US20220099020A1 - Hydrogen fuel vaporiser - Google Patents
Hydrogen fuel vaporiser Download PDFInfo
- Publication number
- US20220099020A1 US20220099020A1 US17/487,575 US202117487575A US2022099020A1 US 20220099020 A1 US20220099020 A1 US 20220099020A1 US 202117487575 A US202117487575 A US 202117487575A US 2022099020 A1 US2022099020 A1 US 2022099020A1
- Authority
- US
- United States
- Prior art keywords
- fuel
- hydrogen
- hydrogen fuel
- burner
- conduit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/283—Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/224—Heating fuel before feeding to the burner
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/22—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/04—Air intakes for gas-turbine plants or jet-propulsion plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/14—Cooling of plants of fluids in the plant, e.g. lubricant or fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/14—Cooling of plants of fluids in the plant, e.g. lubricant or fuel
- F02C7/141—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
- F02C7/143—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/16—Cooling of plants characterised by cooling medium
- F02C7/18—Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/222—Fuel flow conduits, e.g. manifolds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/32—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K5/00—Feeding or distributing other fuel to combustion apparatus
- F23K5/02—Liquid fuel
- F23K5/14—Details thereof
- F23K5/22—Vaporising devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/50—Combustion chambers comprising an annular flame tube within an annular casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/40—Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/35—Combustors or associated equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/213—Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/9901—Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00002—Gas turbine combustors adapted for fuels having low heating value [LHV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
- Y02T50/678—Aviation using fuels of non-fossil origin
Definitions
- This disclosure relates to hydrogen fuel vaporisers for hydrogen-fueled aero gas turbine engines.
- the invention is directed towards hydrogen fuel vaporisers for vaporising cryogenically-stored hydrogen fuel prior to injection into gas turbine engines, gas turbine engines incorporating such gas turbines, and methods of operating such gas turbines.
- one such hydrogen fuel vaporiser comprises:
- a fuel offtake configured and arranged to divert a portion of hydrogen fuel from a main fuel conduit
- a burner configured and arranged to burn the portion of hydrogen fuel diverted from the main fuel conduit
- a heat exchanger configured and arranged to transfer heat produced by the burner to hydrogen fuel in the main fuel conduit.
- the burner comprises the heat exchanger. In another embodiment, the burner and the heat exchanger are separate units.
- the heat exchanger comprises a first pass for hydrogen fuel and a second pass for exhaust from the burner.
- the first pass is the main fuel conduit, and the second pass surrounds the main fuel conduit.
- the first pass comprises a plurality of fuel passages for hydrogen fuel received from the main fuel conduit
- the second pass comprises a plurality of exhaust passages for exhaust received from the burner.
- the hydrogen fuel vaporiser further comprises a pre-mixer configured and arranged to mix the portion of hydrogen fuel diverted from the main fuel conduit and a supply of air prior to admission into the burner.
- the hydrogen fuel vaporiser further comprises a pre-heater for initial heating of liquid hydrogen when insufficient heat is available to boil the portion of hydrogen fuel diverted from the main fuel conduit.
- the pre-heater comprises an electric heating element.
- the pre-heater comprises a boil volume.
- a hydrogen-fueled gas turbine engine comprising:
- a fuel pump configured to pump cryogenically-stored hydrogen fuel through a main fuel conduit
- a hydrogen fuel vaporiser having a fuel offtake to divert a portion of hydrogen fuel from a main fuel conduit, a burner to burn the portion of hydrogen fuel diverted from the main fuel conduit, and a heat exchanger to transfer heat produced by the burner to hydrogen fuel in the main fuel conduit, thereby vaporising it;
- a fuel injection system configured to receive vaporised hydrogen fuel and inject it into a combustor.
- the hydrogen fuel vaporiser further comprises a pre-mixer configured to mix air with the portion of hydrogen fuel diverted from the main fuel conduit prior to admission into the burner.
- the gas turbine engine comprises:
- a bleed air system configured to bleed compressed air from the compressor and supply it to the burner to burn with the portion of hydrogen fuel diverted from the main fuel conduit.
- the gas turbine engine further comprises a fuel recuperator between the hydrogen fuel vaporiser and the fuel injection system for heating the hydrogen fuel by exhaust from the gas turbine engine.
- the gas turbine engine further comprises a fuel turbine for receiving heated hydrogen fuel from the recuperator to drive a load.
- a method of delivering cryogenically-stored hydrogen fuel to a gas turbine engine comprising:
- the method further comprises pre-heating the portion of hydrogen fuel diverted from the main fuel conduit to boil it prior to the burning step, optionally wherein the pre-heating comprises boiling it with an electrical heating element, or in a boil volume.
- the method further comprises pre-mixing air with the portion of hydrogen fuel diverted from the main fuel conduit prior to the burning step.
- the method further comprises bleeding compressed air from a compressor of the gas turbine engine and supplying the compressed air to the burner to burn with the portion of hydrogen fuel diverted from the main fuel conduit.
- the method further comprises recuperating exhaust heat from the gas turbine into the hydrogen fuel after the vaporising step and before the injecting step.
- FIG. 1 shows a hydrogen-fueled airliner comprising hydrogen-fueled turbofan engines
- FIG. 2 is a block diagram of one of the engines of FIG. 1 ;
- FIG. 3 shows a vaporiser of engine of FIG. 2 ;
- FIG. 4 shows a complex cycle embodiment of the engine of FIG. 2 ;
- FIG. 5 shows another complex cycle embodiment of the engine of FIG. 2 ;
- FIG. 6 shows another complex cycle embodiment of the engine of FIG. 2 .
- FIG. 1 A hydrogen-fueled airliner is illustrated in FIG. 1 .
- the airliner 101 is of substantially conventional tube-and-wing twinjet configuration with a central fuselage 102 and substantially identical underwing-mounted turbofan engines 103 .
- the turbofan engines 103 are geared turbofan engines.
- the hydrogen storage tank 104 is a cryogenic hydrogen storage tank and thus stores the hydrogen fuel in a liquid state, in a specific example at 20 kelvin.
- the hydrogen fuel is pressurised to a pressure from around 1 bar to around 3 bar, in a specific example 2 bar.
- FIG. 2 A block diagram of one of the turbofan engines 103 is shown in FIG. 2 .
- the turbofan engine 103 comprises a core gas turbine 201 .
- the core gas turbine 201 is a simple cycle gas turbine engine.
- complex cycles may be implemented via fuel-cooling of the gas path.
- the core gas turbine 201 comprises, in fluid flow series, a low-pressure compressor 202 , an interstage duct 203 , a high-pressure compressor 204 , a diffuser 205 , a fuel injection system 206 , a combustor 207 , a high-pressure turbine 208 , a low-pressure turbine 209 , and a core nozzle 210 .
- the high-pressure compressor 204 is driven by the high-pressure turbine 208 via a first shaft 211
- the low-pressure compressor 203 is driven by the low-pressure turbine 209 via a second shaft 212 .
- the core gas turbine could be of three-shaft configuration.
- the turbofan engines 103 are geared turbofan engines.
- the low-pressure turbine 209 drives a fan 213 via a reduction gearbox 214 .
- the reduction gearbox receives input drive from the second shaft 212 and provides output drive to the fan 213 via a fan shaft 215 .
- the reduction gearbox 214 is an epicyclic reduction gearbox. In a specific embodiment, it is a planetary reduction gearbox. Alternatively, it may be a star reduction gearbox, or a compound epicyclic reduction gearbox. As a further alternative, the reduction gearbox 214 could be a layshaft-type reduction gearbox or any other type of reduction gearbox. It will also be appreciated that the principles disclosed herein may be applied to a direct-drive type turbofan engine, i.e. in which there is no reduction gearbox between the low-pressure turbine and the fan.
- hydrogen fuel is pumped from the hydrogen storage tank 104 by a pump 216 and into a main fuel conduit 217 which ultimately delivers fuel to the fuel injection system 206 .
- the pump 216 is high-speed centrifugal pump. In a specific embodiment, it is configured to operate at 40000 rpm or more.
- the centrifugal pump comprises an axial inducer to minimise the required inlet pressure and to accommodate multiphase flow in addition to the centrifugal impeller for developing the majority of the required pressure rise.
- a piston-type pump could be used.
- the pump 216 is located inside the hydrogen storage tank 104 . In this way leakage of hydrogen fuel past pump seals etc. is accommodated.
- the pump 216 is driven by a fuel turbine, as will be described with reference to FIG. 5 . In another embodiment, the pump 216 is driven via an electrical machine. In an embodiment, the drive means for the pump 216 are also located in the hydrogen storage tank 104 .
- the injection temperature is from 250 to 300 kelvin, for example 250 kelvin.
- a vaporiser 218 is therefore provided for heating of the hydrogen fuel to implement a phase change. In the present embodiment, this takes place between the pump 216 and the fuel injection system 206 . In an embodiment, the vaporiser 218 is configured to raise the temperature of the hydrogen fuel to the required injection temperature.
- the vaporiser 218 is configured to raise the temperature of the hydrogen fuel to an intermediate temperature less than the injection temperature. This could for example be from 60 to 200 kelvin, for example 150 kelvin. Further heating may subsequently be achieved by implementing a complex cycle configuration, for example fuel recuperation, intercooling, etc. as will be described further with reference to FIGS. 4 to 6 .
- FIG. 3 An example configuration of the vaporiser 218 is shown in FIG. 3 .
- the vaporiser 218 comprises an offtake 301 to divert a portion of the hydrogen fuel from the main fuel conduit 217 .
- the amount of hydrogen bled from the main fuel conduit 217 is controlled by a valve 302 .
- the valve 302 is controlled actively, for example in response to the temperature of the fuel at the fuel injection system 206 .
- the valve 302 may be passively controlled. In operation, of the order of around 1 percent of the hydrogen fuel flow through the main fuel conduit 217 is bled for use in the vaporiser 218 .
- the vaporiser 218 vaporises the hydrogen fuel in the main fuel conduit 217 by combustion of the bled fuel in a burner 303 located in heat exchange relationship with the main fuel conduit 217 .
- the burner 303 is concentric around the main fuel conduit 217 and hence the burner 303 itself comprises the heat exchanger for transferring heat to hydrogen fuel in the main fuel conduit 217 .
- the burner 303 could be positioned separately from the main fuel conduit 217 and exhaust gases therefrom directed through a dedicated heat exchanger unit.
- Such a unit may comprise a first pass for the flow of hot exhaust products from the burner 303 , and a second pass for the main fuel flow which then vaporises as it flows through the heat exchanger unit.
- air for combustion with the bled hydrogen fuel is bled from the high-pressure compressor 204 .
- it may be bled from the low-pressure compressor 202 .
- the air for combustion could be obtained from any other suitable location.
- the air and the bled hydrogen fuel are mixed in a pre-mixer 304 prior to supply to the burner 303 , although in alternative embodiments it may be directly co-injected into the burner with the hydrogen fuel instead.
- Combustion products from the burner 303 are, in an embodiment, exhausted into the bypass duct of the turbofan engine 103 . Alternatively, they may be exhausted outside the nacelle.
- the products of combustion from the burner 303 are not mixed with the fuel in the main fuel conduit 217 .
- the vaporiser 218 therefore differs from a pre-burner system as used in staged combustion cycle rocket engines.
- the vaporiser 218 comprises a pre-heater 305 to ensure that the bled hydrogen fuel boils prior to mixing with air in the pre-mixer 304 .
- the pre-heater 305 comprises an electric heating element, for example an inductive coil.
- the pre-heater 305 could be simply configured as a boil volume, in which the ambient conditions therein contain sufficient enthalpy to boil the initial flow of bled hydrogen fuel prior to delivery to the pre-mixer 304 and the burner 303 .
- the fuel delivery system 201 and fuel injection system 206 may be used in an embodiment of the core gas turbine 201 implementing a simple cycle as described with reference to FIG. 2 , possibly with fuel cooling of engine or gearbox oil or cooling air.
- the core gas turbine engine 201 may implement a complex cycle.
- FIG. 4 A first embodiment of such a complex cycle is shown in FIG. 4 with like reference numerals used for matching features.
- the turbofan engine 103 and core gas turbine 201 are unchanged from their arrangement in FIG. 2 , save for the addition of a recuperator 401 located between the low-pressure turbine 209 and core nozzle 210 .
- the recuperator 401 forms part of the overall fuel delivery system and is operable to heat hydrogen fuel by the exhaust stream of the core gas turbine 201 . In this way, less fuel may be required to heat the hydrogen fuel to the injection temperature, increasing cycle efficiency.
- the recuperator 401 is a spiral-wound recuperator, which reduces the likelihood of fracture due to thermal expansion and contraction.
- FIG. 5 Another embodiment of a complex cycle is shown in FIG. 5 , which builds on the cycle of FIG. 4 with the inclusion of a fuel turbine 501 . It will be appreciated that substantial energy recovery may be achieved from the exhaust stream if it is accepted that less thrust will be developed by the core nozzle 210 . Thus, it is possible to heat the hydrogen fuel beyond the required fuel injection temperature and to recover work in the fuel turbine 501 , which may be used to drive a load 502 .
- the load 502 is an electrical generator. Alternatively, the load 502 could be the pump 216 .
- the electrical generator powers the fuel pump 216 .
- the load could be the second shaft 212 , with an appropriate drive mechanism being provided.
- the fuel turbine 501 augments the low-pressure turbine 209 . It will be appreciated that other engine loads such as oil pumps etc. could also be driven by the fuel turbine 501 .
- FIG. 10 it is possible to provide intercooling and/or twin-pass recuperation.
- an intercooler 601 is provided in the interstage duct 203 between the low-pressure compressor 202 and the high-pressure compressor 204 for cooling low-pressure compressor discharge air by the hydrogen fuel. In this way, the amount of compression work required to be performed by the high-pressure compressor 204 is reduced.
- a second recuperator 602 is provided between the low-pressure turbine 209 and the recuperator 401 for further recuperative heating of the hydrogen fuel.
- hydrogen fuel is first heated by the recuperator 401 to a temperature less than the low-pressure compressor 202 discharge air, which heats it further in the intercooler 601 . Further heating occurs in the second recuperator 602 , which has an inlet temperature higher than the recuperator 401 . In this way, the temperature difference between the hydrogen fuel and the core gas turbine exhaust temperature is maximised in each recuperator. It will be appreciated that the fuel turbine 501 may be incorporated in this cycle, for example between the recuperator 701 and the intercooler 601 .
- a sequential combustion arrangement may be implemented to any of the aforesaid cycles to facilitate inter-turbine reheat.
- reheat of this type comprises additional stages of combustion to raise temperatures back to a maximum cycle temperature after a first stage of expansion. Along with intercooling, this moves the overall engine cycle closer to an Ericsson cycle, improving thermal efficiency substantially.
- the high-pressure turbine 208 is a multi-stage turbine and a reheat combustor may be stationed between two of the stages of the high-pressure turbine 208 .
- the reheat combustor could be stationed between the high-pressure turbine 208 and the low-pressure turbine 209 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
- This application claims priority from United Kingdom Patent Application Nos 20 15 452.2, 20 15 453.0, and 20 15 454.8, all filed Sep. 30, 2020, and United Kingdom Patent Application No 20 17 014.8 filed Oct. 27, 2020, each of which is incorporated herein by reference in its entirety.
- This disclosure relates to hydrogen fuel vaporisers for hydrogen-fueled aero gas turbine engines.
- In order to limit emissions of carbon dioxide, use of hydrogen as an alternative to hydrocarbon fuel in gas turbine engines has historically only been practical in land-based installations. Such engines are typically supplied with hydrogen derived from natural gas via concurrent steam methane reformation, which hydrogen is injected into large-volume series staged dry low NOx burners. This type of burner is not suitable for use in an aero engine primarily due to its size and the difficulties in maintaining stable operation during transient manoeuvres.
- Experimental programmes have been conducted to develop aero engines operable to be fueled with hydrogen, however these have typically been high-Mach afterburning turbojets or expander cycles and thus not practical for use on civil airliners operating in the Mach 0.8 to 0.85 regime.
- There is therefore a need for technologies for combustion of hydrogen in aero gas turbine installations, in particular around the overall engine cycle to for example minimise fuel consumption, the fuel delivery system to for example meter fuel accurately, and the fuel injection system to for example minimise emissions.
- The invention is directed towards hydrogen fuel vaporisers for vaporising cryogenically-stored hydrogen fuel prior to injection into gas turbine engines, gas turbine engines incorporating such gas turbines, and methods of operating such gas turbines.
- In an aspect, one such hydrogen fuel vaporiser comprises:
- a fuel offtake configured and arranged to divert a portion of hydrogen fuel from a main fuel conduit;
- a burner configured and arranged to burn the portion of hydrogen fuel diverted from the main fuel conduit; and
- a heat exchanger configured and arranged to transfer heat produced by the burner to hydrogen fuel in the main fuel conduit.
- In an embodiment, the burner comprises the heat exchanger. In another embodiment, the burner and the heat exchanger are separate units.
- In an embodiment, the heat exchanger comprises a first pass for hydrogen fuel and a second pass for exhaust from the burner.
- In an embodiment, the first pass is the main fuel conduit, and the second pass surrounds the main fuel conduit.
- In another embodiment, the first pass comprises a plurality of fuel passages for hydrogen fuel received from the main fuel conduit, and the second pass comprises a plurality of exhaust passages for exhaust received from the burner.
- In an embodiment, the hydrogen fuel vaporiser further comprises a pre-mixer configured and arranged to mix the portion of hydrogen fuel diverted from the main fuel conduit and a supply of air prior to admission into the burner.
- In an embodiment, the hydrogen fuel vaporiser further comprises a pre-heater for initial heating of liquid hydrogen when insufficient heat is available to boil the portion of hydrogen fuel diverted from the main fuel conduit.
- In an embodiment, the pre-heater comprises an electric heating element.
- In an embodiment, the pre-heater comprises a boil volume.
- In another aspect, there is provided a hydrogen-fueled gas turbine engine comprising:
- a fuel pump configured to pump cryogenically-stored hydrogen fuel through a main fuel conduit;
- a hydrogen fuel vaporiser having a fuel offtake to divert a portion of hydrogen fuel from a main fuel conduit, a burner to burn the portion of hydrogen fuel diverted from the main fuel conduit, and a heat exchanger to transfer heat produced by the burner to hydrogen fuel in the main fuel conduit, thereby vaporising it; and
- a fuel injection system configured to receive vaporised hydrogen fuel and inject it into a combustor.
- In an embodiment, the hydrogen fuel vaporiser further comprises a pre-mixer configured to mix air with the portion of hydrogen fuel diverted from the main fuel conduit prior to admission into the burner.
- In an embodiment, the gas turbine engine comprises:
- a compressor for compressing inlet air for supply to the combustor; and
- a bleed air system configured to bleed compressed air from the compressor and supply it to the burner to burn with the portion of hydrogen fuel diverted from the main fuel conduit.
- In an embodiment, the gas turbine engine further comprises a fuel recuperator between the hydrogen fuel vaporiser and the fuel injection system for heating the hydrogen fuel by exhaust from the gas turbine engine.
- In an embodiment, the gas turbine engine further comprises a fuel turbine for receiving heated hydrogen fuel from the recuperator to drive a load.
- In another aspect, there is provided a method of delivering cryogenically-stored hydrogen fuel to a gas turbine engine, comprising:
- pumping the hydrogen fuel from a cryogenic storage system through a main fuel conduit;
- diverting a portion of hydrogen fuel from the main fuel conduit;
- burning the portion of hydrogen fuel diverted from the main fuel conduit in a burner;
- vaporising the hydrogen fuel in the main fuel conduit by exchanging heat produced by the burner thereto in a heat exchanger.
- In an embodiment, the method further comprises pre-heating the portion of hydrogen fuel diverted from the main fuel conduit to boil it prior to the burning step, optionally wherein the pre-heating comprises boiling it with an electrical heating element, or in a boil volume.
- In an embodiment, the method further comprises pre-mixing air with the portion of hydrogen fuel diverted from the main fuel conduit prior to the burning step.
- In an embodiment, the method further comprises bleeding compressed air from a compressor of the gas turbine engine and supplying the compressed air to the burner to burn with the portion of hydrogen fuel diverted from the main fuel conduit.
- In an embodiment, the method further comprises recuperating exhaust heat from the gas turbine into the hydrogen fuel after the vaporising step and before the injecting step.
- Embodiments will now be described by way of example only with reference to the accompanying drawings, which are purely schematic and not to scale, and in which:
-
FIG. 1 shows a hydrogen-fueled airliner comprising hydrogen-fueled turbofan engines; -
FIG. 2 is a block diagram of one of the engines ofFIG. 1 ; -
FIG. 3 shows a vaporiser of engine ofFIG. 2 ; -
FIG. 4 shows a complex cycle embodiment of the engine ofFIG. 2 ; -
FIG. 5 shows another complex cycle embodiment of the engine ofFIG. 2 ; -
FIG. 6 shows another complex cycle embodiment of the engine ofFIG. 2 . - A hydrogen-fueled airliner is illustrated in
FIG. 1 . In this example, theairliner 101 is of substantially conventional tube-and-wing twinjet configuration with acentral fuselage 102 and substantially identical underwing-mountedturbofan engines 103. In the present embodiment, theturbofan engines 103 are geared turbofan engines. - A
hydrogen storage tank 104 located in thefuselage 102. In the present embodiment, thehydrogen storage tank 104 is a cryogenic hydrogen storage tank and thus stores the hydrogen fuel in a liquid state, in a specific example at 20 kelvin. In this example, the hydrogen fuel is pressurised to a pressure from around 1 bar to around 3 bar, in a specific example 2 bar. - A block diagram of one of the
turbofan engines 103 is shown inFIG. 2 . - The
turbofan engine 103 comprises acore gas turbine 201. In this embodiment, thecore gas turbine 201 is a simple cycle gas turbine engine. In other embodiments, as will be described with reference toFIGS. 4 to 6 , complex cycles may be implemented via fuel-cooling of the gas path. - The
core gas turbine 201 comprises, in fluid flow series, a low-pressure compressor 202, aninterstage duct 203, a high-pressure compressor 204, adiffuser 205, afuel injection system 206, acombustor 207, a high-pressure turbine 208, a low-pressure turbine 209, and acore nozzle 210. The high-pressure compressor 204 is driven by the high-pressure turbine 208 via afirst shaft 211, and the low-pressure compressor 203 is driven by the low-pressure turbine 209 via asecond shaft 212. It will be appreciated that in alternative embodiments, the core gas turbine could be of three-shaft configuration. - As described previously, in the present embodiment, the
turbofan engines 103 are geared turbofan engines. Thus in operation the low-pressure turbine 209 drives afan 213 via areduction gearbox 214. The reduction gearbox receives input drive from thesecond shaft 212 and provides output drive to thefan 213 via afan shaft 215. In an embodiment, thereduction gearbox 214 is an epicyclic reduction gearbox. In a specific embodiment, it is a planetary reduction gearbox. Alternatively, it may be a star reduction gearbox, or a compound epicyclic reduction gearbox. As a further alternative, thereduction gearbox 214 could be a layshaft-type reduction gearbox or any other type of reduction gearbox. It will also be appreciated that the principles disclosed herein may be applied to a direct-drive type turbofan engine, i.e. in which there is no reduction gearbox between the low-pressure turbine and the fan. - In operation, hydrogen fuel is pumped from the
hydrogen storage tank 104 by apump 216 and into amain fuel conduit 217 which ultimately delivers fuel to thefuel injection system 206. In the present embodiment, thepump 216 is high-speed centrifugal pump. In a specific embodiment, it is configured to operate at 40000 rpm or more. In a specific embodiment, the centrifugal pump comprises an axial inducer to minimise the required inlet pressure and to accommodate multiphase flow in addition to the centrifugal impeller for developing the majority of the required pressure rise. In an alternative embodiment, a piston-type pump could be used. - In an embodiment, the
pump 216 is located inside thehydrogen storage tank 104. In this way leakage of hydrogen fuel past pump seals etc. is accommodated. - In an embodiment, the
pump 216 is driven by a fuel turbine, as will be described with reference toFIG. 5 . In another embodiment, thepump 216 is driven via an electrical machine. In an embodiment, the drive means for thepump 216 are also located in thehydrogen storage tank 104. - As will be appreciated, it is desirable to increase the temperature of the fuel from the 20 kelvin cryogenic storage condition to a temperature much closer to the firing temperature of the
core gas turbine 201; of course this is subject to the constraint of not exceeding the autoignition temperature of the hydrogen fuel prior to admission into thecombustor 207. In an example, the injection temperature is from 250 to 300 kelvin, for example 250 kelvin. - In the present embodiment, a
vaporiser 218 is therefore provided for heating of the hydrogen fuel to implement a phase change. In the present embodiment, this takes place between thepump 216 and thefuel injection system 206. In an embodiment, thevaporiser 218 is configured to raise the temperature of the hydrogen fuel to the required injection temperature. - In another embodiment, the
vaporiser 218 is configured to raise the temperature of the hydrogen fuel to an intermediate temperature less than the injection temperature. This could for example be from 60 to 200 kelvin, for example 150 kelvin. Further heating may subsequently be achieved by implementing a complex cycle configuration, for example fuel recuperation, intercooling, etc. as will be described further with reference toFIGS. 4 to 6 . - In a simple cycle configuration it has been determined that due to the significant heat capacity of the hydrogen fuel, even if it is utilised as a heatsink for engine waste heat, it will still not reach the required injection temperature without implementation of the
vaporiser 218. Further, even in a complex cycle configuration in which the heat of combustion products is recuperated into the hydrogen fuel, it has been determined that at certain points in the operational envelope there will be insufficient heat output from the engine to raise the fuel temperature to the injection temperature. Such occasions may include, for example, ground start, in-flight relight, end of cruise idle, etc. - An example configuration of the
vaporiser 218 is shown inFIG. 3 . - The
vaporiser 218 comprises anofftake 301 to divert a portion of the hydrogen fuel from themain fuel conduit 217. The amount of hydrogen bled from themain fuel conduit 217 is controlled by avalve 302. In an embodiment, thevalve 302 is controlled actively, for example in response to the temperature of the fuel at thefuel injection system 206. Alternatively, thevalve 302 may be passively controlled. In operation, of the order of around 1 percent of the hydrogen fuel flow through themain fuel conduit 217 is bled for use in thevaporiser 218. - As described previously, hydrogen has very high specific and latent heat capacities; however as a gas it has a very low molecular weight and density, and thus it can be challenging to exchange heat in a compact way. Thus the
vaporiser 218 vaporises the hydrogen fuel in themain fuel conduit 217 by combustion of the bled fuel in aburner 303 located in heat exchange relationship with themain fuel conduit 217. - In the present embodiment, the
burner 303 is concentric around themain fuel conduit 217 and hence theburner 303 itself comprises the heat exchanger for transferring heat to hydrogen fuel in themain fuel conduit 217. It will of course be appreciated that other arrangements are possible. For example, theburner 303 could be positioned separately from themain fuel conduit 217 and exhaust gases therefrom directed through a dedicated heat exchanger unit. Such a unit may comprise a first pass for the flow of hot exhaust products from theburner 303, and a second pass for the main fuel flow which then vaporises as it flows through the heat exchanger unit. - In the present embodiment, air for combustion with the bled hydrogen fuel is bled from the high-
pressure compressor 204. Alternatively, it may be bled from the low-pressure compressor 202. It will be appreciated that the air for combustion could be obtained from any other suitable location. - In the present example, the air and the bled hydrogen fuel are mixed in a pre-mixer 304 prior to supply to the
burner 303, although in alternative embodiments it may be directly co-injected into the burner with the hydrogen fuel instead. Combustion products from theburner 303 are, in an embodiment, exhausted into the bypass duct of theturbofan engine 103. Alternatively, they may be exhausted outside the nacelle. - It should be understood that, in the present example, the products of combustion from the
burner 303 are not mixed with the fuel in themain fuel conduit 217. In this respect, thevaporiser 218 therefore differs from a pre-burner system as used in staged combustion cycle rocket engines. - In steady state, there is enough heat emanating from the
burner 303 to ensure vaporisation of the small amount of bled hydrogen fuel. At engine start or other cold conditions for example, thevaporiser 218 comprises a pre-heater 305 to ensure that the bled hydrogen fuel boils prior to mixing with air in the pre-mixer 304. In a specific embodiment, the pre-heater 305 comprises an electric heating element, for example an inductive coil. Alternatively, the pre-heater 305 could be simply configured as a boil volume, in which the ambient conditions therein contain sufficient enthalpy to boil the initial flow of bled hydrogen fuel prior to delivery to the pre-mixer 304 and theburner 303. - As described previously, it is envisaged that the
fuel delivery system 201 andfuel injection system 206 may be used in an embodiment of thecore gas turbine 201 implementing a simple cycle as described with reference toFIG. 2 , possibly with fuel cooling of engine or gearbox oil or cooling air. Alternatively, the coregas turbine engine 201 may implement a complex cycle. - A first embodiment of such a complex cycle is shown in
FIG. 4 with like reference numerals used for matching features. In this example, theturbofan engine 103 andcore gas turbine 201 are unchanged from their arrangement inFIG. 2 , save for the addition of arecuperator 401 located between the low-pressure turbine 209 andcore nozzle 210. Therecuperator 401 forms part of the overall fuel delivery system and is operable to heat hydrogen fuel by the exhaust stream of thecore gas turbine 201. In this way, less fuel may be required to heat the hydrogen fuel to the injection temperature, increasing cycle efficiency. - In an embodiment, the
recuperator 401 is a spiral-wound recuperator, which reduces the likelihood of fracture due to thermal expansion and contraction. - Another embodiment of a complex cycle is shown in
FIG. 5 , which builds on the cycle ofFIG. 4 with the inclusion of afuel turbine 501. It will be appreciated that substantial energy recovery may be achieved from the exhaust stream if it is accepted that less thrust will be developed by thecore nozzle 210. Thus, it is possible to heat the hydrogen fuel beyond the required fuel injection temperature and to recover work in thefuel turbine 501, which may be used to drive aload 502. In this example theload 502 is an electrical generator. Alternatively, theload 502 could be thepump 216. - In a specific embodiment, the electrical generator powers the
fuel pump 216. Alternatively, the load could be thesecond shaft 212, with an appropriate drive mechanism being provided. In this way, thefuel turbine 501 augments the low-pressure turbine 209. It will be appreciated that other engine loads such as oil pumps etc. could also be driven by thefuel turbine 501. - Additionally or alternatively, as shown in
FIG. 10 it is possible to provide intercooling and/or twin-pass recuperation. - In this embodiment, an
intercooler 601 is provided in theinterstage duct 203 between the low-pressure compressor 202 and the high-pressure compressor 204 for cooling low-pressure compressor discharge air by the hydrogen fuel. In this way, the amount of compression work required to be performed by the high-pressure compressor 204 is reduced. - In this specific embodiment, a
second recuperator 602 is provided between the low-pressure turbine 209 and therecuperator 401 for further recuperative heating of the hydrogen fuel. - Thus, in this example, hydrogen fuel is first heated by the
recuperator 401 to a temperature less than the low-pressure compressor 202 discharge air, which heats it further in theintercooler 601. Further heating occurs in thesecond recuperator 602, which has an inlet temperature higher than therecuperator 401. In this way, the temperature difference between the hydrogen fuel and the core gas turbine exhaust temperature is maximised in each recuperator. It will be appreciated that thefuel turbine 501 may be incorporated in this cycle, for example between the recuperator 701 and theintercooler 601. - Additionally or alternatively, a sequential combustion arrangement may be implemented to any of the aforesaid cycles to facilitate inter-turbine reheat. It will be appreciated that reheat of this type comprises additional stages of combustion to raise temperatures back to a maximum cycle temperature after a first stage of expansion. Along with intercooling, this moves the overall engine cycle closer to an Ericsson cycle, improving thermal efficiency substantially. In a specific example, the high-
pressure turbine 208 is a multi-stage turbine and a reheat combustor may be stationed between two of the stages of the high-pressure turbine 208. Alternatively, the reheat combustor could be stationed between the high-pressure turbine 208 and the low-pressure turbine 209. - Various examples have been described, each of which comprise various combinations of features. It will be appreciated by those skilled in the art that, except where clearly mutually exclusive, any of the features may be employed separately or in combination with any other features and thus the disclosed subject-matter extends to and includes all such combinations and sub-combinations of the or more features described herein.
Claims (20)
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB2015454.8 | 2020-09-30 | ||
| GBGB2015453.0A GB202015453D0 (en) | 2020-09-30 | 2020-09-30 | Hydrogen-fuelled aero gas turbine engine |
| GBGB2015454.8A GB202015454D0 (en) | 2020-09-30 | 2020-09-30 | Hydrogen-fuelled aero gas turbine engine |
| GB2015452.2 | 2020-09-30 | ||
| GB2015453.0 | 2020-09-30 | ||
| GBGB2015452.2A GB202015452D0 (en) | 2020-09-30 | 2020-09-30 | Hydrogen-fuelled aero gas turbine engine |
| GBGB2017014.8A GB202017014D0 (en) | 2020-10-27 | 2020-10-27 | Hydrogen-filled aero gas turbine engine |
| GB2017014.8 | 2020-10-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20220099020A1 true US20220099020A1 (en) | 2022-03-31 |
Family
ID=77726413
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/476,174 Active US11828232B2 (en) | 2020-09-30 | 2021-09-15 | Fuel injection |
| US17/476,129 Active US11970975B2 (en) | 2020-09-30 | 2021-09-15 | Fuel delivery system for delivering hydrogen fuel to a fuel injection system in a gas turbine engine |
| US17/476,110 Abandoned US20220099299A1 (en) | 2020-09-30 | 2021-09-15 | Fuel injection |
| US17/476,311 Active US12006871B2 (en) | 2020-09-30 | 2021-09-15 | Fuel delivery system for delivering hydrogen fuel to a fuel injection system in a complex cycle gas turbine engine |
| US17/487,575 Abandoned US20220099020A1 (en) | 2020-09-30 | 2021-09-28 | Hydrogen fuel vaporiser |
Family Applications Before (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/476,174 Active US11828232B2 (en) | 2020-09-30 | 2021-09-15 | Fuel injection |
| US17/476,129 Active US11970975B2 (en) | 2020-09-30 | 2021-09-15 | Fuel delivery system for delivering hydrogen fuel to a fuel injection system in a gas turbine engine |
| US17/476,110 Abandoned US20220099299A1 (en) | 2020-09-30 | 2021-09-15 | Fuel injection |
| US17/476,311 Active US12006871B2 (en) | 2020-09-30 | 2021-09-15 | Fuel delivery system for delivering hydrogen fuel to a fuel injection system in a complex cycle gas turbine engine |
Country Status (2)
| Country | Link |
|---|---|
| US (5) | US11828232B2 (en) |
| EP (6) | EP3978736B1 (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220099028A1 (en) * | 2020-09-30 | 2022-03-31 | Rolls-Royce Plc | Complex cycles |
| US20230011956A1 (en) * | 2021-07-09 | 2023-01-12 | Raytheon Technologies Corporation | Hydrogen powered engine with exhaust heat exchanger |
| US20230045911A1 (en) * | 2021-08-14 | 2023-02-16 | Pratt & Whitney Canada Corp. | Liquid hydrogen evaporators and heaters |
| EP4361420A1 (en) * | 2022-10-24 | 2024-05-01 | Rolls-Royce plc | Combined gas turbine engine and fuel cell |
| EP4361419A1 (en) * | 2022-10-24 | 2024-05-01 | Rolls-Royce plc | Gas turbine engine fuel system |
| US20240200497A1 (en) * | 2022-02-23 | 2024-06-20 | General Electric Company | Methods and apparatus to produce hydrogen gas turbine propulsion |
| US12092024B1 (en) | 2023-03-28 | 2024-09-17 | Rolls-Royce Plc | Gas turbine engine |
| US20240317418A1 (en) * | 2023-03-20 | 2024-09-26 | Airbus Operations Sas | Propulsion assembly comprising a fuel conditioning system positioned behind a debris ejection zone, aircraft comprising at least one such propulsion assembly |
| EP4491858A1 (en) * | 2023-07-10 | 2025-01-15 | Rolls-Royce plc | Gas turbine engine fuel system |
| US12209536B2 (en) | 2023-03-28 | 2025-01-28 | Rolls-Royce Plc | Gas turbine engine |
| US20250224113A1 (en) * | 2023-08-01 | 2025-07-10 | Rolls-Royce Plc | Gas turbine engine |
| US20250224112A1 (en) * | 2023-07-10 | 2025-07-10 | Rolls-Royce Plc | Hydrogen fuelled gas turbine engine |
| US20250223924A1 (en) * | 2023-04-24 | 2025-07-10 | Rolls-Royce Plc | Cryogenic fuelled aircraft propulsion system |
| US20250283428A1 (en) * | 2024-03-05 | 2025-09-11 | Rolls-Royce Plc | Hydrogen fuelled gas turbine engine |
| US20250283429A1 (en) * | 2024-03-05 | 2025-09-11 | Rolls-Royce Plc | Hydrogen fuelled gas turbine engine |
Families Citing this family (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10816202B2 (en) * | 2017-11-28 | 2020-10-27 | General Electric Company | Combustor liner for a gas turbine engine and an associated method thereof |
| AU2021211979A1 (en) * | 2020-08-06 | 2022-02-24 | Dawn Aerospace Limited | Rocket motor and components thereof |
| FR3120114A1 (en) * | 2021-02-25 | 2022-08-26 | Airbus Operations | AIRCRAFT WITH AN ENGINE AND A DIHYDROGEN-BASED COOLING SYSTEM |
| US11859552B2 (en) * | 2021-04-30 | 2024-01-02 | Rtx Corporation | Flow recirculative power system |
| US20220364513A1 (en) * | 2021-05-14 | 2022-11-17 | Raytheon Technologies Corporation | Turbine engines having hydrogen fuel systems |
| US11668243B2 (en) * | 2021-05-25 | 2023-06-06 | Raytheon Technologies Corporation | Methods and systems for starting hydrogen powered gas generators |
| US11542869B2 (en) * | 2021-05-27 | 2023-01-03 | Pratt & Whitney Canada Corp. | Dual cycle intercooled hydrogen engine architecture |
| WO2023140891A2 (en) * | 2021-07-09 | 2023-07-27 | Raytheon Technologies Corporation | Turbine engines having hydrogen fuel systems |
| US12169069B2 (en) * | 2021-12-20 | 2024-12-17 | General Electric Company | System for producing diluent for a gas turbine engine |
| US20230250754A1 (en) * | 2022-02-08 | 2023-08-10 | Raytheon Technologies Corporation | Multiple turboexpander system having selective coupler |
| GB202204040D0 (en) * | 2022-03-23 | 2022-05-04 | Rolls Royce Plc | Gas turbine engine system |
| US12006878B2 (en) | 2022-05-04 | 2024-06-11 | General Electric Company | Methods and apparatus to operate gas turbines with hydrogen as the combusting fuel |
| GB202207929D0 (en) | 2022-05-30 | 2022-07-13 | Rolls Royce Plc | Hydrogen-fuelled gas turbine engine with fuel-to-air turbocharger |
| US12103699B2 (en) | 2022-07-08 | 2024-10-01 | Rtx Corporation | Hybrid electric power for turbine engines having hydrogen fuel systems |
| US11987377B2 (en) | 2022-07-08 | 2024-05-21 | Rtx Corporation | Turbo expanders for turbine engines having hydrogen fuel systems |
| US20240018908A1 (en) * | 2022-07-14 | 2024-01-18 | Pratt & Whitney Canada Corp. | Aircraft power plant with hydrogen turbo-expander |
| GB202211357D0 (en) * | 2022-08-04 | 2022-09-21 | Rolls Royce Plc | Hydrogen fuel delivery system |
| US11873768B1 (en) * | 2022-09-16 | 2024-01-16 | General Electric Company | Hydrogen fuel system for a gas turbine engine |
| FR3140351A1 (en) * | 2022-09-30 | 2024-04-05 | Airbus | PROPULSIVE ASSEMBLY FOR AIRCRAFT |
| GB202215720D0 (en) * | 2022-10-24 | 2022-12-07 | Rolls Royce Plc | Aircraft engine fuel system |
| EP4393825A1 (en) * | 2022-12-28 | 2024-07-03 | Airbus Operations, S.L.U. | Fuel conditioning system |
| EP4411236A1 (en) * | 2023-02-02 | 2024-08-07 | Pratt & Whitney Canada Corp. | Fuel system with radially arranged injectors for hydrogen-driven gas turbine engine |
| EP4411234B1 (en) * | 2023-02-02 | 2025-09-03 | Pratt & Whitney Canada Corp. | Hydrogen-driven gas turbine engine with injector ring |
| US12486803B2 (en) | 2023-06-16 | 2025-12-02 | Pratt & Whitney Canada Corp. | Gas turbine engine system with fuel driven turbine |
| US12435664B2 (en) | 2023-06-16 | 2025-10-07 | Pratt & Whitney Canada Corp. | Gas turbine engine with water recovery system |
| GB202310324D0 (en) | 2023-07-05 | 2023-08-16 | Rolls Royce Plc | Gas turbine engine fuel system |
| GB202310325D0 (en) | 2023-07-05 | 2023-08-16 | Rolls Royce Plc | Gas turbine engine fuel system |
| EP4488499A1 (en) | 2023-07-06 | 2025-01-08 | Rolls-Royce plc | Aircraft propulsion system |
| EP4501796A1 (en) | 2023-07-31 | 2025-02-05 | Airbus Operations, S.L.U. | Conditioning system for an aircraft |
| GB202316850D0 (en) | 2023-11-03 | 2023-12-20 | Rolls Royce Plc | Gas turbine engine |
| GB202317341D0 (en) * | 2023-11-13 | 2023-12-27 | Rolls Royce Plc | Gas turbine engine hydrogen fuel system |
| GB202317342D0 (en) * | 2023-11-13 | 2023-12-27 | Rolls Royce Plc | Gas turbine engine hydrogen fuel system |
| GB202317413D0 (en) * | 2023-11-14 | 2023-12-27 | Rolls Royce Plc | Propulsion system comprising a hydrogen-burning gas turbine engine |
| GB202406417D0 (en) * | 2024-05-08 | 2024-06-19 | Rolls Royce Plc | Aircraft fuel system and method |
| GB202406419D0 (en) * | 2024-05-08 | 2024-06-19 | Rolls Royce Plc | Aircraft fuel system and method |
| GB202408332D0 (en) | 2024-06-11 | 2024-07-24 | Rolls Royce Plc | Aircraft fuel system |
| US12460580B1 (en) * | 2024-12-13 | 2025-11-04 | Pratt & Whitney Canada Corp. | Heat management system and method for hydrogen-fueled engine |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US665202A (en) * | 1900-05-18 | 1901-01-01 | Henry F Gabel | Water-heater. |
| US5185541A (en) * | 1991-12-02 | 1993-02-09 | 21St Century Power & Light Corporation | Gas turbine for converting fuel to electrical and mechanical energy |
| US5729967A (en) * | 1995-10-02 | 1998-03-24 | Abb Research Ltd. | Method of operating a gas turbine on reformed fuel |
| US6079222A (en) * | 1997-04-24 | 2000-06-27 | Asea Brown Boveri Ag | Method for preparing deep-frozen liquid gas |
| US20070082305A1 (en) * | 2005-10-11 | 2007-04-12 | United Technologies Corporation | Fuel system and method of reducing emission |
| US20120117978A1 (en) * | 2010-10-12 | 2012-05-17 | Allam Rodney J | Generating Power Using an Ion Transport Membrane |
| US20140175803A1 (en) * | 2012-12-26 | 2014-06-26 | General Electric Company | Biomass conversion reactor power generation system and method |
| US20200088102A1 (en) * | 2018-09-14 | 2020-03-19 | United Technologies Corporation | Hybrid expander cycle with intercooling and turbo-generator |
Family Cites Families (72)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2813672A (en) | 1953-09-03 | 1957-11-19 | Marquardt Aircraft Company | Surge limiter |
| US3237401A (en) | 1958-01-17 | 1966-03-01 | United Aircraft Corp | Regenerative expander engine |
| US3282323A (en) | 1965-04-14 | 1966-11-01 | Gen Electric | Viscosity responsive devices |
| GB1208280A (en) | 1967-05-26 | 1970-10-14 | Dowty Fuel Syst Ltd | Pressure ratio sensing device |
| US3720058A (en) * | 1970-01-02 | 1973-03-13 | Gen Electric | Combustor and fuel injector |
| US3688495A (en) * | 1970-04-17 | 1972-09-05 | Adolf Fehler | Control system for metering the fuel flow in gas turbine engines |
| GB1331984A (en) * | 1970-04-25 | 1973-09-26 | Lucas Industries Ltd | Fuel control system for gas turbine engine |
| GB1459416A (en) * | 1973-05-16 | 1976-12-22 | Lucas Industries Ltd | Fuel system for a gas turbine engine |
| US3878678A (en) * | 1973-08-20 | 1975-04-22 | Gen Motors Corp | Gas turbine fuel system |
| US4100733A (en) * | 1976-10-04 | 1978-07-18 | United Technologies Corporation | Premix combustor |
| GB2126658B (en) | 1982-09-07 | 1986-07-02 | Secr Defence | Generation of power from liquid hydrogen |
| GB2240813B (en) * | 1986-08-28 | 1991-11-27 | Rolls Royce Plc | Improvements in hypersonic and trans atmospheric propulsion |
| US4942733A (en) * | 1987-03-26 | 1990-07-24 | Sundstrand Corporation | Hot gas generator system |
| GB2350158B (en) | 1987-04-24 | 2001-04-04 | Rolls Royce Plc | Gas turbine engine with low exhaust temperature |
| EP0420599B1 (en) * | 1989-09-29 | 1995-06-21 | Ortech Corporation | Flow control system |
| GB9203770D0 (en) * | 1992-02-21 | 1992-04-08 | Lucas Ind Plc | Fuel control system |
| FR2687433B1 (en) | 1992-02-14 | 1994-05-06 | Onera | INVERTER COMPONENT PROPELLER, WITH MODULATED FEEDING. |
| US5327755A (en) * | 1992-08-17 | 1994-07-12 | General Electric Company | Constant flow control for a pressure pot shot peening machine |
| US5363641A (en) | 1993-08-06 | 1994-11-15 | United Technologies Corporation | Integrated auxiliary power system |
| US5392595A (en) | 1993-08-06 | 1995-02-28 | United Technologies Corporation | Endothermic fuel energy management system |
| DE19547515A1 (en) * | 1995-12-19 | 1997-07-03 | Daimler Benz Aerospace Airbus | Combustion chamber |
| US6653517B2 (en) * | 2001-04-03 | 2003-11-25 | Billy P Bullock | Hydrocarbon conversion apparatus and method |
| US6928823B2 (en) * | 2001-08-29 | 2005-08-16 | Hitachi, Ltd. | Gas turbine combustor and operating method thereof |
| US6988492B2 (en) | 2003-06-12 | 2006-01-24 | Michael Shetley | Hydrogen and liquid fuel injection system |
| US7467467B2 (en) * | 2005-09-30 | 2008-12-23 | Pratt & Whitney Canada Corp. | Method for manufacturing a foam core heat exchanger |
| WO2008097320A2 (en) | 2006-06-01 | 2008-08-14 | Virginia Tech Intellectual Properties, Inc. | Premixing injector for gas turbine engines |
| US7810333B2 (en) * | 2006-10-02 | 2010-10-12 | General Electric Company | Method and apparatus for operating a turbine engine |
| GB2449267A (en) * | 2007-05-15 | 2008-11-19 | Alstom Technology Ltd | Cool diffusion flame combustion |
| US8042339B2 (en) | 2008-03-12 | 2011-10-25 | General Electric Company | Lean direct injection combustion system |
| US7637167B2 (en) * | 2008-04-25 | 2009-12-29 | Schlumberger Technology Corporation | Apparatus and method for characterizing two phase fluid flow |
| US8240150B2 (en) * | 2008-08-08 | 2012-08-14 | General Electric Company | Lean direct injection diffusion tip and related method |
| US8230687B2 (en) * | 2008-09-02 | 2012-07-31 | General Electric Company | Multi-tube arrangement for combustor and method of making the multi-tube arrangement |
| US9140454B2 (en) * | 2009-01-23 | 2015-09-22 | General Electric Company | Bundled multi-tube nozzle for a turbomachine |
| US8256226B2 (en) | 2009-04-23 | 2012-09-04 | General Electric Company | Radial lean direct injection burner |
| US8616002B2 (en) * | 2009-07-23 | 2013-12-31 | General Electric Company | Gas turbine premixing systems |
| US20110265488A1 (en) * | 2010-04-29 | 2011-11-03 | General Electric Company | ALTERNATE METHOD FOR DILUENT INJECTION FOR GAS TURBINE NOx EMISSIONS CONTROL |
| RU2531110C2 (en) * | 2010-06-29 | 2014-10-20 | Дженерал Электрик Компани | Gas-turbine unit and unit with injector vanes (versions) |
| US20120175095A1 (en) * | 2011-01-12 | 2012-07-12 | Saade Makhlouf | Heat exchanger manifold and method of manufacture |
| US9541026B2 (en) * | 2011-06-22 | 2017-01-10 | Phoenix Power Group, Llc | Heat exchanger for combustion engines including a housing containing a refractory tube within a dividing tube encircled by at least one coiled tube |
| US9388985B2 (en) | 2011-07-29 | 2016-07-12 | General Electric Company | Premixing apparatus for gas turbine system |
| EP2938851A1 (en) * | 2012-12-28 | 2015-11-04 | General Electric Company | Turbine engine assembly comprising a cryogenic fuel system |
| US10030580B2 (en) * | 2014-04-11 | 2018-07-24 | Dynamo Micropower Corporation | Micro gas turbine systems and uses thereof |
| JP6440433B2 (en) * | 2014-09-29 | 2018-12-19 | 川崎重工業株式会社 | Fuel injection nozzle, fuel injection module, and gas turbine |
| US10101032B2 (en) | 2015-04-01 | 2018-10-16 | General Electric Company | Micromixer system for a turbine system and an associated method thereof |
| US20180051883A1 (en) | 2015-04-01 | 2018-02-22 | Siemens Energy, Inc. | Pre-mixing based fuel nozzle for use in a combustion turbine engine |
| JP6484546B2 (en) | 2015-11-13 | 2019-03-13 | 三菱日立パワーシステムズ株式会社 | Gas turbine combustor |
| RU2626903C1 (en) * | 2016-06-08 | 2017-08-02 | Открытое Акционерное Общество "Российские Железные Дороги" | Cryogenic fuel supply system for engine feed |
| CN106051827B (en) * | 2016-07-07 | 2018-06-05 | 南京航空航天大学 | A kind of 9 points of oil-poor directly injection cleaning combustion chambers of array adjustable and method of work |
| WO2018011827A1 (en) * | 2016-07-15 | 2018-01-18 | Indian Institute Of Technology (Iit Madras) | A swirl mesh lean direct injection concept for distributed flame holding for low pollutant emissions and mitigation of combustion instability |
| US10465909B2 (en) | 2016-11-04 | 2019-11-05 | General Electric Company | Mini mixing fuel nozzle assembly with mixing sleeve |
| US10551856B2 (en) * | 2017-02-23 | 2020-02-04 | Fisher Controls International Llc | Fluid control valve having discrete flow channels arranged to equalize the velocity of fluid at the perimeter of the valve port |
| CN110603243B (en) | 2017-05-08 | 2022-07-22 | 住友化学株式会社 | Process for the production of 1-aminocyclopropanecarboxylic acid non-hydrate |
| CN107630767B (en) | 2017-08-07 | 2019-07-09 | 南京航空航天大学 | Based on pre- cold mould assembly power hypersonic aircraft aerodynamic arrangement and working method |
| JP7044669B2 (en) | 2018-09-05 | 2022-03-30 | 三菱重工業株式会社 | Gas turbine combustor |
| US10989117B2 (en) | 2018-09-14 | 2021-04-27 | Raytheon Technologies Corporation | Hybrid expander cycle with pre-compression cooling and turbo-generator |
| US11041439B2 (en) * | 2018-09-14 | 2021-06-22 | Raytheon Technologies Corporation | Hybrid expander cycle with turbo-generator and cooled power electronics |
| JP7287811B2 (en) | 2019-03-25 | 2023-06-06 | 三菱重工業株式会社 | Combustor and gas turbine |
| US11060458B2 (en) * | 2019-04-02 | 2021-07-13 | Hamilton Sundstrand Corporation | Heat exchanger thermal shock reducer |
| US11530710B2 (en) * | 2020-01-28 | 2022-12-20 | Pratt & Whitney Canada Corp. | Aircraft pneumatic system |
| JP7349403B2 (en) | 2020-04-22 | 2023-09-22 | 三菱重工業株式会社 | Burner assembly, gas turbine combustor and gas turbine |
| US20210340908A1 (en) | 2020-05-01 | 2021-11-04 | Raytheon Technologies Corporation | Gas turbine engines having cryogenic fuel systems |
| US11448133B2 (en) | 2020-05-05 | 2022-09-20 | Raytheon Technologies Corporation | Moderate pressure liquid hydrogen storage for hybrid-electric propulsion system |
| US11585272B2 (en) * | 2020-06-25 | 2023-02-21 | Pratt & Whitney Canada Corp. | System and method for detection of excessive flow in a fluid system |
| DE102020119619A1 (en) | 2020-07-24 | 2022-01-27 | Friedrich-Alexander-Universität Erlangen-Nürnberg | jet cluster |
| EP3978736B1 (en) * | 2020-09-30 | 2025-03-05 | Rolls-Royce plc | Fuel delivery |
| US11773782B2 (en) * | 2020-12-23 | 2023-10-03 | Rtx Corporation | Gas turbine engines having cryogenic fuel systems |
| US11724815B2 (en) * | 2021-01-15 | 2023-08-15 | The Boeing Company | Hybrid electric hydrogen fuel cell engine |
| US11885263B2 (en) * | 2021-06-17 | 2024-01-30 | Pratt & Whitney Canada Corp. | Secondary air supply system with feed pipe(s) having sonic orifice(s) |
| EP4163481B1 (en) * | 2021-09-17 | 2023-11-01 | Rolls-Royce plc | Fuel delivery system |
| ES3040736T3 (en) * | 2021-11-29 | 2025-11-04 | Airbus Operations Slu | Gas turbine |
| GB202203007D0 (en) * | 2022-03-04 | 2022-04-20 | Rolls Royce Plc | Combined cycles |
| GB202207929D0 (en) * | 2022-05-30 | 2022-07-13 | Rolls Royce Plc | Hydrogen-fuelled gas turbine engine with fuel-to-air turbocharger |
-
2021
- 2021-09-13 EP EP21196322.8A patent/EP3978736B1/en active Active
- 2021-09-13 EP EP21196324.4A patent/EP3988845B1/en active Active
- 2021-09-13 EP EP24159731.9A patent/EP4350138A3/en active Pending
- 2021-09-13 EP EP21196323.6A patent/EP3978737B1/en active Active
- 2021-09-13 EP EP21196320.2A patent/EP3978807A3/en not_active Withdrawn
- 2021-09-15 US US17/476,174 patent/US11828232B2/en active Active
- 2021-09-15 US US17/476,129 patent/US11970975B2/en active Active
- 2021-09-15 US US17/476,110 patent/US20220099299A1/en not_active Abandoned
- 2021-09-15 US US17/476,311 patent/US12006871B2/en active Active
- 2021-09-22 EP EP21198180.8A patent/EP3978738B1/en active Active
- 2021-09-28 US US17/487,575 patent/US20220099020A1/en not_active Abandoned
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US665202A (en) * | 1900-05-18 | 1901-01-01 | Henry F Gabel | Water-heater. |
| US5185541A (en) * | 1991-12-02 | 1993-02-09 | 21St Century Power & Light Corporation | Gas turbine for converting fuel to electrical and mechanical energy |
| US5729967A (en) * | 1995-10-02 | 1998-03-24 | Abb Research Ltd. | Method of operating a gas turbine on reformed fuel |
| US6079222A (en) * | 1997-04-24 | 2000-06-27 | Asea Brown Boveri Ag | Method for preparing deep-frozen liquid gas |
| US20070082305A1 (en) * | 2005-10-11 | 2007-04-12 | United Technologies Corporation | Fuel system and method of reducing emission |
| US20120117978A1 (en) * | 2010-10-12 | 2012-05-17 | Allam Rodney J | Generating Power Using an Ion Transport Membrane |
| US20140175803A1 (en) * | 2012-12-26 | 2014-06-26 | General Electric Company | Biomass conversion reactor power generation system and method |
| US20200088102A1 (en) * | 2018-09-14 | 2020-03-19 | United Technologies Corporation | Hybrid expander cycle with intercooling and turbo-generator |
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220178307A1 (en) * | 2020-09-30 | 2022-06-09 | Rolls-Royce Plc | Fuel delivery |
| US11828232B2 (en) | 2020-09-30 | 2023-11-28 | Rolls-Royce Plc | Fuel injection |
| US11970975B2 (en) * | 2020-09-30 | 2024-04-30 | Rolls-Royce Plc | Fuel delivery system for delivering hydrogen fuel to a fuel injection system in a gas turbine engine |
| US20220099028A1 (en) * | 2020-09-30 | 2022-03-31 | Rolls-Royce Plc | Complex cycles |
| US12006871B2 (en) * | 2020-09-30 | 2024-06-11 | Rolls-Royce Plc | Fuel delivery system for delivering hydrogen fuel to a fuel injection system in a complex cycle gas turbine engine |
| US20230011956A1 (en) * | 2021-07-09 | 2023-01-12 | Raytheon Technologies Corporation | Hydrogen powered engine with exhaust heat exchanger |
| US12055098B2 (en) * | 2021-07-09 | 2024-08-06 | Rtx Corporation | Hydrogen powered engine with exhaust heat exchanger |
| US20230045911A1 (en) * | 2021-08-14 | 2023-02-16 | Pratt & Whitney Canada Corp. | Liquid hydrogen evaporators and heaters |
| US11761381B2 (en) * | 2021-08-14 | 2023-09-19 | Pratt & Whitney Canada Corp. | Gas turbine engine comprising liquid hydrogen evaporators and heaters |
| US20240200497A1 (en) * | 2022-02-23 | 2024-06-20 | General Electric Company | Methods and apparatus to produce hydrogen gas turbine propulsion |
| US12326119B2 (en) * | 2022-02-23 | 2025-06-10 | General Electric Company | Methods and apparatus to produce hydrogen gas turbine propulsion |
| US12270341B2 (en) | 2022-10-24 | 2025-04-08 | Rolls-Royce Plc | Gas turbine engine fuel system |
| US12221924B2 (en) | 2022-10-24 | 2025-02-11 | Rolls-Royce Plc | Combined gas turbine engine and fuel cell |
| EP4379201A2 (en) | 2022-10-24 | 2024-06-05 | Rolls-Royce plc | Combined gas turbine engine and fuel cell |
| EP4379201A3 (en) * | 2022-10-24 | 2024-06-26 | Rolls-Royce plc | Combined gas turbine engine and fuel cell |
| EP4361420A1 (en) * | 2022-10-24 | 2024-05-01 | Rolls-Royce plc | Combined gas turbine engine and fuel cell |
| EP4361419A1 (en) * | 2022-10-24 | 2024-05-01 | Rolls-Royce plc | Gas turbine engine fuel system |
| US12429014B2 (en) * | 2023-03-20 | 2025-09-30 | Airbus Operations Sas | Propulsion assembly comprising a fuel conditioning system positioned behind a debris ejection zone, aircraft comprising at least one such propulsion assembly |
| US20240317418A1 (en) * | 2023-03-20 | 2024-09-26 | Airbus Operations Sas | Propulsion assembly comprising a fuel conditioning system positioned behind a debris ejection zone, aircraft comprising at least one such propulsion assembly |
| EP4438870A1 (en) * | 2023-03-28 | 2024-10-02 | Rolls-Royce plc | Gas turbine engine |
| US12209536B2 (en) | 2023-03-28 | 2025-01-28 | Rolls-Royce Plc | Gas turbine engine |
| US12092024B1 (en) | 2023-03-28 | 2024-09-17 | Rolls-Royce Plc | Gas turbine engine |
| US20250223924A1 (en) * | 2023-04-24 | 2025-07-10 | Rolls-Royce Plc | Cryogenic fuelled aircraft propulsion system |
| US20250020081A1 (en) * | 2023-07-10 | 2025-01-16 | Rolls-Royce Plc | Gas turbine engine fuel system |
| EP4491858A1 (en) * | 2023-07-10 | 2025-01-15 | Rolls-Royce plc | Gas turbine engine fuel system |
| US20250224112A1 (en) * | 2023-07-10 | 2025-07-10 | Rolls-Royce Plc | Hydrogen fuelled gas turbine engine |
| US20250224113A1 (en) * | 2023-08-01 | 2025-07-10 | Rolls-Royce Plc | Gas turbine engine |
| US12474054B2 (en) * | 2023-08-01 | 2025-11-18 | Rolls-Royce Plc | Gas turbine engine |
| US20250283428A1 (en) * | 2024-03-05 | 2025-09-11 | Rolls-Royce Plc | Hydrogen fuelled gas turbine engine |
| US20250283429A1 (en) * | 2024-03-05 | 2025-09-11 | Rolls-Royce Plc | Hydrogen fuelled gas turbine engine |
| US12435663B2 (en) * | 2024-03-05 | 2025-10-07 | Rolls-Royce Plc | Hydrogen fuelled gas turbine engine |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3988845B1 (en) | 2024-02-14 |
| EP3978736A1 (en) | 2022-04-06 |
| US11970975B2 (en) | 2024-04-30 |
| EP3988845A2 (en) | 2022-04-27 |
| EP4350138A2 (en) | 2024-04-10 |
| US20220099025A1 (en) | 2022-03-31 |
| US11828232B2 (en) | 2023-11-28 |
| US20220178307A1 (en) | 2022-06-09 |
| EP3978807A3 (en) | 2022-07-06 |
| EP3978737B1 (en) | 2024-04-17 |
| EP3988845A3 (en) | 2022-07-06 |
| EP3978738B1 (en) | 2024-03-27 |
| EP3978807A2 (en) | 2022-04-06 |
| EP3978737A1 (en) | 2022-04-06 |
| US12006871B2 (en) | 2024-06-11 |
| EP3978736B1 (en) | 2025-03-05 |
| US20220099028A1 (en) | 2022-03-31 |
| US20220099299A1 (en) | 2022-03-31 |
| EP4350138A3 (en) | 2024-07-03 |
| EP3978738A1 (en) | 2022-04-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3978738B1 (en) | Hydrogen fuel vaporiser | |
| EP3623602B1 (en) | Hybrid expander cycle with intercooling and turbo-generator | |
| US10989117B2 (en) | Hybrid expander cycle with pre-compression cooling and turbo-generator | |
| US12215608B2 (en) | Hydrogen-oxygen fueled powerplant with water and heat recovery | |
| US12270341B2 (en) | Gas turbine engine fuel system | |
| GB2531775A (en) | A related gas turbine arrangement and a related method | |
| US20230167788A1 (en) | Hydrogen gas turbine | |
| US20250314199A1 (en) | Turbine engine including a steam system | |
| US20250189129A1 (en) | Gas turbine engine fuel system | |
| US20250020081A1 (en) | Gas turbine engine fuel system | |
| EP4361420B1 (en) | Combined gas turbine engine and fuel cell | |
| US12252266B2 (en) | Aircraft engine fuel system | |
| EP4488497A1 (en) | Gas turbine engine fuel system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ROLLS-ROYCE PLC, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PALMER, CHLOE J;REEL/FRAME:057626/0608 Effective date: 20210921 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
| STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
| STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |