inc. Orally deliverable and anti-toxin antibodies and methods for making and using them
MX2007007935A (en) 2004-12-28 2007-12-06 Innate Pharma Sa Monoclonal antibodies against nkg2a.
US8716451B2 (en) 2005-01-12 2014-05-06 Kyowa Hakko Kirin Co., Ltd Stabilized human IgG2 and IgG3 antibodies
EP1858925A2 (en) 2005-01-12 2007-11-28 Xencor, Inc. Antibodies and fc fusion proteins with altered immunogenicity
US7700099B2 (en) 2005-02-14 2010-04-20 Merck & Co., Inc. Non-immunostimulatory antibody and compositions containing the same
CN101198698B (en) * 2005-03-31 2014-03-19 中外制药株式会社 Process for production of polypeptide by regulation of assembly
WO2006106903A1 (en) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha sc(Fv)2 STRUCTURAL ISOMERS
EP2824183B1 (en) 2005-04-08 2020-07-29 Chugai Seiyaku Kabushiki Kaisha Methods for producing bispecific antibodies
KR101259655B1 (en) 2005-04-15 2013-04-30 제넨테크, 인크. Hgf beta chain variants
US8008443B2 (en) 2005-04-26 2011-08-30 Medimmune, Llc Modulation of antibody effector function by hinge domain engineering
EP1885755A4 (en) 2005-05-05 2009-07-29 Univ Duke TREATMENTS OF AUTOIMMUNE DISEASES BY ANTI-CD19 ANTIBODIES
EP3348639A3 (en) 2005-06-10 2018-10-31 Chugai Seiyaku Kabushiki Kaisha Sc(fv)2 site-directed mutant
JP5085322B2 (en) 2005-06-10 2012-11-28 中外製薬株式会社 Pharmaceutical composition containing sc (Fv) 2
WO2006132363A1 (en) 2005-06-10 2006-12-14 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
US20070110757A1 (en) 2005-06-23 2007-05-17 Ziping Wei Antibody formulations having optimized aggregation and fragmentation profiles
US20070036786A1 (en) 2005-07-11 2007-02-15 Nadine Tuaillon Method of treating autoimmune disease using humanized anti-CD16A antibodies
PL1919503T3 (en) 2005-08-10 2015-04-30 Macrogenics Inc Identification and engineering of antibodies with variant fc regions and methods of using same
SI1915397T1 (en) 2005-08-19 2015-05-29 Wyeth Llc Antagonist antibodies against gdf-8 and uses in treatment of als and other gdf-8-associated disorders
EP1928916A2 (en) 2005-09-29 2008-06-11 Viral Logic Systems Technology Corp. Immunomodulatory compositions and uses therefor
WO2007043641A1 (en) 2005-10-14 2007-04-19 Fukuoka University Inhibitor of transplanted islet dysfunction in islet transplantation
AU2006305119B2 (en) 2005-10-21 2012-12-20 Chugai Seiyaku Kabushiki Kaisha Agents for treating cardiopathy
WO2007060411A1 (en) 2005-11-24 2007-05-31 Ucb Pharma S.A. Anti-tnf alpha antibodies which selectively inhibit tnf alpha signalling through the p55r
CA2644663A1 (en) 2006-03-23 2007-09-27 Kirin Pharma Kabushiki Kaisha Agonist antibody to human thrombopoietin receptor
ES2395969T3 (en) 2006-03-24 2013-02-18 Merck Patent Gmbh Genetically modified heterodimeric protein domains
EP3056568B1 (en) 2006-03-31 2021-09-15 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
JP5144499B2 (en) 2006-03-31 2013-02-13 中外製薬株式会社 Antibody modification method for purifying bispecific antibodies
JP5754875B2 (en) 2006-04-07 2015-07-29 国立大学法人大阪大学 Muscle regeneration promoter
PT2047863E (en) 2006-06-08 2013-10-21 Chugai Pharmaceutical Co Ltd Preventive or remedy for inflammatory disease
WO2007147901A1 (en) 2006-06-22 2007-12-27 Novo Nordisk A/S Production of bispecific antibodies
US20100034194A1 (en) 2006-10-11 2010-02-11 Siemens Communications Inc. Eliminating unreachable subscribers in voice-over-ip networks
US20110236374A1 (en) 2007-01-24 2011-09-29 Kyowa Hakko Kirin Co., Ltd. Genetically recombinant antibody composition capable of binding specifically to ganglioside gm2
WO2008092117A2 (en) 2007-01-25 2008-07-31 Xencor, Inc. Immunoglobulins with modifications in the fcr binding region
CA2680237C (en) 2007-03-27 2018-11-06 Sea Lane Biotechnologies, Llc Constructs and libraries comprising antibody surrogate light chain sequences
AU2008234248C1 (en) 2007-03-29 2015-01-22 Genmab A/S Bispecific antibodies and methods for production thereof
WO2008145141A1 (en) 2007-05-31 2008-12-04 Genmab A/S Method for extending the half-life of exogenous or endogenous soluble molecules
CA2688275A1 (en) 2007-05-31 2008-12-04 Genmab A/S Stable igg4 antibodies
ES2562790T3 (en) 2007-07-17 2016-03-08 E. R. Squibb & Sons, L.L.C. Monoclonal antibodies against Glipicano-3
EP2031064A1 (en) 2007-08-29 2009-03-04 Boehringer Ingelheim Pharma GmbH & Co. KG Method for increasing protein titres
MX2010002683A (en) 2007-09-14 2010-03-26 Amgen Inc POPULATIONS OF HOMOGENEO ANTIBODIES.
RU2526512C2 (en) 2007-09-26 2014-08-20 Чугаи Сейяку Кабусики Кайся Modified constant region of antibody
CN101874042B9 (en) 2007-09-26 2019-01-01 中外制药株式会社 Method for changing isoelectric point of antibody by using amino acid substitution of CDR
AU2008304756B8 (en) 2007-09-26 2015-02-12 Chugai Seiyaku Kabushiki Kaisha Anti-IL-6 receptor antibody
WO2009041734A1 (en) 2007-09-26 2009-04-02 Kyowa Hakko Kirin Co., Ltd. Agonistic antibody against human thrombopoietin receptor
KR20150126724A (en) 2007-09-28 2015-11-12 추가이 세이야쿠 가부시키가이샤 Anti-glypican-3 antibody having improved kinetics in plasma
JO3076B1 (en) 2007-10-17 2017-03-15 Janssen Alzheimer Immunotherap Immunotherapy regimes dependent on apoe status
JP5314033B2 (en) 2007-10-22 2013-10-16 メルク セローノ ソシエテ アノニム Single IFN-beta fused to mutant IgG Fc fragment
WO2009072604A1 (en) 2007-12-05 2009-06-11 Chugai Seiyaku Kabushiki Kaisha Anti-nr10 antibody and use thereof
BRPI0820452A2 (en) 2007-12-18 2015-06-16 Bioalliance Cv Antibodies which recognize a carbohydrate-containing epitope on cd-43 and cea expressed in cancer cells and methods of using them.
PE20091174A1 (en) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd LIQUID FORMULATION WITH HIGH CONCENTRATION OF ANTIBODY CONTENT
AU2009204501B2 (en) 2008-01-07 2015-02-12 Amgen Inc. Method for making antibody Fc-heterodimeric molecules using electrostatic steering effects
PL2250279T3 (en) 2008-02-08 2016-11-30 Anti-ifnar1 antibodies with reduced fc ligand affinity
CA2721052C (en) 2008-04-11 2023-02-21 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
EP2620448A1 (en) 2008-05-01 2013-07-31 Amgen Inc. Anti-hepcidin antibodies and methods of use
TWI440469B (en) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
NZ603623A (en) 2008-10-10 2014-05-30 Emergent Product Dev Seattle Tcr complex immunotherapeutics
AR074438A1 (en) 2008-12-02 2011-01-19 Pf Medicament PROCESS FOR THE MODULATION OF ANTAGONIST ACTIVITY OF A MONOCLONAL ANTIBODY
WO2010064090A1 (en) 2008-12-02 2010-06-10 Pierre Fabre Medicament Process for the modulation of the antagonistic activity of a monoclonal antibody
WO2010073985A1 (en) 2008-12-23 2010-07-01 住友化学株式会社 Optical film and liquid crystal display device comprising same
EP2389386A4 (en) 2009-01-12 2013-11-06 Ge Healthcare Bio Sciences Ab AFFINITY CHROMATOGRAPHY MATRIX
JP5717624B2 (en) 2009-03-19 2015-05-13 中外製薬株式会社 Antibody constant region variants
EP2409990A4 (en) 2009-03-19 2013-01-23 Chugai Pharmaceutical Co Ltd Antibody constant region variant
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
SI2417156T1 (en) 2009-04-07 2015-06-30 Roche Glycart Ag Trivalent, bispecific antibodies
WO2010129304A2 (en) 2009-04-27 2010-11-11 Oncomed Pharmaceuticals, Inc. Method for making heteromultimeric molecules
ES2865648T3 (en) 2009-06-26 2021-10-15 Regeneron Pharma Easily isolated bispecific antibodies with native immunoglobulin format
CA2771575A1 (en) 2009-08-29 2011-03-03 Abbott Laboratories Therapeutic dll4 binding proteins
WO2011037158A1 (en) 2009-09-24 2011-03-31 中外製薬株式会社 Modified antibody constant regions
ES2777901T3 (en) 2009-12-25 2020-08-06 Chugai Pharmaceutical Co Ltd Polypeptide Modification Method to Purify Polypeptide Multimers
PT2519543T (en) 2009-12-29 2016-10-07 Emergent Product Dev Seattle Heterodimer binding proteins and uses thereof
TWI505838B (en) 2010-01-20 2015-11-01 Chugai Pharmaceutical Co Ltd Stabilized antibody
JP5947727B2 (en) 2010-01-20 2016-07-06 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. Immunomodulation with anti-ILT5 antibodies and ILT5-binding antibody fragments
US9023997B2 (en) 2010-01-20 2015-05-05 Merck Sharp & Dohme Corp. Anti-ILT5 antibodies and ILT5-binding antibody fragments
WO2011108502A1 (en) 2010-03-02 2011-09-09 協和発酵キリン株式会社 Modified antibody composition
WO2011108714A1 (en) 2010-03-04 2011-09-09 中外製薬株式会社 Antibody constant region variant
AU2011225716A1 (en) 2010-03-11 2012-09-27 Pfizer Inc. Antibodies with pH dependent antigen binding
US9162161B2 (en) 2010-03-31 2015-10-20 Jsr Corporation Filler for affinity chromatography
US9150663B2 (en) 2010-04-20 2015-10-06 Genmab A/S Heterodimeric antibody Fc-containing proteins and methods for production thereof
KR101860963B1 (en) 2010-04-23 2018-05-24 제넨테크, 인크. Production of heteromultimeric proteins
WO2011143545A1 (en) 2010-05-14 2011-11-17 Rinat Neuroscience Corporation Heterodimeric proteins and methods for producing and purifying them
CN103052649B (en) 2010-07-29 2015-12-16 Xencor公司 Antibodies with modified isoelectric points
AU2011288412A1 (en) 2010-08-13 2013-02-21 Medimmune Limited Monomeric polypeptides comprising variant Fc regions and methods of use
AU2011325833C1 (en) 2010-11-05 2017-07-13 Zymeworks Bc Inc. Stable heterodimeric antibody design with mutations in the Fc domain
KR101962483B1 (en) 2010-11-17 2019-03-29 추가이 세이야쿠 가부시키가이샤 Multi-specific antigen-binding molecule having alternative function to function of blood coagulation factor VIII
EP4279513A3 (en) 2010-11-30 2024-02-28 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US9683052B2 (en) 2011-03-25 2017-06-20 Glenmark Pharmaceuticals S.A. Hetero-dimeric immunoglobulins
EP2699263A4 (en) 2011-04-20 2014-12-24 Liquidating Trust METHODS FOR REDUCING ADVERSE IMMUNE RESPONSE TO FOREIGN ANTIGEN IN A HUMAN SUBJECT WITH ANTI-CD4 ANTIBODIES OR CD4-BINDING FRAGMENTS THEREOF OR CD4-BINDING MOLECULES
US9098611B2 (en) 2012-11-26 2015-08-04 Intouch Technologies, Inc. Enhanced video interaction for a user interface of a telepresence network
DK2771364T3 (en) 2011-10-27 2019-08-19 Genmab As PREPARATION OF HETERODIMERED PROTEINS
EP2787078B1 (en) 2011-10-31 2019-05-22 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
GB201203051D0 (en) 2012-02-22 2012-04-04 Ucb Pharma Sa Biological products
PL2822587T3 (en) 2012-03-08 2016-07-29 Hoffmann La Roche Abeta antibody formulation
CA2867020C (en) 2012-03-13 2022-11-15 Novimmune S.A. Readily isolated bispecific antibodies with native immunoglobulin format
EP2832856A4 (en) 2012-03-29 2016-01-27 Chugai Pharmaceutical Co Ltd Anti-lamp5 antibody and utilization thereof
PT2838917T (en) 2012-04-20 2019-09-12 Merus Nv Methods and means for the production of heterodimeric ig-like molecules
CA2870545A1 (en) 2012-04-20 2013-10-24 Emergent Product Development Seattle, Llc Cd3 binding polypeptides
US20140154270A1 (en) 2012-05-21 2014-06-05 Chen Wang Purification of non-human antibodies using kosmotropic salt enhanced protein a affinity chromatography
JP6494507B2 (en) 2012-06-01 2019-04-03 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ High affinity monoclonal antibody against glypican-3 and use thereof
AU2013302925B2 (en) 2012-08-13 2018-07-05 Regeneron Pharmaceuticals, Inc. Anti-PCSK9 antibodies with pH-dependent binding characteristics
PL2900694T3 (en) 2012-09-27 2018-12-31 Merus N.V. Bispecific igg antibodies as t cell engagers
EP2905290B1 (en) 2012-10-05 2019-12-04 Kyowa Kirin Co., Ltd. Heterodimeric protein composition
AU2013337578C1 (en) * 2012-11-02 2018-04-12 Zymeworks Inc. Crystal structures of heterodimeric Fc domains
CN103833852A (en) 2012-11-23 2014-06-04 上海市肿瘤研究所 Bispecific antibody aiming at phosphatidylinositols protein polysaccharide-3 and T cell antigen
ES2699599T3 (en) 2013-03-15 2019-02-11 Abbvie Biotherapeutics Inc Fc variants
AU2014325063B2 (en) 2013-09-27 2019-10-31 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
CN105765063B (en) 2013-09-30 2021-05-07 中外制药株式会社 Methods of preparing antigen-binding molecules using altered helper phages
MY176522A (en) 2013-11-04 2020-08-13 Ichnos Sciences SA Production of t cell retargeting hetero-dimeric immunoglobulins
CA2943943C (en) 2014-04-07 2023-01-10 Chugai Seiyaku Kabushiki Kaisha Immunoactivating antigen-binding molecule
BR112016026299A2 (en) 2014-05-13 2018-02-20 Chugai Seiyaku Kabushiki Kaisha The T-lymph cell redirection antigen joint molecule to the cell which has an immunosuppressive function
TWI831106B (en) 2014-06-20 2024-02-01 日商中外製藥股份有限公司 Pharmaceutical compositions for the prevention and/or treatment of diseases that develop and/or progress due to reduced or deficient activity of coagulation factor VIII and/or activated coagulation factor VIII
AR101262A1 (en) 2014-07-26 2016-12-07 Regeneron Pharma PURIFICATION PLATFORM FOR Bispecific Antibodies
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
JP6630036B2 (en) 2014-09-30 2020-01-15 Jsr株式会社 Method for purifying target substance and carrier for mixed mode
WO2016159213A1 (en) 2015-04-01 2016-10-06 中外製薬株式会社 Method for producing polypeptide hetero-oligomer
CN107454906B (en) 2015-04-17 2022-05-27 豪夫迈·罗氏有限公司 Combination therapy using coagulation factors and multispecific antibodies
JP2018123055A (en) 2015-04-24 2018-08-09 公立大学法人奈良県立医科大学 Pharmaceutical composition used for prevention and / or treatment of blood coagulation factor XI (FXI) abnormality, comprising a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII (FVIII)
BR112018009312A8 (en) 2015-12-28 2019-02-26 Chugai Pharmaceutical Co Ltd method for promoting purification efficiency of fc region-containing polypeptide
JOP20170017B1 (en) 2016-01-25 2021-08-17 Amgen Res Munich Gmbh Pharmaceutical composition comprising bispecific antibody constructs
US11072666B2 (en) 2016-03-14 2021-07-27 Chugai Seiyaku Kabushiki Kaisha Cell injury inducing therapeutic drug for use in cancer therapy
CN117205314A (en) 2016-03-14 2023-12-12 中外制药株式会社 Therapeutic drugs that induce cell damage for use in cancer treatment
SG11201807765PA (en) 2016-04-28 2018-10-30 Chugai Pharmaceutical Co Ltd Antibody-containing preparation
TW201836636A (en) 2017-03-31 2018-10-16 公立大學法人奈良縣立醫科大學 Medicinal composition usable for preventing and/or treating blood coagulation factor ix abnormality, comprising multispecific antigen binding molecule replacing function of blood coagulation factor viii

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12473375B2 (en) 2006-03-31 2025-11-18 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US12116414B2 (en) 2007-09-26 2024-10-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US12122840B2 (en) 2007-09-26 2024-10-22 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US11851476B2 (en) 2011-10-31 2023-12-26 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
US12359001B2 (en) 2015-04-01 2025-07-15 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US12460014B2 (en) 2016-04-28 2025-11-04 Chugai Seiyaku Kabushiki Kaisha Antibody-containing preparation
US12297290B2 (en) 2017-10-20 2025-05-13 Hoffmann-La Roche Inc. Method for generating multispecific antibodies from monospecific antibodies
US12180279B2 (en) 2017-10-30 2024-12-31 Hoffmann-La Roche Inc. Method for in vivo generation of multispecific antibodies from monospecific antibodies
US12421322B2 (en) 2017-11-01 2025-09-23 Chugai Seiyaku Kabushiki Kaisha Antibody variant and isoform with lowered biological activity
US12415857B2 (en) 2021-06-25 2025-09-16 Chugai Seiyaku Kabushiki Kaisha Anti-CTLA-4 antibody and use thereof
US12448451B2 (en) 2021-06-25 2025-10-21 Chugai Seiyaku Kabushiki Kaisha Anti-CTLA-4 antibody and use thereof

Also Published As

Publication number Publication date
JPWO2006106905A1 (en) 2008-09-11
TWI671403B (en) 2019-09-11
JP5620626B2 (en) 2014-11-05
JP2013009675A (en) 2013-01-17
US20100015133A1 (en) 2010-01-21
HK1114878A1 (en) 2008-11-14
AU2006232287A1 (en) 2006-10-12
CA2603408A1 (en) 2006-10-12
CN101198698A (en) 2008-06-11
EP1870459B1 (en) 2016-06-29
EP3623473A1 (en) 2020-03-18
JP5739387B2 (en) 2015-06-24
TW201631154A (en) 2016-09-01
AU2006232287A8 (en) 2008-01-24
KR20080013875A (en) 2008-02-13
KR101374454B1 (en) 2014-03-17
DK3050963T3 (en) 2019-12-09
ES2592271T3 (en) 2016-11-29
EP1870459A1 (en) 2007-12-26
TWI544076B (en) 2016-08-01
EP3050963B1 (en) 2019-09-18
US11168344B2 (en) 2021-11-09
EP3050963A1 (en) 2016-08-03
AU2006232287B2 (en) 2011-10-06
CN101198698B (en) 2014-03-19
US20180051307A1 (en) 2018-02-22
CA2603408C (en) 2018-08-21
WO2006106905A1 (en) 2006-10-12
US10011858B2 (en) 2018-07-03
TW200722517A (en) 2007-06-16
EP1870459A4 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US20220267822A1 (en) Methods for producing polypeptides by regulating polypeptide association
US10934344B2 (en) Methods of modifying antibodies for purification of bispecific antibodies
US11851476B2 (en) Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
CN101460622A (en) Antibody modification process for purification of bispecific antibodies
HK1259058B (en) Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
HK1114878B (en) Methods for producing polypeptides by regulating polypeptide association

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHUGAI SEIYAKU KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IGAWA, TOMOYUKI;TSUNODA, HIROYUKI;REEL/FRAME:058150/0679

Effective date: 20071019

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED