US20220008441A1 - Compositions and methods for treating multiple sclerosis - Google Patents
Compositions and methods for treating multiple sclerosis Download PDFInfo
- Publication number
- US20220008441A1 US20220008441A1 US17/327,395 US202117327395A US2022008441A1 US 20220008441 A1 US20220008441 A1 US 20220008441A1 US 202117327395 A US202117327395 A US 202117327395A US 2022008441 A1 US2022008441 A1 US 2022008441A1
- Authority
- US
- United States
- Prior art keywords
- aspirin
- ester
- salt
- fumaric acid
- capsule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 201000006417 multiple sclerosis Diseases 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000000203 mixture Substances 0.000 title abstract description 33
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims abstract description 190
- 229960001138 acetylsalicylic acid Drugs 0.000 claims abstract description 182
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 claims abstract description 181
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims abstract description 97
- 239000001530 fumaric acid Substances 0.000 claims abstract description 94
- 150000002148 esters Chemical class 0.000 claims abstract description 92
- 150000003839 salts Chemical class 0.000 claims abstract description 92
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical group COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 claims description 93
- 229960004419 dimethyl fumarate Drugs 0.000 claims description 88
- 239000002775 capsule Substances 0.000 claims description 55
- 210000000214 mouth Anatomy 0.000 claims description 41
- NKHAVTQWNUWKEO-NSCUHMNNSA-N monomethyl fumarate Chemical compound COC(=O)\C=C\C(O)=O NKHAVTQWNUWKEO-NSCUHMNNSA-N 0.000 claims description 36
- NKHAVTQWNUWKEO-UHFFFAOYSA-N fumaric acid monomethyl ester Natural products COC(=O)C=CC(O)=O NKHAVTQWNUWKEO-UHFFFAOYSA-N 0.000 claims description 33
- 229940005650 monomethyl fumarate Drugs 0.000 claims description 33
- 239000003814 drug Substances 0.000 claims description 24
- 239000008194 pharmaceutical composition Substances 0.000 claims description 24
- 230000000694 effects Effects 0.000 claims description 23
- 229940079593 drug Drugs 0.000 claims description 20
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 17
- 239000004005 microsphere Substances 0.000 claims description 15
- 230000002496 gastric effect Effects 0.000 claims description 14
- 210000000936 intestine Anatomy 0.000 claims description 13
- 210000002784 stomach Anatomy 0.000 claims description 13
- 239000002552 dosage form Substances 0.000 claims description 10
- 238000009505 enteric coating Methods 0.000 claims description 9
- 239000002702 enteric coating Substances 0.000 claims description 9
- 208000017520 skin disease Diseases 0.000 claims description 9
- 201000004681 Psoriasis Diseases 0.000 claims description 8
- 208000027866 inflammatory disease Diseases 0.000 claims description 6
- 208000005264 motor neuron disease Diseases 0.000 claims description 5
- 208000023275 Autoimmune disease Diseases 0.000 claims description 4
- 230000004770 neurodegeneration Effects 0.000 claims description 4
- 208000026072 Motor neurone disease Diseases 0.000 claims description 3
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 3
- 206010040047 Sepsis Diseases 0.000 claims description 2
- 238000011282 treatment Methods 0.000 description 40
- 238000000576 coating method Methods 0.000 description 25
- 238000011010 flushing procedure Methods 0.000 description 22
- 239000011248 coating agent Substances 0.000 description 21
- 208000024891 symptom Diseases 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 201000010099 disease Diseases 0.000 description 15
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 15
- 238000009472 formulation Methods 0.000 description 15
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 235000000346 sugar Nutrition 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 229940000425 combination drug Drugs 0.000 description 8
- 230000003111 delayed effect Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 206010056969 Necrobiosis lipoidica diabeticorum Diseases 0.000 description 7
- 208000007118 chronic progressive multiple sclerosis Diseases 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 201000008043 necrobiosis lipoidica Diseases 0.000 description 7
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 7
- 229960004889 salicylic acid Drugs 0.000 description 7
- 201000008628 secondary progressive multiple sclerosis Diseases 0.000 description 7
- 239000003765 sweetening agent Substances 0.000 description 7
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 6
- 229920002472 Starch Polymers 0.000 description 6
- 238000013265 extended release Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 230000002757 inflammatory effect Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 229940032147 starch Drugs 0.000 description 6
- 108010010803 Gelatin Proteins 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 5
- 235000010443 alginic acid Nutrition 0.000 description 5
- 229920000615 alginic acid Polymers 0.000 description 5
- -1 coatings Substances 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 230000003902 lesion Effects 0.000 description 5
- 206010025135 lupus erythematosus Diseases 0.000 description 5
- 229960003512 nicotinic acid Drugs 0.000 description 5
- 235000001968 nicotinic acid Nutrition 0.000 description 5
- 239000011664 nicotinic acid Substances 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 235000021092 sugar substitutes Nutrition 0.000 description 5
- 229940121136 tecfidera Drugs 0.000 description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 4
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 4
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 4
- 206010015150 Erythema Diseases 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 201000005708 Granuloma Annulare Diseases 0.000 description 4
- 229930195725 Mannitol Natural products 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 239000000556 agonist Substances 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 210000005178 buccal mucosa Anatomy 0.000 description 4
- 230000001055 chewing effect Effects 0.000 description 4
- 238000011260 co-administration Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000594 mannitol Substances 0.000 description 4
- 235000010355 mannitol Nutrition 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000036470 plasma concentration Effects 0.000 description 4
- 210000003296 saliva Anatomy 0.000 description 4
- 201000000306 sarcoidosis Diseases 0.000 description 4
- 239000000600 sorbitol Substances 0.000 description 4
- 235000010356 sorbitol Nutrition 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 206010051129 Cheilitis granulomatosa Diseases 0.000 description 3
- 102000000503 Collagen Type II Human genes 0.000 description 3
- 108010041390 Collagen Type II Proteins 0.000 description 3
- 230000005778 DNA damage Effects 0.000 description 3
- 231100000277 DNA damage Toxicity 0.000 description 3
- 206010012735 Diarrhoea Diseases 0.000 description 3
- 208000006926 Discoid Lupus Erythematosus Diseases 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- 208000007546 Giant Cell Granuloma Diseases 0.000 description 3
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 3
- 206010028813 Nausea Diseases 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 208000003251 Pruritus Diseases 0.000 description 3
- 208000025865 Ulcer Diseases 0.000 description 3
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 206010009887 colitis Diseases 0.000 description 3
- 235000009508 confectionery Nutrition 0.000 description 3
- 208000004921 cutaneous lupus erythematosus Diseases 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 235000020937 fasting conditions Nutrition 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 208000002557 hidradenitis Diseases 0.000 description 3
- 201000007162 hidradenitis suppurativa Diseases 0.000 description 3
- 230000005722 itchiness Effects 0.000 description 3
- 201000011486 lichen planus Diseases 0.000 description 3
- 201000001441 melanoma Diseases 0.000 description 3
- 230000008693 nausea Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 229960005489 paracetamol Drugs 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 206010035116 pityriasis rubra pilaris Diseases 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 210000000813 small intestine Anatomy 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 150000005846 sugar alcohols Chemical class 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 230000036269 ulceration Effects 0.000 description 3
- XLYMOEINVGRTEX-ONEGZZNKSA-N (e)-4-ethoxy-4-oxobut-2-enoic acid Chemical class CCOC(=O)\C=C\C(O)=O XLYMOEINVGRTEX-ONEGZZNKSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- LSHGTVRUHLAAJZ-SCBDLNNBSA-N 2-acetyloxybenzoic acid;dimethyl (e)-but-2-enedioate Chemical compound COC(=O)\C=C\C(=O)OC.CC(=O)OC1=CC=CC=C1C(O)=O LSHGTVRUHLAAJZ-SCBDLNNBSA-N 0.000 description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 2
- 206010000060 Abdominal distension Diseases 0.000 description 2
- 206010000084 Abdominal pain lower Diseases 0.000 description 2
- 206010000087 Abdominal pain upper Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- 206010010774 Constipation Diseases 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- 239000004386 Erythritol Substances 0.000 description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 2
- 102100030643 Hydroxycarboxylic acid receptor 2 Human genes 0.000 description 2
- 101710125793 Hydroxycarboxylic acid receptor 2 Proteins 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 208000003456 Juvenile Arthritis Diseases 0.000 description 2
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 239000004368 Modified starch Substances 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 208000032319 Primary lateral sclerosis Diseases 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 206010046298 Upper motor neurone lesion Diseases 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 229940072056 alginate Drugs 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000008122 artificial sweetener Substances 0.000 description 2
- 235000021311 artificial sweeteners Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 208000024330 bloating Diseases 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 235000021152 breakfast Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 229960001259 diclofenac Drugs 0.000 description 2
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 2
- 201000006549 dyspepsia Diseases 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- 235000019414 erythritol Nutrition 0.000 description 2
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 2
- 229940009714 erythritol Drugs 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 206010016766 flatulence Diseases 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 208000008675 hereditary spastic paraplegia Diseases 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 229960001680 ibuprofen Drugs 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 2
- 201000010901 lateral sclerosis Diseases 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000845 maltitol Substances 0.000 description 2
- 235000010449 maltitol Nutrition 0.000 description 2
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 2
- 229940035436 maltitol Drugs 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 235000019426 modified starch Nutrition 0.000 description 2
- CDBRNDSHEYLDJV-FVGYRXGTSA-M naproxen sodium Chemical compound [Na+].C1=C([C@H](C)C([O-])=O)C=CC2=CC(OC)=CC=C21 CDBRNDSHEYLDJV-FVGYRXGTSA-M 0.000 description 2
- 235000021096 natural sweeteners Nutrition 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 235000013615 non-nutritive sweetener Nutrition 0.000 description 2
- 239000000902 placebo Substances 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 201000002241 progressive bulbar palsy Diseases 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 201000008752 progressive muscular atrophy Diseases 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 2
- WVYADZUPLLSGPU-UHFFFAOYSA-N salsalate Chemical compound OC(=O)C1=CC=CC=C1OC(=O)C1=CC=CC=C1O WVYADZUPLLSGPU-UHFFFAOYSA-N 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 210000000278 spinal cord Anatomy 0.000 description 2
- 208000002320 spinal muscular atrophy Diseases 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- 239000000230 xanthan gum Substances 0.000 description 2
- 235000010493 xanthan gum Nutrition 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- 229940082509 xanthan gum Drugs 0.000 description 2
- 239000000811 xylitol Substances 0.000 description 2
- 235000010447 xylitol Nutrition 0.000 description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 2
- 229960002675 xylitol Drugs 0.000 description 2
- SJZRECIVHVDYJC-UHFFFAOYSA-M 4-hydroxybutyrate Chemical compound OCCCC([O-])=O SJZRECIVHVDYJC-UHFFFAOYSA-M 0.000 description 1
- RWHRFHQRVDUPIK-UHFFFAOYSA-N 50867-57-7 Chemical compound CC(=C)C(O)=O.CC(=C)C(O)=O RWHRFHQRVDUPIK-UHFFFAOYSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- DJQOOSBJCLSSEY-UHFFFAOYSA-N Acipimox Chemical compound CC1=CN=C(C(O)=O)C=[N+]1[O-] DJQOOSBJCLSSEY-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- KHBQMWCZKVMBLN-UHFFFAOYSA-N Benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=CC=C1 KHBQMWCZKVMBLN-UHFFFAOYSA-N 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 229940124638 COX inhibitor Drugs 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- 208000016192 Demyelinating disease Diseases 0.000 description 1
- 208000003164 Diplopia Diseases 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 101000588302 Homo sapiens Nuclear factor erythroid 2-related factor 2 Proteins 0.000 description 1
- 206010060800 Hot flush Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 206010061599 Lower limb fracture Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 102000007561 NF-E2-Related Factor 2 Human genes 0.000 description 1
- 108010071382 NF-E2-Related Factor 2 Proteins 0.000 description 1
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 102100031701 Nuclear factor erythroid 2-related factor 2 Human genes 0.000 description 1
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 208000029082 Pelvic Inflammatory Disease Diseases 0.000 description 1
- 208000031845 Pernicious anaemia Diseases 0.000 description 1
- 241000233805 Phoenix Species 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 1
- 108050003267 Prostaglandin G/H synthase 2 Proteins 0.000 description 1
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 208000036002 Rash generalised Diseases 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010046555 Urinary retention Diseases 0.000 description 1
- 206010046798 Uterine leiomyoma Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DFDGRKNOFOJBAJ-UHFFFAOYSA-N acifran Chemical compound C=1C=CC=CC=1C1(C)OC(C(O)=O)=CC1=O DFDGRKNOFOJBAJ-UHFFFAOYSA-N 0.000 description 1
- 229950000146 acifran Drugs 0.000 description 1
- 229960003526 acipimox Drugs 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical class NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003474 anti-emetic effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 229940058671 bayer aspirin Drugs 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 208000019069 chronic childhood arthritis Diseases 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 229940124301 concurrent medication Drugs 0.000 description 1
- 201000007750 congenital bile acid synthesis defect Diseases 0.000 description 1
- 210000001608 connective tissue cell Anatomy 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- IEPRKVQEAMIZSS-AATRIKPKSA-N diethyl fumarate Chemical compound CCOC(=O)\C=C\C(=O)OCC IEPRKVQEAMIZSS-AATRIKPKSA-N 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- YIMYDTCOUQIDMT-SNAWJCMRSA-N diroximel fumarate Chemical compound COC(=O)\C=C\C(=O)OCCN1C(=O)CCC1=O YIMYDTCOUQIDMT-SNAWJCMRSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 208000029444 double vision Diseases 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229960005293 etodolac Drugs 0.000 description 1
- XFBVBWWRPKNWHW-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=N[C]3C(CC)=CC=CC3=C21 XFBVBWWRPKNWHW-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 229960004752 ketorolac Drugs 0.000 description 1
- OZWKMVRBQXNZKK-UHFFFAOYSA-N ketorolac Chemical compound OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 OZWKMVRBQXNZKK-UHFFFAOYSA-N 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- NXFFJDQHYLNEJK-CYBMUJFWSA-N laropiprant Chemical compound C=1([C@@H](CC(O)=O)CCC=1C=1C=C(F)C=C(C2=1)S(=O)(=O)C)N2CC1=CC=C(Cl)C=C1 NXFFJDQHYLNEJK-CYBMUJFWSA-N 0.000 description 1
- 229950008292 laropiprant Drugs 0.000 description 1
- 201000010260 leiomyoma Diseases 0.000 description 1
- 238000012006 liquid chromatography with tandem mass spectrometry Methods 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010339 medical test Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229940074369 monoethyl fumarate Drugs 0.000 description 1
- 210000002161 motor neuron Anatomy 0.000 description 1
- 210000002643 mouth floor Anatomy 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229960003940 naproxen sodium Drugs 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- OFPXSFXSNFPTHF-UHFFFAOYSA-N oxaprozin Chemical compound O1C(CCC(=O)O)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 OFPXSFXSNFPTHF-UHFFFAOYSA-N 0.000 description 1
- 229960002739 oxaprozin Drugs 0.000 description 1
- 229960002085 oxycodone Drugs 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 208000001297 phlebitis Diseases 0.000 description 1
- 238000000554 physical therapy Methods 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 206010036807 progressive multifocal leukoencephalopathy Diseases 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 201000000196 pseudobulbar palsy Diseases 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 125000004353 pyrazol-1-yl group Chemical group [H]C1=NN(*)C([H])=C1[H] 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 229960000371 rofecoxib Drugs 0.000 description 1
- 229960000953 salsalate Drugs 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000001624 sedative effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000005808 skin problem Effects 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 229940080313 sodium starch Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009495 sugar coating Methods 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 201000007954 uterine fibroid Diseases 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000004885 white matter Anatomy 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/60—Salicylic acid; Derivatives thereof
- A61K31/612—Salicylic acid; Derivatives thereof having the hydroxy group in position 2 esterified, e.g. salicylsulfuric acid
- A61K31/616—Salicylic acid; Derivatives thereof having the hydroxy group in position 2 esterified, e.g. salicylsulfuric acid by carboxylic acids, e.g. acetylsalicylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/194—Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/225—Polycarboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/0056—Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4808—Preparations in capsules, e.g. of gelatin, of chocolate characterised by the form of the capsule or the structure of the filling; Capsules containing small tablets; Capsules with outer layer for immediate drug release
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4891—Coated capsules; Multilayered drug free capsule shells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5026—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5036—Polysaccharides, e.g. gums, alginate; Cyclodextrin
- A61K9/5042—Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5073—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
Definitions
- MS Multiple sclerosis
- MS multiple sclerosis
- MS is a demyelinating disease in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This damage disrupts the ability of parts of the nervous system to communicate, resulting in a range of signs and symptoms, including physical, mental, and sometimes psychiatric problems. Specific symptoms can include double vision, blindness in one eye, muscle weakness, trouble with sensation, or trouble with coordination.
- MS takes several forms, with new symptoms either occurring in isolated attacks (relapsing forms) or building up over time (progressive forms). Between attacks, symptoms may disappear completely; however, permanent neurological problems often remain, especially as the disease advances.
- MS is usually diagnosed based on the presenting signs and symptoms and the results of supporting medical tests.
- DMF dimethyl fumarate
- MMF monomethyl fumarate
- Nrf2 nuclear-factor-E2-related factor-2
- the present disclosure provides treatment regimens for diseases that can be suitably treated with fumaric acid of its ester or salt, such as dimethyl fumarate (DMF), monomethyl fumarate (MMF), or the combination thereof.
- diseases include multiple sclerosis (MS), psoriasis, necrobiosis lipoidica, granuloma annulare, sarcoidosis, granulomatous and inflammatory skin disorders, lichen planus pityriasis rubra pilaris, chronic discoid lupus erythematosus, necrobiosis lipoidica, cheilitis granulomatosa, annular elastotic giant cell granuloma, malign melanoma, lupus erythematosus, aplopecia areata, hidradenitis suppurativa, other granulomatous and inflammatory skin disorders, other inflammatory disorders such as colitis, DNA damage in tumor,
- the methods and pharmaceutical compositions described herein may increase the bioavailability of the fumaric acid or an ester or salt thereof (e.g., dimethyl fumarate) such that a significantly lower dose can be administered (e.g., 420, 400 or 360 mg per day), without compromise of the treatment outcome.
- the treatment methods allow a patient to tolerate a higher dose of fumaric acid or an ester or salt thereof, which higher dose may be required given the condition and other requirements of the patient.
- a method of treating multiple sclerosis (MS) in a human patient in need thereof comprising orally administering to the patient aspirin and fumaric acid or an ester or a salt thereof, wherein the aspirin is administered at from about 150 mg to about 650 mg (or from about 300 mg to about 500 mg) per day and the fumaric acid or ester or salt thereof is administered at about 300 mg to about 450 mg per day (or from about 340 mg to about 380 mg per day).
- the aspirin and the fumaric acid or ester or a salt thereof can be administered separately or together, concurrently or sequentially.
- the aspirin is formulated to dissolve in an oral cavity of a subject.
- the fumaric acid or ester or salt thereof is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject.
- a method of treating multiple sclerosis (MS) in a human patient in need thereof comprising orally administering to the patient one or more tablets each comprising a first portion comprising a first amount of aspirin and a second portion comprising a second amount of fumaric acid or an ester or a salt thereof, wherein the first portion is formulated to dissolve in an oral cavity of a subject, wherein the second portion is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject, and wherein the aspirin is administered at from about 150 (or 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390 or 400) mg to about 650 (or 410, 420, 430, 440, 450, 460, 470, 480, 490, 500,
- the patient suffers from relapse-remitting MS (RRMS).
- RRMS relapse-remitting MS
- the patient has a history of non-compliance with a medication due to cutaneous flush or a gastrointestinal side effect.
- the second amount of the fumaric acid or ester or salt thereof is about 180 mg.
- the first amount of aspirin is from about 80 mg to about 250 mg.
- the second portion further comprises a third amount of aspirin.
- the first amount of aspirin and the second amount of aspirin each is from about 40 mg to about 120 mg.
- the second portion is enclosed in an enteric coating.
- the ester is dimethyl fumarate, monomethyl fumarate or combination thereof.
- compositions are also provided.
- the pharmaceutical composition is a fixed dose combination comprising aspirin and a fumaric acid or an ester or a salt thereof.
- the pharmaceutical composition is a fixed dose combination comprising aspirin and dimethyl fumarate, optionally in combination with an additional fumaric acid or an ester or a salt thereof.
- the pharmaceutical composition comprises about 40 (or 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, or 190) mg to about 250 (or 210, 220, 230, or 240) mg of aspirin and about 150 (or 160, 165, 170, 175, 180, or 185) mg to about 190 (or 180, 185, 195, 200, 210, 220, 225, or 230) mg of fumaric acid or an ester or a salt thereof.
- the pharmaceutical composition comprises about 300 (or 310, 320, 330, 340, 350, 360, 370, 380, 390 or 400) mg to about 500 (or 410, 420, 430, 440, 450, 460, 470, 480, or 490) mg of aspirin and about 340 (or 300, 310, 320, 330, 350, or 360) mg to about 380 (or 360, 370, 380, 390, 400, 410, 420, 430, 440, or 450) mg of fumaric acid or an ester or a salt thereof.
- the pharmaceutical compositions described herein are formulated as a tablet. In some embodiments, the pharmaceutical compositions described herein are formulated as a capsule comprising the aspirin and a fumaric acid or an ester or a salt thereof. In some embodiments, the pharmaceutical compositions described herein are formulated as a capsule comprising the aspirin and a fumaric acid or an ester or a salt thereof, wherein the aspirin and fumaric acid or an ester or a salt thereof are each formulated as a microsphere.
- the aspirin is present in a first portion formulated to dissolve in an oral cavity of a subject, and the fumaric acid or ester or salt thereof is present in a second portion formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject.
- the aspirin is present in a first portion formulated to dissolve in an oral cavity of a subject, and a second portion formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject.
- the pharmaceutical compositions described herein are formulated as a capsule comprising the aspirin and a fumaric acid or an ester or a salt thereof, wherein the aspirin and fumaric acid or an ester or a salt thereof are each formulated as a microsphere contained within a capsule shell, and a second portion of aspirin is present as a coating on the capsule shell and is formulated to dissolve in an oral cavity of a subject.
- a method of treating multiple sclerosis (MS) in a human patient in need thereof comprising orally administering to the patient aspirin and fumaric acid or an ester or a salt thereof, wherein the aspirin is administered at from about 300 mg to about 500 mg per day and the fumaric acid or ester or salt thereof is administered at about 580 mg to about 620 mg per day.
- the aspirin is formulated to dissolve in an oral cavity of a subject.
- the fumaric acid or ester or salt thereof is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject.
- the aspirin and the fumaric acid or ester or salt thereof are administered concurrently.
- a method of treating multiple sclerosis (MS) in a human patient in need thereof comprising orally administering to the patient one or more tablets each comprising a first portion comprising a first amount of aspirin and a second portion comprising a second amount of fumaric acid or an ester or a salt thereof, wherein the first portion is formulated to dissolve in an oral cavity of a subject, wherein the second portion is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject, and wherein the aspirin is administered at from about 150 mg to about 650 mg per day and the fumaric acid or ester or salt thereof is administered at about 570 mg to about 630 mg per day, or about 300 to about 450 mg per day, or about 300 to about 400 mg per day, or about 350 to about 400 mg per day, or about 360 mg per day.
- MS multiple sclerosis
- the patient suffers from relapse-remitting MS (RRMS). In some embodiments, the patient suffers from secondary progressive multiple sclerosis (SPMS).
- RRMS relapse-remitting MS
- SPMS secondary progressive multiple sclerosis
- a method of treating psoriasis in a human patient in need thereof comprising orally administering to the patient one or more tablets each comprising a first portion comprising a first amount of aspirin and a second portion comprising a second amount of fumaric acid or an ester or a salt thereof, wherein the first portion is formulated to dissolve in an oral cavity of a subject, wherein the second portion is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject, and wherein the aspirin is administered at from about 150 mg to about 650 mg per day and the fumaric acid or ester or salt thereof is administered at about 570 mg to about 630 mg per day, or about 300 to about 450 mg per day, or about 300 to about 400 mg per day, or about 350 to about 400 mg per day, or about 360 mg per day.
- fumaric acid or ester or salt thereof can also be used for treating other diseases and conditions such as motor neuron disease, neurodegenerative diseases, autoimmune diseases, inflammatory diseases, sepsis, and skin diseases or conditions.
- a motor neuron disease a neurological condition that selectively affects motor neurons. Examples include amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), progressive bulbar palsy (PBP) and pseudobulbar palsy.
- ALS amyotrophic lateral sclerosis
- HSP hereditary spastic paraplegia
- PLS primary lateral sclerosis
- PMA progressive muscular atrophy
- PBP progressive bulbar palsy
- pseudobulbar palsy pseudobulbar palsy.
- Neurodegenerative diseases are results of progressive loss of structure or function of neurons, including death of neurons. Examples include amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's, which occur as a result of neurodegenerative processes.
- Non-limiting examples of autoimmune or inflammatory disease include Parkinson's disease, arthritis, rheumatoid arthritis, multiple sclerosis, psoriasis, psoriatic arthritis, Crohn's disease, inflammatory bowel disease, ulcerative colitis, lupus, systemic lupus erythematous, juvenile rheumatoid arthritis, juvenile idiopathic arthritis, Grave's disease, Hashimoto's thyroiditis, Addison's disease, celiac disease, dermatomyositis, multiple sclerosis, myasthenia gravis, pernicious anemia, Sjogren syndrome, type I diabetes, vasculitis, uveitis, atherosclerosis and ankylosing spondylitis.
- Skin diseases are various skin problems, from small red bumps on the skin to widespread rashes. Some skin conditions can be unsightly but harmless, while others may be contagious. Many skin conditions are also itchy or painful.
- the presently disclosed compositions and methods are suitable for treating these diseases and the symptoms. Non-limiting examples of symptoms include itch, swelling, redness, rash, flaky, scaly skin, blisters, oozing and bumps or growths.
- the second amount of the fumaric acid or ester or salt thereof is about 300 mg.
- the first amount of aspirin is from about 80 mg to about 250 mg.
- the second portion further comprises a third amount of aspirin.
- the first amount of aspirin and the second amount of aspirin each is from about 80 mg to about 120 mg.
- the first portion further comprises a water-soluble sugar or sugar substitute.
- the second portion is enclosed in an enteric coating.
- the ester is dimethyl fumarate, monomethyl fumarate or combination thereof.
- the monomethyl fumarate is hydrogen monomethyl fumarate or a salt thereof (e.g., Na + , K + , Ca 2+ , Zn 2+ , Mg 2+ , Fe 2+ ). In some embodiments, the monomethyl fumarate is hydrogen monomethyl fumarate.
- compositions are also provided, for example, suitable for once daily, twice daily, or three times daily administration.
- the composition comprises about 100 (or 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200) mg to about 250 (or 200, 210, 220, 230, or 240) mg of aspirin and about 170 (or 175, 180, 185, or 190) mg to about 220 (or 185, 190, 195, 200, 205, 210, or 215) mg of fumaric acid or an ester or a salt thereof.
- the composition comprises about 150 (or 160, 170, 180, or 190) mg to about 250 (or 210, 220, 230, or 240) mg of aspirin and about 285 (or 270, 270, 280, 290, 295, or 300) mg to about 315 (or 300, 305, 310, 320, or 325) mg of fumaric acid or an ester or a salt thereof.
- the composition comprises about 300 (or 310, 320, 330, 340, 350, 360, 370, 380, 390 or 400) mg to about 500 (or 410, 420, 430, 440, 450, 460, 470, 480, or 490) mg of aspirin and about 570 (or 560, 565, 575, 580, 590 or 595) mg to about 630 (or 605, 610, 515, 620, 625, 635, or 640) mg of fumaric acid or an ester or a salt thereof.
- the composition comprises about 40 (or 20, 30, 40, 50, 60, 70, 80, 90, 100 or 120) mg to about 500 (or 410, 420, 430, 440, 450, 460, 470, 480, or 490) mg of aspirin and about 120 (or 130, 140, 150, 160, 170, 180, 190, 200, 210 or 220) mg to about 240 (or or 210, 220, 230, or 240) mg of fumaric acid or an ester or a salt thereof.
- FIG. 1 is an example of the scale that was used to rate the assessment of Question 1 in Example 4.
- FIG. 2 is an example of the scale that was used to rate the assessment of Questions 2 and 3 in Example 4.
- “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- RRMS Relapse-remitting multiple sclerosis
- SPMS Single-progressive multiple sclerosis
- “Fumaric acid” is the chemical compound with the formula HO 2 CCH ⁇ CHCO 2 H.
- the “salts and esters” of fumaric acid are known as fumarates, and include any ester (e.g., mono ester hydrogen fumarate or salt thereof or diester of fumaric acid), such as dimethyl fumarate (DMF) and monomethyl fumarate (MMF).
- the fumaric acid can comprise a mixture of DMF, also three monoethyl hydrogen fumarates or salt thereof (calcium, magnesium, and zinc salts) (e.g.,) Fumaderm®).
- the fumaric acid can comprise ALKS 8700 (“a MMF molecule” which is a prodrug to MMF).
- DMF Dimethyl fumarate
- E dimethyl (E)-butenedioate
- DMF and MMF monomethyl fumarate
- Other diseases such as necrobiosis lipoidica, granuloma annulare, and sarcoidosis may also be suitably treated with DMF and MMF.
- DMF is applied as a biocide to prevent growths of mold during storage or transport in a humid climate.
- European Union banned DMF in consumer products since 1998, and since January 2009 the import of products containing DMF was also banned.
- Medical use of DMF also is known to come with associated side effects, such as progressive multifocal leukoencephalopathy, which can be serious.
- Another side effect associated with the use of DMF or MMF is the flushing, which has been reported to cause non-compliance of patients.
- a commercial form of DMF for treating MS is Tecfidera®.
- the starting dose for Tecfidera® is 120 mg twice a day orally. After 7 days, the dose should be increased to the maintenance dose of 240 mg twice a day orally. Temporary dose reductions to 120 mg twice a day may be considered for individuals who do not tolerate the maintenance dose. Higher doses of Tecfidera® are not recommended.
- the dual administration increases the bioavailability of the fumarate (e.g., DMF) makes it possible to use a lower dose (e.g., 420, 400 or 360 mg per day) while achieving the same or substantially similar efficacy as compared to the conventional commercial dose (e.g., 480 mg per day) , to achieve the same efficacy as the conventional dose.
- this dual formulation allows administration of a higher dose (e.g., 600 mg per day) of fumaric acid of the ester or salt thereof so that patients who desire such high doses can avoid or suffer reduced undesirable side effects such as flushing.
- the dual administration can be sequential administration or concurrent administration of two or more separate compositions, or administration of a composition that includes two or more different ingredients.
- a co-formulation is disclosed.
- the aspirin and fumaric acid of the ester or salt thereof are in separate portions in the co-formulation, such as a tablet.
- the separate portions are formulated similarly and in other aspects, the aspirin portion is formulated in a dissolvable fashion (dissolvable portion) and the fumaric acid portion is formulated as a swallowable fashion (swallowable portion).
- the swallowable portion also contains an amount of aspirin, which is shown to further enhance the effect of the dissolvable aspirin in a synergistic fashion.
- a similarly structured co-formulation includes aspirin and therapeutic agent having a niacin-mediated flushing side effect.
- therapeutic agent having a niacin-mediated flushing side effect refers to a group of drugs that activate the nicotinic acid receptor GPR109a, resulting in flushing symptoms commonly observed for patients taking niacin.
- Such agents are also referred to as “nicotinic acid receptor agonists” or “GPR109a agonists.”
- Non-limiting examples of such therapeutic agents include niacin, nicotyinyl alcohol, acipimox, acifran, newer GPR109a agonists, hydroxybutyrate, and fumarates (e.g., dimethyl fumarate, mono-ethyl fumarate, diethyl fumarate).
- GPR109a agonists have a carcoxyl group, like in niacin. Another group are anthranilic acid analogs. More of such structural elements are discussed in Boatman et al. J. Med. Chem. 2008; 51(24):7653-62.
- aspirin can be substituted with a non-steroidal anti-inflammation drug (NSAID).
- NSAIDs include aspirin, celecoxib, diclofenac, diflunisal, etodolac, ibuprofen, indomethacin, ketoprofen, ketorolac, nabumetone, naproxen, oxaprozin, piroxicam, salsalate, sulindac, and tolmetin.
- a “dissolvable portion” as used herein refers to a portion of a drug form that is formulated to dissolve in an oral cavity of a subject.
- a dissolvable portion in one embodiment, is pulverizable which can be dispersed in the oral cavity by masticating, sucking, dissolving or other common means, thereby releasing its active ingredient into the oral cavity where it enters the circulatory system by traversing the buccal mucosa.
- Other embodiments of dissolvable portions are also provided below in the present disclosure.
- a “swallowable portion” is relative to the dissolvable portion and can be harder than the dissolvable portion. Therefore, the swallowable portion is more readily swallowed by the subject and releases the active ingredient by dissolving it in stomach, intestines, or further distal in the gastrointestinal (GI) tract of the subject.
- GI gastrointestinal
- the dissolvable portion and the swallowable portion are side by side in a tablet but with different physical or chemical properties.
- the intraoral is placed outside of the swallowable portion to form a bi-layer tablet.
- the use of the term hard or swallowable in reference to the dissolvable portion is used to connote that the swallowable portion is not pulverized by the force and can withstand the force of masticating or chewing that effectively pulverizes the outer layer of the pharmaceutical composition of the present disclosure.
- the swallowable portion is chew-resistant.
- the swallowable portion as being ingestible, it is meant that the swallowable portion is capable of being taken up and absorbed by one or more portions of the gastrointestinal tract, stomach, intestines or a further distal of the gastrointestinal tract.
- the swallowable portion of the combination tablet may be conventionally covered with one or more layers of coatings to permit a timed release of the active contained therein following ingestion by a subject.
- the present disclosure contemplates a release profile of the ingested core particle of from 30 minutes to 24 hours.
- pulverizable or easily pulverizable refers to a portion of a material that is ground or dispersed into small particles within the oral cavity by gentle pressure generated by chewing or masticating the layer to be ground.
- pulverizable or easily pulverizable refers to a portion of a material that is ground or dispersed into small particles within the oral cavity by gentle pressure generated by chewing or masticating the layer to be ground.
- masticating or chewing in the context of the present disclosure, is meant to signify that the pulverizing or grinding is being performed by a patient's or subject's teeth, or gums.
- a specific embodiment of the combination pill may cause the first bite(s) to rupture or dislodge the outer layer thereby releasing it from the central core and can then be chewed.
- sucking, dissolving or other common means in the context of the present disclosure, is meant to signify that the intraoral or pulverizable portion can be absorbed in the oral cavity through use of the tongue, gums, cheeks, saliva and combinations thereof, over a period of time.
- a specific embodiment of the combination pill causes the intraoral or pulverizable portion to dissolve in the oral cavity over a period of 5 minutes, while the combination pill is held in the oral cavity, through interaction with saliva.
- the requirement is that interaction with the tongue, gums, cheeks, saliva and combinations thereof by sucking, dissolving or other common means, is sufficient to disrupt the outer layer of the pharmaceutical composition of the present disclosure while leaving the swallowable portion intact.
- the term intact does not require that the swallowable portion remain in one piece. Instead, it signifies that at least 50% of the swallowable portion is swallowed, but preferably that 75% of the swallowable portion material is swallowed; even more preferably that approximately 75% to about 85% of the swallowable portion material is swallowed, and most preferably, from about 85% to about 95% of the swallowable portion material is swallowed, and most particularly, that greater than 95% of the swallowable portion material is swallowed.
- the buccal mucosa is meant to refer to the epithelium lining the oral cavity, including the sublingual region.
- the buccal mucosa further includes the sub-epithelial tissue; i.e., the tissue and macromolecular layers that accumulate underneath the epithelium.
- the sub-epithelial tissue includes, inter alia, connective tissue cells (fibroblasts, adipocytes, lymphocytes, and the like), extracellular matrix, basement membrane, smooth muscle, and vascular elements, etc.
- the buccal mucosa is a highly vascular tissue, and therefore a desirable route of entry into the general circulation.
- the present disclosure provides a method of treating multiple sclerosis (MS) in a human patient in need thereof.
- the disease or condition being treated is one or more of psoriasis, necrobiosis lipoidica, granuloma annulare, sarcoidosis, granulomatous and inflammatory skin disorders, lichen planus pityriasis rubra pilaris, chronic discoid lupus erythematosus, necrobiosis lipoidica, cheilitis granulomatosa, annular elastotic giant cell granuloma, malign melanoma, lupus erythematosus, aplopecia areata, hidradenitis suppurativa, other granulomatous and inflammatory skin disorders, other inflammatory disorders such as colitis, DNA damage in tumor, gastrointestinal ulceration, collagen type II degradation, and other immune modulated diseases.
- the method entails, in one embodiment, orally administering to the patient a first amount of aspirin and a second amount of fumaric acid or an ester or a salt thereof.
- the aspirin is administered at from about 300 mg to about 500 mg per day and the fumaric acid or ester or salt thereof is administered at about 340 mg to about 380 mg per day.
- the method entails, in one embodiment, orally administering to the patient one or more tablets each comprising a first portion comprising a first amount of aspirin and a second portion comprising a second amount of fumaric acid or an ester or a salt thereof, wherein the first portion is formulated to dissolve in an oral cavity of a subject, wherein the second portion is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject, and wherein the aspirin is administered at from about 300 mg to about 500 mg per day and the fumaric acid or ester or salt thereof is administered at about 340 mg to about 380 mg per day.
- the daily dose of the fumaric acid or ester or salt thereof is about 350 mg to about 370 mg, or about 355 mg to about 365 mg, or about 360 mg.
- the daily administration is twice daily, and each administration is with one or two tablets.
- the second portion of each tablet also referred to as the swallowable portion, contains about 170 mg to about 190 mg fumaric acid or an ester or salt thereof.
- the second portion of each tablet also referred to as the swallowable portion, contains about 175 mg to about 185 mg fumaric acid or an ester or salt thereof.
- the second portion of each tablet also referred to as the swallowable portion, contains about 180 mg fumaric acid or an ester or salt thereof.
- the first portion of each tablet also referred to as the dissolvable portion, contains about 150 mg to about 250 mg aspirin, or alternatively about 175 mg to about 225 mg aspirin, or about 200 mg aspirin.
- the first portion contains about 75 mg to about 125 mg aspirin, or alternatively about 90 mg to about 110 mg aspirin, or about 100 mg aspirin, and meanwhile the second portion further contains about 75 mg to about 125 mg aspirin, or alternatively about 90 mg to about 110 mg aspirin, or about 100 mg aspirin, such that the total amount of aspirin in each tablet can still be about 150 mg to about 250 mg.
- the patient suffers from relapse-remitting MS (RRMS), a relatively common form of MS.
- RRMS relapse-remitting MS
- the patient has a history of non-compliance with a medication due to cutaneous flush or a gastrointestinal side effect. “Non-compliance” as used herein refers to a patient's failure, of at least one time, to take the DMF/MMF medication due to complaint of flushing.
- the patient has suspended taking DMF/MMF for at least 1 week, 2 weeks, 1 month, 2 months, 3 months, or 6 months.
- the present disclosure provides a method of treating multiple sclerosis (MS) in a human patient in need thereof.
- MS multiple sclerosis
- the disease or condition being treated is one or more of psoriasis, necrobiosis lipoidica, granuloma annulare, sarcoidosis, granulomatous and inflammatory skin disorders, lichen planus pityriasis rubra pilaris, chronic discoid lupus erythematosus, necrobiosis lipoidica, cheilitis granulomatosa, annular elastotic giant cell granuloma, malign melanoma, lupus erythematosus, aplopecia areata, hidradenitis suppurativa, other granulomatous and inflammatory skin disorders, other inflammatory disorders such as colitis, DNA damage in tumor, gastrointestinal ulceration, collagen type II degradation, and other immune modulated diseases.
- the method entails, in one embodiment, orally administering to the patient a first amount of aspirin and a second amount of fumaric acid or an ester or a salt thereof.
- the aspirin is administered at from about 300 mg to about 500 mg per day and the fumaric acid or ester or salt thereof is administered at about 570 mg to about 630 mg per day.
- the method entails, in one embodiment, orally administering to the patient one or more tablets each comprising a first portion comprising a first amount of aspirin and a second portion comprising a second amount of fumaric acid or an ester or a salt thereof, wherein the first portion is formulated to dissolve in an oral cavity of a subject, wherein the second portion is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject, and wherein the aspirin is administered at from about 300 mg to about 500 mg per day and the fumaric acid or ester or salt thereof is administered at about 570 (or 575, 580, 585, 590, or 595) mg to about 630 (or 605, 610, 615, 620 or 625) mg per day.
- the daily dose of the fumaric acid or ester or salt thereof is about 590 mg to about 610 mg, or about 595 mg to about 605 mg, or about 600 mg.
- the daily administration is once, twice or three times daily, and each administration is with one or two tablets.
- the second portion of each tablet also referred to as the swallowable portion, contains about 290 mg to about 310 mg fumaric acid or an ester or salt thereof.
- the second portion of each tablet also referred to as the swallowable portion, contains about 295 mg to about 305 mg fumaric acid or an ester or salt thereof.
- the second portion of each tablet also referred to as the swallowable portion, contains about 300 mg fumaric acid or an ester or salt thereof.
- the first portion of each tablet also referred to as the dissolvable portion, contains about 150 mg to about 250 mg aspirin, or alternatively about 175 mg to about 225 mg aspirin, or about 200 mg aspirin.
- the first portion contains about 75 mg to about 125 mg aspirin, or alternatively about 90 mg to about 110 mg aspirin, or about 100 mg aspirin, and meanwhile the second portion further contains about 75 mg to about 125 mg aspirin, or alternatively about 90 mg to about 110 mg aspirin, or about 100 mg aspirin, such that the total amount of aspirin in each tablet can still be about 150 mg to about 250 mg.
- the patient has been treated with fumaric acid or an ester or salt thereof but the treatment is considered inadequate.
- the patient suffers from relapse-remitting MS (RRMS).
- RRMS relapse-remitting MS
- SPMS secondary progressive multiple sclerosis
- the formulations may include aspirin at a suitable dose and form and a fumaric acid or an ester or a salt thereof at a suitable dose and form.
- the formulation includes at last about 20, 30, 40, 50, 60, 70, 80, 90, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, or 300 mg aspirin.
- the formulation includes not more than about 500, 490, 480, 470, 460, 450, 440, 430, 420, 410, 400, 390, 380, 370, 360, 350, 340, 330, 325, 320, 315, 310, 305, 300, 295, 290, 285, 280, 275, 260, 255, 250, 245, 240, 235, 230, 225, 220, 215, 210, 205, 200, 190, 180, 170, 160, or 150 mg aspirin.
- the formulation includes at least about 80, 90, 100, 120, 125, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435, 440, 445, 450, 455, 460, 465, 470, 475, 480, 485, 490, 495, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, or 600 mg of a fumaric acid or an
- the formulation include not more than about 600, 590, 580, 570, 560, 55, 540, 530, 520, 510, 500, 490, 480, 470, 460, 450, 440, 430, 420, 410, 400, 390, 380, 370, 360, 350, 340, 330, 325, 320, 315, 310, 305, 300, 295, 290, 285, 280, 275, 260, 255, 250, 245, 240, 235, 230, 225, 220, 215, 210, 205, 200, 195, 190, 185, 180, 175, 170, 165, 160, 155, or 150 mg of a fumaric acid or an ester or a salt thereof.
- the fumaric acid or an ester or a salt thereof is dimethyl fumarate, optionally in combination with an additional fumaric acid or an ester or a salt thereof.
- the additional fumaric acid or an ester or a salt thereof is monomethyl fumarate or a salt thereof (e.g., Na + , K + , Ca 2+ , Zn 2+ , Fe 2+ ).
- the monomethyl fumarate is hydrogen monomethyl fumarate.
- the pharmaceutical composition consists essentially of an effective amount of aspirin and an effective amount of dimethyl fumarate.
- the pharmaceutical composition comprises from about 80 mg to about 380 mg of the fumaric acid or ester or salt thereof. In some embodiments, the pharmaceutical composition comprises from about 80 mg to about 380 mg of the dimethyl fumarate. In some embodiments, the pharmaceutical composition comprises from about 30 mg to about 500 mg of aspirin. In some embodiments, the pharmaceutical composition comprises from about 150 mg to about 500 mg of aspirin. In some embodiments, the pharmaceutical composition comprises from about 30 mg to about 500 mg of aspirin and from about 80 mg to about 380 mg of a fumaric acid or an ester or a salt thereof. In some embodiments, the pharmaceutical composition comprises from about 150 mg to about 500 mg of aspirin and from about 80 mg to about 380 mg of a fumaric acid or an ester or a salt thereof.
- the pharmaceutical compositions described herein are formulated as a capsule comprising aspirin and a fumaric acid or an ester or a salt thereof, wherein the aspirin and fumaric acid or an ester or a salt thereof are each formulated as a microsphere contained within a capsule shell, and a second portion of aspirin is present as a coating on the capsule shell and is formulated to dissolve in an oral cavity of a subject.
- the pharmaceutical composition, or dosage form, provided herein comprises aspirin and a fumaric acid or an ester or a salt thereof, wherein the aspirin and fumaric acid or an ester or a salt thereof are each individually formulated as enterically coated microspheres which are contained within a capsule shell.
- the capsule may also be coated with a second portion of aspirin formulated to dissolve in an oral cavity of a subject.
- the total dose of aspirin of the capsule is about 20 mg to about 500 mg, or about 20 mg to about 325 mg, or about 20 mg, or about 25 mg, or about 30 mg, or about 40 mg, or about 50 mg, or about 60 mg, or about 70 mg, or about 75 mg, or about 80 mg, or about 90 mg, or about 100 mg, or about 110 mg, or about 120 mg, or about 130 mg, or about 140 mg, or about 150 mg, or about 160 mg, or about 170 mg, or about 180 mg, or about 190 mg, or about 200 mg, or about 210 mg, or about 220 mg, or about 230 mg, or about 240 mg, or about 250 mg, or about 260 mg, or about 270 mg, or about 280 mg, or about 290 mg, or about 300 mg, or about 310 mg, or about 315 mg, or about 320 mg, or about 325 mg.
- the total dose of aspirin of the capsule is present in about a 1:1 ratio between the aspirin microspheres within the capsule and the aspirin present as a coating on the capsule shell.
- the dose of aspirin present as microspheres within the capsule is about 20 mg, or about 30 mg, or about 40 mg, or about 50 mg, or about 60 mg, or about 70 mg, or about 75 mg, or about 80 mg.
- the dose of aspirin present as a coating on the capsule shell is about 20 mg, or about 25 mg, or about 30 mg, or about 40 mg, or about 50 mg, or about 60 mg, or about 70 mg, or about 75 mg, or about 80 mg.
- microspheres described herein may also include non-spherical microparticles, such as oblong or cylindrical microparticles.
- the microspheres described herein have an average particle size of less than about 7 mm, or less than about 6 mm, or less than about 5 mm, or less than about 4 mm, or less than about 3 mm, or less than about 2 mm, or less than about 1.7 mm, or less than about 1.6 mm, or less than about 1.5 mm, or less than about 1.4 mm, or less than about 1.3 mm, or less than about 1.2 mm, or less than about 1.1 mm, or less than about 1.0 mm, or less than about 900 ⁇ m, or less than about 850 ⁇ m, or less than about 800 ⁇ m, or less than about 750 ⁇ m, or less than about 700 ⁇ m, or less than about 650 ⁇ m, or less than about 600 ⁇ m, or less than about 550 ⁇ m, or less than about 500 ⁇ m, or less than about 450 ⁇ m, or less than about 300 ⁇ m.
- the particle size ranges from about 900
- the microspheres comprise an enteric coating such that the API (aspirin or fumaric acid or an ester or a salt thereof (e.g., DMF)) is released in the gastrointestinal tract (e.g., the small intestine).
- the enteric coating on the microspheres is formulated or applied such that the aspirin is released in the gastrointestinal tract (e.g., the small intestine) at substantially the same time as the fumaric acid or an ester or a salt thereof (e.g., DMF).
- the enteric coating on the microspheres is formulated or applied such that the aspirin is released in the gastrointestinal tract (e.g., the small intestine) just prior to (e.g., 1-5, 1-10, 1-15, or 1-20 minutes) the fumaric acid or an ester or a salt thereof (e.g., DMF). Accordingly, in some embodiments, the enteric coating on the aspirin microspheres is thinner than the enteric coating on the fumaric acid or an ester or a salt thereof (e.g., DMF) microspheres.
- the enteric coating on the aspirin microspheres is thinner than the enteric coating on the fumaric acid or an ester or a salt thereof (e.g., DMF) microspheres.
- the aspirin and fumaric acid or an ester or a salt thereof e.g., DMF
- the aspirin is absorbed within less than about 5 minutes (or less than about 10 minutes, 15 minutes, 20 minutes, 25 minutes or 30 minutes) of, or substantially simultaneously to, the fumaric acid or an ester or a salt thereof (e.g., DMF)
- the bioavailability of the fumaric acid or an ester or a salt thereof (e.g., DMF) will be enhanced such that the therapeutically effective dose is about 480 mg/day or less, or at least about 360 mg/day, or about 360 mg/day, or about 380 mg/day, or about 400 mg/day, or about 410 mg/day, or about 420 mg/day, or between about 360 mg/day and 420 mg/day, or between about 360 mg/day and 480 mg/day.
- the microspheres described herein comprise about 80% w/w, or about 75% w/w, or about 70% w/w, or about 65% w/w active ingredient (i.e., aspirin or fumaric acid or an ester or a salt thereof).
- an example co-formulation has a chewable outer layer as the dissolvable portion, such that it can be absorbed quickly.
- This chewable layer may be adhered directly to the inner layer (the swallowable portion), or it may be such designed that when it is bitten lightly (e.g. with minimal force, such as the force needed to chew a banana), this outer chewable layer breaks off into many pieces within the mouth, and can be chewed and thus absorbed, leaving the hard inner layers in the mouth to be swallowed.
- the chewable layer “crumble” in such a way, the patient will avoid biting hard through the hard inner layer of the tablet, which could be uncomfortable if the inner tablet is very hard, or could damage the integrity of the inner tablet, allowing it to be absorbed earlier than desired.
- the outer chewable layer can be formulated, e.g., with a water soluble sugar and/or a sugar substitutes.
- Suitable water-soluble sugars and/or sugar substitutes are glucose, maltose, sucrose, dextrose, fructose, sorbitol, mannitol or other types of natural or artificial sweeteners. Mixtures of various sugars or sugar substitutes are also suitable.
- the chewable layer can also be formulated with, e.g., a gel forming agent.
- suitable gel formers are xanthan gum, methylcelluloses such as sodium carboxymethylcellulose or hydroxypropylmethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, alginates, tragacanth or edible starch. These substances are all commercially available and usually meet the purity requirements and quality regulations for pharmaceutical products. All such gel formers and coatings contemplated are GRAS (generally regarded as safe).
- wetting agents and lubricants such as sodium lauryl sulfate, as well as coloring agents, flavoring agents, sweetening agents (including other nonnutritive sweeteners), tableting agents, stabilizers, antioxidants, cooling agents, and preservatives, can also be present.
- a binding agent can also be present such as cellulose, cellulosic derivatives, polyvinyl pyrrolidone, starch, modified starch, and mixtures thereof, and, in particular, microcrystalline cellulose.
- the compression coating can be prepared by, e.g., a Manesty Dry-Cota press, which consists of two side by side interconnected tablet presses where the core is made on one press then mechanically transferred to the next press for compression coating.
- Each “press” has an independent powder feed mechanism so that core blend is loaded on one machine and coating blend on the other. Mechanical transfer arms rotate between the machines to remove cores from one press and transfer them to the coating press.
- Other and more modern types of presses which may be used e.g. Elizabeth Hata HT-AP44-MSU-C, Killian RUD, Fette PT 4090
- This configuration is more flexible, in that cores can be pan coated with a functional or cosmetic coating before compression coating.
- any conventional, art-recognized manufacturing technique that permits the formulation of a chewable component over a solid dosage form will be readily appreciated by the skilled artisan and is contemplated by the present disclosure.
- a similar embodiment would not only have an outer chewable layer, but also a thin shell outside of the chewable layer. This would be similar to the thin candy shell of an M&M candy. With this thin outer shell helping to hold the tablet together, the chewable layer can be designed to more easily crumble and dissolve than if there was no outer shell, e.g., by reducing the amount of binder or by reducing the compression to that which will minimally hold the chewable component together until the outer shell is applied.
- the outer shell can be a sugar coating or a polymer coating such as hydroxypropylmethylcelluose or polyvinylalcohol or combinations thereof, for example.
- an outer layer made from liquid, within a thin outer skin or shell. When the patient bites lightly on the tablet, this outer skin would fracture, allowing the liquid (or gel) of a fast-absorbing medication to release into the mouth and thus be absorbed quickly, starting at the mouth's mucous membranes.
- this outer layer including viscous liquids, gels, quick absorbable substances, powder within a breakable skin, substances that “melt” in the mouth (quickly absorb) and more.
- the liquid can be comprised of two or more substances and can also include solid particles which can be comprised of one or more substances. In this embodiment, the solid particles would be suspended in the liquid. The solid particles could also dissolve over time into the liquid.
- the drug can be formulated with a water soluble excipient such as a sugar, sugar alcohol, polyethylene glycol (PEG), or polyethylene oxide.
- a water soluble excipient such as a sugar, sugar alcohol, polyethylene glycol (PEG), or polyethylene oxide.
- the preferred water-soluble excipients are the sugar alcohols including, but not limited to sorbitol, mannitol, maltitol, reduced starch saccharide, xylitol, reduced paratinose, erythritol, and combinations thereof.
- the preferred sugar is glucose.
- Other suitable water-soluble excipients include gelatin, partially hydrolyzed gelatin, hydrolyzed dextran, dextrin, alginate and mixtures thereof.
- a disintigrating agent such as sodium starch “meltable” formulation can be readily determined by one of skill in the art.
- the outer skin can be gelatin and the drug can be mixed with water or miscible solvents such as propylene glycol; PEG's and ethanol, or an oleaginous medium, e.g., peanut oil, liquid paraffin or olive oil.
- water or miscible solvents such as propylene glycol; PEG's and ethanol, or an oleaginous medium, e.g., peanut oil, liquid paraffin or olive oil.
- Another embodiment has an outer layer which rapidly dissolves when sucked on. When the inner layer is reached, the patient would swallow the tablet.
- This embodiment can be designed such that the outer surface of the inner, hard layer has a texture that is easily recognized by the tongue, so that it is clear to the patient when the outer layer is fully dissolved, and thus when it is time to swallow the inner layer.
- the dissolvable portion can be formulated in a dissolvable matrix material.
- the dissolvable matrix may include carbohydrates, fats, proteins, waxes (natural and synthetic), hydrocarbons, and other materials which safely and rapidly dissolve in the mouth.
- the inner, swallowable “slow absorb” or “extended release” layer contemplated by the present disclosure can have any number of art-recognized constituencies.
- the inner layer is designed similar to a standard tablet.
- the inner layer is enteric coated, further slowing the release of the medication.
- the inner layer can be an extended release dosage form.
- the coating can be, e.g., a material selected from the group consisting of one or more of the following: cellulose acetate phthalate, alginates, alkali-soluble acrylic resins, hydroxypropyl methylcellulose phthalate, methacrylate-methacrylic acid copolymers, polyvinyl acetate phthalate and styrol maleic acid copolymers.
- the coating can also be multilayered; i.e. one or more coatings are contemplated to provide extended release kinetics which permit the inner tablet to release over a period of from 15 minutes to 24 hours or more.
- the extended release dosage form can be formulated with the drug dispersed in a matrix or with an extended release coating.
- Suitable materials form inclusion in an extended release matrix or coating can be, e.g., a cellulosic material, an acrylic polymer, or a combination thereof.
- the contemplated inner layer can also be made of a substance which is softer and more pliable than a standard hard tablet, e.g. similar to a hard taffy. In this way, the patient could not chip their teeth when biting the tablet, as the inner layer will absorb some of the shock of the bite without breaking or dissolving. It can then by swallowed to be absorbed in the GI system, after the outer layer was absorbed in the mouth.
- the “taffy” can be prepared, e.g., with an admixture of a sugar melt having at least 40% sugar, such as fructose and a surface active agent.
- a sugar melt having at least 40% sugar, such as fructose and a surface active agent.
- sugar-based substances can readily prepare alternative formulations of sugar-based substances to achieve an inner core that absorbs the shock of the chewing force exerted by an individual in the normal course of taking a chewable medication.
- the dissolvable portion can include two or more discrete pulverizable portions or layers. All discrete pulverizable layers will be dispersed in the oral cavity by masticating, thereby releasing the layers from the hard inner core.
- Compounds which may be included in the two or more discrete pulverizable portions or layers include sodium lauryl sulfate, as well as coloring agents, flavoring agents, sweetening agents (including other nonnutritive sweeteners), tableting agents, stabilizers, antioxidants, cooling agents, and preservatives, suitable water-soluble sugars and/or sugar substitutes including glucose, maltose, sucrose, dextrose, fructose, sorbitol, mannitol or other types of natural or artificial sweeteners, gel forming agents including xanthan gum, methylcelluloses such as sodium carboxymethylcellulose or hydroxypropylmethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, alginates, tragacanth and soluble starch, binding agents including cellulose, cellulosic derivatives, polyvinyl pyrrolidone, starch, modified starch, and microcrystalline cellulose, water soluble excipients such as a sugar, sugar alcohol, polyethylene glycol (PEG
- each patient was given their standard dose of 240 mg dimethyl fumarate orally. Each patient was asked to rate his or her flush on the Global Flush Severity Scale (GFSS) (see Paolini et al. Int. J. Clin. Pract. 62(6):896-904 (2008)), when the flush completely resolved.
- the Global Flushing Severity Score measures, overall, in the previous 24 hours, how each patient rates the flushing symptoms, including redness, warmth, tingling, and itchiness of the skin.
- Period II did not start until at least two days upon completion of Period I. At Period II, each patient orally swallowed 162 mg aspirin followed by 240 mg dimethyl fumarate. After the flush completely resolved, then each patient recorded his or her GFSS flush rating.
- Period III not until at least two days later did Period III start.
- each patient was asked to not swallow the orally administered aspirin (162 mg) but to allow the aspirin to be absorbed through the oral mucosa.
- the aspirin was in powdered form and the remaining aspirin in the mouth was washed out with water. Afterwards, 240 mg of dimethyl fumarate was swallowed with a glass of water. Still, the flush was rated (GFSS) after it was resolved.
- RMMS release-remitting multiple sclerosis
- patients Prior to the 48 weeks of on-trial time, patients will be randomly assigned, in a 1:1:1:1:1 allocation, to one of five treatments: (i) DMF 180 mg/VTS-ASA (aspirin) 200 mg twice daily; (ii) DMF 240 mg/VTS-ASA 200 mg twice daily; (iii) DMF 300 mg/VTS-ASA 200 mg twice daily; (iv) DMF 300 mg/VTS-ASA 200 mg once daily; and (v) Placebo 240 mg twice daily. Both patients and practitioners were will be blinded to the treatment regime. Study participants will report to the clinical research unit (CRU) every 4 weeks during the study period for routine medical monitoring, and every 4 weeks for the first 24 weeks for brain MRI scans.
- CRU clinical research unit
- Study participants will be evaluated for the following primary endpoints; (i) Number of new GdE lesions in weeks 12-14; (ii) Number of new GdE lesions in weeks 4-24; (iii) Number of new GdE lesions per patient in weeks 12-24; (iv) ARR during weeks 0-24; (v) ARR during weeks 25-48; (vi) ARR during weeks 0-48.
- Secondary safety endpoints include; (i) headache; (ii) nasopharyngitis; (iii) nausea; (iv) diarrhea; (v) abdominal pain; (vi) lower limb fracture; (vii) pelvic inflammatory disease; (viii) phlebitis; (ix) urinary retention; and (x) uterine leiomyoma.
- endpoints that are specific to the inquiry of the effect of pretreatment of aspirin with DMF.
- endpoints include; (i) occurrence of flush; (ii) occurrence of pruritus; (iii) occurrence of hot flush; (iv) Global Flushing Severity Score (GFSS); (v) Fatigue Severity Score (FSS); (vi) Number of new or enlarging T2-hyperintense lesions at week 24, a metric of remyelination; (vii) Number of new T1-hypointense lesions at week 24, a metric of remyelination; and (viii) PHQ-9 Depression Score.
- the bioequivalence study will be performed in two parts; a pilot study (about 20 healthy subjects), followed by a Phase 1 study (about 125 subjects).
- the pilot study in healthy males and females is designed to establish a pharmacokinetic (PK) profile under fasting and fed conditions for the orally administered test and reference products to compare the bioavailability in accordance with Food and Drug Administration (FDA) and Center for Drug Evaluation and Research (CDER) guidelines.
- Phase 1 subjects have a diagnosis of release-remitting multiple sclerosis (RMMS), and at least one relapse in the 12 months prior to randomization.
- RMMS release-remitting multiple sclerosis
- Subjects in both studies will be randomly assigned, in a 1:1:1:1 allocation, to one of four treatments: oral administration of (i) aspirin only (control); (ii) DMF only; (iii) DMF/aspirin combination in the fasted state; (iv) DMF/aspirin combination in the fed state. Both patients and practitioners will be blinded to the treatment regime.
- DMF 180 mg/ASA 150 mg capsules and the reference products DMF 240 mg delayed-released capsules and Bayer Aspirin® 325 mg tablets, and to determine the sample size for future studies.
- PK profiles of DMF's metabolite, monomethylfumarate (MMF), acetylsalicylic acid (ASA) and its active metabolite, salicylic acid (SA) in plasma will be investigated after administration of a single dose of the test and reference formulations, under fasting and fed conditions.
- the studies will comprise:
- Procedures listed for the post-study visit will be performed in the event of early withdrawal from the study. Subjects will be assigned randomly to treatment sequence, before the first administration of IMP.
- the duration of this study is expected to be approximately 25 days (approximately 31 ⁇ 2 weeks) per subject (excluding the screening period).
- the actual overall study duration and study recruitment time may vary.
- the subjects vital signs will be assessed and they will be assessed for adverse events and concomitant medication and pharmacokinetic blood samples will be collected at the following time points: at pre dose (0 hours), at 15 minutes (acetylsalicylic acid and salicylic acid only), 30 minutes, 45 minutes (acetylsalicylic acid and salicylic acid only) and at 1 hour, 1 hour 30 minutes, 2 hours, 2 hours 30 minutes, 3 hours, 3 hours 30 minutes, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 10 hours and 12 hours post dose (total: 17 samples per treatment period). If applicable, the collection of PK blood samples take precedence over other assessments at a scheduled time-point.
- Subjects will receive either the test or reference product, according to the randomization schedule, under fasting and fed conditions. Subjects will receive each product once.
- Treatment B Aspirin only fasting (Reference 2) API: Aspirin (acetylsalicylic acid [ASA]) Dosage form and strength: 325 mg tablet Study dose: 325 mg (1 tablet) Route of administration: Oral
- test product For the fasting treatment periods, after an overnight fast of at least 10 hours, subjects will receive either the reference or the test product (according to the randomization schedule) with 240 mL water.
- the reference products must be swallowed whole with water.
- the fixed dose combination capsule must be kept in the mouth until the outer layer (containing the aspirin) has dissolved in the mouth before the capsule is then swallowed whole with water. Specific details on the administration of the test product will be provided in a separate document, if needed.
- subjects will receive a standardized high-fat, high-calorie breakfast 30 minutes before administration of IMP.
- the entire meal must be consumed within 30 minutes.
- subjects will receive either the reference or the test product (according to the randomization schedule) with 240 mL water.
- the reference products must be swallowed whole with water.
- the fixed dose combination capsule must be kept in the mouth until the outer layer (containing the aspirin) has dissolved in the mouth before the capsule is then swallowed whole with water.
- PK parameters Calculation of the PK parameters will be made with Phoenix® WinNonlin® 6.2 (or higher) (Certara, L. P., 1699 South Hanley Road, St Louis, Mo. 63144, USA). The PK parameters will be calculated for each subject and treatment using non-compartmental analysis and using the actual sampling time intervals (relative to IMP administration).
- the objective of this example was to compare the rate and extent of absorption of monomethyl fumarate from a dimethyl fumarate-acetylsalicylic acid 180 mg-150 mg delayed-release capsule (VTS-72) (Test; Treatment A) versus Tecfidera 240 mg delayed-release capsule (Reference; Treatment B), administered as 1 ⁇ 180 mg-150 mg or 1 ⁇ 240 mg delayed-release capsule under fasting conditions.
- Treatment A Subjects were required not to wear dentures or to remove their tongue piercing at the time of dosing.
- the delayed-release capsule were placed on the subject's tongue.
- Subjects were instructed to suck the delayed-release capsule until the acetylsalicylic acid coating was dissolved or up to a maximum of 1 minute after the delayed-release capsule had been placed on the subject's tongue.
- the delayed-release capsule should not be chewed, bitten, or swallowed during that 1 minute period or until the coating is dissolved; only the saliva could be swallowed.
- the subject was instructed to give a hand sign once the acetylsalicylic acid coating was dissolved (the capsule should feel and taste different).
- Treatment B Study medication was administered to each subject and was swallowed whole with 240 mL of water without being sucked, chewed or bitten, and a hand and mouth check was performed to ensure consumption of the medication.
- Flushing (including redness, warmth, tingling, and itchiness of the skin) was assessed at 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 hours post-dose using the question and the rating scale presented in Section—Flushing Assessment below. Half grades were not assigned. Flushing symptoms were recorded as adverse events.
- GI symptoms were assessed at 10 hours post-dose using the questions and the rating scale presented in Section—Gastrointestinal Symptoms Assessment below. Half grades were not assigned. GI symptoms were recorded as adverse events.
- FIG. 1 is an example of the scale that was used to rate the assessment of Question 1.
- Gastrointestinal symptoms were assessed using the questions below. Questions were asked by the clinical staff:
- FIG. 2 is an example of the scale that was used to rate the assessment of Questions 2 and 3.
- the flushing side effect reported by each of the subject is summarized in Table 1 below.
- the total reduction of flushing from 15.9 to 7.9 was about 50.3%.
- the reduction was still 33.6%.
- aspirin increased the bioavailability of DMF by about 5%
- the reduction of the flushing side effect is actually about 36.8%.Also interestingly, 6 of these 11 subjects had their flushes peak at least 30 mins earlier with VTS-72 (only 2 were later) than with DMF alone.
- Table 2 below provides a descriptive statistics summary of monomethyl fumarate plasma pharmacokinetic parameters.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Emergency Medicine (AREA)
- Zoology (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Provided are compositions and methods for treating multiple sclerosis (MS). One embodiment of the disclosed method entails orally administering to a MS patient a first amount of aspirin and a second amount of fumaric acid or an ester or a salt thereof. In some embodiments, the aspirin is administered at from about 80 mg to about 500 mg per day and the fumaric acid or ester or salt thereof is administered at about 360 mg per day.
Description
- This application is a continuation of U.S. application Ser. No. 16/523,916 filed Jul. 26, 2019, which is a continuation of U.S. application Ser. No. 15/922,729 filed Mar. 15, 2018, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 62/473,080 filed Mar. 17, 2017, and Provisional Application Ser. No. 62/594,493, filed Dec. 4, 2017, the contents of which are incorporated by reference in its entirety into the present disclosure.
- Multiple sclerosis (MS) is the most common autoimmune disorder affecting the central nervous system. In 2013, about 2.3 million people were affected globally with rates varying widely in different regions and among different populations. About 20,000 people died from MS in 2013, up from 12,000 in 1990. The disease usually begins between the ages of 20 and 50 and is twice as common in women as in men.
- Multiple sclerosis was first described in 1868 by Jean-Martin Charcot. The name multiple sclerosis refers to the numerous scars that develop on the white matter of the brain and spinal cord. MS is a demyelinating disease in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This damage disrupts the ability of parts of the nervous system to communicate, resulting in a range of signs and symptoms, including physical, mental, and sometimes psychiatric problems. Specific symptoms can include double vision, blindness in one eye, muscle weakness, trouble with sensation, or trouble with coordination. MS takes several forms, with new symptoms either occurring in isolated attacks (relapsing forms) or building up over time (progressive forms). Between attacks, symptoms may disappear completely; however, permanent neurological problems often remain, especially as the disease advances.
- While the cause is not clear, the underlying mechanism is thought to be either destruction by the immune system or failure of the myelin-producing cells. Proposed causes for this include genetics and environmental factors such as being triggered by a viral infection. MS is usually diagnosed based on the presenting signs and symptoms and the results of supporting medical tests.
- There is no known cure for multiple sclerosis. Treatments attempt to improve function after an attack and prevent new attacks. Medications used to treat MS, while modestly effective, can have side effects and be poorly tolerated. Physical therapy can help with a patient's ability to function.
- It has been shown that dimethyl fumarate (DMF) and its metabolite, monomethyl fumarate (MMF), are effective treatments for relapse-remitting multiple sclerosis (RMMS). Both DMF and MMF activate the nuclear-factor-E2-related factor-2 (Nrf2) transcriptional pathway, which induces anti-inflammatory and neuroprotective modalities in RMMS patients. About 30% to 40% of treated individuals, however, suffer from cutaneous flush which is associated with both DMF and MMF. Such adverse effects, therefore, limit the use of DMF and MMF in treating MS.
- The present disclosure provides treatment regimens for diseases that can be suitably treated with fumaric acid of its ester or salt, such as dimethyl fumarate (DMF), monomethyl fumarate (MMF), or the combination thereof. Examples of such diseases include multiple sclerosis (MS), psoriasis, necrobiosis lipoidica, granuloma annulare, sarcoidosis, granulomatous and inflammatory skin disorders, lichen planus pityriasis rubra pilaris, chronic discoid lupus erythematosus, necrobiosis lipoidica, cheilitis granulomatosa, annular elastotic giant cell granuloma, malign melanoma, lupus erythematosus, aplopecia areata, hidradenitis suppurativa, other granulomatous and inflammatory skin disorders, other inflammatory disorders such as colitis, DNA damage in tumor, gastrointestinal ulceration, collagen type II degradation, and other immune modulated diseases. In some embodiments, the treatment methods enable the effective use of a daily dose of fumaric acid or an ester or salt thereof that is lower than their recommended use (e.g., 480 mg per day), without compromise of the treatment outcome.
- It is discovered surprisingly that the methods and pharmaceutical compositions described herein may increase the bioavailability of the fumaric acid or an ester or salt thereof (e.g., dimethyl fumarate) such that a significantly lower dose can be administered (e.g., 420, 400 or 360 mg per day), without compromise of the treatment outcome. In addition, in some embodiments, the treatment methods allow a patient to tolerate a higher dose of fumaric acid or an ester or salt thereof, which higher dose may be required given the condition and other requirements of the patient.
- In one embodiment, provided is a method of treating multiple sclerosis (MS) in a human patient in need thereof, comprising orally administering to the patient aspirin and fumaric acid or an ester or a salt thereof, wherein the aspirin is administered at from about 150 mg to about 650 mg (or from about 300 mg to about 500 mg) per day and the fumaric acid or ester or salt thereof is administered at about 300 mg to about 450 mg per day (or from about 340 mg to about 380 mg per day). The aspirin and the fumaric acid or ester or a salt thereof can be administered separately or together, concurrently or sequentially.
- In some embodiments, the aspirin is formulated to dissolve in an oral cavity of a subject. In some embodiments, the fumaric acid or ester or salt thereof is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject.
- Also provided, in one embodiment, is a method of treating multiple sclerosis (MS) in a human patient in need thereof, comprising orally administering to the patient one or more tablets each comprising a first portion comprising a first amount of aspirin and a second portion comprising a second amount of fumaric acid or an ester or a salt thereof, wherein the first portion is formulated to dissolve in an oral cavity of a subject, wherein the second portion is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject, and wherein the aspirin is administered at from about 150 (or 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390 or 400) mg to about 650 (or 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, or 640) mg per day and the fumaric acid or ester or salt thereof is administered at about 300 (or 300, 310, 320, 330, 340, 350, or 360) mg to about 450 (or 360, 370, 380, 390, 400, 410, 420, 430, 440, or 450) mg per day.
- In some embodiments, the patient suffers from relapse-remitting MS (RRMS). In some embodiments, the patient has a history of non-compliance with a medication due to cutaneous flush or a gastrointestinal side effect.
- In some embodiments, the second amount of the fumaric acid or ester or salt thereof is about 180 mg. In some embodiments, the first amount of aspirin is from about 80 mg to about 250 mg. In some embodiments, the second portion further comprises a third amount of aspirin. In some embodiments, the first amount of aspirin and the second amount of aspirin each is from about 40 mg to about 120 mg. In some embodiments, the second portion is enclosed in an enteric coating.
- In some embodiments, the ester is dimethyl fumarate, monomethyl fumarate or combination thereof.
- Pharmaceutical compositions are also provided. In some embodiments, the pharmaceutical composition is a fixed dose combination comprising aspirin and a fumaric acid or an ester or a salt thereof. In some embodiments, the pharmaceutical composition is a fixed dose combination comprising aspirin and dimethyl fumarate, optionally in combination with an additional fumaric acid or an ester or a salt thereof.
- In some embodiments, the pharmaceutical composition comprises about 40 (or 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, or 190) mg to about 250 (or 210, 220, 230, or 240) mg of aspirin and about 150 (or 160, 165, 170, 175, 180, or 185) mg to about 190 (or 180, 185, 195, 200, 210, 220, 225, or 230) mg of fumaric acid or an ester or a salt thereof. In some embodiments, the pharmaceutical composition comprises about 300 (or 310, 320, 330, 340, 350, 360, 370, 380, 390 or 400) mg to about 500 (or 410, 420, 430, 440, 450, 460, 470, 480, or 490) mg of aspirin and about 340 (or 300, 310, 320, 330, 350, or 360) mg to about 380 (or 360, 370, 380, 390, 400, 410, 420, 430, 440, or 450) mg of fumaric acid or an ester or a salt thereof.
- In some embodiments, the pharmaceutical compositions described herein are formulated as a tablet. In some embodiments, the pharmaceutical compositions described herein are formulated as a capsule comprising the aspirin and a fumaric acid or an ester or a salt thereof. In some embodiments, the pharmaceutical compositions described herein are formulated as a capsule comprising the aspirin and a fumaric acid or an ester or a salt thereof, wherein the aspirin and fumaric acid or an ester or a salt thereof are each formulated as a microsphere. In some embodiments, the aspirin is present in a first portion formulated to dissolve in an oral cavity of a subject, and the fumaric acid or ester or salt thereof is present in a second portion formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject.
- In some embodiments, the aspirin is present in a first portion formulated to dissolve in an oral cavity of a subject, and a second portion formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject. In some embodiments, the pharmaceutical compositions described herein are formulated as a capsule comprising the aspirin and a fumaric acid or an ester or a salt thereof, wherein the aspirin and fumaric acid or an ester or a salt thereof are each formulated as a microsphere contained within a capsule shell, and a second portion of aspirin is present as a coating on the capsule shell and is formulated to dissolve in an oral cavity of a subject. By administering this particular dosage form, it is contemplated that the effective dose of DMF can be reduced, thus reducing and/or relieving one or more side effects of DMF.
- In one embodiment, provided is a method of treating multiple sclerosis (MS) in a human patient in need thereof, comprising orally administering to the patient aspirin and fumaric acid or an ester or a salt thereof, wherein the aspirin is administered at from about 300 mg to about 500 mg per day and the fumaric acid or ester or salt thereof is administered at about 580 mg to about 620 mg per day. In some embodiments, the aspirin is formulated to dissolve in an oral cavity of a subject. In some embodiments, the fumaric acid or ester or salt thereof is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject. In some embodiments, the aspirin and the fumaric acid or ester or salt thereof are administered concurrently.
- Also provided, in one embodiment, is a method of treating multiple sclerosis (MS) in a human patient in need thereof, comprising orally administering to the patient one or more tablets each comprising a first portion comprising a first amount of aspirin and a second portion comprising a second amount of fumaric acid or an ester or a salt thereof, wherein the first portion is formulated to dissolve in an oral cavity of a subject, wherein the second portion is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject, and wherein the aspirin is administered at from about 150 mg to about 650 mg per day and the fumaric acid or ester or salt thereof is administered at about 570 mg to about 630 mg per day, or about 300 to about 450 mg per day, or about 300 to about 400 mg per day, or about 350 to about 400 mg per day, or about 360 mg per day.
- In some embodiments, the patient suffers from relapse-remitting MS (RRMS). In some embodiments, the patient suffers from secondary progressive multiple sclerosis (SPMS).
- Also provided, in one embodiment, is a method of treating psoriasis in a human patient in need thereof, comprising orally administering to the patient one or more tablets each comprising a first portion comprising a first amount of aspirin and a second portion comprising a second amount of fumaric acid or an ester or a salt thereof, wherein the first portion is formulated to dissolve in an oral cavity of a subject, wherein the second portion is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject, and wherein the aspirin is administered at from about 150 mg to about 650 mg per day and the fumaric acid or ester or salt thereof is administered at about 570 mg to about 630 mg per day, or about 300 to about 450 mg per day, or about 300 to about 400 mg per day, or about 350 to about 400 mg per day, or about 360 mg per day.
- In addition to multiple sclerosis and psoriasis, fumaric acid or ester or salt thereof can also be used for treating other diseases and conditions such as motor neuron disease, neurodegenerative diseases, autoimmune diseases, inflammatory diseases, sepsis, and skin diseases or conditions.
- A motor neuron disease a neurological condition that selectively affects motor neurons. Examples include amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), progressive bulbar palsy (PBP) and pseudobulbar palsy.
- Neurodegenerative diseases are results of progressive loss of structure or function of neurons, including death of neurons. Examples include amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's, which occur as a result of neurodegenerative processes.
- Non-limiting examples of autoimmune or inflammatory disease include Parkinson's disease, arthritis, rheumatoid arthritis, multiple sclerosis, psoriasis, psoriatic arthritis, Crohn's disease, inflammatory bowel disease, ulcerative colitis, lupus, systemic lupus erythematous, juvenile rheumatoid arthritis, juvenile idiopathic arthritis, Grave's disease, Hashimoto's thyroiditis, Addison's disease, celiac disease, dermatomyositis, multiple sclerosis, myasthenia gravis, pernicious anemia, Sjogren syndrome, type I diabetes, vasculitis, uveitis, atherosclerosis and ankylosing spondylitis.
- Skin diseases are various skin problems, from small red bumps on the skin to widespread rashes. Some skin conditions can be unsightly but harmless, while others may be contagious. Many skin conditions are also itchy or painful. The presently disclosed compositions and methods are suitable for treating these diseases and the symptoms. Non-limiting examples of symptoms include itch, swelling, redness, rash, flaky, scaly skin, blisters, oozing and bumps or growths.
- In some embodiments, the second amount of the fumaric acid or ester or salt thereof is about 300 mg. In some embodiments, the first amount of aspirin is from about 80 mg to about 250 mg. In some embodiments, the second portion further comprises a third amount of aspirin. In some embodiments, the first amount of aspirin and the second amount of aspirin each is from about 80 mg to about 120 mg. In some embodiments, the first portion further comprises a water-soluble sugar or sugar substitute. In some embodiments, the second portion is enclosed in an enteric coating. In some embodiments, the ester is dimethyl fumarate, monomethyl fumarate or combination thereof. In some embodiments, the monomethyl fumarate is hydrogen monomethyl fumarate or a salt thereof (e.g., Na+, K+, Ca2+, Zn2+, Mg2+, Fe2+). In some embodiments, the monomethyl fumarate is hydrogen monomethyl fumarate.
- Pharmaceutical compositions are also provided, for example, suitable for once daily, twice daily, or three times daily administration. In one embodiment, the composition comprises about 100 (or 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200) mg to about 250 (or 200, 210, 220, 230, or 240) mg of aspirin and about 170 (or 175, 180, 185, or 190) mg to about 220 (or 185, 190, 195, 200, 205, 210, or 215) mg of fumaric acid or an ester or a salt thereof. In one embodiment, the composition comprises about 150 (or 160, 170, 180, or 190) mg to about 250 (or 210, 220, 230, or 240) mg of aspirin and about 285 (or 270, 270, 280, 290, 295, or 300) mg to about 315 (or 300, 305, 310, 320, or 325) mg of fumaric acid or an ester or a salt thereof. In one embodiment, the composition comprises about 300 (or 310, 320, 330, 340, 350, 360, 370, 380, 390 or 400) mg to about 500 (or 410, 420, 430, 440, 450, 460, 470, 480, or 490) mg of aspirin and about 570 (or 560, 565, 575, 580, 590 or 595) mg to about 630 (or 605, 610, 515, 620, 625, 635, or 640) mg of fumaric acid or an ester or a salt thereof. In one embodiment, the composition comprises about 40 (or 20, 30, 40, 50, 60, 70, 80, 90, 100 or 120) mg to about 500 (or 410, 420, 430, 440, 450, 460, 470, 480, or 490) mg of aspirin and about 120 (or 130, 140, 150, 160, 170, 180, 190, 200, 210 or 220) mg to about 240 (or or 210, 220, 230, or 240) mg of fumaric acid or an ester or a salt thereof.
-
FIG. 1 is an example of the scale that was used to rate the assessment of Question 1 in Example 4. -
FIG. 2 is an example of the scale that was used to rate the assessment of 2 and 3 in Example 4.Questions - The following description sets forth exemplary embodiments of the present technology. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.
- As used in the present specification, the following words, phrases and symbols are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.
- As used herein, “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- “Relapse-remitting multiple sclerosis,” or RRMS, is a type of MS of which symptoms can appear suddenly and be severe and can then go quiet for months or years. Between flare-ups, the disease tends not to progress or progresses relatively slowly, and symptoms may disappear.
- “Secondary-progressive multiple sclerosis,” or SPMS, is a MS condition in which the disease tends to progress steadily. This can happen with or without relapses. Many patients with RRMS may transition to SPMS at some point in the course of their disease.
- “Fumaric acid” is the chemical compound with the formula HO2CCH═CHCO2H. The “salts and esters” of fumaric acid are known as fumarates, and include any ester (e.g., mono ester hydrogen fumarate or salt thereof or diester of fumaric acid), such as dimethyl fumarate (DMF) and monomethyl fumarate (MMF). The fumaric acid can comprise a mixture of DMF, also three monoethyl hydrogen fumarates or salt thereof (calcium, magnesium, and zinc salts) (e.g.,) Fumaderm®). The fumaric acid can comprise ALKS 8700 (“a MMF molecule” which is a prodrug to MMF).
- Dimethyl fumarate (DMF) is the dimethyl ester of fumaric acid, having a chemical name of dimethyl (E)-butenedioate. DMF and its metabolite, monomethyl fumarate (MMF), were initially recognized as effective hypoxic cell radiosensitizers. They are also used as oral therapy for psoriasis. Other diseases, such as necrobiosis lipoidica, granuloma annulare, and sarcoidosis may also be suitably treated with DMF and MMF.
- In a non-medical setting, DMF is applied as a biocide to prevent growths of mold during storage or transport in a humid climate. However, due to incidences of allergic reactions after skin contact the European Union banned DMF in consumer products since 1998, and since January 2009 the import of products containing DMF was also banned. Medical use of DMF also is known to come with associated side effects, such as progressive multifocal leukoencephalopathy, which can be serious. Another side effect associated with the use of DMF or MMF is the flushing, which has been reported to cause non-compliance of patients.
- A commercial form of DMF for treating MS is Tecfidera®. According to the drug label, the starting dose for Tecfidera® is 120 mg twice a day orally. After 7 days, the dose should be increased to the maintenance dose of 240 mg twice a day orally. Temporary dose reductions to 120 mg twice a day may be considered for individuals who do not tolerate the maintenance dose. Higher doses of Tecfidera® are not recommended.
- It is a surprising and unexpected discovery of the instant inventor that administration of both aspirin and fumaric acid or its ester or salt such as DMF and MMF achieves increased treatment efficacy and reduced side effects as compared to the fumarate alone. Such a dual administration, therefore, makes it possible to use a lower dose (e.g., 420, 400 or 360 mg per day) of fumaric acid of the ester or salt thereof, as compared to the conventional commercial dose (e.g., 480 mg per day), to achieve the same efficacy as the conventional dose would but with greatly reduced side effects.
- The impact of aspirin on the bioavailability of DMF has been evaluated previously and acknowledged by the US FDA. In Sheikh et al., Clin Ther. 2013;35:1582-94, for example, the authors observed that pretreatment with 325 mg aspirin for 4 days reduced flushing incidence and intensity but did not affect gastrointestinal events or the pharmacokinetic profile of DMF (abstract). In other words, aspirin pretreatment did not change the bioavailability of the DMF. Accordingly, the present discovery that concomitant administration of aspirin increased the bioavailability of DMF by about 5% is necessarily surprising and unexpected.
- Such a surprising and unexpected discovery that the dual administration increases the bioavailability of the fumarate (e.g., DMF) makes it possible to use a lower dose (e.g., 420, 400 or 360 mg per day) while achieving the same or substantially similar efficacy as compared to the conventional commercial dose (e.g., 480 mg per day) , to achieve the same efficacy as the conventional dose. On the other hand, this dual formulation allows administration of a higher dose (e.g., 600 mg per day) of fumaric acid of the ester or salt thereof so that patients who desire such high doses can avoid or suffer reduced undesirable side effects such as flushing. The dual administration can be sequential administration or concurrent administration of two or more separate compositions, or administration of a composition that includes two or more different ingredients.
- In some embodiments, a co-formulation is disclosed. In some aspects, the aspirin and fumaric acid of the ester or salt thereof are in separate portions in the co-formulation, such as a tablet. In some aspects, the separate portions are formulated similarly and in other aspects, the aspirin portion is formulated in a dissolvable fashion (dissolvable portion) and the fumaric acid portion is formulated as a swallowable fashion (swallowable portion). In some aspects, the swallowable portion also contains an amount of aspirin, which is shown to further enhance the effect of the dissolvable aspirin in a synergistic fashion.
- In some embodiments, a similarly structured co-formulation is disclosed that includes aspirin and therapeutic agent having a niacin-mediated flushing side effect. The term “therapeutic agent having a niacin-mediated flushing side effect,” as used herein, refers to a group of drugs that activate the nicotinic acid receptor GPR109a, resulting in flushing symptoms commonly observed for patients taking niacin. Sometimes, such agents are also referred to as “nicotinic acid receptor agonists” or “GPR109a agonists.” Non-limiting examples of such therapeutic agents include niacin, nicotyinyl alcohol, acipimox, acifran, newer GPR109a agonists, hydroxybutyrate, and fumarates (e.g., dimethyl fumarate, mono-ethyl fumarate, diethyl fumarate).
- Structure-activity studies have shown common structural features of GPR109a agonists. Some of the GPR109a agonists have a carcoxyl group, like in niacin. Another group are anthranilic acid analogs. More of such structural elements are discussed in Boatman et al. J. Med. Chem. 2008; 51(24):7653-62.
- In some embodiments, aspirin can be substituted with a non-steroidal anti-inflammation drug (NSAID). Non-limiting examples of NSAIDs include aspirin, celecoxib, diclofenac, diflunisal, etodolac, ibuprofen, indomethacin, ketoprofen, ketorolac, nabumetone, naproxen, oxaprozin, piroxicam, salsalate, sulindac, and tolmetin.
- A “dissolvable portion” as used herein refers to a portion of a drug form that is formulated to dissolve in an oral cavity of a subject. A dissolvable portion, in one embodiment, is pulverizable which can be dispersed in the oral cavity by masticating, sucking, dissolving or other common means, thereby releasing its active ingredient into the oral cavity where it enters the circulatory system by traversing the buccal mucosa. Other embodiments of dissolvable portions are also provided below in the present disclosure.
- A “swallowable portion” is relative to the dissolvable portion and can be harder than the dissolvable portion. Therefore, the swallowable portion is more readily swallowed by the subject and releases the active ingredient by dissolving it in stomach, intestines, or further distal in the gastrointestinal (GI) tract of the subject.
- The dissolvable portion and the swallowable portion, in some embodiments, are side by side in a tablet but with different physical or chemical properties. In some embodiments, the intraoral is placed outside of the swallowable portion to form a bi-layer tablet.
- In the context of the present disclosure, the use of the term hard or swallowable in reference to the dissolvable portion is used to connote that the swallowable portion is not pulverized by the force and can withstand the force of masticating or chewing that effectively pulverizes the outer layer of the pharmaceutical composition of the present disclosure. In one embodiment, the swallowable portion is chew-resistant. Further, in referring to the swallowable portion as being ingestible, it is meant that the swallowable portion is capable of being taken up and absorbed by one or more portions of the gastrointestinal tract, stomach, intestines or a further distal of the gastrointestinal tract. The swallowable portion of the combination tablet may be conventionally covered with one or more layers of coatings to permit a timed release of the active contained therein following ingestion by a subject. The present disclosure contemplates a release profile of the ingested core particle of from 30 minutes to 24 hours.
- In the context of the present disclosure, the term pulverizable or easily pulverizable refers to a portion of a material that is ground or dispersed into small particles within the oral cavity by gentle pressure generated by chewing or masticating the layer to be ground. There is no intent to imply any particular size or fineness of the resulting particles, as it is contemplated herein that it is only required that the pulverized material release a therapeutic agent within the oral cavity.
- The term masticating or chewing, in the context of the present disclosure, is meant to signify that the pulverizing or grinding is being performed by a patient's or subject's teeth, or gums. A specific embodiment of the combination pill may cause the first bite(s) to rupture or dislodge the outer layer thereby releasing it from the central core and can then be chewed. There is no intent to signify any particular degree of force required or generated by the masticating teeth or gums. The requirement is that the force actually used to produce the pulverized granules, particles, powder and the like, is sufficient to disrupt the dissolvable portion of the present disclosure while leaving the swallowable portion intact.
- The term sucking, dissolving or other common means, in the context of the present disclosure, is meant to signify that the intraoral or pulverizable portion can be absorbed in the oral cavity through use of the tongue, gums, cheeks, saliva and combinations thereof, over a period of time. A specific embodiment of the combination pill causes the intraoral or pulverizable portion to dissolve in the oral cavity over a period of 5 minutes, while the combination pill is held in the oral cavity, through interaction with saliva. The requirement is that interaction with the tongue, gums, cheeks, saliva and combinations thereof by sucking, dissolving or other common means, is sufficient to disrupt the outer layer of the pharmaceutical composition of the present disclosure while leaving the swallowable portion intact.
- For the purpose of this description, the term intact does not require that the swallowable portion remain in one piece. Instead, it signifies that at least 50% of the swallowable portion is swallowed, but preferably that 75% of the swallowable portion material is swallowed; even more preferably that approximately 75% to about 85% of the swallowable portion material is swallowed, and most preferably, from about 85% to about 95% of the swallowable portion material is swallowed, and most particularly, that greater than 95% of the swallowable portion material is swallowed.
- The buccal mucosa is meant to refer to the epithelium lining the oral cavity, including the sublingual region. The buccal mucosa further includes the sub-epithelial tissue; i.e., the tissue and macromolecular layers that accumulate underneath the epithelium. The sub-epithelial tissue includes, inter alia, connective tissue cells (fibroblasts, adipocytes, lymphocytes, and the like), extracellular matrix, basement membrane, smooth muscle, and vascular elements, etc. The buccal mucosa is a highly vascular tissue, and therefore a desirable route of entry into the general circulation.
- In one embodiment, the present disclosure provides a method of treating multiple sclerosis (MS) in a human patient in need thereof. In some embodiments, the disease or condition being treated is one or more of psoriasis, necrobiosis lipoidica, granuloma annulare, sarcoidosis, granulomatous and inflammatory skin disorders, lichen planus pityriasis rubra pilaris, chronic discoid lupus erythematosus, necrobiosis lipoidica, cheilitis granulomatosa, annular elastotic giant cell granuloma, malign melanoma, lupus erythematosus, aplopecia areata, hidradenitis suppurativa, other granulomatous and inflammatory skin disorders, other inflammatory disorders such as colitis, DNA damage in tumor, gastrointestinal ulceration, collagen type II degradation, and other immune modulated diseases.
- The method entails, in one embodiment, orally administering to the patient a first amount of aspirin and a second amount of fumaric acid or an ester or a salt thereof. In some embodiments, the aspirin is administered at from about 300 mg to about 500 mg per day and the fumaric acid or ester or salt thereof is administered at about 340 mg to about 380 mg per day.
- The method entails, in one embodiment, orally administering to the patient one or more tablets each comprising a first portion comprising a first amount of aspirin and a second portion comprising a second amount of fumaric acid or an ester or a salt thereof, wherein the first portion is formulated to dissolve in an oral cavity of a subject, wherein the second portion is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject, and wherein the aspirin is administered at from about 300 mg to about 500 mg per day and the fumaric acid or ester or salt thereof is administered at about 340 mg to about 380 mg per day.
- In some embodiments, the daily dose of the fumaric acid or ester or salt thereof is about 350 mg to about 370 mg, or about 355 mg to about 365 mg, or about 360 mg.
- In some aspects, the daily administration is twice daily, and each administration is with one or two tablets. In one aspect, the second portion of each tablet, also referred to as the swallowable portion, contains about 170 mg to about 190 mg fumaric acid or an ester or salt thereof. In one aspect, the second portion of each tablet, also referred to as the swallowable portion, contains about 175 mg to about 185 mg fumaric acid or an ester or salt thereof. In one aspect, the second portion of each tablet, also referred to as the swallowable portion, contains about 180 mg fumaric acid or an ester or salt thereof.
- In one aspect, the first portion of each tablet, also referred to as the dissolvable portion, contains about 150 mg to about 250 mg aspirin, or alternatively about 175 mg to about 225 mg aspirin, or about 200 mg aspirin. In some embodiments, the first portion contains about 75 mg to about 125 mg aspirin, or alternatively about 90 mg to about 110 mg aspirin, or about 100 mg aspirin, and meanwhile the second portion further contains about 75 mg to about 125 mg aspirin, or alternatively about 90 mg to about 110 mg aspirin, or about 100 mg aspirin, such that the total amount of aspirin in each tablet can still be about 150 mg to about 250 mg.
- In some embodiments, the patient suffers from relapse-remitting MS (RRMS), a relatively common form of MS. In some embodiments, the patient has a history of non-compliance with a medication due to cutaneous flush or a gastrointestinal side effect. “Non-compliance” as used herein refers to a patient's failure, of at least one time, to take the DMF/MMF medication due to complaint of flushing. In some embodiments, the patient has suspended taking DMF/MMF for at least 1 week, 2 weeks, 1 month, 2 months, 3 months, or 6 months.
- In one embodiment, the present disclosure provides a method of treating multiple sclerosis (MS) in a human patient in need thereof.
- In some embodiments, the disease or condition being treated is one or more of psoriasis, necrobiosis lipoidica, granuloma annulare, sarcoidosis, granulomatous and inflammatory skin disorders, lichen planus pityriasis rubra pilaris, chronic discoid lupus erythematosus, necrobiosis lipoidica, cheilitis granulomatosa, annular elastotic giant cell granuloma, malign melanoma, lupus erythematosus, aplopecia areata, hidradenitis suppurativa, other granulomatous and inflammatory skin disorders, other inflammatory disorders such as colitis, DNA damage in tumor, gastrointestinal ulceration, collagen type II degradation, and other immune modulated diseases.
- The method entails, in one embodiment, orally administering to the patient a first amount of aspirin and a second amount of fumaric acid or an ester or a salt thereof. In some embodiments, the aspirin is administered at from about 300 mg to about 500 mg per day and the fumaric acid or ester or salt thereof is administered at about 570 mg to about 630 mg per day.
- The method entails, in one embodiment, orally administering to the patient one or more tablets each comprising a first portion comprising a first amount of aspirin and a second portion comprising a second amount of fumaric acid or an ester or a salt thereof, wherein the first portion is formulated to dissolve in an oral cavity of a subject, wherein the second portion is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject, and wherein the aspirin is administered at from about 300 mg to about 500 mg per day and the fumaric acid or ester or salt thereof is administered at about 570 (or 575, 580, 585, 590, or 595) mg to about 630 (or 605, 610, 615, 620 or 625) mg per day.
- In some embodiments, the daily dose of the fumaric acid or ester or salt thereof is about 590 mg to about 610 mg, or about 595 mg to about 605 mg, or about 600 mg.
- In some aspects, the daily administration is once, twice or three times daily, and each administration is with one or two tablets. In one aspect, the second portion of each tablet, also referred to as the swallowable portion, contains about 290 mg to about 310 mg fumaric acid or an ester or salt thereof. In one aspect, the second portion of each tablet, also referred to as the swallowable portion, contains about 295 mg to about 305 mg fumaric acid or an ester or salt thereof. In one aspect, the second portion of each tablet, also referred to as the swallowable portion, contains about 300 mg fumaric acid or an ester or salt thereof.
- In one aspect, the first portion of each tablet, also referred to as the dissolvable portion, contains about 150 mg to about 250 mg aspirin, or alternatively about 175 mg to about 225 mg aspirin, or about 200 mg aspirin. In some embodiments, the first portion contains about 75 mg to about 125 mg aspirin, or alternatively about 90 mg to about 110 mg aspirin, or about 100 mg aspirin, and meanwhile the second portion further contains about 75 mg to about 125 mg aspirin, or alternatively about 90 mg to about 110 mg aspirin, or about 100 mg aspirin, such that the total amount of aspirin in each tablet can still be about 150 mg to about 250 mg.
- In some embodiments, the patient has been treated with fumaric acid or an ester or salt thereof but the treatment is considered inadequate. In some embodiments, the patient suffers from relapse-remitting MS (RRMS). In some embodiments, the patient suffers from secondary progressive multiple sclerosis (SPMS).
- Pharmaceutical formulations are provided, in some embodiments. The formulations may include aspirin at a suitable dose and form and a fumaric acid or an ester or a salt thereof at a suitable dose and form. In some embodiments, the formulation includes at last about 20, 30, 40, 50, 60, 70, 80, 90, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, or 300 mg aspirin. In some embodiments, the formulation includes not more than about 500, 490, 480, 470, 460, 450, 440, 430, 420, 410, 400, 390, 380, 370, 360, 350, 340, 330, 325, 320, 315, 310, 305, 300, 295, 290, 285, 280, 275, 260, 255, 250, 245, 240, 235, 230, 225, 220, 215, 210, 205, 200, 190, 180, 170, 160, or 150 mg aspirin.
- In some embodiments, the formulation includes at least about 80, 90, 100, 120, 125, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435, 440, 445, 450, 455, 460, 465, 470, 475, 480, 485, 490, 495, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, or 600 mg of a fumaric acid or an ester or a salt thereof. In some embodiments, the formulation include not more than about 600, 590, 580, 570, 560, 55, 540, 530, 520, 510, 500, 490, 480, 470, 460, 450, 440, 430, 420, 410, 400, 390, 380, 370, 360, 350, 340, 330, 325, 320, 315, 310, 305, 300, 295, 290, 285, 280, 275, 260, 255, 250, 245, 240, 235, 230, 225, 220, 215, 210, 205, 200, 195, 190, 185, 180, 175, 170, 165, 160, 155, or 150 mg of a fumaric acid or an ester or a salt thereof.
- In some embodiments, the fumaric acid or an ester or a salt thereof is dimethyl fumarate, optionally in combination with an additional fumaric acid or an ester or a salt thereof. In some embodiments, the additional fumaric acid or an ester or a salt thereof is monomethyl fumarate or a salt thereof (e.g., Na+, K+, Ca2+, Zn2+, Fe2+). In some embodiments, the monomethyl fumarate is hydrogen monomethyl fumarate. In some embodiments, the pharmaceutical composition consists essentially of an effective amount of aspirin and an effective amount of dimethyl fumarate.
- In some embodiments, the pharmaceutical composition comprises from about 80 mg to about 380 mg of the fumaric acid or ester or salt thereof. In some embodiments, the pharmaceutical composition comprises from about 80 mg to about 380 mg of the dimethyl fumarate. In some embodiments, the pharmaceutical composition comprises from about 30 mg to about 500 mg of aspirin. In some embodiments, the pharmaceutical composition comprises from about 150 mg to about 500 mg of aspirin. In some embodiments, the pharmaceutical composition comprises from about 30 mg to about 500 mg of aspirin and from about 80 mg to about 380 mg of a fumaric acid or an ester or a salt thereof. In some embodiments, the pharmaceutical composition comprises from about 150 mg to about 500 mg of aspirin and from about 80 mg to about 380 mg of a fumaric acid or an ester or a salt thereof.
- In some embodiments, the pharmaceutical compositions described herein are formulated as a capsule comprising aspirin and a fumaric acid or an ester or a salt thereof, wherein the aspirin and fumaric acid or an ester or a salt thereof are each formulated as a microsphere contained within a capsule shell, and a second portion of aspirin is present as a coating on the capsule shell and is formulated to dissolve in an oral cavity of a subject.
- In some embodiments, the pharmaceutical composition, or dosage form, provided herein comprises aspirin and a fumaric acid or an ester or a salt thereof, wherein the aspirin and fumaric acid or an ester or a salt thereof are each individually formulated as enterically coated microspheres which are contained within a capsule shell. In some embodiments, the capsule may also be coated with a second portion of aspirin formulated to dissolve in an oral cavity of a subject. In some embodiments, the total dose of aspirin of the capsule (i.e., the combined amount present within the capsule in combination with the aspirin present as a coating on the capsule shell) is about 20 mg to about 500 mg, or about 20 mg to about 325 mg, or about 20 mg, or about 25 mg, or about 30 mg, or about 40 mg, or about 50 mg, or about 60 mg, or about 70 mg, or about 75 mg, or about 80 mg, or about 90 mg, or about 100 mg, or about 110 mg, or about 120 mg, or about 130 mg, or about 140 mg, or about 150 mg, or about 160 mg, or about 170 mg, or about 180 mg, or about 190 mg, or about 200 mg, or about 210 mg, or about 220 mg, or about 230 mg, or about 240 mg, or about 250 mg, or about 260 mg, or about 270 mg, or about 280 mg, or about 290 mg, or about 300 mg, or about 310 mg, or about 315 mg, or about 320 mg, or about 325 mg.
- In some embodiments, the total dose of aspirin of the capsule is present in about a 1:1 ratio between the aspirin microspheres within the capsule and the aspirin present as a coating on the capsule shell. In some embodiments, the dose of aspirin present as microspheres within the capsule is about 20 mg, or about 30 mg, or about 40 mg, or about 50 mg, or about 60 mg, or about 70 mg, or about 75 mg, or about 80 mg. In some embodiments, the dose of aspirin present as a coating on the capsule shell is about 20 mg, or about 25 mg, or about 30 mg, or about 40 mg, or about 50 mg, or about 60 mg, or about 70 mg, or about 75 mg, or about 80 mg.
- The microspheres described herein may also include non-spherical microparticles, such as oblong or cylindrical microparticles.
- In some embodiments, the microspheres described herein have an average particle size of less than about 7 mm, or less than about 6 mm, or less than about 5 mm, or less than about 4 mm, or less than about 3 mm, or less than about 2 mm, or less than about 1.7 mm, or less than about 1.6 mm, or less than about 1.5 mm, or less than about 1.4 mm, or less than about 1.3 mm, or less than about 1.2 mm, or less than about 1.1 mm, or less than about 1.0 mm, or less than about 900 μm, or less than about 850 μm, or less than about 800 μm, or less than about 750 μm, or less than about 700 μm, or less than about 650 μm, or less than about 600 μm, or less than about 550 μm, or less than about 500 μm, or less than about 450 μm, or less than about 300 μm. In some embodiments, the particle size ranges from about 900 μm to about 2,000 μm, or from about 850 μm to about 1.7 mm, or from about 1.0 mm to 1.5 mm.
- In some embodiments, the microspheres comprise an enteric coating such that the API (aspirin or fumaric acid or an ester or a salt thereof (e.g., DMF)) is released in the gastrointestinal tract (e.g., the small intestine). In some embodiments, the enteric coating on the microspheres is formulated or applied such that the aspirin is released in the gastrointestinal tract (e.g., the small intestine) at substantially the same time as the fumaric acid or an ester or a salt thereof (e.g., DMF). In some embodiments, the enteric coating on the microspheres is formulated or applied such that the aspirin is released in the gastrointestinal tract (e.g., the small intestine) just prior to (e.g., 1-5, 1-10, 1-15, or 1-20 minutes) the fumaric acid or an ester or a salt thereof (e.g., DMF). Accordingly, in some embodiments, the enteric coating on the aspirin microspheres is thinner than the enteric coating on the fumaric acid or an ester or a salt thereof (e.g., DMF) microspheres.
- It is contemplated that by co-administering the aspirin and fumaric acid or an ester or a salt thereof (e.g., DMF) to the patient in such a way that the aspirin is absorbed within less than about 5 minutes (or less than about 10 minutes, 15 minutes, 20 minutes, 25 minutes or 30 minutes) of, or substantially simultaneously to, the fumaric acid or an ester or a salt thereof (e.g., DMF), the bioavailability of the fumaric acid or an ester or a salt thereof (e.g., DMF) will be enhanced such that the therapeutically effective dose is about 480 mg/day or less, or at least about 360 mg/day, or about 360 mg/day, or about 380 mg/day, or about 400 mg/day, or about 410 mg/day, or about 420 mg/day, or between about 360 mg/day and 420 mg/day, or between about 360 mg/day and 480 mg/day.
- In some embodiments, the microspheres described herein comprise about 80% w/w, or about 75% w/w, or about 70% w/w, or about 65% w/w active ingredient (i.e., aspirin or fumaric acid or an ester or a salt thereof).
- In one embodiment, an example co-formulation has a chewable outer layer as the dissolvable portion, such that it can be absorbed quickly. This chewable layer may be adhered directly to the inner layer (the swallowable portion), or it may be such designed that when it is bitten lightly (e.g. with minimal force, such as the force needed to chew a banana), this outer chewable layer breaks off into many pieces within the mouth, and can be chewed and thus absorbed, leaving the hard inner layers in the mouth to be swallowed. By making the chewable layer “crumble” in such a way, the patient will avoid biting hard through the hard inner layer of the tablet, which could be uncomfortable if the inner tablet is very hard, or could damage the integrity of the inner tablet, allowing it to be absorbed earlier than desired.
- This may be similar to eating a cherry, where one bites the outer layer off and eats it, but does not bite too hard to chip their tooth on the hard inner pit. However, in the inventive tablet the patient would then swallow the inner tablet, instead of spitting out the cherry pit.
- The outer chewable layer can be formulated, e.g., with a water soluble sugar and/or a sugar substitutes. Suitable water-soluble sugars and/or sugar substitutes are glucose, maltose, sucrose, dextrose, fructose, sorbitol, mannitol or other types of natural or artificial sweeteners. Mixtures of various sugars or sugar substitutes are also suitable.
- The chewable layer can also be formulated with, e.g., a gel forming agent. Examples of such suitable gel formers are xanthan gum, methylcelluloses such as sodium carboxymethylcellulose or hydroxypropylmethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, alginates, tragacanth or edible starch. These substances are all commercially available and usually meet the purity requirements and quality regulations for pharmaceutical products. All such gel formers and coatings contemplated are GRAS (generally regarded as safe).
- Wetting agents and lubricants such as sodium lauryl sulfate, as well as coloring agents, flavoring agents, sweetening agents (including other nonnutritive sweeteners), tableting agents, stabilizers, antioxidants, cooling agents, and preservatives, can also be present.
- A binding agent can also be present such as cellulose, cellulosic derivatives, polyvinyl pyrrolidone, starch, modified starch, and mixtures thereof, and, in particular, microcrystalline cellulose.
- One example of a manufacturing technique to formulate the chewable component over the solid dosage form is compression coating. The compression coating can be prepared by, e.g., a Manesty Dry-Cota press, which consists of two side by side interconnected tablet presses where the core is made on one press then mechanically transferred to the next press for compression coating. Each “press” has an independent powder feed mechanism so that core blend is loaded on one machine and coating blend on the other. Mechanical transfer arms rotate between the machines to remove cores from one press and transfer them to the coating press. Other and more modern types of presses which may be used (e.g. Elizabeth Hata HT-AP44-MSU-C, Killian RUD, Fette PT 4090) have a dual feed system for coating blend and pre-made cores. This configuration is more flexible, in that cores can be pan coated with a functional or cosmetic coating before compression coating. However, any conventional, art-recognized manufacturing technique that permits the formulation of a chewable component over a solid dosage form will be readily appreciated by the skilled artisan and is contemplated by the present disclosure.
- A similar embodiment would not only have an outer chewable layer, but also a thin shell outside of the chewable layer. This would be similar to the thin candy shell of an M&M candy. With this thin outer shell helping to hold the tablet together, the chewable layer can be designed to more easily crumble and dissolve than if there was no outer shell, e.g., by reducing the amount of binder or by reducing the compression to that which will minimally hold the chewable component together until the outer shell is applied.
- The outer shell can be a sugar coating or a polymer coating such as hydroxypropylmethylcelluose or polyvinylalcohol or combinations thereof, for example.
- Another embodiment contemplated by the present disclosure is an outer layer made from liquid, within a thin outer skin or shell. When the patient bites lightly on the tablet, this outer skin would fracture, allowing the liquid (or gel) of a fast-absorbing medication to release into the mouth and thus be absorbed quickly, starting at the mouth's mucous membranes. There are several possible embodiments of this outer layer, including viscous liquids, gels, quick absorbable substances, powder within a breakable skin, substances that “melt” in the mouth (quickly absorb) and more. In another embodiment of this example, the liquid can be comprised of two or more substances and can also include solid particles which can be comprised of one or more substances. In this embodiment, the solid particles would be suspended in the liquid. The solid particles could also dissolve over time into the liquid.
- When the outer layer is manufactured to absorb quickly, the drug can be formulated with a water soluble excipient such as a sugar, sugar alcohol, polyethylene glycol (PEG), or polyethylene oxide. The preferred water-soluble excipients are the sugar alcohols including, but not limited to sorbitol, mannitol, maltitol, reduced starch saccharide, xylitol, reduced paratinose, erythritol, and combinations thereof. The preferred sugar is glucose. Other suitable water-soluble excipients include gelatin, partially hydrolyzed gelatin, hydrolyzed dextran, dextrin, alginate and mixtures thereof. A disintigrating agent such as sodium starch “meltable” formulation can be readily determined by one of skill in the art.
- When the outer layer contains a liquid within an outer skin, the outer skin can be gelatin and the drug can be mixed with water or miscible solvents such as propylene glycol; PEG's and ethanol, or an oleaginous medium, e.g., peanut oil, liquid paraffin or olive oil.
- Another embodiment has an outer layer which rapidly dissolves when sucked on. When the inner layer is reached, the patient would swallow the tablet. This embodiment can be designed such that the outer surface of the inner, hard layer has a texture that is easily recognized by the tongue, so that it is clear to the patient when the outer layer is fully dissolved, and thus when it is time to swallow the inner layer. This would be similar to a Tootsie Pop®, in that the Tootsie Roll® center is easily recognized by the tongue as feeling very different than the outer dissolvable candy.
- In such an embodiment, the dissolvable portion can be formulated in a dissolvable matrix material. The dissolvable matrix may include carbohydrates, fats, proteins, waxes (natural and synthetic), hydrocarbons, and other materials which safely and rapidly dissolve in the mouth.
- The inner, swallowable “slow absorb” or “extended release” layer contemplated by the present disclosure can have any number of art-recognized constituencies. In one embodiment, the inner layer is designed similar to a standard tablet. In another embodiment, the inner layer is enteric coated, further slowing the release of the medication. In still another embodiment the inner layer can be an extended release dosage form.
- When the inner layer has an enteric coating, the coating can be, e.g., a material selected from the group consisting of one or more of the following: cellulose acetate phthalate, alginates, alkali-soluble acrylic resins, hydroxypropyl methylcellulose phthalate, methacrylate-methacrylic acid copolymers, polyvinyl acetate phthalate and styrol maleic acid copolymers. The coating can also be multilayered; i.e. one or more coatings are contemplated to provide extended release kinetics which permit the inner tablet to release over a period of from 15 minutes to 24 hours or more.
- The extended release dosage form can be formulated with the drug dispersed in a matrix or with an extended release coating. Suitable materials form inclusion in an extended release matrix or coating can be, e.g., a cellulosic material, an acrylic polymer, or a combination thereof.
- The contemplated inner layer can also be made of a substance which is softer and more pliable than a standard hard tablet, e.g. similar to a hard taffy. In this way, the patient could not chip their teeth when biting the tablet, as the inner layer will absorb some of the shock of the bite without breaking or dissolving. It can then by swallowed to be absorbed in the GI system, after the outer layer was absorbed in the mouth.
- The “taffy” can be prepared, e.g., with an admixture of a sugar melt having at least 40% sugar, such as fructose and a surface active agent. However, the skilled artisan can readily prepare alternative formulations of sugar-based substances to achieve an inner core that absorbs the shock of the chewing force exerted by an individual in the normal course of taking a chewable medication.
- In another example, the dissolvable portion can include two or more discrete pulverizable portions or layers. All discrete pulverizable layers will be dispersed in the oral cavity by masticating, thereby releasing the layers from the hard inner core.
- Compounds which may be included in the two or more discrete pulverizable portions or layers include sodium lauryl sulfate, as well as coloring agents, flavoring agents, sweetening agents (including other nonnutritive sweeteners), tableting agents, stabilizers, antioxidants, cooling agents, and preservatives, suitable water-soluble sugars and/or sugar substitutes including glucose, maltose, sucrose, dextrose, fructose, sorbitol, mannitol or other types of natural or artificial sweeteners, gel forming agents including xanthan gum, methylcelluloses such as sodium carboxymethylcellulose or hydroxypropylmethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, alginates, tragacanth and soluble starch, binding agents including cellulose, cellulosic derivatives, polyvinyl pyrrolidone, starch, modified starch, and microcrystalline cellulose, water soluble excipients such as a sugar, sugar alcohol, polyethylene glycol (PEG), or polyethylene oxide, sorbitol, mannitol, maltitol, reduced starch saccharide, xylitol, reduced paratinose, erythritol, gelatin, partially hydrolyzed gelatin, hydrolyzed dextran, dextrin, alginate, naproxen sodium (sodium (2S)-2-(6-methoxynaphthalen-2-yl)propanoate) and ibuprofen (2-[4-(2-methylpropyl)phenyl]propanoic acid), aspirin, a COX inhibitor, COX-2 specific inhibitors such as colecoxib (Celebrex™) (4-[5-(4-methylphenyl-3-)trifluoromethyl)pyrazol-1-yl]benzenesulfonamide) and rofecoxib (Vioxx™) (4-(4-methylsulfonylphenyl)-3-phenyl-5H-furan-2-one), Percocet™ (combination of acetaminophen and oxycodone), Tylenol™ acetaminophen, an NSAID an anti-emetic, a sedative, an anesthetic, an amnesiatic, acetaminophen, diclofenac, aspirin, laropiprant, or vitamins such as Vitamin C, and more, or any combination of the above. These discrete layers may also cover only a portion of the hard inner core, or swallowable portion.
- The following examples are included to demonstrate specific embodiments of the disclosure. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques to function well in the practice of the disclosure, and thus can be considered to constitute specific modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the disclosure.
- Seven human patients with multiple sclerosis who were already taking dimethyl fumarate and had experienced flushing side effects from dimethyl fumarate were recruited for this study. Each patient did not have an allergy or reaction to aspirin or dimethyl fumarate (DMF), had not been diagnosed with kidney disease or liver disease, was not pregnant or planning to be pregnant within the following two months, had not been breastfeeding within the preceding two months, and had not used aspirin for the preceding 7 days.
- In Period I, each patient was given their standard dose of 240 mg dimethyl fumarate orally. Each patient was asked to rate his or her flush on the Global Flush Severity Scale (GFSS) (see Paolini et al. Int. J. Clin. Pract. 62(6):896-904 (2008)), when the flush completely resolved. The Global Flushing Severity Score measures, overall, in the previous 24 hours, how each patient rates the flushing symptoms, including redness, warmth, tingling, and itchiness of the skin.
- Period II did not start until at least two days upon completion of Period I. At Period II, each patient orally swallowed 162 mg aspirin followed by 240 mg dimethyl fumarate. After the flush completely resolved, then each patient recorded his or her GFSS flush rating.
- Not until at least two days later did Period III start. At Period III, each patient was asked to not swallow the orally administered aspirin (162 mg) but to allow the aspirin to be absorbed through the oral mucosa. The aspirin was in powdered form and the remaining aspirin in the mouth was washed out with water. Afterwards, 240 mg of dimethyl fumarate was swallowed with a glass of water. Still, the flush was rated (GFSS) after it was resolved.
- The patients during Period III suffered the least severe flush than during any other Periods. Among Periods I through II, the severity of flush was the lowest in Period III (a 52% reduction as compared to Period I), second lowest in Period II (a 33% reduction as compared to Period I) and the highest in Period I. As the total amount of aspirin was the same between Period II and III, this example therefore demonstrates that oral release of aspirin greatly increased aspirin's anti-flushing effect for dimethyl fumarate.
- Two hundred and twenty subjects will be recruited for the purposes of this trial. Eligible patients must have a diagnosis of release-remitting multiple sclerosis (RMMS), and at least one relapse in the 12 months prior to randomization. The trial is a randomized, double-blind, placebo-controlled, dose-ranging trial in RMMS patients already taking DMF. The trial is scheduled to last 48 weeks. Prior to the 48 weeks of on-trial time, patients will be randomly assigned, in a 1:1:1:1:1 allocation, to one of five treatments: (i) DMF 180 mg/VTS-ASA (aspirin) 200 mg twice daily; (ii) DMF 240 mg/VTS-ASA 200 mg twice daily; (iii) DMF 300 mg/VTS-ASA 200 mg twice daily; (iv) DMF 300 mg/VTS-ASA 200 mg once daily; and (v) Placebo 240 mg twice daily. Both patients and practitioners were will be blinded to the treatment regime. Study participants will report to the clinical research unit (CRU) every 4 weeks during the study period for routine medical monitoring, and every 4 weeks for the first 24 weeks for brain MRI scans.
- Study participants will be evaluated for the following primary endpoints; (i) Number of new GdE lesions in weeks 12-14; (ii) Number of new GdE lesions in weeks 4-24; (iii) Number of new GdE lesions per patient in weeks 12-24; (iv) ARR during weeks 0-24; (v) ARR during weeks 25-48; (vi) ARR during weeks 0-48. Secondary safety endpoints include; (i) headache; (ii) nasopharyngitis; (iii) nausea; (iv) diarrhea; (v) abdominal pain; (vi) lower limb fracture; (vii) pelvic inflammatory disease; (viii) phlebitis; (ix) urinary retention; and (x) uterine leiomyoma.
- In addition to the primary and secondary endpoints listed above, the proposed trial will additionally investigate endpoints that are specific to the inquiry of the effect of pretreatment of aspirin with DMF. These endpoints include; (i) occurrence of flush; (ii) occurrence of pruritus; (iii) occurrence of hot flush; (iv) Global Flushing Severity Score (GFSS); (v) Fatigue Severity Score (FSS); (vi) Number of new or enlarging T2-hyperintense lesions at week 24, a metric of remyelination; (vii) Number of new T1-hypointense lesions at week 24, a metric of remyelination; and (viii) PHQ-9 Depression Score.
- Clinically meaningful differences between treatment groups will be evaluated at the end of the study period according to intention to treat (ITT) principals.
- The bioequivalence study will be performed in two parts; a pilot study (about 20 healthy subjects), followed by a Phase 1 study (about 125 subjects). The pilot study in healthy males and females is designed to establish a pharmacokinetic (PK) profile under fasting and fed conditions for the orally administered test and reference products to compare the bioavailability in accordance with Food and Drug Administration (FDA) and Center for Drug Evaluation and Research (CDER) guidelines. Phase 1 subjects have a diagnosis of release-remitting multiple sclerosis (RMMS), and at least one relapse in the 12 months prior to randomization.
- Subjects in both studies will be randomly assigned, in a 1:1:1:1 allocation, to one of four treatments: oral administration of (i) aspirin only (control); (ii) DMF only; (iii) DMF/aspirin combination in the fasted state; (iv) DMF/aspirin combination in the fed state. Both patients and practitioners will be blinded to the treatment regime.
- To investigate the PK profiles of the test product, DMF 180 mg/ASA 150 mg capsules and the reference products, DMF 240 mg delayed-released capsules and Bayer Aspirin® 325 mg tablets, and to determine the sample size for future studies.
- For this purpose the PK profiles of DMF's metabolite, monomethylfumarate (MMF), acetylsalicylic acid (ASA) and its active metabolite, salicylic acid (SA) in plasma will be investigated after administration of a single dose of the test and reference formulations, under fasting and fed conditions.
- These will be a single-dose, open-label, laboratory-blind, randomized, four period crossover pilot study with orally administered dimethylfumarate and aspirin conducted under fasting and fed conditions.
- The studies will comprise:
-
- Screening period of maximum 21 days;
- Four treatment periods (each of which will include a profile period of 12 hours separated by a wash-out period of 3 calendar days (minimum number of days based on half-life of the analyte/metabolites) to 7 calendar days (maximum number of days based on logistical arrangements) between consecutive administrations of the IMP, and
- A post-study visit within 72 hours of completion of the last treatment period of the study.
- Procedures listed for the post-study visit will be performed in the event of early withdrawal from the study. Subjects will be assigned randomly to treatment sequence, before the first administration of IMP.
- The duration of this study is expected to be approximately 25 days (approximately 3½ weeks) per subject (excluding the screening period). The actual overall study duration and study recruitment time may vary.
- Along with other assessments during the screening period and admission, during the treatment period the subjects vital signs will be assessed and they will be assessed for adverse events and concomitant medication and pharmacokinetic blood samples will be collected at the following time points: at pre dose (0 hours), at 15 minutes (acetylsalicylic acid and salicylic acid only), 30 minutes, 45 minutes (acetylsalicylic acid and salicylic acid only) and at 1 hour, 1 hour 30 minutes, 2 hours, 2 hours 30 minutes, 3 hours, 3 hours 30 minutes, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 10 hours and 12 hours post dose (total: 17 samples per treatment period). If applicable, the collection of PK blood samples take precedence over other assessments at a scheduled time-point.
- Subjects will receive either the test or reference product, according to the randomization schedule, under fasting and fed conditions. Subjects will receive each product once.
-
Treatment A - DMF only fasting (Reference 1) API: Dimethylfumarate (DMF) Dosage form and strength: 240 mg delayed release capsule Study dose: 240 mg (1 capsule) Route of administration: Oral -
Treatment B - Aspirin only fasting (Reference 2) API: Aspirin (acetylsalicylic acid [ASA]) Dosage form and strength: 325 mg tablet Study dose: 325 mg (1 tablet) Route of administration: Oral -
Treatment C - DMF/aspirin (ASA) fasting (Test 1) API: DMF 180 mg/aspirin (ASA) 150 mg Dosage form and strength: DMF 180 mg/aspirin (ASA) 150 mg fixed dose combination capsule Study dose: DMF 180 mg/aspirin (ASA) 150 mg capsule (1 capsule) Route of administration: Oral (the outer layer of the fixed dose combination capsule contains aspirin that dissolves in the mouth before the remaining part of the capsule is then swallowed whole with water) -
Treatment D - DMF/aspirin (ASA) fed (Test 2) API: DMF 180 mg/aspirin (ASA) 150 mg Dosage form and strength: DMF 180 mg/aspirin (ASA) 150 mg fixed dose combination capsule Study dose: DMF 180 mg/aspirin (ASA) 150 mg capsule (1 capsule) Route of administration: Oral (the outer layer of the fixed dose combination capsule contains aspirin that dissolves in the mouth before the remaining part of the capsule is then swallowed whole with water) - For the fasting treatment periods, after an overnight fast of at least 10 hours, subjects will receive either the reference or the test product (according to the randomization schedule) with 240 mL water. The reference products must be swallowed whole with water. The fixed dose combination capsule) must be kept in the mouth until the outer layer (containing the aspirin) has dissolved in the mouth before the capsule is then swallowed whole with water. Specific details on the administration of the test product will be provided in a separate document, if needed.
- For fed treatment period, after an overnight fast of at least 10 hours, subjects will receive a standardized high-fat, high-calorie breakfast 30 minutes before administration of IMP. The entire meal must be consumed within 30 minutes. After completion of the breakfast subjects will receive either the reference or the test product (according to the randomization schedule) with 240 mL water. The reference products must be swallowed whole with water. The fixed dose combination capsule) must be kept in the mouth until the outer layer (containing the aspirin) has dissolved in the mouth before the capsule is then swallowed whole with water.
- Quantitative analysis of monomethylfumarate, acetylsalicylic acid and salicylic acid in the collected plasma samples will be performed by BASD using liquid chromatography with tandem mass spectrometry (LC-MS/MS).
- Calculation of the PK parameters will be made with Phoenix® WinNonlin® 6.2 (or higher) (Certara, L. P., 1699 South Hanley Road, St Louis, Mo. 63144, USA). The PK parameters will be calculated for each subject and treatment using non-compartmental analysis and using the actual sampling time intervals (relative to IMP administration).
- Primary Pharmacokinetic Parameters for monomethylfumarate, acetylsalicylic acid and salicylic acid:
-
- Maximum observed plasma concentration (Cmax)
- Area under the plasma concentration versus time curve, from time zero to t, where t is the time of the last quantifiable concentration (AUC(0-t))
- Area under the plasma concentration versus time curve, with extrapolation to infinity (AUC(0-∞))
- Secondary Pharmacokinetic Parameters for monomethylfumarate, acetylsalicylic acid and salicylic acid
-
- Time to maximum observed plasma concentration (tmax)
- Terminal elimination rate constant (λz)
- Apparent terminal elimination half-life (t½-z)
- It is contemplated that this study will show that that by co-administering DMF with aspirin as described herein, the bioavailability of the DMF will be increased such that the effective dose of DMF can be reduced to as low as about 360 mg/day, or 480 mg/day or less, or about 400 mg/day, about 420 mg/day, or from about 360 mg/day to about 420 mg/day.
- The objective of this example was to compare the rate and extent of absorption of monomethyl fumarate from a dimethyl fumarate-acetylsalicylic acid 180 mg-150 mg delayed-release capsule (VTS-72) (Test; Treatment A) versus Tecfidera 240 mg delayed-release capsule (Reference; Treatment B), administered as 1×180 mg-150 mg or 1×240 mg delayed-release capsule under fasting conditions.
- This was a single center, pilot, comparative bioavailability, open-label, randomized, single-dose, 2-period, 2-sequence, crossover study under fasting conditions. A total of 12 healthy adult male or female volunteers were included in this pilot study. For each period, subjects will be confined from at least 10 hours before dosing until 12 hours post-dose. There were a washout of 7 days or more between doses. The washout period could be increased for logistical considerations. Participation of each subject in this study lasted approximately 9 days. Subjects were administered each treatment according to the 2-period, 2-sequence, block randomization scheme.
- Treatment A: Subjects were required not to wear dentures or to remove their tongue piercing at the time of dosing. The delayed-release capsule were placed on the subject's tongue. Subjects were instructed to suck the delayed-release capsule until the acetylsalicylic acid coating was dissolved or up to a maximum of 1 minute after the delayed-release capsule had been placed on the subject's tongue. The delayed-release capsule should not be chewed, bitten, or swallowed during that 1 minute period or until the coating is dissolved; only the saliva could be swallowed. The subject was instructed to give a hand sign once the acetylsalicylic acid coating was dissolved (the capsule should feel and taste different). Thereafter, or up to a maximum of 1 minute after the delayed- release capsule was placed on the subject's tongue, 240 mL of water was given to subjects to swallow the capsule. Time of dosing was set to the time the capsule was placed on the tongue. A hand and mouth check was performed to ensure consumption of the medication.
- Treatment B: Study medication was administered to each subject and was swallowed whole with 240 mL of water without being sucked, chewed or bitten, and a hand and mouth check was performed to ensure consumption of the medication.
- Flushing (including redness, warmth, tingling, and itchiness of the skin) was assessed at 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 hours post-dose using the question and the rating scale presented in Section—Flushing Assessment below. Half grades were not assigned. Flushing symptoms were recorded as adverse events.
- GI symptoms were assessed at 10 hours post-dose using the questions and the rating scale presented in Section—Gastrointestinal Symptoms Assessment below. Half grades were not assigned. GI symptoms were recorded as adverse events.
- Flushing was assessed using the question below. The question was asked by the clinical staff:
-
- Question 1: Overall, at this moment, how would you rate your flushing symptoms (including redness, warmth, tingling, and itchiness of the skin)? Score from 0 to 10 (none 0, mild 1 to 3, moderate 4 to 6, severe 7 to 9, extreme 10).
-
FIG. 1 is an example of the scale that was used to rate the assessment of Question 1. - Gastrointestinal symptoms were assessed using the questions below. Questions were asked by the clinical staff:
-
- Question 2: Overall, during the past 10 hours, how would you rate your GI side effects(nausea, diarrhea, upper abdominal pain, lower abdominal pain, vomiting, indigestion, constipation, bloating, and flatulence)?
- Question 3: Overall, during the past 10 hours, how bothersome were your GI side effects (nausea, diarrhea, upper abdominal pain, lower abdominal pain, vomiting, indigestion, constipation, bloating, and flatulence)?
-
FIG. 2 is an example of the scale that was used to rate the assessment of 2 and 3.Questions - The flushing side effect reported by each of the subject is summarized in Table 1 below. The total reduction of flushing from 15.9 to 7.9 was about 50.3%. When the doses of DMF were normalized to 180 mg in both treatments, the reduction was still 33.6%. Considering that, as shown below, aspirin increased the bioavailability of DMF by about 5%, the reduction of the flushing side effect is actually about 36.8%.Also interestingly, 6 of these 11 subjects had their flushes peak at least 30 mins earlier with VTS-72 (only 2 were later) than with DMF alone.
-
TABLE 1 Summary of Flush Ratings Total Flush Rating* Treatment A Treatment B (180 mg DMF + Subject # (240 mg DMF) 150 mg Aspirin) 1 (drop out) (drop out) 2 26 5 3 8 8 4 18 14 5 26 13 6 14 6 7 36 13 8 8 2 9 11 9 10 9 0 11 8 15 12 11 2 Mean 15.9 7.9 Normalized Mean 11.9 7.9 *Flushes were scored from 0-10 every 30 mins, up to 4 hours post dose (8 total measurements per dose) and added up - Table 2 below provides a descriptive statistics summary of monomethyl fumarate plasma pharmacokinetic parameters.
-
TABLE 2 Descriptive Statistics Summary of Monomethyl Fumarate Plasma Pharmacokinetic Parameters Parameter Treatment A Treatment B (units) N Mean SD CV % N Mean SD CV % AUC0-t (h*ng/mL) 11 3874.01 1213.13 31.31 11 4924.24 1550.02 31.48 AUC0-inf (h*ng/mL) 11 3885.63 1214.97 31.27 11 4958.99 1544.26 31.14 Residual area (%) 11 0.32 0.16 49.93 11 0.74 1.79 243.23 Cmax (ng/mL) 11 2034.02 599.26 29.46 11 2749.40 988.79 35.96 T1/2 el (h) 11 0.62 0.14 22.14 11 0.75 0.27 35.53 Kel (/h) 11 1.1618 0.2268 19.5244 11 1.0149 0.2926 28.8326 Correlation 11 −0.9978 0.0023 −0.2328 11 −0.9639 0.0689 −7.1439 Kel Lower (h) 11 4.768 0.959 20.105 11 5.364 1.002 18.687 Kel Upper (h) 11 7.269 1.349 18.553 11 8.360 1.362 16.287 - When the mean values in both treatments were normalized to 180 mg DMF, the mean values are summarized in Table 3. Co-administration of aspirin did not have significant impact on the Cmax of DMF. However, the co-administration of aspirin caused an about 5% increase in AUC0-t and AUC0-inf. Also surprisingly, the data showed very tight inter-subject variability (confidence intervals).
-
TABLE 3 Statistics Summary after Dose Normalization Treatment B Change % Treatment A (normalized) (A over B) AUC0-t (h*ng/mL) 3874.01 3693.18 4.90% AUC0-inf (h*ng/mL) 3885.63 3719.2425 4.47% Residual area (%) 0.32 0.555 −4.23% Cmax (ng/mL) 2034.02 2062.05 −1.36% - Also interestingly, even though the Cmax did not have a significant change, the co-administration of aspirin shifted the Tmax to about 20 minutes earlier (median). See Table 4.
-
TABLE 4 Summary Statistics of Tmax Parameter Treatment A Treatment B (units) N Median Min Max N Median Min Max Tmax (h) 11 2.330 1.327 4.499 11 2.661 0.747 4.994 - This example demonstrates that co-administration of aspirin increased the bioavailability of DMF by about 5% while at the same time reducing the flushing side effect by more than 35%.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.
- The disclosures illustratively described herein may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms “comprising”, “including,” “containing”, etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the disclosure claimed.
- Thus, it should be understood that although the present disclosure has been specifically disclosed by preferred embodiments and optional features, modification, improvement and variation of the disclosures embodied therein herein disclosed may be resorted to by those skilled in the art, and that such modifications, improvements and variations are considered to be within the scope of this disclosure. The materials, methods, and examples provided here are representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the disclosure.
- The disclosure has been described broadly and generically herein. Each of the narrower species and subgeneric groupings falling within the generic disclosure also form part of the disclosure. This includes the generic description of the disclosure with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.
- In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.
- All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety, to the same extent as if each were incorporated by reference individually. In case of conflict, the present specification, including definitions, will control.
- It is to be understood that while the disclosure has been described in conjunction with the above embodiments, that the foregoing description and examples are intended to illustrate and not limit the scope of the disclosure. Other aspects, advantages and modifications within the scope of the disclosure will be apparent to those skilled in the art to which the disclosure pertains.
Claims (18)
1-11. (canceled)
12. A capsule comprising a dosage form comprising an effective amount of aspirin and an effective amount a fumaric acid or an ester or a salt thereof, wherein the aspirin and fumaric acid or an ester or a salt thereof are each individually formulated as enterically coated microspheres contained within a capsule shell.
13. The capsule of claim 12 , wherein the capsule is coated with a second dose of aspirin formulated to dissolve in an oral cavity of a subject.
14. The capsule of claim 13 , comprising from about 20 mg to about 500 mg of aspirin.
15. A method of treating multiple sclerosis (MS) in a human patient in need thereof, comprising orally administering to the patient a dosage form comprising aspirin and fumaric acid or an ester or a salt thereof, wherein the aspirin is administered at from about 150 mg to about 650 mg per day and the fumaric acid or ester or salt thereof is administered at about 300 mg to about 450 mg per day.
16. The method of claim 15 , wherein at least a portion of the aspirin is formulated to dissolve in an oral cavity of a subject.
17. The method of claim 15 or 16 , wherein the fumaric acid or ester or salt thereof is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject.
18. The method of claim 15 , wherein the pharmaceutical composition is in the form of a capsule.
19. A method of treating multiple sclerosis (MS) , psoriasis, a motor neuron disease, a neurodegenerative disease, an autoimmune disease, an inflammatory disease, sepsis, or a skin disease in a human patient in need thereof, comprising orally administering to the patient one or more tablets each comprising a first portion comprising a first amount of aspirin and a second portion comprising a second amount of fumaric acid or an ester or a salt thereof,
wherein the first portion is formulated to dissolve in an oral cavity of a subject,
wherein the second portion is formulated for dissolving in stomach, intestines, or further distal in the gastrointestinal tract of the subject, and
wherein the aspirin is administered at from about 150 mg to about 650 mg per day and the fumaric acid or ester or salt thereof is administered at about 300 mg to about 450 mg per day.
20. The method of claim 19 , wherein the patient suffers from relapse-remitting MS (RRMS).
21. The method of claim 19 , wherein the patient has a history of non-compliance with a medication due to cutaneous flush or a gastrointestinal side effect.
22. The method of claim 19 , wherein the second amount of the fumaric acid or ester or salt thereof is about 180 mg.
23. The method of claim 22 , wherein the first amount of aspirin is from about 80 mg to about 250 mg.
24. The method of claim 22 , wherein the second portion further comprises a third amount of aspirin.
25. The method of claim 24 , wherein the first amount of aspirin and the second amount of aspirin each is from about 20 mg to about 120 mg or from about 80 mg to about 120 mg.
26. The method of claim 22 , wherein the second portion is enclosed in an enteric coating.
27. The method of claim 19 , wherein the ester is dimethyl fumarate, monomethyl fumarate or combination thereof.
28-48. (canceled)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/327,395 US20220008441A1 (en) | 2017-03-17 | 2021-05-21 | Compositions and methods for treating multiple sclerosis |
| US18/885,310 US20250144121A1 (en) | 2017-03-17 | 2024-09-13 | Compositions and methods for treating multiple sclerosis |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762473080P | 2017-03-17 | 2017-03-17 | |
| US201762594493P | 2017-12-04 | 2017-12-04 | |
| US15/922,729 US10398712B2 (en) | 2017-03-17 | 2018-03-15 | Compositions and methods for treating multiple sclerosis |
| US16/523,916 US11013751B2 (en) | 2017-03-17 | 2019-07-26 | Compositions and methods for treating multiple sclerosis |
| US17/327,395 US20220008441A1 (en) | 2017-03-17 | 2021-05-21 | Compositions and methods for treating multiple sclerosis |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/523,916 Continuation US11013751B2 (en) | 2017-03-17 | 2019-07-26 | Compositions and methods for treating multiple sclerosis |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US18/885,310 Continuation US20250144121A1 (en) | 2017-03-17 | 2024-09-13 | Compositions and methods for treating multiple sclerosis |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20220008441A1 true US20220008441A1 (en) | 2022-01-13 |
Family
ID=63520559
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/922,729 Active US10398712B2 (en) | 2017-03-17 | 2018-03-15 | Compositions and methods for treating multiple sclerosis |
| US16/523,916 Active US11013751B2 (en) | 2017-03-17 | 2019-07-26 | Compositions and methods for treating multiple sclerosis |
| US17/327,395 Abandoned US20220008441A1 (en) | 2017-03-17 | 2021-05-21 | Compositions and methods for treating multiple sclerosis |
| US18/885,310 Pending US20250144121A1 (en) | 2017-03-17 | 2024-09-13 | Compositions and methods for treating multiple sclerosis |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/922,729 Active US10398712B2 (en) | 2017-03-17 | 2018-03-15 | Compositions and methods for treating multiple sclerosis |
| US16/523,916 Active US11013751B2 (en) | 2017-03-17 | 2019-07-26 | Compositions and methods for treating multiple sclerosis |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US18/885,310 Pending US20250144121A1 (en) | 2017-03-17 | 2024-09-13 | Compositions and methods for treating multiple sclerosis |
Country Status (6)
| Country | Link |
|---|---|
| US (4) | US10398712B2 (en) |
| EP (1) | EP3595640A4 (en) |
| JP (1) | JP2020510103A (en) |
| CN (1) | CN110475547A (en) |
| CA (1) | CA3056234A1 (en) |
| WO (1) | WO2018170319A1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110475547A (en) | 2017-03-17 | 2019-11-19 | 维塔利斯公司 | The composition and method for treating multiple sclerosis |
| WO2020055739A1 (en) * | 2018-09-10 | 2020-03-19 | Vitalis Llc | Fumaric acid compositions with increased bioavailability and reduced side effects |
| TW202116297A (en) * | 2019-07-03 | 2021-05-01 | 西班牙商布爾奴爾法碼有限公司 | Combination therapy methods, compositions and kits |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006035416A2 (en) * | 2004-09-27 | 2006-04-06 | Sigmoid Biotechnologies Limited | Minicapsule formulations |
| US20170042821A1 (en) * | 2007-07-01 | 2017-02-16 | Vitalis Llc | Combination tablet with chewable outer layer |
| US8404275B2 (en) * | 2007-07-01 | 2013-03-26 | Vitalis Llc | Combination tablet with chewable outer layer |
| PE20150092A1 (en) * | 2012-02-07 | 2015-02-06 | Biogen Idec Inc | PHARMACEUTICAL COMPOSITIONS CONTAINING DIMETHYL FUMARATE |
| US20150072005A1 (en) * | 2013-09-10 | 2015-03-12 | Vitalis Llc | Aspirin formulation for increased efficacy |
| AU2015222880B2 (en) * | 2014-02-28 | 2016-11-24 | Banner Life Sciences Llc | Controlled release enteric soft capsules of fumarate esters |
| US9636318B2 (en) | 2015-08-31 | 2017-05-02 | Banner Life Sciences Llc | Fumarate ester dosage forms |
| CN110475547A (en) | 2017-03-17 | 2019-11-19 | 维塔利斯公司 | The composition and method for treating multiple sclerosis |
-
2018
- 2018-03-15 CN CN201880024782.9A patent/CN110475547A/en active Pending
- 2018-03-15 US US15/922,729 patent/US10398712B2/en active Active
- 2018-03-15 JP JP2020500020A patent/JP2020510103A/en active Pending
- 2018-03-15 EP EP18767691.1A patent/EP3595640A4/en active Pending
- 2018-03-15 CA CA3056234A patent/CA3056234A1/en active Pending
- 2018-03-15 WO PCT/US2018/022737 patent/WO2018170319A1/en not_active Ceased
-
2019
- 2019-07-26 US US16/523,916 patent/US11013751B2/en active Active
-
2021
- 2021-05-21 US US17/327,395 patent/US20220008441A1/en not_active Abandoned
-
2024
- 2024-09-13 US US18/885,310 patent/US20250144121A1/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| EP3595640A4 (en) | 2020-09-23 |
| CA3056234A1 (en) | 2018-09-20 |
| JP2020510103A (en) | 2020-04-02 |
| US11013751B2 (en) | 2021-05-25 |
| US20180264014A1 (en) | 2018-09-20 |
| EP3595640A1 (en) | 2020-01-22 |
| US20200155577A1 (en) | 2020-05-21 |
| WO2018170319A1 (en) | 2018-09-20 |
| CN110475547A (en) | 2019-11-19 |
| US10398712B2 (en) | 2019-09-03 |
| US20250144121A1 (en) | 2025-05-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2690956C (en) | Combination tablet with chewable outer layer | |
| US8652520B2 (en) | Combination tablet with chewable outer layer | |
| US20250144121A1 (en) | Compositions and methods for treating multiple sclerosis | |
| EP2043637B1 (en) | Methods and medicaments for administration of ibuprofen | |
| US20130310455A1 (en) | Acamprosate formulations, methods of using the same, and combinations comprising the same | |
| EP2341910A1 (en) | Immediate release dosage forms of sodium oxybate | |
| US20220008342A1 (en) | Combination tablet with chewable outer layer | |
| AU2013312259B2 (en) | Pharmaceutical compositions comprising flurbiprofen | |
| US20250161225A1 (en) | Fumaric acid compositions with increased bioavailability and reduced side effects | |
| US20080014261A1 (en) | Non-narcotic biphasic release compositions and methods for treatment of coughing, sneezing, rhinorrhea, and/or nasal obstruction | |
| US20080008772A1 (en) | Narcotic biphasic release compositions and methods for treatment of coughing, sneezing, rhinorrhea, and/or nasal obstruction | |
| US20130078287A1 (en) | Pharmaceutical compositions of ibuprofen and an h2 receptor antagonist | |
| US20170246194A1 (en) | Acetaminophen-Containing Analgesic Formulations With Reduced Hepatotoxicity | |
| WO2014048511A1 (en) | Metadoxine for use in the treatment of liver diseases, and metadoxine extended release formulations | |
| US20210128496A1 (en) | Dropropizine in combination with ambroxol in the dosage form of syrup or tablets | |
| HK1169038A (en) | Compositions comprising famotidine and ibuprofen as well as compositions comprising 25 mg to 28 mg famotidine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |