US20220008794A1 - Golf club head - Google Patents
Golf club head Download PDFInfo
- Publication number
- US20220008794A1 US20220008794A1 US17/378,407 US202117378407A US2022008794A1 US 20220008794 A1 US20220008794 A1 US 20220008794A1 US 202117378407 A US202117378407 A US 202117378407A US 2022008794 A1 US2022008794 A1 US 2022008794A1
- Authority
- US
- United States
- Prior art keywords
- striking plate
- toe
- heel
- striking
- rear cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/047—Heads iron-type
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/045—Strengthening ribs
- A63B53/0454—Strengthening ribs on the rear surface of the impact face plate
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/047—Heads iron-type
- A63B53/0475—Heads iron-type with one or more enclosed cavities
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B60/00—Details or accessories of golf clubs, bats, rackets or the like
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B60/00—Details or accessories of golf clubs, bats, rackets or the like
- A63B60/54—Details or accessories of golf clubs, bats, rackets or the like with means for damping vibrations
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/36—Training appliances or apparatus for special sports for golf
- A63B69/3623—Training appliances or apparatus for special sports for golf for driving
- A63B69/3632—Clubs or attachments on clubs, e.g. for measuring, aligning
- A63B69/3635—Clubs or attachments on clubs, e.g. for measuring, aligning with sound-emitting source
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B2053/0491—Heads with added weights, e.g. changeable, replaceable
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B2053/0491—Heads with added weights, e.g. changeable, replaceable
- A63B2053/0495—Heads with added weights, e.g. changeable, replaceable moving on impact, slidable, spring or otherwise elastically biased
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2209/00—Characteristics of used materials
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2209/00—Characteristics of used materials
- A63B2209/02—Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0408—Heads characterised by specific dimensions, e.g. thickness
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0416—Heads having an impact surface provided by a face insert
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0416—Heads having an impact surface provided by a face insert
- A63B53/042—Heads having an impact surface provided by a face insert the face insert consisting of a material different from that of the head
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/045—Strengthening ribs
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0458—Heads with non-uniform thickness of the impact face plate
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0466—Heads wood-type
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0487—Heads for putters
Definitions
- the disclosure pertains to iron type golf clubs.
- Irons are generally configured in a set that includes clubs of varying loft, with shaft lengths and clubhead weights selected to maintain an approximately constant “swing weight” so that the golfer perceives a common “feel” or “balance” in swinging both the low irons and high irons in a set.
- the size of an iron's “sweet spot” is generally related to the size (i.e., surface area) of the iron's striking face, and iron sets are available with oversize club heads to provide a large sweet spot that is desirable to many golfers.
- peripheral weighted irons which include “cavity-back” and “hollow” iron designs.
- Cavity-back irons have a cavity directly behind the striking plate, which permits club head mass to be distributed about the perimeter of the striking plate, and such clubs tend to be more forgiving to off-center hits.
- Hollow irons have features similar to cavity-back irons, but the cavity is enclosed by a rear wall to form a hollow region behind the striking plate.
- Perimeter weighted, cavity back, and hollow iron designs permit club designers to redistribute club head mass to achieve intended playing characteristics associated with, for example, placement of club head center of mass or a moment of inertia.
- perimeter-weighted designs offer more design possibilities than blade type designs, perimeter weighting can result in clubs with an undesirable “feel.”
- perimeter weighting can result in clubs with an undesirable “feel.”
- significant portions of club head mass such as the mass associated with the striking plate, are unavailable for redistribution. Additional design flexibility is needed for improved club heads and clubs.
- a cavity back iron type club head includes a striking plate having a substantially planar striking surface and a rear surface defining a thickness therebetween.
- the rear surface defines a striking plate rear cavity region.
- a perimeter support is coupled to a peripheral portion of the striking plate.
- the surface area of the striking surface is related to the club head loft angle by the equation SSA ⁇ 14.4(L)+2875, where SSA is the surface area of the striking surface in units of square-millimeters and L is a club head loft angle in units of degrees.
- the cavity back iron type club head may include an unsupported striking plate area defined as the portion of the striking plate rear cavity region lacking a backing support structure having a modulus of elasticity greater than about 25 GPa.
- An unsupported area ratio defined as a ratio of the unsupported striking plate area and the surface area of the striking surface may be used to characterize the club head. In some examples, the unsupported area ratio is greater than or equal to 80%.
- the striking plate thickness and the unsupported striking plate area may be associated with a characteristic thickness ratio defined as a ratio of the average striking plate thickness within the striking plate rear cavity region and a square root of the unsupported striking plate area. In some examples, the characteristic thickness ratio is less than about 5%.
- FIG. 1 is an exploded view of a representative club head for an iron type golf club.
- FIG. 2 is an elevational view of the representative club head of FIG. 1 .
- FIG. 3 is a partial sectional view of the golf club head of FIG. 1 illustrating a cartridge insert in contact with a rear surface of a striking plate.
- FIG. 4 is an additional sectional view of the golf club head of FIG. 1 illustrating contact of the cartridge insert with a rear surface of a striking plate.
- FIGS. 5A-5B are views of rear surfaces of representative striking plates.
- FIG. 5C is a sectional view of the striking plate of FIG. 5A illustrating a control feature defined on the rear surface of the striking plate.
- FIG. 6 illustrates an additional example of a cartridge configured for placement in a head body of an iron type golf club.
- FIGS. 7A-7B illustrate a variable thickness striking plate that includes a thinned circular striking zone.
- FIGS. 8A-8C illustrate a club head that includes a variable thickness striking plate having an oval striking area.
- an iron-type club head 100 includes a head body 110 , a cartridge assembly 120 , and a striking plate 130 .
- the head body 110 includes a heel 112 , a toe 113 , a top line 114 , a sole 116 , and a hosel 140 configured to attach the club head 100 to a shaft (not shown in FIGS. 1-4 ).
- the head body 110 defines a front opening 121 configured to receive the striking plate 130 at a front rim 119 formed around a periphery of the front opening 121 .
- Club head mass may be distributed about the perimeter of the club body 110 based on a particular mass distribution for the club head 100 selected by a club head designer. Perimeter weighting can take various forms. Typical designs include a sole bar or other mass at or near the club head sole 116 to provide a center of gravity that is situated low in the club head 100 and behind the striking plate 130 as viewed from a striking surface 132 of the club head.
- the striking plate 130 and the head body 110 may be formed separately.
- the completed club head 100 is made by placing the striking plate 130 in the front opening 121 and in contact with the front rim 119 .
- the striking plate 130 is then welded or otherwise secured to the heady body 110 , thereby forming a cavity 118 behind a rear surface 134 of the striking plate 130 .
- the striking plate 130 is supported at or by the front rim 119 .
- the striking surface 132 is a substantially planar surface configured to strike a golf ball. As shown in FIG.
- the striking surface 132 may be defined by both the striking plate and at least a portion of the front rim 119 of the head body if the substantially planar striking surface extends beyond the periphery of the striking plate.
- the striking plate 130 may also include a set of scorelines, such as exemplary scorelines 135 , 136 formed in the striking surface 132 .
- the head body 110 includes a sole cavity 126 formed in proximity to a sole portion of the head body 110 and configured to receive a cartridge assembly 120 .
- the sole cavity 126 is defined in part by a sole-facing surface 127 and a rear cavity surface 128 .
- the sole cavity 126 is configured so that at least a portion of a surface of the cartridge assembly 120 contacts the rear surface 134 of the striking plate 130 when a cartridge assembly 120 is inserted into the sole cavity 126 .
- the cartridge assembly 120 contacts at least some portions of the sole-facing surface 127 and the rear cavity surface 128 , and is secured to the sole-facing surface 127 . Referring to FIG.
- the rear cavity surface 128 is divided into an upper rear cavity surface 128 ′ and a lower rear cavity surface 128 ′′.
- the upper rear cavity surface 128 ′ is separated from the lower rear cavity surface 128 ′′ by a ledge overhang surface 139 .
- the upper rear cavity surface 128 ′, the lower rear cavity surface 128 ′′, and the ledge overhang surface 139 are defined by a rearward sole wall of the sole portion of the head body that extends toward the top-line portion of the head body.
- the upper rear cavity surface 128 ′ and/or the lower rear cavity surface 128 ′′ can be parallel to the substantially planar striking surface 132 , and the ledge overhang surface 139 can be perpendicular to the upper rear cavity surface 128 ′, the lower rear cavity surface 128 ′′, and/or the substantially planer striking surface 132 .
- the upper rear cavity surface 128 ′ is separated from the substantially planar striking surface 132 by a first distance D 1
- the lower rear cavity surface 128 ′′ is separated from the substantially planar striking surface 132 by a second distance D 2 .
- the second distance D 2 is greater than the first distance D 1 .
- the sole cavity 126 and the cartridge assembly 120 are configured such that when the cartridge assembly 120 is inserted into the sole cavity 126 , a portion of an elastomer material of the cartridge assembly 120 contacts the upper rear cavity surface 128 ′, the sole-facing surface 127 (e.g., bottom cavity surface), and the ledge overhang surface 139 , while no portion of the elastomer material of the cartridge assembly 120 contacts at least a portion of the lower rear cavity surface 128 ′′.
- the cartridge assembly 120 including an elastomeric material of the cartridge assembly 120 , is not in contact with or is spaced apart from at least a portion of the lower rear cavity surface 128 ′′ such that a gap exists between the portion of the lower rear cavity surface 128 ′′ and the cartridge assembly 120 .
- no portion of the lower rear cavity surface 128 ′′ is in contact with the cartridge assembly 120 .
- a sole thickness is measured parallel to the striking surface from the bottom cavity surface to the exterior of the sole portion, and within an imaginary vertical section perpendicular to a hosel axis the sole thickness varies with a minimum thickness located closer to the striking surface than the rearward sole wall.
- the striking plate 130 and the head body 110 may be formed separately. However, alternative manufacturing processes can also be used.
- the head body 110 and the striking plate 130 can be formed as one piece using various forging, casting, and molding processes as are commonly practiced by golf club head manufacturers. Where the head body 110 and the striking plate 130 are formed as one piece, the substantially planar striking surface 132 is defined by the one piece club head.
- the cartridge assembly 120 includes a cartridge body 122 that is configured to receive one or more cartridge inserts 124 .
- the cartridge body 122 is provided with one or more cylindrical bores or other cavities that retain the cartridge inserts 124 .
- the cartridge body 122 has a modulus of elasticity that is lower than that of the cartridge inserts 124 .
- Some examples of materials that can be used to form the cartridge body 122 include, without limitation, viscoelastic elastomers; vinyl copolymers with or without inorganic fillers; polyvinyl acetate with or without mineral fillers such as barium sulfate; acrylics; polyesters; polyurethanes; polyethers; polyamides; polybutadienes; polystyrenes; polyisoprenes; polyethylenes; polyolefins; styrene/isoprene block copolymers; metallized polyesters; metallized acrylics; epoxies; epoxy and graphite composites; natural and synthetic rubbers; piezoelectric ceramics; thermoset and thermoplastic rubbers; foamed polymers; ionomers; low-density fiber glass; bitumen; silicone; and mixtures thereof.
- viscoelastic elastomers vinyl copolymers with or without inorganic fillers
- the metallized polyesters and acrylics can comprise aluminum as the metal.
- Commercially available materials include resilient polymeric materials such as ScotchdampTM from 3M, Sorbothane® from Sorbothane, Inc., DYAD® and GP® from Soundcoat Company Inc., Dynamat® from Dynamat Control of North America, Inc., NoViFlexTM Sylomer® from Pole Star Maritime Group, LLC, Isoplast® from The Dow Chemical Company, and LegetolexTM from Piqua Technologies, Inc.
- the cartridge body 122 may be formed from a material having a modulus of elasticity ranging from about 0.001 GPa to about 25 GPa, and a durometer ranging from about 10 to about 30 on a Shore D scale.
- the cartridge body 122 may be formed from a material having a modulus of elasticity ranging from about 0.001 GPa to about 10 GPa, and a durometer ranging from about 15 to about 25 on a Shore D scale. In a most preferred embodiment the cartridge body 122 may be formed from a material having a modulus of elasticity ranging from about 0.001 GPa to about 5 GPa, and a durometer ranging from about 18 to about 22 on a Shore D scale. In some examples, a material providing vibration damping is preferred.
- the cartridge inserts 124 are typically formed of relatively dense materials that permit a center of gravity of a club head to be low and rearward of the striking surface 132 .
- materials that can be used to form the cartridge inserts 124 include, without limitation, steel alloys, tungsten and tungsten alloys, other metals and metal alloys, or other materials. Typical densities of such materials are preferably greater than about 2.5 g/cm 3 or 5.0 g/cm 3 . In some preferred examples, insert densities are at least about 15 g/cm 3 .
- the cartridge body 122 can be provided with an additional loading material as spheres, rods, fibers or other particles that are distributed throughout the cartridge body 122 .
- the cartridge body 122 may comprise two or more sections of different materials that are configured to provide such benefits.
- the cartridge assembly 120 may be formed without cartridge inserts 124 , and fiber or particulate loading material may be distributed throughout the cartridge body 122 to achieve desirable mass distribution and/or vibration dampening characteristics.
- the fiber or particulate loading material may be formed from materials such as those listed above with respect to the cartridge inserts 124 .
- Other cartridge body 122 configurations may include a laminar structure comprising alternating layers of materials having varying modulus of elasticity values.
- the cartridge assembly 120 can be conveniently secured to the sole cavity 126 in the club head 100 with a tape strip 129 , other adhesive, or otherwise secured or retained in the sole cavity 126 .
- Cartridge inserts 124 can be cylindrical or other shapes, or can be omitted based on the dimensions and density of the cartridge body 122 .
- a badge 125 can be applied to the head body 110 , to control mass distribution, for ornamentation, club identification, or other purposes. As shown in FIGS. 3-4 , the cartridge body 122 , as retained by the head body 110 , is configured to contact the rear surface 134 of the striking plate 130 in a cartridge contact area.
- the rear surface 134 of the striking plate 130 is opposite the striking surface 132 and faces the cavity 118 .
- a perimeter portion 138 of striking plate 130 contacts the head body 110 at the front rim 119 .
- a striking plate rear cavity region is defined as the portion of the striking plate rear surface 134 that is exposed to the cavity 118 . Consequently, for an iron manufactured using pull face construction, the portions of the striking plate rear surface 134 supported by the front rim 119 are not included within the striking plate rear cavity region.
- the surface area of the striking surface 132 (i.e., the surface area of the substantially planar surface defined by the striking plate 130 and the perimeter portion 138 ) can be selected based on, for example, club type, striking surface shape, and whether or not the club is to be a so-called “oversized” club.
- the thickness of the striking plate 130 is defined as the distance between a selected point on the striking face 132 and the rear surface 134 along an axis perpendicular to the striking face 132 .
- the striking plate thickness can be selected to reduce mass associated with the striking plate 130 , so that additional mass can be distributed to other parts of the club head 100 to achieve intended club design goals.
- striking plate thickness is selected consistent with long term club use to avoid premature striking plate failure due to fatigue cracking and other such failure modes.
- redistributed mass is situated low on the club head 100 and rearward of the striking plate 130 .
- materials that can be used to form the striking plate and the head body include, without limitation, carbon steels (e.g., 1020 or 8620 carbon steel), stainless steels (e.g., 304, 410, or 431 stainless steel), PH (precipitation-hardenable) alloys (e.g., 17-4, C450, or C455 alloys), titanium alloys (e.g., 3-2.5, 6-4, SP700, 15-3-3-3, 10-2-3, or other alpha/near alpha, alpha-beta, and beta/near beta titanium alloys), aluminum/aluminum alloys (e.g., 3000 series alloys, 5000 series alloys, 6000 series alloys, such as 6061-T6, and 7000 series alloys, such as 7075), magnesium alloys, copper alloys, nickel alloys, glass fiber reinforced polymers (GFRP), carbon fiber reinforced polymers (CFRP), metal matrix composites (MMC), ceramic matrix composites (CMC), and natural composites (e.g., wood),
- High strength materials having a relatively high modulus of elasticity are generally preferred.
- the striking plate 130 is subject to numerous high speed impacts with a golf ball, and should resist cracking and permanent deformation. Different types of irons (e.g., long irons and short irons) can experience different forces in golf ball impacts, and striking plate thickness can be adjusted accordingly, if desired.
- FIGS. 5A-5B illustrate control features 152 , 154 situated on rear surfaces (i.e., surfaces opposite a striking surface) of representative striking plates 150 , 151 .
- the control feature 154 is defined by a recess 155 in the rear surface that is provided with a plurality of grooves such as a representative groove 158 .
- Control features can be adjusted to provide a selected club playing characteristic, typically to provide an intended sound when striking a golf ball.
- FIGS. 5A-5B also illustrate representative striking plate areas in which a cartridge assembly such as the cartridge assembly 120 or other cartridges or cartridge assemblies contacts a rear surface of a striking plate. For example, as shown in FIG.
- the striking plate 150 contacts a cartridge assembly in a cartridge contact area 157 situated on the rear surface of the striking plate 150 .
- the striking plate 151 contacts a cartridge assembly in surface area portions 159 A, 159 B, 159 C.
- Striking plate dimensions can vary based on striking plate composition and preferred club head dimensions. Larger or smaller striking surfaces can be provided for “short” or “long” irons, if desired.
- cavity-back club head designs such as the example of FIGS. 1-4 include a thin striking plate so that striking plate mass is reduced and redistributed to the club head perimeter. All or a portion of the rear surface 134 of the striking plate 130 within the striking plate rear cavity region may be unsupported by the clubhead body such that the striking plate deforms upon impact with a golf ball.
- a cartridge or cartridge assembly may be configured to contact a portion of the rear surface 134 of the striking plate 130 in a secondary support area, or cartridge contact area. In this way, the cartridge allows for a thinner striking plate because of the additional support the cartridge provides to the striking plate.
- portions of a striking plate or other striking member of a golf club that lack a backing support structure (e.g., a cartridge or cartridge assembly) having a modulus of elasticity greater than about 25 GPa are referred to as unsupported.
- an unsupported striking plate area may be defined as the portion of the striking plate rear cavity region lacking a backing support structure having a modulus of elasticity greater than about 25 GPa, or equivalently the surface area of the striking plate rear cavity region minus the cartridge contact area.
- Striking plate dimensions, surface area of the striking plate rear cavity region, unsupported striking plate surface area, striking plate thickness, and cartridge contact area can be selected based on a desired mass distribution, club durability, striking plate materials, and other design goals.
- a contact area of an elastomeric portion of a cartridge with a rear surface of a striking plate is referred to as a secondary support area, or cartridge contact area.
- the cartridge body may be formed from an elastomeric material having a modulus of elasticity ranging from about 0.001 to about 25 GPa. Providing such a secondary support area with elastomeric materials permits mass reduction in the striking plate with no decrease in striking plate durability. In order to maintain a large striking surface, such mass reduction can be conveniently associated with a relatively thin striking plate.
- a stainless steel striking plate (modulus of about 200 GPa) having an unsupported striking plate area of about 2000 mm 2 has an average thickness of about 1.9 mm and a cartridge contact area of about 400 mm 2 . Details for several representative examples are set forth in the table below.
- FIGS. 1-4 illustrate a representative cavity back iron of pull face construction
- cavity back irons are configured based on one piece (i.e., unitary) construction using manufacturing methodologies such as forging or casting.
- a striking plate portion can be formed integrally with a club body, and defines a front striking surface and a rear surface opposite the front striking surface of the striking plate portion.
- a striking plate thickness is defined as the distance between a selected point on the striking surface 132 and the rear surface 134 along an axis perpendicular to the striking surface 132 .
- the rear surface 134 of the striking plate 130 may gradually or abruptly transition from a relatively thin striking face thickness to a much thicker perimeter weighting region.
- the striking plate rear cavity region is delineated by and includes a peripheral region having a striking plate thickness less than or equal to about 2.2 mm, which is bounded by a thicker perimeter weighting region having a thickness greater than about 2.2 mm.
- the maximum thickness of the perimeter weighting region is at least as thick as about 4.5 or 6 times the thickness of the thinnest portion of the striking plate rear cavity region.
- a cartridge 162 includes alternating elastomeric sections 164 and insert sections 166 .
- the elastomeric sections are selected from materials having a relatively low modulus of elasticity, typically less than about 25 GPa, less than about 10 GPa, less than about 5 GPa, or less than about 1 GPa.
- the insert sections 166 are generally formed of stiffer, denser materials than the elastomeric sections. The modulus of elasticity for such sections is typically greater than about 10 GPa, 50 GPa, or 100 GPa.
- the cartridge 162 includes a contact surface configured to contact a striking plate rear surface 134 , where the contact surface is defined by surfaces 170 - 174 of the insert sections. While the cartridge of FIG. 6 illustrates sections alternating horizontally, in other examples, the sections can alternate vertically and fewer or more sections can be provided. In addition, the insert and elastomeric section alternation can be periodic in some examples, but generally need not be. In other examples, the elastomeric sections can be denser and/or stiffer than the insert sections, and the insert sections configured to contact a striking plate rear surface. Sections can have rectangular, square, or other cross sections.
- Striking plates of pull face construction irons or striking plate portions of one piece cast or forged irons can be conveniently described based on a characteristic thickness ratio that is defined as a ratio of the average striking plate thickness within the striking plate rear cavity region and a square root of the unsupported striking plate area (i.e., the portion of the striking plate rear cavity region lacking a backing support structure having a modulus of elasticity greater than about 25 GPa).
- a portion of an unsupported striking plate area in contact with the cartridge can be described by a relative cartridge contact area ratio defined as a ratio of the cartridge contact area and unsupported striking plate area.
- unsupported striking plate areas range from about 1500 mm 2 to about 3000 mm 2
- average striking plate thickness within the striking plate rear cavity region range from about 1.5 mm to about 2.2 mm
- cartridge contact areas range from about 300 mm 2 to about 400 mm 2 .
- characteristic thickness ratios may range from about 2% to about 4.8% and relative cartridge contact area ratios may range from about 10% to about 25%, or preferably from about 10% to about 18%.
- Such club head parameters can vary depending on club head geometry as affected by material properties such as, for example, a modulus of elasticity of striking plate material. Parameters can also be selected based on whether a particular club head is to be a short iron, a mid iron, or a long iron.
- Club head geometries for three representative club set configurations A, B, and C are described in Table 1 below. For each of the three sets, representative values for a 3 iron, a 6 iron, and a 9 iron are listed. Tabulated values are unsupported striking plate area (USPA), average striking plate thickness (ASPT), cartridge contact area (CCA), characteristic thickness ratio (CTR), and relative cartridge contact area ratio (RCAR).
- USPA unsupported striking plate area
- ASPT average striking plate thickness
- CCA cartridge contact area
- CTR characteristic thickness ratio
- RRC relative cartridge contact area ratio
- the representative club set heads may be manufactured from discrete components using, for example, pull face construction methods, or the representative club set heads may be manufactured as unitary components using, for example, various casting or forging techniques.
- Cartridges can be configured to provide secondary support areas of various shapes and sizes, and situated at club locations based on, for example, an intended mass distribution. Unsupported striking plate surfaces may be of constant thickness, continuously variable thickness, stepped thickness, or combinations thereof. In some examples, only portions of an elastomeric surface of a cartridge contacts the rear surface of a striking plate or other striking portion.
- Striking plates of pull face construction cavity back irons or striking plate portions of one piece cast or forged cavity back irons may also be described based on an unsupported area ratio that is defined as a ratio of the unsupported striking plate area and the area of the substantially planar striking surface 132 .
- Club head geometries for two representative club set configurations D and E are described in Table 2 below. For club set configuration D, representative values for 4, 5, 6, 7, 8, and 9 irons are listed. For club set configuration E, representative values for 5, 6, 7, 8, and 9 irons are listed. Tabulated values are loft angle (L), striking surface area (SSA), unsupported striking plate area (USPA), and unsupported area ratio (UAR).
- the representative iron heads may be manufactured from discrete components using, for example, pull face construction methods, or the representative club set heads may be manufactured as unitary components using, for example, various casting or forging techniques.
- the striking surface area SSA is related to the loft angle L by the following equation:
- SSA is the striking surface area measured in square-millimeters and L is the loft angle measured in degrees.
- areas and angles can be expressed in different units with corresponding changes in any numerical constants in the equation. This relationship provides for increased striking face surface area for a given loft angle compared to traditional cavity back iron club heads.
- the unsupported area ratio for each of the club heads listed in Table 2 is greater than or equal to 80%. In alternative embodiments of the invention, the unsupported area ratio may range from about 80% to about 88%, and in preferred embodiments of the invention, the unsupported area ratio may range from about 83% to about 88%.
- the loft angle of an exemplary cavity back 4-iron may range from about 19 degrees to about 21 degrees, preferably from about 19.5 degrees to about 20.5 degrees; the striking surface area may range from about 3156 mm 2 to about 3487 mm 2 , preferably from about 3322 mm 2 to about 3487 mm 2 ; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%;
- the loft angle of an exemplary cavity back 5-iron may range from about 21.5 degrees to about 22.5 degrees, preferably from about 22 degrees to about 23 degrees; the striking surface area may range from about 3185 mm 2 to about 3519 mm 2 , preferably from about 3352 mm 2 to about 3519 mm 2 ; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%.
- the loft angle of an exemplary cavity back 6-iron may range from about 24.5 degrees to about 26.5 degrees, preferably from about 25 degrees to about 26 degrees; the striking surface area may range from about 3228 mm 2 to about 3582 mm 2 , preferably from about 3405 mm 2 to about 3582 mm 2 ; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%.
- the loft angle of an exemplary cavity back 7-iron may range from about 27.5 degrees to about 30.5 degrees, preferably from about 28 degrees to about 30 degrees; the striking surface area may range from about 3271 mm 2 to about 3646 mm 2 , preferably from about 3458 mm 2 to about 3646 mm 2 ; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%.
- the loft angle of an exemplary cavity back 8-iron may range from about 31.5 degrees to about 34.5 degrees, preferably from about 32 degrees to about 34 degrees; the striking surface area may range from about 3329 mm 2 to about 3709 mm 2 , preferably from about 3519 mm 2 to about 3709 mm 2 ; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%.
- the loft angle of an exemplary cavity back 9-iron may range from about 36.5 degrees to about 39.5 degrees, preferably from about 36 degrees to about 39 degrees; the striking surface area may range from about 3401 mm 2 to about 3788 mm 2 , preferably from about 3594 mm 2 to about 3788 mm 2 ; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%.
- Striking plates can be thinned substantially uniformly or selected locations on a striking plate can be thinned or otherwise shaped so as to provide a redistribution of mass, a desired “feel” when used, and/or a preferred “sweet spot” size or location.
- a striking plate 702 includes a thinned striking region 704 and a relief region 706 that is defined by a perimeter groove 708 .
- the relief region 706 includes a plurality of circumferential grooves 711 - 718 that are typically defined along circular arcs that are approximately centered about a center 720 of the striking region 704 . As shown in FIGS.
- the striking plate also includes a face region 724 that has a substantially constant thickness.
- grooves can be defined by elliptical, parabolic, hyperbolic or other curved arcs, or by straight line segments, or combinations thereof and situated about a geometric center of a striking region, a focus of a conic section, or otherwise situated.
- at least some of the grooves 711 - 718 include a first segment and a second segment that are disconnected.
- the grooves 712 - 714 are discontinuous and include first and second segments that are separated by a portion of the face region 724 .
- FIG. 7A the example of FIG.
- the thinned striking region 704 is circular and has a diameter of about 11.7 mm.
- a central edge 726 of the relief region 706 extends along a portion of a circular arc having a radius of 10.4 mm centered about the striking region 704 .
- a surface 730 of the region 704 can be defined as, for example, a portion of a spherical surface. In one example, a radius of a spherical surface associated with a 0.5 mm decrease in thickness at the center 720 of a 11.7 mm diameter striking region 704 is about 34.5 mm.
- a striking surface 740 is provided with a plurality of scorelines 741 - 748 .
- the relief region 706 also includes transition segments 760 , 762 that couple the relief region 706 and the support region 724 .
- surfaces of the transition regions 760 , 762 are situated at about 45 degrees with respect to a surface 764 of the support region 724 .
- a thickness of the striking plate 702 in the relief region 706 is about 1.6 mm, and the grooves 708 , 711 - 718 extend a distance of about 0.15 mm into the striking plate 702 and have radii of curvature of about 0.5 mm. More or fewer grooves can be provided in the relief zone, and relief zones that have larger areas or depths can be used.
- Horizontal (H) and vertical (V) locations of the center of a striking zone for a representative iron set are included in Table 3.
- approximate striking plate mass is provided for each club.
- FIGS. 8A-8C An additional exemplary striking plate 802 retained in a head body 804 is illustrated in FIGS. 8A-8C .
- the striking plate 802 has a thickness T FACE and includes an oval support area 806 having a central oval area 810 of thickness T STRIKE and a rim 812 of thickness T RIM that are provided on a rear surface 814 .
- the rim 812 defines an oval rim region having interior and exterior lengths L I , L O , respectively and interior and exterior widths W I , W O , respectively.
- the rim 812 has an annular width of between about 0.9 mm and 1.5 mm at the thickest portion, and dimensions of the rim region are based on locations at which the striking plate thickness is substantially the same as the thicknesses associated with the striking region and the face region.
- a front surface (a striking surface) 816 of the striking plate 802 includes a plurality of grooves 818 .
- the oval support area 806 is elliptical and lengths and widths correspond to major and minor axes of ellipses.
- a bottom edge 817 of a sole 816 typically extends parallel to the ground (and rests on the ground) when the club is positioned so as to address a ball.
- a long axis of the oval support area 806 extend approximately parallel to the bottom edge 817 .
- a striking face area is somewhat thicker than the remainder of the striking plate. Dimensions of representative striking plates and associated oval support areas such as illustrated in FIGS. 8A-8C are listed in Table 4.
- the striking plate examples shown in FIGS. 7A-7B and 8A-8C may be provided on a club head using pull face construction or unitary construction techniques.
- a variety of other striking plates can be similarly arranged to include thinned or thickened striking regions, relief regions, or other features described above.
- striking plates used in pull face club construction or other club faces can be thinned or thickened to permit improved mass redistribution.
- portion of a thinned striking plate are supported or contacted by a weight cartridge, while other examples, a central or interior portion of a striking plate is thinner or thicker than a surrounding portion. Thickness changes can be abrupt or gradual, and tapered thinned or thickened face plates can be used.
- Portions of the striking plate can be grooved or otherwise relieved so that the associated mass can be situated as desired to provide an intended playing characteristic.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Golf Clubs (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 16/179,404, filed Nov. 2, 2018, which is a continuation of U.S. patent application Ser. No. 15/831,038, filed Dec. 4, 2017, which is a continuation of U.S. patent application Ser. No. 14/538,614, filed Nov. 11, 2014, which is a continuation of U.S. patent application Ser. No. 13/971,786, filed Aug. 20, 2013, which is a continuation of U.S. patent application Ser. No. 11/877,580, filed Oct. 23, 2007, now U.S. Pat. No. 8,535,177, which are incorporated herein by reference in their entirety.
- The disclosure pertains to iron type golf clubs.
- The performance of golf equipment is continuously advancing due to the introduction of advanced materials to both golf clubs (irons, woods, and putters) and balls, as well as the development of innovative clubs and club designs such as high loft woods and oversize drivers. While all clubs in the golfer's bag are important, both scratch and novice golfers rely on the performance and feel of their irons for many commonly encountered playing situations.
- Irons are generally configured in a set that includes clubs of varying loft, with shaft lengths and clubhead weights selected to maintain an approximately constant “swing weight” so that the golfer perceives a common “feel” or “balance” in swinging both the low irons and high irons in a set. The size of an iron's “sweet spot” is generally related to the size (i.e., surface area) of the iron's striking face, and iron sets are available with oversize club heads to provide a large sweet spot that is desirable to many golfers.
- Conventional “blade” type irons have been largely displaced (especially for novice golfers) by so-called “perimeter weighted” irons, which include “cavity-back” and “hollow” iron designs. Cavity-back irons have a cavity directly behind the striking plate, which permits club head mass to be distributed about the perimeter of the striking plate, and such clubs tend to be more forgiving to off-center hits. Hollow irons have features similar to cavity-back irons, but the cavity is enclosed by a rear wall to form a hollow region behind the striking plate. Perimeter weighted, cavity back, and hollow iron designs permit club designers to redistribute club head mass to achieve intended playing characteristics associated with, for example, placement of club head center of mass or a moment of inertia.
- While perimeter-weighted designs offer more design possibilities than blade type designs, perimeter weighting can result in clubs with an undesirable “feel.” In addition, even with perimeter weighting, significant portions of club head mass, such as the mass associated with the striking plate, are unavailable for redistribution. Additional design flexibility is needed for improved club heads and clubs.
- A cavity back iron type club head includes a striking plate having a substantially planar striking surface and a rear surface defining a thickness therebetween. The rear surface defines a striking plate rear cavity region. A perimeter support is coupled to a peripheral portion of the striking plate. The surface area of the striking surface is related to the club head loft angle by the equation SSA≥14.4(L)+2875, where SSA is the surface area of the striking surface in units of square-millimeters and L is a club head loft angle in units of degrees.
- In alternative examples, the cavity back iron type club head may include an unsupported striking plate area defined as the portion of the striking plate rear cavity region lacking a backing support structure having a modulus of elasticity greater than about 25 GPa. An unsupported area ratio defined as a ratio of the unsupported striking plate area and the surface area of the striking surface may be used to characterize the club head. In some examples, the unsupported area ratio is greater than or equal to 80%.
- In yet other alternative examples, the striking plate thickness and the unsupported striking plate area may be associated with a characteristic thickness ratio defined as a ratio of the average striking plate thickness within the striking plate rear cavity region and a square root of the unsupported striking plate area. In some examples, the characteristic thickness ratio is less than about 5%.
-
FIG. 1 is an exploded view of a representative club head for an iron type golf club. -
FIG. 2 is an elevational view of the representative club head ofFIG. 1 . -
FIG. 3 is a partial sectional view of the golf club head ofFIG. 1 illustrating a cartridge insert in contact with a rear surface of a striking plate. -
FIG. 4 is an additional sectional view of the golf club head ofFIG. 1 illustrating contact of the cartridge insert with a rear surface of a striking plate. -
FIGS. 5A-5B are views of rear surfaces of representative striking plates. -
FIG. 5C is a sectional view of the striking plate ofFIG. 5A illustrating a control feature defined on the rear surface of the striking plate. -
FIG. 6 illustrates an additional example of a cartridge configured for placement in a head body of an iron type golf club. -
FIGS. 7A-7B illustrate a variable thickness striking plate that includes a thinned circular striking zone. -
FIGS. 8A-8C illustrate a club head that includes a variable thickness striking plate having an oval striking area. - Referring to
FIGS. 1-4 , an iron-type club head 100 includes ahead body 110, acartridge assembly 120, and astriking plate 130. Thehead body 110 includes aheel 112, atoe 113, atop line 114, a sole 116, and ahosel 140 configured to attach theclub head 100 to a shaft (not shown inFIGS. 1-4 ). Thehead body 110 defines afront opening 121 configured to receive thestriking plate 130 at afront rim 119 formed around a periphery of thefront opening 121. Club head mass may be distributed about the perimeter of theclub body 110 based on a particular mass distribution for theclub head 100 selected by a club head designer. Perimeter weighting can take various forms. Typical designs include a sole bar or other mass at or near the club head sole 116 to provide a center of gravity that is situated low in theclub head 100 and behind thestriking plate 130 as viewed from astriking surface 132 of the club head. - As shown in
FIG. 1 , thestriking plate 130 and thehead body 110 may be formed separately. In such a design, the completedclub head 100 is made by placing thestriking plate 130 in the front opening 121 and in contact with thefront rim 119. Thestriking plate 130 is then welded or otherwise secured to theheady body 110, thereby forming acavity 118 behind arear surface 134 of thestriking plate 130. When secured to thehead body 110, thestriking plate 130 is supported at or by thefront rim 119. As defined herein, thestriking surface 132 is a substantially planar surface configured to strike a golf ball. As shown inFIG. 3 , where thestriking plate 130 and thehead body 110 are formed separately, thestriking surface 132 may be defined by both the striking plate and at least a portion of thefront rim 119 of the head body if the substantially planar striking surface extends beyond the periphery of the striking plate. - Grinding and/or polishing operations can be used to remove any excess material or irregularities introduced in the welding process, or to provide a selected club head appearance such as, for example, a specularly reflective polished appearance, or other appearance. The
striking plate 130 may also include a set of scorelines, such as 135, 136 formed in theexemplary scorelines striking surface 132. - The
head body 110 includes asole cavity 126 formed in proximity to a sole portion of thehead body 110 and configured to receive acartridge assembly 120. Thesole cavity 126 is defined in part by a sole-facingsurface 127 and arear cavity surface 128. Thesole cavity 126 is configured so that at least a portion of a surface of thecartridge assembly 120 contacts therear surface 134 of thestriking plate 130 when acartridge assembly 120 is inserted into thesole cavity 126. Typically, thecartridge assembly 120 contacts at least some portions of the sole-facingsurface 127 and therear cavity surface 128, and is secured to the sole-facingsurface 127. Referring toFIG. 4 , in some examples, therear cavity surface 128 is divided into an upperrear cavity surface 128′ and a lowerrear cavity surface 128″. The upperrear cavity surface 128′ is separated from the lowerrear cavity surface 128″ by aledge overhang surface 139. The upperrear cavity surface 128′, the lowerrear cavity surface 128″, and theledge overhang surface 139 are defined by a rearward sole wall of the sole portion of the head body that extends toward the top-line portion of the head body. The upperrear cavity surface 128′ and/or the lowerrear cavity surface 128″ can be parallel to the substantially planarstriking surface 132, and theledge overhang surface 139 can be perpendicular to the upperrear cavity surface 128′, the lowerrear cavity surface 128″, and/or the substantially planerstriking surface 132. Moreover, the upperrear cavity surface 128′ is separated from the substantially planarstriking surface 132 by a first distance D1 and the lowerrear cavity surface 128″ is separated from the substantially planarstriking surface 132 by a second distance D2. The second distance D2 is greater than the first distance D1. According to some examples, as shown inFIG. 4 , thesole cavity 126 and thecartridge assembly 120 are configured such that when thecartridge assembly 120 is inserted into thesole cavity 126, a portion of an elastomer material of thecartridge assembly 120 contacts the upperrear cavity surface 128′, the sole-facing surface 127 (e.g., bottom cavity surface), and theledge overhang surface 139, while no portion of the elastomer material of thecartridge assembly 120 contacts at least a portion of the lowerrear cavity surface 128″. Accordingly, in some examples, thecartridge assembly 120, including an elastomeric material of thecartridge assembly 120, is not in contact with or is spaced apart from at least a portion of the lowerrear cavity surface 128″ such that a gap exists between the portion of the lowerrear cavity surface 128″ and thecartridge assembly 120. In certain examples, no portion of the lowerrear cavity surface 128″ is in contact with thecartridge assembly 120. Additionally referring toFIG. 4 , a sole thickness is measured parallel to the striking surface from the bottom cavity surface to the exterior of the sole portion, and within an imaginary vertical section perpendicular to a hosel axis the sole thickness varies with a minimum thickness located closer to the striking surface than the rearward sole wall. - As described above, the
striking plate 130 and thehead body 110 may be formed separately. However, alternative manufacturing processes can also be used. For example, thehead body 110 and thestriking plate 130 can be formed as one piece using various forging, casting, and molding processes as are commonly practiced by golf club head manufacturers. Where thehead body 110 and thestriking plate 130 are formed as one piece, the substantially planarstriking surface 132 is defined by the one piece club head. - In one embodiment, the
cartridge assembly 120 includes acartridge body 122 that is configured to receive one or more cartridge inserts 124. Typically thecartridge body 122 is provided with one or more cylindrical bores or other cavities that retain the cartridge inserts 124. Generally thecartridge body 122 has a modulus of elasticity that is lower than that of the cartridge inserts 124. - Some examples of materials that can be used to form the
cartridge body 122 include, without limitation, viscoelastic elastomers; vinyl copolymers with or without inorganic fillers; polyvinyl acetate with or without mineral fillers such as barium sulfate; acrylics; polyesters; polyurethanes; polyethers; polyamides; polybutadienes; polystyrenes; polyisoprenes; polyethylenes; polyolefins; styrene/isoprene block copolymers; metallized polyesters; metallized acrylics; epoxies; epoxy and graphite composites; natural and synthetic rubbers; piezoelectric ceramics; thermoset and thermoplastic rubbers; foamed polymers; ionomers; low-density fiber glass; bitumen; silicone; and mixtures thereof. The metallized polyesters and acrylics can comprise aluminum as the metal. Commercially available materials include resilient polymeric materials such as Scotchdamp™ from 3M, Sorbothane® from Sorbothane, Inc., DYAD® and GP® from Soundcoat Company Inc., Dynamat® from Dynamat Control of North America, Inc., NoViFlex™ Sylomer® from Pole Star Maritime Group, LLC, Isoplast® from The Dow Chemical Company, and Legetolex™ from Piqua Technologies, Inc. In one embodiment thecartridge body 122 may be formed from a material having a modulus of elasticity ranging from about 0.001 GPa to about 25 GPa, and a durometer ranging from about 10 to about 30 on a Shore D scale. In a preferred embodiment thecartridge body 122 may be formed from a material having a modulus of elasticity ranging from about 0.001 GPa to about 10 GPa, and a durometer ranging from about 15 to about 25 on a Shore D scale. In a most preferred embodiment thecartridge body 122 may be formed from a material having a modulus of elasticity ranging from about 0.001 GPa to about 5 GPa, and a durometer ranging from about 18 to about 22 on a Shore D scale. In some examples, a material providing vibration damping is preferred. - As shown in
FIGS. 1-4 , the cartridge inserts 124 are typically formed of relatively dense materials that permit a center of gravity of a club head to be low and rearward of thestriking surface 132. Some examples of materials that can be used to form the cartridge inserts 124 include, without limitation, steel alloys, tungsten and tungsten alloys, other metals and metal alloys, or other materials. Typical densities of such materials are preferably greater than about 2.5 g/cm3 or 5.0 g/cm3. In some preferred examples, insert densities are at least about 15 g/cm3. - In order to provide selected mass, mass distribution, and/or vibration dampening characteristics, in some examples the
cartridge body 122 can be provided with an additional loading material as spheres, rods, fibers or other particles that are distributed throughout thecartridge body 122. In other examples, thecartridge body 122 may comprise two or more sections of different materials that are configured to provide such benefits. In yet other examples, thecartridge assembly 120 may be formed without cartridge inserts 124, and fiber or particulate loading material may be distributed throughout thecartridge body 122 to achieve desirable mass distribution and/or vibration dampening characteristics. The fiber or particulate loading material may be formed from materials such as those listed above with respect to the cartridge inserts 124.Other cartridge body 122 configurations may include a laminar structure comprising alternating layers of materials having varying modulus of elasticity values. - The
cartridge assembly 120 can be conveniently secured to thesole cavity 126 in theclub head 100 with atape strip 129, other adhesive, or otherwise secured or retained in thesole cavity 126. Cartridge inserts 124 can be cylindrical or other shapes, or can be omitted based on the dimensions and density of thecartridge body 122. Abadge 125 can be applied to thehead body 110, to control mass distribution, for ornamentation, club identification, or other purposes. As shown inFIGS. 3-4 , thecartridge body 122, as retained by thehead body 110, is configured to contact therear surface 134 of thestriking plate 130 in a cartridge contact area. - Referring to
FIG. 3 , therear surface 134 of thestriking plate 130 is opposite thestriking surface 132 and faces thecavity 118. For an iron manufactured using pull face construction, a perimeter portion 138 ofstriking plate 130 contacts thehead body 110 at thefront rim 119. A striking plate rear cavity region is defined as the portion of the striking platerear surface 134 that is exposed to thecavity 118. Consequently, for an iron manufactured using pull face construction, the portions of the striking platerear surface 134 supported by thefront rim 119 are not included within the striking plate rear cavity region. - The surface area of the striking surface 132 (i.e., the surface area of the substantially planar surface defined by the
striking plate 130 and the perimeter portion 138) can be selected based on, for example, club type, striking surface shape, and whether or not the club is to be a so-called “oversized” club. The thickness of thestriking plate 130 is defined as the distance between a selected point on thestriking face 132 and therear surface 134 along an axis perpendicular to thestriking face 132. The striking plate thickness can be selected to reduce mass associated with thestriking plate 130, so that additional mass can be distributed to other parts of theclub head 100 to achieve intended club design goals. Typically, striking plate thickness is selected consistent with long term club use to avoid premature striking plate failure due to fatigue cracking and other such failure modes. Typically, redistributed mass is situated low on theclub head 100 and rearward of thestriking plate 130. - Some examples of materials that can be used to form the striking plate and the head body include, without limitation, carbon steels (e.g., 1020 or 8620 carbon steel), stainless steels (e.g., 304, 410, or 431 stainless steel), PH (precipitation-hardenable) alloys (e.g., 17-4, C450, or C455 alloys), titanium alloys (e.g., 3-2.5, 6-4, SP700, 15-3-3-3, 10-2-3, or other alpha/near alpha, alpha-beta, and beta/near beta titanium alloys), aluminum/aluminum alloys (e.g., 3000 series alloys, 5000 series alloys, 6000 series alloys, such as 6061-T6, and 7000 series alloys, such as 7075), magnesium alloys, copper alloys, nickel alloys, glass fiber reinforced polymers (GFRP), carbon fiber reinforced polymers (CFRP), metal matrix composites (MMC), ceramic matrix composites (CMC), and natural composites (e.g., wood composites). High strength materials having a relatively high modulus of elasticity (typically greater than about 50 GPa, 100 GPa, 150 GPa, 200 GPa, or 250 GPa) are generally preferred. In use, the
striking plate 130 is subject to numerous high speed impacts with a golf ball, and should resist cracking and permanent deformation. Different types of irons (e.g., long irons and short irons) can experience different forces in golf ball impacts, and striking plate thickness can be adjusted accordingly, if desired. -
FIGS. 5A-5B illustrate control features 152, 154 situated on rear surfaces (i.e., surfaces opposite a striking surface) of representative 150, 151. Referring tostriking plates FIG. 5C , thecontrol feature 154 is defined by arecess 155 in the rear surface that is provided with a plurality of grooves such as arepresentative groove 158. Control features can be adjusted to provide a selected club playing characteristic, typically to provide an intended sound when striking a golf ball.FIGS. 5A-5B also illustrate representative striking plate areas in which a cartridge assembly such as thecartridge assembly 120 or other cartridges or cartridge assemblies contacts a rear surface of a striking plate. For example, as shown inFIG. 5A , thestriking plate 150 contacts a cartridge assembly in acartridge contact area 157 situated on the rear surface of thestriking plate 150. In another representative example shown inFIG. 5B , thestriking plate 151 contacts a cartridge assembly in 159A, 159B, 159C.surface area portions - Striking plate dimensions can vary based on striking plate composition and preferred club head dimensions. Larger or smaller striking surfaces can be provided for “short” or “long” irons, if desired. Typically, cavity-back club head designs such as the example of
FIGS. 1-4 include a thin striking plate so that striking plate mass is reduced and redistributed to the club head perimeter. All or a portion of therear surface 134 of thestriking plate 130 within the striking plate rear cavity region may be unsupported by the clubhead body such that the striking plate deforms upon impact with a golf ball. - In some embodiments, a cartridge or cartridge assembly may be configured to contact a portion of the
rear surface 134 of thestriking plate 130 in a secondary support area, or cartridge contact area. In this way, the cartridge allows for a thinner striking plate because of the additional support the cartridge provides to the striking plate. As used herein, portions of a striking plate or other striking member of a golf club that lack a backing support structure (e.g., a cartridge or cartridge assembly) having a modulus of elasticity greater than about 25 GPa are referred to as unsupported. Consequently, an unsupported striking plate area may be defined as the portion of the striking plate rear cavity region lacking a backing support structure having a modulus of elasticity greater than about 25 GPa, or equivalently the surface area of the striking plate rear cavity region minus the cartridge contact area. Striking plate dimensions, surface area of the striking plate rear cavity region, unsupported striking plate surface area, striking plate thickness, and cartridge contact area can be selected based on a desired mass distribution, club durability, striking plate materials, and other design goals. - As used herein, a contact area of an elastomeric portion of a cartridge with a rear surface of a striking plate is referred to as a secondary support area, or cartridge contact area. As noted above, the cartridge body may be formed from an elastomeric material having a modulus of elasticity ranging from about 0.001 to about 25 GPa. Providing such a secondary support area with elastomeric materials permits mass reduction in the striking plate with no decrease in striking plate durability. In order to maintain a large striking surface, such mass reduction can be conveniently associated with a relatively thin striking plate. In a typical example, a stainless steel striking plate (modulus of about 200 GPa) having an unsupported striking plate area of about 2000 mm2 has an average thickness of about 1.9 mm and a cartridge contact area of about 400 mm2. Details for several representative examples are set forth in the table below.
- While
FIGS. 1-4 illustrate a representative cavity back iron of pull face construction, in other examples cavity back irons are configured based on one piece (i.e., unitary) construction using manufacturing methodologies such as forging or casting. In one piece construction, a striking plate portion can be formed integrally with a club body, and defines a front striking surface and a rear surface opposite the front striking surface of the striking plate portion. In one piece construction, a striking plate thickness is defined as the distance between a selected point on thestriking surface 132 and therear surface 134 along an axis perpendicular to thestriking surface 132. Generally in the case of a cavity back iron of unitary construction, therear surface 134 of thestriking plate 130 may gradually or abruptly transition from a relatively thin striking face thickness to a much thicker perimeter weighting region. In this case the striking plate rear cavity region is delineated by and includes a peripheral region having a striking plate thickness less than or equal to about 2.2 mm, which is bounded by a thicker perimeter weighting region having a thickness greater than about 2.2 mm. Typically, the maximum thickness of the perimeter weighting region is at least as thick as about 4.5 or 6 times the thickness of the thinnest portion of the striking plate rear cavity region. - An additional cartridge example is illustrated in
FIG. 6 . Referring toFIG. 6 , a cartridge 162 includes alternatingelastomeric sections 164 and insertsections 166. The elastomeric sections are selected from materials having a relatively low modulus of elasticity, typically less than about 25 GPa, less than about 10 GPa, less than about 5 GPa, or less than about 1 GPa. Theinsert sections 166 are generally formed of stiffer, denser materials than the elastomeric sections. The modulus of elasticity for such sections is typically greater than about 10 GPa, 50 GPa, or 100 GPa. The cartridge 162 includes a contact surface configured to contact a striking platerear surface 134, where the contact surface is defined by surfaces 170-174 of the insert sections. While the cartridge ofFIG. 6 illustrates sections alternating horizontally, in other examples, the sections can alternate vertically and fewer or more sections can be provided. In addition, the insert and elastomeric section alternation can be periodic in some examples, but generally need not be. In other examples, the elastomeric sections can be denser and/or stiffer than the insert sections, and the insert sections configured to contact a striking plate rear surface. Sections can have rectangular, square, or other cross sections. - Striking plates of pull face construction irons or striking plate portions of one piece cast or forged irons can be conveniently described based on a characteristic thickness ratio that is defined as a ratio of the average striking plate thickness within the striking plate rear cavity region and a square root of the unsupported striking plate area (i.e., the portion of the striking plate rear cavity region lacking a backing support structure having a modulus of elasticity greater than about 25 GPa). In addition, a portion of an unsupported striking plate area in contact with the cartridge can be described by a relative cartridge contact area ratio defined as a ratio of the cartridge contact area and unsupported striking plate area.
- In typical examples, unsupported striking plate areas range from about 1500 mm2 to about 3000 mm2, average striking plate thickness within the striking plate rear cavity region range from about 1.5 mm to about 2.2 mm, and cartridge contact areas range from about 300 mm2 to about 400 mm2. Consequently, characteristic thickness ratios may range from about 2% to about 4.8% and relative cartridge contact area ratios may range from about 10% to about 25%, or preferably from about 10% to about 18%. Such club head parameters can vary depending on club head geometry as affected by material properties such as, for example, a modulus of elasticity of striking plate material. Parameters can also be selected based on whether a particular club head is to be a short iron, a mid iron, or a long iron.
- Club head geometries for three representative club set configurations A, B, and C are described in Table 1 below. For each of the three sets, representative values for a 3 iron, a 6 iron, and a 9 iron are listed. Tabulated values are unsupported striking plate area (USPA), average striking plate thickness (ASPT), cartridge contact area (CCA), characteristic thickness ratio (CTR), and relative cartridge contact area ratio (RCAR). The representative club set heads may be manufactured from discrete components using, for example, pull face construction methods, or the representative club set heads may be manufactured as unitary components using, for example, various casting or forging techniques.
-
TABLE 1 Representative club head geometries Set and USPA ASPT CCA CTR RCAR Club (mm2) (mm) (mm2) (%) (%) A-3 2062 1.8 304 4.0 14.7 A-6 2062 1.8 304 4.0 14.7 A-9 1898 1.8 304 4.1 16.0 B-3 1701 1.9 387 4.6 22.8 B-6 1714 1.9 387 4.6 22.6 B-9 1898 1.9 387 4.4 20.4 C-3 2112 2.1 393 4.6 18.6 C-6 2310 2.1 393 4.4 17.0 C-9 2211 2.1 393 4.5 17.8 - The tabulated values are representative, and other configurations can be provided as described above. Cartridges can be configured to provide secondary support areas of various shapes and sizes, and situated at club locations based on, for example, an intended mass distribution. Unsupported striking plate surfaces may be of constant thickness, continuously variable thickness, stepped thickness, or combinations thereof. In some examples, only portions of an elastomeric surface of a cartridge contacts the rear surface of a striking plate or other striking portion.
- Striking plates of pull face construction cavity back irons or striking plate portions of one piece cast or forged cavity back irons may also be described based on an unsupported area ratio that is defined as a ratio of the unsupported striking plate area and the area of the substantially planar
striking surface 132. Club head geometries for two representative club set configurations D and E are described in Table 2 below. For club set configuration D, representative values for 4, 5, 6, 7, 8, and 9 irons are listed. For club set configuration E, representative values for 5, 6, 7, 8, and 9 irons are listed. Tabulated values are loft angle (L), striking surface area (SSA), unsupported striking plate area (USPA), and unsupported area ratio (UAR). As above, the representative iron heads may be manufactured from discrete components using, for example, pull face construction methods, or the representative club set heads may be manufactured as unitary components using, for example, various casting or forging techniques. -
TABLE 2 Representative club head geometries. Set and L SSA USPA UAR Club (degrees) (mm2) (mm2) (%) D-4 20 3167 2599 82.1 D-5 23 3207 2613 81.5 D-6 26 3264 2671 81.8 D-7 30 3314 2697 81.4 D-8 34 3366 2730 81.1 D-9 39 3442 2805 81.3 E-5 22 3214 2572 80.0 E-6 25 3265 2628 80.4 E-7 28 3318 2653 80.0 E-8 32 3366 2743 81.5 E-9 37 3447 2796 81.5 - For each of the exemplary club heads listed in Table 2, the striking surface area SSA is related to the loft angle L by the following equation:
-
SSA≥14.4(L)+2875, - wherein SSA is the striking surface area measured in square-millimeters and L is the loft angle measured in degrees. In other examples, areas and angles can be expressed in different units with corresponding changes in any numerical constants in the equation. This relationship provides for increased striking face surface area for a given loft angle compared to traditional cavity back iron club heads. Additionally, the unsupported area ratio for each of the club heads listed in Table 2 is greater than or equal to 80%. In alternative embodiments of the invention, the unsupported area ratio may range from about 80% to about 88%, and in preferred embodiments of the invention, the unsupported area ratio may range from about 83% to about 88%.
- The loft angle of an exemplary cavity back 4-iron may range from about 19 degrees to about 21 degrees, preferably from about 19.5 degrees to about 20.5 degrees; the striking surface area may range from about 3156 mm2 to about 3487 mm2, preferably from about 3322 mm2 to about 3487 mm2; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%; The loft angle of an exemplary cavity back 5-iron may range from about 21.5 degrees to about 22.5 degrees, preferably from about 22 degrees to about 23 degrees; the striking surface area may range from about 3185 mm2 to about 3519 mm2, preferably from about 3352 mm2 to about 3519 mm2; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%. The loft angle of an exemplary cavity back 6-iron may range from about 24.5 degrees to about 26.5 degrees, preferably from about 25 degrees to about 26 degrees; the striking surface area may range from about 3228 mm2 to about 3582 mm2, preferably from about 3405 mm2 to about 3582 mm2; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%. The loft angle of an exemplary cavity back 7-iron may range from about 27.5 degrees to about 30.5 degrees, preferably from about 28 degrees to about 30 degrees; the striking surface area may range from about 3271 mm2 to about 3646 mm2, preferably from about 3458 mm2 to about 3646 mm2; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%. The loft angle of an exemplary cavity back 8-iron may range from about 31.5 degrees to about 34.5 degrees, preferably from about 32 degrees to about 34 degrees; the striking surface area may range from about 3329 mm2 to about 3709 mm2, preferably from about 3519 mm2 to about 3709 mm2; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%. The loft angle of an exemplary cavity back 9-iron may range from about 36.5 degrees to about 39.5 degrees, preferably from about 36 degrees to about 39 degrees; the striking surface area may range from about 3401 mm2 to about 3788 mm2, preferably from about 3594 mm2 to about 3788 mm2; and the unsupported striking plate ratio is greater than or equal to 80%, preferably about 83% to about 88%.
- Striking plates can be thinned substantially uniformly or selected locations on a striking plate can be thinned or otherwise shaped so as to provide a redistribution of mass, a desired “feel” when used, and/or a preferred “sweet spot” size or location. Referring to
FIGS. 7A-7B , astriking plate 702 includes a thinnedstriking region 704 and arelief region 706 that is defined by aperimeter groove 708. Therelief region 706 includes a plurality of circumferential grooves 711-718 that are typically defined along circular arcs that are approximately centered about acenter 720 of thestriking region 704. As shown inFIGS. 7A-7B , the striking plate also includes aface region 724 that has a substantially constant thickness. In some examples, grooves can be defined by elliptical, parabolic, hyperbolic or other curved arcs, or by straight line segments, or combinations thereof and situated about a geometric center of a striking region, a focus of a conic section, or otherwise situated. In the example ofFIG. 7A , at least some of the grooves 711-718 include a first segment and a second segment that are disconnected. For example, the grooves 712-714 are discontinuous and include first and second segments that are separated by a portion of theface region 724. In the example ofFIG. 7A , the thinnedstriking region 704 is circular and has a diameter of about 11.7 mm. Acentral edge 726 of therelief region 706 extends along a portion of a circular arc having a radius of 10.4 mm centered about thestriking region 704. - As shown in
FIG. 7B , thestriking plate 702 has a thickness T=2.2 mm and is relieved by a thickness t=0.5 mm at a thinnest portion corresponding to thecenter 720 of thestriking region 704 to have a central thickness of about 1.7 mm. Asurface 730 of theregion 704 can be defined as, for example, a portion of a spherical surface. In one example, a radius of a spherical surface associated with a 0.5 mm decrease in thickness at thecenter 720 of a 11.7 mmdiameter striking region 704 is about 34.5 mm. Astriking surface 740 is provided with a plurality of scorelines 741-748. Therelief region 706 also includes 760, 762 that couple thetransition segments relief region 706 and thesupport region 724. In the example ofFIG. 7B , surfaces of the 760, 762 are situated at about 45 degrees with respect to atransition regions surface 764 of thesupport region 724. As shown in the example ofFIGS. 7A-7B , a thickness of thestriking plate 702 in therelief region 706 is about 1.6 mm, and thegrooves 708, 711-718 extend a distance of about 0.15 mm into thestriking plate 702 and have radii of curvature of about 0.5 mm. More or fewer grooves can be provided in the relief zone, and relief zones that have larger areas or depths can be used. - Horizontal (H) and vertical (V) locations of the center of a striking zone for a representative iron set are included in Table 3. For convenience, approximate striking plate mass is provided for each club.
-
TABLE 3 Representative Striking Plate Specifications Club Mass (g) H (mm) V(mm) 3 iron 30.7 37.2 19.6 4 iron 31.2 37.2 19.9 5 iron 31.7 37.2 20.4 6 iron 33.1 37.2 21.6 7 iron 33.3 37.4 22.0 8 iron 34.0 37.4 22.1 9 iron 34.6 37.4 24.3 P wedge 35.3 37.3 26.0 A wedge 35.5 37.3 28.2 S wedge 36.4 37.0 28.6 - An additional exemplary
striking plate 802 retained in ahead body 804 is illustrated inFIGS. 8A-8C . Thestriking plate 802 has a thickness TFACE and includes anoval support area 806 having a centraloval area 810 of thickness TSTRIKE and a rim 812 of thickness TRIM that are provided on arear surface 814. The rim 812 defines an oval rim region having interior and exterior lengths LI, LO, respectively and interior and exterior widths WI, WO, respectively. The rim 812 has an annular width of between about 0.9 mm and 1.5 mm at the thickest portion, and dimensions of the rim region are based on locations at which the striking plate thickness is substantially the same as the thicknesses associated with the striking region and the face region. A front surface (a striking surface) 816 of thestriking plate 802 includes a plurality ofgrooves 818. In some examples, theoval support area 806 is elliptical and lengths and widths correspond to major and minor axes of ellipses. A bottom edge 817 of a sole 816 typically extends parallel to the ground (and rests on the ground) when the club is positioned so as to address a ball. Typically a long axis of theoval support area 806 extend approximately parallel to the bottom edge 817. In the example ofFIGS. 8A-8C , a striking face area is somewhat thicker than the remainder of the striking plate. Dimensions of representative striking plates and associated oval support areas such as illustrated inFIGS. 8A-8C are listed in Table 4. -
TABLE 4 Representative Striking Plate Dimensions Example 1 Example 2 Example 3 Example 4 Example 5 TFACE (mm) 1.9-2.2 1.9-2.2 1.9-2.2 1.9-2.2 1.9-2.2 TSTRIKE 2.7-2.9 2.4-2.6 2.2-2.9 2.4-2.7 2.5-2.6 (mm) TRIM (mm) 3.4-3.8 2.9-3.2 2.9-3.6 3.1-3.4 3.2-3.3 Striking Face 2825-3113 2793-3152 2800-3200 2800-3200 2800-3200 Area (mm2) Oval Area 502-554 370-408 390-580 450-550 500-550 (mm2) LO (mm) 39.9-44.1 34.2-37.8 32-46 36-44 38-42 WO (mm) 15.2-16.8 13.1-14.5 11-19 13-17 15.5-16.5 LI (mm) 20.9-23.1 17.1-18.9 15-25 18-22 19-21 WI (mm) 7.6-8.4 6.5-7.2 6-9 7-8.5 7.75-8.25 - The striking plate examples shown in
FIGS. 7A-7B and 8A-8C may be provided on a club head using pull face construction or unitary construction techniques. A variety of other striking plates can be similarly arranged to include thinned or thickened striking regions, relief regions, or other features described above. - The representative clubs, components thereof, and related assembly and manufacturing methods presented above are examples only and are not to be taken as limiting. As disclosed above, striking plates used in pull face club construction or other club faces can be thinned or thickened to permit improved mass redistribution. In some examples, portion of a thinned striking plate are supported or contacted by a weight cartridge, while other examples, a central or interior portion of a striking plate is thinner or thicker than a surrounding portion. Thickness changes can be abrupt or gradual, and tapered thinned or thickened face plates can be used. Portions of the striking plate can be grooved or otherwise relieved so that the associated mass can be situated as desired to provide an intended playing characteristic. These examples are presented for convenient explanation, and are not to be taken as limiting the scope of the appended claims. We claim all that is encompassed by the appended claims.
Claims (21)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/378,407 US20220008794A1 (en) | 2007-10-23 | 2021-07-16 | Golf club head |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/877,580 US8535177B1 (en) | 2007-10-23 | 2007-10-23 | Golf club head |
| US201313971786A | 2013-08-20 | 2013-08-20 | |
| US14/538,614 US20150065267A1 (en) | 2007-10-23 | 2014-11-11 | Golf club head |
| US15/831,038 US10155143B2 (en) | 2007-10-23 | 2017-12-04 | Golf club head |
| US16/179,404 US11090532B2 (en) | 2007-10-23 | 2018-11-02 | Golf club head |
| US17/378,407 US20220008794A1 (en) | 2007-10-23 | 2021-07-16 | Golf club head |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/179,404 Continuation US11090532B2 (en) | 2007-10-23 | 2018-11-02 | Golf club head |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20220008794A1 true US20220008794A1 (en) | 2022-01-13 |
Family
ID=49122272
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/877,580 Expired - Fee Related US8535177B1 (en) | 2007-10-23 | 2007-10-23 | Golf club head |
| US14/538,614 Abandoned US20150065267A1 (en) | 2007-10-23 | 2014-11-11 | Golf club head |
| US15/831,038 Active US10155143B2 (en) | 2007-10-23 | 2017-12-04 | Golf club head |
| US16/179,404 Active US11090532B2 (en) | 2007-10-23 | 2018-11-02 | Golf club head |
| US17/378,407 Abandoned US20220008794A1 (en) | 2007-10-23 | 2021-07-16 | Golf club head |
Family Applications Before (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/877,580 Expired - Fee Related US8535177B1 (en) | 2007-10-23 | 2007-10-23 | Golf club head |
| US14/538,614 Abandoned US20150065267A1 (en) | 2007-10-23 | 2014-11-11 | Golf club head |
| US15/831,038 Active US10155143B2 (en) | 2007-10-23 | 2017-12-04 | Golf club head |
| US16/179,404 Active US11090532B2 (en) | 2007-10-23 | 2018-11-02 | Golf club head |
Country Status (1)
| Country | Link |
|---|---|
| US (5) | US8535177B1 (en) |
Families Citing this family (98)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170120112A1 (en) * | 2007-07-25 | 2017-05-04 | Karsten Manufacturing Corporation | Club head sets with varying characteristics and related methods |
| US11465018B2 (en) * | 2007-07-25 | 2022-10-11 | Karsten Manufacturing Corporation | Club head sets with varying characteristics and related methods |
| US8535177B1 (en) * | 2007-10-23 | 2013-09-17 | Taylor Made Golf Company, Inc. | Golf club head |
| JP2013027587A (en) * | 2011-07-29 | 2013-02-07 | Dunlop Sports Co Ltd | Golf club head |
| US20130288823A1 (en) | 2011-11-28 | 2013-10-31 | Acushnet Company | Co-forged golf club head and method of manufacture |
| US8926451B2 (en) * | 2011-11-28 | 2015-01-06 | Acushnet Company | Co-forged golf club head and method of manufacture |
| US9387370B2 (en) * | 2011-11-28 | 2016-07-12 | Acushnet Company | Co-forged golf club head and method of manufacture |
| US10391370B2 (en) | 2011-11-28 | 2019-08-27 | Acushnet Company | Co-forged golf club head and method of manufacture |
| US10398951B2 (en) * | 2011-11-28 | 2019-09-03 | Acushnet Company | Co-forged golf club head and method of manufacture |
| US9616303B2 (en) * | 2011-11-28 | 2017-04-11 | Acushnet Company | Co-forged golf club head and method of manufacture |
| US11918867B2 (en) * | 2011-11-28 | 2024-03-05 | Acushnet Company | Co-forged golf club head and method of manufacture |
| US10207162B2 (en) * | 2011-11-28 | 2019-02-19 | Acushnet Company | Co-forged golf club head and method of manufacture |
| US11065513B2 (en) | 2011-11-28 | 2021-07-20 | Acushnet Company | Set of golf club heads and method of manufacture |
| US20160287955A1 (en) * | 2011-11-28 | 2016-10-06 | Acushnet Company | Golf club head and method of manufacture |
| US9168436B2 (en) * | 2012-05-31 | 2015-10-27 | Nike, Inc. | Golf club having a reinforced ball striking plate |
| US20150011326A1 (en) * | 2013-07-08 | 2015-01-08 | Chi-Hung Su | Strike plate of a golf club head |
| US11141633B2 (en) | 2014-02-20 | 2021-10-12 | Parsons Xtreme Golf, LLC | Golf club heads and methods to manufacture golf club heads |
| US10821339B2 (en) * | 2014-02-20 | 2020-11-03 | Parsons Xtreme Golf, LLC | Golf club heads and methods to manufacture golf club heads |
| US12102892B2 (en) | 2014-05-15 | 2024-10-01 | Karsten Manufacturing Corporation | Club heads having reinforced club head faces and related methods |
| US10905926B2 (en) | 2014-05-15 | 2021-02-02 | Karsten Manufacturing Corporation | Club heads having reinforced club head faces and related methods |
| US10004955B2 (en) | 2014-05-15 | 2018-06-26 | Karsten Manufacturing Corporation | Golf club head with open crown and related methods |
| US12036453B2 (en) | 2014-05-15 | 2024-07-16 | Karsten Manufacturing Corporation | Golf club head having deflection features and related methods |
| US10751587B2 (en) | 2014-05-15 | 2020-08-25 | Karsten Manufacturing Corporation | Club heads having reinforced club head faces and related methods |
| US10668338B2 (en) * | 2014-05-15 | 2020-06-02 | Karsten Manufacturing Corporation | Golf club head having deflection features and related methods |
| US10918919B2 (en) | 2014-05-15 | 2021-02-16 | Karsten Manufacturing Corporation | Club heads having reinforced club head faces and related methods |
| US10258843B2 (en) | 2014-05-15 | 2019-04-16 | Karsten Manufacturing Corporation | Club heads having reinforced club head faces and related methods |
| GB2586928B (en) | 2014-05-15 | 2021-10-13 | Karsten Mfg Corp | Club heads having reinforced club head faces and related methods |
| USD754269S1 (en) * | 2014-09-05 | 2016-04-19 | Karsten Manufacturing Corporation | Golf club head |
| USD754806S1 (en) * | 2015-01-05 | 2016-04-26 | Karsten Manufacturing Corporation | Golf club head |
| US20230302331A1 (en) * | 2015-02-19 | 2023-09-28 | Acushnet Company | Weighted iron set |
| US12485321B2 (en) * | 2015-02-19 | 2025-12-02 | Acushnet Company | Weighted iron set |
| USD777854S1 (en) * | 2015-09-22 | 2017-01-31 | Karsten Manufacturing Corporation | Golf club head |
| US10130851B2 (en) | 2015-09-22 | 2018-11-20 | Karsten Manufacturing Corporation | Club heads with varying impact responses and related methods |
| WO2017123569A1 (en) * | 2016-01-11 | 2017-07-20 | Karsten Manufacturing Corporation | Club head sets with varying characteristics and related methods |
| US10150020B2 (en) | 2016-02-18 | 2018-12-11 | Karsten Manufacturing Corporation | Golf club head with back cavity protrusion |
| USD801460S1 (en) * | 2016-03-14 | 2017-10-31 | Karsten Manufacturing Corporation | Golf club head |
| USD805146S1 (en) | 2016-03-25 | 2017-12-12 | Karsten Manufacturing Corporation | Golf club head |
| USD810215S1 (en) | 2016-03-25 | 2018-02-13 | Karsten Manufacturing Corporation | Golf club head |
| USD791892S1 (en) | 2016-03-25 | 2017-07-11 | Karsten Manufacturing Corporation | Golf club head |
| US11786789B2 (en) | 2016-07-26 | 2023-10-17 | Acushnet Company | Golf club having a damping element for ball speed control |
| US12370425B2 (en) * | 2016-07-26 | 2025-07-29 | Acushnet Company | Golf club having a damping element for ball speed control |
| US11202946B2 (en) | 2016-07-26 | 2021-12-21 | Acushnet Company | Golf club having a damping element for ball speed control |
| US11433284B2 (en) | 2016-07-26 | 2022-09-06 | Acushnet Company | Golf club having a damping element for ball speed control |
| US11938387B2 (en) | 2016-07-26 | 2024-03-26 | Acushnet Company | Golf club having a damping element for ball speed control |
| US11794080B2 (en) | 2016-07-26 | 2023-10-24 | Acushnet Company | Golf club having a damping element for ball speed control |
| US20230042378A1 (en) * | 2016-07-26 | 2023-02-09 | Acushnet Company | Golf club having a damping element for ball speed control |
| US12478846B2 (en) | 2016-07-26 | 2025-11-25 | Acushnet Company | Golf club having a damping element for ball speed control |
| US12377329B2 (en) | 2016-07-26 | 2025-08-05 | Acushnet Company | Golf club having a damping element for ball speed control |
| US12145038B2 (en) | 2016-07-26 | 2024-11-19 | Acushnet Company | Golf club having a damping element for ball speed control |
| US20220047925A1 (en) * | 2020-08-13 | 2022-02-17 | Acushnet Company | Iron type golf club head |
| US11826620B2 (en) | 2016-07-26 | 2023-11-28 | Acushnet Company | Golf club having a damping element for ball speed control |
| USD815704S1 (en) | 2016-10-14 | 2018-04-17 | Karsten Manufacturing Corporation | Golf club head |
| US11618306B2 (en) | 2016-10-27 | 2023-04-04 | Nicholas J. Singer | Skeleton for truck bed and convertible top |
| US10625126B2 (en) | 2016-12-29 | 2020-04-21 | Taylor Made Golf Company, Inc. | Golf club head |
| US10543409B2 (en) | 2016-12-29 | 2020-01-28 | Taylor Made Golf Company, Inc. | Golf club head |
| US11559727B2 (en) | 2016-12-29 | 2023-01-24 | Taylor Made Golf Company, Inc. | Golf club head |
| US11745067B2 (en) | 2017-03-29 | 2023-09-05 | Parsons Xtreme Golf, LLC | Golf club heads and methods to manufacture golf club heads |
| USD839371S1 (en) | 2017-09-15 | 2019-01-29 | Karsten Manufacturing Corporation | Golf club head |
| US10960278B2 (en) * | 2017-09-22 | 2021-03-30 | Karsten Manufacturing Corporation | Putter golf club head with elastomer fill |
| USD857821S1 (en) * | 2017-12-07 | 2019-08-27 | Taylor Made Golf Company, Inc. | Iron club head |
| USD851718S1 (en) | 2018-03-05 | 2019-06-18 | Karsten Manufacturing Corporation | Golf club head |
| USD859547S1 (en) | 2018-04-17 | 2019-09-10 | Karsten Manufacturing Corporation | Golf club head |
| USD863479S1 (en) * | 2018-07-12 | 2019-10-15 | Karsten Manufacturing Corporation | Golf club head |
| USD888172S1 (en) | 2018-09-26 | 2020-06-23 | Karsten Manufacturing Corporation | Golf club head |
| KR102790728B1 (en) * | 2018-10-12 | 2025-04-02 | 카스턴 매뉴팩츄어링 코오포레이숀 | Iron-type golf club head with flex structure |
| KR102811486B1 (en) * | 2019-03-01 | 2025-05-21 | 카스턴 매뉴팩츄어링 코오포레이숀 | Multi-component golf club head |
| USD914815S1 (en) | 2019-04-01 | 2021-03-30 | Karsten Manufacturing Corporation | Golf club head |
| USD902333S1 (en) | 2019-04-01 | 2020-11-17 | Karsten Manufacturing Corporation | Golf club head |
| US20220118326A1 (en) * | 2019-05-10 | 2022-04-21 | Taylor Made Golf Company, Inc. | Golf club |
| US11351429B2 (en) * | 2019-05-10 | 2022-06-07 | Taylor Made Golf Company, Inc. | Golf club |
| US11458374B2 (en) * | 2019-05-10 | 2022-10-04 | Taylor Made Golf Company, Inc. | Golf club |
| US11400351B2 (en) * | 2019-05-10 | 2022-08-02 | Taylor Made Golf Company, Inc. | Golf club |
| US20220111268A1 (en) * | 2019-05-10 | 2022-04-14 | Taylor Made Golf Company, Inc. | Clubheads for iron-type golf clubs |
| US11406882B2 (en) * | 2019-05-10 | 2022-08-09 | Taylor Made Golf Company, Inc. | Iron-type golf club head |
| US11413510B2 (en) * | 2019-05-10 | 2022-08-16 | Taylor Made Golf Company, Inc. | Golf club |
| US11123614B2 (en) * | 2019-06-24 | 2021-09-21 | Sacks Parente Golf Company, LLC | Magnesium golf clubhead insert |
| US10933287B1 (en) * | 2019-07-12 | 2021-03-02 | Sumitomo Rubber Industries, Ltd. | Golf club head |
| US10881926B1 (en) | 2019-07-29 | 2021-01-05 | Taylor Made Golf Company, Inc. | Iron golf club head |
| USD926899S1 (en) * | 2019-08-12 | 2021-08-03 | Karsten Manufacturing Corporation | Golf club head |
| JP7344862B2 (en) * | 2019-12-10 | 2023-09-14 | グローブライド株式会社 | Putter head with intermediate member |
| US11033788B1 (en) | 2020-02-12 | 2021-06-15 | Cobra Golf Incorporated | Iron-type golf club head |
| US11618213B1 (en) | 2020-04-17 | 2023-04-04 | Cobra Golf Incorporated | Systems and methods for additive manufacturing of a golf club |
| US11857848B1 (en) | 2020-04-17 | 2024-01-02 | Cobra Golf Incorporated | Systems and methods for additive manufacturing of a golf club |
| US11618079B1 (en) | 2020-04-17 | 2023-04-04 | Cobra Golf Incorporated | Systems and methods for additive manufacturing of a golf club |
| USD950658S1 (en) | 2020-07-14 | 2022-05-03 | Karsten Manufacturing Corporation | Golf club head |
| US11771962B2 (en) * | 2020-08-21 | 2023-10-03 | Wilson Sporting Goods Co. | Faceplate of a golf club head |
| USD973805S1 (en) | 2020-10-20 | 2022-12-27 | Karsten Manufacturing Company | Golf club head |
| JP7669711B2 (en) * | 2021-02-05 | 2025-04-30 | 住友ゴム工業株式会社 | Golf Club Head |
| USD982693S1 (en) | 2021-06-17 | 2023-04-04 | Karsten Manufacturing Corporation | Golf club head |
| US11813506B2 (en) | 2021-08-27 | 2023-11-14 | Acushnet Company | Golf club damping |
| US12383804B2 (en) | 2021-11-08 | 2025-08-12 | Parsons Xtreme Golf, LLC | Golf club heads and methods to manufacture golf club heads |
| US20250153011A1 (en) * | 2021-11-08 | 2025-05-15 | Parsons Xtreme Golf, LLC | Golf club heads and methods to manufacture golf club heads |
| US11491377B1 (en) | 2021-12-28 | 2022-11-08 | Acushnet Company | Golf club head having multi-layered striking face |
| US12179077B2 (en) | 2022-07-14 | 2024-12-31 | Acushnet Company | Internally damped golf club head |
| US12485319B2 (en) * | 2023-06-16 | 2025-12-02 | Acushnet Company | Golf club head having improved striking face |
| USD1077103S1 (en) | 2023-07-10 | 2025-05-27 | Karsten Manufacturing Corporation | Golf club head |
| USD1067350S1 (en) | 2023-07-18 | 2025-03-18 | Karsten Manufacturing Corporation | Golf club head |
| USD1094613S1 (en) | 2024-02-23 | 2025-09-23 | Karsten Manufacturing Corporation | Golf club head |
Citations (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010001774A1 (en) * | 1999-11-23 | 2001-05-24 | Antonious Anthony J. | Iron type golf club head |
| US20020065146A1 (en) * | 2000-11-30 | 2002-05-30 | Daiwa Seiko, Inc. | Golf club head and method of manufacturing the same |
| US20020068645A1 (en) * | 2000-12-01 | 2002-06-06 | Benoit Vincent | Golf club head |
| US20020068646A1 (en) * | 2000-12-04 | 2002-06-06 | Minoru Yoneyama | Face structure of hollow-body metal golf club head |
| US20020165041A1 (en) * | 2001-03-02 | 2002-11-07 | Hitoshi Takeda | Golf club |
| US20030008726A1 (en) * | 2001-06-04 | 2003-01-09 | Yoshinori Sano | Golf club head |
| US20030032499A1 (en) * | 2000-12-01 | 2003-02-13 | Bret Wahl | Golf club head |
| US20030078112A1 (en) * | 2001-10-15 | 2003-04-24 | Yasushi Sugimoto | Iron-type golf club head |
| US20030195058A1 (en) * | 2000-04-18 | 2003-10-16 | Rice Scott A. | Metal wood club with improved hitting face |
| US20030203768A1 (en) * | 2002-04-25 | 2003-10-30 | Best Christopher B. | Iron club with captive third piece |
| US20030228928A1 (en) * | 2002-06-07 | 2003-12-11 | Masanori Yabu | Golf club head |
| US20040043830A1 (en) * | 2002-08-30 | 2004-03-04 | Bridgestone Sports Co., Ltd. | Golf club head |
| US20040229714A1 (en) * | 2003-05-12 | 2004-11-18 | Bret Wahl | Iron-type golf club head and method for manufacturing it |
| US20050003900A1 (en) * | 2002-12-06 | 2005-01-06 | Yasushi Sugimoto | Iron type golf club set |
| US20050009624A1 (en) * | 2003-05-27 | 2005-01-13 | Long Dabbs Clayton | Golf club head with a stiffening plate |
| US20050049075A1 (en) * | 2003-09-02 | 2005-03-03 | Chan-Tung Chen | Weight member for a golf club head |
| US20050101406A1 (en) * | 2003-11-10 | 2005-05-12 | Sumitomo Rubber Industries, Ltd. | Iron type golf club head |
| US20050192116A1 (en) * | 2004-02-03 | 2005-09-01 | Bridgestone Sports Co., Ltd. | Golf club head |
| US20050209019A1 (en) * | 2004-03-17 | 2005-09-22 | Karsten Manufacturing Corporation | Method of manufacturing a face plate for a golf club head |
| US20060052179A1 (en) * | 2004-09-08 | 2006-03-09 | Wen-Ching Hou | Upright bent edge structure of a striking plate for combing with a golf club head body |
| US20060063606A1 (en) * | 2004-03-17 | 2006-03-23 | Karsten Manufacturing Corporation | Method of manufacturing a golf club head with a variable thickness face |
| US20060111198A1 (en) * | 2004-11-25 | 2006-05-25 | Bridgestone Sports Co., Ltd. | Golf club head |
| US20060258480A1 (en) * | 2005-05-10 | 2006-11-16 | Nelson Precision Casting Co., Ltd. | Golf club head with elastic weight members |
| US7192362B2 (en) * | 2005-04-14 | 2007-03-20 | Acushnet Company | Iron-type golf clubs |
| US20070066420A1 (en) * | 2005-09-22 | 2007-03-22 | Bridgestone Sports Co., Ltd. | Golf club head |
| US20070129168A1 (en) * | 2005-12-05 | 2007-06-07 | Bridgestone Sports Co., Ltd. | Golf club head |
| US20070129165A1 (en) * | 2005-12-05 | 2007-06-07 | Bridgestone Sports Co., Ltd. | Golf club head |
| US20070129162A1 (en) * | 2005-12-07 | 2007-06-07 | Advanced International Multitech Co., Ltd. | Golf club head with elastic weighted part |
| US20070178990A1 (en) * | 2006-01-27 | 2007-08-02 | Advanced International Multitech Co., Ltd. | Golf club head structure |
| US20070225086A1 (en) * | 2006-03-23 | 2007-09-27 | Fu Sheng Industrial Co., Ltd. | Golf club head having a complex plate formed with an upraised protrusion structure |
| US20070287554A1 (en) * | 2006-06-09 | 2007-12-13 | Gilbert Peter J | Iron-type golf clubs |
| US20080032815A1 (en) * | 2006-08-03 | 2008-02-07 | Sir Sports Limited | Golf club head |
| US20080058119A1 (en) * | 2006-07-21 | 2008-03-06 | Soracco Peter L | Multi-material golf club head |
| US20080085781A1 (en) * | 2006-10-04 | 2008-04-10 | Motofusa Iwahori | Golf club head structure |
| US8337325B2 (en) * | 2007-08-28 | 2012-12-25 | Nike, Inc. | Iron type golf clubs and golf club heads having weight containing and/or vibration damping insert members |
| US20130281227A1 (en) * | 2006-07-21 | 2013-10-24 | Cobra Golf Incorporated | Multi-material golf club head |
| US20150065267A1 (en) * | 2007-10-23 | 2015-03-05 | Taylor Made Golf Company, Inc. | Golf club head |
Family Cites Families (84)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4252262A (en) * | 1978-09-05 | 1981-02-24 | Igarashi Lawrence Y | Method for manufacturing a golf club |
| US5344140A (en) * | 1989-06-12 | 1994-09-06 | Donald A. Anderson | Golf club head and method of forming same |
| FR2668376B1 (en) | 1990-10-25 | 1993-01-29 | Taylor Made Golf Co | GOLF CLUB HEAD. |
| AU1467092A (en) | 1991-03-01 | 1992-10-06 | Truman F Collins | System for adjusting a golf club |
| US5344150A (en) | 1992-08-05 | 1994-09-06 | Callaway Golf Company | Iron golf club head with straight, horizontal recess |
| US5301946A (en) | 1992-08-05 | 1994-04-12 | Callaway Golf Company | Iron golf club head with dual intersecting recesses and associated slits |
| US5330187A (en) | 1992-08-05 | 1994-07-19 | Callaway Golf Company | Iron golf club head with dual intersecting recesses |
| US5282625A (en) | 1992-08-05 | 1994-02-01 | Callaway Golf Company | Iron golf club head with dual intersecting recesses |
| US5333872A (en) | 1993-01-21 | 1994-08-02 | Hillerich & Bradsby Co., Inc. | Golf club irons having improved weighting |
| FR2703913A1 (en) | 1993-04-16 | 1994-10-21 | Taylor Made Golf Co | Shock-absorbing golf-club head of the iron type |
| US5505453A (en) * | 1994-07-20 | 1996-04-09 | Mack; Thomas E. | Tunable golf club head and method of making |
| JPH08164229A (en) * | 1994-12-16 | 1996-06-25 | Daiwa Golf Kk | Golf club head |
| US5564994A (en) * | 1996-01-22 | 1996-10-15 | Chang; Teng-Ho | Golf club head |
| US5707302A (en) * | 1996-02-29 | 1998-01-13 | Leon; Joseph A. | Iron-style golf club |
| US5921869A (en) | 1996-08-22 | 1999-07-13 | Lisco, Inc. | Perimeter weighted iron type golf club heads with multiple level weight pads |
| US5776011A (en) * | 1996-09-27 | 1998-07-07 | Echelon Golf | Golf club head |
| US5830084A (en) * | 1996-10-23 | 1998-11-03 | Callaway Golf Company | Contoured golf club face |
| JPH10127832A (en) | 1996-10-31 | 1998-05-19 | Daiwa Seiko Inc | Iron club set |
| JPH10277187A (en) | 1997-04-07 | 1998-10-20 | Shoe Takahashi | Golf club head which allows fine adjustment of weight distribution |
| US6309309B1 (en) | 1997-05-09 | 2001-10-30 | Taylor Made Golf Company, Inc | Oversized iron-type golf club |
| DE29715997U1 (en) | 1997-09-05 | 1998-02-12 | Linphone Golf Co., Ltd., Kaohsiung | Golf club head with good shock absorption properties |
| US6379262B1 (en) * | 1999-01-23 | 2002-04-30 | David D. Boone | Set of golf club irons |
| US6165081A (en) | 1999-02-24 | 2000-12-26 | Chou; Pei Chi | Golf club head for controlling launch velocity of a ball |
| US6290607B1 (en) * | 1999-04-05 | 2001-09-18 | Acushnet Company | Set of golf clubs |
| US6319150B1 (en) * | 1999-05-25 | 2001-11-20 | Frank D. Werner | Face structure for golf club |
| US6508722B1 (en) * | 2000-01-31 | 2003-01-21 | Acushnet Company | Golf club head and improved casting method therefor |
| CN1283334C (en) * | 2000-05-02 | 2006-11-08 | 美津浓株式会社 | Golf club |
| JP2001321473A (en) * | 2000-05-17 | 2001-11-20 | Mizuno Corp | Iron golf clubs |
| US6428426B1 (en) * | 2000-06-28 | 2002-08-06 | Callaway Golf Company | Golf club striking plate with variable bulge and roll |
| WO2002005902A1 (en) * | 2000-07-13 | 2002-01-24 | Spalding Sports Worldwide, Inc. | Iron type golf club head with high strength insert |
| US6616546B2 (en) * | 2001-01-25 | 2003-09-09 | Jung Hyun Cho | Golf club head |
| JP2001346924A (en) | 2001-04-05 | 2001-12-18 | Sumitomo Rubber Ind Ltd | Iron head manufacturing method |
| US6824475B2 (en) * | 2001-07-03 | 2004-11-30 | Taylor Made Golf Company, Inc. | Golf club head |
| US6902495B2 (en) * | 2001-07-27 | 2005-06-07 | Wilson Sporting Goods Co. | Golf club vibration dampening and sound attenuation system |
| US20030036442A1 (en) | 2001-08-17 | 2003-02-20 | Bing Chao | Golf club head having a high coefficient of restitution and method of making it |
| JP2003062136A (en) * | 2001-08-29 | 2003-03-04 | Endo Mfg Co Ltd | Golf club |
| JP3895571B2 (en) * | 2001-09-28 | 2007-03-22 | Sriスポーツ株式会社 | Golf club head |
| JP2003220161A (en) * | 2002-01-29 | 2003-08-05 | Yonex Co Ltd | Iron club head for golf |
| JP2004016737A (en) * | 2002-06-20 | 2004-01-22 | Bridgestone Sports Co Ltd | Iron type golf club head |
| US6652391B1 (en) * | 2002-06-25 | 2003-11-25 | Karsten Manufacturing Corporation | Golf club head with variable thickness front wall |
| US6997820B2 (en) * | 2002-10-24 | 2006-02-14 | Taylor Made Golf Company, Inc. | Golf club having an improved face plate |
| US6904663B2 (en) * | 2002-11-04 | 2005-06-14 | Taylor Made Golf Company, Inc. | Method for manufacturing a golf club face |
| US7166207B2 (en) * | 2002-11-22 | 2007-01-23 | Taylor Made Golf Company, Inc. | Non-mechanical method of removing material from the surface of a golf club head |
| USD490129S1 (en) * | 2002-12-02 | 2004-05-18 | Callaway Golf Company | Ribbed back golf club head with medallion |
| JP2004209091A (en) | 2003-01-07 | 2004-07-29 | Sumitomo Rubber Ind Ltd | Hollow golf club head, and its examination method |
| JP2004313777A (en) | 2003-03-31 | 2004-11-11 | Mizuno Corp | Iron golf club head and manufacturing method thereof |
| JP2004305335A (en) * | 2003-04-03 | 2004-11-04 | Sumitomo Rubber Ind Ltd | Golf club head |
| US6875124B2 (en) * | 2003-06-02 | 2005-04-05 | Acushnet Company | Golf club iron |
| US7281991B2 (en) | 2003-06-25 | 2007-10-16 | Acushnet Company | Hollow golf club with composite core |
| US7153222B2 (en) | 2003-08-13 | 2006-12-26 | Acushnet Company | Forged iron-type golf clubs |
| US20050090329A1 (en) | 2003-08-13 | 2005-04-28 | Gilbert Peter J. | Forged iron-type golf clubs |
| US20050037860A1 (en) * | 2003-08-13 | 2005-02-17 | Gilbert Peter J. | Forged iron-type golf clubs |
| US6921344B2 (en) * | 2003-08-13 | 2005-07-26 | Acushnet Company | Reinforced golf club head having sandwich construction |
| JP2005124730A (en) * | 2003-10-22 | 2005-05-19 | Sumitomo Rubber Ind Ltd | Golf putter |
| TWI220866B (en) * | 2003-12-31 | 2004-09-11 | Chau Wei Technology Co Ltd | Golf club head with vibration-absorbing structure |
| US20050215349A1 (en) | 2004-03-26 | 2005-09-29 | Chun-Yung Huang | Combination of golf club head body and striking plate |
| US8088022B2 (en) | 2004-05-12 | 2012-01-03 | Cobra Golf Incorporated | Golf club head with top line insert |
| TW200538187A (en) * | 2004-05-26 | 2005-12-01 | Fu Sheng Ind Co Ltd | Vibration-absorbable golf club head |
| US7153219B2 (en) * | 2004-06-14 | 2006-12-26 | Adams Golf Ip, L.P. | Golf club head |
| TWI251501B (en) * | 2005-02-03 | 2006-03-21 | Nelson Prec Casting Co Ltd | Complex adjusting structure for a golf club head |
| US7491136B2 (en) * | 2005-03-04 | 2009-02-17 | Taylor Made Golf Company, Inc. | Low-density FeAlMn alloy golf-club heads and golf clubs comprising same |
| US7559850B2 (en) * | 2005-04-14 | 2009-07-14 | Acushnet Company | Iron-type golf clubs |
| US7273418B2 (en) * | 2005-04-14 | 2007-09-25 | Acushnet Company | Iron-type golf clubs |
| US7186188B2 (en) * | 2005-04-14 | 2007-03-06 | Acushnet Company | Iron-type golf clubs |
| US7186187B2 (en) * | 2005-04-14 | 2007-03-06 | Acushnet Company | Iron-type golf clubs |
| JP4713323B2 (en) * | 2005-12-05 | 2011-06-29 | ブリヂストンスポーツ株式会社 | Golf club head |
| TWM292401U (en) * | 2005-12-29 | 2006-06-21 | Advanced Int Multitech Co Ltd | Golf club head with fixed structure of dual-counterweight body |
| US7744487B2 (en) | 2006-03-06 | 2010-06-29 | Nike, Inc. | Golf clubs and golf club heads having feel altering systems |
| USD539863S1 (en) * | 2006-04-10 | 2007-04-03 | Taylor Made Golf Company, Inc. | Golf club iron |
| USD539862S1 (en) * | 2006-04-10 | 2007-04-03 | Taylor Made Golf Company, Inc. | Golf club iron |
| JP4256406B2 (en) * | 2006-06-12 | 2009-04-22 | Sriスポーツ株式会社 | Iron type golf club head |
| US8870682B2 (en) * | 2006-07-21 | 2014-10-28 | Cobra Golf Incorporated | Multi-material golf club head |
| US7922604B2 (en) * | 2006-07-21 | 2011-04-12 | Cobra Golf Incorporated | Multi-material golf club head |
| JP4326559B2 (en) | 2006-11-29 | 2009-09-09 | Sriスポーツ株式会社 | Golf club head |
| JP5161546B2 (en) * | 2007-11-26 | 2013-03-13 | ダンロップスポーツ株式会社 | Golf club head |
| CN101496947B (en) | 2008-01-28 | 2011-05-25 | 楠盛股份有限公司 | golf club head |
| US8449406B1 (en) | 2008-12-11 | 2013-05-28 | Taylor Made Golf Company, Inc. | Golf club head |
| US8353785B2 (en) * | 2009-04-23 | 2013-01-15 | Taylor Made Golf Company, Inc. | Golf club head |
| US8376878B2 (en) | 2009-05-28 | 2013-02-19 | Acushnet Company | Golf club head having variable center of gravity location |
| US8088025B2 (en) | 2009-07-29 | 2012-01-03 | Taylor Made Golf Company, Inc. | Golf club head |
| JP5902457B2 (en) * | 2011-12-07 | 2016-04-13 | ブリヂストンスポーツ株式会社 | Golf club head |
| US8974317B1 (en) * | 2012-09-14 | 2015-03-10 | Callaway Golf Company | Multiple-material iron |
| US9199143B1 (en) | 2014-08-25 | 2015-12-01 | Parsons Xtreme Golf, LLC | Golf club heads and methods to manufacture golf club heads |
| US9675853B2 (en) | 2014-05-13 | 2017-06-13 | Parsons Xtreme Golf, LLC | Golf club heads and methods to manufacture golf club heads |
-
2007
- 2007-10-23 US US11/877,580 patent/US8535177B1/en not_active Expired - Fee Related
-
2014
- 2014-11-11 US US14/538,614 patent/US20150065267A1/en not_active Abandoned
-
2017
- 2017-12-04 US US15/831,038 patent/US10155143B2/en active Active
-
2018
- 2018-11-02 US US16/179,404 patent/US11090532B2/en active Active
-
2021
- 2021-07-16 US US17/378,407 patent/US20220008794A1/en not_active Abandoned
Patent Citations (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010001774A1 (en) * | 1999-11-23 | 2001-05-24 | Antonious Anthony J. | Iron type golf club head |
| US20030195058A1 (en) * | 2000-04-18 | 2003-10-16 | Rice Scott A. | Metal wood club with improved hitting face |
| US20020065146A1 (en) * | 2000-11-30 | 2002-05-30 | Daiwa Seiko, Inc. | Golf club head and method of manufacturing the same |
| US20030032499A1 (en) * | 2000-12-01 | 2003-02-13 | Bret Wahl | Golf club head |
| US20020068645A1 (en) * | 2000-12-01 | 2002-06-06 | Benoit Vincent | Golf club head |
| US20020068646A1 (en) * | 2000-12-04 | 2002-06-06 | Minoru Yoneyama | Face structure of hollow-body metal golf club head |
| US20020165041A1 (en) * | 2001-03-02 | 2002-11-07 | Hitoshi Takeda | Golf club |
| US20030008726A1 (en) * | 2001-06-04 | 2003-01-09 | Yoshinori Sano | Golf club head |
| US20030078112A1 (en) * | 2001-10-15 | 2003-04-24 | Yasushi Sugimoto | Iron-type golf club head |
| US20030203768A1 (en) * | 2002-04-25 | 2003-10-30 | Best Christopher B. | Iron club with captive third piece |
| US20030228928A1 (en) * | 2002-06-07 | 2003-12-11 | Masanori Yabu | Golf club head |
| US20040043830A1 (en) * | 2002-08-30 | 2004-03-04 | Bridgestone Sports Co., Ltd. | Golf club head |
| US20050003900A1 (en) * | 2002-12-06 | 2005-01-06 | Yasushi Sugimoto | Iron type golf club set |
| US20040229714A1 (en) * | 2003-05-12 | 2004-11-18 | Bret Wahl | Iron-type golf club head and method for manufacturing it |
| US20050009624A1 (en) * | 2003-05-27 | 2005-01-13 | Long Dabbs Clayton | Golf club head with a stiffening plate |
| US20050049075A1 (en) * | 2003-09-02 | 2005-03-03 | Chan-Tung Chen | Weight member for a golf club head |
| US20050101406A1 (en) * | 2003-11-10 | 2005-05-12 | Sumitomo Rubber Industries, Ltd. | Iron type golf club head |
| US20050192116A1 (en) * | 2004-02-03 | 2005-09-01 | Bridgestone Sports Co., Ltd. | Golf club head |
| US20060063606A1 (en) * | 2004-03-17 | 2006-03-23 | Karsten Manufacturing Corporation | Method of manufacturing a golf club head with a variable thickness face |
| US20050209019A1 (en) * | 2004-03-17 | 2005-09-22 | Karsten Manufacturing Corporation | Method of manufacturing a face plate for a golf club head |
| US20060052179A1 (en) * | 2004-09-08 | 2006-03-09 | Wen-Ching Hou | Upright bent edge structure of a striking plate for combing with a golf club head body |
| US20060111198A1 (en) * | 2004-11-25 | 2006-05-25 | Bridgestone Sports Co., Ltd. | Golf club head |
| US7192362B2 (en) * | 2005-04-14 | 2007-03-20 | Acushnet Company | Iron-type golf clubs |
| US20060258480A1 (en) * | 2005-05-10 | 2006-11-16 | Nelson Precision Casting Co., Ltd. | Golf club head with elastic weight members |
| US20070066420A1 (en) * | 2005-09-22 | 2007-03-22 | Bridgestone Sports Co., Ltd. | Golf club head |
| US20070129168A1 (en) * | 2005-12-05 | 2007-06-07 | Bridgestone Sports Co., Ltd. | Golf club head |
| US20070129165A1 (en) * | 2005-12-05 | 2007-06-07 | Bridgestone Sports Co., Ltd. | Golf club head |
| US20070129162A1 (en) * | 2005-12-07 | 2007-06-07 | Advanced International Multitech Co., Ltd. | Golf club head with elastic weighted part |
| US20070178990A1 (en) * | 2006-01-27 | 2007-08-02 | Advanced International Multitech Co., Ltd. | Golf club head structure |
| US20070225086A1 (en) * | 2006-03-23 | 2007-09-27 | Fu Sheng Industrial Co., Ltd. | Golf club head having a complex plate formed with an upraised protrusion structure |
| US20070287554A1 (en) * | 2006-06-09 | 2007-12-13 | Gilbert Peter J | Iron-type golf clubs |
| US20080058119A1 (en) * | 2006-07-21 | 2008-03-06 | Soracco Peter L | Multi-material golf club head |
| US20130281227A1 (en) * | 2006-07-21 | 2013-10-24 | Cobra Golf Incorporated | Multi-material golf club head |
| US20080032815A1 (en) * | 2006-08-03 | 2008-02-07 | Sir Sports Limited | Golf club head |
| US7713141B2 (en) * | 2006-08-03 | 2010-05-11 | Sri Sports Limited | Golf club head |
| US20080085781A1 (en) * | 2006-10-04 | 2008-04-10 | Motofusa Iwahori | Golf club head structure |
| US8337325B2 (en) * | 2007-08-28 | 2012-12-25 | Nike, Inc. | Iron type golf clubs and golf club heads having weight containing and/or vibration damping insert members |
| US20150065267A1 (en) * | 2007-10-23 | 2015-03-05 | Taylor Made Golf Company, Inc. | Golf club head |
| US20180085643A1 (en) * | 2007-10-23 | 2018-03-29 | Taylor Made Golf Company, Inc. | Golf club head |
| US10155143B2 (en) * | 2007-10-23 | 2018-12-18 | Taylor Made Golf Company, Inc. | Golf club head |
| US20190070467A1 (en) * | 2007-10-23 | 2019-03-07 | Taylor Made Golf Company, Inc. | Golf club head |
| US11090532B2 (en) * | 2007-10-23 | 2021-08-17 | Taylor Made Golf Company, Inc. | Golf club head |
Non-Patent Citations (1)
| Title |
|---|
| USPTO PTAB decision, Ex parte Nguyen, Appeal 2018-1801, 10/22/18, USPTO, 7 pages * |
Also Published As
| Publication number | Publication date |
|---|---|
| US10155143B2 (en) | 2018-12-18 |
| US20150065267A1 (en) | 2015-03-05 |
| US8535177B1 (en) | 2013-09-17 |
| US11090532B2 (en) | 2021-08-17 |
| US20180085643A1 (en) | 2018-03-29 |
| US20190070467A1 (en) | 2019-03-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11090532B2 (en) | Golf club head | |
| US11951365B2 (en) | Golf club | |
| US10279233B2 (en) | Golf club heads and methods to manufacture golf club heads | |
| CN105980018B (en) | Golf club head and method of manufacturing golf club head | |
| US9192830B2 (en) | Golf club heads and methods to manufacture golf club heads | |
| US7186188B2 (en) | Iron-type golf clubs | |
| US7803062B2 (en) | Iron-type golf clubs | |
| US20190217165A1 (en) | Golf club heads and methods to manufacture golf club heads | |
| US7192362B2 (en) | Iron-type golf clubs | |
| US7878920B2 (en) | Set of iron-type golf clubs having a progressive sole configuration | |
| US7371190B2 (en) | Iron-type golf clubs | |
| US7485049B2 (en) | Iron-type golf clubs | |
| US7232377B2 (en) | Iron-type golf clubs | |
| US7192361B2 (en) | Iron-type golf clubs | |
| US8133133B2 (en) | Forged iron-type golf clubs | |
| US12350559B1 (en) | Golf club heads and methods to manufacture golf club heads | |
| US20250387676A1 (en) | Golf club heads and methods to manufacture golf club heads | |
| US20250281803A1 (en) | Golf club head | |
| US20240149120A1 (en) | Golf club head |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:TAYLOR MADE GOLF COMPANY, INC.;REEL/FRAME:058962/0415 Effective date: 20220207 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:TAYLOR MADE GOLF COMPANY, INC.;REEL/FRAME:058963/0671 Effective date: 20220207 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |