[go: up one dir, main page]

US20220064602A1 - Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same - Google Patents

Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same Download PDF

Info

Publication number
US20220064602A1
US20220064602A1 US17/375,293 US202117375293A US2022064602A1 US 20220064602 A1 US20220064602 A1 US 20220064602A1 US 202117375293 A US202117375293 A US 202117375293A US 2022064602 A1 US2022064602 A1 US 2022064602A1
Authority
US
United States
Prior art keywords
cells
hfgo
cell
gastric
hfgos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/375,293
Inventor
James Wells
Kyle McCracken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cincinnati Childrens Hospital Medical Center
Original Assignee
Cincinnati Childrens Hospital Medical Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cincinnati Childrens Hospital Medical Center filed Critical Cincinnati Childrens Hospital Medical Center
Priority to US17/375,293 priority Critical patent/US20220064602A1/en
Assigned to CHILDREN'S HOSPITAL MEDICAL CENTER, D/B/A CINCINNATI CHILDREN'S HOSPITAL MEDICAL CENTER reassignment CHILDREN'S HOSPITAL MEDICAL CENTER, D/B/A CINCINNATI CHILDREN'S HOSPITAL MEDICAL CENTER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCCRACKEN, Kyle, WELLS, JAMES M
Publication of US20220064602A1 publication Critical patent/US20220064602A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0679Cells of the gastro-intestinal tract
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/0609Oocytes, oogonia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • C12N2506/025Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells from extra-embryonic cells, e.g. trophoblast, placenta
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/03Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from non-embryonic pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture

Definitions

  • hFGOs human fundic-type gastric organoids
  • the instant disclosure relates to methods for converting mammalian definitive endoderm (DE) cells into specific tissue(s) or organ(s) through directed differentiation.
  • the disclosure relates to formation of gastric fundus tissue and/or organoids formed from differentiated definitive endoderm.
  • FIG. 1 Wnt/ ⁇ -catenin signaling is required for specification of the embryonic fundus in mice.
  • Pdx1 and Sox2 were expressed in the antrum (a), whereas Pdx1 was absent in the fundus (f), identified by Atp4b-expressing parietal cells at E18.5.
  • b X-gal staining of an E10.5 foregut from an Axin2:LacZ reporter embryo showed that Wnt activity was restricted to the anterior domain of the stomach but excluded from the posterior stomach.
  • c Deletion of ⁇ -catenin in the gastric epithelium caused an anterior expansion of Pdx1 into the fundic region of the stomach.
  • FIG. 2 ⁇ -catenin activation promotes fundus development from human foregut progenitor spheroids.
  • a Schematized diagram of differentiation protocol for both fundic and antral hGOs.
  • b c, At day 9, CHIR-treated organoids exhibited reduction in PDX1, increase in IRX2, IRX3, and IRX5, and no change in gastric markers SOX2 or GATA4.
  • hFGOs grew comparably to hAGOs, but also exhibited glandular budding morphogenesis (white arrowheads).
  • hGOs contained epithelium that expressed CDH1, KRT8, and CTNNB1, as well as gastric markers GATA4 and CLDN18.
  • hAGOs exhibited nearly ubiquitous PDX1 expression while hFGOs did not.
  • Scale bars 50 ⁇ m (c), 500 ⁇ m (d) and 100 ⁇ m (e). Error bars represent s.e.m.
  • FIG. 3 Differentiation of mucous and endocrine cell lineages in hGOs.
  • a Schematic of the shared and distinct lineages found in fundic and antral glands of the stomach.
  • b Both antral and fundic hGOs contained MUC5AC-positive surface mucous cells and MUC6-positive mucous neck cells.
  • c d, hFGOs contained endocrine cells expressing the pan-endocrine marker SYP. Diverse hormone cell types were identified in hFGOs, including GHRL-, SST-, and histamine-expressing endocrine cells.
  • FIG. 4 Formation of chief cells in hFGOs.
  • a hFGOs had a both MIST1 and Pepsinogen C (PGC) positive cells.
  • PPC Pepsinogen C
  • b High magnification of boxed region in panel (a) showing a gland with a cluster of cells with apical PGC staining.
  • d Transmission electron micrograph of an hFGO cell containing dense zymogen granules, indicative of a chief cell.
  • Scale bars 200 ⁇ m (a), 25 ⁇ m (b), and 10 ⁇ m (d). Error bars represent s.e.m.
  • FIG. 5 Identification of pathways that drive differentiation of functional parietal cells in hFGOs.
  • b Stimulated differentiation of ATP4B-expressing parietal cells following treatment with PD03/BMP4.
  • hFGO-derived parietal cells resembled those found in the maturing mouse fundic epithelium in vivo.
  • d Transmission electron micrograph of an hFGO cell with canalicular structure reminiscent of parietal cells.
  • e The epithelium of human fundic glands and hFGO epithelium were organized into MUC5AC-expressing cells in the surface epithelium and ATP4B-expressing parietal cells in the glandular units.
  • f Analysis of luminal pH in organoids in response to histamine by luminal injection of SNARF-5F. The luminal pH in hFGOs rapidly dropped, while hAGOs exhibited no response.
  • n 9, 9, 7, and 4 biological replicates in hFGOs (histamine), hFGOs (histamine and famotidine), hFGOs (histamine and omeprazole), and hAGOs (histamine), respectively; data representative of three independent experiments.
  • AO Histamine induced acridine orange
  • FIG. 6 Defining molecular domains in the developing stomach in vivo.
  • a Analysis of Sox2, Pdx1, and Gata4 in the embryonic mouse stomach (E14.5) showed that the fundus (f) was Sox2+Gata4+Pdx1 ⁇ , whereas the antrum (a) was Sox2+Gata4+Pdx1+.
  • the forestomach (fs) expressed Sox2 but neither Gata4 nor Pdx1.
  • b Brightfield stereomicrograph showing dissected regions of the E14.5 mouse stomach that were analyzed by qPCR. fs, forestomach; f, fundus; a, antrum; d, duodenum.
  • Dissected regions in b were analyzed by qPCR for known regionally expressed markers (Sox2, P63, Gata4, Pdx1, and Cdx2) to validate the accuracy of micro-dissection.
  • qPCR analysis of the dissected E14.5 stomach regions showed that putative fundus markers Irx1, Irx2, Irx3, Irx5, and Pitx1 were enriched in the fundus compared to the antrum.
  • n 4 biological replicates per dissected region. Scale bar, 500 ⁇ m. Error bars represent s.d.
  • FIG. 7 Analysis of ⁇ -catenin cKO embryos.
  • a By E12.4 and E14.5, ectopic Pdx1 expression was observed throughout the dorsal gastric epithelium, as well as the most proximal gastric epithelium of the cKO embryo.
  • b qPCR analysis of dissected regions ( FIG. 6 , b ) of E14.5 cKO foregut showed significant up-regulation of Pdx1 in the fundus and forestomach domains. Conversely, Irx2, Irx3, and Irx5 were markedly reduced in these proximal regions.
  • FIG. 8 Stable induction of fundic fate in hGOs and efficiency of protocol.
  • Applicant investigated how long CHIR treatment was necessary to establish fundus identity. Brief CHIR treatment (d6-9) and subsequent growth of organoids in control growth medium until day 34 resulted in fundic organoids expressing the antral marker PDX1, suggesting that short CHIR treatment did not produce a stable fundic fate. Applicant then tested whether longer exposures to CHIR were required to retain fundic fate and found that only continuous treatment through at least day 29 could maintain low expression of the antral marker PDX1.
  • * p ⁇ 0.05 compared to control antral hGOs; two tailed Student's t-test.
  • n 3 biological replicates, data representative of 2 independent experiments.
  • FIG. 9 BMP-dependence of Wnt/ ⁇ -catenin activation to induce intestinal fate from foregut progenitors.
  • a The intestine-specific transcription factor CDX2 was not significantly induced in CHIR-treated hGOs at either day 9 or day 20.
  • c Anterior-posterior fate is coordinately controlled by WNT and BMP activity.
  • FIG. 10 hFGOs contain organized glands supported by associated mesenchymal layer.
  • a Transmission electron micrographs demonstrated that hFGO glands exhibited organized architecture with narrow apical membranes.
  • b Both hFGOs and hAGOs contained a supporting layer FOXF1+/VIM+ undifferentiated fibroblasts. Scale bars, 5 ⁇ m (a) and 100 ⁇ m (b).
  • FIG. 11 Region-specific cytodifferentiation in human gastric organoids.
  • a Antral and fundic hGOs exhibited comparable expression of mucous cell markers MUC5AC and MUC6.
  • b As shown in transmission electron micrograph, hFGOs contained abundant cells exhibiting granule pattern consistent with mucous neck cells, the precursors to differentiated chief cells.
  • c Exogenous expression of NEUROG3 in hGOs derived from NEUROG3-deficient hESC line induced robust differentiation of SYP-positive endocrine cells. While both hAGOs and hFGOs formed GHRL- and SST-expressing endocrine cells, specification of GAST+ G-cells was observed only in hAGOs.
  • hGOs exhibited comparable expression levels of several lineage markers (MUC5AC, ATP4B), while other genes were expressed at much lower levels (ATP4A, PGA5, and PGC) than found in the fully differentiated, mature human stomach.
  • Scale bars 5 ⁇ m (b) and 100 ⁇ m (c). Error bars represent s.d. (a) and s.e.m. (b).
  • FIG. 12 Analysis of murine chief cell development.
  • a Unlike parietal cells, which expressed functional markers (Atp4b) as early as late embryonic stages, chief cell gene products were not detectable until much later stages of development.
  • E18.5 and juvenile (P12) stomach Gif and Pgc were not yet expressed, indicating that chief cells mature much later in development than other lineages in the gastric epithelium.
  • Pgc the P12 mouse stomach did contain abundant glandular cells expressing nuclear Mist1, a chief cell-specific marker. Thus, chief cells were indeed specified earlier but took several weeks to develop robust expression of terminal differentiation markers. Scale bars, 100 ⁇ m (a) and 200 ⁇ m (b).
  • FIG. 13 Screen for pathways that promote differentiation of parietal cells in fundic hGOs.
  • a To test for growth factors/small molecules capable of inducing parietal cell differentiation, hFGOs were exposed for two days (30-32) to the indicated agonist or antagonist and then analyzed at day 34. In a screening experiment of different pathways, only MEK inhibition with PD03 was found to robustly induce expression of ATP4A/B.
  • b Reduction or removal of EGF from the culture medium was not sufficient to reproduce the effect of MEK inhibition.
  • c The ability of PD03/BMP4 to induce parietal cell development was exclusive to fundic hGOs, as antral hGOs did not express fundic markers in response to PD03/BMP4.
  • FIG. 14 Live in vitro pH monitoring in gastric organoids.
  • a The dye SNAFR5F exhibits responsiveness over pH range of 5-8, which makes it well suited to detect physiologic changes in response to parietal cell-mediated acid secretion.
  • b Media and luminal pH measurements recorded before (closed circles) and 60 minutes following addition of histamine (open circles). Antral hGOs did not respond, while the fundic hGO luminal pH decreased in response to histamine.
  • the acidification was inhibited by pre-treatment of organoids with either famotidine or omeprazole. Further, omeprazole was sufficient to raise the pH in fundic organoids prior to histamine exposure, suggesting a baseline acid secretion in the fundic organoids.
  • hFGOs contained parietal cell-dense glands in which acridine orange (AO) accumulated in nearly all of the cells lining the lumen of the gland.
  • AO acridine orange
  • FIG. 15 Serial passaging of human gastric organoids.
  • a Schematic representation of experiments to determine the presence of gastric stem cells in hGOs.
  • b When fragments were grown in culture medium containing only EGF, they did not grow or expand to form new organoids. However, addition of CHIR and FGF10 to the culture medium was sufficient to support the growth of individual fragments into newly formed organoids.
  • c Following two passages, hFGOs still expressed genes consistent with a gastric phenotype, including PGC, MUC6, MUC5AC, and GHRL. This ability to undergo serial passaging with maintenance of gastric identity supports the conclusion that hFGOs contain cells with properties analogous to those of adult gastric stem cells.
  • hFGOs Although passaged hFGOs expressed markers associated with several differentiated gastric cell types, they did not express genes associated with parietal cells such as ATP4B. Further, differentiation of parietal cells could not be induced through MEK inhibition as they could prior to passaging. Error bars represent s.d.
  • gastric fundus tissue means a fundic type of gastric epithelium found in the corpus that contains fundic cell types, including but not limited to acid-producing parietal cells and protease-producing chief cells.
  • DE cell means one of the three primary germ layers produced by the process of gastrulation.
  • wnt signalling pathway means the wnt/beta-catenin pathway and is a signal transduction pathway that is mediated by Wnt ligands and frizzled cell surface receptors that acts through the beta-catenin protein.
  • activator with respect to a pathway, such as a “wnt pathway” means a substance that activates the Wnt/beta-catenin pathway such that Wnt/beta-catenin targets are increased.
  • FGF signaling pathway activator means a substance that activates the FGF pathway such that FGF targets are increased.
  • BMP signalling pathway inhibitor a substance that interferes with the BMP pathway and causes BMP targets to be decreased.
  • growth factor means a substance capable of stimulating cellular processes including but not limited to growth, proliferation, morphogenesis or differentiation.
  • fundic lineage means cell types found in fundic epithelium in the corpus stomach.
  • SOX2+GATA+PDX1 ⁇ epithelium means epithelium that expresses the listed proteins.
  • stable expression of a marker means expression that does not change upon modification of the growth environment.
  • totipotent stem cells are stem cells that can differentiate into embryonic and extra-embryonic cell types. Such cells can construct a complete, viable, organism. These cells are produced from the fusion of an egg and sperm cell. Cells produced by the first few divisions of the fertilized egg are also totipotent.
  • pluripotent stem cells encompasses any cells that can differentiate into nearly all cells, i.e., cells derived from any of the three germ layers (germinal epithelium), including endoderm (interior stomach lining, gastrointestinal tract, the lungs), mesoderm (muscle, bone, blood, urogenital), and ectoderm (epidermal tissues and nervous system).
  • PSCs can be the descendants of totipotent cells, derived from embryos (including embryonic germ cells) or obtained through induction of a non-pluripotent cell, such as an adult somatic cell, by forcing the expression of certain genes.
  • iPSCs induced pluripotent stem cells
  • iPS cells also commonly abbreviated as iPS cells, refers to a type of pluripotent stem cells artificially derived from a normally non-pluripotent cell, such as an adult somatic cell, by inducing a “forced” expression of certain genes.
  • a precursor cell encompasses any cells that can be used in methods described herein, through which one or more precursor cells acquire the ability to renew itself or differentiate into one or more specialized cell types.
  • a precursor cell is pluripotent or has the capacity to becoming pluripotent.
  • the precursor cells are subjected to the treatment of external factors (e.g., growth factors) to acquire pluripotency.
  • a precursor cell can be a totipotent stem cell; a pluripotent stem cell (induced or non-induced); a multipotent stem cell; and a unipotent stem cell.
  • a precursor cell can be from an embryo, an infant, a child, or an adult.
  • a precursor cell can be a somatic cell subject to treatment such that pluripotency is conferred via genetic manipulation or protein/peptide treatment.
  • cellular differentiation is the process by which a less specialized cell becomes a more specialized cell type.
  • directed differentiation describes a process through which a less specialized cell becomes a particular specialized target cell type.
  • the particularity of the specialized target cell type can be determined by any applicable methods that can be used to define or alter the destiny of the initial cell. Exemplary methods include but are not limited to genetic manipulation, chemical treatment, protein treatment, and nucleic acid treatment.
  • cellular constituents are individual genes, proteins, mRNA expressing genes, and/or any other variable cellular component or protein activities such as the degree of protein modification (e.g., phosphorylation), for example, that is typically measured in biological experiments (e.g., by microarray or immunohistochemistry) by those skilled in the art.
  • Significant discoveries relating to the complex networks of biochemical processes underlying living systems, common human diseases, and gene discovery and structure determination can now be attributed to the application of cellular constituent abundance data as part of the research process.
  • Cellular constituent abundance data can help to identify biomarkers, discriminate disease subtypes and identify mechanisms of toxicity.
  • pluripotent stem cells are derived from embryonic stem cells, which are in turn derived from totipotent cells of the early mammalian embryo and are capable of unlimited, undifferentiated proliferation in vitro.
  • Embryonic stem cells are pluripotent stem cells derived from the inner cell mass of the blastocyst, an early-stage embryo. Methods for deriving embryonic stem cells from blastocytes are well known in the art. Human embryonic stem cells H9 (H9-hESCs) are used in the exemplary embodiments described in the present application, but it would be understood by one of skill in the art that the methods and systems described herein are applicable to any stem cells.
  • Additional stem cells that can be used in embodiments in accordance with the present invention include but are not limited to those provided by or described in the database hosted by the National Stem Cell Bank (NSCB), Human Embryonic Stem Cell Research Center at the University of California, San Francisco (UCSF); WISC cell Bank at the Wi Cell Research Institute; the University of Wisconsin Stem Cell and Regenerative Medicine Center (UW-SCRMC); Novocell, Inc. (San Diego, Calif.); Cellartis AB (Goteborg, Sweden); ES Cell International Pte Ltd (Singapore); Technion at the Israel Institute of Technology (Haifa, Israel); and the Stem Cell Database hosted by Princeton University and the University of Pennsylvania.
  • NSCB National Stem Cell Bank
  • UW-SCRMC University of Wisconsin Stem Cell and Regenerative Medicine Center
  • UW-SCRMC University of Wisconsin Stem Cell and Regenerative Medicine Center
  • Novocell, Inc. San Diego, Calif.
  • Cellartis AB Goteborg, Sweden
  • Exemplary embryonic stem cells that can be used in embodiments in accordance with the present invention include but are not limited to SA01 (SA001); SA02 (SA002); ES01 (HES-1); ES02 (HES-2); ES03 (HES-3); ES04 (HES-4); ES05 (HES-5); ES06 (HES-6); BG01 (BGN-01); BG02 (BGN-02); BG03 (BGN-03); TE03 (13); TE04 (14); TE06 (16); UC01 (HSF1); UC06 (HSF6); WA01 (H1); WA07 (H7); WA09 (H9); WA13 (H13); WA14 (H14).
  • embryonic stem cells More details on embryonic stem cells can be found in, for example, Thomson et al., 1998, “Embryonic Stem Cell Lines Derived from Human Blastocysts,” Science 282 (5391):1145-1147; Andrews et al., 2005, “Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin,” Biochem Soc Trans 33:1526-1530; Martin 1980, “Teratocarcinomas and mammalian embryogenesis,”.
  • ES Embryonic Stem Cell Lines Derived from Human Blastocysts
  • EC embryonal carcinoma
  • iPSCs Induced Pluripotent Stem Cells
  • iPSCs are derived by transfection of certain stem cell-associated genes into non-pluripotent cells, such as adult fibroblasts. Transfection is typically achieved through viral vectors, such as retroviruses. Transfected genes include the master transcriptional regulators Oct-3/4 (Pouf51) and Sox2, although it is suggested that other genes enhance the efficiency of induction. After 3-4 weeks, small numbers of transfected cells begin to become morphologically and biochemically similar to pluripotent stem cells, and are typically isolated through morphological selection, doubling time, or through a reporter gene and antibiotic selection.
  • iPSCs include but are not limited to first generation iPSCs, second generation iPSCs in mice, and human induced pluripotent stem cells.
  • a retroviral system is used to transform human fibroblasts into pluripotent stem cells using four pivotal genes: Oct3/4, Sox2, Klf4, and c-Myc.
  • a lentiviral system is used to transform somatic cells with OCT4, SOX2, NANOG, and LIN28.
  • Genes whose expression are induced in iPSCs include but are not limited to Oct-3/4 (e.g., Pou5fl); certain members of the Sox gene family (e.g., Sox1, Sox2, Sox3, and Sox15); certain members of the Klf family (e.g., Klf1, Klf2, Klf4, and Klf5), certain members of the Myc family (e.g., C-myc, L-myc, and N-myc), Nanog, and LIN28.
  • Oct-3/4 e.g., Pou5fl
  • Sox gene family e.g., Sox1, Sox2, Sox3, and Sox15
  • Klf family e.g., Klf1, Klf2, Klf4, and Klf5
  • Myc family e.g., C-myc, L-myc, and N-myc
  • Nanog LIN28.
  • non-viral based technologies are employed to generate iPSCs.
  • an adenovirus can be used to transport the requisite four genes into the DNA of skin and liver cells of mice, resulting in cells identical to embryonic stem cells. Since the adenovirus does not combine any of its own genes with the targeted host, the danger of creating tumors is eliminated.
  • reprogramming can be accomplished via plasmid without any virus transfection system at all, although at very low efficiencies.
  • direct delivery of proteins is used to generate iPSCs, thus eliminating the need for viruses or genetic modification.
  • generation of mouse iPSCs is possible using a similar methodology: a repeated treatment of the cells with certain proteins channeled into the cells via poly-arginine anchors was sufficient to induce pluripotency.
  • the expression of pluripotency induction genes can also be increased by treating somatic cells with FGF2 under low oxygen conditions.
  • embryonic stem cells More details on embryonic stem cells can be found in, for example, Kaji et al., 2009, “Virus free induction of pluripotency and subsequent excision of reprogramming factors,” Nature 458:771-775; Woltjen et al., 2009, “piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells,” Nature 458:766-770; Okita et al., 2008, “Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors,” Science 322(5903):949-953; Stadtfeld et al., 2008, “Induced Pluripotent Stem Cells Generated without Viral Integration,” Science 322(5903):945-949; and Zhou et al., 2009, “Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins,” Cell Stem Cell 4(5):381-384; each of which is hereby incorporated herein in its
  • exemplary iPS cell lines include but not limited to iPS-DF19-9; iPS-DF19-9; iPS-DF4-3; iPS-DF6-9; iPS(Foreskin); iPS(IMR90); and iPS(IMR90).
  • pluripotent cells are derived from a morula.
  • pluripotent stem cells are stem cells.
  • Stem cells used in these methods can include, but are not limited to, embryonic stem cells.
  • Embryonic stem cells can be derived from the embryonic inner cell mass or from the embryonic gonadal ridges.
  • Embryonic stem cells or germ cells can originate from a variety of animal species including, but not limited to, various mammalian species including humans.
  • human embryonic stem cells are used to produce definitive endoderm.
  • human embryonic germ cells are used to produce definitive endoderm.
  • iPSCs are used to produce definitive endoderm.
  • hPSCs pluripotent stem cells
  • Applicant first identified, and then recapitulated key events in embryonic fundus development to arrive at the claimed compositions.
  • Applicant found that disruption of Wnt/ ⁇ -catenin signaling in mouse embryos led to conversion of fundic to antral epithelium, while ⁇ -catenin activation in hPSC-derived foregut progenitors promoted the development of human fundic-type gastric organoids (hFGOs).
  • Applicant then used hFGOs to identify temporally distinct roles for multiple signaling pathways in epithelial morphogenesis and differentiation of fundic cell types, including chief cells and functional parietal cells. While hFGOs are a powerful new model for studying the development of the human fundus and its lineages, they also represent a critical new model system to study the molecular basis of human gastric physiology, pathophysiology, and drug discovery.
  • an in vitro method of inducing formation of a gastric fundus tissue is disclosed.
  • the method may comprise the steps of:
  • Wnt signalling may be activated either with a protein like Wnt3a, for example, or via a chemical like Chiron, for example, which inhibits GSK3 ⁇ .
  • the first period may be three days ⁇ 24 hours.
  • the retinoic acid may be added for the third day of the first period ⁇ 24 hours.
  • the first period may be carried out for a period of time sufficient to form a three-dimensional posterior foregut spheroid from the definitive endoderm.
  • the second period may be three days ⁇ 24 hours.
  • the second period may be carried out for a period of time sufficient to induce a fundic lineage comprising fundal hGOs (hFGOs).
  • step b) culturing the hFGOs of step b) with a wnt pathway activator and a EGF signalling pathway activator for a third period.
  • the third period may be, for example, 11 days ⁇ 24 hours.
  • the fourth period may be, for example, 10 days ⁇ 24 hours.
  • the MEK inhibitor may be, for example, PD0325901.
  • the fifth period may be for a two-day period ⁇ 24 hours, or for a period of time sufficient to form a gastric fundus tissue comprising a functional fundic cell type.
  • step e) may further comprise the step of contacting the fundal hGOs with an activator of BMP4 signalling.
  • step e may be carried out for a period of time sufficient to develop SOX2+GATA+PDX1 ⁇ epithelium.
  • the functional fundic cell type may be a parietal cell that expresses proton pump proteins and secretes acid. In one aspect, the functional fundic cell type may be a chief cell that secretes pepsinogen.
  • step d and step e are carried out for a period of time sufficient to confer stable expression of lineage markers MUC5AC, MUC6, PGC, and GHRL.
  • the definitive endoderm may be derived from a precursor cell selected from an embryonic stem cell, an embryonic germ cell, an induced pluripotent stem cell, a mesoderm cell, a definitive endoderm cell, a posterior endoderm cell, a posterior endoderm cell, and a hindgut cell, a definitive endoderm derived from a pluripotent stem cell, a definitive endoderm derived from a pluripotent stem cell selected from an embryonic stem cell, an adult stem cell, or an induced pluripotent stem cell.
  • the definitive endoderm may be derived from contacting a pluripotent stem cell with one or more molecules selected from Activin, the BMP subgroups of the TGF-beta superfamily of growth factors; Nodal, Activin A, Activin B, BMP4, Wnt3a, and combinations thereof.
  • Some existing wnt signalling pathway activators include but are not limited to:
  • Wnt ligands including but not limited to Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt8, et al; modifiers of Wnt ligand activity including but not limited to activated Wnt frizzled receptors, (LRP) co-receptors, R-spondin proteins, Dkk proteins, regulators of Wnt ligand secretion and trafficking (Wntless, Porcupine), inhibiting beta-catenin degredation APC and GSK3beta inhibition, activated beta-catenin, constitutively active TCF/Lef proteins.
  • LRP activated Wnt frizzled receptors
  • R-spondin proteins R-spondin proteins
  • Dkk proteins regulators of Wnt ligand secretion and trafficking
  • beta-catenin degredation APC and GSK3beta inhibition activated beta-catenin, constitutively active TCF/Lef proteins.
  • Chemical activators there are over 28 known chemicals that either activate or inhibit Wnt/beta-catenin signaling. Some activators include but are not limited to GSK3-beta inhibitors CH1R99021, BIO, LY2090314, SB-216763, lithium, porcupine inhibitors IWP, LGK974, C59, SFRP inhibitor WAY-316606, beta-catenin activator DCA.
  • the WNT pathway activator may be one or more molecules selected from Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, and Wnt16, for example, Wnt3a, or for example, Wnt3a at a concentration between about 50 to about 1500 ng/ml.
  • Suitable FGF signalling pathway activators include: FGF ligands FGF2, 4, 5, 8, et al. Activated forms of FGF receptors. Proteins and chemicals that stimulate the FGF receptor and signaling components downstream of the receptors including MAPK, MEK, ERK proteins and chemicals that modulate their activity. FGF signaling can be activated by inhibiting inhibitors of FGF signaling pathways including but not limited to Sprouty protein family members.
  • the BMP signalling pathway inhibitor may be selected from Noggin, Dorsomorphin, LDN189, DMH-1, and combinations thereof, for example, wherein said precursor cell may be contacted with a BMP inhibitor at a concentration between about 50 to about 1500 ng/ml.
  • the steps are conducted in vitro.
  • a composition comprising gastric tissue produced according to the aforementioned method(s) is disclosed.
  • the gastric tissue may be characterized, for example, by being free of innervation and/or blood vessels.
  • an in vitro method of inducing formation of a gastric fundus tissue may comprise the steps of contacting a fundal hGO (hFGO) with a wnt pathway activating agent and an EGF signalling pathway activating agent for a first period, and a MEK inhibitor for a second period, (wherein said MEK inhibitor may be PD0325901), wherein said first and second periods are carried out for a period of time sufficient to form a functional fundic cell type;
  • hFGO fundal hGO
  • MEK inhibitor may be PD0325901
  • said hFGO are obtained by contacting a three-dimensional posterior foregut spheroid in a basement membrane matrix with a growth factor, a wnt pathway activating agent, an EGF signalling pathway activator, a BMP signalling pathway inhibitor, and retinoic acid for a period of time sufficient to convert said three-dimensional posterior foregut spheroid to said hFGO; wherein said three-dimensional posterior foregut spheroids are obtained by contacting a mammalian definitive endoderm (DE) cells with a wnt pathway activating agent, an FGF signaling pathway activating agent, a BMP signalling pathway inhibitor, and retinoic acid.
  • DE mammalian definitive endoderm
  • Organoids have proven to be powerful experimental models that combine architectural complexity and cellular diversity with the tractability and scalability of traditional cell culture methods.
  • Organoid generation through directed differentiation of pluripotent stem cells (PSCs; comprising both embryonic stem cells and induced PSCs) offers several advantages over other approaches including an unlimited source of starting material, no requirement for surgical acquisition of tissue, and ease of genetic manipulations. Further, PSC-based methods permit direct investigation of mechanisms underlying normal and aberrant human development 3 .
  • PSCs pluripotent stem cells
  • differentiating PSCs into specific organoid types depends on a robust molecular knowledge of normal organ development. For some organs, such as the stomach, there are large gaps in understanding of molecular pathways that drive embryonic development.
  • the stomach is one of the most structurally diverse organs among mammals 4 .
  • the gastric mucosa generally consists of two types of epithelial glands 5,6 .
  • oxyntic glands Located in the more proximal anatomic domains—the corpus and fundus—of the stomach, oxyntic glands comprise acid-secreting parietal cells, protease-producing chief cells, mucus-producing cells, and endocrine cells.
  • Antral-type glands, located in the more distal antrum and pylorus contain mostly mucous and endocrine cells.
  • the terms ‘fundus’ and ‘antrum’ are used to broadly describe these two histologic types of gastric epithelia.
  • hPSCs three-dimensional gastric tissue
  • human gastric organoids human gastric organoids
  • hAGOs antral hGOs
  • hAGOs antral hGOs
  • Noguchi et. al. successfully differentiated mouse ESCs into organoids comprising various types of mouse gastric tissue 8 .
  • this approach used mouse ESC aggregation and spontaneous differentiation resulting in organoids that were heterogeneous, evidenced by the presence of stratified epithelia.
  • species differences make the mouse stomach suboptimal for modeling human gastric disease 9 .
  • a robust and efficient PSC-derived model of the human fundus epithelium would represent a significant advance in the field of gastric biology.
  • Embryonic organ development is guided by a series of instructive cues between neighboring tissues 10,11 , and differentiation of hPSCs into specific lineages has relied heavily on use of these signals to direct differentiation in vitro.
  • Applicant previously identified a step-wise differentiation approach to generate hAGOs, whereby hPSCs were differentiated into definitive endoderm, patterned to posterior foregut, then specified into presumptive antral epithelium 7 .
  • Applicant hypothesized that the fundus and antrum derive from a common population of posterior foregut progenitors, which could be directed toward the fundic lineage if provided with the appropriate signals.
  • Applicant first had to identify signaling pathways that pattern the embryonic stomach along the proximal-distal axis.
  • Applicant analyzed mouse embryos to identify molecular markers that could distinguish between presumptive fundus, antrum and forestomach.
  • Sox2 was expressed in all foregut organ lineages while Gata4 was restricted to the glandular stomach epithelium.
  • Pdx1 was specific to the presumptive antral region ( FIG. 6 , a ); thus, the embryonic fundus domain is believed to be Sox2+Gata+Pdx1 ⁇ .
  • Applicant analyzed published microarray datasets (GSM326648-GSM32665012 and GSM80809-GMS8081613) and dissected regions of the E14.5 foregut to demonstrate that expression of the transcription factors Irx2, Irx3, and Irx5 was greater than ten-fold enriched in the embryonic fundus compared to antrum ( FIG. 6 , b - c ), indicating that their expression can further distinguish between regions of the glandular gastric epithelium.
  • Ectopic Pdx1 was initially restricted to the ventral half of the fundic epithelium, consistent with previously reported recombination activity using this Shh-cre line 16 , but it then expanded over time to include a majority of the proximal stomach and greater curvature by E14.5 ( FIG. 7 , a ). Additionally, expression of the fundus markers Irx2, Irx3, and Irx5 were dramatically reduced in the cKO embryos ( FIG. 7 , b ). Collectively, these data support the conclusion that epithelial Wnt/ ⁇ -catenin signaling regulates gastric pattern formation, as it is required for the initial specification of fundus identity while repressing antral fate in the embryonic mouse stomach.
  • Applicant next investigated the role of Wnt/ ⁇ -catenin signaling in establishing fundic-antral pattern of the developing human stomach.
  • Applicant started with a previously described protocol for differentiating hPSCs into antrum-like gastric organoids, which recapitulates the normal stages of early gastric development with high fidelity.
  • SOX2+HNF1 ⁇ + three-dimensional posterior foregut spheroids
  • Applicant tested whether stimulation of Wnt/ ⁇ -catenin signaling would direct posterior foregut epithelium into the fundic (SOX2+GATA+PDX1 ⁇ ) lineage rather than antrum (SOX2+GATA+PDX1+) during the gastric specification stage ( FIG.
  • Applicant then sought to determine whether CHIR-treated spheroids would further develop into more mature hGOs containing a fundus-like epithelium.
  • a three-day pulse of CHIR from days 6-9 was not sufficient to irreversibly specify a fundic identity, as the hGOs ultimately reverted to a PDX1+ antral phenotype at later stages.
  • continued Wnt stimulation via CHIR treatment through at least day 29 led to stable induction of fundic gene expression ( FIG. 8 , a ). This was consistent with the prolonged activity of Wnt/ ⁇ -catenin signaling during embryonic stomach development in vivo.
  • the organoids maintained their respective gastric identities throughout their development ( FIG. 8 , b - c ).
  • hFGOs and hAGOs comprised CDH1+CTNNB1+KRT8+ polarized, columnar epithelia that ubiquitously expressed the gastric-specific 17 claudin CLDN 18 ( FIG. 2 , e and FIG.
  • hFGOs had a distinctive architecture with organized glands that bud from the organoid epithelium ( FIG. 2 , d - e and FIG. 10 , a ), while hAGOs had complex folding and primitive gland-like organization but rarely glandular buds 7 .
  • the novel Wnt/ ⁇ -catenin dependent mechanism of specifying fundus is conserved in humans and can be manipulated to generate three-dimensional hFGOs with a glandular epithelium that molecularly resembles the developing fundus.
  • hFGOs Differentiated antral gastric cell types were first detected in hAGOs around day 27 and then increased by day 34 7 , analogous to the first few weeks of postnatal development in the mouse stomach 18 .
  • hFGOs contained both MUC5AC+ surface mucous cells and MUC6+ mucous neck cells as expected, similar to the hAGOs ( FIG. 3 , a - b and FIG. 11 , a ).
  • hFGOs also formed a variety of endocrine cell types ( FIG. 3 , c ), but expression of the hormone GAST was specific to hAGOs while GHRL was enriched 10-fold in hFGOs ( FIG. 3 , d ), consistent with the normal gastroendocrine pattern 19 .
  • hFGOs exhibited epithelial expression of the chief cell-specific 21 transcription factor MIST1 ( FIG. 4 , a ), had 100-1,000-fold increases in transcripts for the proenzymes PGA5 and PGC ( FIG. 4 , c ), and contained significantly increased pepsinogen content measured by ELISA ( FIG. 4 , e ).
  • the transcript levels were less than 1% those found in the adult human stomach ( FIG. 11 , d ) and pepsinogen-positive cells were only rarely detectable by immunohistochemistry ( FIG. 4 , b - c ).
  • zymogen granule-containing cells 22 were identified by TEM ( FIG. 4 , d ) but were rare. In contrast, cells with a more immature mucous granule pattern were abundant ( FIG. 11 , b ). Since chief cells in vivo do not exhibit robust pepsinogen expression for the first few weeks of life ( FIG. 12 , a - b ), Applicant concluded that the chief cells were present in hFGOs but were immature. hFGOs therefore represent a robust platform to dissect the intrinsic and extrinsic mechanisms that regulate chief cell maturation.
  • hFGOs contained only a small number of parietal cells (PCs; FIG. 5 , a - b ), the defining cell type of fundic glands that acidify the gastric lumen via the proton pump (consisting of ATP4A and ATP4B subunits).
  • PCs parietal cells
  • FIG. 5 , a - b the defining cell type of fundic glands that acidify the gastric lumen via the proton pump.
  • PSC-derived hFGOs as a platform to functionally screen candidate signaling pathways for a role in regulating PC differentiation.
  • Applicant exposed day 30 hFGOs to signaling agonists or antagonists for two days and analyzed PC differentiation at day 34.
  • hFGOs produced a swift and marked decrease in luminal pH in response to histamine that was blocked by either the H2 antagonist famotidine or the H+K+ ⁇ ATPase antagonist omeprazole ( FIG. 5 , f and FIG. 14 , b ).
  • H2 antagonist famotidine or the H+K+ ⁇ ATPase antagonist omeprazole
  • AO acridine orange
  • FIG. 5 , g and FIG. 14 , c - d Similar to isolated mouse gastric glands, AO accumulated in acidified cellular vesicles in hFGO glands in response to histamine ( FIG. 5 , g and FIG. 14 , c - d ).
  • hFGOs Re-growth of organoids from passaged hFGOs was dependent on high Wnt and high FGF culture medium, similar to what is used to grow primary gastric tissue organoids 24,25 .
  • hFGOs maintained expression of lineage markers MUC5AC, MUC6, PGC, and GHRL; however, they did not contain PCs and were refractory to PD03/BMP4-mediated induction of the parietal lineage ( FIG. 15 , c - d ).
  • This finding was similar to what has been observed in adult stem cell-derived gastric organoids, which do not robustly produce PCs despite being derived from the bona fide oxyntic mucosa 20,26 .
  • Applicant has directly applied in vivo and in vitro discovery-based studies towards the differentiation of hPSCs into a new tissue type.
  • Applicant has defined a novel function of Wnt/ ⁇ -catenin signaling in specifying the fundic domain during stomach development in mice, and used Wnt modulation as the mechanistic basis to direct differentiation of hPSCs into three-dimensional human fundic organoids.
  • Wnt-mediated fundus specification was led to the subsequent formation of PCs.
  • the fundus-specific manipulations at each stage of this directed differentiation protocol led to robust PC induction ( FIG. 13 , f ).
  • hGOs are a new and tractable human model system to identify and study signaling mechanisms involved in normal cellular homeostasis in the fundus and antrum.
  • the following genetic mouse strains were obtained from The Jackson Laboratory, housed at Cincinnati Children's Hospital Research Foundation animal facility, and maintained according to IACUC protocol (0B09074): Axin2:LacZ (stock no. 009120), Shh:Cre (stock no. 005622), and ⁇ -cateninfloxed (stock no. 004152).
  • Human embryonic stem cell line WA01 (H1; obtained from WiCell) was supplied by the Pluripotent Stem Cell Facility at Cincinnati Children's Hospital Medical Center. Cell identity was confirmed by short tandem repeat analysis (Microsatellite STR Analysis; Applied Biosystems), and cells were routinely tested for mycoplasma contamination (MycoAlert Mycoplasma Detection Kit; Lonza). Pluripotent cells were maintained in feeder-free conditions on HESC-qualified Matrigel (BD Biosciences) in mTesR1 media (Stem Cell Technologies). Colonies were passaged every four days using dispase (Invitrogen).
  • hPSCs were dissociated into single cells using Accutase (Stem Cell Technologies) and plated into 24-well plates at a density of roughly 200,000 cells per well in mTesR1 with Y-27632 (10 ⁇ M; Stemgent). The following day, cells were differentiated into definitive endoderm (DE) by adding Activin A (100 ng/ml; Cell Guidance Systems) in RPMI 1640 media (Invitrogen) for three days.
  • DE definitive endoderm
  • Activin A 100 ng/ml
  • RPMI 1640 media Invitrogen
  • Posterior foregut spheroids were collected and transferred to a three-dimensional culture system as previously described 36 . Briefly, spheroids were suspended in 50 ⁇ l Matrigel (BD Biosciences) and plated as a droplet into 24-well plates. The matrigel was allowed to solidify for 10 minutes in the tissue culture incubator, then overlayed with basic gut media (BGM) containing growth factors and/or small molecule agonists.
  • BGM basic gut media
  • BGM consisted of Advanced DMEM/F12 media (Gibco) supplemented with N2 (1 ⁇ ; Invitrogen), B27 (1 ⁇ ; Invitrogen), HEPES (10 ⁇ M; Gibco), L-glutamine, penicillin/streptomycin, and EGF (100 ng/ml; R&D Systems).
  • N2 1 ⁇ ; Invitrogen
  • B27 1 ⁇ ; Invitrogen
  • HEPES 10 ⁇ M
  • L-glutamine penicillin/streptomycin
  • EGF 100 ng/ml; R&D Systems
  • FGF10 50 ng/ml; R&D Systems
  • FGF10 50 ng/ml; R&D Systems
  • CHIR glandular morphogenesis driven by CHIR (data not shown).
  • organoids were collected and re-plated at a dilution of 1:10-1:20.
  • hFGOs were grown to day 30, then exposed for two days to individual signaling pathway agonists and antagonists: DAPT (1 ⁇ M; Stemgent), SB431542 (10 ⁇ M; Stemgent), BMP4 (50 ng/ml; R&D Systems), PD0325901 (2 ⁇ M; Stemgent), Gastrin (10 nM; Sigma Aldrich), Dexamethasone (50 nM; Sigma Aldrich), and Wnt5a (50 ng/ml; R&D Systems). Following treatment, hFGOs were grown for two more days to day 34, then analyzed by qPCR.
  • Tissues were fixed in 4% paraformaldehyde overnight at 4° C., then washed thoroughly in PBS.
  • embryos were processed as previously described37. Briefly, they were permeabilized in Dent's Bleach (4:1:1 EtOH:DMSO:30% H2O2) for two hours at room temperature and rehydrated through series of methanol washes. Embryos were then blocked for one hour, incubated in primary antibody overnight at 4° C., washed in PBS, incubated in primary antibody overnight at 4° C., and thoroughly washed.
  • paraffin embedding tissues were dehydrated through series of ethanol washes, washed in xylene, then embedded in paraffin.
  • slides were deparaffinized and rehydrated. Antigen retrieval was performed in citrate buffer for 45 minutes in steamer. Primary antibodies were incubated overnight at 4° C. Following primary antibody, slides were washed in PBS then incubated with secondary antibody (at dilution of 1:500) for one hour at room temperature. Secondary antibodies (Jackson ImmunoResearch Laboratories) were made in donkey and conjugated to Alexa Fluor 488, 594, or 647.
  • Antibodies used for immunofluorescent staining are listed with antigen, host species, manufacturer and catalogue number, and dilution used for staining.
  • Atp4b rabbit, Santa Cruz sc84304, 1:500; Cdh1, goat, R&D Systems AF648, 1:500; Cdh1, mouse, BD Biosciences 610182, 1:500; Cdx2, mouse, Biogenex MU392A, 1:500, Cldn18, rabbit, Sigma HPA018446, 1:200; Ctnnb1, rabbit, Santa Cruz sc7190, 1:100; FoxF1, goat, R&D Systems F4798, 1:500, Gastrin, rabbit, Dako A0568, 1:1,000; Gata4, goat, Santa Cruz sc1237, 1:200; Gif, rabbit, Sigma HPA040774, 1:100; Ghr1, goat, Santa Cruz sc10368, 1:200; Histamine, rabbit, Immunostar 22939, 1:1,000; Kr
  • Confocal imaging was performed on Nikon A1Rsi inverted confocal microscope.
  • embryos were dehydrated in methanol and cleared in Murray's clear (2:1 benzyl benzoate:benzyl alcohol) just prior to imaging. After staining, slides were mounted with Fluoromount G (SouthernBiotech), and air-dried overnight at room temperature.
  • hGOs were processed as previously described7. Briefly, organoids were fixed in 3% glutaraldehyde, washed in 0.1 M sodium cacodylate buffer, and incubated for one hour 4% osmium tetroxide. They were subsequently washed then dehydrated in ethanol series, and finally embedded in propylene oxide/LX112. Tissue was then sectioned and stained with 2% uranyl acetate followed by lead citrate. Images were visualized on Hitachi transmission electron microscope.
  • ELISA was performed using the Human Pepsinogen I (PGI) ELISA Kit (Thermo Scientific, EHPGI) according to manufacturer's instructions. Briefly, day 34 hGOs were collected and incubated in Cell Recovery Solution (Corning) for one hour at 4° C. then washed in PBS. Organoids were lysed with RIPA buffer followed by vigorous vortexing at high velocity for 30 minutes at room temperature. Lysates were pelleted and supernatant was collected and stored at ⁇ 80° C. For ELISA, the samples and standards were performed in technical replicates. The reactions were measured on ⁇ Quant microplate plate reader (Bio Tek). Absorbance at 450 nm was measured, and the 570 nm absorbance was subtracted.
  • PGI Human Pepsinogen I
  • Acid secretion assays were performed as previously described (Schumacher et al., 2015). hGOs were grown in the chambered coverglass (Thermo Scientific) and the chamber was placed on an inverted confocal microscope (Zeiss LSM 710), and experiments were performed under 5% CO2 and 37° C. conditions (incubation chamber, PeCon, Erbach, Germany).
  • Freshly isolated mouse gastric fundic glands or cultured hGO were incubated with acridine orange (10 ⁇ M), then acridine orange fluorescence was excited at 458 nm or 488 nm and images were collected at 600-650 nm (Red) or 500-550 nm (Green), respectively.
  • the ratiometric pH sensitive dye, 5-(and-6)-carboxy SNARF-5F was microinjected (46-92 n1) into the lumen and monitored. Fluorescent dye also added into medium.
  • Histamine 100 ⁇ M; Sigma was added to media, while famotidine (100 ⁇ M; Sigma) or omeprazole (100 ⁇ M; Sigma) were pre-incubated at least 30 min before histamine Images were analyzed using MetaMorph software (Molecular Devices, Downingtown, Pa.). Background corrected 620-680/565-605 nm ratio values were converted to pH using a standard curve.
  • Example 1 A gastric fundus tissue is generated in vitro, comprising the following steps:
  • a mammalian definitive endoderm (DE) cell is contacted with a wnt pathway activator, an FGF signaling pathway activator (for example, FGF4), a BMP signalling pathway inhibitor (e.g., Noggin), and retinoic acid, for a first period, wherein the first period is sufficient to form a three-dimensional posterior foregut spheroid from said definitive endoderm;
  • the three-dimensional posterior foregut spheroid is suspended in a basement membrane matrix (for example, Matrigel) with a growth factor, Wnt signalling pathway activator, EGF signalling pathway activator, BMP signalling pathway inhibitor, and retinoic acid for a second period, sufficient to induce a fundic lineage comprising fundal hGOs (hFGOs);
  • the hFGOs of step b) are cultured in the presence of wnt pathway activator and EGF signalling pathway activator for a third period, d) the hFGO
  • Example 2 The method of Example 1, wherein said first period is three days ⁇ 24 hours and wherein said retinoic acid is added for the third day of said period ⁇ 24 hours
  • Example 3 The method of any preceding example, wherein said second period is three days ⁇ 24 hours
  • Example 4 The method of any preceding example, wherein said third period is 11 days ⁇ 24 hours
  • Example 5 The method of any preceding example, wherein said fourth period is 10 days ⁇ 24 hours
  • Example 6 The method of any preceding example, wherein said fifth period is a two day period ⁇ 24 hours
  • Example 7 The method of any preceding example, wherein step e) further comprises the step of contacting said fundal hGOs with an activator of BMP4 signalling.
  • Example 8 The method of any preceding example, wherein said functional fundic cell type is a parietal cell that expresses proton pump proteins and secretes acid.
  • Example 9 The method of any preceding example, wherein said functional fundic cell type is a chief cell that secretes pepsinogen.
  • Example 10 The method of any preceding example, wherein said step e is carried out for a period of time sufficient to develop SOX2+GATA+PDX1 ⁇ epithelium.
  • Example 11 The method of any preceding example, wherein said step d and step e are carried out for a period of time sufficient to confer stable expression of lineage markers MUC5AC, MUC6, PGC, and GHRL.
  • Example 12 The method of any preceding example, wherein said definitive endoderm is derived from a precursor cell selected from an embryonic stem cell, an embryonic germ cell, an induced pluripotent stem cell, a mesoderm cell, a definitive endoderm cell, a posterior endoderm cell, a posterior endoderm cell, and a hindgut cell, a definitive endoderm derived from a pluripotent stem cell, a definitive endoderm derived from a pluripotent stem cell selected from an embryonic stem cell, an adult stem cell, or an induced pluripotent stem cell.
  • a precursor cell selected from an embryonic stem cell, an embryonic germ cell, an induced pluripotent stem cell, a mesoderm cell, a definitive endoderm cell, a posterior endoderm cell, a posterior endoderm cell, and a hindgut cell, a definitive endoderm derived from a pluripotent stem cell, a definitive endoderm derived from a pluripotent stem cell selected
  • Example 13 The method of any preceding example, wherein said definitive endoderm is derived from contacting a pluripotent stem cell with one or more molecules selected from Activin, the BMP subgroups of the TGF-beta superfamily of growth factors; Nodal, Activin A, Activin B, BMP4, Wnt3a, and combinations thereof.
  • Activin the BMP subgroups of the TGF-beta superfamily of growth factors
  • Example 14 The method of any preceding example, wherein said WNT pathway activator is one or more molecules selected from Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, and Wnt16, for example, Wnt3a, or for example, Wnt3a at a concentration between about 50 to about 1500 ng/ml.
  • Wnt3a or for example, Wnt3a at a concentration between about 50 to about 1500 ng/ml.
  • Example 15 The method of any preceding example, wherein said BMP signalling pathway inhibitor is selected from Noggin, Dorsomorphin, LDN189, DMH-1, and combinations thereof, for example, wherein said precursor cell is contacted with a BMP inhibitor at a concentration between about 50 to about 1500 ng/ml.
  • the BMP inhibitor may be a protein and/or chemical capable of inhibiting the BMP signalling pathway.
  • Example 16 The method of any preceding example, wherein said steps are conducted in vitro.
  • Example 17 A composition comprising gastric tissue is produced according to any preceding Example.
  • the gastric tissue is characterized by being free of innervation and/or blood vessels.
  • a gastric fundus tissue is formed via the following steps: contacting a fundal hGO (hFGO) with a wnt pathway activating agent and an EGF signalling pathway activating agent for a first period, and a MEK inhibitor for a second period, (wherein said MEK inhibitor may be, for example, PD0325901), wherein the first and second periods are carried out for a period of time sufficient to form a functional fundic cell type;
  • hFGO are obtained by contacting a three-dimensional posterior foregut spheroid in a basement membrane matrix with a growth factor, a wnt pathway activating agent, an EGF signalling pathway activator, a BMP signalling pathway inhibitor, and retinoic acid for a period of time sufficient to convert said three-dimensional posterior foregut spheroid to said hFGO;
  • said three-dimensional posterior foregut spheroids are obtained by contacting a mammalian definitive endoderm (DE) cells with a wnt pathway activating agent, an FGF signaling pathway activating agent, a BMP signalling pathway inhibitor, and retinoic acid.
  • DE definitive endoderm

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The instant disclosure relates to methods for converting mammalian definitive endoderm (DE) cells into specific tissue(s) or organ(s) through directed differentiation. In particular, the disclosure relates to formation of gastric fundus tissue and/or organoids formed from differentiated definitive endoderm.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation Application of U.S. patent application Ser. No. 16/084,599, filed Sep. 13, 2018, which is the National Phase of International Application No. PCT/US2017/031309, filed May 5, 2017, designating the United States and published in the English language, which claims the benefit of priority of U.S. Provisional Patent Application No. 62/332,194, filed May 5, 2016, each of which are hereby expressly incorporated by reference in its entirety.
  • GOVERNMENT SUPPORT CLAUSE
  • This invention was made with government support under AI116491 and DK092456 awarded by the National Institutes of Health. The government has certain rights in the invention.
  • REFERENCE TO SEQUENCE LISTING
  • The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled CHMC63007C1SeqListing.TXT, which was created and last modified on Jul. 14, 2021 and is 12,307 bytes in size. The information in the electronic Sequence Listing is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • Despite the global prevalence of gastric disease, there are few adequate models to study the fundus epithelium of the human stomach. The development of human fundic-type gastric organoids (hFGOs) would be a novel and powerful model system to study the molecular basis of human gastric physiology, pathophysiology, and drug discovery.
  • BRIEF SUMMARY
  • The instant disclosure relates to methods for converting mammalian definitive endoderm (DE) cells into specific tissue(s) or organ(s) through directed differentiation. In particular, the disclosure relates to formation of gastric fundus tissue and/or organoids formed from differentiated definitive endoderm.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Those of skill in the art will understand that the drawings, described below, are for illustrative purposes only. The drawings are not intended to limit the scope of the present teachings in any way.
  • FIG. 1. Wnt/β-catenin signaling is required for specification of the embryonic fundus in mice. a, Pdx1 and Sox2 were expressed in the antrum (a), whereas Pdx1 was absent in the fundus (f), identified by Atp4b-expressing parietal cells at E18.5. b, X-gal staining of an E10.5 foregut from an Axin2:LacZ reporter embryo showed that Wnt activity was restricted to the anterior domain of the stomach but excluded from the posterior stomach. c, Deletion of β-catenin in the gastric epithelium caused an anterior expansion of Pdx1 into the fundic region of the stomach. d, In E18.5 ShhCre/+β-cateninfl/fl (cKO) embryos, Pdx1 was expressed throughout the stomach, except in some remaining patches of parietal cell-containing epithelium. Insets 1a-c and 2a-c show boxed regions in control and cKO stomach, respectively. e, In the cKO stomach, Ctnnb1 exhibited mosaic deletion, and parietal cells only differentiated in Ctnnb1-sufficient epithelium. Scale bars, 250 μm (a), 200 μm (c), and 500 μm (d and e).
  • FIG. 2. β-catenin activation promotes fundus development from human foregut progenitor spheroids. a, Schematized diagram of differentiation protocol for both fundic and antral hGOs. b, c, At day 9, CHIR-treated organoids exhibited reduction in PDX1, increase in IRX2, IRX3, and IRX5, and no change in gastric markers SOX2 or GATA4. *, p<0.05; two-tailed Student's t-test; n=3 biological replicates, data representative of 4 independent experiments. d, hFGOs grew comparably to hAGOs, but also exhibited glandular budding morphogenesis (white arrowheads). e, Both hGOs contained epithelium that expressed CDH1, KRT8, and CTNNB1, as well as gastric markers GATA4 and CLDN18. hAGOs exhibited nearly ubiquitous PDX1 expression while hFGOs did not. Scale bars, 50 μm (c), 500 μm (d) and 100 μm (e). Error bars represent s.e.m.
  • FIG. 3. Differentiation of mucous and endocrine cell lineages in hGOs. a, Schematic of the shared and distinct lineages found in fundic and antral glands of the stomach. b, Both antral and fundic hGOs contained MUC5AC-positive surface mucous cells and MUC6-positive mucous neck cells. c, d, hFGOs contained endocrine cells expressing the pan-endocrine marker SYP. Diverse hormone cell types were identified in hFGOs, including GHRL-, SST-, and histamine-expressing endocrine cells. The antral-specific G-cell marker GAST was expressed in hAGOs but not hFGOs; conversely, GHRL was enriched in hFGOs. **, p<0.01; two-tailed Student's t-test; n=8 and 24 biological replicates in hAGOs and hFGOs respectively, data representative of 6 independent experiments. e, hAGOs, but not hFGOs, were competent to give rise to antral-specific GAST-expressing endocrine cells in response to expression of the pro-endocrine transcription actor NEUROG3 (+dox). *, p<0.01; two-tailed Student's t-test; n=4 biological replicates, data representative of 3 independent experiments. Error bars represent s.e.m.
  • FIG. 4. Formation of chief cells in hFGOs. a, hFGOs had a both MIST1 and Pepsinogen C (PGC) positive cells. b, High magnification of boxed region in panel (a) showing a gland with a cluster of cells with apical PGC staining. c, hFGOs had significantly increased expression of chief cell markers PGA5 (1,000-fold), PGC (100-fold), and MIST1 (>10-fold) as compared to hAGOs. **, p<0.05; two-tailed Student's t-test. n=3 biological replicates, data representative of 4 independent experiments. d, Transmission electron micrograph of an hFGO cell containing dense zymogen granules, indicative of a chief cell. e, Pepsinogen protein content in hFGOs as compared to hAGOs in the presence or absence of the MEK inhibitor (PD03). **, p<0.0001 compared to hAGOs, two-tailed Student's t-test, n=8, 12, and 11 biological replicates in hAGOs, control hFGOs and hFGOs (no PD03), respectively. Scale bars, 200 μm (a), 25 μm (b), and 10 μm (d). Error bars represent s.e.m.
  • FIG. 5. Identification of pathways that drive differentiation of functional parietal cells in hFGOs. a, Expression of parietal cell genes ATP4, ATP4B, and GIF exhibited 10-100-fold increase in hFGOs compared to antral at baseline, but was dramatically increased by exposing hFGOs to a two-day pulse of PD03/BMP4. **, p<0.05 compared to hAGOs; #, p<0.05 compared to control hFGOs, two-tailed Student's t-test, n=4 biological replicates, data representative of 15 independent experiments. b, Stimulated differentiation of ATP4B-expressing parietal cells following treatment with PD03/BMP4. c, hFGO-derived parietal cells resembled those found in the maturing mouse fundic epithelium in vivo. d, Transmission electron micrograph of an hFGO cell with canalicular structure reminiscent of parietal cells. e, The epithelium of human fundic glands and hFGO epithelium were organized into MUC5AC-expressing cells in the surface epithelium and ATP4B-expressing parietal cells in the glandular units. f, Analysis of luminal pH in organoids in response to histamine by luminal injection of SNARF-5F. The luminal pH in hFGOs rapidly dropped, while hAGOs exhibited no response. The acidification was blocked by pretreating the organoids with either famotidine or omeprazole. n=9, 9, 7, and 4 biological replicates in hFGOs (histamine), hFGOs (histamine and famotidine), hFGOs (histamine and omeprazole), and hAGOs (histamine), respectively; data representative of three independent experiments. g, Histamine induced acridine orange (AO) dye accumulation in a canalicular-type pattern in isolated mouse gastric glands and in hFGOs after 60 minutes. Scale bars, 100 μm (b), 10 μm (c), 10 μm (d), 100 μm (e; human fundus), 20 μm (e; hFGO), and 10 μm (g). Error bars represent s.e.m.
  • FIG. 6. Defining molecular domains in the developing stomach in vivo. a, Analysis of Sox2, Pdx1, and Gata4 in the embryonic mouse stomach (E14.5) showed that the fundus (f) was Sox2+Gata4+Pdx1−, whereas the antrum (a) was Sox2+Gata4+Pdx1+. The forestomach (fs) expressed Sox2 but neither Gata4 nor Pdx1. b, Brightfield stereomicrograph showing dissected regions of the E14.5 mouse stomach that were analyzed by qPCR. fs, forestomach; f, fundus; a, antrum; d, duodenum. c, Dissected regions in b were analyzed by qPCR for known regionally expressed markers (Sox2, P63, Gata4, Pdx1, and Cdx2) to validate the accuracy of micro-dissection. qPCR analysis of the dissected E14.5 stomach regions showed that putative fundus markers Irx1, Irx2, Irx3, Irx5, and Pitx1 were enriched in the fundus compared to the antrum. n=4 biological replicates per dissected region. Scale bar, 500 μm. Error bars represent s.d.
  • FIG. 7. Analysis of β-catenin cKO embryos. a, By E12.4 and E14.5, ectopic Pdx1 expression was observed throughout the dorsal gastric epithelium, as well as the most proximal gastric epithelium of the cKO embryo. b, qPCR analysis of dissected regions (FIG. 6, b) of E14.5 cKO foregut showed significant up-regulation of Pdx1 in the fundus and forestomach domains. Conversely, Irx2, Irx3, and Irx5 were markedly reduced in these proximal regions. *, p<0.05; two tailed Student's t-test n=3 biological replicates per dissected region for each genotype. c, Stereomicrographs of E18.5 dissected viscera demonstrated that cKO embryos exhibited lung agenesis as previously reported. The GI tract, particularly the stomach, was dramatically reduced in size. d, Immunofluorescent staining at E18.5 revealed mosaic deletion pattern of Ctnnb1. Boxed regions are shown in FIG. 1, e, In the E18.5 cKO stomach, recombined glands lacking Ctnnb1 staining did not contain parietal cells whereas robust parietal cell differentiation was observed in Ctnnb1-positive glands. Scale bars, 200 μm (a), 500 μm (d), and 50 μm (e). Error bars represent s.d.
  • FIG. 8. Stable induction of fundic fate in hGOs and efficiency of protocol. a, Applicant investigated how long CHIR treatment was necessary to establish fundus identity. Brief CHIR treatment (d6-9) and subsequent growth of organoids in control growth medium until day 34 resulted in fundic organoids expressing the antral marker PDX1, suggesting that short CHIR treatment did not produce a stable fundic fate. Applicant then tested whether longer exposures to CHIR were required to retain fundic fate and found that only continuous treatment through at least day 29 could maintain low expression of the antral marker PDX1. *, p<0.05 compared to control antral hGOs; two tailed Student's t-test. n=3 biological replicates, data representative of 2 independent experiments. b, c, Over the course of the protocol, PDX1 remained low in CHIR-treated organoids, while IRX5 expression was persistently elevated. *, p<0.05; two-tailed Student's t-test; n=3 biological replicates per timepoint. d, Conversion of d6 posterior foregut spheroids to early stage gastric organoids (d20) is greater than 80% efficient in both the hAGO and hFGO protocols. e, At d20, hFGO epithelium is ˜90% GATA4+/SOX2+/PDX1− whereas hAGO epithelium is ˜90% GATA4+/SOX2+/PDX1+. **, p<0.001, two-tailed Student's t-test, n=4 biological replicates per experiment, two individual experiments shown. Scale bars, 100 μm (c) and 200 μm (d).
  • FIG. 9. BMP-dependence of Wnt/β-catenin activation to induce intestinal fate from foregut progenitors. a, The intestine-specific transcription factor CDX2 was not significantly induced in CHIR-treated hGOs at either day 9 or day 20. b, Neither fundic nor antral hGOs expressed genes associated with intestinal cell types, including MUC2, CCK, and SCT, when compared to human intestinal organoids (hIOs). *, p<0.05 compared to hIO; two tailed Student's t-test. n=3 biological replicates. c, Anterior-posterior fate is coordinately controlled by WNT and BMP activity. In the presence of the BMP inhibitor Noggin, all organoids maintained foregut (SOX2+) regardless of Wnt/β-catenin pathway activity; however in the presence of BMP4, all organoids were posteriorized (CDX2+). Activation of Wnt (CHIR) in a BMP inhibited state resulted in fundus pattern (SOX2+, PDX1−, CDX2−) whereas activation of WNT (CHIR) and addition of BMP4 resulted in an intestinal fate (CDX2+). *, p<0.05 compared to analogous Noggin-treated condition; two tailed Student's t-test. n=3 biological replicates. d, Immunofluorescent staining of human tissues revealed that CLDN18 was a gastric-specific epithelial marker that is not found in the intestine. Scale bar, 200 μm. Error bars represent s.e.m.
  • FIG. 10. hFGOs contain organized glands supported by associated mesenchymal layer. a, Transmission electron micrographs demonstrated that hFGO glands exhibited organized architecture with narrow apical membranes. b, Both hFGOs and hAGOs contained a supporting layer FOXF1+/VIM+ undifferentiated fibroblasts. Scale bars, 5 μm (a) and 100 μm (b).
  • FIG. 11. Region-specific cytodifferentiation in human gastric organoids. a, Antral and fundic hGOs exhibited comparable expression of mucous cell markers MUC5AC and MUC6. b, As shown in transmission electron micrograph, hFGOs contained abundant cells exhibiting granule pattern consistent with mucous neck cells, the precursors to differentiated chief cells. c, Exogenous expression of NEUROG3 in hGOs derived from NEUROG3-deficient hESC line induced robust differentiation of SYP-positive endocrine cells. While both hAGOs and hFGOs formed GHRL- and SST-expressing endocrine cells, specification of GAST+ G-cells was observed only in hAGOs. d, Expression comparison of cell lineage markers in hGOs and human gastric biopsy tissue. qPCR analyses demonstrated that hGOs exhibited comparable expression levels of several lineage markers (MUC5AC, ATP4B), while other genes were expressed at much lower levels (ATP4A, PGA5, and PGC) than found in the fully differentiated, mature human stomach. Scale bars, 5 μm (b) and 100 μm (c). Error bars represent s.d. (a) and s.e.m. (b).
  • FIG. 12. Analysis of murine chief cell development. a, Unlike parietal cells, which expressed functional markers (Atp4b) as early as late embryonic stages, chief cell gene products were not detectable until much later stages of development. In the embryonic (E18.5) and juvenile (P12) stomach, Gif and Pgc were not yet expressed, indicating that chief cells mature much later in development than other lineages in the gastric epithelium. b, Despite the absence of Pgc, the P12 mouse stomach did contain abundant glandular cells expressing nuclear Mist1, a chief cell-specific marker. Thus, chief cells were indeed specified earlier but took several weeks to develop robust expression of terminal differentiation markers. Scale bars, 100 μm (a) and 200 μm (b).
  • FIG. 13. Screen for pathways that promote differentiation of parietal cells in fundic hGOs. a, To test for growth factors/small molecules capable of inducing parietal cell differentiation, hFGOs were exposed for two days (30-32) to the indicated agonist or antagonist and then analyzed at day 34. In a screening experiment of different pathways, only MEK inhibition with PD03 was found to robustly induce expression of ATP4A/B. b, Reduction or removal of EGF from the culture medium was not sufficient to reproduce the effect of MEK inhibition. c, The ability of PD03/BMP4 to induce parietal cell development was exclusive to fundic hGOs, as antral hGOs did not express fundic markers in response to PD03/BMP4. d, Exposure to PD03/BMP4 rapidly increased expression of ATP4A and ATP4B in fundic hGOs. e, Induction of parietal cell generation with PD03/BMP4 did not significantly impact the differentiation of chief cells (PGA5 and PGC) and endocrine cells (CHGA). f, The manipulations at each stage of the hFGO differentiation protocol was required for robust parietal cell differentiation, as removal of any single step led to loss of ATP4A/B expression. Error bars represent s.d. (a-c) and s.e.m. (d-f).
  • FIG. 14. Live in vitro pH monitoring in gastric organoids. a, The dye SNAFR5F exhibits responsiveness over pH range of 5-8, which makes it well suited to detect physiologic changes in response to parietal cell-mediated acid secretion. b, Media and luminal pH measurements recorded before (closed circles) and 60 minutes following addition of histamine (open circles). Antral hGOs did not respond, while the fundic hGO luminal pH decreased in response to histamine. The acidification was inhibited by pre-treatment of organoids with either famotidine or omeprazole. Further, omeprazole was sufficient to raise the pH in fundic organoids prior to histamine exposure, suggesting a baseline acid secretion in the fundic organoids. Media pH did not change in any organoids. ***, p<0.001 compared to before histamine; SSS, p<0.001 compared to luminal pH without histamine; ###, p<0.001 compared to luminal pH with histamine; two tailed Student's t-test. c, hFGOs contained parietal cell-dense glands in which acridine orange (AO) accumulated in nearly all of the cells lining the lumen of the gland. d, AO accumulation was observed in a canalicular-type pattern in parietal cells in hFGOs. Scale bars, 10 μm. Error bars represent s.d.
  • FIG. 15. Serial passaging of human gastric organoids. a, Schematic representation of experiments to determine the presence of gastric stem cells in hGOs. b, When fragments were grown in culture medium containing only EGF, they did not grow or expand to form new organoids. However, addition of CHIR and FGF10 to the culture medium was sufficient to support the growth of individual fragments into newly formed organoids. c, Following two passages, hFGOs still expressed genes consistent with a gastric phenotype, including PGC, MUC6, MUC5AC, and GHRL. This ability to undergo serial passaging with maintenance of gastric identity supports the conclusion that hFGOs contain cells with properties analogous to those of adult gastric stem cells. d, Although passaged hFGOs expressed markers associated with several differentiated gastric cell types, they did not express genes associated with parietal cells such as ATP4B. Further, differentiation of parietal cells could not be induced through MEK inhibition as they could prior to passaging. Error bars represent s.d.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art.
  • As used herein, the term “gastric fundus tissue” means a fundic type of gastric epithelium found in the corpus that contains fundic cell types, including but not limited to acid-producing parietal cells and protease-producing chief cells.
  • As used herein, the term “definitive endoderm (DE) cell” means one of the three primary germ layers produced by the process of gastrulation.
  • As used herein the term “wnt signalling pathway” means the wnt/beta-catenin pathway and is a signal transduction pathway that is mediated by Wnt ligands and frizzled cell surface receptors that acts through the beta-catenin protein.
  • As used herein the term “activator” with respect to a pathway, such as a “wnt pathway” means a substance that activates the Wnt/beta-catenin pathway such that Wnt/beta-catenin targets are increased.
  • As used herein, the term “FGF signaling pathway activator” means a substance that activates the FGF pathway such that FGF targets are increased.
  • As used herein, the term “BMP signalling pathway inhibitor” a substance that interferes with the BMP pathway and causes BMP targets to be decreased.
  • As used herein, the term “growth factor” means a substance capable of stimulating cellular processes including but not limited to growth, proliferation, morphogenesis or differentiation.
  • As used herein, the term “fundic lineage” means cell types found in fundic epithelium in the corpus stomach.
  • As used herein, the term “SOX2+GATA+PDX1− epithelium” means epithelium that expresses the listed proteins.
  • As used herein, the term “stable expression” of a marker means expression that does not change upon modification of the growth environment.
  • As used herein, the term “totipotent stem cells” (also known as omnipotent stem cells) are stem cells that can differentiate into embryonic and extra-embryonic cell types. Such cells can construct a complete, viable, organism. These cells are produced from the fusion of an egg and sperm cell. Cells produced by the first few divisions of the fertilized egg are also totipotent.
  • As used herein, the term “pluripotent stem cells (PSCs),” also commonly known as PS cells, encompasses any cells that can differentiate into nearly all cells, i.e., cells derived from any of the three germ layers (germinal epithelium), including endoderm (interior stomach lining, gastrointestinal tract, the lungs), mesoderm (muscle, bone, blood, urogenital), and ectoderm (epidermal tissues and nervous system). PSCs can be the descendants of totipotent cells, derived from embryos (including embryonic germ cells) or obtained through induction of a non-pluripotent cell, such as an adult somatic cell, by forcing the expression of certain genes.
  • As used herein, the term “induced pluripotent stem cells (iPSCs),” also commonly abbreviated as iPS cells, refers to a type of pluripotent stem cells artificially derived from a normally non-pluripotent cell, such as an adult somatic cell, by inducing a “forced” expression of certain genes.
  • As used herein, the term “precursor cell” encompasses any cells that can be used in methods described herein, through which one or more precursor cells acquire the ability to renew itself or differentiate into one or more specialized cell types. In some embodiments, a precursor cell is pluripotent or has the capacity to becoming pluripotent. In some embodiments, the precursor cells are subjected to the treatment of external factors (e.g., growth factors) to acquire pluripotency. In some embodiments, a precursor cell can be a totipotent stem cell; a pluripotent stem cell (induced or non-induced); a multipotent stem cell; and a unipotent stem cell. In some embodiments, a precursor cell can be from an embryo, an infant, a child, or an adult. In some embodiments, a precursor cell can be a somatic cell subject to treatment such that pluripotency is conferred via genetic manipulation or protein/peptide treatment.
  • In developmental biology, cellular differentiation is the process by which a less specialized cell becomes a more specialized cell type. As used herein, the term “directed differentiation” describes a process through which a less specialized cell becomes a particular specialized target cell type. The particularity of the specialized target cell type can be determined by any applicable methods that can be used to define or alter the destiny of the initial cell. Exemplary methods include but are not limited to genetic manipulation, chemical treatment, protein treatment, and nucleic acid treatment.
  • As used herein, the term “cellular constituents” are individual genes, proteins, mRNA expressing genes, and/or any other variable cellular component or protein activities such as the degree of protein modification (e.g., phosphorylation), for example, that is typically measured in biological experiments (e.g., by microarray or immunohistochemistry) by those skilled in the art. Significant discoveries relating to the complex networks of biochemical processes underlying living systems, common human diseases, and gene discovery and structure determination can now be attributed to the application of cellular constituent abundance data as part of the research process. Cellular constituent abundance data can help to identify biomarkers, discriminate disease subtypes and identify mechanisms of toxicity.
  • Pluripotent Stem Cells Derived from Embryonic Cells
  • In some embodiments, an important step is to obtain stem cells that are pluripotent or can be induced to become pluripotent. In some embodiments, pluripotent stem cells are derived from embryonic stem cells, which are in turn derived from totipotent cells of the early mammalian embryo and are capable of unlimited, undifferentiated proliferation in vitro. Embryonic stem cells are pluripotent stem cells derived from the inner cell mass of the blastocyst, an early-stage embryo. Methods for deriving embryonic stem cells from blastocytes are well known in the art. Human embryonic stem cells H9 (H9-hESCs) are used in the exemplary embodiments described in the present application, but it would be understood by one of skill in the art that the methods and systems described herein are applicable to any stem cells.
  • Additional stem cells that can be used in embodiments in accordance with the present invention include but are not limited to those provided by or described in the database hosted by the National Stem Cell Bank (NSCB), Human Embryonic Stem Cell Research Center at the University of California, San Francisco (UCSF); WISC cell Bank at the Wi Cell Research Institute; the University of Wisconsin Stem Cell and Regenerative Medicine Center (UW-SCRMC); Novocell, Inc. (San Diego, Calif.); Cellartis AB (Goteborg, Sweden); ES Cell International Pte Ltd (Singapore); Technion at the Israel Institute of Technology (Haifa, Israel); and the Stem Cell Database hosted by Princeton University and the University of Pennsylvania. Exemplary embryonic stem cells that can be used in embodiments in accordance with the present invention include but are not limited to SA01 (SA001); SA02 (SA002); ES01 (HES-1); ES02 (HES-2); ES03 (HES-3); ES04 (HES-4); ES05 (HES-5); ES06 (HES-6); BG01 (BGN-01); BG02 (BGN-02); BG03 (BGN-03); TE03 (13); TE04 (14); TE06 (16); UC01 (HSF1); UC06 (HSF6); WA01 (H1); WA07 (H7); WA09 (H9); WA13 (H13); WA14 (H14).
  • More details on embryonic stem cells can be found in, for example, Thomson et al., 1998, “Embryonic Stem Cell Lines Derived from Human Blastocysts,” Science 282 (5391):1145-1147; Andrews et al., 2005, “Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin,” Biochem Soc Trans 33:1526-1530; Martin 1980, “Teratocarcinomas and mammalian embryogenesis,”. Science 209 (4458):768-776; Evans and Kaufman, 1981, “Establishment in culture of pluripotent cells from mouse embryos,” Nature 292(5819): 154-156; Klimanskaya et al., 2005, “Human embryonic stem cells derived without feeder cells,” Lancet 365 (9471): 1636-1641; each of which is hereby incorporated herein in its entirety.
  • Induced Pluripotent Stem Cells (iPSCs)
  • In some embodiments, iPSCs are derived by transfection of certain stem cell-associated genes into non-pluripotent cells, such as adult fibroblasts. Transfection is typically achieved through viral vectors, such as retroviruses. Transfected genes include the master transcriptional regulators Oct-3/4 (Pouf51) and Sox2, although it is suggested that other genes enhance the efficiency of induction. After 3-4 weeks, small numbers of transfected cells begin to become morphologically and biochemically similar to pluripotent stem cells, and are typically isolated through morphological selection, doubling time, or through a reporter gene and antibiotic selection. As used herein, iPSCs include but are not limited to first generation iPSCs, second generation iPSCs in mice, and human induced pluripotent stem cells. In some embodiments, a retroviral system is used to transform human fibroblasts into pluripotent stem cells using four pivotal genes: Oct3/4, Sox2, Klf4, and c-Myc. In alternative embodiments, a lentiviral system is used to transform somatic cells with OCT4, SOX2, NANOG, and LIN28. Genes whose expression are induced in iPSCs include but are not limited to Oct-3/4 (e.g., Pou5fl); certain members of the Sox gene family (e.g., Sox1, Sox2, Sox3, and Sox15); certain members of the Klf family (e.g., Klf1, Klf2, Klf4, and Klf5), certain members of the Myc family (e.g., C-myc, L-myc, and N-myc), Nanog, and LIN28.
  • In some embodiments, non-viral based technologies are employed to generate iPSCs. In some embodiments, an adenovirus can be used to transport the requisite four genes into the DNA of skin and liver cells of mice, resulting in cells identical to embryonic stem cells. Since the adenovirus does not combine any of its own genes with the targeted host, the danger of creating tumors is eliminated. In some embodiments, reprogramming can be accomplished via plasmid without any virus transfection system at all, although at very low efficiencies. In other embodiments, direct delivery of proteins is used to generate iPSCs, thus eliminating the need for viruses or genetic modification. In some embodiment, generation of mouse iPSCs is possible using a similar methodology: a repeated treatment of the cells with certain proteins channeled into the cells via poly-arginine anchors was sufficient to induce pluripotency. In some embodiments, the expression of pluripotency induction genes can also be increased by treating somatic cells with FGF2 under low oxygen conditions.
  • More details on embryonic stem cells can be found in, for example, Kaji et al., 2009, “Virus free induction of pluripotency and subsequent excision of reprogramming factors,” Nature 458:771-775; Woltjen et al., 2009, “piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells,” Nature 458:766-770; Okita et al., 2008, “Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors,” Science 322(5903):949-953; Stadtfeld et al., 2008, “Induced Pluripotent Stem Cells Generated without Viral Integration,” Science 322(5903):945-949; and Zhou et al., 2009, “Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins,” Cell Stem Cell 4(5):381-384; each of which is hereby incorporated herein in its entirety.
  • In some embodiments, exemplary iPS cell lines include but not limited to iPS-DF19-9; iPS-DF19-9; iPS-DF4-3; iPS-DF6-9; iPS(Foreskin); iPS(IMR90); and iPS(IMR90).
  • More details on the functions of signaling pathways relating to DE development can be found in, for example, Zorn and Wells, 2009, “Vertebrate endoderm development and organ formation,” Annu Rev Cell Dev Biol 25:221-251; Dessimoz et al., 2006, “FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo,” Mech Dev 123:42-55; McLin et al., 2007, “Repression of Wnt/β-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development,” 134:2207-2217; Wells and Melton, 2000, Development 127:1563-1572; de Santa Barbara et al., 2003, “Development and differentiation of the intestinal epithelium,” Cell Mol Life Sci 60(7): 1322-1332; each of which is hereby incorporated herein in its entirety.
  • Any methods for producing definitive endoderm from pluripotent cells (e.g., iPSCs or ESCs) are applicable to the methods described herein. In some embodiments, pluripotent cells are derived from a morula. In some embodiments, pluripotent stem cells are stem cells. Stem cells used in these methods can include, but are not limited to, embryonic stem cells. Embryonic stem cells can be derived from the embryonic inner cell mass or from the embryonic gonadal ridges. Embryonic stem cells or germ cells can originate from a variety of animal species including, but not limited to, various mammalian species including humans. In some embodiments, human embryonic stem cells are used to produce definitive endoderm. In some embodiments, human embryonic germ cells are used to produce definitive endoderm. In some embodiments, iPSCs are used to produce definitive endoderm.
  • Disclosed herein are methods for differentiating human pluripotent stem cells (PSCs) into gastric organoids containing fundic epithelium. Applicant first identified, and then recapitulated key events in embryonic fundus development to arrive at the claimed compositions. Applicant found that disruption of Wnt/β-catenin signaling in mouse embryos led to conversion of fundic to antral epithelium, while β-catenin activation in hPSC-derived foregut progenitors promoted the development of human fundic-type gastric organoids (hFGOs). Applicant then used hFGOs to identify temporally distinct roles for multiple signaling pathways in epithelial morphogenesis and differentiation of fundic cell types, including chief cells and functional parietal cells. While hFGOs are a powerful new model for studying the development of the human fundus and its lineages, they also represent a critical new model system to study the molecular basis of human gastric physiology, pathophysiology, and drug discovery.
  • In one aspect, an in vitro method of inducing formation of a gastric fundus tissue is disclosed. The method may comprise the steps of:
  • a) contacting a mammalian definitive endoderm (DE) cell with a wnt pathway activator, an FGF signaling pathway activator (for example, FGF4), a BMP signalling pathway inhibitor (e.g., Noggin), and retinoic acid, for a first period. Wnt signalling may be activated either with a protein like Wnt3a, for example, or via a chemical like Chiron, for example, which inhibits GSK3β. The first period may be three days±24 hours. The retinoic acid may be added for the third day of the first period±24 hours. In one aspect, the first period may be carried out for a period of time sufficient to form a three-dimensional posterior foregut spheroid from the definitive endoderm.
  • b) suspending said three-dimensional posterior foregut spheroid in a basement membrane matrix with a growth factor, a Wnt signalling pathway activator, a EGF signalling pathway activator, a BMP signalling pathway inhibitor, and retinoic acid for a second period. The second period may be three days±24 hours. The second period may be carried out for a period of time sufficient to induce a fundic lineage comprising fundal hGOs (hFGOs).
  • c) culturing the hFGOs of step b) with a wnt pathway activator and a EGF signalling pathway activator for a third period. The third period may be, for example, 11 days±24 hours.
  • d) culturing the hFGOs of step c with a wnt signalling pathway activator, a EGF signalling pathway activator, and FGF10 for a fourth period. The fourth period may be, for example, 10 days±24 hours.
  • e) contacting said hFGOs of step d with a MEK inhibitor for a fifth period. The MEK inhibitor may be, for example, PD0325901. The fifth period may be for a two-day period±24 hours, or for a period of time sufficient to form a gastric fundus tissue comprising a functional fundic cell type.
  • In one aspect, step e) may further comprise the step of contacting the fundal hGOs with an activator of BMP4 signalling. In certain aspects, step e may be carried out for a period of time sufficient to develop SOX2+GATA+PDX1− epithelium.
  • In one aspect, the functional fundic cell type may be a parietal cell that expresses proton pump proteins and secretes acid. In one aspect, the functional fundic cell type may be a chief cell that secretes pepsinogen.
  • In one aspect, step d and step e are carried out for a period of time sufficient to confer stable expression of lineage markers MUC5AC, MUC6, PGC, and GHRL.
  • In one aspect, the definitive endoderm may be derived from a precursor cell selected from an embryonic stem cell, an embryonic germ cell, an induced pluripotent stem cell, a mesoderm cell, a definitive endoderm cell, a posterior endoderm cell, a posterior endoderm cell, and a hindgut cell, a definitive endoderm derived from a pluripotent stem cell, a definitive endoderm derived from a pluripotent stem cell selected from an embryonic stem cell, an adult stem cell, or an induced pluripotent stem cell.
  • In one aspect, the definitive endoderm may be derived from contacting a pluripotent stem cell with one or more molecules selected from Activin, the BMP subgroups of the TGF-beta superfamily of growth factors; Nodal, Activin A, Activin B, BMP4, Wnt3a, and combinations thereof.
  • There are many ways to activate the Wnt/beta-catenin pathway (see http://web.stanford.edu/group/nusselab/cgi-bin/wnt/). Suitable Some existing wnt signalling pathway activators include but are not limited to:
  • Protein-based activators: Wnt ligands including but not limited to Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt8, et al; modifiers of Wnt ligand activity including but not limited to activated Wnt frizzled receptors, (LRP) co-receptors, R-spondin proteins, Dkk proteins, regulators of Wnt ligand secretion and trafficking (Wntless, Porcupine), inhibiting beta-catenin degredation APC and GSK3beta inhibition, activated beta-catenin, constitutively active TCF/Lef proteins.
  • Chemical activators: there are over 28 known chemicals that either activate or inhibit Wnt/beta-catenin signaling. Some activators include but are not limited to GSK3-beta inhibitors CH1R99021, BIO, LY2090314, SB-216763, lithium, porcupine inhibitors IWP, LGK974, C59, SFRP inhibitor WAY-316606, beta-catenin activator DCA.
  • In one aspect, the WNT pathway activator may be one or more molecules selected from Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, and Wnt16, for example, Wnt3a, or for example, Wnt3a at a concentration between about 50 to about 1500 ng/ml.
  • Suitable FGF signalling pathway activators include: FGF ligands FGF2, 4, 5, 8, et al. Activated forms of FGF receptors. Proteins and chemicals that stimulate the FGF receptor and signaling components downstream of the receptors including MAPK, MEK, ERK proteins and chemicals that modulate their activity. FGF signaling can be activated by inhibiting inhibitors of FGF signaling pathways including but not limited to Sprouty protein family members.
  • In one aspect, the BMP signalling pathway inhibitor may be selected from Noggin, Dorsomorphin, LDN189, DMH-1, and combinations thereof, for example, wherein said precursor cell may be contacted with a BMP inhibitor at a concentration between about 50 to about 1500 ng/ml.
  • In one aspect, the steps are conducted in vitro.
  • In one aspect, a composition comprising gastric tissue produced according to the aforementioned method(s) is disclosed. The gastric tissue may be characterized, for example, by being free of innervation and/or blood vessels.
  • In one aspect, an in vitro method of inducing formation of a gastric fundus tissue is disclosed. The method may comprise the steps of contacting a fundal hGO (hFGO) with a wnt pathway activating agent and an EGF signalling pathway activating agent for a first period, and a MEK inhibitor for a second period, (wherein said MEK inhibitor may be PD0325901), wherein said first and second periods are carried out for a period of time sufficient to form a functional fundic cell type;
  • wherein said hFGO are obtained by contacting a three-dimensional posterior foregut spheroid in a basement membrane matrix with a growth factor, a wnt pathway activating agent, an EGF signalling pathway activator, a BMP signalling pathway inhibitor, and retinoic acid for a period of time sufficient to convert said three-dimensional posterior foregut spheroid to said hFGO;
    wherein said three-dimensional posterior foregut spheroids are obtained by contacting a mammalian definitive endoderm (DE) cells with a wnt pathway activating agent, an FGF signaling pathway activating agent, a BMP signalling pathway inhibitor, and retinoic acid.
  • EXAMPLES
  • Recently, considerable progress has been made in the development of three-dimensional in vitro organoid systems1,2. Organoids have proven to be powerful experimental models that combine architectural complexity and cellular diversity with the tractability and scalability of traditional cell culture methods. Organoid generation through directed differentiation of pluripotent stem cells (PSCs; comprising both embryonic stem cells and induced PSCs) offers several advantages over other approaches including an unlimited source of starting material, no requirement for surgical acquisition of tissue, and ease of genetic manipulations. Further, PSC-based methods permit direct investigation of mechanisms underlying normal and aberrant human development3. However, differentiating PSCs into specific organoid types depends on a robust molecular knowledge of normal organ development. For some organs, such as the stomach, there are large gaps in understanding of molecular pathways that drive embryonic development.
  • The stomach is one of the most structurally diverse organs among mammals4. In humans, the gastric mucosa generally consists of two types of epithelial glands5,6. Located in the more proximal anatomic domains—the corpus and fundus—of the stomach, oxyntic glands comprise acid-secreting parietal cells, protease-producing chief cells, mucus-producing cells, and endocrine cells. Antral-type glands, located in the more distal antrum and pylorus, contain mostly mucous and endocrine cells. To simplify the anatomic- and species-specific systems of nomenclature, the terms ‘fundus’ and ‘antrum’ are used to broadly describe these two histologic types of gastric epithelia. Applicant has previously developed a method to direct the differentiation of hPSCs into three-dimensional gastric tissue (human gastric organoids; hGOs) that contained a pure antral epithelium with normal antral cell types7. While the antral hGOs (hAGOs) are a robust system for studying antral lineage allocation and host-microbe interactions in the stomach, they do not allow for studies of fundic biology and disease. More recently, Noguchi et. al. successfully differentiated mouse ESCs into organoids comprising various types of mouse gastric tissue8. However, this approach used mouse ESC aggregation and spontaneous differentiation resulting in organoids that were heterogeneous, evidenced by the presence of stratified epithelia. Moreover, species differences make the mouse stomach suboptimal for modeling human gastric disease9. Thus, a robust and efficient PSC-derived model of the human fundus epithelium would represent a significant advance in the field of gastric biology.
  • Embryonic organ development is guided by a series of instructive cues between neighboring tissues10,11, and differentiation of hPSCs into specific lineages has relied heavily on use of these signals to direct differentiation in vitro. Applicant previously identified a step-wise differentiation approach to generate hAGOs, whereby hPSCs were differentiated into definitive endoderm, patterned to posterior foregut, then specified into presumptive antral epithelium7. Applicant hypothesized that the fundus and antrum derive from a common population of posterior foregut progenitors, which could be directed toward the fundic lineage if provided with the appropriate signals. However, given that the mechanisms that drive fundus development in vivo were not previously known, Applicant first had to identify signaling pathways that pattern the embryonic stomach along the proximal-distal axis.
  • Embryonic Stomach Pattern Formation
  • To aid investigation of the pathways that regulate fundus specification during embryonic development, Applicant analyzed mouse embryos to identify molecular markers that could distinguish between presumptive fundus, antrum and forestomach. At E14.5 Applicant found that Sox2 was expressed in all foregut organ lineages while Gata4 was restricted to the glandular stomach epithelium. Within the Gata4+ domain, Pdx1 was specific to the presumptive antral region (FIG. 6, a); thus, the embryonic fundus domain is believed to be Sox2+Gata+Pdx1−. Further, Applicant analyzed published microarray datasets (GSM326648-GSM32665012 and GSM80809-GMS8081613) and dissected regions of the E14.5 foregut to demonstrate that expression of the transcription factors Irx2, Irx3, and Irx5 was greater than ten-fold enriched in the embryonic fundus compared to antrum (FIG. 6, b-c), indicating that their expression can further distinguish between regions of the glandular gastric epithelium.
  • At the molecular level, the presumptive fundic and antral domains of the stomach were already established by E10.5 (FIG. 6, a). At that point in development, the canonical Wnt signaling pathway was active in the proximal stomach but exhibited little or no activity in the distal stomach14, as shown using the Wnt reporter mouse strain Axin2-lacZ (FIG. 1b ). While the regulation of Wnt/β-catenin signaling is known to play a role in establishing the pyloric-duodenal boundary14,15, its role in gastric epithelial patterning had not been investigated. To determine whether Wnt/β-catenin signaling was functionally required for establishing the fundus in vivo, Applicant deleted β-catenin (Ctnnb1) in the foregut epithelium using Shh-cre (Shh-cre;β-cateninfl/fl=cKO). Disruption of Wnt/β-catenin signaling resulted in the loss of fundic identity, demonstrated by ectopic Pdx1 expression in the fundus at E10.5 (FIG. 1, c). Ectopic Pdx1 was initially restricted to the ventral half of the fundic epithelium, consistent with previously reported recombination activity using this Shh-cre line16, but it then expanded over time to include a majority of the proximal stomach and greater curvature by E14.5 (FIG. 7, a). Additionally, expression of the fundus markers Irx2, Irx3, and Irx5 were dramatically reduced in the cKO embryos (FIG. 7, b). Collectively, these data support the conclusion that epithelial Wnt/β-catenin signaling regulates gastric pattern formation, as it is required for the initial specification of fundus identity while repressing antral fate in the embryonic mouse stomach.
  • To determine the impact of early Wnt/β-catenin-mediated patterning abnormalities on subsequent cytodifferentiation, Applicant analyzed cKO embryos at E18.5. The stomach in cKO embryos was malformed and reduced in size at E18.5 (FIG. 1, d and FIG. 7, c-d), suggestive of a role for Wnt/β-catenin in promoting stomach growth during late stages of development. Moreover, the cKO stomach was completely mis-patterned with ectopic Pdx1 expression throughout the proximal-most regions of the epithelium (FIG. 1, d). Parietal cells, a fundic cell type marked by expression of Atp4b, were reduced in the CKO stomach (FIG. 1, d) and completely absent in β-catenin deficient epithelium (FIG. 1, e). In contrast, the parietal cells that did develop were only observed in β-catenin-expressing epithelium (FIG. 1, e and FIG. 7, d-e). Taken together, these in vivo data support a model by which Wnt/β-catenin signaling induces fundus specification and inhibits antral identity. Further, disruption of this early patterning coincides with subsequent cell autonomous loss of parietal cells, suggesting that cytodifferentiation is impaired secondary to developmental patterning defects.
  • Differentiation of Fundic hGOs from hPSCs
  • Applicant next investigated the role of Wnt/β-catenin signaling in establishing fundic-antral pattern of the developing human stomach. To model early stages of stomach differentiation, Applicant started with a previously described protocol for differentiating hPSCs into antrum-like gastric organoids, which recapitulates the normal stages of early gastric development with high fidelity. Starting with three-dimensional posterior foregut spheroids (SOX2+HNF1β+), Applicant tested whether stimulation of Wnt/β-catenin signaling would direct posterior foregut epithelium into the fundic (SOX2+GATA+PDX1−) lineage rather than antrum (SOX2+GATA+PDX1+) during the gastric specification stage (FIG. 2, a). Indeed, activating β-catenin with the GSK3β inhibitor CHIR99021 (CHIR) for three days resulted in nearly complete repression of PDX1 at day 9, accompanied by significantly increased expression of IRX2, IRX3, and IRX5 (FIG. 2, b-c). Importantly, SOX2 and GATA4 levels were unaffected by CHIR treatment, confirming that spheroids retained their gastric identity. Thus, CHIR exposure resulted in formation of SOX2+GATA+PDX1− epithelium with increased IRX expression, a signature consistent with the presumptive fundic epithelium.
  • Applicant then sought to determine whether CHIR-treated spheroids would further develop into more mature hGOs containing a fundus-like epithelium. Interestingly, a three-day pulse of CHIR from days 6-9 was not sufficient to irreversibly specify a fundic identity, as the hGOs ultimately reverted to a PDX1+ antral phenotype at later stages. However, continued Wnt stimulation via CHIR treatment through at least day 29 led to stable induction of fundic gene expression (FIG. 8, a). This was consistent with the prolonged activity of Wnt/β-catenin signaling during embryonic stomach development in vivo. Although previous studies indicated that ectopic Wnt activation in the embryonic stomach promoted intestinal fate14,15, CHIR-treated hGOs did not exhibit a significant increase in intestinal markers CDX2, MUC2, CCK, or SCT (FIG. 8, e and FIG. 9, a-b). Applicant further demonstrated that CDX2 remained suppressed despite Wnt/β-catenin activation due to concomitant inhibition of BMP signaling, as replacing Noggin with BMP4 led to robust expression of the intestinal transcription factor (FIG. 9, c).
  • Once regional domains are established in early development, the primitive gastric epithelium undergoes periods of growth, glandular morphogenesis, and differentiation of definitive cell types. Applicant previously showed that hAGOs underwent a similar progression of morphologic and cellular development7. CHIR-treated hFGOs grew at a similar rate and efficiency compared to hAGOs, as 75-90% of all spheroids plated grew into organoids (FIG. 8, d). At day 20, both types of hGOs contained epithelia that expressed the gastric SOX2/GATA4 signature in >90% of cells, while PDX1 was restricted to hAGOs (87.1±8.4% in hAGOs and 3.9±2.0% in hFGOs, p=3.07×10−6; FIG. 8, e). The organoids maintained their respective gastric identities throughout their development (FIG. 8, b-c). By day 34, hFGOs and hAGOs comprised CDH1+CTNNB1+KRT8+ polarized, columnar epithelia that ubiquitously expressed the gastric-specific17 claudin CLDN18 (FIG. 2, e and FIG. 9, d), as well as comparable undifferentiated mesenchymal cells (FIG. 10, b). One notable difference was that hFGOs had a distinctive architecture with organized glands that bud from the organoid epithelium (FIG. 2, d-e and FIG. 10, a), while hAGOs had complex folding and primitive gland-like organization but rarely glandular buds7. Thus, the novel Wnt/β-catenin dependent mechanism of specifying fundus is conserved in humans and can be manipulated to generate three-dimensional hFGOs with a glandular epithelium that molecularly resembles the developing fundus.
  • Region-Specific Gastric Cytodifferentiation
  • Differentiated antral gastric cell types were first detected in hAGOs around day 27 and then increased by day 347, analogous to the first few weeks of postnatal development in the mouse stomach18. At day 34, hFGOs contained both MUC5AC+ surface mucous cells and MUC6+ mucous neck cells as expected, similar to the hAGOs (FIG. 3, a-b and FIG. 11, a). hFGOs also formed a variety of endocrine cell types (FIG. 3, c), but expression of the hormone GAST was specific to hAGOs while GHRL was enriched 10-fold in hFGOs (FIG. 3, d), consistent with the normal gastroendocrine pattern19. To functionally define the region-specific competence of hGOs, Applicant used an inducible system to over-express the proendocrine transcription factor NEUROG3. Expression of NEUROG3 in both hGO subtypes resulted in robust expression of the pan-endocrine marker SYP, as well as the common gastric hormones SST and GHRL (FIG. 11, c). However, only the hAGOs and not hFGOs were competent to give rise to GAST-expressing G-cells (FIG. 3, e and FIG. 11, c), consistent with the antrum-specific distribution of G-cells in the human stomach19.
  • Chief cells, the fundus-specific secretory lineage, reside in the base of oxyntic glands and have been proposed as a type of reserve stem cell20. hFGOs exhibited epithelial expression of the chief cell-specific21 transcription factor MIST1 (FIG. 4, a), had 100-1,000-fold increases in transcripts for the proenzymes PGA5 and PGC (FIG. 4, c), and contained significantly increased pepsinogen content measured by ELISA (FIG. 4, e). However the transcript levels were less than 1% those found in the adult human stomach (FIG. 11, d) and pepsinogen-positive cells were only rarely detectable by immunohistochemistry (FIG. 4, b-c). Consistent with this, zymogen granule-containing cells22 were identified by TEM (FIG. 4, d) but were rare. In contrast, cells with a more immature mucous granule pattern were abundant (FIG. 11, b). Since chief cells in vivo do not exhibit robust pepsinogen expression for the first few weeks of life (FIG. 12, a-b), Applicant concluded that the chief cells were present in hFGOs but were immature. hFGOs therefore represent a robust platform to dissect the intrinsic and extrinsic mechanisms that regulate chief cell maturation.
  • Pathways Controlling Parietal Cell Differentiation
  • At baseline, hFGOs contained only a small number of parietal cells (PCs; FIG. 5, a-b), the defining cell type of fundic glands that acidify the gastric lumen via the proton pump (consisting of ATP4A and ATP4B subunits). Identification of efficient methods to increase PC populations has remained elusive due to a lack of understanding of the signaling mechanisms that drive their development. Applicant therefore used PSC-derived hFGOs as a platform to functionally screen candidate signaling pathways for a role in regulating PC differentiation. For screening, Applicant exposed day 30 hFGOs to signaling agonists or antagonists for two days and analyzed PC differentiation at day 34. While the majority of signaling manipulations had no appreciable effect, transient inhibition of the MEK pathway with PD0325901 (PD03) resulted in substantial up-regulation of both ATP4A and ATB4B (FIG. 13, a). Further, while BMP4 alone did not affect PC gene expression, it could enhance the effect of PD03 (data not shown). Thus, a two-day pulse of PD03/BMP4 was sufficient to induce rapid and robust expression of PC markers ATP4A, ATP4B and GIF (FIG. 5, a-b and FIG. 13, d). Interestingly, this effect was not observed by simply removing EGF or FGF from the culture medium (FIG. 13, b), suggesting that there are likely endogenous signaling interactions upstream of MEK/ERK that are responsible for limiting PC differentiation in hFGO cultures. Further, PD03/BMP4 treatment only affected the PC lineage (FIG. 13, e), and was unable to induce PCs in hAGOs (FIG. 13, c), further emphasizing that early patterning of the gastric epithelium defines its ultimate differentiation potential.
  • At day 34 hFGO epithelia exhibited comparable organization to the human stomach, with mucous cells lining the surface domain and PCs concentrated in the glandular portion (FIG. 5, e). Moreover, parietal cell morphology closely resembled maturing parietal cells in vivo (FIG. 5, c). Given their resemblance to PCs in vivo and their tubulovesicular ultrastructure as seen on TEM (FIG. 5, d), Applicant hypothesized that the PCs in hFGOs would exhibit the ability to secrete acid in response to appropriate stimuli. Measured using a pH sensitive dye (SNARF5F) with real time confocal microscopy (FIG. 14, a), hFGOs produced a swift and marked decrease in luminal pH in response to histamine that was blocked by either the H2 antagonist famotidine or the H+K+− ATPase antagonist omeprazole (FIG. 5, f and FIG. 14, b). To visualize the cellular response to histamine, hGOs were cultured with the fluorescent dye acridine orange (AO), which shifts to an orange color when sequestered in acidic compartments23. Similar to isolated mouse gastric glands, AO accumulated in acidified cellular vesicles in hFGO glands in response to histamine (FIG. 5, g and FIG. 14, c-d). These data indicate that the PCs underwent appropriate changes in secretory canalicular structure in response to acid-inducing stimuli.
  • In vivo, differentiated gastric cell lineages are thought to derive from a common pool of undifferentiated stem or progenitor cells. Here Applicant has demonstrated the ability to alter the relative proportions of cell types in hFGOs, either through genetic means (NEUROG3-mediated regulation of endocrine cells) or by manipulation of extrinsic signaling pathways (PD03/BMP4 for PCs). These observations led to the hypothesis that hFGOs might contain a population of gastric stem cells analogous to those that have been isolated from the adult stomach. Indeed, Applicant found that dissociated day 34 hFGOs could be passaged serially to give rise to new organoids (FIG. 15, a-b). Re-growth of organoids from passaged hFGOs was dependent on high Wnt and high FGF culture medium, similar to what is used to grow primary gastric tissue organoids24,25. Following two rounds of passaging, hFGOs maintained expression of lineage markers MUC5AC, MUC6, PGC, and GHRL; however, they did not contain PCs and were refractory to PD03/BMP4-mediated induction of the parietal lineage (FIG. 15, c-d). This finding was similar to what has been observed in adult stem cell-derived gastric organoids, which do not robustly produce PCs despite being derived from the bona fide oxyntic mucosa20,26. Thus it will be important to identify conditions that preserve PC competence in long-term cultures of hGOs and adult gastric organoids.
  • In summary, Applicant has directly applied in vivo and in vitro discovery-based studies towards the differentiation of hPSCs into a new tissue type. Applicant has defined a novel function of Wnt/β-catenin signaling in specifying the fundic domain during stomach development in mice, and used Wnt modulation as the mechanistic basis to direct differentiation of hPSCs into three-dimensional human fundic organoids. In both mouse and human, Wnt-mediated fundus specification was led to the subsequent formation of PCs. The fundus-specific manipulations at each stage of this directed differentiation protocol led to robust PC induction (FIG. 13, f). Previous reports identified that the mesenchymal factor Barx1 indirectly acts to repress Wnt signaling and that helps to prevent intestinal gene expression in the stomach14,15. Given that the current study identified an epithelial Wnt/β-catenin function, and the previous work identified a mesenchymal pathway, it seems likely that Wnt/β-catenin may have distinct roles in the epithelium versus mesenchyme. For example, the mesenchymal role for Wnt/β-catenin could modulate other signaling pathways such as BMP27, which our data show synergizes with Wnt to promote intestinal specification from early endoderm (FIG. 7 and FIG. 9, c) The human gastric organoid systems might be useful, in combination with animal models, to dissect how these signaling pathways interact in the mesenchyme and epithelium to coordinate early embryonic gastrointestinal development.
  • Pathways that control differentiation of gastric progenitor cells into distinct lineages are also lacking. Applicant has demonstrated the utility of this new hGO platform to identify that MEK/ERK signaling potently represses parietal cell specification. Consistent with these findings, transgenic activation of MEK/MAPK-dependent pathways led to loss of parietal cells in vivo28,29. Therefore, hGOs are a new and tractable human model system to identify and study signaling mechanisms involved in normal cellular homeostasis in the fundus and antrum. Further, aberrant regulation of developmental programs may also contribute to gastric disease, as corpus/fundus pathology is often associated with parietal cell atrophy30-32, antral-type histology33, and even misexpression of Pdx134. Thus targeting of these pathways could have clinical utility, as Choi et. al. recently demonstrated that pharmacologic inhibition of MEK was sufficient to restore normal parietal cell differentiation in a mouse model of metaplasia35. Additionally, having now established both antral- and fundic-type hGOs, it is possible to study how these human gastric tissues interact physiologically, differentially respond to infection and injury, and respond to pharmacologic treatments.
  • Methods Mouse Experiments
  • The following genetic mouse strains were obtained from The Jackson Laboratory, housed at Cincinnati Children's Hospital Research Foundation animal facility, and maintained according to IACUC protocol (0B09074): Axin2:LacZ (stock no. 009120), Shh:Cre (stock no. 005622), and β-cateninfloxed (stock no. 004152). Timed matings, with the morning the vaginal plug was observed being denoted as E0.5, were used to generate embryos at various stages that were harvested for either wholemount staining or tissue dissection. At least two litters of embryos were analyzed at each developmental stage examined Both male and female embryos were analyzed.
  • Pluripotent Stem Cell Culture
  • Human embryonic stem cell line WA01 (H1; obtained from WiCell) was supplied by the Pluripotent Stem Cell Facility at Cincinnati Children's Hospital Medical Center. Cell identity was confirmed by short tandem repeat analysis (Microsatellite STR Analysis; Applied Biosystems), and cells were routinely tested for mycoplasma contamination (MycoAlert Mycoplasma Detection Kit; Lonza). Pluripotent cells were maintained in feeder-free conditions on HESC-qualified Matrigel (BD Biosciences) in mTesR1 media (Stem Cell Technologies). Colonies were passaged every four days using dispase (Invitrogen).
  • Differentiation of Posterior Foregut Spheroids
  • The protocol for directed differentiation of gastric organoids was adapted from our previous protocol7, and Table 1 contains the complete list of media and growth factors for each stage. For differentiation, hPSCs were dissociated into single cells using Accutase (Stem Cell Technologies) and plated into 24-well plates at a density of roughly 200,000 cells per well in mTesR1 with Y-27632 (10 μM; Stemgent). The following day, cells were differentiated into definitive endoderm (DE) by adding Activin A (100 ng/ml; Cell Guidance Systems) in RPMI 1640 media (Invitrogen) for three days. Media was also supplemented with NEAA (1×; Gibco) and defined FBS (dFBS; Invitrogen) at 0%, 0.2%, and 2.0% on days 1, 2, and 3, respectively. Additionally, BMP4 (50 ng/ml; R&D Systems) was added on the first day. Subsequently, DE was differentiated to posterior foregut endoderm by exposing cells to CHIR99021 (2 μM; Stemgent), FGF4 (500 ng/ml; R&D Systems), and Noggin (200 ng/ml; R&D systems) for three days in RPMI 1640 supplemented with NEAA and 2.0% dFBS. Retinoic acid (2 μM; Sigma Aldrich) was added for the final day. Media was changed every day. This process resulted in the spontaneous formation of three-dimensional posterior foregut spheroids.
  • TABLE 1
    Differentiation protocol for fundic hGOs. Activin A (100
    ng/ml; R&D Systems), CHIR99021 (2 uM; Stemgent), FGF4 (500
    ng/ml; R&D systems), PD0325901 (2 uM; Stemgent), BMP4
    (50 ng/ml; R&D Systems). *BGM (basic gut media) = Advanced
    DMEM/F12, N2 (1X; Invitrogen), B27 (1X; Invitrogen) L-glutamine,
    HEPES (10 uM), and penicillin/streptomycin. ** Specific to fundus
    hGO protocol.
    Base Activin
    Day Media Supplement A CHIR99021 FGF4 Noggin RA EGF FGF10 PD03 BMP4
    0-1 RPMI NEAA + +
    1-2 RPMI 0.2% FCS, +
    NEAA
    2-3 RPMI 2.0% FCS, +
    NEAA
    3-5 RPMI 2.0% FCS, + + +
    NEAA
    5-6 RPMI 2.0% FCS + + + +
    NEAA
    6-9 BGM* n/a +** + + +
     9-13 BGM* n/a +** + +
    13-20 BGM* n/a +** +
    20-30 BGM* n/a +** + +**
    30-32 BGM* n/a +** + +** + +
    32-34 BGM* n/a +** + +**
  • Three-Dimensional Culture of Foregut Spheroids-Gastric Organoids
  • Posterior foregut spheroids were collected and transferred to a three-dimensional culture system as previously described36. Briefly, spheroids were suspended in 50 μl Matrigel (BD Biosciences) and plated as a droplet into 24-well plates. The matrigel was allowed to solidify for 10 minutes in the tissue culture incubator, then overlayed with basic gut media (BGM) containing growth factors and/or small molecule agonists. BGM consisted of Advanced DMEM/F12 media (Gibco) supplemented with N2 (1×; Invitrogen), B27 (1×; Invitrogen), HEPES (10 μM; Gibco), L-glutamine, penicillin/streptomycin, and EGF (100 ng/ml; R&D Systems). During days 6-9, spheroids were cultured with RA and noggin to specify the antral lineage. For fundic specification, CHIR was added during this stage. Antral hGOs were subsequently cultured in BGM with only EGF. Fundic hGOs were continuously exposed to CHIR from day 6-30. In addition, FGF10 (50 ng/ml; R&D Systems) was added to fundic hGOs from day 20-30 as it was shown to enhance the glandular morphogenesis driven by CHIR (data not shown). On day 20, organoids were collected and re-plated at a dilution of 1:10-1:20.
  • For screening experiments to identify factors that increase parietal cell differentiation, hFGOs were grown to day 30, then exposed for two days to individual signaling pathway agonists and antagonists: DAPT (1 μM; Stemgent), SB431542 (10 μM; Stemgent), BMP4 (50 ng/ml; R&D Systems), PD0325901 (2 μM; Stemgent), Gastrin (10 nM; Sigma Aldrich), Dexamethasone (50 nM; Sigma Aldrich), and Wnt5a (50 ng/ml; R&D Systems). Following treatment, hFGOs were grown for two more days to day 34, then analyzed by qPCR.
  • RNA Isolation and qPCR
  • Total RNA was isolated using Nucleospin RNA II kit (Machery Nagel) and converted to cDNA as previously described7. qPCR was performed on Quantstudio 6 (Applied Biosystems) using Quantitect SYBR-Green master mix (Qiagen), and primer sequences are listed below.
  • Primer Sequences
  • Primers used for qPCR were the following:
  • (SEQ ID NO: 1)
    hATP4A, forward 5′-TGGTAGTAGCCAAAGCAGCC-3′,
    (SEQ ID NO: 2)
    reverse 5′-TGCCATCCAGGCTAGTGAG-3′;
    (SEQ ID NO: 3)
    hATP4B, forward 5′-ACCACGTAGAAGGCCACGTA-3′,
    (SEQ ID NO: 4)
    reverse 5′-TGGAGGAGTTCCAGCGTTAC-3′;
    (SEQ ID NO: 5)
    hAXIN2, forward 5′-CTGGTGCAAAGACATAGCCA-3′,
    (SEQ ID NO: 6)
    reverse 5′-AGTGTGAGGTCCACGGAAAC-3′;
    (SEQ ID NO: 7)
    hCCK, forward 5′-CGGTCACTTATCCTGTGGCT-3′,
    (SEQ ID NO: 8)
    reverse 5′-CTGCGAAGATCAATCCAGCA-3′;
    (SEQ ID NO: 9)
    hCDX2, forward 5′-CTGGAGCTGGAGAAGGAGTTTC-3′,
    (SEQ ID NO: 10)
    reverse 5′-ATTTTAACCTGCCTCTCAGAGAGC-3′;
    (SEQ ID NO: 11)
    hCHGA, forward 5′-TGACCTCAACGATGCATTTC-3′,
    (SEQ ID NO: 12)
    reverse 5′-CTGTCCTGGCTCTTCTGCTC-3′;
    (SEQ ID NO: 13)
    hGAPDH, forward 5′-CCCATCACCATCTTCCAGGAG-3′,
    (SEQ ID NO: 14)
    reverse 5′-CTTCTCCATGGTGGTGAAGACG-3′;
    (SEQ ID NO: 15)
    hGAST, forward 5′-CAGAGCCAGTGCAAAGATCA-3′,
    (SEQ ID NO: 16)
    reverse 5′-AGAGACCTGAGAGGCACCAG-3′;
    (SEQ ID NO: 17)
    hGATA4, forward 5′-TCCAAACCAGAAAACGGAAGC-3′,
    (SEQ ID NO: 18)
    reverse 5′-GCCCGTAGTGAGATGACAGG-3′;
    (SEQ ID NO: 19)
    hGHRL, forward 5′-GCTGGTACTGAACCCCTGAC-3′,
    (SEQ ID NO: 20)
    reverse 5′-GATGGAGGTCAAGCAGAAGG-3′;
    (SEQ ID NO: 21)
    hGIF, forward 5′-CATTTTCCGCGATATTGTTG-3′,
    (SEQ ID NO: 22)
    reverse 5′-GCACAGCGCAAAAATCCTAT-3′;
    (SEQ ID NO: 23)
    hIRX2, forward 5′-GTGGTGTGCGCGTCGTA-3′,
    (SEQ ID NO: 24)
    reverse 5′-GGCGTTCAGCCCCTACC-3′;
    (SEQ ID NO: 25)
    hIRX3, forward 5′-GGAGAGAGCCGATAAGACCA-3′,
    (SEQ ID NO: 26)
    reverse 5′-AGTGCCTTGGAAGTGGAGAA-3′;
    (SEQ ID NO: 27)
    hIRX5, forward 5′-GGTGTGTGGTCGTAGGGAGA-3′,
    (SEQ ID NO: 28)
    reverse 5′-GCTACAACTCGCACCTCCA-3′;
    (SEQ ID NO: 29)
    hMIST1, forward 5′-TGCTGGACATGGTCAGGAT-3′,
    (SEQ ID NO: 30)
    reverse 5′-CGGACAAGAAGCTCTCCAAG-3′;
    (SEQ ID NO: 31)
    hMUC2, forward 5′-TGTAGGCATCGCTCTTCTCA-3′,
    (SEQ ID NO: 32)
    reverse 5′-GACACCATCTACCTCACCCG-3′;
    (SEQ ID NO: 33)
    hMUC5AC, forward 5′-CCAAGGAGAACCTCCCATAT-3′,
    (SEQ ID NO: 34)
    reverse 5′-CCAAGCGTCATTCCTGAG-3′;
    (SEQ ID NO: 35)
    hMUC6, forward 5′-CAGCAGGAGGAGATCACGTTCAAG-3′,
    (SEQ ID NO: 36)
    reverse 5′-GTGGGTGTTTTCCTGTCTGTCATC-3′;
    (SEQ ID NO: 37)
    hPDX1, forward 5′-CGTCCGCTTGTTCTCCTC-3′,
    (SEQ ID NO: 38)
    reverse 5′-CCTTTCCCATGGATGAAGTC-3′;
    (SEQ ID NO: 39)
    hSCT, forward 5′-GGTTCTGAAACCATAGGCCC-3′,
    (SEQ ID NO: 40)
    reverse 5′-GTCAGGGTCCAACATGCC-3′;
    (SEQ ID NO: 41)
    hSOX2, forward 5′-GCTTAGCCTCGTCGATGAAC-3′,
    (SEQ ID NO: 42)
    reverse 5′-AACCCCAAGATGCACAACTC-3′;
    (SEQ ID NO: 43)
    mCdx2, forward 5′-TCTGTGTACACCACCCGGTA-3′,
    (SEQ ID NO: 44)
    reverse 5′-GAAACCTGTGCGAGTGGATG-3′;
    (SEQ ID NO: 45)
    mGata4, forward 5′-CCATCTCGCCTCCAGAGT-3′,
    (SEQ ID NO: 46)
    reverse 5′-CTGGAAGACACCCCAATCTC-3′;
    (SEQ ID NO: 47)
    mGapdh, forward 5′-TTGATGGCAACAATCTCCAC-3′,
    (SEQ ID NO: 48)
    reverse 5′-CGTCCCGTAGACAAAATGGT-3′;
    (SEQ ID NO: 49)
    mIrx1, forward 5′-AATAAGCAGGCGTTGTGTGG-3′,
    (SEQ ID NO: 50)
    reverse 5′-CTCAGCCTCTTCTCGCAGAT-3′;
    (SEQ ID NO: 51)
    mIrx2, forward 5′-AGCTGGTATGGATAGGCCG-3′,
    (SEQ ID NO: 52)
    reverse 5′-GGCTTCCCGTCCTACGTG-3′;
    (SEQ ID NO: 53)
    mIrx3, forward 5′-ATAAGACCAGAGCAGCGTCC-3′,
    (SEQ ID NO: 54)
    reverse 5′-GTGCCTTGGAAGTGGAGAAA-3′;
    (SEQ ID NO: 55)
    mIrx5, forward 5′-GGAGTGTGGTCGTAGGGAGA-3′,
    (SEQ ID NO: 56)
    reverse 5′-GCTACAACTCGCACCTCCA-3′;
    (SEQ ID NO: 57)
    mPdx1, forward 5′-ACGGGTCCTCTTGTTTTCCT-3′,
    (SEQ ID NO: 58)
    reverse 5′-TGGATGAAATCCACCAAAGC-3′;
    (SEQ ID NO: 59)
    mPitx1, forward 5′-GTCCATGGAGGTGGGGAC-3′,
    (SEQ ID NO: 60)
    reverse 5′-GCTTAGGCGCCACTCTCTT-3′;
    (SEQ ID NO: 61)
    mSox2, forward 5′-AAAGCGTTAATTTGGATGGG-3′,
    (SEQ ID NO: 62)
    reverse 5′-ACAAGAGAATTGGGAGGGGT-3′;
    (SEQ ID NO: 63)
    mTrp63, forward 5′-AGCTTCTTCAGTTCGGTGGA-3′,
    (SEQ ID NO: 64)
    reverse 5′-CCTCCAACACAGATTACCCG-3′.
  • Immunofluorescent Staining
  • Tissues were fixed in 4% paraformaldehyde overnight at 4° C., then washed thoroughly in PBS. For wholemount immunofluorescent staining, embryos were processed as previously described37. Briefly, they were permeabilized in Dent's Bleach (4:1:1 EtOH:DMSO:30% H2O2) for two hours at room temperature and rehydrated through series of methanol washes. Embryos were then blocked for one hour, incubated in primary antibody overnight at 4° C., washed in PBS, incubated in primary antibody overnight at 4° C., and thoroughly washed. For paraffin embedding, tissues were dehydrated through series of ethanol washes, washed in xylene, then embedded in paraffin. For staining, slides were deparaffinized and rehydrated. Antigen retrieval was performed in citrate buffer for 45 minutes in steamer. Primary antibodies were incubated overnight at 4° C. Following primary antibody, slides were washed in PBS then incubated with secondary antibody (at dilution of 1:500) for one hour at room temperature. Secondary antibodies (Jackson ImmunoResearch Laboratories) were made in donkey and conjugated to Alexa Fluor 488, 594, or 647.
  • Primary Antibodies
  • Antibodies used for immunofluorescent staining are listed with antigen, host species, manufacturer and catalogue number, and dilution used for staining. Atp4b, rabbit, Santa Cruz sc84304, 1:500; Cdh1, goat, R&D Systems AF648, 1:500; Cdh1, mouse, BD Biosciences 610182, 1:500; Cdx2, mouse, Biogenex MU392A, 1:500, Cldn18, rabbit, Sigma HPA018446, 1:200; Ctnnb1, rabbit, Santa Cruz sc7190, 1:100; FoxF1, goat, R&D Systems F4798, 1:500, Gastrin, rabbit, Dako A0568, 1:1,000; Gata4, goat, Santa Cruz sc1237, 1:200; Gif, rabbit, Sigma HPA040774, 1:100; Ghr1, goat, Santa Cruz sc10368, 1:200; Histamine, rabbit, Immunostar 22939, 1:1,000; Krt8, rat, DSHB troma-1-s; 1:100; Mist1, rabbit, Sigma HPA047834, 1:200; Muc5ac, mouse, Abcam ab3649, 1:500; Muc6, mouse, Abcam ab49462, 1:100; Pdx1, goat, Abcam ab47383, 1:5,000; Pgc, sheep, Abcam ab31464, 1:10,000; Sst, goat, Santa Cruz sc7819, 1:100; Syp, guinea pig, Synaptic Systems 101004, 1:1,000; Vimentin, goat, Santa Cruz sc7557, 1:200
  • Imaging
  • Confocal imaging was performed on Nikon A1Rsi inverted confocal microscope. For wholemount imaging, embryos were dehydrated in methanol and cleared in Murray's clear (2:1 benzyl benzoate:benzyl alcohol) just prior to imaging. After staining, slides were mounted with Fluoromount G (SouthernBiotech), and air-dried overnight at room temperature.
  • Transmission Electron Microscopy
  • For TEM, hGOs were processed as previously described7. Briefly, organoids were fixed in 3% glutaraldehyde, washed in 0.1 M sodium cacodylate buffer, and incubated for one hour 4% osmium tetroxide. They were subsequently washed then dehydrated in ethanol series, and finally embedded in propylene oxide/LX112. Tissue was then sectioned and stained with 2% uranyl acetate followed by lead citrate. Images were visualized on Hitachi transmission electron microscope.
  • Pepsinogen ELISA
  • ELISA was performed using the Human Pepsinogen I (PGI) ELISA Kit (Thermo Scientific, EHPGI) according to manufacturer's instructions. Briefly, day 34 hGOs were collected and incubated in Cell Recovery Solution (Corning) for one hour at 4° C. then washed in PBS. Organoids were lysed with RIPA buffer followed by vigorous vortexing at high velocity for 30 minutes at room temperature. Lysates were pelleted and supernatant was collected and stored at −80° C. For ELISA, the samples and standards were performed in technical replicates. The reactions were measured on μQuant microplate plate reader (Bio Tek). Absorbance at 450 nm was measured, and the 570 nm absorbance was subtracted.
  • Acid Secretion Assays
  • Acid secretion assays were performed as previously described (Schumacher et al., 2015). hGOs were grown in the chambered coverglass (Thermo Scientific) and the chamber was placed on an inverted confocal microscope (Zeiss LSM 710), and experiments were performed under 5% CO2 and 37° C. conditions (incubation chamber, PeCon, Erbach, Germany).
  • Freshly isolated mouse gastric fundic glands or cultured hGO were incubated with acridine orange (10 μM), then acridine orange fluorescence was excited at 458 nm or 488 nm and images were collected at 600-650 nm (Red) or 500-550 nm (Green), respectively. On the other hand, to monitor hGOs luminal pH, the ratiometric pH sensitive dye, 5-(and-6)-carboxy SNARF-5F (5 mM stock: EX 560 nm, EM 565-605 (Green) and 620-680 (Red) nm: Invitrogen) was microinjected (46-92 n1) into the lumen and monitored. Fluorescent dye also added into medium. Histamine (100 μM; Sigma) was added to media, while famotidine (100 μM; Sigma) or omeprazole (100 μM; Sigma) were pre-incubated at least 30 min before histamine Images were analyzed using MetaMorph software (Molecular Devices, Downingtown, Pa.). Background corrected 620-680/565-605 nm ratio values were converted to pH using a standard curve.
  • Statistical Analysis
  • Statistical significance was determined using unpaired Student's T-test or one-way ANOVA with Dunnett's multiple comparison post-hoc test. A p value of <0.05 was considered significant.
  • Statistics and Experimental Reproducibility
  • No statistical analysis was used to determine experimental sample size, no specific method of randomization was used, and the investigators were not blinded during experiments. Statistical methods and measures are described in figure legends. The protocol for differentiation of fundic hGOs was successfully completed >20 times by seven independent users in the laboratory. In all cases, data shown are derived from a single experiment that is representative of multiple experiments.
  • Exemplary Combinations
  • The following examples relate to various non-exhaustive ways in which the teachings herein may be combined or applied. It should be understood that the following examples are not intended to restrict the coverage of any claims that may be presented at any time in this application or in subsequent filings of this application. No disclaimer is intended. The following examples are being provided for nothing more than merely illustrative purposes. It is contemplated that the various teachings herein may be arranged and applied in numerous other ways. It is also contemplated that some variations may omit certain features referred to in the below examples. Therefore, none of the aspects or features referred to below should be deemed critical unless otherwise explicitly indicated as such at a later date by the inventors or by a successor in interest to the inventors. If any claims are presented in this application or in subsequent filings related to this application that include additional features beyond those referred to below, those additional features shall not be presumed to have been added for any reason relating to patentability.
  • Example 1. A gastric fundus tissue is generated in vitro, comprising the following steps:
  • a) a mammalian definitive endoderm (DE) cell is contacted with a wnt pathway activator, an FGF signaling pathway activator (for example, FGF4), a BMP signalling pathway inhibitor (e.g., Noggin), and retinoic acid, for a first period, wherein the first period is sufficient to form a three-dimensional posterior foregut spheroid from said definitive endoderm;
    b) the three-dimensional posterior foregut spheroid is suspended in a basement membrane matrix (for example, Matrigel) with a growth factor, Wnt signalling pathway activator, EGF signalling pathway activator, BMP signalling pathway inhibitor, and retinoic acid for a second period, sufficient to induce a fundic lineage comprising fundal hGOs (hFGOs);
    c) the hFGOs of step b) are cultured in the presence of wnt pathway activator and EGF signalling pathway activator for a third period,
    d) the hFGOs of step c are cultured with wnt signalling pathway activator, EGF signalling pathway activator, and FGF10 for a fourth period;
    e) the hFGOs of step d are contacted with a MEK inhibitor for a fifth period, (the MEK inhibitor may be, for example, PD0325901), for a period of time sufficient to form gastric fundus tissue comprising a functional fundic cell type.
  • Example 2. The method of Example 1, wherein said first period is three days±24 hours and wherein said retinoic acid is added for the third day of said period±24 hours
  • Example 3. The method of any preceding example, wherein said second period is three days±24 hours
  • Example 4. The method of any preceding example, wherein said third period is 11 days±24 hours
  • Example 5. The method of any preceding example, wherein said fourth period is 10 days±24 hours
  • Example 6. The method of any preceding example, wherein said fifth period is a two day period±24 hours
  • Example 7. The method of any preceding example, wherein step e) further comprises the step of contacting said fundal hGOs with an activator of BMP4 signalling.
  • Example 8. The method of any preceding example, wherein said functional fundic cell type is a parietal cell that expresses proton pump proteins and secretes acid.
  • Example 9. The method of any preceding example, wherein said functional fundic cell type is a chief cell that secretes pepsinogen.
  • Example 10. The method of any preceding example, wherein said step e is carried out for a period of time sufficient to develop SOX2+GATA+PDX1− epithelium.
  • Example 11. The method of any preceding example, wherein said step d and step e are carried out for a period of time sufficient to confer stable expression of lineage markers MUC5AC, MUC6, PGC, and GHRL.
  • Example 12. The method of any preceding example, wherein said definitive endoderm is derived from a precursor cell selected from an embryonic stem cell, an embryonic germ cell, an induced pluripotent stem cell, a mesoderm cell, a definitive endoderm cell, a posterior endoderm cell, a posterior endoderm cell, and a hindgut cell, a definitive endoderm derived from a pluripotent stem cell, a definitive endoderm derived from a pluripotent stem cell selected from an embryonic stem cell, an adult stem cell, or an induced pluripotent stem cell.
  • Example 13. The method of any preceding example, wherein said definitive endoderm is derived from contacting a pluripotent stem cell with one or more molecules selected from Activin, the BMP subgroups of the TGF-beta superfamily of growth factors; Nodal, Activin A, Activin B, BMP4, Wnt3a, and combinations thereof.
  • Example 14. The method of any preceding example, wherein said WNT pathway activator is one or more molecules selected from Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, and Wnt16, for example, Wnt3a, or for example, Wnt3a at a concentration between about 50 to about 1500 ng/ml.
  • Example 15. The method of any preceding example, wherein said BMP signalling pathway inhibitor is selected from Noggin, Dorsomorphin, LDN189, DMH-1, and combinations thereof, for example, wherein said precursor cell is contacted with a BMP inhibitor at a concentration between about 50 to about 1500 ng/ml. The BMP inhibitor may be a protein and/or chemical capable of inhibiting the BMP signalling pathway.
  • Example 16. The method of any preceding example, wherein said steps are conducted in vitro.
  • Example 17. A composition comprising gastric tissue is produced according to any preceding Example. The gastric tissue is characterized by being free of innervation and/or blood vessels.
  • Example 18. A gastric fundus tissue is formed via the following steps: contacting a fundal hGO (hFGO) with a wnt pathway activating agent and an EGF signalling pathway activating agent for a first period, and a MEK inhibitor for a second period, (wherein said MEK inhibitor may be, for example, PD0325901), wherein the first and second periods are carried out for a period of time sufficient to form a functional fundic cell type;
  • wherein said hFGO are obtained by contacting a three-dimensional posterior foregut spheroid in a basement membrane matrix with a growth factor, a wnt pathway activating agent, an EGF signalling pathway activator, a BMP signalling pathway inhibitor, and retinoic acid for a period of time sufficient to convert said three-dimensional posterior foregut spheroid to said hFGO;
  • wherein said three-dimensional posterior foregut spheroids are obtained by contacting a mammalian definitive endoderm (DE) cells with a wnt pathway activating agent, an FGF signaling pathway activating agent, a BMP signalling pathway inhibitor, and retinoic acid.
  • REFERENCES
    • 1. Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125-1247125 (2014).
    • 2. Huch, M. & Koo, B.-K. Modeling mouse and human development using organoid cultures. Development 142, 3113-3125 (2015).
    • 3. Zhu, Z. & Huangfu, D. Human pluripotent stem cells: an emerging model in developmental biology. Development 140, 705-717 (2013).
    • 4. Kim, T.-H. & Shivdasani, R. A. Stomach development, stem cells and disease. Development 143, 554-565 (2016).
    • 5. Mills, J. C. & Shivdasani, R. A. Gastric epithelial stem cells. Gastroenterology 140, 412-424 (2011).
    • 6. Hoffmann, W. Current Status on Stem Cells and Cancers of the Gastric Epithelium. HMS 16, 19153-19169 (2015).
    • 7. McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400-404 (2014).
    • 8. Noguchi, T.-A. K. et al. Generation of stomach tissue from mouse embryonic stem cells. Nature Cell Biology 17, 984-993 (2015).
    • 9. Peek, R. M. Helicobacter pylori infection and disease: from humans to animal models. Disease Models & Mechanisms 1, 50-55 (2008).
    • 10. Zorn, A. M. & Wells, J. M. Vertebrate Endoderm Development and Organ Formation. Annu. Rev. Cell Dev. Biol. 25, 221-251 (2009).
    • 11. Kraus, M. R.-C. & Grapin-Botton, A. Patterning and shaping the endoderm in vivo and in culture. Curr. Opin. Genet. Dev. 22, 347-353 (2012).
    • 12. Sherwood, R. I., Chen, T.-Y. A. & Melton, D. A. Transcriptional dynamics of endodermal organ formation. 238, 29-42 (2009).
    • 13. Roth, R. B. et al. Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7, 67-80 (2006).
    • 14. Kim, B.-M., Buchner, G., Miletich, I., Sharpe, P. T. & Shivdasani, R. A. The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Developmental Cell 8, 611-622 (2005).
    • 15. Kim, B.-M., Woo, J., Kanellopoulou, C. & Shivdasani, R. A. Regulation of mouse stomach development and Barx1 expression by specific microRNAs. Development 138, 1081-1086 (2011).
    • 16. Rodriguez, P. et al. BMP signaling in the development of the mouse esophagus and forestomach. Development 137, 4171-4176 (2010).
    • 17. Lameris, A. L. et al. Expression profiling of claudins in the human gastrointestinal tract in health and during inflammatory bowel disease. Scand. J. Gastroenterol. 48, 58-69 (2013).
    • 18. Keeley, T. M. & Samuelson, L. C. Cytodifferentiation of the postnatal mouse stomach in normal and Huntingtin-interacting protein 1-related-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1241-51 (2010).
    • 19. Choi, E. et al. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut 63, 1711-1720 (2014).
    • 20. Stange, D. E. et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357-368 (2013).
    • 21. Lennerz, J. K. M. et al. The transcription factor MIST1 is a novel human gastric chief cell marker whose expression is lost in metaplasia, dysplasia, and carcinoma. Am. J. Pathol. 177, 1514-1533 (2010).
    • 22. Ramsey, V. G. et al. The maturation of mucus-secreting gastric epithelial progenitors into digestive-enzyme secreting zymogenic cells requires Mist1. Development 134, 211-222 (2007).
    • 23. Lambrecht, N. W. G., Yakubov, I., Scott, D. & Sachs, G. Identification of the K efflux channel coupled to the gastric H-K-ATPase during acid secretion. Physiological Genomics 21, 81-91 (2005).
    • 24. Schumacher, M. A. et al. The use of murine-derived fundic organoids in studies of gastric physiology. J. Physiol. (Lond.) 593, 1809-1827 (2015).
    • 25. Barker, N. et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25-36 (2010).
    • 26. Bartfeld, S. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148, 126-136.e6 (2015).
    • 27. Nielsen, C., Murtaugh, L. C., Chyung, J. C., Lassar, A. & Roberts, D. J. Gizzard Formation and the Role of Bapx1. Developmental Biology 231, 164-174 (2001).
    • 28. Goldenring, J. R. et al. Overexpression of transforming growth factor-alpha alters differentiation of gastric cell lineages. Dig. Dis. Sci. 41, 773-784 (1996).
    • 29. Speer, A. L. et al. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis. PLoS ONE 7, e49127 (2012).
    • 30. Goldenring, J. R. & Nomura, S. Differentiation of the gastric mucosa III. Animal models of oxyntic atrophy and metaplasia. AJP: Gastrointestinal and Liver Physiology 291, G999-1004 (2006).
    • 31. Huh, W. J., Coffey, R. J. & Washington, M. K. Ménétrier's Disease: Its Mimickers and Pathogenesis. J Pathol Transl Med 50, 10-16 (2016).
    • 32. Park, Y. H. & Kim, N. Review of atrophic gastritis and intestinal metaplasia as a premalignant lesion of gastric cancer. J Cancer Prev 20, 25-40 (2015).
    • 33. Weis, V. G. & Goldenring, J. R. Current understanding of SPEM and its standing in the preneoplastic process. Gastric Cancer 12, 189-197 (2009).
    • 34. Nomura, S. et al. Evidence for Repatterning of the Gastric Fundic Epithelium Associated With Ménétrier's Disease and TGFα Overexpression. Gastroenterology 128, 1292-1305 (2005).
    • 35. Choi, E., Hendley, A. M., Bailey, J. M., Leach, S. D. & Goldenring, J. R. Expression of Activated Ras in Gastric Chief Cells of Mice Leads to the Full Spectrum of Metaplastic Lineage Transitions. Gastroenterology 0, (2015).
    • 36. McCracken, K W, Howell J C, Wells, J M & Spence, J R, Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protocols 6, 1920-1928 (2011).
    • 37. Ahnfelt-Ronne, J et al., An improved method for three-dimensional reconstruction of protein expression patterns in intact mouse and chicken embryos and organs. J. Histochem. Cytochem. 55, 925-930 (2007).
  • All percentages and ratios are calculated by weight unless otherwise indicated.
  • All percentages and ratios are calculated based on the total composition unless otherwise indicated.
  • It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
  • The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “20 mm” is intended to mean “about 20 mm.”
  • Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
  • While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims (11)

1.-18. (canceled)
19. A human fundal gastric organoid (hFGO) characterized by:
a) MUC5AC-positive surface mucous cells and MUC6-positive mucous neck cells;
b) endocrine cells expressing ghrelin (GHRL), somatostatin (SST), and histamine;
c) chief cells expressing MIST1, pepsinogen A (PGA5), and pepsinogen C (PGC);
d) parietal cell-dense glands;
e) parietal cells expressing ATP4A, ATP4B, and GIF; and
f) wherein the hFGO exhibits a greater number of parietal cells and elevated expression of ATP4A, ATP4B, and GIF relative to an hFGO that has not been treated with a MEK inhibitor.
20. The hFGO of claim 19, wherein the hFGO comprises a lumen and is characterized by a decrease in the pH of the lumen when treated with histamine, and an inhibition of this decrease when pre-treated with famotidine or omeprazole.
21. The hFGO of claim 19, wherein the hFGO has been treated with a MEK inhibitor.
22. The hFGO of claim 19, wherein the MEK inhibitor is PD0325901.
23. The hFGO of claim 21, wherein the MEK inhibitor is PD0325901.
24. The hFGO of claim 21, wherein the hFGO has been treated with the MEK inhibitor for two days±24 hours.
25. The hFGO of claim 19, wherein the hFGO that has not been treated with a MEK inhibitor also has not been treated with BMP4.
26. The hFGO of claim 21, wherein the hFGO has been further treated with BMP4.
27. The hFGO of claim 19, wherein the hFGO is derived from definitive endoderm.
28. The hFGO of claim 27, wherein the definitive endoderm is derived from a pluripotent stem cell.
US17/375,293 2016-05-05 2021-07-14 Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same Abandoned US20220064602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/375,293 US20220064602A1 (en) 2016-05-05 2021-07-14 Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662332194P 2016-05-05 2016-05-05
PCT/US2017/031309 WO2017192997A1 (en) 2016-05-05 2017-05-05 Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
US201816084599A 2018-09-13 2018-09-13
US17/375,293 US20220064602A1 (en) 2016-05-05 2021-07-14 Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2017/031309 Division WO2017192997A1 (en) 2016-05-05 2017-05-05 Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
US16/084,599 Division US11066650B2 (en) 2016-05-05 2017-05-05 Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same

Publications (1)

Publication Number Publication Date
US20220064602A1 true US20220064602A1 (en) 2022-03-03

Family

ID=60203655

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/084,599 Active US11066650B2 (en) 2016-05-05 2017-05-05 Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
US17/375,293 Abandoned US20220064602A1 (en) 2016-05-05 2021-07-14 Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/084,599 Active US11066650B2 (en) 2016-05-05 2017-05-05 Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same

Country Status (7)

Country Link
US (2) US11066650B2 (en)
EP (2) EP4177335A1 (en)
JP (3) JP6963882B2 (en)
CN (2) CN116790476A (en)
CA (1) CA3016641A1 (en)
ES (1) ES2929758T3 (en)
WO (1) WO2017192997A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719068B2 (en) 2010-05-06 2017-08-01 Children's Hospital Medical Center Methods and systems for converting precursor cells into intestinal tissues through directed differentiation
EP3149156B1 (en) 2014-05-28 2021-02-17 Children's Hospital Medical Center Methods and systems for converting precursor cells into gastric tissues through directed differentiation
EP3207123A1 (en) 2014-10-17 2017-08-23 Children's Hospital Center D/b/a Cincinnati Children's Hospital Medical Center In vivo model of human small intestine using pluripotent stem cells and methods of making and using same
US11066650B2 (en) 2016-05-05 2021-07-20 Children's Hospital Medical Center Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
EP4553082A3 (en) 2016-11-04 2025-08-20 Children's Hospital Medical Center Liver organoid compositions and methods of making and using same
KR102807995B1 (en) 2016-12-05 2025-05-16 칠드런즈 호스피탈 메디칼 센터 Colonic organoids and methods of making and using same
WO2018191673A1 (en) 2017-04-14 2018-10-18 Children's Hospital Medical Center Multi donor stem cell compositions and methods of making same
CN111565798B (en) 2017-10-10 2025-06-24 儿童医院医学中心 Esophageal tissue and/or organoid composition and preparation method thereof
US12379372B2 (en) 2017-12-21 2025-08-05 Children's Hospital Medical Center Digitalized human organoids and methods of using same
US12421500B2 (en) 2018-07-26 2025-09-23 Children's Hospital Medical Center Hepato-biliary-pancreatic tissues and methods of making same
KR20210057781A (en) 2018-09-12 2021-05-21 칠드런즈 호스피탈 메디칼 센터 Organoid composition for production of hematopoietic stem cells and derivatives thereof
WO2025072803A1 (en) 2023-09-29 2025-04-03 Children's Hospital Medical Center Ntrk2 signaling-mediated alveolar capillary injury and repair

Family Cites Families (289)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1095990B (en) 1957-08-22 1960-12-29 Chemiewerk Homburg Zweignieder Process for the production of water-soluble preparations and concentrated, stable aqueous solutions of digoxin
AU9031591A (en) 1990-10-29 1992-05-26 Regents Of The University Of Minnesota A bioartificial liver
US5523226A (en) 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
US5912227A (en) 1995-01-27 1999-06-15 North Carolina State University Method of enhancing nutrient uptake
WO1998021312A1 (en) 1996-11-08 1998-05-22 Rpms Technology Limited Human hepatocytes in three-dimensional support systems
US7291626B1 (en) 1998-04-09 2007-11-06 John Hopkins University School Of Medicine Inhibitors of hedgehog signaling pathways, compositions and uses related thereto
US6542858B1 (en) 1998-09-14 2003-04-01 Lion Bioscience Ag Pharmacokinetic-based drug design tool and method
US7759113B2 (en) 1999-04-30 2010-07-20 The General Hospital Corporation Fabrication of tissue lamina using microfabricated two-dimensional molds
US6607501B2 (en) 2001-05-14 2003-08-19 Reynolds G. Gorsuch Process and apparatus for utilization of in vivo extracted plasma with tissue engineering devices, bioreactors, artificial organs, and cell therapy applications
AU2002367580A1 (en) 2001-05-16 2003-09-22 Tracy C. Grikscheit Tissue-engineered organs
KR101008868B1 (en) 2001-12-07 2011-01-17 제론 코포레이션 Islet cells from human embryonic stem cells
US20050170506A1 (en) 2002-01-16 2005-08-04 Primegen Biotech Llc Therapeutic reprogramming, hybrid stem cells and maturation
US20030187515A1 (en) 2002-03-26 2003-10-02 Hariri Robert J. Collagen biofabric and methods of preparing and using the collagen biofabric
US7160719B2 (en) 2002-06-07 2007-01-09 Mayo Foundation For Medical Education And Research Bioartificial liver system
WO2004020614A1 (en) 2002-08-28 2004-03-11 Asahi Medical Co., Ltd. Cell-filled device of modified cross-section hollow fiber membrane type
TW571101B (en) 2003-01-21 2004-01-11 Ind Tech Res Inst Fluid analysis apparatus
US7671037B2 (en) 2003-02-07 2010-03-02 The Johns Hopkins University Hypoxia induced mitogenic factor
CA2515717A1 (en) 2003-02-10 2004-08-19 Banyu Pharmaceutical Co., Ltd. Melanin-concentrating hormone receptor antagonists containing piperidine derivatives as the active ingredient
DE10362002B4 (en) 2003-06-23 2006-10-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adult pluripotent stem cells
US7541185B2 (en) 2003-12-23 2009-06-02 Cythera, Inc. Methods for identifying factors for differentiating definitive endoderm
US8647873B2 (en) 2004-04-27 2014-02-11 Viacyte, Inc. PDX1 expressing endoderm
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
JP4819697B2 (en) 2003-12-23 2011-11-24 ヴィアサイト,インコーポレイテッド Definitive endoderm
US7985585B2 (en) 2004-07-09 2011-07-26 Viacyte, Inc. Preprimitive streak and mesendoderm cells
US20050266554A1 (en) 2004-04-27 2005-12-01 D Amour Kevin A PDX1 expressing endoderm
US8586357B2 (en) 2003-12-23 2013-11-19 Viacyte, Inc. Markers of definitive endoderm
US8241905B2 (en) 2004-02-24 2012-08-14 The Curators Of The University Of Missouri Self-assembling cell aggregates and methods of making engineered tissue using the same
DE102004017476B4 (en) 2004-04-08 2009-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the preparation of a cell composition containing epithelial cells
DK2377922T3 (en) 2004-04-27 2020-05-04 Viacyte Inc PDX1-expressing endoderm
JP4650608B2 (en) 2004-05-18 2011-03-16 信越化学工業株式会社 Photomask blank and photomask manufacturing method
US9375514B2 (en) 2004-05-21 2016-06-28 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Multicellular tissue and organ culture systems
EP2319526A1 (en) 2004-06-17 2011-05-11 Thrasos Therapeutics, Inc. Tdf-related compounds and analogs thereof
EP1786896B1 (en) 2004-07-09 2018-01-10 Viacyte, Inc. Methods for identifying factors for differentiating definitive endoderm
WO2006017251A2 (en) 2004-07-12 2006-02-16 Emisphere Technologies, Inc. Compositions for delivering peptide yy and pyy agonists
BRPI0512396A (en) 2004-07-21 2008-03-11 Ambrx Inc biosynthetic polypeptides using non-naturally encoded amino acids
MX2007001772A (en) 2004-08-13 2007-07-11 Univ Georgia Res Found Compositions and methods for self-renewal and differentiation in human embryonic stem cells.
US20060236415A1 (en) 2005-03-09 2006-10-19 Silversides David W Neural crest cells specific promoters; isolated neural crest cells; and methods of isolating and of using same
US7604929B2 (en) 2005-04-21 2009-10-20 In Vitro Technologies, Inc. Cellular compositions and methods for their preparation
WO2006126219A1 (en) 2005-05-26 2006-11-30 Fresenius Medical Care Deutschland G.M.B.H. Liver progenitor cells
GB0517382D0 (en) 2005-08-26 2005-10-05 Plasticell Ltd Cell culture
WO2007027905A2 (en) 2005-08-31 2007-03-08 Science And Technology Corporation @ Unm Human renal stem cells
EP2674485B1 (en) 2005-10-27 2019-06-12 Viacyte, Inc. Pdx-1 expressing dorsal and ventral foregut endoderm
US7927869B2 (en) 2005-11-29 2011-04-19 Spencer Z Rosero System and method for supporting a biological chip device
US20070239083A1 (en) 2006-01-18 2007-10-11 Axel Voss Shock wave generators
US20070238169A1 (en) 2006-04-11 2007-10-11 The Board Of Trustees Of The Leland Stanford Junior University Cell sorter and culture system
US8685730B2 (en) 2006-05-02 2014-04-01 Wisconsin Alumni Research Foundation Methods and devices for differentiating pluripotent stem cells into cells of the pancreatic lineage
WO2007136707A2 (en) 2006-05-17 2007-11-29 University Of Utah Research Foundation Methods and compositions related to eosinophil regulation
AU2007265457C1 (en) 2006-06-27 2012-11-29 Intercept Pharmaceuticals, Inc. Bile acid derivatives as FXR ligands for the prevention or treatment of FXR-mediated diseases or conditions
US8071082B2 (en) 2006-07-21 2011-12-06 Massachusetts Institute Of Technology End-modified poly(beta-amino esters) and uses thereof
US8497240B2 (en) 2006-08-17 2013-07-30 Amylin Pharmaceuticals, Llc DPP-IV resistant GIP hybrid polypeptides with selectable properties
EP2120546B1 (en) 2006-12-18 2016-09-28 Ben Gurion University Of The Negev Scaffolding for tissue regeneration or repair
FR2917425B1 (en) 2007-06-18 2010-11-19 Univ Nancy 1 Henri Poincare METHOD FOR THE PROLIFERATION OF CELLS ON POLYELECTROLYTE MULTILAYERS AND ITS APPLICATION, IN PARTICULAR TO THE PREPARATION OF CELLULARIZED BIOMATERIALS
EP2022848A1 (en) 2007-08-10 2009-02-11 Hubrecht Institut A method for identifying, expanding, and removing adult stem cells and cancer stem cells
US7695963B2 (en) 2007-09-24 2010-04-13 Cythera, Inc. Methods for increasing definitive endoderm production
US8609413B2 (en) 2007-12-11 2013-12-17 Research Development Foundation Neurons, astrocytes and oligodendrocytes differentiated from a mammalian pluripotent or neural stem cells exposed to a pyridine deriviative
AU2009203893B2 (en) 2008-01-08 2014-10-02 The University Of Queensland Method of producing a population of cells
EP2318031A4 (en) 2008-06-03 2012-09-12 Aethlon Medical Inc Enhanced antiviral therapy methods and devices
CA2727003C (en) 2008-06-04 2018-09-18 Uwe Marx Organ-on-a-chip-device
KR101711354B1 (en) 2008-06-24 2017-02-28 더 큐레이터스 오브 더 유니버시티 오브 미주리 Self-assembling multicellular bodies and methods of producing a three-dimensional biological structure using the same
US20130115673A1 (en) 2008-07-16 2013-05-09 Biotime, Inc. Methods of Screening Embryonic Progenitor Cell Lines
WO2010053830A1 (en) 2008-11-05 2010-05-14 Merck Sharp & Dohme Corp. Mechanism of neuromedin u action and uses thereof
JP5351601B2 (en) 2008-12-26 2013-11-27 矢崎総業株式会社 Insulating cap manufacturing method and insulating cap manufacturing apparatus
GB201111244D0 (en) 2011-06-30 2011-08-17 Konink Nl Akademie Van Wetenschappen Knaw Culture media for stem cells
EP2412800A1 (en) 2010-07-29 2012-02-01 Koninklijke Nederlandse Akademie van Wetenschappen Liver organoid, uses thereof and culture method for obtaining them
HRP20160791T1 (en) 2009-02-03 2016-09-23 Koninklijke Nederlandse Akademie Van Wetenschappen CULTIVATED MEDIA FOR EPITELIUM STATIONARY STATIONS AND ORGANOIDS CONTAINING THE STATEMENTS STATED
US9752124B2 (en) 2009-02-03 2017-09-05 Koninklijke Nederlandse Akademie Van Wetenschappen Culture medium for epithelial stem cells and organoids comprising the stem cells
WO2010094694A1 (en) 2009-02-23 2010-08-26 F. Hoffmann-La Roche Ag Assays to predict cardiotoxicity
CN102421467B (en) 2009-03-13 2015-04-22 梅约医学教育与研究基金会 Bioartificial liver
JP2012520866A (en) 2009-03-17 2012-09-10 アプタリス・ファーマ・カナダ・インコーポレイテッド How to treat nonalcoholic steatohepatitis with high doses of ursodeoxycholic acid
WO2010127399A1 (en) 2009-05-06 2010-11-11 Walter And Eliza Hall Institute Of Medical Research Gene expression profiles and uses thereof
CN107028980A (en) 2009-05-20 2017-08-11 卡迪欧参生物科技有限公司 Pharmaceutical composition for treating heart disease
JP2012527880A (en) 2009-05-29 2012-11-12 ノヴォ ノルディスク アー/エス Derivation of specific endoderm from hPS cell-derived definitive endoderm
WO2010143747A1 (en) 2009-06-10 2010-12-16 公立大学法人奈良県立医科大学 Method for production of artificial intestinal tract
US8685386B2 (en) 2009-07-16 2014-04-01 Biotime, Inc Methods and compositions for in vitro and in vivo chondrogenesis
AU2010278894B2 (en) 2009-07-30 2014-01-30 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8501476B2 (en) 2009-10-07 2013-08-06 Brown University Assays and methods for fusing cell aggregates to form proto-tissues
US20130031645A1 (en) 2009-11-25 2013-01-31 Thomas Touboul Method for hepatic differentiation of definitive endoderm cells
EP2516626B1 (en) 2009-12-23 2017-05-10 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9394522B2 (en) 2010-03-22 2016-07-19 Takara Bio Europe Ab Directed differentiation and maturation of pluripotent cells into hepatocyte like cells by modulation of Wnt-signalling pathway
EP2380920A1 (en) 2010-04-22 2011-10-26 QGel SA Hydrogel precursor formulation and production process thereof
JP2013524836A (en) 2010-04-25 2013-06-20 マウント・シナイ・スクール・オブ・メディスン Generation of anterior foregut endoderm from pluripotent cells
US9719068B2 (en) 2010-05-06 2017-08-01 Children's Hospital Medical Center Methods and systems for converting precursor cells into intestinal tissues through directed differentiation
EP2609191B1 (en) 2010-08-24 2017-11-22 Regents Of The University Of Minnesota Non-static suspension culture of cell aggregates
MX348537B (en) 2010-08-31 2017-06-07 Janssen Biotech Inc Differentiation of pluripotent stem cells.
JP6163104B2 (en) 2010-11-15 2017-07-12 アクセラレイテッド・バイオサイエンシズ・コーポレーション Generation of neural stem cells from human trophoblast stem cells
US9926532B2 (en) 2010-12-31 2018-03-27 Guangzhou Institute Of Biomedicine And Health Method of generating induced pluripotent stem cells and differentiated cells
US8951781B2 (en) 2011-01-10 2015-02-10 Illumina, Inc. Systems, methods, and apparatuses to image a sample for biological or chemical analysis
US9200258B2 (en) 2011-01-27 2015-12-01 University Of Maryland, Baltimore Multicellular organotypic model of human intestinal mucosa
EP2484750A1 (en) 2011-02-07 2012-08-08 Ecole Polytechnique Fédérale de Lausanne (EPFL) Monitoring system for cell culture
AU2012223526B2 (en) 2011-02-28 2017-03-09 President And Fellows Of Harvard College Cell culture system
GB201106395D0 (en) 2011-04-14 2011-06-01 Hubrecht Inst Compounds
WO2012154834A1 (en) 2011-05-09 2012-11-15 President And Fellows Of Harvard College Aerosol delivery to a microfluidic device
US10260039B2 (en) 2011-05-11 2019-04-16 Massachusetts Institute Of Technology Microgels and microtissues for use in tissue engineering
CA2837654C (en) 2011-06-02 2021-05-04 President And Fellows Of Harvard College Methods and uses for ex vivo tissue culture systems
CA2840192A1 (en) * 2011-06-23 2012-12-27 The Children's Hospital Of Philadelphia Self-renewing endodermal progenitor lines generated from human pluripotent stem cells and methods of use thereof
CN103930066A (en) 2011-09-12 2014-07-16 奥加诺沃公司 Platforms for engineered implantable tissues and organs and methods for their preparation
JP2013066414A (en) 2011-09-22 2013-04-18 National Institute Of Advanced Industrial Science & Technology Surface marker of stomach precursor cell
US12371522B2 (en) 2011-10-12 2025-07-29 The Johns Hopkins University Bioreducible poly (beta-amino ester)s for siRNA delivery
US20140302491A1 (en) * 2011-10-28 2014-10-09 The Board Of Trustees Of The Leland Stanford Junior University Ex Vivo Culture, Proliferation and Expansion of Primary Tissue Organoids
EP2773955B1 (en) 2011-11-04 2018-07-18 inRegen Drug screening and potency assays
US10087422B2 (en) 2011-12-09 2018-10-02 President And Fellows Of Harvard College Organ chips and uses thereof
US9725687B2 (en) 2011-12-09 2017-08-08 President And Fellows Of Harvard College Integrated human organ-on-chip microphysiological systems
TR201815226T4 (en) 2011-12-19 2018-11-21 Koninklijke Nederlandse Akademie Van Wetenschappen A rapid and quantitative analysis to measure cftr function in a primary intestinal culture model.
CA2859714C (en) 2011-12-23 2023-10-17 Anthrogenesis Corporation Organoids comprising decellularized and repopulated placental vascular scaffold
WO2013106677A1 (en) 2012-01-13 2013-07-18 The General Hospital Corporation Isolated human lung progenitor cells and uses thereof
CA2863310C (en) 2012-01-31 2018-11-13 Wake Forest University Health Sciences Innervation of engineered structures
EP2816893A1 (en) 2012-02-22 2014-12-31 Amgen Inc. Autologous mammalian models derived from induced pluripotent stem cells and related methods
EP2634251A1 (en) 2012-02-29 2013-09-04 Technische Universität Berlin 3D in vitro bi-phasic cartilage-bone construct
KR20150013471A (en) 2012-04-09 2015-02-05 토마스 제이. 굿윈 Alternating ionic magnetic resonance (aimr) multiple-chambered culture apparatus and methods of use
BR112014028881A2 (en) 2012-05-23 2017-06-27 Hoffmann La Roche cell populations, cell bank, methods of obtaining a cell population, methods of identifying a factor, selection methods, methods of providing therapy, hepatocyte populations, and method of obtaining cells.
WO2013192097A1 (en) 2012-06-19 2013-12-27 Intercept Pharmaceuticals, Inc. Preparation, uses and solid forms of obeticholic acid
US20140099709A1 (en) 2012-06-19 2014-04-10 Organovo, Inc. Engineered three-dimensional connective tissue constructs and methods of making the same
DE102012105540A1 (en) 2012-06-26 2014-04-24 Karlsruher Institut für Technologie Vascular model, process for its preparation and its use
US20150197802A1 (en) 2012-07-20 2015-07-16 Agency For Science, Technology And Research In vitro assay for predicting renal proximal tubular cell toxicity
GB201216796D0 (en) 2012-09-20 2012-11-07 Cambridge Entpr Ltd In vitro pancreatic differentiation
EP2712918B1 (en) 2012-09-28 2014-11-12 TissUse GmbH Multi-organ-chip with improved life time and homoeostasis
EP2716298A1 (en) 2012-10-03 2014-04-09 Institut Pasteur A nod2-dependant pathway of cytoprotection of stem cells
EP2735326B1 (en) 2012-11-26 2017-03-08 Gambro Lundia AB Liver support system
WO2014082096A1 (en) 2012-11-26 2014-05-30 The Trustees Of Columbia University In The City Of New York Method for culture of human and mouse prostate organoids and uses thereof
BR112015013784A2 (en) 2012-12-12 2017-07-11 Massachusetts Inst Technology application, manipulation and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
EP2743345A1 (en) 2012-12-13 2014-06-18 IMBA-Institut für Molekulare Biotechnologie GmbH Three dimensional heterogeneously differentiated tissue culture
WO2014121083A1 (en) 2013-01-31 2014-08-07 President And Fellows Of Harvard College Methods of increasing neuronal connectivity and/or treating a neurodegenerative condition
EP2956538B1 (en) 2013-02-13 2018-11-14 Wake Forest University Health Sciences Bioengineered liver constructs and methods relating thereto
GB201304245D0 (en) 2013-03-08 2013-04-24 Inst Quimic De Sarria Chemical compounds
WO2014165056A1 (en) 2013-03-12 2014-10-09 Board Of Regents, The University Of Texas System High throughput mechanical strain generating system for cell cultures and applications thereof
MX366900B (en) 2013-03-13 2019-07-30 Wisconsin Alumni Res Found Methods and materials for hematoendothelial differentiation of human pluripotent stem cells under defined conditions.
US20160022873A1 (en) 2013-03-14 2016-01-28 Research Institute At Nationwide Children's Hospital, Inc. Tissue engineered intestine
DK2970890T3 (en) * 2013-03-14 2020-05-04 Brigham & Womens Hospital Inc COMPOSITIONS AND PROCEDURES FOR THE PROMOTION AND CULTIVATION OF EPITHEL STEM CELLS
EP2970897B1 (en) 2013-03-14 2019-11-27 The Regents of The University of California In vitro production of medial ganglionic eminence precursor cells
US9442105B2 (en) 2013-03-15 2016-09-13 Organovo, Inc. Engineered liver tissues, arrays thereof, and methods of making the same
US20160237400A1 (en) 2013-03-15 2016-08-18 The Jackson Laboratory Isolation of non-embryonic stem cells and uses thereof
WO2014153294A1 (en) 2013-03-17 2014-09-25 The Regents Of The University Of California Method to expand and transduce cultured human small and large intestinal stem cells
WO2014153346A1 (en) 2013-03-18 2014-09-25 Massachusetts Institute Of Technology Engineering a heterogeneous tissue pluripotent stem cells
EP2796873A1 (en) 2013-04-25 2014-10-29 QGel SA Method for a cell-based drug screening assay and the use thereof
US20160245653A1 (en) 2013-04-30 2016-08-25 Sangtae Park Cylindrical resonator gyroscope
CN105378062A (en) 2013-05-08 2016-03-02 再生医学Tx有限责任公司 Organoids comprising isolated renal cells and uses thereof
US10545133B2 (en) 2013-05-13 2020-01-28 The Johns Hopkins University Molecular signatures of invasive cancer subpopulations
KR102202160B1 (en) 2013-06-10 2021-01-12 주식회사 쿠라레 Tissue structure and manufacturing method therefor
NZ715302A (en) 2013-06-14 2021-12-24 Univ Queensland Renal progenitor cells
CA2917333C (en) 2013-07-23 2023-09-19 Public University Corporation Yokohama City University Method for integrating biological tissues with a vascular system
KR20220147691A (en) 2013-08-09 2022-11-03 알데릭스, 인코포레이티드 Compounds and methods for inhibiting phosphate transport
ES2764408T3 (en) 2013-08-28 2020-06-03 Promethera Biosciences S A / N V Procedure for the production of adult liver progenitor cells
GB201317869D0 (en) 2013-10-09 2013-11-20 Cambridge Entpr Ltd In vitro production of foregut stem cells
US10087416B2 (en) 2013-10-25 2018-10-02 Agency For Science, Technology And Research Culturing pluripotent stem cells
JP2016539117A (en) 2013-11-22 2016-12-15 セレクティスCellectis Method for generating a batch of allogeneic T cells with averaged potency
CN106103702B (en) 2013-11-22 2020-03-24 国立研究开发法人理化学研究所 Method for preparing telencephalon or its precursor tissue
EP2876441B1 (en) 2013-11-26 2017-10-25 Bergen Teknologioverforing AS Quantitative analysis of contact-depending cell-to-cell transfer and disease transmission
GB2584034B (en) 2013-12-20 2021-03-24 Harvard College Organomimetic devices and methods of use and manufacturing thereof
CN112011500B (en) 2014-01-14 2023-10-24 耶鲁大学 Compositions and methods for preparing airway cells
US11648335B2 (en) 2014-01-31 2023-05-16 Wake Forest University Health Sciences Organ/tissue decellularization, framework maintenance and recellularization
KR20220093383A (en) 2014-02-11 2022-07-05 안트로제네시스 코포레이션 Micro-organoids, and methods of making and using the same
US10369254B2 (en) 2014-02-26 2019-08-06 The Regents Of The University Of California Method and apparatus for in vitro kidney organogenesis
SG11201606750UA (en) 2014-02-27 2016-10-28 Public Univ Corp Yokohama City Method for generating cell condensate for self-organization
DE102014003465A1 (en) 2014-03-11 2015-09-17 NeuroProof GmbH Obtaining brain region-specific neuronal cultures from three-dimensional tissue cultures of stem cells
US11066649B2 (en) 2014-03-19 2021-07-20 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method for inducing human cholangiocyte differentiation
EP3119401A4 (en) 2014-03-21 2017-12-13 Tobira Therapeutics, Inc. Cenicriviroc for the treatment of fibrosis
AU2014389440A1 (en) 2014-04-04 2016-10-20 Oregon Health & Science University Engineered three-dimensional breast tissue, adipose tissue, and tumor disease model
WO2015156929A1 (en) 2014-04-07 2015-10-15 The Trustees Of Columbia University In The City Of New York Method for culture of human bladder cell lines and organoids and uses thereof
US10222370B2 (en) 2014-04-07 2019-03-05 Rush University Medical Center Screening assay for choice of prebiotic to prevent/treat gastrointestinal and systemic diseases
PT3129018T (en) 2014-04-11 2020-01-15 Cymabay Therapeutics Inc NAFLD AND NASH TREATMENT
MX388202B (en) 2014-04-27 2025-03-19 Univ New York State Res Found METHODS FOR GENERATING ENAMEL PRODUCTS IN VITRO.
WO2015173425A1 (en) 2014-05-16 2015-11-19 Koninklijke Nederlandse Akademie Van Wetenschappen Improved culture method for organoids
EP3149156B1 (en) 2014-05-28 2021-02-17 Children's Hospital Medical Center Methods and systems for converting precursor cells into gastric tissues through directed differentiation
WO2015184273A1 (en) 2014-05-29 2015-12-03 Icahn School Of Medicine At Mount Sinai Method and apparatus to prepare cardiac organoids in a bioreactor system
WO2015184375A2 (en) 2014-05-29 2015-12-03 Whitehead Institute For Biomedical Research Compositions and methods for promoting intestinal stem cell and/or non-stem progenitor cell function
WO2015188131A1 (en) 2014-06-05 2015-12-10 Cedars-Sinai Medical Center A novel and efficient method for reprogramming immortalized lymphoblastoid cell lines to induced pluripotent stem cells
EP3152296B1 (en) 2014-06-06 2021-08-04 Vrije Universiteit Brussel Human hepatic 3d co-culture model and uses thereof
FR3022110B1 (en) 2014-06-13 2016-07-01 Liphatech Inc RODONTICIDE APPAT AND METHOD FOR CONTROLLING HARMFUL TARGET RODENTS USING SUCH APPAT
EP3158056B1 (en) 2014-06-20 2021-10-06 Rutgers, the State University of New Jersey Single cell-derived organoids
CA2985344A1 (en) 2014-06-26 2015-12-30 The Trustees Of Columbia University In The City Of New York Inhibition of serotonin expression in gut enteroendocrine cells results in conversion to insulin-positive cells
EP3169811A4 (en) 2014-07-17 2017-12-27 Celmatix Inc. Methods and systems for assessing infertility and related pathologies
JP6917144B2 (en) 2014-07-29 2021-08-11 シンセン ハイタイド バイオファーマシューティカル リミテッド Berberine salt, ursodeoxycholic acid salt and combination, preparation and application method thereof
US12247224B2 (en) 2014-07-30 2025-03-11 Senthil Muthuswamy Organoids for drug screening and personalized medicine
EP3183336B2 (en) 2014-08-22 2025-07-09 Cambridge Enterprise Limited Resetting pluripotent stem cells
BR112017003996A2 (en) 2014-08-28 2017-12-12 Promethera Biosciences S A /N V ? method for producing adult liver progenitor cells?
EP3186365A4 (en) 2014-08-29 2018-04-25 Immunomedics, Inc. Identification of cancer genes by in-vivo fusion of human cancer cells and animal cells
EP3191100A4 (en) 2014-09-12 2018-05-30 Tobira Therapeutics, Inc. Cenicriviroc combination therapy for the treatment of fibrosis
JP2017529877A (en) 2014-10-06 2017-10-12 オルガノボ インコーポレイテッド Artificial kidney tissue, array thereof, and production method thereof
SG11201701844YA (en) 2014-10-08 2017-04-27 Agency Science Tech & Res Methods of differentiating stem cells into liver cell lineages
JP6581655B2 (en) 2014-10-14 2019-09-25 フジフィルム セルラー ダイナミクス,インコーポレイテッド Generation of pluripotent stem cell-derived keratinocytes and maintenance of keratinocyte culture
EP3207123A1 (en) 2014-10-17 2017-08-23 Children's Hospital Center D/b/a Cincinnati Children's Hospital Medical Center In vivo model of human small intestine using pluripotent stem cells and methods of making and using same
US20160121023A1 (en) 2014-10-30 2016-05-05 Massachusetts Institute Of Technology Materials and Methods for Rescue of Ischemic Tissue and Regeneration of Tissue Integrity During Resection, Engraftment and Transplantation
US10479977B2 (en) 2014-11-07 2019-11-19 The Trustees Of Columbia University In The City Of New York Osteochondroreticular stem cells for bone and cartilage regeneration
US20170260501A1 (en) 2014-11-25 2017-09-14 International Stem Cell Corporation Derivation of neural crest stem cells and uses thereof
CA2968655C (en) 2014-11-25 2021-11-16 President And Fellows Of Harvard College Methods for generation of podocytes from pluripotent stem cells and cells produced by the same
GB201421092D0 (en) 2014-11-27 2015-01-14 Koninklijke Nederlandse Akademie Van Wetenschappen Culture medium
GB201421094D0 (en) 2014-11-27 2015-01-14 Koninklijke Nederlandse Akademie Van Wetenschappen Culture medium
AU2014277667B2 (en) 2014-12-15 2022-07-14 The University Of Queensland Differentiation of pluripotent stem cells to form renal organoids
JP7089240B2 (en) 2014-12-22 2022-06-22 エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ (ウ・ペ・エフ・エル) A device for manipulating mammalian cells with high collection capacity
WO2016103269A1 (en) 2014-12-23 2016-06-30 Ramot At Tel-Aviv University Ltd. Populations of neural progenitor cells and methods of producing and using same
HK1246232A1 (en) 2015-01-09 2018-09-07 Gilead Apollo, Llc Acc inhibitor combination therapy for the treatment of non-alcoholic fatty liver disease
EP3252144A4 (en) 2015-01-28 2018-08-08 Public University Corporation Yokohama City University Method for preparing bone marrow cell aggregate
US20160256672A1 (en) 2015-02-10 2016-09-08 Cedars-Sinai Medical Center Induced pluripotent stem cell-derived hepatocyte based bioartificial liver device
CN105985395A (en) 2015-02-13 2016-10-05 江苏奥赛康药业股份有限公司 Obeticholic acid compound, and medicinal composition containing compound
WO2016140716A1 (en) 2015-03-02 2016-09-09 The Trustees Of Columbia University In The City Of New York Injectable microtissue systems, devices, and methods
EP3265104A4 (en) 2015-03-03 2018-11-07 President and Fellows of Harvard College Methods of generating functional human tissue
US10777397B2 (en) 2015-03-06 2020-09-15 Micromass Uk Limited Inlet instrumentation for ion analyser coupled to rapid evaporative ionisation mass spectrometry (“REIMS”) device
WO2016144769A1 (en) 2015-03-06 2016-09-15 University Of North Carolina At Chapel Hill HUMAN FIBROLAMELLAR HEPATOCELLULAR CARCINOMAS (hFL-HCCS)
BR112017019170A2 (en) 2015-03-09 2018-07-10 Intekrin Therapeutics, Inc. Methods for treating non-alcoholic fatty liver disease and / or lipodystrophy
US10023922B2 (en) 2015-03-23 2018-07-17 Whitehead Institute For Biomedical Research Reporter of genomic methylation and uses thereof
CR20170456A (en) 2015-04-07 2018-06-13 Intercept Pharmaceuticals Inc PHARMACEUTICAL COMPOSITIONS FOR COMBINED THERAPIES
US10557124B2 (en) 2015-04-22 2020-02-11 The Regents Of The University Of Michigan Compositions and methods for obtaining stem cell derived lung tissue, and related uses thereof
US10087417B2 (en) 2015-04-22 2018-10-02 William J. Freed Three-dimensional model of human cortex
CN104877964A (en) 2015-04-24 2015-09-02 赵振民 In vitro construction method for salivary glands organs and acinus
PE20180690A1 (en) 2015-04-27 2018-04-23 Intercept Pharmaceuticals Inc OBETICOLIC ACID COMPOSITIONS AND METHODS OF USE
EP4306169A3 (en) 2015-04-30 2024-04-17 Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Means and methods for generation of breast stem cells
US11299714B2 (en) 2015-05-11 2022-04-12 The Trustees Of Columbia University In The City Of New York Engineered adult-like human heart tissue
US10913932B2 (en) 2015-06-03 2021-02-09 Takara Bio Europe Ab Maturation of mammalian hepatocytes
GB201510950D0 (en) 2015-06-22 2015-08-05 Cambridge Entpr Ltd In vitro Production of Cholangiocytes
WO2016210313A1 (en) 2015-06-24 2016-12-29 Whitehead Institute For Biomedical Research Culture medium for generating microglia from pluripotent stem cells and related methods
WO2016210416A2 (en) 2015-06-26 2016-12-29 The Trustees Of Columbia University In The City Of New York Genetically modified ips cells that carry a marker to report expression of neurogenin3, tph2, foxo1 and/or insulin genes
WO2017009263A1 (en) 2015-07-10 2017-01-19 Etablissement Francais Du Sang Method for obtaining human brown/beige adipocytes
US10449221B2 (en) 2015-07-29 2019-10-22 Trustees Of Boston University Differentiation of stem cells into thyroid tissue
WO2017036533A1 (en) 2015-09-03 2017-03-09 Ecole Polytechnique Federale De Lausanne (Epfl) Three-dimensional hydrogels for culturing adult epithelial stem cells and organoids
JP6914920B2 (en) 2015-09-03 2021-08-04 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッドThe Brigham and Women’s Hospital, Inc. Three-dimensional differentiation of upper blastoderm spheroids into renal organoids, modeling stage-specific epithelial physiology, morphogenesis, and disease
EP3350313B1 (en) 2015-09-15 2025-11-26 Agency For Science, Technology And Research (A*star) Derivation of liver organoids from human pluripotent stem cells
CA2998509A1 (en) 2015-09-16 2017-03-23 Tobira Therapeutics, Inc. Cenicriviroc combination therapy for the treatment of fibrosis
WO2017049243A1 (en) 2015-09-17 2017-03-23 Bonventre Joseph V Methods of generating nephrons from human pluripotent stem cells
AU2016331079B2 (en) 2015-10-02 2022-07-14 Wake Forest University Health Sciences Spontaneously beating cardiac organoid constructs and integrated body-on-chip apparatus containing the same
LU92845B1 (en) 2015-10-08 2017-05-02 Univ Du Luxembourg Campus Belval Means and methods for generating midbrain organoids
US10993433B2 (en) 2015-10-15 2021-05-04 Wake Forest University Health Sciences Method of producing in vitro testicular constructs and uses thereof
AU2016340819B2 (en) 2015-10-15 2023-04-06 Wake Forest University Health Sciences Methods of producing in vitro liver constructs and uses thereof
WO2017066659A1 (en) 2015-10-16 2017-04-20 The Trustees Of Columbia University In The City Of New York Jag1 expression predicts therapeutic response in nash
JP7011828B2 (en) 2015-10-16 2022-01-27 ウェイク・フォレスト・ユニヴァーシティ・ヘルス・サイエンシズ Multilayer airway organoids and how to prepare and use them
US12209253B2 (en) 2016-08-29 2025-01-28 EMULATE, Inc. Development of spinal cord on a microfluidic chip
GB2561312B (en) 2015-10-19 2021-03-24 Emulate Inc Microfluidic model of the blood brain barrier
JP7061961B2 (en) 2015-10-20 2022-05-02 フジフィルム セルラー ダイナミクス,インコーポレイテッド How to induce the differentiation of pluripotent stem cells into immune cells
CA3002162A1 (en) 2015-10-21 2017-04-27 Indiana University Research And Technology Corporation Methods of generating human inner ear sensory epithelia and sensory neurons
JP7018875B2 (en) 2015-10-21 2022-02-14 インディアナ ユニバーシティー リサーチ アンド テクノロジー コーポレーション Induction of human skin organoids from pluripotent stem cells
TW202344686A (en) 2015-10-30 2023-11-16 美國加利福尼亞大學董事會 Methods of generating t-cells from stem cells and immunotherapeutic methods using the t-cells
EP3371173A4 (en) 2015-11-02 2019-06-19 Carmel-Haifa University Economic Corporation Ltd. APOPTOSIS-RELATED PROTEIN MIMETIC COMPOUNDS IN THE TGF-BETA SIGNALING PATHWAY (ARTS), COMPOSITIONS, METHODS AND USES THEREOF FOR INDUCING THE DIFFERENTIATION AND / OR APOPTOSIS OF PRECANCEROUS AND MALIGNANT CELLS, AND RECOVERING THEM THEIR PHENOTYPE OF THE NORMAL TYPE
WO2017079632A1 (en) 2015-11-04 2017-05-11 Cedars-Sinai Medical Center Patient-derived ctc-xenograft models
KR20180073665A (en) 2015-11-06 2018-07-02 젬파이어 세러퓨틱스 인코포레이티드 Gemcabin combination for the treatment of cardiovascular disease
EP3373855B1 (en) 2015-11-12 2023-03-08 Biostage, Inc. Systems for producing gastrointestinal tissues
WO2017083705A1 (en) 2015-11-13 2017-05-18 The Johns Hopkins University Cell culture system and method of use thereof
WO2017096282A1 (en) 2015-12-04 2017-06-08 EMULATE, Inc. Devices and methods for simulating a function of a liver tissue
US20170158997A1 (en) 2015-12-04 2017-06-08 President And Fellows Of Harvard College Devices for simulating a function of a liver tissue and methods of use and manufacturing thereof
KR20180093063A (en) 2015-12-23 2018-08-20 메모리얼 슬로안-케터링 캔서 센터 Cell-based therapies and drug discovery in Hirschsprung's disease, embodied by pluripotent stem cell-derived human enteral neural tube system
JP6694512B2 (en) 2015-12-30 2020-05-13 フジフィルム セルラー ダイナミクス,インコーポレイテッド Microtissue formation using stem cell-derived human hepatocytes
KR101733137B1 (en) 2015-12-30 2017-05-08 (주)엑셀세라퓨틱스 Method of production for 3D cartilage organoid block
WO2017117547A1 (en) 2015-12-31 2017-07-06 President And Fellows Of Harvard College Methods for generating neural tissue and uses thereof
WO2017117571A1 (en) 2015-12-31 2017-07-06 President And Fellows Of Harvard College Neurons and compositions and methods for producing the same
JP2019506153A (en) 2016-01-08 2019-03-07 マサチューセッツ インスティテュート オブ テクノロジー Production of differentiated enteroendocrine cells and insulin-producing cells
EP3190176A1 (en) 2016-01-11 2017-07-12 IMBA-Institut für Molekulare Biotechnologie GmbH Method for tissue culture development on scaffold and differentiated tissue culture
US11345890B2 (en) 2016-01-14 2022-05-31 Rene Anand Neural organoid composition and methods of use
US20170205396A1 (en) 2016-01-15 2017-07-20 Salk Institute For Biological Studies Systems and methods for culturing nephron progenitor cells
EP3411470A4 (en) 2016-02-01 2019-10-09 Emulate, Inc. SYSTEMS AND METHODS FOR GROWTH OF INTESTINAL CELLS IN MICROFLUIDIC DEVICES
AU2017217688B2 (en) 2016-02-10 2023-01-19 Wake Forest University Health Sciences Model system of liver fibrosis and method of making and using the same
US12156890B2 (en) 2016-02-11 2024-12-03 The Johns Hopkins University Compositions and methods for neuralgenesis
JP6947739B2 (en) 2016-02-16 2021-10-13 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Newly recombinant adeno-associated virus capsid resistant to existing human neutralizing antibodies
EP3418376B1 (en) 2016-02-18 2024-03-13 Keio University Cell culture medium, culture method, and organoid
EP4269566A3 (en) 2016-02-19 2024-01-10 Procella Therapeutics AB Genetic markers for engraftment of human cardiac ventricular progenitor cells
US20170267970A1 (en) 2016-02-29 2017-09-21 Whitehead Institute For Biomedical Research Three-Dimensional Hydrogels that Support Growth of Physiologically Relevant Tissue and Methods of Use Thereof
GB201603569D0 (en) 2016-03-01 2016-04-13 Koninklijke Nederlandse Akademie Van Wetenschappen Improved differentiation method
EP3426766B1 (en) 2016-03-08 2022-12-28 Yissum Research and Development Company of the Hebrew University of Jerusalem Ltd. Method for continuous biosensing
WO2017160234A1 (en) 2016-03-14 2017-09-21 Agency For Science, Technology And Research Generation of midbrain-specific organoids from human pluripotent stem cells
US20190076482A1 (en) 2016-03-15 2019-03-14 The Johns Hopkins University Enhanced organoid formation and intestinal stem cell renewal
US10772863B2 (en) 2016-03-15 2020-09-15 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Methods of inducing metabolic maturation of human pluripotent stem cells— derived hepatocytes
US20170285002A1 (en) 2016-03-16 2017-10-05 Public University Corporation Yokohama City University Method for reconstituting tumor with microenvironment
WO2017172638A1 (en) 2016-03-29 2017-10-05 Smsbiotech, Inc. Compositions and methods for using small mobile stem cells
EP3228306A1 (en) 2016-04-04 2017-10-11 ratiopharm GmbH Complex compound comprising obeticholic acid and cyclodextrin and pharmaceutical formulation comprising the complex compound
CA3019357A1 (en) 2016-04-04 2017-10-12 Biotime, Inc. Pluripotent stem cell-derived 3d retinal tissue and uses thereof
AU2017245629A1 (en) 2016-04-04 2018-11-22 Humeltis Diagnostic methods for patient specific therapeutic decision making in cancer care
JP6935101B2 (en) 2016-04-05 2021-09-15 学校法人自治医科大学 How to reestablish stem cells
US12285464B2 (en) 2016-04-18 2025-04-29 The Trustees Of Columbia University In The City Of New York Therapeutic targets involved in the progression of nonalcoholic steatohepatitis (NASH)
JP2019514872A (en) 2016-04-22 2019-06-06 タイワンジェ ファーマシューティカルズ カンパニー リミテッドTaiwanj Pharmaceuticals Co., Ltd. Application of nalmefene (NALMEFENE), naltrexone (naltrexone) and its related derivatives for the treatment of (non) alcoholic steatohepatitis or nonalcoholic fatty liver disease
US20170321188A1 (en) 2016-05-04 2017-11-09 The Research Foundation For The State University Of New York Methods of generating retinal progenitor cell preparations and uses thereof
US11066650B2 (en) 2016-05-05 2021-07-20 Children's Hospital Medical Center Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
AU2017269364B2 (en) 2016-05-25 2023-08-31 Salk Institute For Biological Studies Compositions and methods for organoid generation and disease modeling
US20170349659A1 (en) 2016-06-03 2017-12-07 The Board Of Trustees Of The Leland Stanford Junior University Wnt signaling agonist molecules
WO2017218287A1 (en) 2016-06-15 2017-12-21 Children's Medical Center Corporation Methods and compositions relating to lung cell differentiation
GB201610748D0 (en) 2016-06-20 2016-08-03 Koninklijke Nederlandse Akademie Van Wetenschappen Improved diffrentation method
GB201611982D0 (en) 2016-07-11 2016-08-24 Cellesce Ltd Cell culture
EP3275997A1 (en) 2016-07-28 2018-01-31 QGel SA Hydrogel precursor formulation and the use thereof
KR20230170142A (en) 2016-08-02 2023-12-18 메모리얼 슬로안 케터링 캔서 센터 Treating metastatic cancer and model systems for metastatic disease
JP7657439B2 (en) 2016-08-03 2025-04-07 ウェイク・フォレスト・ユニヴァーシティ・ヘルス・サイエンシズ Cancer modeling platform and methods of use thereof
CA3032727A1 (en) 2016-08-04 2018-02-08 Wake Forest University Health Sciences Blood brain barrier model and methods of making and using the same
CN109661460A (en) 2016-08-24 2019-04-19 学校法人庆应义塾 2D Organoids for Infection and Propagation Culture of Human Diarrhea Virus and Its Use
AU2017314870B2 (en) 2016-08-26 2023-11-30 The Council Of The Queensland Institute Of Medical Research Cardiomyocyte maturation
EP3503902A4 (en) 2016-08-28 2020-04-22 Baylor College of Medicine NEW MODEL OF METASTASIS USING CHICKEN EGG FOR CANCER
WO2018044940A1 (en) 2016-08-30 2018-03-08 Beth Israel Deaconess Medical Center Compositions and methods for treating a tumor suppressor deficient cancer
WO2018044937A2 (en) 2016-08-30 2018-03-08 Beth Israel Deaconess Medical Center Compositions and methods for treating a tumor suppressor deficient cancer
EP4553082A3 (en) 2016-11-04 2025-08-20 Children's Hospital Medical Center Liver organoid compositions and methods of making and using same
CA3043509A1 (en) 2016-11-23 2018-05-31 Massimiliano PAGANELLI Encapsulated liver tissue
KR102807995B1 (en) 2016-12-05 2025-05-16 칠드런즈 호스피탈 메디칼 센터 Colonic organoids and methods of making and using same
GB201622222D0 (en) 2016-12-23 2017-02-08 Cs Genetics Ltd Reagents and methods for molecular barcoding of nucleic acids of single cells
WO2018191673A1 (en) 2017-04-14 2018-10-18 Children's Hospital Medical Center Multi donor stem cell compositions and methods of making same
EP3395942A1 (en) 2017-04-25 2018-10-31 IMBA-Institut für Molekulare Biotechnologie GmbH Bi- or multi-differentiated organoid
CN111565798B (en) 2017-10-10 2025-06-24 儿童医院医学中心 Esophageal tissue and/or organoid composition and preparation method thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
2017, Cheng et al., Molecules, Vol. 22, pgs. 1-20 (Year: 2017) *
Ni et al. (2019, Nature Communications, 10:39, pgs. 1-11). (Year: 2019) *
Sankoda et al. (2021, Nature Communications, Vol. 12, pgs. 1-15) (Year: 2021) *
Schumacher et al. (2015, J. Physiol. Vol. 593.8, pgs. 1809-1827) (Year: 2015) *
Xiao et al., 2020, Frontiers in Cell and Developmental Biology, Vol. 8, pgs. 1-13 (Year: 2020) *

Also Published As

Publication number Publication date
CN109415685B (en) 2023-07-04
JP2024095710A (en) 2024-07-10
EP3452578B1 (en) 2022-08-10
JP2019514354A (en) 2019-06-06
CA3016641A1 (en) 2017-11-09
CN116790476A (en) 2023-09-22
JP7463326B2 (en) 2024-04-08
EP4177335A1 (en) 2023-05-10
CN109415685A (en) 2019-03-01
EP3452578A1 (en) 2019-03-13
JP2022025087A (en) 2022-02-09
EP3452578A4 (en) 2019-12-04
ES2929758T3 (en) 2022-12-01
JP6963882B2 (en) 2021-11-10
US11066650B2 (en) 2021-07-20
WO2017192997A1 (en) 2017-11-09
US20190078055A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US20220064602A1 (en) Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
JP7698080B2 (en) Methods and systems for converting progenitor cells into gastric tissue by directed differentiation
US20250223566A1 (en) Method of making in vivo human small intestine organoids from pluripotent stem cells
McCracken et al. Wnt/β-catenin promotes gastric fundus specification in mice and humans
US12297457B2 (en) Esophageal tissue and/or organoid compositions and methods of making same
JP7506657B2 (en) Hepatobiliary pancreatic tissue and method for producing same
JP2013524836A (en) Generation of anterior foregut endoderm from pluripotent cells
McCracken Mechanisms of endoderm patterning and directed differentiation of human stem cells into foregut tissues
EP4363556A1 (en) Structurally complete organoids
HK40006077B (en) Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
HK40006077A (en) Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
HK40001580B (en) Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
HK40001580A (en) Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
KR102887406B1 (en) Hepato-biliary-pancreatic tissue and method for producing the same
Sharma Lineage commitment and specification of progenitors of the caudal mesoderm

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHILDREN'S HOSPITAL MEDICAL CENTER, D/B/A CINCINNATI CHILDREN'S HOSPITAL MEDICAL CENTER, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WELLS, JAMES M;MCCRACKEN, KYLE;SIGNING DATES FROM 20170526 TO 20170726;REEL/FRAME:056929/0954

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION