[go: up one dir, main page]

US20220404539A1 - Illuminated cover for electromagnetic transmitter and receiver - Google Patents

Illuminated cover for electromagnetic transmitter and receiver Download PDF

Info

Publication number
US20220404539A1
US20220404539A1 US17/843,411 US202217843411A US2022404539A1 US 20220404539 A1 US20220404539 A1 US 20220404539A1 US 202217843411 A US202217843411 A US 202217843411A US 2022404539 A1 US2022404539 A1 US 2022404539A1
Authority
US
United States
Prior art keywords
layer
cover
plate
light
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/843,411
Inventor
Alenka BAJEC STRLE
Bostjan BERKOPEC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hella Saturnus Slovenija doo
Original Assignee
Hella Saturnus Slovenija doo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hella Saturnus Slovenija doo filed Critical Hella Saturnus Slovenija doo
Assigned to Hella Saturnus Slovenija d.o.o. reassignment Hella Saturnus Slovenija d.o.o. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAJEC STRLE, Alenka, BERKOPEC, Bostjan
Publication of US20220404539A1 publication Critical patent/US20220404539A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/006Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to produce indicia, symbols, texts or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/009Positioning aspects of the light source in the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0091Positioning aspects of the light source relative to the light guide
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia
    • G09F13/0418Constructional details
    • G09F13/0445Frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/421Means for correcting aberrations introduced by a radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/005Manufacturers' emblems, name plates, bonnet ornaments, mascots or the like; Mounting means therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details

Definitions

  • the present invention relates to covers for electromagnetic transmitting and receiving elements, such as radar devices and is specifically directed to radar covers for use in vehicles as well as methods of manufacture of the same.
  • Electromagnetic transmitter and receiver elements are commonly used as a radar system in vehicles for detecting the speed and range of objects for collision avoidance and adaptive cruise control systems. These elements are typically located at the front of the vehicle but may also be present at the side or rear. They are provided with a cover, which is often domed and be referred to as a radome, which protects the emitter and receiver elements from the elements and may also serve as a decorative component, for example, by supporting an emblem of the vehicle manufacturer.
  • the cover must be substantially transparent to the radio waves of interest and to this end is preferably of uniform thickness and devoid of discontinuities and angles to minimise reflection and absorption of radio waves.
  • WO 2019/130033 A1 which corresponds to US 2018/0090832
  • EP3495186A1 which corresponds to US 2020/0361399
  • a disadvantage with these radar covers is that the design or emblem is not always clearly distinguishable particularly at night or in conditions of low lighting. It would thus be advantageous to illuminate the emblem to better identify the car brand or to improve the overall design possibilities of the vehicle.
  • providing lighting in a radar cover presents a particular challenge due to the limited product dimensions, high number of components and the requirement that the radar function not be impaired.
  • a cover for an electromagnetic sensor such as a radar sensor
  • the cover comprising a plate that is substantially transparent to electromagnetic radiation, the plate having a central portion destined to be disposed over an electromagnetic sensor and an outer rim, at least the central portion being of a substantially uniform thickness, the plate further defining an upper surface destined to face an observer and a lower surface destined to face an electromagnetic sensor, the plate comprising a first layer of an optically transparent material, at least one optical element being disposed on at least one of an upper and lower surface of the first layer for outcoupling light at least from an upper surface of the plate, a second layer being disposed on at least one of the upper and lower surfaces of the first layer, the second layer being of a second optically transparent material having a refractive index lower than that of the first layer and being substantially thinner than the first layer and a graphic layer arranged on outer surface of at least one of the second layers, the graphic layer being of an optically opaque and/or reflective material.
  • a first layer can serve as a light guide providing a homogeneous background illumination by virtue of at least one outcoupling optical element.
  • the graphic layer provides a decorative component while the second layer protects from unwanted light leakage from the first layer due to the graphic layer or impurities that may deposit on the plate.
  • the second layer can be arranged on both an upper and lower surface of the first layer and thus limits light leakage from both sides of the first plate.
  • the refractive index of the first layer is preferably between 1.3-1.6, and more preferably between 1.5-1.6, while second layer preferably has a refractive index of between 1.15-1.3.
  • the thickness of the second layer is preferably between 1-6 ⁇ m, and still more preferably between 2-3 ⁇ m to limit the impact on the sensor function.
  • the at least one optical element can comprise a light diffusing surface on the first layer. This may be a surface comprising regular or irregular microstructures, grooves, or granular elevations.
  • the at least one optical element may comprise a light diffusing material applied to or integrated with the first layer.
  • this plate preferably comprises at least one protective outer layer.
  • This layer may be a protective lacquer. This layer is particularly useful for protecting the graphic layer when this is on an upper surface of the second layer and hence is vulnerable to impacts and wear from the environment.
  • the lower surface of the plate may be provided with an optically reflective layer. This improves the efficiency of the plate and the homogeneity of the illumination perceived by an observer at the upper surface of the plate, particularly when the graphic layer is on an upper surface of the second layer, i.e. on an outwardly facing surface.
  • the cover may further comprise at least one light source disposed adjacent the outer rim of the first layer and arranged to couple light into the first layer. By positioning a light source at the edge of the plate, this source will be effectively hidden from view, so reducing glare for the observer.
  • the cover comprises a frame coupled to the outer rim of the plate, the frame being of a light blocking material and adapted to accommodate the at least one light source. In this way, the light source and accompanying electronics are also protected.
  • the frame can be arranged to extend under the plate to enclose a space, the frame being substantially transparent to electromagnetic radiation.
  • the frame and plate thus together enclose a space for protecting the light sources and accompanying electronics, while the cover as a whole is designed to limit the attenuation of the electromagnetic waves to and/or from the sensor.
  • the frame can be arranged to extend under the plate to enclose a space adapted to accommodate an electromagnetic sensor.
  • the sensor may also be located within the cover, i.e., between the plate and the frame, which reduces the number of elements the electromagnetic waves must pass through and hence minimises the impact on the sensor function, while simultaneously being protected.
  • the plate can be substantially curved in cross section, preferably domed with a substantially uniform angle of curvature in cross section at least in the central portion. Preserving a uniform angle of curvature limits the interference sustained by the electromagnetic radiation.
  • the present invention further relates to a method of fabricating a cover for an electromagnetic sensor as described previously.
  • This method includes the steps of: providing a first layer of a first refractive index, forming at least one optical element on one of an upper or lower surface of the first layer, the optical element being adapted to outcouple light at least from an upper surface of the plate, providing a second layer at least on an upper surface of the first layer, the second layer being of a lower refractive index than the first layer, at least partially covering the second layer with a graphic layer.
  • the step of providing the first layer includes moulding a plastic material, such as PC or PMMA, for example by injection moulding.
  • a plastic material such as PC or PMMA
  • the at least one optical element may be formed by applying an optically diffusing material and preferably by moulding a diffusing material together with the plastic material in a 2K process. Additionally or alternatively, the at least one optical element may be formed by forming light diffusing microstructures on a surface of the first plate.
  • the method includes the step of applying an optically reflective layer to a lower surface of the plate.
  • the method may also include the application of a protective layer to an upper and lower surface of the plate.
  • Further steps of the method may include: attaching a frame to the rim of the first layer, where the attachment may be mechanical, such as by screws, rivets, clips, deformation of the frame, adhesive tape adhesion, or alternatively chemically, such as glue, lacquer, electromagnetic force using magnets, electric charge; arranging at least one light source adjacent a rim of the first layer.
  • FIG. 1 schematically illustrates an illuminated cover for radar in accordance with an example of the present invention
  • FIG. 2 schematically shows details of a cover structure
  • FIG. 3 schematically shows a cover for radar in accordance with an example of the present invention
  • FIG. 4 schematically illustrates a cover according to the invention
  • FIG. 5 schematically illustrates a cover according to the invention.
  • FIG. 6 illustrates the process of fabrication of a cover layer in accordance with the present invention.
  • FIG. 1 shows a cover 1 , also referred to as a radome, for a radar sensor in accordance with the present invention.
  • the cover 1 comprises a plate 10 that is arranged over a radar sensor 20 , which comprises one or more radio transmitters and/or receivers or antennas in the conventional manner.
  • the radio waves emitted and/or received are depicted as a cone R in FIG. 1 .
  • the whole assembly can be attached to the front of a vehicle, for example, to a facia or grille of a vehicle.
  • the plate 10 is a multilayer structure with a substantially even and constant thickness to ensure good radar performance.
  • the geometry of the plate 10 is also devoid of abrupt changes or discontinuities for the same reason.
  • the plate 10 is domed with a substantially uniform degree of curvature at least in a central portion that coincides with a radar cone R. It will be understood, however, that the plate may be substantially planar, over its whole structure, or at least in the central portion located above the radar cone R.
  • the plate 10 includes a first layer 100 that serves as a light guide.
  • Two light sources 130 are arranged at the outer rim of this first layer and arranged such that the light is coupled into the first layer 100 .
  • These light sources 130 preferably comprise one or more LEDs provided with associated power supply and control circuitry. The LEDs may be configured to generate white light or light of a specific colour.
  • Two light sources 130 are illustrated in the figures, but it will be appreciated that a single light source or more than two light sources may be used.
  • FIG. 2 shows detailed view of the layered structure of the plate 10 .
  • second layers specifically optical insulating layers 110 .
  • These optical insulating layers 110 have a lower refractive index than the first layer 100 and thus ensure that light coupled into the first layer 100 is subjected to total internal reflection at the upper and lower surfaces of this layer 100 and thus propagates through it.
  • the reflected light beams are illustrated in FIGS. 1 and 2 as L.
  • the optical insulating layer 110 serves to protect the light guide 100 from light leakage due to impurities that might deposit on the surface or graphic elements that could otherwise alter the refractive index boundary at the surface of the light guide 100 .
  • the second layer thus prevents unwanted glare for an observer and instead ensures that the cover 10 provides a homogenous background illumination.
  • the optical insulating layers 102 are shown on both the upper and lower surfaces of the light guide 100 , it may be sufficient to provide such an insulating layer only on the upper surface of the light guide 100 , i.e. on the surface that is directly outwardly and is thus open to the elements, providing that the light guide 100 has a refractive index that is higher than air, i.e. higher than 1 .
  • the light guide 100 is made of a material that is substantially transparent to both light and to the radio waves used by the radar sensors. Suitable materials include thermoplastic polymers, such as polycarbonate (PC) or PMMA (Poly(methyl methacrylate)).
  • the thickness of the light guide 100 depends on the application but is preferably within the range of 1 to 5 mm.
  • the light guide 100 has a refractive index of between 1.3 and 1.6, preferably around 1.5.
  • the optical insulating layer 110 is a thin film of depth between 1-6 ⁇ m, preferably between 2-3 ⁇ m and has a refractive index of less than 1.3, preferably 1.15-1.3.
  • the optical insulating layer 110 is preferably substantially transparent to light and optically clear and also substantially transparent to the radio waves used by the radar sensors. Suitable materials include siloxane resins.
  • the insulating layer or layers 110 may be spray-coated or otherwise deposited on the underlying layer 100 , or alternatively bonded to this layer by adhesive or heat treatment.
  • optical elements 120 are provided on the bottom surface of the first layer 100 .
  • These optical elements 120 serve to outcouple light from the light guide 100 by diffusing light, that is, by causing a refraction, reflection and/or diffraction of the light at the surface of first layer which causes it to leak out of the light guide 100 .
  • the plate 10 is perceived as illuminated, although the light sources 130 are not visible.
  • These optical elements 120 may be composed of diffractive surface relief structures such as microstructures or a roughened or granular surface formed on the lower surface of the light guide, for example, by chemical or mechanical etching of the light guide surface.
  • the optical elements 120 may alternatively be formed by applying a diffusing material to the light guide surface, or alternatively by incorporating a light-diffusing material in the light guide 100 by using a 2K injection moulding process.
  • the optical elements 120 shown in FIGS. 1 and 2 are provided only on the lower surface of the light guide 100 , however, it will be understood that they may instead be provided on the upper surface, or equally on both the lower and upper surfaces of the light guide 100 .
  • the optical elements 120 may be provided as several discrete elements arranged in a regularly spaced pattern on the upper and/or lower surface of the light guide 100 to provide an even distribution of light over the surface of the cover plate 10 .
  • the optical elements 120 may formed as a single dispersing surface at a desired location on the light guide 100 .
  • the optical elements 120 may further be arranged to form a desired design, such as an emblem or logo, or the negative of a desired design, so that the observer will see an illuminated design or a shaded design.
  • a graphic layer 140 comprising a film or foil, for example a metallic film or a foil on which a design is applied or that may be arranged to display a desired design such as the emblem or logo of a manufacturer.
  • This film is preferably very thin, of the order of a few pm so that changes in thickness of the cover 10 between areas where the graphic layer is present and those where graphic material is absent have a negligible effect on the radiation emitted and/or received by the radar sensor 20 .
  • the material of the film 140 is substantially opaque and/or reflective to visible light, but substantially transparent to the electromagnetic radiation used by sensor 20 . The design is visible through the multilayer structure of the light guide 100 and insulating layer 110 .
  • the graphic layer 140 may alternatively be formed on the upper surface of cover plate 10 , i.e. on the outer surface of the upper insulating layer 110 (see FIG. 5 ), or even on the outer surface of both the upper and lower insulating layers 110 . In all cases, the graphic layer 140 is separated from the first layer 100 by the optically insulating layer 110 to preclude the risk of light leakage that may otherwise occur on the boundary between the graphic layer 140 and first layer 100 .
  • the graphic layer 140 may advantageously be arranged to occupy the spaces between the optical elements 120 so that the design is visible not only by the presence of the graphic layer but also by the illuminated portions between the graphic elements. In this way, a desired shape may be displayed as an illuminated design or alternatively as the negative of an illuminated design.
  • the cover plate 100 may also include an outer protective layer 150 applied to the upper and/or lower surface.
  • This protective layer 150 is preferably a varnish or resin of sufficient hardness to protect the surface of the cover, and particularly the graphic layer 140 , from wear and scratches.
  • the protective layer 150 may be used to compensate for differences in thickness caused by the application or removal of the graphic layer. The protective layer 150 is omitted from the remaining figures in the interests of clarity.
  • FIG. 3 there is shown an arrangement of the cover 1 , which includes a frame 160 that extends downwards from the lower rim of cover plate 10 and under the cover plate 10 to enclose a space bordered by cover plate 10 and frame 160 .
  • the light sources 130 and associated electronics are located within this space.
  • the frame 160 serves to block unwanted light and also protect the one or more light sources 130 and associated electronics.
  • the frame 160 may also be provided with coupling elements, such as clips, screw holes or the like, that enable the cover 1 to be mounted over a radar sensor 20 on a vehicle, for example.
  • the frame 160 is of a substantially optically opaque material, preferably of moulded plastic formed by injection moulding.
  • the frame 160 may be fixed to the outer rim of the cover plate 10 mechanically with, for example, screws, rivets, clips, deformation of the frame 160 , adhesive tape, or the like, chemically, such as with glue or lacquer, electromagnetic force using magnets, electric charge, or similar or by any other suitable fixing method.
  • the cover 1 including the cover plate 10 and frame 160 may be arranged over a radar sensor 20 , such that the radio waves illustrated by the cone R must pass through both the frame 160 and the cover plate 10 .
  • the frame 160 must be substantially transparent to the radio waves transmitted and/or received by the sensor 20 .
  • the spacing between the frame 160 and the cover plate 10 is chosen to minimise the attenuation of radio waves.
  • the frame 160 does not extend over the whole space occupied by the plate 10 as shown in FIG. 3 , but instead covers only part of the way under the cover plate 10 such that the space is not enclosed, but the light sources 130 are protected and light leakage from the light sources 130 at the edge of the plate 10 are precluded or minimised.
  • FIG. 4 shows a further example of the cover 1 .
  • the radar sensor 20 is accommodated between the frame 160 and the cover plate 10 , i.e. frame 160 and plate 10 together form a housing enclosing a protective space within which the radar sensor 20 light sources 130 and other electronic components may be accommodated.
  • This arrangement reduces the attenuation of the radar signal as these pass through only two boundaries, namely the two outer surfaces of the cover plate 10 .
  • the frame 160 can be essentially annular with an outer edge that essentially corresponds to that of the plate 10 or extends slightly beyond this, and an inner edge that extends inside the outer rim of the plate 10 to provide an essentially annular place serving as a protective housing for the light sources 130 and associated electronics. This annular space may be closed. In such an arrangement, the frame does not impact on the performance of the radar sensor 20 as it is not traversed by the conde R.
  • FIG. 5 there is shown a further example of the cover 1 .
  • the cover 1 illustrated in FIG. 5 is similar to that shown in FIG. 4 with the notable difference that a graphic layer 140 is provided on the upper side of the cover plate 10 , i.e. on the outer surface of the upper optically insulating layer 110 .
  • a hardened protective layer 150 is preferably applied over the graphic layer, although this is not shown in FIG. 5 .
  • FIG. 5 also includes an optically reflective layer 170 that is applied to a lower surface of the cover plate, specifically on the outer surface of the lower optically insulating layer 110 . If a graphic layer 140 is present on the underside of the cover plate 10 , the optically reflective layer 170 is applied over that layer, i.e.
  • the optically reflective layer 170 serves to improve the efficiency and homogeneity of the illumination of the cover plate 10 by reflecting all light out of the cover plate 10 .
  • the layer 170 is preferably a white or pale film or coating, e.g. paint or pigmented lacquer of a few pm in thickness that is applied to the remaining structure of the cover plate 10 by adhesion or thermal bonding or another suitable manner.
  • the optically reflective layer may also serve as a protective layer, or alternatively be coated with a protective layer 150
  • FIG. 6 shows the steps of a process for manufacturing a cover plate 10 according to the examples described above.
  • a first step designated a) the first light guide layer 100 is formed by injection moulding into the desired domed or planar shape of the cover plate 10 .
  • one or more optical elements are provided at the lower or upper surface of the light guide layer 100 . These optical elements may be formed by mechanical or chemical etching to create structured or roughened diffusing surfaces, or by application of a diffusing material to the surface of the layer 100 . Alternatively, the optical elements may be formed integrally with the light guide 100 , for example by 2K injection moulding of a diffusing material and thus be formed simultaneously with step a).
  • optical insulating layers 110 are applied to the upper and/or lower surfaces of the light guide layer 100 . These optical insulating layers 110 may be applied directly to the surface of the light guide 100 and optionally hardened or cured, or applied as a separate film that is bonded to the surface of the light guide 100 chemically or mechanically.
  • a graphic layer is applied to at least one of the outer surfaces formed by the optical insulating layers 110 .
  • This graphic layer 140 may be a metallization layer which is then partially removed to form the desired design by use of a laser or chemical etching.
  • the graphic layer may be a foil on which a design is applied. The foil is then hot stamped to the optical insulating layer 110 .
  • the process may include further steps, for example the application of a protective layer 150 in the form of a lacquer, for example can be applied to the outer surface of the plate, but particularly over the graphic layer 140 to protect this and possibly compensate for variations in thickness.
  • An optically reflective layer 170 may be applied prior to this step on the lower surface of the plate 10 , i.e. on the surface that faces the radar sensor 20 and is directed away from the observer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Engineering (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

An illuminated cover for an electromagnetic sensor, such as a radar sensor. The cover comprises a multilayer plate that is substantially transparent to the electromagnetic radiation emitted and/or received by the electromagnetic sensor. The plate includes a first layer of optically transparent material and a second layer on at least one surface of the first layer and having a lower refractive index than the first layer. A graphic layer is provided on the second layer. At least one light source is arranged to couple light into the first layer, which acts as a light guide. At least one surface of first layer is further provided with at least one optical element for outcoupling light from the first layer.

Description

  • This nonprovisional application claims priority under 35 U.S.C. § 119(a) to European Patent Application No. 21180398.6, which was filed on Jun. 18, 2021, and which is herein incorporated by reference.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to covers for electromagnetic transmitting and receiving elements, such as radar devices and is specifically directed to radar covers for use in vehicles as well as methods of manufacture of the same.
  • Description of the Background Art
  • Electromagnetic transmitter and receiver elements or are commonly used as a radar system in vehicles for detecting the speed and range of objects for collision avoidance and adaptive cruise control systems. These elements are typically located at the front of the vehicle but may also be present at the side or rear. They are provided with a cover, which is often domed and be referred to as a radome, which protects the emitter and receiver elements from the elements and may also serve as a decorative component, for example, by supporting an emblem of the vehicle manufacturer. The cover must be substantially transparent to the radio waves of interest and to this end is preferably of uniform thickness and devoid of discontinuities and angles to minimise reflection and absorption of radio waves.
  • WO 2019/130033 A1, EP3300169A2 (which corresponds to US 2018/0090832), EP3495186A1 (which corresponds to US 2020/0361399) all describe radar covers for vehicles that carry a decorative element in the form of a metal layer, foil or similar. A disadvantage with these radar covers is that the design or emblem is not always clearly distinguishable particularly at night or in conditions of low lighting. It would thus be advantageous to illuminate the emblem to better identify the car brand or to improve the overall design possibilities of the vehicle. However, providing lighting in a radar cover presents a particular challenge due to the limited product dimensions, high number of components and the requirement that the radar function not be impaired.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide an illuminated cover for an electromagnetic sensor, particularly a radar sensor that provides a uniform and homogenous luminance without impairing the operation of the sensor.
  • The above objects are achieved in a cover for an electromagnetic sensor as well as a method for fabricating a cover as detailed below.
  • In an example of the invention, there is provided a cover for an electromagnetic sensor such as a radar sensor, the cover comprising a plate that is substantially transparent to electromagnetic radiation, the plate having a central portion destined to be disposed over an electromagnetic sensor and an outer rim, at least the central portion being of a substantially uniform thickness, the plate further defining an upper surface destined to face an observer and a lower surface destined to face an electromagnetic sensor, the plate comprising a first layer of an optically transparent material, at least one optical element being disposed on at least one of an upper and lower surface of the first layer for outcoupling light at least from an upper surface of the plate, a second layer being disposed on at least one of the upper and lower surfaces of the first layer, the second layer being of a second optically transparent material having a refractive index lower than that of the first layer and being substantially thinner than the first layer and a graphic layer arranged on outer surface of at least one of the second layers, the graphic layer being of an optically opaque and/or reflective material.
  • By providing a cover with a multilayer plate, the impact on the function of the electromagnetic sensor is minimised as air-material interfaces are not increased over conventional radome structures. A first layer can serve as a light guide providing a homogeneous background illumination by virtue of at least one outcoupling optical element. The graphic layer provides a decorative component while the second layer protects from unwanted light leakage from the first layer due to the graphic layer or impurities that may deposit on the plate.
  • The second layer can be arranged on both an upper and lower surface of the first layer and thus limits light leakage from both sides of the first plate.
  • The refractive index of the first layer is preferably between 1.3-1.6, and more preferably between 1.5-1.6, while second layer preferably has a refractive index of between 1.15-1.3.
  • The thickness of the second layer is preferably between 1-6 μm, and still more preferably between 2-3 μm to limit the impact on the sensor function.
  • The at least one optical element can comprise a light diffusing surface on the first layer. This may be a surface comprising regular or irregular microstructures, grooves, or granular elevations.
  • The at least one optical element may comprise a light diffusing material applied to or integrated with the first layer.
  • To improve the durability of the cover plate and thus maintain the look and function of this plate, it preferably comprises at least one protective outer layer. This layer may be a protective lacquer. This layer is particularly useful for protecting the graphic layer when this is on an upper surface of the second layer and hence is vulnerable to impacts and wear from the environment.
  • The lower surface of the plate may be provided with an optically reflective layer. This improves the efficiency of the plate and the homogeneity of the illumination perceived by an observer at the upper surface of the plate, particularly when the graphic layer is on an upper surface of the second layer, i.e. on an outwardly facing surface.
  • The cover may further comprise at least one light source disposed adjacent the outer rim of the first layer and arranged to couple light into the first layer. By positioning a light source at the edge of the plate, this source will be effectively hidden from view, so reducing glare for the observer.
  • The obscuring of the light source from the view of an observer is improved in which the cover comprises a frame coupled to the outer rim of the plate, the frame being of a light blocking material and adapted to accommodate the at least one light source. In this way, the light source and accompanying electronics are also protected.
  • The frame can be arranged to extend under the plate to enclose a space, the frame being substantially transparent to electromagnetic radiation. The frame and plate thus together enclose a space for protecting the light sources and accompanying electronics, while the cover as a whole is designed to limit the attenuation of the electromagnetic waves to and/or from the sensor.
  • The frame can be arranged to extend under the plate to enclose a space adapted to accommodate an electromagnetic sensor. Thus, the sensor may also be located within the cover, i.e., between the plate and the frame, which reduces the number of elements the electromagnetic waves must pass through and hence minimises the impact on the sensor function, while simultaneously being protected.
  • The plate can be substantially curved in cross section, preferably domed with a substantially uniform angle of curvature in cross section at least in the central portion. Preserving a uniform angle of curvature limits the interference sustained by the electromagnetic radiation.
  • The present invention further relates to a method of fabricating a cover for an electromagnetic sensor as described previously. This method includes the steps of: providing a first layer of a first refractive index, forming at least one optical element on one of an upper or lower surface of the first layer, the optical element being adapted to outcouple light at least from an upper surface of the plate, providing a second layer at least on an upper surface of the first layer, the second layer being of a lower refractive index than the first layer, at least partially covering the second layer with a graphic layer.
  • Preferably, the step of providing the first layer includes moulding a plastic material, such as PC or PMMA, for example by injection moulding.
  • The at least one optical element may be formed by applying an optically diffusing material and preferably by moulding a diffusing material together with the plastic material in a 2K process. Additionally or alternatively, the at least one optical element may be formed by forming light diffusing microstructures on a surface of the first plate.
  • Preferably, the method includes the step of applying an optically reflective layer to a lower surface of the plate.
  • The method may also include the application of a protective layer to an upper and lower surface of the plate.
  • Further steps of the method may include: attaching a frame to the rim of the first layer, where the attachment may be mechanical, such as by screws, rivets, clips, deformation of the frame, adhesive tape adhesion, or alternatively chemically, such as glue, lacquer, electromagnetic force using magnets, electric charge; arranging at least one light source adjacent a rim of the first layer.
  • Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes, combinations, and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
  • FIG. 1 schematically illustrates an illuminated cover for radar in accordance with an example of the present invention;
  • FIG. 2 schematically shows details of a cover structure;
  • FIG. 3 schematically shows a cover for radar in accordance with an example of the present invention;
  • FIG. 4 schematically illustrates a cover according to the invention;
  • FIG. 5 schematically illustrates a cover according to the invention; and
  • FIG. 6 illustrates the process of fabrication of a cover layer in accordance with the present invention.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a cover 1, also referred to as a radome, for a radar sensor in accordance with the present invention. The cover 1 comprises a plate 10 that is arranged over a radar sensor 20, which comprises one or more radio transmitters and/or receivers or antennas in the conventional manner. The radio waves emitted and/or received are depicted as a cone R in FIG. 1 . The whole assembly can be attached to the front of a vehicle, for example, to a facia or grille of a vehicle.
  • The plate 10 is a multilayer structure with a substantially even and constant thickness to ensure good radar performance. The geometry of the plate 10 is also devoid of abrupt changes or discontinuities for the same reason. In the illustrated example, the plate 10 is domed with a substantially uniform degree of curvature at least in a central portion that coincides with a radar cone R. It will be understood, however, that the plate may be substantially planar, over its whole structure, or at least in the central portion located above the radar cone R.
  • As shown in FIG. 1 , the plate 10 includes a first layer 100 that serves as a light guide. Two light sources 130 are arranged at the outer rim of this first layer and arranged such that the light is coupled into the first layer 100. These light sources 130 preferably comprise one or more LEDs provided with associated power supply and control circuitry. The LEDs may be configured to generate white light or light of a specific colour. Two light sources 130 are illustrated in the figures, but it will be appreciated that a single light source or more than two light sources may be used.
  • FIG. 2 shows detailed view of the layered structure of the plate 10. As is visible in FIG. 2 , on both the upper and lower surfaces of the first layer 100 are arranged second layers, specifically optical insulating layers 110. These optical insulating layers 110 have a lower refractive index than the first layer 100 and thus ensure that light coupled into the first layer 100 is subjected to total internal reflection at the upper and lower surfaces of this layer 100 and thus propagates through it. The reflected light beams are illustrated in FIGS. 1 and 2 as L. The optical insulating layer 110 serves to protect the light guide 100 from light leakage due to impurities that might deposit on the surface or graphic elements that could otherwise alter the refractive index boundary at the surface of the light guide 100. The second layer thus prevents unwanted glare for an observer and instead ensures that the cover 10 provides a homogenous background illumination. While the optical insulating layers 102 are shown on both the upper and lower surfaces of the light guide 100, it may be sufficient to provide such an insulating layer only on the upper surface of the light guide 100, i.e. on the surface that is directly outwardly and is thus open to the elements, providing that the light guide 100 has a refractive index that is higher than air, i.e. higher than 1. The light guide 100 is made of a material that is substantially transparent to both light and to the radio waves used by the radar sensors. Suitable materials include thermoplastic polymers, such as polycarbonate (PC) or PMMA (Poly(methyl methacrylate)). The thickness of the light guide 100 depends on the application but is preferably within the range of 1 to 5 mm. Preferably, the light guide 100 has a refractive index of between 1.3 and 1.6, preferably around 1.5. The optical insulating layer 110 is a thin film of depth between 1-6 μm, preferably between 2-3 μm and has a refractive index of less than 1.3, preferably 1.15-1.3. The optical insulating layer 110 is preferably substantially transparent to light and optically clear and also substantially transparent to the radio waves used by the radar sensors. Suitable materials include siloxane resins. The insulating layer or layers 110 may be spray-coated or otherwise deposited on the underlying layer 100, or alternatively bonded to this layer by adhesive or heat treatment.
  • As shown in both FIGS. 1 and 2 , a number of optical elements 120 are provided on the bottom surface of the first layer 100. These optical elements 120 serve to outcouple light from the light guide 100 by diffusing light, that is, by causing a refraction, reflection and/or diffraction of the light at the surface of first layer which causes it to leak out of the light guide 100. As a consequence, the plate 10 is perceived as illuminated, although the light sources 130 are not visible. These optical elements 120 may be composed of diffractive surface relief structures such as microstructures or a roughened or granular surface formed on the lower surface of the light guide, for example, by chemical or mechanical etching of the light guide surface. The optical elements 120 may alternatively be formed by applying a diffusing material to the light guide surface, or alternatively by incorporating a light-diffusing material in the light guide 100 by using a 2K injection moulding process. The optical elements 120 shown in FIGS. 1 and 2 are provided only on the lower surface of the light guide 100, however, it will be understood that they may instead be provided on the upper surface, or equally on both the lower and upper surfaces of the light guide 100. The optical elements 120 may be provided as several discrete elements arranged in a regularly spaced pattern on the upper and/or lower surface of the light guide 100 to provide an even distribution of light over the surface of the cover plate 10. Alternatively, the optical elements 120 may formed as a single dispersing surface at a desired location on the light guide 100. The optical elements 120 may further be arranged to form a desired design, such as an emblem or logo, or the negative of a desired design, so that the observer will see an illuminated design or a shaded design.
  • On the underside of the lower optical insulating layer 110 there is provided a graphic layer 140, comprising a film or foil, for example a metallic film or a foil on which a design is applied or that may be arranged to display a desired design such as the emblem or logo of a manufacturer. This film is preferably very thin, of the order of a few pm so that changes in thickness of the cover 10 between areas where the graphic layer is present and those where graphic material is absent have a negligible effect on the radiation emitted and/or received by the radar sensor 20. The material of the film 140 is substantially opaque and/or reflective to visible light, but substantially transparent to the electromagnetic radiation used by sensor 20. The design is visible through the multilayer structure of the light guide 100 and insulating layer 110. The graphic layer 140 may alternatively be formed on the upper surface of cover plate 10, i.e. on the outer surface of the upper insulating layer 110 (see FIG. 5 ), or even on the outer surface of both the upper and lower insulating layers 110. In all cases, the graphic layer 140 is separated from the first layer 100 by the optically insulating layer 110 to preclude the risk of light leakage that may otherwise occur on the boundary between the graphic layer 140 and first layer 100. When the optical elements 120 are formed in a specific design as described above, the graphic layer 140 may advantageously be arranged to occupy the spaces between the optical elements 120 so that the design is visible not only by the presence of the graphic layer but also by the illuminated portions between the graphic elements. In this way, a desired shape may be displayed as an illuminated design or alternatively as the negative of an illuminated design.
  • As shown in the detailed section illustrated in FIG. 2 , the cover plate 100 may also include an outer protective layer 150 applied to the upper and/or lower surface. This protective layer 150 is preferably a varnish or resin of sufficient hardness to protect the surface of the cover, and particularly the graphic layer 140, from wear and scratches. In addition, the protective layer 150 may be used to compensate for differences in thickness caused by the application or removal of the graphic layer. The protective layer 150 is omitted from the remaining figures in the interests of clarity.
  • Turning now to FIG. 3 there is shown an arrangement of the cover 1, which includes a frame 160 that extends downwards from the lower rim of cover plate 10 and under the cover plate 10 to enclose a space bordered by cover plate 10 and frame 160. The light sources 130 and associated electronics are located within this space. The frame 160 serves to block unwanted light and also protect the one or more light sources 130 and associated electronics. The frame 160 may also be provided with coupling elements, such as clips, screw holes or the like, that enable the cover 1 to be mounted over a radar sensor 20 on a vehicle, for example. The frame 160 is of a substantially optically opaque material, preferably of moulded plastic formed by injection moulding. The frame 160 may be fixed to the outer rim of the cover plate 10 mechanically with, for example, screws, rivets, clips, deformation of the frame 160, adhesive tape, or the like, chemically, such as with glue or lacquer, electromagnetic force using magnets, electric charge, or similar or by any other suitable fixing method.
  • As shown in FIG. 3 , the cover 1 including the cover plate 10 and frame 160 may be arranged over a radar sensor 20, such that the radio waves illustrated by the cone R must pass through both the frame 160 and the cover plate 10. In this case, the frame 160 must be substantially transparent to the radio waves transmitted and/or received by the sensor 20. In addition, the spacing between the frame 160 and the cover plate 10, at least in the central area of the cover 1 that corresponds to the radio wave cone R, is chosen to minimise the attenuation of radio waves. In an alternative arrangement, the frame 160 does not extend over the whole space occupied by the plate 10 as shown in FIG. 3 , but instead covers only part of the way under the cover plate 10 such that the space is not enclosed, but the light sources 130 are protected and light leakage from the light sources 130 at the edge of the plate 10 are precluded or minimised.
  • FIG. 4 shows a further example of the cover 1. In this figure, the radar sensor 20 is accommodated between the frame 160 and the cover plate 10, i.e. frame 160 and plate 10 together form a housing enclosing a protective space within which the radar sensor 20 light sources 130 and other electronic components may be accommodated. This arrangement reduces the attenuation of the radar signal as these pass through only two boundaries, namely the two outer surfaces of the cover plate 10.
  • The frame 160 can be essentially annular with an outer edge that essentially corresponds to that of the plate 10 or extends slightly beyond this, and an inner edge that extends inside the outer rim of the plate 10 to provide an essentially annular place serving as a protective housing for the light sources 130 and associated electronics. This annular space may be closed. In such an arrangement, the frame does not impact on the performance of the radar sensor 20 as it is not traversed by the conde R.
  • Turning now to FIG. 5 there is shown a further example of the cover 1. The cover 1 illustrated in FIG. 5 is similar to that shown in FIG. 4 with the notable difference that a graphic layer 140 is provided on the upper side of the cover plate 10, i.e. on the outer surface of the upper optically insulating layer 110. As discussed above, a hardened protective layer 150 is preferably applied over the graphic layer, although this is not shown in FIG. 5 . FIG. 5 also includes an optically reflective layer 170 that is applied to a lower surface of the cover plate, specifically on the outer surface of the lower optically insulating layer 110. If a graphic layer 140 is present on the underside of the cover plate 10, the optically reflective layer 170 is applied over that layer, i.e. on the outside of that layer, such that an observer can perceive the graphic layer 140 on top of the optically reflective layer 170. The optically reflective layer 170 serves to improve the efficiency and homogeneity of the illumination of the cover plate 10 by reflecting all light out of the cover plate 10. The layer 170 is preferably a white or pale film or coating, e.g. paint or pigmented lacquer of a few pm in thickness that is applied to the remaining structure of the cover plate 10 by adhesion or thermal bonding or another suitable manner. The optically reflective layer may also serve as a protective layer, or alternatively be coated with a protective layer 150
  • FIG. 6 shows the steps of a process for manufacturing a cover plate 10 according to the examples described above. In a first step designated a) the first light guide layer 100 is formed by injection moulding into the desired domed or planar shape of the cover plate 10. At step b) one or more optical elements are provided at the lower or upper surface of the light guide layer 100. These optical elements may be formed by mechanical or chemical etching to create structured or roughened diffusing surfaces, or by application of a diffusing material to the surface of the layer 100. Alternatively, the optical elements may be formed integrally with the light guide 100, for example by 2K injection moulding of a diffusing material and thus be formed simultaneously with step a). At step c) optical insulating layers 110 are applied to the upper and/or lower surfaces of the light guide layer 100. These optical insulating layers 110 may be applied directly to the surface of the light guide 100 and optionally hardened or cured, or applied as a separate film that is bonded to the surface of the light guide 100 chemically or mechanically. At step d) a graphic layer is applied to at least one of the outer surfaces formed by the optical insulating layers 110. This graphic layer 140 may be a metallization layer which is then partially removed to form the desired design by use of a laser or chemical etching. Alternatively, the graphic layer may be a foil on which a design is applied. The foil is then hot stamped to the optical insulating layer 110.
  • The process may include further steps, for example the application of a protective layer 150 in the form of a lacquer, for example can be applied to the outer surface of the plate, but particularly over the graphic layer 140 to protect this and possibly compensate for variations in thickness. An optically reflective layer 170 may be applied prior to this step on the lower surface of the plate 10, i.e. on the surface that faces the radar sensor 20 and is directed away from the observer.
  • It will be understood that the examples and embodiments described herein can be used in various combinations and sub-combinations.
  • The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.

Claims (17)

    What is claimed is:
  1. What is claimed is:
  2. 1. A cover for an electromagnetic sensor, the cover comprising:
    a plate that is substantially transparent to electromagnetic radiation, the plate having a central portion designed to be disposed over the electromagnetic sensor and an outer rim, at least the central portion having a substantially uniform thickness, the plate further defining an upper surface arranged to face an observer and a lower surface arranged to face an electromagnetic sensor, the plate comprising:
    a first layer formed of an optically transparent material;
    at least one optical element disposed on at least one of an upper or lower surface of the first layer for outcoupling light at least from an upper surface of the plate;
    a second layer disposed on at least one of the upper or lower surfaces of the first layer, the second layer formed of a second optically transparent material having a refractive index lower than that of the first layer and being substantially thinner than the first layer; and
    a graphic layer arranged on outer surface of at least one of the second layers, the graphic layer formed of an optically opaque and/or reflective material.
  3. 2. The cover as claimed in claim 1, wherein the first layer has a refractive index of 1.3 to 1.6 or 1.5 to 1.6, and wherein the second layer has a refractive index of 1.15 to 1.3.
  4. 3. The cover as claimed in claim 1, wherein the second layer has a thickness of 1 to 6 μm or of 2 to 3 μm.
  5. 4. The cover as claimed in claim 1, wherein the at least one optical element comprises a light diffusing, reflecting and/or refracting surface on the first layer.
  6. 5. The cover as claimed in claim 1, wherein the at least one optical element comprises a light diffusing, reflecting and/or refracting material applied to or integrated with the first layer.
  7. 6. The cover as claimed in claim 1, wherein the at least one optical element comprises a light diffusing, reflecting and/or refracting material applied to or integrated with the first layer.
  8. 7. The cover as claimed in claim 1, further comprising at least one light source disposed adjacent to the outer rim of the first layer and being arranged to couple light into the first layer.
  9. 8. The cover as claimed in claim 1, further comprising a frame coupled to the outer rim of the plate, the frame being of a light blocking material and adapted to accommodate at least one light source.
  10. 9. The cover as claimed in claim 8, wherein the frame is arranged to extend under the plate to enclose a space, the frame being substantially transparent to electromagnetic radiation.
  11. 10. The cover as claimed in claim 8, wherein the frame is arranged to extend under the plate to enclose a space adapted to accommodate an electromagnetic sensor.
  12. 11. A method of fabricating a cover for an electromagnetic sensor according to claim 1, the method comprising:
    providing a first layer of a first refractive index;
    forming at least one optical element on one of an upper or lower surface of the first layer, the optical element being adapted to outcouple light at least from an upper surface of the plate;
    providing a second layer at least on an upper surface of the first layer, the second layer being of a lower refractive index than the first layer; and
    at least partially covering the second layer with a graphic layer.
  13. 12. The method as claimed in claim 11, wherein the step of providing the first layer includes moulding a plastic material, PC or PMMA.
  14. 13. The method as claimed in claim 11, wherein the step of forming at least one optical element includes applying an optically diffusing material or by moulding a diffusing material together with the plastic material in a 2K process.
  15. 14. The method as claimed in claim 11, wherein the step of forming at least one optical element includes forming light diffusing microstructures on a surface of the first plate.
  16. 15. The method as claimed in claim 11, further comprising applying an optically reflective layer to a lower surface of the plate.
  17. 16. The cover according to claim 1, wherein the electromagnetic sensor is a radar sensor.
US17/843,411 2021-06-18 2022-06-17 Illuminated cover for electromagnetic transmitter and receiver Abandoned US20220404539A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21180398.6 2021-06-18
EP21180398.6A EP4105678A1 (en) 2021-06-18 2021-06-18 Illuminated cover for electromagnetic transmitter and receiver

Publications (1)

Publication Number Publication Date
US20220404539A1 true US20220404539A1 (en) 2022-12-22

Family

ID=76532088

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/843,411 Abandoned US20220404539A1 (en) 2021-06-18 2022-06-17 Illuminated cover for electromagnetic transmitter and receiver
US18/541,180 Pending US20240159957A1 (en) 2021-06-18 2023-12-15 Illuminated panel for automotive applications

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/541,180 Pending US20240159957A1 (en) 2021-06-18 2023-12-15 Illuminated panel for automotive applications

Country Status (4)

Country Link
US (2) US20220404539A1 (en)
EP (2) EP4105678A1 (en)
CN (2) CN115494452A (en)
WO (1) WO2022263655A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220163619A1 (en) * 2019-09-11 2022-05-26 Hella Saturnus Slovenija d.o.o. Device for attachment to an opening of a vehicle and for covering an emitter and/or a receiver
US20220263235A1 (en) * 2019-07-26 2022-08-18 Mbda France Cover for a vehicle, in particular for a supersonic or hypersonic vehicle
US20240069154A1 (en) * 2020-12-25 2024-02-29 Nitto Denko Corporation Radio wave scattering body, and member for attenuating radio waves comprising radio wave scattering body
US20240162603A1 (en) * 2022-11-10 2024-05-16 Zanini Auto Grup, S.A. Radome for vehicles
US12332469B2 (en) * 2022-01-11 2025-06-17 Magna Electronics, Llc Sensing system with side illumination

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4112290A1 (en) * 2021-06-30 2023-01-04 Volvo Car Corporation Seamless integration of illumination into interior trim panels with decorative surface materials
DE102022120364A1 (en) * 2022-08-11 2024-02-22 Plastic Omnium Lighting Systems Gmbh Light guide with output structure
DE102023122497A1 (en) * 2023-08-22 2025-02-27 Marelli Automotive Lighting Reutlingen (Germany) GmbH lighting device, in particular for a motor vehicle
DE102023122471A1 (en) * 2023-08-22 2025-02-27 Magna Exteriors Gmbh Lighting device with radar-transparent section and heating element
DE102023125595B3 (en) 2023-09-21 2025-03-20 Motherson Innovations Company Limited Light-emitting system with homogeneous and diffused light; vehicle comprising the same and manufacturing method therefor
US20250196762A1 (en) * 2023-12-18 2025-06-19 Valeo Vision Optical component with micro-optical features

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176325A1 (en) * 2008-07-10 2011-07-21 3M Innovative Properties Company Viscoelastic lightguide
DE102013016667A1 (en) * 2013-10-08 2014-07-03 Daimler Ag Multilayer lid element for covering motor vehicle part, has litter structure partially disrupted by metallic structure, and barrier layer formed on inner surface of layer that faces toward another layer
CN108873151A (en) * 2018-07-13 2018-11-23 京东方科技集团股份有限公司 Light guide plate, the method and display device for preparing light guide plate
EP3434473A1 (en) * 2017-07-27 2019-01-30 Zanini Auto Grup, S.A. Emblem for vehicles
US20210384622A1 (en) * 2018-10-15 2021-12-09 Motherson Innovations Company Limited Decorative radome and method of producing the same
US20220024374A1 (en) * 2018-12-05 2022-01-27 Volkswagen Aktiengesellschaft Emblem arrangement for a motor vehicle
EP3991541A2 (en) * 2020-10-29 2022-05-04 CNH Industrial Belgium NV Radar-transparent components for headers of agricultural vehicles and related systems
US20230062751A1 (en) * 2019-09-10 2023-03-02 Koito Manufacturing Co., Ltd. Vehicle light fitting, radar module, radar, and vehicle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401132B2 (en) * 2009-01-20 2014-01-29 信越ポリマー株式会社 Radio wave transmitting decorative member and manufacturing method thereof
CN102723872B (en) 2011-03-29 2014-09-03 华为技术有限公司 Power supply apparatus and method for adjusting dead time
CN103158633B (en) * 2011-12-19 2015-08-26 比亚迪股份有限公司 A kind of mark of motor vehicle
GB201306726D0 (en) * 2013-04-12 2013-05-29 Pilkington Group Ltd A glazing
US9869810B2 (en) * 2014-04-29 2018-01-16 Tactotek Oy Method for manufacturing electronic products, related arrangement and product
JP6872336B2 (en) 2016-09-27 2021-05-19 株式会社ファルテック Radar cover
CN110199432B (en) * 2016-12-28 2021-07-09 桑尼尼汽车集团有限公司 radomes for vehicles
DE102017214129A1 (en) * 2017-08-14 2019-02-14 Volkswagen Aktiengesellschaft Radarable light emblem for a vehicle
JP6812936B2 (en) * 2017-09-22 2021-01-13 豊田合成株式会社 Cover device for near infrared sensor
KR101856441B1 (en) 2017-09-29 2018-05-10 인탑스 주식회사 Manufacturing method emblem are built sensor
WO2021018422A1 (en) * 2019-07-29 2021-02-04 Motherson Innovations Company Ltd. First surface or second surface decorative radome
US11346523B2 (en) 2018-03-13 2022-05-31 Motherson Innovations Company Limited Light emitting system, a design element, a rear view device, a covering device, and a body component of a vehicle
WO2021047772A1 (en) * 2019-09-11 2021-03-18 Hella Saturnus Slovenija d.o.o. A device for attachment to an opening of a vehicle and for covering an emitter and/or a receiver
FR3105352B1 (en) * 2019-12-19 2022-03-04 Valeo Vision Light element of a vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176325A1 (en) * 2008-07-10 2011-07-21 3M Innovative Properties Company Viscoelastic lightguide
DE102013016667A1 (en) * 2013-10-08 2014-07-03 Daimler Ag Multilayer lid element for covering motor vehicle part, has litter structure partially disrupted by metallic structure, and barrier layer formed on inner surface of layer that faces toward another layer
EP3434473A1 (en) * 2017-07-27 2019-01-30 Zanini Auto Grup, S.A. Emblem for vehicles
CN108873151A (en) * 2018-07-13 2018-11-23 京东方科技集团股份有限公司 Light guide plate, the method and display device for preparing light guide plate
US20210384622A1 (en) * 2018-10-15 2021-12-09 Motherson Innovations Company Limited Decorative radome and method of producing the same
US20220024374A1 (en) * 2018-12-05 2022-01-27 Volkswagen Aktiengesellschaft Emblem arrangement for a motor vehicle
US20230062751A1 (en) * 2019-09-10 2023-03-02 Koito Manufacturing Co., Ltd. Vehicle light fitting, radar module, radar, and vehicle
EP3991541A2 (en) * 2020-10-29 2022-05-04 CNH Industrial Belgium NV Radar-transparent components for headers of agricultural vehicles and related systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"_Spray Ceramic Coating_ vs Real Ceramic Coating Liquid", Captured by Wayback Machine in Sep 2020, Mindful Detailing website https://www.mindfuldetailing.com/post/spray-ceramic-coating-vs-real-ceramic-coating-liquid (Year: 2020) *
"dispose meaning", 2024, Retrieved from Google - Oxford Dictionaries (Year: 2024) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220263235A1 (en) * 2019-07-26 2022-08-18 Mbda France Cover for a vehicle, in particular for a supersonic or hypersonic vehicle
US12009590B2 (en) * 2019-07-26 2024-06-11 Mbda France Cover for a vehicle, in particular for a supersonic or hypersonic vehicle
US20220163619A1 (en) * 2019-09-11 2022-05-26 Hella Saturnus Slovenija d.o.o. Device for attachment to an opening of a vehicle and for covering an emitter and/or a receiver
US20240069154A1 (en) * 2020-12-25 2024-02-29 Nitto Denko Corporation Radio wave scattering body, and member for attenuating radio waves comprising radio wave scattering body
US12332469B2 (en) * 2022-01-11 2025-06-17 Magna Electronics, Llc Sensing system with side illumination
US20240162603A1 (en) * 2022-11-10 2024-05-16 Zanini Auto Grup, S.A. Radome for vehicles

Also Published As

Publication number Publication date
US20240159957A1 (en) 2024-05-16
EP4105678A1 (en) 2022-12-21
CN115494452A (en) 2022-12-20
EP4356157A1 (en) 2024-04-24
WO2022263655A1 (en) 2022-12-22
CN117501147A (en) 2024-02-02

Similar Documents

Publication Publication Date Title
US20220404539A1 (en) Illuminated cover for electromagnetic transmitter and receiver
KR102616309B1 (en) Automotive radome
US7538734B2 (en) Vehicle decorative component
US6490819B1 (en) Decorative sheet
EP2848474A1 (en) Vehicular exterior member
US12286052B2 (en) Light assembly, vehicle design element, rear view device and door finisher
CN113544529A (en) radome
JP2019100792A (en) Lidar cover
US20160046239A1 (en) Rearview mirror with selective refelction and method of manufacture
EP3477185B1 (en) Vehicular lamp and vehicle comprising same
JP2010091301A (en) Radar equipment
US20230141051A1 (en) Sensor Device
CN119999013A (en) Radar transparent structures for illuminated signs
JP2004309322A (en) Radar equipment coating parts
JP2020036189A (en) Radar cover and method of manufacturing radar cover
KR102320784B1 (en) Radio Wave Penetration Cover
EP4367528A1 (en) System for backlighting a radome and radar device
EP4439864A1 (en) Radome for a radar device of a vehicle, radar device comprising such a radome, cladding component and vehicle with such a radar device and/or such a cladding component
US20240162603A1 (en) Radome for vehicles
US20240337363A1 (en) Illuminated radome cover
KR102190898B1 (en) Radio Wave Penetration Cover And Manufacturing Method For The Same
CN120021098A (en) Radome for a radar device of a vehicle or for a vehicle, a radar device including such a radome, a covering component having such a radar device, and a vehicle
JP2024137119A (en) Vehicle exterior parts
JP2024137121A (en) Vehicle exterior parts

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: HELLA SATURNUS SLOVENIJA D.O.O., SLOVENIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAJEC STRLE, ALENKA;BERKOPEC, BOSTJAN;REEL/FRAME:060854/0777

Effective date: 20220801

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION