US20220171149A1 - Roadway access hole cutter having a utility avoidance safety device, method of cutting a hole in a roadway, method of cutting a horizontal hole under a roadway - Google Patents
Roadway access hole cutter having a utility avoidance safety device, method of cutting a hole in a roadway, method of cutting a horizontal hole under a roadway Download PDFInfo
- Publication number
- US20220171149A1 US20220171149A1 US17/542,596 US202117542596A US2022171149A1 US 20220171149 A1 US20220171149 A1 US 20220171149A1 US 202117542596 A US202117542596 A US 202117542596A US 2022171149 A1 US2022171149 A1 US 2022171149A1
- Authority
- US
- United States
- Prior art keywords
- roadway
- buried utility
- drill head
- computer system
- buried
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000005520 cutting process Methods 0.000 title claims abstract description 33
- 238000001514 detection method Methods 0.000 claims abstract description 53
- 238000005553 drilling Methods 0.000 claims abstract description 39
- 239000013307 optical fiber Substances 0.000 claims description 28
- 230000006378 damage Effects 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 4
- 230000015654 memory Effects 0.000 description 23
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 14
- 238000004891 communication Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000003345 natural gas Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 239000004567 concrete Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- -1 electricity Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241001481828 Glyptocephalus cynoglossus Species 0.000 description 2
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- 241000393496 Electra Species 0.000 description 1
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/24—Safety devices, e.g. for preventing overload
- E02F9/245—Safety devices, e.g. for preventing overload for preventing damage to underground objects during excavation, e.g. indicating buried pipes or the like
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/46—Processes or apparatus adapted for installing or repairing optical fibres or optical cables
- G02B6/50—Underground or underwater installation; Installation through tubing, conduits or ducts
- G02B6/504—Installation in solid material, e.g. underground
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/18—Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
- E02F3/186—Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels with the axis being substantially parallel to the direction of travel
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/18—Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
- E02F3/188—Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels with the axis being horizontal and transverse to the direction of travel
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/18—Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
- E02F3/20—Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels with tools that only loosen the material, i.e. mill-type wheels
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F5/00—Dredgers or soil-shifting machines for special purposes
- E02F5/003—Dredgers or soil-shifting machines for special purposes for uncovering conduits
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F5/00—Dredgers or soil-shifting machines for special purposes
- E02F5/02—Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
- E02F5/08—Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with digging wheels turning round an axis
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F5/00—Dredgers or soil-shifting machines for special purposes
- E02F5/02—Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
- E02F5/10—Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with arrangements for reinforcing trenches or ditches; with arrangements for making or assembling conduits or for laying conduits or cables
- E02F5/101—Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with arrangements for reinforcing trenches or ditches; with arrangements for making or assembling conduits or for laying conduits or cables forming during digging, e.g. underground canalisations or conduits, by bending or twisting a strip of pliable material; by extrusion
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F5/00—Dredgers or soil-shifting machines for special purposes
- E02F5/02—Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
- E02F5/12—Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with equipment for back-filling trenches or ditches
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F5/00—Dredgers or soil-shifting machines for special purposes
- E02F5/02—Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
- E02F5/14—Component parts for trench excavators, e.g. indicating devices travelling gear chassis, supports, skids
- E02F5/145—Component parts for trench excavators, e.g. indicating devices travelling gear chassis, supports, skids control and indicating devices
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F5/00—Dredgers or soil-shifting machines for special purposes
- E02F5/16—Machines for digging other holes in the soil
- E02F5/18—Machines for digging other holes in the soil for horizontal holes or inclined holes
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/261—Surveying the work-site to be treated
- E02F9/262—Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
Definitions
- the invention generally relates to a roadway access hole cutter that reduces the chance of rupturing a utility buried close to the roadway and a method of cutting an access hole in a roadway that avoids rupturing the buried utility.
- the invention further relates a utility avoidance device configured to avoid cutting a buried utility.
- the invention further relates a horizontal drill having a utility avoidance safety device to avoid cutting a buried utility.
- a microtrench is cut in a roadway, the optical fiber and/or innerduct/microduct is laid in the microtrench and then a fill and sealant are applied over the optical fiber and/or innerduct/microduct to protect them from the environment.
- Methods of microtenching that can be utilized in the present invention include the methods described in my previous U.S. Pat. Nos. 10,641,414; 10,571,047; 10,571,045; 10,781,942; 10,808,379; 10,808,377 and U.S. patent publication Nos. 20180292027; 20180156357, and 20180106015, the complete disclosures of which are incorporated in their entirety herein by reference.
- the city Before cutting a microtrench in a roadway, the city must be notified. The city personnel will locate and mark buried utilities on the roadway. When a microtrench must cross a buried utility, the buried utility must first be exposed, which requires cutting an access hole through the roadway and then removing the dirt below the roadway through the roadway access hole.
- core saws, concrete saws, core drills and jack hammers are used to break through the roadway.
- the city roadways are asphalt and/or concrete. Utilities, such as natural gas, water, telecommunications, and/or electric, are typically buried in the dirt or bedding below the roadway. Natural gas lines are usually required to have 12-36 inches of cover above them. For example, a 2 inch natural gas line would have to be buried 14 inches below the roadway in order to have 12 inches of cover (dirt or bedding) above the natural gas line.
- Horizontal drills are often utilized to cut a small hole for installation of utilities below a roadway surface.
- Examples of horizontal drills include those disclosed in U.S. Patent Publication No. 20030070841 and U.S. Pat. No. 8,746,370.
- the present inventions reduces the chances of a road crew damaging a buried utility when installing optical fiber and/or innerduct/microduct under a roadway.
- the objectives of the invention can be obtained by a method of installing optical fiber, innerduct or microduct under a roadway comprising:
- the objections of the invention can also be obtained by a method of installing optical fiber, innerduct or microduct under a roadway comprising;
- a roadway access drill configured to reduce damage to a utility buried under a roadway comprising:
- a horizontal drill configured to reduce damage to a utility buried under a roadway comprising;
- the objectives of the invention can be obtained by a method of installing a new utility under a roadway comprising:
- the objections of the invention can also be obtained by a method of installing a new utility under a roadway comprising;
- FIG. 1A illustrates a roadway access hole drill located over the roadway above a buried utility.
- FIG. 1B illustrates a roadway access hole drill located over the roadway above a buried utility.
- FIG. 1C illustrates a roadway access hole saw located over the roadway above a buried utility.
- FIG. 2 illustrates hole in the roadway cut by the roadway access hole drill to expose the buried utility.
- FIG. 3 illustrates a microtrencher cutting a microtrench in the roadway that crosses the exposed previously buried utility.
- FIG. 4A illustrates an optical fiber sealed in the microtrench by a fill.
- FIG. 4B illustrates a buried utility sealed in the microtrench by a fill.
- FIG. 5A illustrates a horizontal access hole drill
- FIG. 5B illustrates a horizontal hole containing an optical fiber or innerduct/microduct.
- FIG. 5C illustrates a horizontal hole containing a new utility.
- FIG. 6A illustrates a flow chart of a first method of cutting a vertical roadway access hole.
- FIG. 6B illustrates a flow chart of a second method of cutting a horizontal access hole.
- FIG. 6C illustrates a flow chart of a first method of cutting a vertical roadway access hole.
- FIG. 6D illustrates a flow chart of a second method of cutting a horizontal access hole.
- the operations described in the figures and herein can be implemented as executable code stored on a computer or machine readable non-transitory tangible storage medium (e.g., floppy disk, hard disk, ROM, EEPROM, nonvolatile RAM, CD-ROM, etc.) that are completed based on execution of the code by a processor circuit implemented using one or more integrated circuits; the operations described herein also can be implemented as executable logic that is encoded in one or more non-transitory tangible media for execution (e.g., programmable logic arrays or devices, field programmable gate arrays, programmable array logic, application specific integrated circuits, etc.).
- executable code stored on a computer or machine readable non-transitory tangible storage medium (e.g., floppy disk, hard disk, ROM, EEPROM, nonvolatile RAM, CD-ROM, etc.) that are completed based on execution of the code by a processor circuit implemented using one or more integrated circuits; the operations described herein also can be implemented as executable logic that is
- lines or arrows between elements can denote communications between the different elements. These communications can take any form known by those of skill in the art, including digital, telephonic, or paper.
- the communications can be through a WAN, LAN, analog phone line, etc.
- the information communicated can be in any format appropriate for the transmission medium.
- Data storage can be non-transitory tangible memory, such as any one or a combination of a hard drive, random access memory, flash memory, read-only memory and a memory cache, among other possibilities.
- the data storage can include a database, implemented as relational database tables or structured XML documents or any other format. Such a database can be used to store the information gathered from transaction records and Thing Records. Non-volatile memory is preferred.
- Processor can refer to a single data processor on a single computing device or a collection of data processors.
- the collection of data processors can reside on a single computing device or be spread across multiple computing devices.
- the processor can execute computer program code stored in the data storage or a memory. In one example, the processor can execute computer program code representative of functionalities of various components of the system.
- Computer program instructions can also be stored in a non-transient computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means that implement one or more functions specified in the flow diagram block or blocks.
- FIGS. 1A and 1B describe an example of a system for cutting a roadway access hole.
- the system comprises user interface devices 120 , a server 150 , and computer system 702 , all interconnected via a communication network 140 . All interconnections can be direct, indirect, wireless and/or wired as desired.
- FIGS. 5A and 5B show an example of a system for cutting a horizontal access hole.
- the system comprises user interface devices 120 , a server 150 , and computer system 702 , all interconnected via a communication network 140 . All interconnections can be direct, indirect, wireless and/or wired as desired.
- the network 140 can be any desired network including the internet or telephone network.
- Various networks 800 can be implemented in accordance with embodiments of the invention, including a wired or wireless local area network (LAN) and a wide area network (WAN), wireless personal area network (PAN) and other types of networks that comprise or are connected to the Internet.
- LAN local area network
- WAN wide area network
- PAN personal area network
- computers can be connected to the LAN through a network interface or adapter.
- computers When used in a WAN networking environment, computers typically include a modem, router, switch, or other communication mechanism. Modems can be internal or external, and can be connected to the system bus via the user-input interface, or other appropriate mechanism.
- Computers can be connected over the Internet, an Intranet, Extranet, Ethernet, or any other system that provides communications, such as by the network.
- Some suitable communications protocols can include TCP/IP, UDP, OSI, Ethernet, WAP, IEEE 802.11, Bluetooth, Zigbee, IrDa, WebRTC, or any other desired protocol.
- components of the system can communicate through a combination of wired or wireless paths, including the telephone networks.
- the systems can be accessed via any user interface device 120 that is capable of connecting to the server 150 via the network 140 .
- a plurality of user interface devices 120 can be connected to the server 150 .
- An example user interface device 120 contains a web browser and display. This includes user interface devices 120 such as internet connected televisions and projectors, tablets, iPads, Mac OS computers, Windows computers, e-readers, and mobile user devices such as the smartphones, iPhone, Android, and Windows Phone, and other communication devices.
- the user interface device 120 preferably is a smartphone.
- the smartphone 120 can be in any form, such as a hand held device, wristband, or part of another device, such as vehicle.
- the computer processing unit (CPU) of the user interface device 120 can be implemented as a conventional microprocessor, application specific integrated circuit (ASIC), digital signal processor (DSP), programmable gate array (PGA), or the like.
- the CPU executes the instructions that are stored in order to process data.
- the set of instructions can include various instructions that perform a particular task or tasks, such as those shown in the appended flowchart. Such a set of instructions for performing a particular task can be characterized as a program, software program, software, engine, module, component, mechanism, or tool.
- the non-transitory memory can include random access memory (RAM), ready-only memory (ROM), programmable memory, flash memory, and the like.
- the memory include application programs, OS, application data etc.
- the server 150 and/or computer system 702 described herein can include one or more computer systems directly connected to one another and/or connected over the network 140 .
- Each computer system can include a processor, non-transitory memory, user input and user output mechanisms, a network interface, and executable program code (software) comprising computer executable instructions stored in non-transitory tangible memory that executes to control the operation of the server 150 and/or computer system 702 .
- the processor s functional components formed of one or more modules of program code executing on one or more computers.
- Various commercially available computer systems and operating system software can be used to implement the hardware and software.
- the components of each server can be co-located or distributed.
- the server 150 and/or computer system 702 can run any desired operating system, such as Windows, Mac OS X, Solaris or any other server based operating systems. Other embodiments can include different functional components.
- the present invention is not limited to a particular environment or server 150 and/or computer system 702 configuration.
- the server 150 is a cloud based computer system. If desired for the particular application, the server 150 or portions of the server 150 can be incorporated within one or more of the other devices of the system, including but not limited to a user interface device 120 .
- the server 150 includes at least one web server and the query processing unit.
- the web server receives the user query and sends the user query to the query processing unit.
- the query processing unit processes the user query and responds back to the user interface device 150 and/or computer system 702 via the web server.
- the query processing unit fetches data from the database server if additional information is needed for processing the user query.
- the database is stored in a non-transitory tangible memory, and preferably a non-volatile memory.
- the term “database” includes a single database and a plurality of separate databases.
- the server 150 can comprise the non-volatile memory or the server 150 can be in communication with the non-volatile memory storing the database.
- the database can be stored at different locations.
- Software program modules and data stored in the non-transitory memory the server 150 and/or non-volatile memory of the user interface device 150 and/or computer system 702 can be arranged in logical collections of related information on a plurality of computer systems having associated non-volatile memories.
- the software and data can be stored using any data structures known in the art including files, arrays, linked lists, relational database tables and the like.
- the server 150 , computer system 702 and mobile user device 150 can be programmed to perform the processes described herein.
- Drill head utility avoidance safety device Drill head utility avoidance safety device.
- the buried utilities include at least water, electricity, gas, telephone, and fiber optics. These utilities are typically provided through underground conduits. In theory, the location of the utilities is carefully recorded and held centrally by city authorities. In practice this does not universally occur and the location of many utilities can be unrecorded or recorded incorrectly.
- the determined location of the utility may be acquired by underground imaging, which is commonly accomplished by the use of ground penetrating radar (GPR). Typically, the location of buried utilities are separately determined by GPR and the location marked for later cutting or digging.
- GPR ground penetrating radar
- the present drill systems for installing optical fiber and/or innerduct microduct, or for installing a new utility, having a drill head utility avoidance safety device greatly reduces the chances of damaging a buried utility caused by operator error, errors in drill head location, errors in the buried utility location, and other errors.
- the utility avoidance safety device includes an under-roadway detection unit 700 , which can be a GPR, connected to the computer system 702 that controls forward movement of the drill head 20 during drilling.
- the computer system 702 can further comprise a drill control system 716 .
- a conventional GPR system comprises an electromagnetic detection unit, a computer system that receives detection data from the detection unit; a user interface device coupled to the computer system; and a display coupled to the computer system.
- the computer system interprets the detection data to provide a visual representation of the underground on the display.
- Computer systems are now well known and any suitable computer system comprising a processor in communication with non-volatile, non-transitory memory can be utilized.
- U.S. patent publication No. 2003/0012411 discloses a system and method for displaying and collecting GPR data.
- U.S. Pat. No. 6,617,996 discloses a GPR system to provide an audible signal regarding size and how deep.
- My previous U.S. Pat. No. 10,571,047 discloses a GPR system for use in microtrenching. The complete disclosures of these patents and publications are incorporated herein by reference.
- Ditch Witch 2450R GPR is commercial example of a GPR machine that can detect at suitable speeds of 5.6 mph.
- Geophysical Survey Systems, Inc. also commercially sells suitable GPRs that can be utilized in the present invention.
- the invention can utilize other means of revealing buried utilizes or any tomography, including but not limited to, radio frequency identification, sound waves, electrons, hydraulic, vibration, magnetic, sonar, ultrasound, microwaves, xrays, gamma rays, neutrons, electrical resistivity tomography, Multi-channels Analysis of Surface Waves (MASW), and/or Frequency-domain Electra Magnetics (FDEM) induction. Any of these alternatives and later developed alternatives can be utilized.
- the under-roadway detection unit 700 can comprise GPR and/or any other alternative for detecting objects buried under the roadway.
- the under-roadway detection unit 700 comprises a GPR.
- the claimed invention utilizes an under-roadway detection unit 700 in a novel utility avoidance device for use on a roadway access hole vertical drilling device 22 to create an access hole 3 in a city street (also referred to as a roadway 2 ) or on a horizontal drilling device 24 to create a horizontal hole 26 in the dirt 6 under the roadway 2 to install an optical fiber or innerduct/microduct 5 under the roadway 2 .
- FIG. 4B shows a buried new utility 9 in place of the buried optical fiber or innerduct/microduct 5 .
- Examples of the new utility 9 include electrical devices, including but not limited to coax cable, coper cable, low voltage cable and power cable.
- FIGS. 1A-4B Vertical drilling device 22 for forming an access hole 3 in a roadway 2 , FIGS. 1A-4B :
- the under-roadway detection unit 700 is configured to survey under the roadway 2 during drilling using the vertical drilling device 22 .
- Vertical drilling devices 22 are now well known and any suitable vertical drilling device can be utilized in the present invention.
- Detection data from the under-roadway detection unit 700 can be sent to a computer system 702 .
- the computer system 702 can send display information to the display 704 to display what is under the roadway 2 in the same manner as conventional GPR systems.
- the computer system 702 can also interpret the detection data in real time to identify objects under the roadway. For example, the computer system 702 can distinguish between utilities 4 under the roadway 2 and other objects under the roadway, such as reinforcing steel. The interpretation, i.e.
- a buried utility 4 can also be displayed on the display 704 for the drill operator, or on a user interface device 120 .
- the computer system 702 determines the location of the identified utility 4 , or object, to be avoided, such as depth and/or size in real time as the drill head 20 is cutting through the roadway 2 .
- the computer system 702 determines the distance between the drill head 20 and the buried utility 4 in real time as the drill head 20 is cutting through the roadway 2 , which is shown at 706 .
- a user interface device 120 can be coupled to the computer system 702 for the operator to control the under-roadway detection unit 700 .
- the computer system 702 can also determine the distance between the roadway 2 and the buried utility 4 , shown at 709 .
- the computer system 702 can send an alert 714 to the drill and/or stop forward movement of the drill head 20 . In this manner, there is added protection against undesirable cutting of buried utilities 4 by the drill head 20 .
- the drill head 20 may be replaced with a saw or other type of boring device that can form the access hole 3 .
- a saw 27 can be used in place of the drill head 20 .
- the present invention will work in the same manner for the saw 27 and other cutting devices.
- Drill control systems 716 for controlling forward movement and/or directional control of the drill head 20 are now well known.
- the computer system 702 is connected to the drill control system 716 to override control of the drill head 20 when necessary to avoid damaging a buried utility 4 .
- forward movement of the drill head 20 can be automatically stopped by the computer system 702 and/or drill control system 716 at a set distance 706 , such as from 2-24 inches, preferably 4-12 inches.
- the under-roadway detection unit 700 can be connected to the computer system 702 by wireless and/or wired connection, and/or indirectly by a network 140 .
- Additional attachments can be connected to the computer system 702 as desired. Examples of additional attachments are shown in FIG. 1A .
- the connections between the additional attachments can be wired and/or wireless directly and/or indirectly by the network 140 . Examples of additional attachments include user interface devices 120 and/or a server 150 .
- the computer system 702 can comprise a global positioning device or other positioning device to map the location of the microtrench 12 , buried utilities 4 detected by the under-roadway detection unit 700 , and the buried optical fiber and/or innerduct/microduct 5 , or buried new utility 9 .
- the computer system 702 can be connected to a network 140 for transmitting drilling data to the server 150 connected to the network 140 and/or user interface devices 120 connected to the network 140 .
- the drilling data can include, for example, the measurements of the access hole 3 , video of the hole 3 , location of the hole 3 , location of the buried utilities 4 detected by the under-roadway detection unit 700 , location of the buried optical fiber and/or innerduct/microduct, speed of microtrenching, and any other information as desired, in real time.
- the drilling data can also be stored on the computer system 702 , or by any other means, such as USB, flash drives, etc., for later uploading or accessing.
- the location of buried utilities 4 can be accurately determined in real time, the access hole 3 drilled in a manner that avoids the drill head 20 damaging the buried utilities 4 , a microtrench 12 cut, spoil vacuumed out of the microtrench 12 , the measurements of the microtrench 12 measured 720 , 722 , the optical fiber and/or innerduct/microduct 5 or buried new utility 9 can be installed in the microtrench 12 , and the microtrench 12 filled with fill 7 , all conducted simultaneously and continuously at the rates disclosed herein above, which are far faster rates than previously.
- the drilling information can be uploaded in real time to a central database for use by the city, managers, traffic controllers, supervisors, and any others as desired. In this manner, the actual location of buried utilities can be more precisely mapped and stored in city records.
- any suitable microtrencher 14 can be utilized in the present invention.
- suitable micro trenchers include those made and sold by Ditch Witch, Vermeer, and Marais.
- a Vermeer RTX 1250 tractor can be used as the motorized vehicle for the microtrencher 14 .
- a microtrencher 14 has is a “small rock wheel” specially designed for work in rural or urban areas.
- the microtrencher 14 is fitted with a microtrencher blade 15 that cuts a microtrench 12 with smaller dimensions than can be achieved with conventional trench digging equipment.
- Microtrench 12 widths usually range from about 6 mm to 130 mm (1 ⁇ 4 to 5 inches) with a depth of 750 mm (about 30 inches)) or less. Other widths and depths can be used as desired.
- microtrencher 14 With a microtrencher 14 , the structure of the road, sidewalk, driveway, or path is maintained and there is no associated damage to the road. Owing to the reduced microtrench 12 size, the volume of waste material (spoil) excavated is also reduced. Microtrenchers 14 are used to minimize traffic or pedestrian disturbance during cable laying. The microtrencher 14 can work on sidewalks or in narrow streets of cities, and can cut harder ground than a chain trencher, including cutting through for example but not limited to solid stone, concrete, and asphalt.
- a debris containment shroud 40 can be placed on the roadway 2 over the buried utility 4 to be exposed.
- the debris containment shroud 40 can be attached to a vacuum hose 48 attached to a source of vacuum 50 .
- the debris containment shroud 40 is configured to provide a vacuum to a hollow chamber 44 during use. During use, the debris containment shroud 40 rests on the roadway 2 surface and the debris, such as dust, chips, particles, etc., and water if present are vacuumed away through the vacuum hose 48 and into a vacuum storage container 52 .
- the vacuum hose 48 can be any size as desired, such as from 4 to 12 inches in diameter.
- Sources of vacuum 50 are now well known and any suitable vacuum source can be utilized, such as those made by SCAG Giant Vac., DR Power, Vermeer, and Billy Goat.
- a microtrencher 14 is used to cut a microtrench 12 in the roadway so that the microtrench 12 crosses the buried utility 4 without damaging the buried utility 4 .
- the optical fiber, innerduct, or microduct 5 can be laid in the microtrench 12 , and the a fill 7 can be applied to cover the hole 3 and fill the microtrench 12 to cover and protect the optical fiber, innerduct, or microduct 5 .
- the new utility 9 can be laid in the microtrench 12 , and the a fill 7 can be applied to cover the hole 3 and fill the microtrench 12 to cover and protect the new utility 9 .
- FIGS. 5A-5C Horizontal drilling device 24 for forming a substantially horizontal hole 26 under a roadway 2 , FIGS. 5A-5C :
- the under-roadway detection unit 700 is configured to survey under the roadway 2 during drilling using the horizontal drilling device 24 .
- Horizontal drilling devices 24 are now well known and any suitable vertical drilling device can be utilized in the present invention.
- Detection data from the under-roadway detection unit 700 can be sent to a computer system 702 .
- the computer system 702 can send display information to the display 704 to display what is under the roadway 2 in the same manner as conventional GPR systems.
- the computer system 702 can also interpret the detection data in real time to identify objects under the roadway. For example, the computer system 702 can distinguish between utilities 4 under the roadway 2 and other objects under the roadway, such as reinforcing steel. The interpretation, i.e.
- a buried utility 4 can also be displayed on the display 704 for the drill operator.
- the computer system 702 determines the location of the identified utility 4 , or object, to be avoided, such as depth and/or size in real time as the drill head 20 is cutting through the dirt 6 under the roadway 2 .
- the computer system 702 determines the distance between the drill head 20 and the buried utility 4 in real time as the drill head 20 is cutting through the dirt 6 under the roadway 2 , which is shown at 705 .
- a user interface device 120 can be coupled to the computer system 702 for the operator to control the under-roadway detection unit 700 .
- the computer system 702 can send an alert 714 to the drill operator, change the direction of the drill head 20 and/or stop forward movement of the drill head 20 . In this manner, there is added protection against undesirable cutting of buried utilities 4 by the drill head 20 .
- FIG. 5B shows and example of where the drill head 20 changed direction at 28 to avoid damaging the buried utility 4 .
- Drill control systems 716 for controlling forward movement and/or directional control of the drill head 20 are now well known.
- the computer system 702 is connected to the drill control system 716 to override control of the drill head 20 when necessary to avoid damaging a buried utility 4 .
- forward movement of the drill head 20 can be automatically stopped or the direction changed by the drill control system 716 at a set distance 705 , such as from 2-24 inches, preferably 4-12 inches.
- the under-roadway detection unit 700 when used for horizontal drilling, must be moved along with the movement of the drill head 20 so that the ground in front of the drill head 20 is continuously monitored in real time to detect buried utilities 4 in the path of the drill head 20 .
- the distance in front of the moving drill head 20 will be determined by the type of under-roadway detection unit 700 utilized.
- the under-roadway detection unit 700 can be from 1 to 6 feet, preferably 2 to 5 feet, in front of the drill head 20 .
- the under-roadway detection unit 700 preferably detects the buried utility 4 at least 1 foot, preferably at least 2 feet, in front of the moving drill head 20 in real time.
- the system can automatically mark the surface of the roadway 2 where a buried utility 4 was identified, such as by using paint.
- the system can also upload locations of the buried utilities 4 to a city database to update the city database for locations of the buried utilities 4 .
- the under-roadway detection unit 700 can be connected directly to the computer system 702 by wireless and/or wired connection, and/or indirectly by a network 140 .
- Additional attachments can be connected to the computer system 702 as desired. Examples of additional attachments are shown in FIG. 5A . The connections between the additional attachments can be wired and/or wireless directly and/or indirectly by the network 140 . Examples of additional attachments include user interface devices 120 and/or a server 150 .
- FIG. 5B illustrates an optical fiber and/or innerduct/microduct 5 installed in the hole 26 .
- FIG. 5C illustrates a new utility 9 installed in the hole 26 .
- the location of buried utilities 4 can be accurately determined in real time, the horizontal hole 26 drilled in a manner that avoids the drill head 20 damaging the buried utilities 4 , and the optical fiber and/or innerduct/microduct 5 or new utility 9 can be installed in the hole 26 .
- the drilling information can be uploaded in real time to a central database for use by the city, managers, traffic controllers, supervisors, and any others as desired. In this manner, the actual location of buried utilities can be more precisely mapped and stored in city records.
- the computer system 702 can comprise a global positioning device or other positioning device to map the location of the buried utilities 4 detected by the under-roadway detection unit 700 , and the buried optical fiber and/or innerduct/microduct 5 or new utility 9 .
- the computer system 702 can be connected to a network 140 for transmitting drilling data to the server 150 connected to the network 140 and/or user interface devices 120 connected to the network 140 .
- the drilling data can include, for example, the measurements of the horizontal hole 26 , video of the hole 26 , location of the holes 26 , location of the buried utilities 4 detected by the under-roadway detection unit 700 , location of the buried optical fiber and/or innerduct/microduct, and any other information as desired, in real time.
- the drilling data can also be stored on the computer system 702 , or by any other means, such as USB, flash drives, etc., for later uploading or accessing.
- suitable commercially available horizontal drills include those sold by HDD Tooling, Vermeer, XCMG, and others.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Road Repair (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
Abstract
Description
- The invention generally relates to a roadway access hole cutter that reduces the chance of rupturing a utility buried close to the roadway and a method of cutting an access hole in a roadway that avoids rupturing the buried utility. The invention further relates a utility avoidance device configured to avoid cutting a buried utility. The invention further relates a horizontal drill having a utility avoidance safety device to avoid cutting a buried utility.
- During installation of the optical fiber, a microtrench is cut in a roadway, the optical fiber and/or innerduct/microduct is laid in the microtrench and then a fill and sealant are applied over the optical fiber and/or innerduct/microduct to protect them from the environment. Methods of microtenching that can be utilized in the present invention include the methods described in my previous U.S. Pat. Nos. 10,641,414; 10,571,047; 10,571,045; 10,781,942; 10,808,379; 10,808,377 and U.S. patent publication Nos. 20180292027; 20180156357, and 20180106015, the complete disclosures of which are incorporated in their entirety herein by reference.
- Before cutting a microtrench in a roadway, the city must be notified. The city personnel will locate and mark buried utilities on the roadway. When a microtrench must cross a buried utility, the buried utility must first be exposed, which requires cutting an access hole through the roadway and then removing the dirt below the roadway through the roadway access hole. Currently, core saws, concrete saws, core drills and jack hammers are used to break through the roadway.
- The city roadways are asphalt and/or concrete. Utilities, such as natural gas, water, telecommunications, and/or electric, are typically buried in the dirt or bedding below the roadway. Natural gas lines are usually required to have 12-36 inches of cover above them. For example, a 2 inch natural gas line would have to be buried 14 inches below the roadway in order to have 12 inches of cover (dirt or bedding) above the natural gas line.
- However, often times codes are not followed by installers and natural gas lines can be installed just below the roadway. A jackhammer is usually used to form the access hole in the roadway. However, if the buried utility, such a natural gas line is not buried according to code and is just below the roadway, the jackhammer can cause the natural gas line to rupture causing a fire and serious injury or death. Furthermore, conventional core saws, concrete saws, and core drills can also damage the shallowly buried utility. There is a great need for a softer way of cutting an access hole that reduces the chances of rupturing a buried utility that is not to code, i.e. just below the roadway.
- Horizontal drills are often utilized to cut a small hole for installation of utilities below a roadway surface. Examples of horizontal drills include those disclosed in U.S. Patent Publication No. 20030070841 and U.S. Pat. No. 8,746,370.
- Even with marking of the buried utilities, crews are still damaging buried utilities at an alarming rate. There is a great need for an automated safety device to reduce damaging buried utilities.
- The present inventions reduces the chances of a road crew damaging a buried utility when installing optical fiber and/or innerduct/microduct under a roadway.
- The objectives of the invention can be obtained by a method of installing optical fiber, innerduct or microduct under a roadway comprising:
-
- drilling an access hole in a roadway above a buried utility using a roadway access drill comprising a drill head driven by a motor;
- controlling the movement of the drill head by a computer system;
- measuring in real time a distance between the drill head and the buried utility by the computer system and an under-roadway detection unit connected to the computer system;
- the computer system automatically at least one of providing a warning to an operator of the roadway access drill or stopping movement of the drill head towards the buried utility at a set distance between the drill head and the buried utility to avoid damaging the buried utility;
- removing dirt below the roadway through the access hole to expose the buried utility;
- cutting a microtrench in the roadway using a microtrencher so that the microtrench crosses the buried utility and does not damage the buried utility;
- laying the optical fiber, innerduct or microduct in the microtrench; and
- filling the microtrench with a fill material to cover and protect the optical fiber, innerduct or microduct.
- The objections of the invention can also be obtained by a method of installing optical fiber, innerduct or microduct under a roadway comprising;
-
- drilling a hole substantially horizontally under a roadway using a horizontal drill comprising a drill head driven by a motor;
- controlling the movement of the drill head by a computer system;
- moving an under-roadway detection unit above the roadway so that the under-roadway detection unit detects the drill head and a buried utility under the roadway;
- the under-roadway detection unit sending detection data to the computer system;
- measuring in real time a distance between the drill head and the buried utility by the computer system based on the detection data;
- the computer system at least one of automatically changing a direction of the drill head or stopping movement of the drill head towards the buried utility at a set distance between the drill head and the buried utility to avoid damaging the buried utility;
- removing the drill head from a substantially horizontal hole under the roadway formed by the drilling; and
- installing the optical fiber, innerduct or microduct into the substantially horizontal hole.
- The objectives of the invention can be further obtained by a roadway access drill configured to reduce damage to a utility buried under a roadway comprising:
-
- a drill head driven by a motor;
- a computer system configured to control movement of the drill head;
- an under-roadway detection unit connected to the computer system and configured to measure in real time a distance between the drill head and a buried utility under the roadway; and
- the computer system being configured to automatically at least one of providing warning to an operator of the roadway access drill or stopping movement of the drill head towards a buried utility at a set distance between the drill head and the buried utility to avoid damaging the buried utility.
- The objectives of the invention can be further obtained by a horizontal drill configured to reduce damage to a utility buried under a roadway comprising;
-
- a drill head driven by a motor;
- a computer system for controlling the movement of the drill head;
- an under-roadway detection unit connected to the computer system and configured to move above the roadway so that the under-roadway detection unit detects the drill head and a buried utility under the roadway;
- the computer system and under-roadway detection unit are configured to measure in real time a distance between the drill head and the buried utility by the computer system; and
- the computer system is configured to a at least one of automatically changing a direction of the drill head or stopping movement of the drill head towards the buried utility at a set distance between the drill head and the buried utility to avoid damaging the buried utility.
- The objectives of the invention can be obtained by a method of installing a new utility under a roadway comprising:
-
- drilling an access hole in a roadway above a buried utility using a roadway access drill comprising a drill head driven by a motor;
- controlling the movement of the drill head by a computer system;
- measuring in real time a distance between the drill head and the buried utility by the computer system and an under-roadway detection unit connected to the computer system;
- the computer system automatically at least one of providing a warning to an operator of the roadway access drill or stopping movement of the drill head towards the buried utility at a set distance between the drill head and the buried utility to avoid damaging the buried utility;
- removing dirt below the roadway through the access hole to expose the buried utility;
- cutting a microtrench in the roadway using a microtrencher so that the microtrench crosses the buried utility and does not damage the buried utility;
- laying the new utility in the microtrench; and
- filling the microtrench with a fill material to cover and protect the new utility.
- The objections of the invention can also be obtained by a method of installing a new utility under a roadway comprising;
-
- drilling a hole substantially horizontally under a roadway using a horizontal drill comprising a drill head driven by a motor;
- controlling the movement of the drill head by a computer system;
- moving an under-roadway detection unit above the roadway so that the under-roadway detection unit detects the drill head and a buried utility under the roadway;
- the under-roadway detection unit sending detection data to the computer system;
- measuring in real time a distance between the drill head and the buried utility by the computer system based on the detection data;
- the computer system at least one of automatically changing a direction of the drill head or stopping movement of the drill head towards the buried utility at a set distance between the drill head and the buried utility to avoid damaging the buried utility;
- removing the drill head from a substantially horizontal hole under the roadway formed by the drilling; and
- installing the new utility into the substantially horizontal hole.
-
FIG. 1A illustrates a roadway access hole drill located over the roadway above a buried utility. -
FIG. 1B illustrates a roadway access hole drill located over the roadway above a buried utility. -
FIG. 1C illustrates a roadway access hole saw located over the roadway above a buried utility. -
FIG. 2 illustrates hole in the roadway cut by the roadway access hole drill to expose the buried utility. -
FIG. 3 illustrates a microtrencher cutting a microtrench in the roadway that crosses the exposed previously buried utility. -
FIG. 4A illustrates an optical fiber sealed in the microtrench by a fill. -
FIG. 4B illustrates a buried utility sealed in the microtrench by a fill. -
FIG. 5A illustrates a horizontal access hole drill. -
FIG. 5B illustrates a horizontal hole containing an optical fiber or innerduct/microduct. -
FIG. 5C illustrates a horizontal hole containing a new utility. -
FIG. 6A illustrates a flow chart of a first method of cutting a vertical roadway access hole. -
FIG. 6B illustrates a flow chart of a second method of cutting a horizontal access hole. -
FIG. 6C illustrates a flow chart of a first method of cutting a vertical roadway access hole. -
FIG. 6D illustrates a flow chart of a second method of cutting a horizontal access hole. - The invention will be explained by reference to the attached non-limiting Figs. In the description, for purposes of explanation and not limitation, specific details are set forth, such as particular networks, communication systems, computers, terminals, devices, components, techniques, storage devices, data and network protocols, software products and systems, operating systems, development interfaces, hardware, etc. in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention can be practiced in other embodiments that depart from these specific details. Detailed descriptions of well-known networks, computers, digital devices, storage devices, components, techniques, data and network protocols, software products and systems, development interfaces, operating systems, and hardware are omitted so as not to obscure the description of the present invention. All use of the word “example” are intended to describe non-limiting examples of the invention.
- The operations described in the figures and herein can be implemented as executable code stored on a computer or machine readable non-transitory tangible storage medium (e.g., floppy disk, hard disk, ROM, EEPROM, nonvolatile RAM, CD-ROM, etc.) that are completed based on execution of the code by a processor circuit implemented using one or more integrated circuits; the operations described herein also can be implemented as executable logic that is encoded in one or more non-transitory tangible media for execution (e.g., programmable logic arrays or devices, field programmable gate arrays, programmable array logic, application specific integrated circuits, etc.).
- To facilitate an understanding of the principles and features of the various embodiments of the present invention, various illustrative embodiments are explained below. Although example embodiments of the present invention are explained in detail, it is to be understood that other embodiments are contemplated. Accordingly, it is not intended that the present invention is limited in its scope to the details of construction and arrangement of components set forth in the following description or examples. The present invention is capable of other embodiments and of being practiced or carried out in various ways.
- As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural references unless the context clearly dictates otherwise. For example, reference to a component is intended also to include composition of a plurality of components. References to a composition containing “a” constituent is intended to include other constituents in addition to the one named.
- Also, in describing the example embodiments, terminology will be resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.
- It is also to be understood that the mention of one or more method steps does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Similarly, it is also to be understood that the mention of one or more components in a composition does not preclude the presence of additional components than those expressly identified. Such other components or steps not described herein can include, but are not limited to, for example, similar components or steps that are developed after development of the disclosed technology.
- As illustrated, lines or arrows between elements can denote communications between the different elements. These communications can take any form known by those of skill in the art, including digital, telephonic, or paper. The communications can be through a WAN, LAN, analog phone line, etc. The information communicated can be in any format appropriate for the transmission medium.
- “Data storage” can be non-transitory tangible memory, such as any one or a combination of a hard drive, random access memory, flash memory, read-only memory and a memory cache, among other possibilities. The data storage can include a database, implemented as relational database tables or structured XML documents or any other format. Such a database can be used to store the information gathered from transaction records and Thing Records. Non-volatile memory is preferred.
- “Processor” can refer to a single data processor on a single computing device or a collection of data processors. The collection of data processors can reside on a single computing device or be spread across multiple computing devices. The processor can execute computer program code stored in the data storage or a memory. In one example, the processor can execute computer program code representative of functionalities of various components of the system.
- While certain implementations of the disclosed technology have been described in connection with what is presently considered to be the most practical and various implementations, it is to be understood that the disclosed technology is not to be limited to the disclosed implementations, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
- Certain implementations of the disclosed technology are described above with reference to block and flow diagrams of systems and methods and/or computer program products according to example implementations of the disclosed technology. It will be understood that one or more blocks of the block diagrams and flow diagrams, and combinations of blocks in the block diagrams and flow diagrams, respectively, can be implemented by computer-executable program instructions. Likewise, some blocks of the block diagrams and flow diagrams do not have to be performed in the order presented or if at all, according to some implementations of the disclosed technology.
- Computer program instructions can also be stored in a non-transient computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means that implement one or more functions specified in the flow diagram block or blocks.
-
FIGS. 1A and 1B describe an example of a system for cutting a roadway access hole. The system comprisesuser interface devices 120, aserver 150, andcomputer system 702, all interconnected via acommunication network 140. All interconnections can be direct, indirect, wireless and/or wired as desired. -
FIGS. 5A and 5B show an example of a system for cutting a horizontal access hole. The system comprisesuser interface devices 120, aserver 150, andcomputer system 702, all interconnected via acommunication network 140. All interconnections can be direct, indirect, wireless and/or wired as desired. - The
network 140 can be any desired network including the internet or telephone network. Various networks 800 can be implemented in accordance with embodiments of the invention, including a wired or wireless local area network (LAN) and a wide area network (WAN), wireless personal area network (PAN) and other types of networks that comprise or are connected to the Internet. When used in a LAN networking environment, computers can be connected to the LAN through a network interface or adapter. When used in a WAN networking environment, computers typically include a modem, router, switch, or other communication mechanism. Modems can be internal or external, and can be connected to the system bus via the user-input interface, or other appropriate mechanism. Computers can be connected over the Internet, an Intranet, Extranet, Ethernet, or any other system that provides communications, such as by the network. Some suitable communications protocols can include TCP/IP, UDP, OSI, Ethernet, WAP, IEEE 802.11, Bluetooth, Zigbee, IrDa, WebRTC, or any other desired protocol. Furthermore, components of the system can communicate through a combination of wired or wireless paths, including the telephone networks. - The systems can be accessed via any
user interface device 120 that is capable of connecting to theserver 150 via thenetwork 140. A plurality ofuser interface devices 120 can be connected to theserver 150. An exampleuser interface device 120 contains a web browser and display. This includesuser interface devices 120 such as internet connected televisions and projectors, tablets, iPads, Mac OS computers, Windows computers, e-readers, and mobile user devices such as the smartphones, iPhone, Android, and Windows Phone, and other communication devices. Theuser interface device 120 preferably is a smartphone. Thesmartphone 120 can be in any form, such as a hand held device, wristband, or part of another device, such as vehicle. - The computer processing unit (CPU) of the
user interface device 120 can be implemented as a conventional microprocessor, application specific integrated circuit (ASIC), digital signal processor (DSP), programmable gate array (PGA), or the like. The CPU executes the instructions that are stored in order to process data. The set of instructions can include various instructions that perform a particular task or tasks, such as those shown in the appended flowchart. Such a set of instructions for performing a particular task can be characterized as a program, software program, software, engine, module, component, mechanism, or tool. The non-transitory memory can include random access memory (RAM), ready-only memory (ROM), programmable memory, flash memory, and the like. The memory, include application programs, OS, application data etc. - The
server 150 and/orcomputer system 702 described herein can include one or more computer systems directly connected to one another and/or connected over thenetwork 140. Each computer system can include a processor, non-transitory memory, user input and user output mechanisms, a network interface, and executable program code (software) comprising computer executable instructions stored in non-transitory tangible memory that executes to control the operation of theserver 150 and/orcomputer system 702. Similarly, the processors functional components formed of one or more modules of program code executing on one or more computers. Various commercially available computer systems and operating system software can be used to implement the hardware and software. The components of each server can be co-located or distributed. In addition, all or portions of the same software and/or hardware can be used to implement two or more of the functional servers (or processors) shown. Theserver 150 and/orcomputer system 702 can run any desired operating system, such as Windows, Mac OS X, Solaris or any other server based operating systems. Other embodiments can include different functional components. In addition, the present invention is not limited to a particular environment orserver 150 and/orcomputer system 702 configuration. Preferably, theserver 150 is a cloud based computer system. If desired for the particular application, theserver 150 or portions of theserver 150 can be incorporated within one or more of the other devices of the system, including but not limited to auser interface device 120. - The
server 150 includes at least one web server and the query processing unit. The web server receives the user query and sends the user query to the query processing unit. The query processing unit processes the user query and responds back to theuser interface device 150 and/orcomputer system 702 via the web server. The query processing unit fetches data from the database server if additional information is needed for processing the user query. The database is stored in a non-transitory tangible memory, and preferably a non-volatile memory. The term “database” includes a single database and a plurality of separate databases. Theserver 150 can comprise the non-volatile memory or theserver 150 can be in communication with the non-volatile memory storing the database. The database can be stored at different locations. - Software program modules and data stored in the non-transitory memory the
server 150 and/or non-volatile memory of theuser interface device 150 and/orcomputer system 702 can be arranged in logical collections of related information on a plurality of computer systems having associated non-volatile memories. The software and data can be stored using any data structures known in the art including files, arrays, linked lists, relational database tables and the like. Theserver 150,computer system 702 andmobile user device 150 can be programmed to perform the processes described herein. - Drill head utility avoidance safety device.
- Modern cities require an extensive range of utilities to function. The buried utilities include at least water, electricity, gas, telephone, and fiber optics. These utilities are typically provided through underground conduits. In theory, the location of the utilities is carefully recorded and held centrally by city authorities. In practice this does not universally occur and the location of many utilities can be unrecorded or recorded incorrectly. The determined location of the utility may be acquired by underground imaging, which is commonly accomplished by the use of ground penetrating radar (GPR). Typically, the location of buried utilities are separately determined by GPR and the location marked for later cutting or digging.
- The present drill systems for installing optical fiber and/or innerduct microduct, or for installing a new utility, having a drill head utility avoidance safety device greatly reduces the chances of damaging a buried utility caused by operator error, errors in drill head location, errors in the buried utility location, and other errors. The utility avoidance safety device includes an under-
roadway detection unit 700, which can be a GPR, connected to thecomputer system 702 that controls forward movement of thedrill head 20 during drilling. Thecomputer system 702 can further comprise adrill control system 716. - A conventional GPR system comprises an electromagnetic detection unit, a computer system that receives detection data from the detection unit; a user interface device coupled to the computer system; and a display coupled to the computer system. The computer system interprets the detection data to provide a visual representation of the underground on the display. Computer systems are now well known and any suitable computer system comprising a processor in communication with non-volatile, non-transitory memory can be utilized.
- U.S. patent publication No. 2003/0012411 (Sjostrom), discloses a system and method for displaying and collecting GPR data. U.S. Pat. No. 6,617,996 (Johansson), discloses a GPR system to provide an audible signal regarding size and how deep. My previous U.S. Pat. No. 10,571,047 discloses a GPR system for use in microtrenching. The complete disclosures of these patents and publications are incorporated herein by reference. Ditch Witch 2450R GPR is commercial example of a GPR machine that can detect at suitable speeds of 5.6 mph. Geophysical Survey Systems, Inc. also commercially sells suitable GPRs that can be utilized in the present invention.
- In place of the usual GPR used to locate buried utilities, the invention can utilize other means of revealing buried utilizes or any tomography, including but not limited to, radio frequency identification, sound waves, electrons, hydraulic, vibration, magnetic, sonar, ultrasound, microwaves, xrays, gamma rays, neutrons, electrical resistivity tomography, Multi-channels Analysis of Surface Waves (MASW), and/or Frequency-domain Electra Magnetics (FDEM) induction. Any of these alternatives and later developed alternatives can be utilized. Thus, the under-
roadway detection unit 700 can comprise GPR and/or any other alternative for detecting objects buried under the roadway. Preferably, the under-roadway detection unit 700 comprises a GPR. - As shown in
FIGS. 1A-4A , the claimed invention utilizes an under-roadway detection unit 700 in a novel utility avoidance device for use on a roadway access holevertical drilling device 22 to create anaccess hole 3 in a city street (also referred to as a roadway 2) or on ahorizontal drilling device 24 to create ahorizontal hole 26 in thedirt 6 under theroadway 2 to install an optical fiber or innerduct/microduct 5 under theroadway 2.FIG. 4B shows a buriednew utility 9 in place of the buried optical fiber or innerduct/microduct 5. Examples of thenew utility 9 include electrical devices, including but not limited to coax cable, coper cable, low voltage cable and power cable. -
Vertical drilling device 22 for forming anaccess hole 3 in aroadway 2,FIGS. 1A-4B : - As shown in
FIG. 1A , the under-roadway detection unit 700 is configured to survey under theroadway 2 during drilling using thevertical drilling device 22.Vertical drilling devices 22 are now well known and any suitable vertical drilling device can be utilized in the present invention. Detection data from the under-roadway detection unit 700 can be sent to acomputer system 702. Thecomputer system 702 can send display information to thedisplay 704 to display what is under theroadway 2 in the same manner as conventional GPR systems. Thecomputer system 702 can also interpret the detection data in real time to identify objects under the roadway. For example, thecomputer system 702 can distinguish betweenutilities 4 under theroadway 2 and other objects under the roadway, such as reinforcing steel. The interpretation, i.e. a buriedutility 4, can also be displayed on thedisplay 704 for the drill operator, or on auser interface device 120. Thecomputer system 702 determines the location of the identifiedutility 4, or object, to be avoided, such as depth and/or size in real time as thedrill head 20 is cutting through theroadway 2. Thecomputer system 702 determines the distance between thedrill head 20 and the buriedutility 4 in real time as thedrill head 20 is cutting through theroadway 2, which is shown at 706. Auser interface device 120 can be coupled to thecomputer system 702 for the operator to control the under-roadway detection unit 700. Thecomputer system 702 can also determine the distance between theroadway 2 and the buriedutility 4, shown at 709. - When the
computer system 702 identifies a buriedutility 4 in the path of thedrill head 20, thecomputer system 702 can send an alert 714 to the drill and/or stop forward movement of thedrill head 20. In this manner, there is added protection against undesirable cutting of buriedutilities 4 by thedrill head 20. In the vertical drilling method, thedrill head 20 may be replaced with a saw or other type of boring device that can form theaccess hole 3. For example, as shown inFIG. 1C , asaw 27 can be used in place of thedrill head 20. The present invention will work in the same manner for thesaw 27 and other cutting devices. -
Drill control systems 716 for controlling forward movement and/or directional control of thedrill head 20 are now well known. Thecomputer system 702 is connected to thedrill control system 716 to override control of thedrill head 20 when necessary to avoid damaging a buriedutility 4. For example, forward movement of thedrill head 20 can be automatically stopped by thecomputer system 702 and/ordrill control system 716 at aset distance 706, such as from 2-24 inches, preferably 4-12 inches. - The under-
roadway detection unit 700 can be connected to thecomputer system 702 by wireless and/or wired connection, and/or indirectly by anetwork 140. Additional attachments can be connected to thecomputer system 702 as desired. Examples of additional attachments are shown inFIG. 1A . The connections between the additional attachments can be wired and/or wireless directly and/or indirectly by thenetwork 140. Examples of additional attachments includeuser interface devices 120 and/or aserver 150. - The
computer system 702 can comprise a global positioning device or other positioning device to map the location of themicrotrench 12, buriedutilities 4 detected by the under-roadway detection unit 700, and the buried optical fiber and/or innerduct/microduct 5, or buriednew utility 9. - The
computer system 702 can be connected to anetwork 140 for transmitting drilling data to theserver 150 connected to thenetwork 140 and/oruser interface devices 120 connected to thenetwork 140. The drilling data can include, for example, the measurements of theaccess hole 3, video of thehole 3, location of thehole 3, location of the buriedutilities 4 detected by the under-roadway detection unit 700, location of the buried optical fiber and/or innerduct/microduct, speed of microtrenching, and any other information as desired, in real time. The drilling data can also be stored on thecomputer system 702, or by any other means, such as USB, flash drives, etc., for later uploading or accessing. - With the present method and system, as described in the flow diagrams of
FIGS. 6A and 6C , the location of buriedutilities 4 can be accurately determined in real time, theaccess hole 3 drilled in a manner that avoids thedrill head 20 damaging the buriedutilities 4, amicrotrench 12 cut, spoil vacuumed out of themicrotrench 12, the measurements of the microtrench 12 measured 720, 722, the optical fiber and/or innerduct/microduct 5 or buriednew utility 9 can be installed in themicrotrench 12, and the microtrench 12 filled withfill 7, all conducted simultaneously and continuously at the rates disclosed herein above, which are far faster rates than previously. The drilling information can be uploaded in real time to a central database for use by the city, managers, traffic controllers, supervisors, and any others as desired. In this manner, the actual location of buried utilities can be more precisely mapped and stored in city records. - Any
suitable microtrencher 14 can be utilized in the present invention. Non-limiting examples of suitable micro trenchers include those made and sold by Ditch Witch, Vermeer, and Marais. A Vermeer RTX 1250 tractor can be used as the motorized vehicle for themicrotrencher 14. Amicrotrencher 14 has is a “small rock wheel” specially designed for work in rural or urban areas. Themicrotrencher 14 is fitted with a microtrencher blade 15 that cuts a microtrench 12 with smaller dimensions than can be achieved with conventional trench digging equipment.Microtrench 12 widths usually range from about 6 mm to 130 mm (¼ to 5 inches) with a depth of 750 mm (about 30 inches)) or less. Other widths and depths can be used as desired. - With a
microtrencher 14, the structure of the road, sidewalk, driveway, or path is maintained and there is no associated damage to the road. Owing to the reducedmicrotrench 12 size, the volume of waste material (spoil) excavated is also reduced.Microtrenchers 14 are used to minimize traffic or pedestrian disturbance during cable laying. Themicrotrencher 14 can work on sidewalks or in narrow streets of cities, and can cut harder ground than a chain trencher, including cutting through for example but not limited to solid stone, concrete, and asphalt. - A debris containment shroud 40 can be placed on the
roadway 2 over the buriedutility 4 to be exposed. The debris containment shroud 40 can be attached to a vacuum hose 48 attached to a source ofvacuum 50. The debris containment shroud 40 is configured to provide a vacuum to a hollow chamber 44 during use. During use, the debris containment shroud 40 rests on theroadway 2 surface and the debris, such as dust, chips, particles, etc., and water if present are vacuumed away through the vacuum hose 48 and into avacuum storage container 52. The vacuum hose 48 can be any size as desired, such as from 4 to 12 inches in diameter. Sources ofvacuum 50 are now well known and any suitable vacuum source can be utilized, such as those made by SCAG Giant Vac., DR Power, Vermeer, and Billy Goat. - As shown in
FIGS. 2 and 3 , once the buriedutility 4 is exposed, amicrotrencher 14 is used to cut a microtrench 12 in the roadway so that the microtrench 12 crosses the buriedutility 4 without damaging the buriedutility 4. As shown inFIG. 4A , the optical fiber, innerduct, ormicroduct 5 can be laid in themicrotrench 12, and the afill 7 can be applied to cover thehole 3 and fill themicrotrench 12 to cover and protect the optical fiber, innerduct, ormicroduct 5. As shown inFIG. 4B , thenew utility 9 can be laid in themicrotrench 12, and the afill 7 can be applied to cover thehole 3 and fill themicrotrench 12 to cover and protect thenew utility 9. -
Horizontal drilling device 24 for forming a substantiallyhorizontal hole 26 under aroadway 2,FIGS. 5A-5C : - As shown in
FIGS. 5A-5C , the under-roadway detection unit 700 is configured to survey under theroadway 2 during drilling using thehorizontal drilling device 24.Horizontal drilling devices 24 are now well known and any suitable vertical drilling device can be utilized in the present invention. Detection data from the under-roadway detection unit 700 can be sent to acomputer system 702. Thecomputer system 702 can send display information to thedisplay 704 to display what is under theroadway 2 in the same manner as conventional GPR systems. Thecomputer system 702 can also interpret the detection data in real time to identify objects under the roadway. For example, thecomputer system 702 can distinguish betweenutilities 4 under theroadway 2 and other objects under the roadway, such as reinforcing steel. The interpretation, i.e. a buriedutility 4, can also be displayed on thedisplay 704 for the drill operator. Thecomputer system 702 determines the location of the identifiedutility 4, or object, to be avoided, such as depth and/or size in real time as thedrill head 20 is cutting through thedirt 6 under theroadway 2. Thecomputer system 702 determines the distance between thedrill head 20 and the buriedutility 4 in real time as thedrill head 20 is cutting through thedirt 6 under theroadway 2, which is shown at 705. Auser interface device 120 can be coupled to thecomputer system 702 for the operator to control the under-roadway detection unit 700. - When the
computer system 702 identifies a buriedutility 4 in the path of thedrill head 20, thecomputer system 702 can send an alert 714 to the drill operator, change the direction of thedrill head 20 and/or stop forward movement of thedrill head 20. In this manner, there is added protection against undesirable cutting of buriedutilities 4 by thedrill head 20.FIG. 5B shows and example of where thedrill head 20 changed direction at 28 to avoid damaging the buriedutility 4. -
Drill control systems 716 for controlling forward movement and/or directional control of thedrill head 20 are now well known. Thecomputer system 702 is connected to thedrill control system 716 to override control of thedrill head 20 when necessary to avoid damaging a buriedutility 4. For example, forward movement of thedrill head 20 can be automatically stopped or the direction changed by thedrill control system 716 at aset distance 705, such as from 2-24 inches, preferably 4-12 inches. - The under-
roadway detection unit 700, when used for horizontal drilling, must be moved along with the movement of thedrill head 20 so that the ground in front of thedrill head 20 is continuously monitored in real time to detect buriedutilities 4 in the path of thedrill head 20. The distance in front of the movingdrill head 20 will be determined by the type of under-roadway detection unit 700 utilized. In general, the under-roadway detection unit 700 can be from 1 to 6 feet, preferably 2 to 5 feet, in front of thedrill head 20. The under-roadway detection unit 700 preferably detects the buriedutility 4 at least 1 foot, preferably at least 2 feet, in front of the movingdrill head 20 in real time. - The system can automatically mark the surface of the
roadway 2 where a buriedutility 4 was identified, such as by using paint. The system can also upload locations of the buriedutilities 4 to a city database to update the city database for locations of the buriedutilities 4. - The under-
roadway detection unit 700 can be connected directly to thecomputer system 702 by wireless and/or wired connection, and/or indirectly by anetwork 140. Additional attachments can be connected to thecomputer system 702 as desired. Examples of additional attachments are shown inFIG. 5A . The connections between the additional attachments can be wired and/or wireless directly and/or indirectly by thenetwork 140. Examples of additional attachments includeuser interface devices 120 and/or aserver 150.FIG. 5B illustrates an optical fiber and/or innerduct/microduct 5 installed in thehole 26.FIG. 5C illustrates anew utility 9 installed in thehole 26. - With the present method and system, as described in the flow diagram of
FIGS. 6B and 6D , the location of buriedutilities 4 can be accurately determined in real time, thehorizontal hole 26 drilled in a manner that avoids thedrill head 20 damaging the buriedutilities 4, and the optical fiber and/or innerduct/microduct 5 ornew utility 9 can be installed in thehole 26. The drilling information can be uploaded in real time to a central database for use by the city, managers, traffic controllers, supervisors, and any others as desired. In this manner, the actual location of buried utilities can be more precisely mapped and stored in city records. - The
computer system 702 can comprise a global positioning device or other positioning device to map the location of the buriedutilities 4 detected by the under-roadway detection unit 700, and the buried optical fiber and/or innerduct/microduct 5 ornew utility 9. - The
computer system 702 can be connected to anetwork 140 for transmitting drilling data to theserver 150 connected to thenetwork 140 and/oruser interface devices 120 connected to thenetwork 140. The drilling data can include, for example, the measurements of thehorizontal hole 26, video of thehole 26, location of theholes 26, location of the buriedutilities 4 detected by the under-roadway detection unit 700, location of the buried optical fiber and/or innerduct/microduct, and any other information as desired, in real time. The drilling data can also be stored on thecomputer system 702, or by any other means, such as USB, flash drives, etc., for later uploading or accessing. - Examples of suitable commercially available horizontal drills include those sold by HDD Tooling, Vermeer, XCMG, and others.
- On 19 Nov. 2020, one of my crews struck a buried gas line while installing optical fiber. The gas line The Gas line was mismarked by approximately twenty-one (21) inches and buried approximately six (6) inches deep. 911 and 811 were contacted. This type of accident happens far too often and the chances of this type of accident happening can be greatly reduced using the present invention. The following information is the ticket:
-
- 811 Ticket #2082405236 (11/19/2020)
- Dig Up Tkt #2082843411
- When did it happen: 3:00 PM
- Impact to residents: 2
- Evacuation?: No
- Main line: No
- Service line: Yes
- Scope of work: Microtrenching—2213 Rountree Dr.
- Positive Locate: Mismarked
- Reason for strike: Mismarked by 21″
- Repair status: Gas has been contained; TGS On Site
- ConEx Ticket Number: 174074741
-
-
- 2 Roadway
- 3 Access hole
- 4 Buried utility
- 5 Optical fiber, innerduct, microduct
- 6 Dirt
- 7 Fill
- 9 New utility
- 12 Microtrench
- 14 Microtrencher
- 15 Microtrencher blade
- 18 Drilling Device
- 20 Drill head
- 22 Vertical drilling device
- 24 Horizontal drilling device
- 26 Horizontal Hole
- 27 Saw blade
- 28 Change in direction
- 32 Motor
- 40 Debris containment shroud
- 44 Hollow chamber
- 48 Vacuum hose
- 50 Source of vacuum
- 52 Vacuum storage container
- 120 User interface device
- 140 Network
- 150 Server
- 700 Under-Roadway Detection Unit
- 702 Computer System
- 704 Display
- 705 Distance between buried
utility 4 anddrill head 20 during horizontal cutting - 706 Distance between buried
utility 4 anddrill head 20 during vertical cutting - 707 Distance between buried
utility 4 androadway 2 - 714 Alert to Drill Operator
- 716 Drill control system
- It is to be understood that the foregoing illustrative embodiments have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the invention. Words used herein are words of description and illustration, rather than words of limitation. In addition, the advantages and objectives described herein may not be realized by each and every embodiment practicing the present invention. Further, although the invention has been described herein with reference to particular structure, steps and/or embodiments, the invention is not intended to be limited to the particulars disclosed herein. Rather, the invention extends to all functionally equivalent structures, processes and uses, such as are within the scope of the appended claims. Those skilled in the art, having the benefit of the teachings of this specification, may affect numerous modifications thereto and changes may be made without departing from the scope and spirit of the invention. While the invention has been described to provide an access hole over a buried utility, the invention can be utilized wherever an access hole in the roadway is required.
Claims (20)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/542,596 US20220171149A1 (en) | 2020-11-30 | 2021-12-06 | Roadway access hole cutter having a utility avoidance safety device, method of cutting a hole in a roadway, method of cutting a horizontal hole under a roadway |
| US17/713,361 US11815728B2 (en) | 2020-11-30 | 2022-04-05 | Roadway access hole cutter and method of cutting a square or rectangular roadway access hole |
| US18/376,853 US20240027721A1 (en) | 2020-11-30 | 2023-10-05 | Roadway access hole cutter and method of cutting a square or rectangular roadway access hole |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202063118993P | 2020-11-30 | 2020-11-30 | |
| US17/197,356 US11215781B1 (en) | 2020-11-30 | 2021-03-10 | Roadway access hole cutter having a utility avoidance safety device, method of cutting a hole in a roadway, method of cutting a horizontal hole under a roadway |
| US17/542,596 US20220171149A1 (en) | 2020-11-30 | 2021-12-06 | Roadway access hole cutter having a utility avoidance safety device, method of cutting a hole in a roadway, method of cutting a horizontal hole under a roadway |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/197,356 Continuation US11215781B1 (en) | 2020-11-30 | 2021-03-10 | Roadway access hole cutter having a utility avoidance safety device, method of cutting a hole in a roadway, method of cutting a horizontal hole under a roadway |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/713,361 Continuation-In-Part US11815728B2 (en) | 2020-11-30 | 2022-04-05 | Roadway access hole cutter and method of cutting a square or rectangular roadway access hole |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20220171149A1 true US20220171149A1 (en) | 2022-06-02 |
Family
ID=79169558
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/197,356 Active US11215781B1 (en) | 2020-11-30 | 2021-03-10 | Roadway access hole cutter having a utility avoidance safety device, method of cutting a hole in a roadway, method of cutting a horizontal hole under a roadway |
| US17/542,596 Abandoned US20220171149A1 (en) | 2020-11-30 | 2021-12-06 | Roadway access hole cutter having a utility avoidance safety device, method of cutting a hole in a roadway, method of cutting a horizontal hole under a roadway |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/197,356 Active US11215781B1 (en) | 2020-11-30 | 2021-03-10 | Roadway access hole cutter having a utility avoidance safety device, method of cutting a hole in a roadway, method of cutting a horizontal hole under a roadway |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US11215781B1 (en) |
Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4434861A (en) * | 1981-01-07 | 1984-03-06 | Howeth David Franklin | Dust conveying and collecting system and method |
| US4905008A (en) * | 1986-11-08 | 1990-02-27 | Osaka Gas Co., Ltd. | Radar type underground searching apparatus |
| US5264795A (en) * | 1990-06-18 | 1993-11-23 | The Charles Machine Works, Inc. | System transmitting and receiving digital and analog information for use in locating concealed conductors |
| US5337002A (en) * | 1991-03-01 | 1994-08-09 | Mercer John E | Locator device for continuously locating a dipole magnetic field transmitter and its method of operation |
| US5720354A (en) * | 1996-01-11 | 1998-02-24 | Vermeer Manufacturing Company | Trenchless underground boring system with boring tool location |
| US20020005297A1 (en) * | 1999-09-24 | 2002-01-17 | Vermeer Manufacturing Company | Underground boring machine employing solid-state inertial navigation control system and method |
| US6871712B2 (en) * | 2001-07-18 | 2005-03-29 | The Charles Machine Works, Inc. | Remote control for a drilling machine |
| US20090183917A1 (en) * | 2005-11-16 | 2009-07-23 | The Charles Machine Works, Inc. | System and apparatus for locating and avoiding an underground obstacle |
| US20090185865A1 (en) * | 2005-11-16 | 2009-07-23 | The Charles Machine Works, Inc. | Soft excavation potholing method and apparatus |
| US20100012377A1 (en) * | 2005-11-16 | 2010-01-21 | The Charles Machine Works, Inc. | System And Apparatus For Locating And Avoiding An Underground Obstacle |
| US20140262509A1 (en) * | 2013-03-15 | 2014-09-18 | Vermeer Corporation | Imaging underground objects using spatial sampling customization |
| US9052394B2 (en) * | 2009-10-06 | 2015-06-09 | Louisiana Tech University Research Foundation | Method and apparatus for detecting buried objects |
| US9703002B1 (en) * | 2003-10-04 | 2017-07-11 | SeeScan, Inc. | Utility locator systems and methods |
| US20180252834A1 (en) * | 2006-07-06 | 2018-09-06 | SeeScan, Inc. | Wireless buried pipe and cable locating systems |
| US20180274204A1 (en) * | 2014-11-06 | 2018-09-27 | Vac Group Operations Pty Ltd. | Process For Exposing Underground Utilities |
| US20190033550A1 (en) * | 2017-07-28 | 2019-01-31 | Traxyl, Inc. | Method and apparatus for deployment of a communication line onto a surface such as a roadway or pathway |
Family Cites Families (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4744693A (en) | 1985-01-03 | 1988-05-17 | Crs Sirrine, Inc. | Pot hole filler material and method of filling same |
| US4668548A (en) | 1985-12-31 | 1987-05-26 | Ribbon Technology Court | Integrally-anchored fiber-reinforced concrete overlays and surfacings and method of making same |
| FR2600689B1 (en) | 1986-06-26 | 1992-03-13 | Rivard Ets | MECHANIZED ASSEMBLY FOR TRUNKING A TRUCK AND LAYING LONG OBJECTS |
| US5244304A (en) | 1991-03-13 | 1993-09-14 | American Stone-Mix, Inc. | Cement based patching composition for asphalt pavement |
| GB9409431D0 (en) * | 1994-05-11 | 1994-06-29 | British Gas Plc | Method and apparatus for locating a buried element |
| US5913638A (en) | 1998-02-04 | 1999-06-22 | Lansdale; Michael Lee | Sand channel trenching and pipe laying apparatus |
| AU2001236449A1 (en) | 2000-01-12 | 2001-07-24 | The Charles Machine Works, Inc. | System for automatically drilling and backreaming boreholes |
| CA2348062A1 (en) | 2000-05-18 | 2001-11-18 | Sierra Pacific Resources, Incorporated | Method for installing a fiber optic conduit system |
| US6437726B1 (en) * | 2000-11-30 | 2002-08-20 | Caterpillar Inc. | Method and apparatus for determining the location of underground objects during a digging operation |
| US20040149174A1 (en) | 2003-02-05 | 2004-08-05 | Mbt Holding Ag | Accelerating admixture for concrete |
| US6990279B2 (en) | 2003-08-14 | 2006-01-24 | Commscope Properties, Llc | Buried fiber optic system including a sub-distribution system and related methods |
| US7443154B1 (en) * | 2003-10-04 | 2008-10-28 | Seektech, Inc. | Multi-sensor mapping omnidirectional sonde and line locator |
| US7124837B2 (en) | 2004-02-26 | 2006-10-24 | The Boeing Company | Pneumatic motor trigger actuator |
| US7914618B1 (en) | 2004-07-28 | 2011-03-29 | VCNA Prairie IP, Inc. | Flowable cement-based material and methods of manufacturing and using same |
| US7755360B1 (en) * | 2005-10-24 | 2010-07-13 | Seektech, Inc. | Portable locator system with jamming reduction |
| US7516563B2 (en) * | 2006-11-30 | 2009-04-14 | Caterpillar Inc. | Excavation control system providing machine placement recommendation |
| US20100251291A1 (en) | 2009-03-24 | 2010-09-30 | Pino Jr Angelo J | System, Method and Computer Program Product for Processing Video Data |
| BR112012006304A2 (en) | 2009-09-23 | 2021-11-03 | Quanta Associates Lp | Method and apparatus for constructing an in situ underground cable line through an existing roof surface |
| US9435185B2 (en) | 2009-12-24 | 2016-09-06 | Wright's Well Control Services, Llc | Subsea technique for promoting fluid flow |
| AT509086B1 (en) | 2010-01-21 | 2011-06-15 | Pichler Jan Michael | METHOD AND DEVICE FOR INTRODUCING A TUBE FOR OPTICAL CABLES IN A FIXED INSTALLATION ROUND |
| US8694258B2 (en) * | 2010-02-14 | 2014-04-08 | Vermeer Manufacturing Company | Derivative imaging for subsurface object detection |
| CN104335065B (en) * | 2012-03-12 | 2017-08-25 | 弗米尔公司 | Deviation frequency homodyne GPR |
| US9890082B2 (en) | 2012-04-27 | 2018-02-13 | United States Gypsum Company | Dimensionally stable geopolymer composition and method |
| US20150125218A1 (en) | 2012-05-10 | 2015-05-07 | Dellcron Ab | Machine for sawing trenches and placing ducts/cables |
| US9485468B2 (en) | 2013-01-08 | 2016-11-01 | Angelo J. Pino, JR. | System, method and device for providing communications |
| WO2016088083A1 (en) | 2014-12-03 | 2016-06-09 | Universidad Nacional De Colombia | Cement formulation based on aluminium sulphate with a specific proportion of ye'elimite systems |
| US20160376767A1 (en) | 2015-06-24 | 2016-12-29 | Certusview Technologies, Llc | Methods, systems, and apparatuses for variable-depth microtrenching |
| US20190369283A1 (en) * | 2016-09-09 | 2019-12-05 | Vermeer Corporation | Cross-bore detection during horizontal directional drilling |
| US20180156357A1 (en) | 2016-10-18 | 2018-06-07 | Corbel Communications Industries, Llc | Buried device identifier fill and method of identifying a burried device using the device identifier fill |
| US10851517B2 (en) | 2016-10-18 | 2020-12-01 | Cciip Llc | Multifunctional reel carrier-vac-spoil material handling container and method of trenching and laying cable or duct |
| US10571045B2 (en) | 2016-10-18 | 2020-02-25 | Cciip Llc | Method of filling and sealing a microtrench and a sealed microtrench |
| US10571047B2 (en) | 2016-10-18 | 2020-02-25 | Cciip Llc | Microtrencher having a utility avoidance safety device and method of microtrenching |
-
2021
- 2021-03-10 US US17/197,356 patent/US11215781B1/en active Active
- 2021-12-06 US US17/542,596 patent/US20220171149A1/en not_active Abandoned
Patent Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4434861A (en) * | 1981-01-07 | 1984-03-06 | Howeth David Franklin | Dust conveying and collecting system and method |
| US4905008A (en) * | 1986-11-08 | 1990-02-27 | Osaka Gas Co., Ltd. | Radar type underground searching apparatus |
| US5264795A (en) * | 1990-06-18 | 1993-11-23 | The Charles Machine Works, Inc. | System transmitting and receiving digital and analog information for use in locating concealed conductors |
| US5337002A (en) * | 1991-03-01 | 1994-08-09 | Mercer John E | Locator device for continuously locating a dipole magnetic field transmitter and its method of operation |
| US5720354A (en) * | 1996-01-11 | 1998-02-24 | Vermeer Manufacturing Company | Trenchless underground boring system with boring tool location |
| US20020005297A1 (en) * | 1999-09-24 | 2002-01-17 | Vermeer Manufacturing Company | Underground boring machine employing solid-state inertial navigation control system and method |
| US6871712B2 (en) * | 2001-07-18 | 2005-03-29 | The Charles Machine Works, Inc. | Remote control for a drilling machine |
| US9703002B1 (en) * | 2003-10-04 | 2017-07-11 | SeeScan, Inc. | Utility locator systems and methods |
| US20090185865A1 (en) * | 2005-11-16 | 2009-07-23 | The Charles Machine Works, Inc. | Soft excavation potholing method and apparatus |
| US20100012377A1 (en) * | 2005-11-16 | 2010-01-21 | The Charles Machine Works, Inc. | System And Apparatus For Locating And Avoiding An Underground Obstacle |
| US20090183917A1 (en) * | 2005-11-16 | 2009-07-23 | The Charles Machine Works, Inc. | System and apparatus for locating and avoiding an underground obstacle |
| US20180252834A1 (en) * | 2006-07-06 | 2018-09-06 | SeeScan, Inc. | Wireless buried pipe and cable locating systems |
| US9052394B2 (en) * | 2009-10-06 | 2015-06-09 | Louisiana Tech University Research Foundation | Method and apparatus for detecting buried objects |
| US20140262509A1 (en) * | 2013-03-15 | 2014-09-18 | Vermeer Corporation | Imaging underground objects using spatial sampling customization |
| US20180274204A1 (en) * | 2014-11-06 | 2018-09-27 | Vac Group Operations Pty Ltd. | Process For Exposing Underground Utilities |
| US20190033550A1 (en) * | 2017-07-28 | 2019-01-31 | Traxyl, Inc. | Method and apparatus for deployment of a communication line onto a surface such as a roadway or pathway |
Also Published As
| Publication number | Publication date |
|---|---|
| US11215781B1 (en) | 2022-01-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10876654B2 (en) | Microtrencher having a utility avoidance safety device and method of microtrenching | |
| Tanoli et al. | Damage Prevention for underground utilities using machine guidance | |
| JP4800497B2 (en) | Method and apparatus for displaying objects on earthwork sites | |
| US9292813B2 (en) | System and method for collecting and organizing information related to utility assets | |
| JP4286539B2 (en) | Method and apparatus for determining the position of an object in the ground during excavation work | |
| US20150226004A1 (en) | Technique to verify underground targets utilizing virtual reality imaging and controlled excavation | |
| US20160177540A1 (en) | System and method for utility maintenance | |
| CN114266099B (en) | Intelligent guiding and safety early warning method for road surface excavation operation coupled with underground pipe network BIM model | |
| KR101643305B1 (en) | Detection system for destroyed underground utilities and method thereof | |
| US11761166B2 (en) | Roadway access hole drill and a method of microtrenching using the drill to open an access hole in the roadway | |
| AU2021201302A1 (en) | Process for exposing underground utilities | |
| WO2018049024A1 (en) | Cross-bore detection during horizontal directional drilling | |
| CN117111175A (en) | Comprehensive geological forecasting method for TBM tunnel | |
| CN110241885A (en) | A kind of anti-backbreak intelligent alarm system and excavation method based on radar real-time detection | |
| US11215781B1 (en) | Roadway access hole cutter having a utility avoidance safety device, method of cutting a hole in a roadway, method of cutting a horizontal hole under a roadway | |
| US11815728B2 (en) | Roadway access hole cutter and method of cutting a square or rectangular roadway access hole | |
| CN110241870A (en) | Layout method of foundation pit excavation monitoring system and foundation pit excavation monitoring system | |
| CN113107368A (en) | Full-casing geological exploration construction method | |
| KR102504213B1 (en) | System and method for evaluating of horizontal directional drilling | |
| JP2022136946A (en) | Excavation method and device of buried object | |
| KR102546808B1 (en) | Horizontal directional drilling system and drilling method with real-time collision avoidance function | |
| Bernold | Automatic as-built generation with utility trenchers | |
| NL2015191B1 (en) | A device for cutting a volume of material out of a piece of ground and a method wherein said device can be used. | |
| CN114923031A (en) | Trenchless detection method for ultra-buried depth complex pipeline in pipe jacking construction | |
| CA2440876C (en) | Method of forming a trenchless flowline |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CCIIP LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PINO, ANGELO J., JR;REEL/FRAME:058291/0674 Effective date: 20210310 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
| STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |