[go: up one dir, main page]

US20220075242A1 - Compact Edge Illuminated Diffractive Display - Google Patents

Compact Edge Illuminated Diffractive Display Download PDF

Info

Publication number
US20220075242A1
US20220075242A1 US17/377,055 US202117377055A US2022075242A1 US 20220075242 A1 US20220075242 A1 US 20220075242A1 US 202117377055 A US202117377055 A US 202117377055A US 2022075242 A1 US2022075242 A1 US 2022075242A1
Authority
US
United States
Prior art keywords
sbg
light
elements
backlight unit
diffracting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/377,055
Inventor
Milan Momcilo Popovich
Jonathan David Waldern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DigiLens Inc
Original Assignee
DigiLens Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DigiLens Inc filed Critical DigiLens Inc
Priority to US17/377,055 priority Critical patent/US20220075242A1/en
Publication of US20220075242A1 publication Critical patent/US20220075242A1/en
Assigned to DIGILENS INC. reassignment DIGILENS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: POPOVICH, MILAN MOMCILO, WALDERN, JONATHAN DAVID
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1828Diffraction gratings having means for producing variable diffraction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1895Generating the spectrum; Monochromators using diffraction elements, e.g. grating using fiber Bragg gratings or gratings integrated in a waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13342Holographic polymer dispersed liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/315Digital deflection, i.e. optical switching based on the use of controlled internal reflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0425Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected
    • H01L33/10
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • H04N9/3108Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators by using a single electronic spatial light modulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3173Constructional details thereof wherein the projection device is specially adapted for enhanced portability
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/814Bodies having reflecting means, e.g. semiconductor Bragg reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13476Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which at least one liquid crystal cell or layer assumes a scattering state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/307Reflective grating, i.e. Bragg grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/24Function characteristic beam steering

Definitions

  • This invention relates to a display device, and more particularly to a compact edge-illuminated projection display based on switchable Bragg gratings.
  • picoprojectors provide one solution to this problem.
  • LCD Liquid Crystal Display
  • DLP Digital Light Processor
  • TX Texas Instruments
  • MOEMS micro-optical-electrical-mechanical systems
  • display technologies for portable devices should be very compact with volumes of a few cubic centimeters.
  • a thin form-factor is desirable for ease of integration into devices such as mobile telephones.
  • a projection display device comprises: a first light source emitting light of a first wavelength; a first SBG device comprising a multiplicity of separately switchable SBG elements disposed in a single layer; transparent substrates sandwiching the SBG device, said substrates together functioning as a first light guide; and a means for coupling the first wavelength light into the first light guide.
  • the first wavelength light undergoes total internal reflection within the first light guide.
  • Transparent electrodes are applied to opposing faces of the substrates. At least one of the transparent electrodes comprises a plurality of independently switchable transparent electrode elements. Each electrode element overlays a unique SBG element.
  • Each SBG element in first SBG device diffracts first wavelength light to form an image region on an image surface when subjected to an applied voltage via the transparent electrodes.
  • the image surface is disposed in proximity to the display.
  • the image surface is disposed more than 25 centimeters from said display.
  • the image surface is disposed more than 50 centimeters from said display.
  • one image region comprises an image of a keyboard.
  • the image region is an image pixel.
  • an SBG element pre-distorts the shape of the image region.
  • the image surface is an optical diffusing material.
  • the image surface is the retina of an eye.
  • the image surface is a curved surface.
  • the display further comprises: at least one infrared source; means for directing infrared light from the infrared source towards the image surface and at least one infrared sensor operative to detect light scatter from an object disposed in proximity to the image surface.
  • the infrared source may be a laser.
  • the infrared sensor may comprise an image sensing array and lens.
  • the display further comprises: at least one infrared source; means for directing infrared light from the infrared source towards the image surface and at least one infrared sensor operative to detect light scatter from an object disposed in proximity to the image surface.
  • the first SBG device contains at least one infrared diffracting SBG element operative to diffract infrared light from the infrared source towards the image surface when the infrared diffracting SBG element is subjected to an applied voltage via the transparent electrodes.
  • the display further comprises: second and third light sources emitting light of second and third wavelengths; second and third SBG devices each comprising a multiplicity of separately switchable SBG elements disposed in a single layer, the SBG elements of the first second and third SBG devices substantially overlapping each other; transparent substrates sandwiching the second SBG device, said substrates together functioning as a second light guide; transparent substrates sandwiching the third SBG device, said substrates together functioning as a third light guide; and means for coupling the first, second and third wavelength light into the first, second and third light guide.
  • Transparent electrodes are applied to substrate faces in contact with the second and third SBG devices.
  • At least one of the transparent electrodes in contact with the second and third SBG devices comprises a plurality of independently switchable transparent electrodes elements, each of the independently switchable electrodes substantially overlays a unique SBG element.
  • the first, second and third wavelength light undergoes total internal reflection within the light guides,
  • Each element of the second SBG device diffracts second wavelength light to form a second image region on an image surface when subjected to an applied voltage via the transparent electrodes.
  • Each element of the third SBG device diffracts third wavelength light to form a third image region on an image surface when subjected to an applied voltage via the transparent electrodes.
  • the first, second and third image regions substantially overlap.
  • each band comprises at least one row of SBG elements. Each band is continuously scrolled vertically. At least one band in each of the first, second and third SBG devices is activated at any instant with no overlap occurring between the first, second and third wavelength SBG device bands.
  • FIG. 1 is a schematic side elevation view of one embodiment of the invention.
  • FIG. 2 is a schematic front elevation view of a detail of an SBG device in one embodiment of the invention.
  • FIG. 3 is a schematic side elevation view of one embodiment of the invention.
  • FIG. 4 is a schematic side elevation view of one embodiment of the invention.
  • FIG. 5 is a schematic plan view of the embodiment of the invention illustrated in FIG. 4 .
  • FIG. 6 is a schematic side elevation view of one embodiment of the invention.
  • FIG. 7 is a schematic front elevation view of a scrolling SBG device in one embodiment of the invention.
  • FIG. 8 is a front elevation view of structured illumination provided by one embodiment of the invention.
  • FIG. 9 is a front elevation view of structured illumination provided by one embodiment of the invention.
  • FIG. 10 is a schematic side elevation view of one embodiment of the invention incorporating an infrared source and infrared detector.
  • FIG. 11 is a schematic plan view of one embodiment of the invention incorporating an infrared source and an infrared detector.
  • FIG. 12 is a schematic side elevation view of one embodiment of the invention incorporating an infrared source and an infrared detector.
  • FIG. 13 is a schematic plan view of an embodiment of the invention that provides a virtual keyboard.
  • FIG. 14 is a schematic side elevation vies of an embodiment of the invention that uses reflective SBGs.
  • the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components used in the embodiments of the invention.
  • the terms light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories.
  • the compact projection display disclosed in the present application is based on a diffractive optical device known as a Switchable Bragg Grating (SBG).
  • SBG is a Bragg grating recorded into a polymer dispersed liquid crystal (PDLC) mixture.
  • PDLC polymer dispersed liquid crystal
  • SBG devices are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the PDLC layer.
  • a Bragg grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure.
  • the monomers polymerize and the PDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer.
  • the alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating.
  • the resulting Bragg grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer. In the absence of an applied electric field the SBG remains in its diffracting state.
  • an electric field is applied to the hologram via the electrodes, the natural orientation of the LC droplets is changed thus reducing the refractive index modulation of the fringes and causing the hologram diffraction efficiency to drop to very low levels.
  • the diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range from essentially zero to near 100%.
  • U.S. Pat. No. 5,942,157 by Sutherland et al. and U.S. Pat. No. 5,751,452 by Tanaka et al. describe monomer and liquid crystal material combinations suitable for fabricating ESBG devices.
  • an SBG array device comprising a pair of transparent substrates 11 and 12 and an SBG layer 20 sandwiched between the substrates.
  • the two substrates 11 and 12 together form a light guide.
  • the SBG layer comprises an array of individually switchable SBG elements.
  • the SBG elements may be switched using a range of spatio-temporal switching schemes, including any of the active matrix switching regimes used in conventional flat panel displays.
  • the substrates will be fabricated from optical glass such as BK7 or a high quality optical plastic.
  • Transparent electrodes which are not shown in FIG. 1 , are applied to both of the inner surfaces of the substrates and electrically coupled to a voltage generator (not illustrated).
  • the electrodes are configured such that the applied electric field will be perpendicular to the substrates.
  • the planar electrode configuration requires low voltages, in the range of 2 to 4 volts per ⁇ m.
  • the electrodes would typically be fabricated from Indium Tin Oxide (ITO).
  • ITO Indium Tin Oxide
  • Commercially available ITO typically has a coating resistance of typically 300-500 Ohm/sq.
  • An exemplary ITO film used by the inventors is the N00X0325 film manufactured by Applied Films Corporation (Colorado).
  • ITO films used with the present invention have a thickness of 100 Angstrom.
  • the electrode on one substrate surface is uniform and continuous, while the electrode on the opposing substrate surface is patterned to match the shapes of the SBG elements.
  • the electrodes may be identically patterned such that each SBG element is sandwiched by identical electrodes matching the shape of the SBG element.
  • the planar electrodes should be exactly aligned with the SBG elements for optimal switching of the symbols and the elimination of any image artefacts that may result from unswitched grating regions.
  • the SBG elements will separated by very narrow grating-free regions which are essentially homogenous regions of PDLC that generally do not respond to applied electric fields. Such grating-free regions normally result from masking during fabrication of the SBG device.
  • Techniques for overcoming problems associated with such gaps are disclosed in PCT Application No PCT US2006/043938 by Popovich et al, entitled “Method and Apparatus for Switching a PDLC device”, which is incorporated by reference herein in its entirety, may be used with the present invention. In most applications of the invention the effects on image quality of such gaps between SBG elements are not likely to be significant.
  • An SBG contains slanted fringes resulting from alternating liquid crystal rich regions and polymer rich (i.e. liquid crystal depleted) regions.
  • SBGs may be configured to be transmissive or reflective according to the slant of the fringes.
  • Reflection SBGs are characterized by fringes that are substantially parallel to the substrates.
  • transmissive SBGs will be assumed in the following description. However, it should be clear that any of the embodiments of the invention may be practiced using either reflective or transmissive SBGs. With no electric field applied, the extraordinary axis of the liquid crystals generally aligns normal to the fringes. The grating thus exhibits high refractive index modulation and high diffraction efficiency for P-polarized light.
  • the extraordinary axes of the liquid crystal molecules align parallel to the applied field and hence perpendicular to the substrate.
  • the electric field due to the planar electrodes is perpendicular to the substrate.
  • the grating exhibits lower refractive index modulation and lower diffraction efficiency for both S- and P-polarized light.
  • the grating region no longer diffracts light but rather acts like a transparent plate have little effect on incident light other than a small amount of absorption, scatter and Fresnel reflection loss at the grating-substrate interfaces.
  • FIG. 2 shows a front elevation view of the SBG array.
  • FIG. 3 shows a side elevation view of the display.
  • Input light 1000 from a source 4 is optically coupled to the substrates 11 and 12 via an optical coupling device 3 .
  • Light admitted into the light guide undergoes TIR between the outer surfaces of the substrates 11 , 12 .
  • the source is a solid state laser.
  • the source may be a Light Emitting Diode (LED).
  • the coupling device may be a prism or a grating.
  • the invention does not assume any particular method for coupling light into the substrates. However, a method based on a grating is highly desirable from the perspective of minimizing the thickness of the display.
  • the display would advantageously also incorporate a despeckler such as the one disclosed in the PCT application PCT/IB2008/0019099 with International Filing date 22 Jul. 2008 entitled “LASER ILLUMINATION DEVICES” which is incorporated by reference herein in its entirety.
  • the invention may be applied with any other type of despeckler but preferably one based on solid state technology.
  • the input light 1000 is deflected into the ray direction 1001 by the coupling device 3 .
  • the deflection angle in the substrates should exceed the critical angle for the substrate medium to air interface.
  • the ray now follows a TIR path constrained by the outer surfaces of the light guide provided by the substrates. Hence, the ray 1001 is totally internally reflected into the ray path indicated by 1001 , 1002 , 1003 .
  • each SBG element encodes wave-front amplitude and phase modulation information such that that incident TIR light is diffracted to form a focused image region of predefined geometry and luminance distribution at the image surface 5 .
  • the light 1003 which impinges on the active SBG element 22 is diffracted towards the image surface 5 as the beam 1004 .
  • the diffracted light 1004 forms an image 1100 at the image surface 5 .
  • Light which does not impinge on the SBG element will hit the substrate-air interface at the critical angle and is therefore totally internally reflected and eventually collected at a beam stop, which is not illustrated.
  • the invention does not assume any particular method for trapping non diffracted light.
  • the image surface 5 may a diffusing surface of any geometry and as indicated in FIG. 3 may be tilted with respect to the display.
  • the image surface will be a plane.
  • the image surface will most typically will be either parallel to or orthogonal to the grating plane.
  • the image is formed without the need for an additional lens or any other optical element between the SBG array and the surface.
  • Another important feature of the invention is that, since the SBG array elements each contain diffraction patterns, the resolution of the final projected images is much higher than the resolution of the array.
  • the side elevation view of the display of FIG. 1 in which the source and coupling optics are omitted shows the formation of an image element 1100 on the surface 5 by the SBG element 22 .
  • the image element may be a rectangular pixel having a luminance level determined by the voltage applied across the SBG element.
  • An SBG element may be designed to provide pre-distortion of the image element geometry to compensate for the effects of off axis projection, such as key-stoning.
  • the invention is not necessarily limited to pixelated display applications.
  • the image element formed by a SBG element may have an intensity distribution within a predefined area. As will be explained below such an embodiment may be used to provide structured illumination for a range of applications.
  • the techniques for encoding such optical functions into an SBG are well know to those skilled in the design of Holographic Optical Elements (HOEs) and Diffractive Optical Elements (DOEs).
  • HOEs Holographic Optical Elements
  • DOEs Diffractive Optical Elements
  • the invention does not rely on any particular method of encoding optical functions into SBGs.
  • the SBG element is fabricated by first designing and fabricating a Computer Generated Hologram (CGH) with the required optical properties and then recording the CGH into the ESBG element.
  • CGH Computer Generated Hologram
  • the above process is equivalent to forming a hologram of the CGH.
  • the invention does not rely on any particular method for recording the CGH into the SBG. Any holographic recording techniques known to those skilled in the art of holography may be used.
  • the resulting SBG element is not identical in every respect to the CGH since properties of a CGH rely on its surface phase relief features while the optical characteristics of a Bragg grating such as an SBG rely on a complex three dimensional fringe distribution.
  • the basic principles of computer generated holograms suitable for use in the present invention are discussed in an article entitled HASMAN E et al “Diffractive Optics: Design Realisation and Applications”, Fibre and Integrated Optics; 16:1-25, 1997.
  • a display according to the principles of the invention will be transparent to external ambient light such as the light 1005 indicated in FIG. 1 . Since the external light is broadband and incident over a wide range of angles only a small portion of it will be lost due to diffraction at active SBG elements. In other words only a very small portion of the external light will have incidence angles and wavelengths that satisfy the Bragg condition at the active SBG elements. The external light will also suffer small transmission loss due to Fresnel reflections, scatter and absorption.
  • the image surface is disposed between 25-100 centimetres from the display. However, the distances may be much greater depending one the application and the image brightness requirements. In certain embodiments of the invention the image surface may be very close to the display. In such embodiments the image and image surface may be integrated within a directly viewable display module. However, such embodiments will sacrifice the image magnifications obtained by projecting the image over a longer distance.
  • FIGS. 4-5 a colour projection display.
  • the basic principles of the colour display are illustrated in FIGS. 4-5 .
  • Light from separate red green and blue sources is coupled into the light-guide formed by the substrates 11 , 12 .
  • the coupling optics which are not illustrated, may comprise prisms or diffractive elements.
  • Many alternative methods of coupling light from different colour sources into a light guide will be known to those skilled in the art.
  • the coupling optics are based on diffractive optical techniques to keep the display as thin as possible.
  • the TIR angle for each colour is constrained such that the incidence angle for a particular colour light at a given SBG satisfy the Bragg condition for diffraction at a specified diffraction angle.
  • the red, green, blue light is presented sequentially.
  • incident red, green, blue TIR rays 1003 R, 1003 G, 1003 B at the SBG 22 are diffracted into the red, green, blue image light indicated by 1004 R, 1004 G, 1004 B towards the image surface 5 forming the colour image element 1100 .
  • FIG. 5 shows a plan view of the display showing the a plan view of the diffracted beams indicated by 1005 R, 1005 G, 1005 B.
  • the lateral extent of the projected beam is indicated by the rays 1006 A, 1006 B. Note that in FIGS. 4-5 the separation of the beams has been exaggerated for the purposes of explanation.
  • Colour imaging may also be provided by stacking red, green, and blue SBG arrays of the type illustrated in FIGS. 1-3 and providing illumination from red, green and blue light sources. Such embodiments of the invention will suffer from the problems of alignment and light transmission loss.
  • red, green and blue diffracting SBG arrays 20 , 30 , 40 are provided in the embodiment of the invention illustrated in the schematic side elevation view of FIG. 6 .
  • the SBG arrays are sandwiched between substrates 11 , 12 , 13 , 14 , 15 , 16 .
  • the substrates are stacked to form a single light guiding structure. Light from separate red, green and blue sources is coupled into the light-guide. Again the preferred coupling optics are based on diffractive optical techniques to keep the display as thin as possible.
  • red, green, blue light is presented simultaneously. Referring to FIG. 6 incident red, green and blue light 1006 R, 1006 G, 1006 B at the active red, green, blue SBG elements 22 , 32 , 42 is diffracted into the beams 1007 R, 1007 G, 1007 B forming a colour image element 1102 at the image surface 5 . Note that the separation of the beams has again been exaggerated for the purposes of explanation.
  • the SBG elements may be switched using a switching scheme commonly referred to as “scrolling”.
  • Conventional colour displays rely on providing a single display panel that is updated with red, green and blue picture information in turn and sequentially fully illuminated by red, green and blue illumination.
  • three panel architectures provide seperate red, green and blue image panels which are separately fully illuminated by red, green and blue light. Such displays suffer from the problems of having to update the entire red, green or blue images before illumination of the appropriate colour can be applied. In the case of three-panel displays the cost of the display may become prohibitive.
  • a single panel scrolling color projection display system is characterized by a single light modulator panel having a raster of individual picture elements or pixels, which panel is illuminated by horizontally elongated red, green and blue illumination bars or stripes.
  • the stripes are continuously scrolled vertically across the panel while the rows of pixels are synchronously addressed with display information corresponding to the color of the then incident stripe.
  • the modulated scrolling red, green and blue stripes are then projected onto a display screen to produce a visually integrated full color display.
  • Exemplary scrolling displays are disclosed in U.S. Pat. No. 5,410,370, entitled “Single panel color projection video display improved scanning” issued to P. Janssen on Mar. 25, 1994, and U.S. Pat. No. 5,416,514, entitled “Single panel color projection video display having control circuitry for synchronizing the color illumination system with reading/writing of the light valve” issued to P. Janssen et al. on May 16, 1995.
  • FIG. 7 A basic scrolling scheme for use with the present invention is illustrated in FIG. 7 .
  • the scrolling scheme may be implemented using the embodiment of FIG. 6 .
  • SBG elements are activated in bands comprising at least one row of SBG elements.
  • the bands are continuously scrolled vertically, at least one band in each of the red green and blue SBG devices being activated at any instant, said bands in said first, second and third SBG devices not overlapping.
  • FIG. 7 shows red, green and blue states indicated by symbols R,G,B at one instant in time.
  • the diffracting rows or bands of SBG elements are shaded.
  • red SBG band 50 R, green SBG band 50 G and blue SBG band 50 B are diffracting while red SBG pixel rows 51 R, green SBG pixel rows 51 G and blue SBG pixel rows SIB are not diffracting permitting TIR to proceed.
  • At least one SBG array element in any of the above described embodiments may provide structured infrared illumination using light from an infra red source.
  • the infrared light would be injected into the light guide formed by the substrates in a similar fashion to the means used to introduce visible light in any of the above embodiments.
  • the infrared source is typically a 780 nm laser. However other near-infrared sources may be used.
  • the structure lighting may comprise parallel bars, concentric circles and other geometrical structures commonly used in the visualization and measurement of three-dimensional shapes. Examples of structures infrared lighting are provided in FIGS. 8-9 .
  • the structured lighting 1010 comprises parallel bars and spaces 1011 , 1012 .
  • the structure lighting 1020 comprises concentric circles 1021 separated by gaps 1022 .
  • FIGS. 10-11 show an embodiment similar to the one of FIGS. 4-5 in which there is further provided at least one infrared sensor such as 7 and at least one infrared source such as 8 .
  • the sensor is a two dimensional infrared array.
  • the infrared source illuminates the image surface 5 with the infrared beam indicated by 1100 .
  • the infrared sensor detects backscattered light from objects within a field of view indicated by 1200 .
  • the sensor is coupled to a processor which is in turn coupled to an image processor which is not illustrated.
  • the optical system is illustrated in plan view in FIG. 11 . Since the display is transparent one or both of the infrared sensor or source may be displayed on the opposite site of the display to the image surface as indicated in FIGS.
  • one or both of the infrared sensor or source may be disposed around the periphery of the display.
  • a structured light pattern based on the ones illustrated in FIGS. 8-9 may be encoded within the SBG element. Alternatively, other structured lighting patterns may be used.
  • the infrared source may be coupled via the light guide to one or more dedicated SBG arrays elements contained in the SBG array. Totally internally reflected infrared light infrared light 1009 incident on an active infrared diffracted diffracting SBG element 23 is diffracted to provide the divergent infrared light beam 1101 .
  • a structured light pattern based one the ones illustrated in FIGS. 8-9 may be encoded within the SBG element. Alternatively, other structured lighting patterns may be used.
  • more than one infrared diffracting SBG similar to the element 23 may be provided for the purpose of determining object range by triangulation.
  • Such an implementation of the invention may be used to provide the instantaneous location of an object near the image surface.
  • the invention does not rely on particular method for determining range from triangulation or determined the shape of an object using structured light. Tracking algorithms which are designed to determine the range or shape of an object by analyzing changes in sequential image frames recorded by a single sensor may also be used with the invention.
  • the invention may be used to provide more than one viewable image.
  • a virtual computer keyboard projected by a single SBG element based on the embodiments of FIGS. 10-12 there is provided a virtual computer keyboard projected by a single SBG element.
  • the other SBG elements are used to project a live image, in other words an image that is updated on a frame-by-frame basis.
  • One key with symbol A is indicated by 1102 .
  • the infrared sensor 7 detects infrared light 1300 scattered from a finger 81 of the hand 8 .
  • An image processing system determines whether the proximity of the finger to the key is sufficiently close for a key strike to have occurred.
  • more than one SBG element may be used to project elements of the keyboard onto the image surface
  • the SGB arrays in any of the above described embodiments of the invention may use SBG elements configured as wither transmissive or reflective gratings.
  • the SBG device 60 is based on reflection gratings. TIR light indicated by 1040 is reflected by the active SBG element 24 of the SBG device into the beam 1041 towards the image surface 51 forming the image 1103 .
  • the SGB arrays in any of the above described embodiments of the invention may incorporate SBG elements designed to diffract thermal infra red radiation.
  • the SGB arrays in any of the above described embodiments of the invention may incorporate SBG elements designed to diffract ultraviolet radiation.
  • the image surface is the retina of the human eye.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

There is provided a projection display device comprising: a light source, an SBG device comprising a multiplicity of separately SBG elements sandwich between transparent substrate to which transparent electrodes have been applied. The substrates function as a light guide. A least one transparent electrode comprises plurality of independently switchable transparent electrodes elements, each electrode element substantially overlaying a unique SBG element. Each SBG element encodes image information to be projected on an image surface. Light coupled into the light guide, undergoes total internal reflection until diffracted out to the light guide by an activated SBG element. The SBG diffracts light out of the light guide to form an image region on an image surface when subjected to an applied voltage via said transparent electrodes.

Description

    REFERENCE TO PRIORITY APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 15/770,485 entitled “Compact Edge Illuminated Diffractive Display,” filed Oct. 25, 2019, which is a U.S. national stage application of PCT Application No. PCT/GB2010/001920 entitled “Compact Edge Illuminated Diffractive Display,” filed Oct. 7, 2010, which claims the priority of U.S. Provisional Application No. 61/272,601 entitled “Compact Edge Illuminated Diffractive Display.” filed Oct. 9, 2009, the disclosures of which are incorporated herein by reference in their entireties.
  • BACKGROUND OF THE INVENTION
  • This invention relates to a display device, and more particularly to a compact edge-illuminated projection display based on switchable Bragg gratings.
  • There is growing consumer demand for projection displays that can be built into mobile devices such as mobile telephones and hand-held computers. However, image sizes and resolutions required for typical applications such as internet browsing or viewing high definition films are already beyond the scope of display technologies currently available for use in mobile devices. New ultra compact projectors known as picoprojectors provide one solution to this problem. Many of the picoprojector designs considered to date rely on conventional flat panel display technologies such as Liquid Crystal Display (LCD) or Digital Light Processor (DLP) technology such as that developed by Texas Instruments (TX). Optical design limits the miniaturization possible with either approach, even when solid state lasers are used as the light source. An alternative approach is to scan the image using micro-optical-electrical-mechanical systems (MOEMS), essentially writing the image using a flying spot. Although MOEMS are much smaller than LCDs or DLPs they present complex opto-mechanical design problems. Very high scanning speeds, resolutions and the tight synchronization of mirror driver and laser modulation are needed in order to deliver high resolution images. Achieving the mechanical robustness required in portable applications is also a challenge. A further problem is that it is also difficult to correct laser speckle in scanned displays.
  • Desirably, display technologies for portable devices should be very compact with volumes of a few cubic centimeters. A thin form-factor is desirable for ease of integration into devices such as mobile telephones.
  • There is a requirement for a compact solid-state high-resolution data projection display with a thin form factor.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide compact solid-state high-resolution data projection display with a thin form factor.
  • A projection display device according to the principles of the invention comprises: a first light source emitting light of a first wavelength; a first SBG device comprising a multiplicity of separately switchable SBG elements disposed in a single layer; transparent substrates sandwiching the SBG device, said substrates together functioning as a first light guide; and a means for coupling the first wavelength light into the first light guide. The first wavelength light undergoes total internal reflection within the first light guide. Transparent electrodes are applied to opposing faces of the substrates. At least one of the transparent electrodes comprises a plurality of independently switchable transparent electrode elements. Each electrode element overlays a unique SBG element. Each SBG element in first SBG device diffracts first wavelength light to form an image region on an image surface when subjected to an applied voltage via the transparent electrodes.
  • In one embodiment of the invention the image surface is disposed in proximity to the display.
  • In one embodiment of the invention the image surface is disposed more than 25 centimeters from said display.
  • In one embodiment of the invention the image surface is disposed more than 50 centimeters from said display.
  • In one embodiment of the invention one image region comprises an image of a keyboard.
  • In one embodiment of the invention the image region is an image pixel.
  • In one embodiment of the invention an SBG element pre-distorts the shape of the image region.
  • In one embodiment of the invention the image surface is an optical diffusing material.
  • In one embodiment of the invention the image surface is the retina of an eye.
  • In one embodiment of the invention the image surface is a curved surface.
  • In one embodiment of the invention the display further comprises: at least one infrared source; means for directing infrared light from the infrared source towards the image surface and at least one infrared sensor operative to detect light scatter from an object disposed in proximity to the image surface. The infrared source may be a laser. The infrared sensor may comprise an image sensing array and lens.
  • In one embodiment of the invention the display further comprises: at least one infrared source; means for directing infrared light from the infrared source towards the image surface and at least one infrared sensor operative to detect light scatter from an object disposed in proximity to the image surface. The first SBG device contains at least one infrared diffracting SBG element operative to diffract infrared light from the infrared source towards the image surface when the infrared diffracting SBG element is subjected to an applied voltage via the transparent electrodes.
  • In one embodiment of the invention that provides full-colour imaging the display further comprises: second and third light sources emitting light of second and third wavelengths; second and third SBG devices each comprising a multiplicity of separately switchable SBG elements disposed in a single layer, the SBG elements of the first second and third SBG devices substantially overlapping each other; transparent substrates sandwiching the second SBG device, said substrates together functioning as a second light guide; transparent substrates sandwiching the third SBG device, said substrates together functioning as a third light guide; and means for coupling the first, second and third wavelength light into the first, second and third light guide. Transparent electrodes are applied to substrate faces in contact with the second and third SBG devices. At least one of the transparent electrodes in contact with the second and third SBG devices comprises a plurality of independently switchable transparent electrodes elements, each of the independently switchable electrodes substantially overlays a unique SBG element. The first, second and third wavelength light undergoes total internal reflection within the light guides, Each element of the second SBG device diffracts second wavelength light to form a second image region on an image surface when subjected to an applied voltage via the transparent electrodes. Each element of the third SBG device diffracts third wavelength light to form a third image region on an image surface when subjected to an applied voltage via the transparent electrodes. The first, second and third image regions substantially overlap.
  • In one embodiment of the invention that provides full colour imaging SBG elements in the first, second and third wavelength SBG devices are activated in bands. Each band comprises at least one row of SBG elements. Each band is continuously scrolled vertically. At least one band in each of the first, second and third SBG devices is activated at any instant with no overlap occurring between the first, second and third wavelength SBG device bands.
  • A more complete understanding of the invention can be obtained by considering the following detailed description in conjunction with the accompanying drawings wherein like index numerals indicate like parts. For purposes of clarity details relating to technical material that is known in the technical fields related to the invention have not been described in detail.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic side elevation view of one embodiment of the invention.
  • FIG. 2 is a schematic front elevation view of a detail of an SBG device in one embodiment of the invention.
  • FIG. 3 is a schematic side elevation view of one embodiment of the invention.
  • FIG. 4 is a schematic side elevation view of one embodiment of the invention.
  • FIG. 5 is a schematic plan view of the embodiment of the invention illustrated in FIG. 4.
  • FIG. 6 is a schematic side elevation view of one embodiment of the invention.
  • FIG. 7 is a schematic front elevation view of a scrolling SBG device in one embodiment of the invention.
  • FIG. 8 is a front elevation view of structured illumination provided by one embodiment of the invention.
  • FIG. 9 is a front elevation view of structured illumination provided by one embodiment of the invention.
  • FIG. 10 is a schematic side elevation view of one embodiment of the invention incorporating an infrared source and infrared detector.
  • FIG. 11 is a schematic plan view of one embodiment of the invention incorporating an infrared source and an infrared detector.
  • FIG. 12 is a schematic side elevation view of one embodiment of the invention incorporating an infrared source and an infrared detector.
  • FIG. 13 is a schematic plan view of an embodiment of the invention that provides a virtual keyboard.
  • FIG. 14 is a schematic side elevation vies of an embodiment of the invention that uses reflective SBGs.
  • DETAILED DESCRIPTION OF THE INVENTION
  • It will apparent to those skilled in the art that the present invention may be practiced with some or all of the present invention as disclosed in the following description. For the purposes of explaining the invention well-known features of optical technology known to those skilled in the art of optical design and visual displays have been omitted or simplified in order not to obscure the basic principles of the invention.
  • Unless otherwise stated the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components used in the embodiments of the invention. In the following description the terms light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories.
  • Parts of the following description will be presented using terminology commonly employed by those skilled in the art of optical design.
  • It should also be noted that in the following description of the invention repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment.
  • The compact projection display disclosed in the present application is based on a diffractive optical device known as a Switchable Bragg Grating (SBG). A SBG is a Bragg grating recorded into a polymer dispersed liquid crystal (PDLC) mixture. Typically, SBG devices are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the PDLC layer. A Bragg grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure. During the recording process, the monomers polymerize and the PDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating. The resulting Bragg grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer. In the absence of an applied electric field the SBG remains in its diffracting state. When an electric field is applied to the hologram via the electrodes, the natural orientation of the LC droplets is changed thus reducing the refractive index modulation of the fringes and causing the hologram diffraction efficiency to drop to very low levels. The diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range from essentially zero to near 100%. U.S. Pat. No. 5,942,157 by Sutherland et al. and U.S. Pat. No. 5,751,452 by Tanaka et al. describe monomer and liquid crystal material combinations suitable for fabricating ESBG devices.
  • In one embodiment of the invention illustrated in the schematic side elevation view of FIG. 1 there is provided an SBG array device comprising a pair of transparent substrates 11 and 12 and an SBG layer 20 sandwiched between the substrates. The two substrates 11 and 12 together form a light guide. The SBG layer comprises an array of individually switchable SBG elements. As will be discussed below the SBG elements may be switched using a range of spatio-temporal switching schemes, including any of the active matrix switching regimes used in conventional flat panel displays. Typically the substrates will be fabricated from optical glass such as BK7 or a high quality optical plastic.
  • Transparent electrodes, which are not shown in FIG. 1, are applied to both of the inner surfaces of the substrates and electrically coupled to a voltage generator (not illustrated). The electrodes are configured such that the applied electric field will be perpendicular to the substrates. Typically, the planar electrode configuration requires low voltages, in the range of 2 to 4 volts per μm. The electrodes would typically be fabricated from Indium Tin Oxide (ITO). Commercially available ITO typically has a coating resistance of typically 300-500 Ohm/sq. An exemplary ITO film used by the inventors is the N00X0325 film manufactured by Applied Films Corporation (Colorado). Typically, ITO films used with the present invention have a thickness of 100 Angstrom.
  • In one embodiment of the invention the electrode on one substrate surface is uniform and continuous, while the electrode on the opposing substrate surface is patterned to match the shapes of the SBG elements. In an alternative embodiment of the invention the electrodes may be identically patterned such that each SBG element is sandwiched by identical electrodes matching the shape of the SBG element. Desirably, the planar electrodes should be exactly aligned with the SBG elements for optimal switching of the symbols and the elimination of any image artefacts that may result from unswitched grating regions.
  • In practice the SBG elements will separated by very narrow grating-free regions which are essentially homogenous regions of PDLC that generally do not respond to applied electric fields. Such grating-free regions normally result from masking during fabrication of the SBG device. Techniques for overcoming problems associated with such gaps are disclosed in PCT Application No PCT US2006/043938 by Popovich et al, entitled “Method and Apparatus for Switching a PDLC device”, which is incorporated by reference herein in its entirety, may be used with the present invention. In most applications of the invention the effects on image quality of such gaps between SBG elements are not likely to be significant.
  • An SBG contains slanted fringes resulting from alternating liquid crystal rich regions and polymer rich (i.e. liquid crystal depleted) regions. SBGs may be configured to be transmissive or reflective according to the slant of the fringes. Reflection SBGs are characterized by fringes that are substantially parallel to the substrates. For the purposes of explaining the invention transmissive SBGs will be assumed in the following description. However, it should be clear that any of the embodiments of the invention may be practiced using either reflective or transmissive SBGs. With no electric field applied, the extraordinary axis of the liquid crystals generally aligns normal to the fringes. The grating thus exhibits high refractive index modulation and high diffraction efficiency for P-polarized light. When an electric field is applied to the SBG, the extraordinary axes of the liquid crystal molecules align parallel to the applied field and hence perpendicular to the substrate. Note that the electric field due to the planar electrodes is perpendicular to the substrate. In this state the grating exhibits lower refractive index modulation and lower diffraction efficiency for both S- and P-polarized light. Thus the grating region no longer diffracts light but rather acts like a transparent plate have little effect on incident light other than a small amount of absorption, scatter and Fresnel reflection loss at the grating-substrate interfaces.
  • The operation of a compact projection display according to the principles of the invention may be understood with reference to FIGS. 1-3. FIG. 2 shows a front elevation view of the SBG array. FIG. 3 shows a side elevation view of the display. We consider the case in which one SBG element 22 is in its active or diffracting state and all other SBG elements such as the one indicated by 21 are in their passive or non diffracting states. Input light 1000 from a source 4 is optically coupled to the substrates 11 and 12 via an optical coupling device 3. Light admitted into the light guide undergoes TIR between the outer surfaces of the substrates 11,12. Advantageously, the source is a solid state laser. Alternatively, the source may be a Light Emitting Diode (LED). However the broader spectral bandwidth of LEDs will result in some chromatic dispersion at the SBG elements. The coupling device may be a prism or a grating. The invention does not assume any particular method for coupling light into the substrates. However, a method based on a grating is highly desirable from the perspective of minimizing the thickness of the display. To overcome laser speckle the display would advantageously also incorporate a despeckler such as the one disclosed in the PCT application PCT/IB2008/0019099 with International Filing date 22 Jul. 2008 entitled “LASER ILLUMINATION DEVICES” which is incorporated by reference herein in its entirety. The invention may be applied with any other type of despeckler but preferably one based on solid state technology.
  • The input light 1000 is deflected into the ray direction 1001 by the coupling device 3. The deflection angle in the substrates should exceed the critical angle for the substrate medium to air interface. The ray now follows a TIR path constrained by the outer surfaces of the light guide provided by the substrates. Hence, the ray 1001 is totally internally reflected into the ray path indicated by 1001,1002,1003.
  • The grating in each SBG element encodes wave-front amplitude and phase modulation information such that that incident TIR light is diffracted to form a focused image region of predefined geometry and luminance distribution at the image surface 5. The light 1003 which impinges on the active SBG element 22 is diffracted towards the image surface 5 as the beam 1004. As indicated in FIG. 3, the diffracted light 1004 forms an image 1100 at the image surface 5. Light which does not impinge on the SBG element will hit the substrate-air interface at the critical angle and is therefore totally internally reflected and eventually collected at a beam stop, which is not illustrated. The invention does not assume any particular method for trapping non diffracted light.
  • The image surface 5 may a diffusing surface of any geometry and as indicated in FIG. 3 may be tilted with respect to the display. In typical applications of the invention the image surface will be a plane. The image surface will most typically will be either parallel to or orthogonal to the grating plane. The image is formed without the need for an additional lens or any other optical element between the SBG array and the surface. Another important feature of the invention is that, since the SBG array elements each contain diffraction patterns, the resolution of the final projected images is much higher than the resolution of the array. The side elevation view of the display of FIG. 1 in which the source and coupling optics are omitted shows the formation of an image element 1100 on the surface 5 by the SBG element 22.
  • In one embodiment of the invention the image element may be a rectangular pixel having a luminance level determined by the voltage applied across the SBG element. By applying voltages to each SBG in the SBG array a pixelated image is provided over a predefined image area. An SBG element may be designed to provide pre-distortion of the image element geometry to compensate for the effects of off axis projection, such as key-stoning. The invention is not necessarily limited to pixelated display applications. In one embodiment of the invention the image element formed by a SBG element may have an intensity distribution within a predefined area. As will be explained below such an embodiment may be used to provide structured illumination for a range of applications.
  • The techniques for encoding such optical functions into an SBG are well know to those skilled in the design of Holographic Optical Elements (HOEs) and Diffractive Optical Elements (DOEs). The invention does not rely on any particular method of encoding optical functions into SBGs. Advantageously the SBG element is fabricated by first designing and fabricating a Computer Generated Hologram (CGH) with the required optical properties and then recording the CGH into the ESBG element. The above process is equivalent to forming a hologram of the CGH. The invention does not rely on any particular method for recording the CGH into the SBG. Any holographic recording techniques known to those skilled in the art of holography may be used. It should be noted that the resulting SBG element is not identical in every respect to the CGH since properties of a CGH rely on its surface phase relief features while the optical characteristics of a Bragg grating such as an SBG rely on a complex three dimensional fringe distribution. The basic principles of computer generated holograms suitable for use in the present invention are discussed in an article entitled HASMAN E et al “Diffractive Optics: Design Realisation and Applications”, Fibre and Integrated Optics; 16:1-25, 1997.
  • It should be clear from consideration of FIGS. 1-3 that a display according to the principles of the invention will be transparent to external ambient light such as the light 1005 indicated in FIG. 1. Since the external light is broadband and incident over a wide range of angles only a small portion of it will be lost due to diffraction at active SBG elements. In other words only a very small portion of the external light will have incidence angles and wavelengths that satisfy the Bragg condition at the active SBG elements. The external light will also suffer small transmission loss due to Fresnel reflections, scatter and absorption.
  • Typically, the image surface is disposed between 25-100 centimetres from the display. However, the distances may be much greater depending one the application and the image brightness requirements. In certain embodiments of the invention the image surface may be very close to the display. In such embodiments the image and image surface may be integrated within a directly viewable display module. However, such embodiments will sacrifice the image magnifications obtained by projecting the image over a longer distance.
  • In one embodiment of the invention based on the embodiment illustrated in FIGS. 1-3 there is provided a colour projection display. The basic principles of the colour display are illustrated in FIGS. 4-5. Light from separate red green and blue sources is coupled into the light-guide formed by the substrates 11,12. Again the coupling optics, which are not illustrated, may comprise prisms or diffractive elements. Many alternative methods of coupling light from different colour sources into a light guide will be known to those skilled in the art. Desirably, the coupling optics are based on diffractive optical techniques to keep the display as thin as possible. The TIR angle for each colour is constrained such that the incidence angle for a particular colour light at a given SBG satisfy the Bragg condition for diffraction at a specified diffraction angle. The red, green, blue light is presented sequentially. As indicated in the schematic side elevation view of FIG. 4, incident red, green, blue TIR rays 1003R,1003G,1003B at the SBG 22 are diffracted into the red, green, blue image light indicated by 1004R,1004G,1004B towards the image surface 5 forming the colour image element 1100. FIG. 5 shows a plan view of the display showing the a plan view of the diffracted beams indicated by 1005R,1005G,1005B. The lateral extent of the projected beam is indicated by the rays 1006A, 1006B. Note that in FIGS. 4-5 the separation of the beams has been exaggerated for the purposes of explanation.
  • Colour imaging may also be provided by stacking red, green, and blue SBG arrays of the type illustrated in FIGS. 1-3 and providing illumination from red, green and blue light sources. Such embodiments of the invention will suffer from the problems of alignment and light transmission loss. In the embodiment of the invention illustrated in the schematic side elevation view of FIG. 6 there are provided red, green and blue diffracting SBG arrays 20,30,40. The SBG arrays are sandwiched between substrates 11,12,13,14,15,16. The substrates are stacked to form a single light guiding structure. Light from separate red, green and blue sources is coupled into the light-guide. Again the preferred coupling optics are based on diffractive optical techniques to keep the display as thin as possible. Since a separate SBG arrays is provided for each colour, the TIR angle may be the same for each colour. The red, green, blue light is presented simultaneously. Referring to FIG. 6 incident red, green and blue light 1006R,1006G,1006B at the active red, green, blue SBG elements 22,32,42 is diffracted into the beams 1007R,1007G,1007B forming a colour image element 1102 at the image surface 5. Note that the separation of the beams has again been exaggerated for the purposes of explanation.
  • In one embodiment of the invention the SBG elements may be switched using a switching scheme commonly referred to as “scrolling”. Conventional colour displays rely on providing a single display panel that is updated with red, green and blue picture information in turn and sequentially fully illuminated by red, green and blue illumination. Alternatively, three panel architectures provide seperate red, green and blue image panels which are separately fully illuminated by red, green and blue light. Such displays suffer from the problems of having to update the entire red, green or blue images before illumination of the appropriate colour can be applied. In the case of three-panel displays the cost of the display may become prohibitive. A single panel scrolling color projection display system is characterized by a single light modulator panel having a raster of individual picture elements or pixels, which panel is illuminated by horizontally elongated red, green and blue illumination bars or stripes. The stripes are continuously scrolled vertically across the panel while the rows of pixels are synchronously addressed with display information corresponding to the color of the then incident stripe. The modulated scrolling red, green and blue stripes are then projected onto a display screen to produce a visually integrated full color display. Exemplary scrolling displays are disclosed in U.S. Pat. No. 5,410,370, entitled “Single panel color projection video display improved scanning” issued to P. Janssen on Mar. 25, 1994, and U.S. Pat. No. 5,416,514, entitled “Single panel color projection video display having control circuitry for synchronizing the color illumination system with reading/writing of the light valve” issued to P. Janssen et al. on May 16, 1995.
  • The principles of scrolling may be applied in the present invention by switching rows of SBG elements in sequence. A basic scrolling scheme for use with the present invention is illustrated in FIG. 7. The scrolling scheme may be implemented using the embodiment of FIG. 6. In each SBG device SBG elements are activated in bands comprising at least one row of SBG elements. The bands are continuously scrolled vertically, at least one band in each of the red green and blue SBG devices being activated at any instant, said bands in said first, second and third SBG devices not overlapping. FIG. 7 shows red, green and blue states indicated by symbols R,G,B at one instant in time. In each case, the diffracting rows or bands of SBG elements are shaded. Thus red SBG band 50R, green SBG band 50G and blue SBG band 50B are diffracting while red SBG pixel rows 51R, green SBG pixel rows 51G and blue SBG pixel rows SIB are not diffracting permitting TIR to proceed.
  • In a particular group of embodiments of the invention at least one SBG array element in any of the above described embodiments may provide structured infrared illumination using light from an infra red source. The infrared light would be injected into the light guide formed by the substrates in a similar fashion to the means used to introduce visible light in any of the above embodiments. The infrared source is typically a 780 nm laser. However other near-infrared sources may be used. The structure lighting may comprise parallel bars, concentric circles and other geometrical structures commonly used in the visualization and measurement of three-dimensional shapes. Examples of structures infrared lighting are provided in FIGS. 8-9. In the example shown in FIG. 8 the structured lighting 1010 comprises parallel bars and spaces 1011,1012. In the example shown in FIG. 9 the structure lighting 1020 comprises concentric circles 1021 separated by gaps 1022.
  • FIGS. 10-11 show an embodiment similar to the one of FIGS. 4-5 in which there is further provided at least one infrared sensor such as 7 and at least one infrared source such as 8. Advantageously, the sensor is a two dimensional infrared array. The infrared source illuminates the image surface 5 with the infrared beam indicated by 1100. The infrared sensor detects backscattered light from objects within a field of view indicated by 1200. The sensor is coupled to a processor which is in turn coupled to an image processor which is not illustrated. The optical system is illustrated in plan view in FIG. 11. Since the display is transparent one or both of the infrared sensor or source may be displayed on the opposite site of the display to the image surface as indicated in FIGS. 10-11. Alternatively, one or both of the infrared sensor or source may be disposed around the periphery of the display. In one embodiment of the invention a structured light pattern based on the ones illustrated in FIGS. 8-9 may be encoded within the SBG element. Alternatively, other structured lighting patterns may be used.
  • In one embodiment of the invention illustrated in the schematic side elevation view of FIG. 12 the infrared source may be coupled via the light guide to one or more dedicated SBG arrays elements contained in the SBG array. Totally internally reflected infrared light infrared light 1009 incident on an active infrared diffracted diffracting SBG element 23 is diffracted to provide the divergent infrared light beam 1101. In one embodiment of the invention a structured light pattern based one the ones illustrated in FIGS. 8-9 may be encoded within the SBG element. Alternatively, other structured lighting patterns may be used. In one embodiment of the invention more than one infrared diffracting SBG similar to the element 23 may be provided for the purpose of determining object range by triangulation. Such an implementation of the invention may be used to provide the instantaneous location of an object near the image surface. The invention does not rely on particular method for determining range from triangulation or determined the shape of an object using structured light. Tracking algorithms which are designed to determine the range or shape of an object by analyzing changes in sequential image frames recorded by a single sensor may also be used with the invention.
  • It will be clear from consideration of the above description that the invention may be used to provide more than one viewable image. In one embodiment of the invention based on the embodiments of FIGS. 10-12 there is provided a virtual computer keyboard projected by a single SBG element. The other SBG elements are used to project a live image, in other words an image that is updated on a frame-by-frame basis. One key with symbol A is indicated by 1102. The infrared sensor 7 detects infrared light 1300 scattered from a finger 81 of the hand 8. An image processing system (not illustrated) determines whether the proximity of the finger to the key is sufficiently close for a key strike to have occurred. In other embodiments of the invention more than one SBG element may be used to project elements of the keyboard onto the image surface
  • The SGB arrays in any of the above described embodiments of the invention may use SBG elements configured as wither transmissive or reflective gratings. In the embodiment illustrated in the schematic side elevation view of FIG. 14 the SBG device 60 is based on reflection gratings. TIR light indicated by 1040 is reflected by the active SBG element 24 of the SBG device into the beam 1041 towards the image surface 51 forming the image 1103.
  • The SGB arrays in any of the above described embodiments of the invention may incorporate SBG elements designed to diffract thermal infra red radiation.
  • The SGB arrays in any of the above described embodiments of the invention may incorporate SBG elements designed to diffract ultraviolet radiation.
  • In one embodiment of the invention the image surface is the retina of the human eye.
  • Although the invention has been described in relation to what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not limited to the disclosed arrangements but rather is intended to cover various modifications and equivalent constructions included within the spirit and scope of the invention.

Claims (21)

1.-17. (canceled)
18. A backlight unit for illuminating a display panel, said backlight unit comprising:
a first light source emitting light of a first wavelength;
a waveguide supporting a first plurality of switchable Bragg grating (SBG) elements disposed in a single layer; and
a coupler for directing said first wavelength light into a total internal reflection path within said waveguide, each SBG element having a diffracting state and a non-diffracting state,
wherein when each SBG element is in its diffracting state, the SBG element diffracts said first wavelength light to form an illumination region of predefined geometry and luminance distribution on a surface of the display panel.
19. The backlight unit of claim 18, wherein said waveguide comprises transparent substrates sandwiching said SBG layer, wherein transparent electrodes for applying electric fields across said SBG elements are disposed on opposing faces of said substrates, and wherein at least one of said transparent electrodes comprises a plurality of independently switchable transparent electrode elements, each of independently switchable electrode element substantially overlays a unique SBG element.
20. The backlight unit of claim 18, wherein said diffracting state exists when no electric field is applied across said unique SBG element and said non diffracting state exists when an electric field is applied across said unique SBG element.
21. The backlight unit of claim 18, wherein said SBG element encodes wavefront and phase information corresponding to said geometry and said luminance distribution.
22. The backlight unit of claim 21, wherein said surface of said display panel is at least one selected from the group of: a surface spatially displaced along a direction normal to a total internal reflection surface of said waveguide; a light diffusing surface; and a curved surface.
23. The backlight unit of claim 19, wherein said first plurality of SBG elements contains at least one infrared diffracting SBG element operative to diffract infrared light from said infrared source towards said surface when said infrared diffracting SBG element is switched from its non-diffracting state to its diffracting state.
24. The backlight unit of claim 18, further comprising:
a second light source emitting light of a second wavelength;
a third light source emitting light of a third wavelength;
a second plurality of SBG elements and a third plurality of SBG elements,
wherein the second plurality of SBG elements and the third plurality of SBG elements are disposed in substantially overlapping layers,
wherein each SBG element of said second plurality of SBG elements diffracts said second wavelength light to form a second illumination region of predefined geometry and luminance distribution on said surface when subjected to an applied voltage,
wherein each SBG element of said third plurality of SBG elements diffracts said third wavelength light to form a third illumination region of predefined geometry and luminance distribution on said surface when subjected to an applied voltage, and
wherein said elements of said second and third pluralities of SBG elements encode wavefront and phase information corresponding to said predefined geometry and luminance distribution.
25. The backlight unit of claim 24, wherein said first, second, and third illumination regions substantially overlap.
26. The backlight unit of claim 24, wherein each of said first, second and third pluralities of SBG elements are configured in rows and columns of a rectangular array and are switched sequentially into their diffracting states in bands comprising at least one row of SBG elements, wherein at least one band of SBG elements in each of said first, second and third pluralities of SBG elements is activated at any instant, wherein no overlap exists between said bands of said first, second and third plurality of SBG elements.
27. The backlight unit of claim 18, further comprising at least one selected from the group consisting of a despeckler or an eye tracker.
28. The backlight unit of claim 18, wherein said first light source is a laser or a light emitting diode.
29. The backlight unit of claim 18, wherein said coupler is a grating or a prism.
30. The backlight unit of claim 18, further comprising at least two SBG elements having differing grating vectors.
31. The backlight unit of claim 18, wherein the first plurality of SBG elements comprise at least two SBG elements with identical optical characteristics.
32. The backlight unit of claim 18, wherein the first plurality of SBG elements comprise at least one selected from the group consisting of an SBG element operative to convert incident collimated light into divergent light, an SBG element operative to convert incident light into diffuse light, an SBG element with optical power, or an SBG element that pre-distorts the shape of said illumination region.
33. The backlight unit of claim 18, wherein the first plurality of SBG elements comprise at least one SBG element with a first phase retarding characteristic under a first voltage and a second phase retarding characteristic under a second voltage.
34. The backlight unit of claim 18, wherein the first plurality of SBG elements comprise at least one SBG element with a first light diffusing characteristic under a first voltage and a second light diffusing characteristic under a second voltage.
35. The backlight unit of claim 18, wherein the first plurality of SBG elements comprise at least one SBG element having a first diffraction efficiency under a first voltage and a second diffraction efficiency under a second voltage.
36. The backlight unit of claim 18, wherein the first plurality of SBG elements comprise at least one SBG element operative to diffract light out of said total internal reflection path through one of said substrates into one of a predefined set of output light paths when said at least one SBG element is in its diffracting state.
37. The backlight unit of claim 18, wherein said first light source provides red, green and blue light and the first plurality of SBG elements comprise SBG elements optimized to diffract red, green and blue light.
US17/377,055 2009-10-09 2021-07-15 Compact Edge Illuminated Diffractive Display Abandoned US20220075242A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/377,055 US20220075242A1 (en) 2009-10-09 2021-07-15 Compact Edge Illuminated Diffractive Display

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US27260109P 2009-10-09 2009-10-09
PCT/GB2010/001920 WO2011042711A2 (en) 2009-10-09 2010-10-07 Compact edge illuminated diffractive display
US201915770485A 2019-10-25 2019-10-25
US17/377,055 US20220075242A1 (en) 2009-10-09 2021-07-15 Compact Edge Illuminated Diffractive Display

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/770,485 Continuation US20200057353A1 (en) 2009-10-09 2010-10-07 Compact Edge Illuminated Diffractive Display
PCT/GB2010/001920 Continuation WO2011042711A2 (en) 2009-10-09 2010-10-07 Compact edge illuminated diffractive display

Publications (1)

Publication Number Publication Date
US20220075242A1 true US20220075242A1 (en) 2022-03-10

Family

ID=43502888

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/770,485 Abandoned US20200057353A1 (en) 2009-10-09 2010-10-07 Compact Edge Illuminated Diffractive Display
US14/545,578 Expired - Fee Related US9726540B2 (en) 2009-10-09 2015-05-26 Diffractive waveguide providing structured illumination for object detection
US15/670,875 Active US10409144B2 (en) 2009-10-09 2017-08-07 Diffractive waveguide providing structured illumination for object detection
US17/377,055 Abandoned US20220075242A1 (en) 2009-10-09 2021-07-15 Compact Edge Illuminated Diffractive Display

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US15/770,485 Abandoned US20200057353A1 (en) 2009-10-09 2010-10-07 Compact Edge Illuminated Diffractive Display
US14/545,578 Expired - Fee Related US9726540B2 (en) 2009-10-09 2015-05-26 Diffractive waveguide providing structured illumination for object detection
US15/670,875 Active US10409144B2 (en) 2009-10-09 2017-08-07 Diffractive waveguide providing structured illumination for object detection

Country Status (2)

Country Link
US (4) US20200057353A1 (en)
WO (1) WO2011042711A2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11573483B2 (en) 2017-10-16 2023-02-07 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US11709373B2 (en) 2014-08-08 2023-07-25 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11754842B2 (en) 2015-10-05 2023-09-12 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11899238B2 (en) 2019-08-29 2024-02-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US12140764B2 (en) 2019-02-15 2024-11-12 Digilens Inc. Wide angle waveguide display
US12210153B2 (en) 2019-01-14 2025-01-28 Digilens Inc. Holographic waveguide display with light control layer
US12248150B2 (en) 2017-01-05 2025-03-11 Digilens Inc. Wearable heads up displays
US12271035B2 (en) 2019-06-07 2025-04-08 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US12298513B2 (en) 2016-12-02 2025-05-13 Digilens Inc. Waveguide device with uniform output illumination
US12306585B2 (en) 2018-01-08 2025-05-20 Digilens Inc. Methods for fabricating optical waveguides
US12366823B2 (en) 2018-01-08 2025-07-22 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US12379547B2 (en) 2015-02-12 2025-08-05 Digilens Inc. Waveguide grating device
US12397477B2 (en) 2019-02-05 2025-08-26 Digilens Inc. Methods for compensating for optical surface nonuniformity
US12405507B2 (en) 2012-11-16 2025-09-02 Digilens Inc. Transparent waveguide display with grating lamina that both couple and extract modulated light

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
WO2011042711A2 (en) 2009-10-09 2011-04-14 Milan Momcilo Popovich Compact edge illuminated diffractive display
US11204540B2 (en) 2009-10-09 2021-12-21 Digilens Inc. Diffractive waveguide providing a retinal image
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
EP2995986B1 (en) 2011-08-24 2017-04-12 Rockwell Collins, Inc. Data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US20150010265A1 (en) 2012-01-06 2015-01-08 Milan, Momcilo POPOVICH Contact image sensor using switchable bragg gratings
EP2842003B1 (en) 2012-04-25 2019-02-27 Rockwell Collins, Inc. Holographic wide angle display
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
EP2862026A1 (en) * 2012-06-18 2015-04-22 Milan Momcilo Popovich Apparatus for copying a hologram
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US20180275402A1 (en) 2015-01-12 2018-09-27 Digilens, Inc. Holographic waveguide light field displays
WO2016113534A1 (en) 2015-01-12 2016-07-21 Milan Momcilo Popovich Environmentally isolated waveguide display
JP6867947B2 (en) 2015-01-20 2021-05-12 ディジレンズ インコーポレイテッド Holographic waveguide rider
WO2016146963A1 (en) 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
CN109073889B (en) 2016-02-04 2021-04-27 迪吉伦斯公司 Holographic Waveguide Optical Tracker
EP3433659B1 (en) 2016-03-24 2024-10-23 DigiLens, Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
CN113504657B (en) 2016-07-15 2025-04-18 光场实验室公司 Selective propagation of light fields and energy in holographic waveguide arrays
US10241244B2 (en) 2016-07-29 2019-03-26 Lumentum Operations Llc Thin film total internal reflection diffraction grating for single polarization or dual polarization
WO2018033917A1 (en) * 2016-08-18 2018-02-22 Ramot At Tel-Aviv University Ltd. Structured light projector
US20180367722A1 (en) * 2017-06-14 2018-12-20 Canon Kabushiki Kaisha Image acquisition device and image acquisition method
JP6584454B2 (en) * 2017-06-14 2019-10-02 キヤノン株式会社 Image processing apparatus and method
JP2019082452A (en) * 2017-10-31 2019-05-30 キヤノン株式会社 Image generation method, image generation device, and defect determination method using the same
WO2019136476A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Waveguide architectures and related methods of manufacturing
KR102819207B1 (en) 2018-01-08 2025-06-11 디지렌즈 인코포레이티드. Systems and methods for manufacturing waveguide cells
KR20200116943A (en) 2018-01-14 2020-10-13 라이트 필드 랩 인코포레이티드 Holographic and diffractive optical encoding system
WO2019140269A1 (en) * 2018-01-14 2019-07-18 Light Field Lab, Inc. Systems and methods for transverse energy localization in energy relays using ordered structures
US11650354B2 (en) 2018-01-14 2023-05-16 Light Field Lab, Inc. Systems and methods for rendering data from a 3D environment
WO2019140348A2 (en) 2018-01-14 2019-07-18 Light Field Lab, Inc. Light field vision-correction device
JP7487109B2 (en) 2018-03-16 2024-05-20 ディジレンズ インコーポレイテッド Holographic waveguides incorporating birefringence control and methods for fabricating same
US10714891B2 (en) * 2018-07-06 2020-07-14 Himax Technologies Limited Projector, electronic device having projector and associated manufacturing method
TWI797142B (en) 2018-07-12 2023-04-01 揚明光學股份有限公司 Optical device and fabrication method thereof
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
CN109141293B (en) * 2018-08-08 2020-04-24 深圳市银星智能科技股份有限公司 Object measuring method based on structured light and electronic equipment
US11914148B2 (en) 2018-09-07 2024-02-27 Adeia Semiconductor Inc. Stacked optical waveguides
US11237672B2 (en) * 2019-02-01 2022-02-01 Boe Technology Group Co., Ltd. Apparatus integrated with display panel for TOF 3D spatial positioning
EP3924759B1 (en) 2019-02-15 2025-07-30 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US20200292745A1 (en) 2019-03-12 2020-09-17 Digilens Inc. Holographic Waveguide Backlight and Related Methods of Manufacturing
CN114341729A (en) 2019-07-29 2022-04-12 迪吉伦斯公司 Method and apparatus for multiplying image resolution and field of view of pixelated displays
WO2022140763A1 (en) 2020-12-21 2022-06-30 Digilens Inc. Eye glow suppression in waveguide based displays
WO2022150841A1 (en) 2021-01-07 2022-07-14 Digilens Inc. Grating structures for color waveguides
JP2024508926A (en) 2021-03-05 2024-02-28 ディジレンズ インコーポレイテッド Vacuum periodic structure and manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911018A (en) * 1994-09-09 1999-06-08 Gemfire Corporation Low loss optical switch with inducible refractive index boundary and spaced output target
US6167169A (en) * 1994-09-09 2000-12-26 Gemfire Corporation Scanning method and architecture for display

Family Cites Families (251)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035068A (en) 1975-06-25 1977-07-12 Xerox Corporation Speckle minimization in projection displays by reducing spatial coherence of the image light
JPS6232425A (en) 1985-08-05 1987-02-12 Brother Ind Ltd optical deflector
US5148302A (en) 1986-04-10 1992-09-15 Akihiko Nagano Optical modulation element having two-dimensional phase type diffraction grating
US5119454A (en) 1988-05-23 1992-06-02 Polaroid Corporation Bulk optic wavelength division multiplexer
US5150234A (en) 1988-08-08 1992-09-22 Olympus Optical Co., Ltd. Imaging apparatus having electrooptic devices comprising a variable focal length lens
US4964701A (en) 1988-10-04 1990-10-23 Raytheon Company Deflector for an optical beam
US5009483A (en) 1989-04-12 1991-04-23 Rockwell Iii Marshall A Optical waveguide display system
US5099343A (en) 1989-05-25 1992-03-24 Hughes Aircraft Company Edge-illuminated liquid crystal display devices
US5410370A (en) 1990-12-27 1995-04-25 North American Philips Corporation Single panel color projection video display improved scanning
US5416514A (en) 1990-12-27 1995-05-16 North American Philips Corporation Single panel color projection video display having control circuitry for synchronizing the color illumination system with reading/writing of the light valve
US5224198A (en) 1991-09-30 1993-06-29 Motorola, Inc. Waveguide virtual image display
US5264950A (en) 1992-01-06 1993-11-23 Kent State University Light modulating device with polarizer and liquid crystal interspersed as spherical or randomly distorted droplets in isotropic polymer
US5295208A (en) 1992-02-26 1994-03-15 The University Of Alabama In Huntsville Multimode waveguide holograms capable of using non-coherent light
US5296967A (en) 1992-03-02 1994-03-22 U.S. Precision Lens Incorporated High speed wide angle projection TV lens system
US5251048A (en) 1992-05-18 1993-10-05 Kent State University Method and apparatus for electronic switching of a reflective color display
US5313330A (en) 1992-08-31 1994-05-17 U.S. Precision Lens Incorporated Zoom projection lens systems
US5371817A (en) 1993-02-16 1994-12-06 Eastman Kodak Company Multichannel optical waveguide page scanner with individually addressable electro-optic modulators
US5751452A (en) 1993-02-22 1998-05-12 Nippon Telegraph And Telephone Corporation Optical devices with high polymer material and method of forming the same
DE69434719T2 (en) 1993-02-26 2007-02-08 Yeda Research And Development Co., Ltd. Optical holographic devices
US5371626A (en) 1993-03-09 1994-12-06 Benopcon, Inc. Wide angle binocular system with variable power capability
US5309283A (en) 1993-03-30 1994-05-03 U.S. Precision Lens Incorporated Hybrid, color-corrected, projection TV lens system
US5986746A (en) 1994-02-18 1999-11-16 Imedge Technology Inc. Topographical object detection system
US5506929A (en) 1994-10-19 1996-04-09 Clio Technologies, Inc. Light expanding system for producing a linear or planar light beam from a point-like light source
TW334520B (en) 1995-02-24 1998-06-21 Matsushita Electric Industrial Co Ltd Display device Liquid crystal display
JP3658034B2 (en) 1995-02-28 2005-06-08 キヤノン株式会社 Image observation optical system and imaging optical system
US5621529A (en) 1995-04-05 1997-04-15 Intelligent Automation Systems, Inc. Apparatus and method for projecting laser pattern with reduced speckle noise
US5831700A (en) 1995-05-19 1998-11-03 Kent State University Polymer stabilized four domain twisted nematic liquid crystal display
EP0764865B1 (en) 1995-09-21 2003-07-30 U.S. Precision Lens Inc. Projection television lens system
US6469683B1 (en) 1996-01-17 2002-10-22 Nippon Telegraph And Telephone Corporation Liquid crystal optical device
US5963375A (en) 1996-01-31 1999-10-05 U.S. Precision Lens Inc. Athermal LCD projection lens
US6166834A (en) 1996-03-15 2000-12-26 Matsushita Electric Industrial Co., Ltd. Display apparatus and method for forming hologram suitable for the display apparatus
US5841587A (en) 1996-04-29 1998-11-24 U.S. Precision Lens Inc. LCD projection lens
US5870228A (en) 1996-05-24 1999-02-09 U.S. Precision Lens Inc. Projection lenses having larger back focal length to focal length ratios
US6867888B2 (en) 1996-07-12 2005-03-15 Science Applications International Corporation Switchable polymer-dispersed liquid crystal optical elements
US5942157A (en) 1996-07-12 1999-08-24 Science Applications International Corporation Switchable volume hologram materials and devices
US5856842A (en) 1996-08-26 1999-01-05 Kaiser Optical Systems Corporation Apparatus facilitating eye-contact video communications
FR2755530B1 (en) * 1996-11-05 1999-01-22 Thomson Csf VISUALIZATION DEVICE AND FLAT TELEVISION SCREEN USING THE SAME
US5875012A (en) 1997-01-31 1999-02-23 Xerox Corporation Broadband reflective display, and methods of forming the same
US6133971A (en) 1997-01-31 2000-10-17 Xerox Corporation Holographically formed reflective display, liquid crystal display and projection system and methods of forming the same
US6567573B1 (en) 1997-02-12 2003-05-20 Digilens, Inc. Switchable optical components
US5930433A (en) 1997-07-23 1999-07-27 Hewlett-Packard Company Waveguide array document scanner
JP2000056259A (en) 1998-08-10 2000-02-25 Fuji Xerox Co Ltd Picture display device
US6169594B1 (en) 1998-08-24 2001-01-02 Physical Optics Corporation Beam deflector and scanner
AU6143199A (en) 1998-09-14 2000-04-03 Digilens Inc. Holographic illumination system and holographic projection system
AU6428199A (en) * 1998-10-16 2000-05-08 Digilens Inc. Holographic display system
US6082862A (en) 1998-10-16 2000-07-04 Digilens, Inc. Image tiling technique based on electrically switchable holograms
US6414760B1 (en) 1998-10-29 2002-07-02 Hewlett-Packard Company Image scanner with optical waveguide and enhanced optical sampling rate
JP2000267042A (en) 1999-03-17 2000-09-29 Fuji Xerox Co Ltd Head-mounted type video display device
JP2000267552A (en) 1999-03-19 2000-09-29 Sony Corp Image recording apparatus, image recording method, and recording medium
US6504629B1 (en) 1999-03-23 2003-01-07 Digilens, Inc. Method and apparatus for illuminating a display
JP2001093179A (en) 1999-09-21 2001-04-06 Pioneer Electronic Corp Optical pickup
KR100865598B1 (en) * 2000-05-29 2008-10-27 브이케이비 인코포레이티드 Virtual data input device and method for inputting alphanumeric characters and other data
US6829095B2 (en) 2000-06-05 2004-12-07 Lumus, Ltd. Substrate-guided optical beam expander
US20030190612A1 (en) 2000-08-31 2003-10-09 Nobuko Yamamoto Detecting method and detection substrate for use therein
JP4727034B2 (en) 2000-11-28 2011-07-20 オリンパス株式会社 Observation optical system and imaging optical system
US6600590B2 (en) 2001-02-20 2003-07-29 Eastman Kodak Company Speckle suppressed laser projection system using RF injection
US6625381B2 (en) 2001-02-20 2003-09-23 Eastman Kodak Company Speckle suppressed laser projection system with partial beam reflection
GB0108838D0 (en) 2001-04-07 2001-05-30 Cambridge 3D Display Ltd Far field display
FI20010778L (en) 2001-04-12 2002-10-13 Nokia Corp Optical switching arrangement
US7009773B2 (en) 2001-05-23 2006-03-07 Research Foundation Of The University Of Central Florida, Inc. Compact microlenslet arrays imager
US6594090B2 (en) 2001-08-27 2003-07-15 Eastman Kodak Company Laser projection display system
US6833955B2 (en) 2001-10-09 2004-12-21 Planop Planar Optics Ltd. Compact two-plane optical device
US6577429B1 (en) 2002-01-15 2003-06-10 Eastman Kodak Company Laser projection display system
EP1347641A1 (en) * 2002-03-19 2003-09-24 Siemens Aktiengesellschaft Free projection display device
IL148804A (en) 2002-03-21 2007-02-11 Yaacov Amitai Optical device
KR20030088217A (en) 2002-05-13 2003-11-19 삼성전자주식회사 Wearable display system enabling adjustment of magnfication
ITTO20020625A1 (en) 2002-07-17 2004-01-19 Fiat Ricerche LIGHT GUIDE FOR "HEAD-MOUNTED" OR "HEAD-UP" TYPE DISPLAY DEVICES
US6805490B2 (en) 2002-09-30 2004-10-19 Nokia Corporation Method and system for beam expansion in a display device
FI114946B (en) 2002-12-16 2005-01-31 Nokia Corp Diffractive grating element for balancing diffraction efficiency
JP3873892B2 (en) 2003-01-22 2007-01-31 コニカミノルタホールディングス株式会社 Video display device
US20070041684A1 (en) 2003-05-09 2007-02-22 Sbg Labs Inc. A Delaware Corporation Switchable viewfinder display
FI115169B (en) 2003-05-13 2005-03-15 Nokia Corp Method and optical system for coupling light to a waveguide
GB2403814A (en) 2003-07-10 2005-01-12 Ocuity Ltd Directional display apparatus with birefringent lens structure
IL157837A (en) 2003-09-10 2012-12-31 Yaakov Amitai Substrate-guided optical device particularly for three-dimensional displays
CN1914556B (en) 2004-01-29 2010-05-26 松下电器产业株式会社 Light source device and two-dimensional image display device
EP3462227A3 (en) 2004-03-29 2019-06-19 Sony Corporation Optical device, and virtual image display device
US20050232530A1 (en) 2004-04-01 2005-10-20 Jason Kekas Electronically controlled volume phase grating devices, systems and fabrication methods
EP1748305A4 (en) 2004-05-17 2009-01-14 Nikon Corp Optical element, combiner optical system, and image display unit
IL162572A (en) 2004-06-17 2013-02-28 Lumus Ltd High brightness optical device
IL162573A (en) 2004-06-17 2013-05-30 Lumus Ltd Substrate-guided optical device with very wide aperture
KR20070036742A (en) 2004-07-20 2007-04-03 아사히 가라스 가부시키가이샤 Liquid Crystal Lens Element and Optical Head Device
IL163361A (en) 2004-08-05 2011-06-30 Lumus Ltd Optical device for light coupling into a guiding substrate
US7075273B2 (en) 2004-08-24 2006-07-11 Motorola, Inc. Automotive electrical system configuration using a two bus structure
US7206107B2 (en) 2004-12-13 2007-04-17 Nokia Corporation Method and system for beam expansion in a display device
WO2006064334A1 (en) 2004-12-13 2006-06-22 Nokia Corporation General diffractive optics method for expanding an exit pupil
US20060126181A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
JP4995732B2 (en) 2004-12-13 2012-08-08 ノキア コーポレイション System and method for near-focus ray expansion in a display device
EP1849033B1 (en) 2005-02-10 2019-06-19 Lumus Ltd Substrate-guided optical device utilizing thin transparent layer
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Substrate-guided optical device utilizing beam splitters
WO2006085310A1 (en) 2005-02-10 2006-08-17 Lumus Ltd. Substrate-guided optical device particularly for vision enhanced optical systems
US7325928B2 (en) 2005-02-14 2008-02-05 Intel Corporation Resolution multiplication technique for projection display systems
WO2006102073A2 (en) 2005-03-18 2006-09-28 Sbg Labs, Inc. Spatial light modulator
JP4612853B2 (en) * 2005-03-29 2011-01-12 キヤノン株式会社 Pointed position recognition device and information input device having the same
WO2006132614A1 (en) 2005-06-03 2006-12-14 Nokia Corporation General diffractive optics method for expanding and exit pupil
JP4655771B2 (en) 2005-06-17 2011-03-23 ソニー株式会社 Optical device and virtual image display device
EP1922580B1 (en) 2005-09-07 2009-11-04 BAE Systems PLC A projection display with a rod-like, rectangular cross-section waveguide and a plate-like waveguide, each of them having a diffraction grating
ES2547378T3 (en) 2005-09-07 2015-10-05 Bae Systems Plc Projection display device with two plate-shaped coplanar waveguides that include grilles
JP4810949B2 (en) * 2005-09-29 2011-11-09 ソニー株式会社 Optical device and image display device
US8018579B1 (en) 2005-10-21 2011-09-13 Apple Inc. Three-dimensional imaging and display system
IL171820A (en) 2005-11-08 2014-04-30 Lumus Ltd Polarizing optical device for light coupling
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
WO2007114871A2 (en) 2005-12-22 2007-10-11 Solbeam, Inc. Electro-optic prism assemblies
IL173715A0 (en) 2006-02-14 2007-03-08 Lumus Ltd Substrate-guided imaging lens
KR101241770B1 (en) 2006-02-17 2013-03-14 삼성디스플레이 주식회사 Stereo-scopic image conversion panel and stereo-scopic image display apparatus having the same
US7499217B2 (en) 2006-03-03 2009-03-03 University Of Central Florida Research Foundation, Inc. Imaging systems for eyeglass-based display devices
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
WO2007130130A2 (en) 2006-04-06 2007-11-15 Sbg Labs Inc. Method and apparatus for providing a transparent display
US7740387B2 (en) 2006-05-24 2010-06-22 3M Innovative Properties Company Backlight wedge with side mounted light source
WO2007141589A1 (en) 2006-06-02 2007-12-13 Nokia Corporation Stereoscopic exit pupil expander display
EP2035881B8 (en) 2006-06-02 2013-11-13 Nokia Corporation Color distribution in exit pupil expanders
WO2007141588A1 (en) 2006-06-02 2007-12-13 Nokia Corporation Split exit pupil expander
KR101229019B1 (en) 2006-06-30 2013-02-15 엘지디스플레이 주식회사 Liquid crystal display device and driving circuit of the same
IL177618A (en) 2006-08-22 2015-02-26 Lumus Ltd Substrate- guided optical device
US8593734B2 (en) 2006-09-28 2013-11-26 Nokia Corporation Beam expansion with three-dimensional diffractive elements
GB0619226D0 (en) 2006-09-29 2006-11-08 Cambridge Flat Projection Efficient wedge projection
GB0619366D0 (en) 2006-10-02 2006-11-08 Cambridge Flat Projection Distortionless wedge projection
WO2008053063A1 (en) 2006-11-02 2008-05-08 Nokia Corporation Method for coupling light into a thin planar waveguide
US8160411B2 (en) 2006-12-28 2012-04-17 Nokia Corporation Device for expanding an exit pupil in two dimensions
US8192030B2 (en) 2007-03-19 2012-06-05 Panasonic Corporation Laser illuminating device and image display device
WO2008129539A2 (en) 2007-04-22 2008-10-30 Lumus Ltd. A collimating optical device and system
US20080297731A1 (en) 2007-06-01 2008-12-04 Microvision, Inc. Apparent speckle reduction apparatus and method for mems laser projection system
US8320032B2 (en) 2007-06-04 2012-11-27 Nokia Corporation Diffractive beam expander and a virtual display based on a diffractive beam expander
US7589901B2 (en) 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
JP5092609B2 (en) 2007-08-01 2012-12-05 ソニー株式会社 Image display apparatus and driving method thereof
US7672549B2 (en) 2007-09-10 2010-03-02 Banyan Energy, Inc. Solar energy concentrator
US8355610B2 (en) 2007-10-18 2013-01-15 Bae Systems Plc Display systems
US7969657B2 (en) 2007-10-25 2011-06-28 University Of Central Florida Research Foundation, Inc. Imaging systems for eyeglass-based display devices
WO2009055070A2 (en) 2007-10-26 2009-04-30 Corporation For Laser Optics Research Laser illuminated backlight for flat panel displays
US20090128495A1 (en) 2007-11-20 2009-05-21 Microsoft Corporation Optical input device
JP4395802B2 (en) 2007-11-29 2010-01-13 ソニー株式会社 Image display device
JP4450058B2 (en) 2007-11-29 2010-04-14 ソニー株式会社 Image display device
WO2009077803A1 (en) 2007-12-17 2009-06-25 Nokia Corporation Exit pupil expanders with spherical and aspheric substrates
AU2008337292A1 (en) 2007-12-18 2009-06-25 Bae Systems Plc Improvemements in or relating to display projectors
US8508848B2 (en) 2007-12-18 2013-08-13 Nokia Corporation Exit pupil expanders with wide field-of-view
WO2009077774A1 (en) 2007-12-18 2009-06-25 Bae Systems Plc Improvements in or relating to projection displays
DE102008005817A1 (en) 2008-01-24 2009-07-30 Carl Zeiss Ag Optical display device
EP2269111B1 (en) 2008-04-14 2015-05-06 BAE Systems PLC Improvements in or relating to waveguides
EP2110701A1 (en) 2008-04-14 2009-10-21 BAE Systems PLC Improvements in or relating to waveguides
WO2009137331A2 (en) 2008-05-05 2009-11-12 3M Innovative Properties Company Light source module
JP4518193B2 (en) 2008-06-10 2010-08-04 ソニー株式会社 Optical device and virtual image display device
JP4706737B2 (en) 2008-08-18 2011-06-22 ソニー株式会社 Image display device
WO2010023444A1 (en) 2008-08-27 2010-03-04 Milan Momcilo Popovich Laser display incorporating speckle reduction
WO2010032029A1 (en) 2008-09-16 2010-03-25 Bae Systems Plc Improvements in or relating to waveguides
US7949214B2 (en) 2008-11-06 2011-05-24 Microvision, Inc. Substrate guided relay with pupil expanding input coupler
US9465213B2 (en) 2008-12-12 2016-10-11 Bae Systems Plc Waveguides
WO2010067117A1 (en) 2008-12-12 2010-06-17 Bae Systems Plc Improvements in or relating to waveguides
EP2373924B2 (en) 2008-12-12 2022-01-05 BAE Systems PLC Improvements in or relating to waveguides
WO2010102295A1 (en) 2009-03-06 2010-09-10 The Curators Of The University Of Missouri Adaptive lens for vision correction
US20100231498A1 (en) 2009-03-13 2010-09-16 Microsoft Corporation Image display via multiple light guide sections
WO2010119240A1 (en) 2009-04-14 2010-10-21 Bae Systems Plc Optical waveguide and display device
ES2621820T3 (en) 2009-04-20 2017-07-05 Bae Systems Plc Surface relief grid in an optical waveguide with a reflective surface and a surface-adapted dielectric layer
US9329325B2 (en) 2009-04-20 2016-05-03 Bae Systems Plc Optical waveguides
US8639072B2 (en) 2011-10-19 2014-01-28 Milan Momcilo Popovich Compact wearable display
WO2010125337A2 (en) 2009-04-27 2010-11-04 Milan Momcilo Popovich Compact holographic edge illuminated wearable display
WO2010125378A1 (en) 2009-04-29 2010-11-04 Bae Systems Plc Head mounted display
US8194325B2 (en) 2009-06-30 2012-06-05 Nokia Corporation Optical apparatus and method
US8354640B2 (en) 2009-09-11 2013-01-15 Identix Incorporated Optically based planar scanner
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US9075184B2 (en) * 2012-04-17 2015-07-07 Milan Momcilo Popovich Compact edge illuminated diffractive display
WO2011042711A2 (en) 2009-10-09 2011-04-14 Milan Momcilo Popovich Compact edge illuminated diffractive display
EP2494388B1 (en) 2009-10-27 2018-11-21 DigiLens Inc. Compact holographic eyeglass display
US8698705B2 (en) 2009-12-04 2014-04-15 Vuzix Corporation Compact near eye display with scanned image generation
WO2011073673A1 (en) 2009-12-17 2011-06-23 Bae Systems Plc Projector lens assembly
EP2529268A1 (en) 2010-01-25 2012-12-05 BAE Systems Plc Projection display
WO2011107831A1 (en) 2010-03-04 2011-09-09 Nokia Corporation Optical apparatus and method for expanding an exit pupil
WO2011132789A1 (en) 2010-04-19 2011-10-27 シチズンホールディングス株式会社 Pre-edging lens and edging lens manufacturing method
US9946068B2 (en) 2010-04-23 2018-04-17 Bae Systems Plc Optical waveguide and display device
JP5488226B2 (en) 2010-06-10 2014-05-14 富士通オプティカルコンポーネンツ株式会社 Mach-Zehnder type optical modulator
US8649099B2 (en) 2010-09-13 2014-02-11 Vuzix Corporation Prismatic multiple waveguide for near-eye display
US8582206B2 (en) 2010-09-15 2013-11-12 Microsoft Corporation Laser-scanning virtual image display
US8376548B2 (en) 2010-09-22 2013-02-19 Vuzix Corporation Near-eye display with on-axis symmetry
US20130021586A1 (en) 2010-12-07 2013-01-24 Laser Light Engines Frequency Control of Despeckling
US8859412B2 (en) 2011-04-06 2014-10-14 VerLASE TECHNOLOGIES LLC Optoelectronic device containing at least one active device layer having a wurtzite crystal structure, and methods of making same
KR20140046419A (en) 2011-05-16 2014-04-18 베르라세 테크놀러지스 엘엘씨 Resonator-enhanced optoelectronic devices and methods of making same
KR101908468B1 (en) 2011-06-27 2018-10-17 삼성디스플레이 주식회사 Display panel
US8672486B2 (en) 2011-07-11 2014-03-18 Microsoft Corporation Wide field-of-view projector
US8988474B2 (en) 2011-07-18 2015-03-24 Microsoft Technology Licensing, Llc Wide field-of-view virtual image projector
US9983361B2 (en) 2011-08-08 2018-05-29 Greg S. Laughlin GRIN-lensed, tuned wedge waveguide termination and method of reducing back reflection caused thereby
GB201114149D0 (en) 2011-08-17 2011-10-05 Bae Systems Plc Projection display
US8548290B2 (en) 2011-08-23 2013-10-01 Vuzix Corporation Dynamic apertured waveguide for near-eye display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
EP2995986B1 (en) 2011-08-24 2017-04-12 Rockwell Collins, Inc. Data display
GB201114771D0 (en) 2011-08-26 2011-10-12 Bae Systems Plc A display
US9400395B2 (en) 2011-08-29 2016-07-26 Vuzix Corporation Controllable waveguide for near-eye display applications
US8998414B2 (en) 2011-09-26 2015-04-07 Microsoft Technology Licensing, Llc Integrated eye tracking and display system
US8903207B1 (en) 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
GB201117029D0 (en) 2011-10-04 2011-11-16 Bae Systems Plc Optical waveguide and display device
EP2766767A4 (en) 2011-10-11 2015-05-13 Pelican Imaging Corp Lens stack arrays including adaptive optical elements
US8917453B2 (en) 2011-12-23 2014-12-23 Microsoft Corporation Reflective array waveguide
US20150010265A1 (en) 2012-01-06 2015-01-08 Milan, Momcilo POPOVICH Contact image sensor using switchable bragg gratings
US9274338B2 (en) 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
US8985803B2 (en) 2012-03-21 2015-03-24 Microsoft Technology Licensing, Llc Freeform-prism eyepiece with illumination waveguide
US8736963B2 (en) 2012-03-21 2014-05-27 Microsoft Corporation Two-dimensional exit-pupil expansion
GB2500631B (en) 2012-03-27 2017-12-27 Bae Systems Plc Improvements in or relating to optical waveguides
EP2842003B1 (en) 2012-04-25 2019-02-27 Rockwell Collins, Inc. Holographic wide angle display
US9389415B2 (en) 2012-04-27 2016-07-12 Leia Inc. Directional pixel for use in a display screen
US9201270B2 (en) 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
NZ702897A (en) 2012-06-11 2017-03-31 Magic Leap Inc Multiple depth plane three-dimensional display using a wave guide reflector array projector
US9146407B2 (en) 2012-08-10 2015-09-29 Mitsui Chemicals, Inc. Fail-safe electro-active lenses and methodology for choosing optical materials for fail-safe electro-active lenses
US8731350B1 (en) 2012-09-11 2014-05-20 The United States Of America As Represented By The Secretary Of The Navy Planar-waveguide Bragg gratings in curved waveguides
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
WO2014080155A1 (en) 2012-11-20 2014-05-30 Milan Momcilo Popovich Waveguide device for homogenizing illumination light
GB2508661A (en) 2012-12-10 2014-06-11 Bae Systems Plc Improved display
US9664824B2 (en) 2012-12-10 2017-05-30 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
WO2014091200A1 (en) 2012-12-10 2014-06-19 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
US10146053B2 (en) 2012-12-19 2018-12-04 Microsoft Technology Licensing, Llc Multiplexed hologram tiling in a waveguide display
US8873149B2 (en) 2013-01-28 2014-10-28 David D. Bohn Projection optical system for coupling image light to a near-eye display
US20140268277A1 (en) 2013-03-14 2014-09-18 Andreas Georgiou Image correction using reconfigurable phase mask
CN105229719B (en) 2013-03-15 2018-04-27 奇跃公司 Display system and method
GB201305691D0 (en) 2013-03-28 2013-05-15 Bae Systems Plc Improvements in and relating to displays
US8913865B1 (en) 2013-06-27 2014-12-16 Microsoft Corporation Waveguide including light turning gaps
US9664905B2 (en) 2013-06-28 2017-05-30 Microsoft Technology Licensing, Llc Display efficiency optimization by color filtering
WO2015006784A2 (en) 2013-07-12 2015-01-15 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US10533850B2 (en) 2013-07-12 2020-01-14 Magic Leap, Inc. Method and system for inserting recognized object data into a virtual world
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
US9164290B2 (en) 2013-11-06 2015-10-20 Microsoft Corporation Grating configurations for a tiled waveguide display
CN106030376B (en) 2013-12-19 2019-06-07 Bae系统公共有限公司 In waveguide and relevant improvement
CN106030375B (en) 2013-12-19 2019-10-18 Bae系统公共有限公司 Waveguide Improvements
US9459451B2 (en) 2013-12-26 2016-10-04 Microsoft Technology Licensing, Llc Eye tracking apparatus, method and system
JP6201836B2 (en) 2014-03-14 2017-09-27 ソニー株式会社 Optical device and method for assembling the same, hologram diffraction grating, display device and alignment device
WO2015145119A1 (en) 2014-03-24 2015-10-01 Wave Optics Ltd Display system
US10048647B2 (en) 2014-03-27 2018-08-14 Microsoft Technology Licensing, Llc Optical waveguide including spatially-varying volume hologram
GB2529003B (en) 2014-08-03 2020-08-26 Wave Optics Ltd Optical device
US9377623B2 (en) 2014-08-11 2016-06-28 Microsoft Technology Licensing, Llc Waveguide eye tracking employing volume Bragg grating
US20160077338A1 (en) 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
US9494799B2 (en) 2014-09-24 2016-11-15 Microsoft Technology Licensing, Llc Waveguide eye tracking employing switchable diffraction gratings
CA3168318A1 (en) 2014-09-29 2016-04-07 Magic Leap, Inc. Architectures and methods for outputting different wavelength light out of waveguides
KR102214345B1 (en) 2015-01-10 2021-02-09 레이아 인코포레이티드 Two-dimensional/three-dimensional(2d/3d) switchable display backlight and electronic display
CN107111059B (en) 2015-01-10 2020-10-13 镭亚股份有限公司 Grating-coupled light guide
WO2016111709A1 (en) 2015-01-10 2016-07-14 Leia Inc. Diffraction grating-based backlighting having controlled diffractive coupling efficiency
WO2016113534A1 (en) 2015-01-12 2016-07-21 Milan Momcilo Popovich Environmentally isolated waveguide display
US20180275402A1 (en) 2015-01-12 2018-09-27 Digilens, Inc. Holographic waveguide light field displays
CN107209393B (en) 2015-01-28 2022-02-08 镭亚股份有限公司 Three-dimensional (3D) electronic display
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US20180246354A1 (en) 2015-02-23 2018-08-30 Digilens, Inc. Electrically focus-tunable lens
WO2016146963A1 (en) 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
US9864208B2 (en) 2015-07-30 2018-01-09 Microsoft Technology Licensing, Llc Diffractive optical elements with varying direction for depth modulation
US10038840B2 (en) 2015-07-30 2018-07-31 Microsoft Technology Licensing, Llc Diffractive optical element using crossed grating for pupil expansion
EP3359999A1 (en) 2015-10-05 2018-08-15 Popovich, Milan Momcilo Waveguide display
US10429645B2 (en) 2015-10-07 2019-10-01 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US9946072B2 (en) 2015-10-29 2018-04-17 Microsoft Technology Licensing, Llc Diffractive optical element with uncoupled grating structures
US9915825B2 (en) 2015-11-10 2018-03-13 Microsoft Technology Licensing, Llc Waveguides with embedded components to improve intensity distributions
US9791696B2 (en) 2015-11-10 2017-10-17 Microsoft Technology Licensing, Llc Waveguide gratings to improve intensity distributions
EP3433659B1 (en) 2016-03-24 2024-10-23 DigiLens, Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US9791703B1 (en) 2016-04-13 2017-10-17 Microsoft Technology Licensing, Llc Waveguides with extended field of view
US10025093B2 (en) 2016-04-13 2018-07-17 Microsoft Technology Licensing, Llc Waveguide-based displays with exit pupil expander

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911018A (en) * 1994-09-09 1999-06-08 Gemfire Corporation Low loss optical switch with inducible refractive index boundary and spaced output target
US6167169A (en) * 1994-09-09 2000-12-26 Gemfire Corporation Scanning method and architecture for display

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US12405507B2 (en) 2012-11-16 2025-09-02 Digilens Inc. Transparent waveguide display with grating lamina that both couple and extract modulated light
US11709373B2 (en) 2014-08-08 2023-07-25 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US12379547B2 (en) 2015-02-12 2025-08-05 Digilens Inc. Waveguide grating device
US12405471B2 (en) 2015-10-05 2025-09-02 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11754842B2 (en) 2015-10-05 2023-09-12 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US12298513B2 (en) 2016-12-02 2025-05-13 Digilens Inc. Waveguide device with uniform output illumination
US12248150B2 (en) 2017-01-05 2025-03-11 Digilens Inc. Wearable heads up displays
US11573483B2 (en) 2017-10-16 2023-02-07 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US12306585B2 (en) 2018-01-08 2025-05-20 Digilens Inc. Methods for fabricating optical waveguides
US12366823B2 (en) 2018-01-08 2025-07-22 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US12210153B2 (en) 2019-01-14 2025-01-28 Digilens Inc. Holographic waveguide display with light control layer
US12397477B2 (en) 2019-02-05 2025-08-26 Digilens Inc. Methods for compensating for optical surface nonuniformity
US12140764B2 (en) 2019-02-15 2024-11-12 Digilens Inc. Wide angle waveguide display
US12271035B2 (en) 2019-06-07 2025-04-08 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11899238B2 (en) 2019-08-29 2024-02-13 Digilens Inc. Evacuated gratings and methods of manufacturing

Also Published As

Publication number Publication date
US20190212195A9 (en) 2019-07-11
US10409144B2 (en) 2019-09-10
WO2011042711A3 (en) 2011-06-03
WO2011042711A2 (en) 2011-04-14
US20150285682A1 (en) 2015-10-08
US9726540B2 (en) 2017-08-08
US20170356801A1 (en) 2017-12-14
US20200057353A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US11747719B2 (en) Diffractive waveguide providing structured illumination for object detection
US20220075242A1 (en) Compact Edge Illuminated Diffractive Display
US9075184B2 (en) Compact edge illuminated diffractive display
US11726323B2 (en) Method and apparatus for generating input images for holographic waveguide displays
US11874477B2 (en) Wearable data display
US12298513B2 (en) Waveguide device with uniform output illumination
US11175512B2 (en) Diffractive projection apparatus
US11754842B2 (en) Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11726332B2 (en) Diffractive projection apparatus
US8639072B2 (en) Compact wearable display
US8885112B2 (en) Compact holographic edge illuminated eyeglass display
KR20210100174A (en) Method and apparatus for providing a single grating layer color holographic waveguide display
WO2010125337A2 (en) Compact holographic edge illuminated wearable display

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: DIGILENS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POPOVICH, MILAN MOMCILO;WALDERN, JONATHAN DAVID;SIGNING DATES FROM 20190410 TO 20190415;REEL/FRAME:060848/0716

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION