[go: up one dir, main page]

US20210399385A1 - Laminated oxidation protected separator - Google Patents

Laminated oxidation protected separator Download PDF

Info

Publication number
US20210399385A1
US20210399385A1 US17/458,921 US202117458921A US2021399385A1 US 20210399385 A1 US20210399385 A1 US 20210399385A1 US 202117458921 A US202117458921 A US 202117458921A US 2021399385 A1 US2021399385 A1 US 2021399385A1
Authority
US
United States
Prior art keywords
separator
lead acid
mat
acid battery
flooded lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/458,921
Inventor
Eric H. Miller
J. Kevin Whear
John R. Timmons
Jeffrey K. Chambers
Pierre A. Hauswald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daramic LLC
Original Assignee
Daramic LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daramic LLC filed Critical Daramic LLC
Priority to US17/458,921 priority Critical patent/US20210399385A1/en
Publication of US20210399385A1 publication Critical patent/US20210399385A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is directed to a battery separator for a lead/acid batteries having a diffusive mat affixed to a microporous membrane.
  • batteries e.g., lead acid batteries, particularly flooded lead acid (FLA) batteries
  • FLA flooded lead acid
  • the electrolyte may be a mixture of water and acid (e.g., sulfuric acid). Loss of the electrolyte exposes the electrodes to the gaseous environment contained within the battery head-space and heat, which can ultimately lead to dry-out of the electrode plates and, in turn, accelerated corrosion of the electrodes that leads to premature battery failure.
  • the acid in the electrolyte may become stratified. Acid stratification detrimentally impacts the performance and life of the battery.
  • Prior art solutions to the acid stratification problem in batteries include the use of ‘glass mats’ affixed to the separator. These glass mats, however, significantly drive up the cost of the separator, have large pores (thus, do not wick well), and in some cases do not lend themselves to high speed manufacturing techniques (e.g., formation of ‘pockets’ and welding to the separator).
  • lead/acid batteries are sold as ‘dry charge’ batteries. These dry charge batteries are purchased without the water/acid included. The dry charge battery has a longer shelf life. However, the user may not be careful to fill the battery with uncontaminated water/acid. The contaminated water/acid will lead to oxidation of the separator and ultimately to battery failure. The contaminants in the water/acid may be sourced from the water/acid containers, e.g., steel drums.
  • oxidation of the separator may reduce a battery's cycle life, and thereby reduce the effective life of the battery. This oxidation may arise from contaminants in the water or acid added to the ‘dry charge’ battery. Oxidation causes the embrittlement (measured by, for example, loss of % elongation) of the separator which may lead to partial or complete failure of the battery.
  • Contaminants typically originate from the water and/or the sulfuric acid added to the battery, as well as from impurities in the alloys and active materials that comprise the electrode plates, and such contaminants may cause oxidation.
  • contaminants typically include the transition metals of the periodic table, for example: chromium (Cr), manganese (Mn), titanium (Ti), copper (Cu), and the like.
  • Contaminant levels (Cr, Mn, and/or Ti) of greater than about 2.0 ppm [2.0 mg/L] are not recommended.
  • Cu contaminant levels greater than 26 ppm [26 mg/L] are not recommended.
  • U.S. Pat. No. 5,221,587 discloses the use of latex in the separator to prevent antimony (Sb) poisoning of the lead/acid battery.
  • Antimony is sourced from the lead plates (electrodes) of the battery. Antimony is used as an alloying agent in the lead to improve the manufacture of the plates and the cycle life of the battery.
  • Those of ordinary skill would not consider the teachings of U.S. Pat. No. 5,221,587 in arriving at a solution to the separator oxidation problem mentioned above.
  • U.S. Pat. No. 6,242,127 discloses the use of cured, porous rubber in a conventional polyolefin separator to improve the electrochemical properties (antimony suppression) of the separator.
  • a battery separator for a lead acid battery addresses the issues of acid stratification and/or separator oxidation arising from contaminants.
  • the separator includes a microporous membrane and a diffusive mat affixed thereto.
  • the diffusive mat has a three hour wick of at least about 2.5 cm.
  • the diffusive mat may be made of synthetic fibers, glass fibers, natural fibers, and combinations thereof.
  • the diffusive mat may include silica.
  • the separator may include a rubber.
  • FIG. 1 is a graphical comparison of the inventive separator (diffusive mat), INV, versus a separator with a conventional glass mat, PA.
  • FIG. 2 is a graphical comparison of the inventive separator (diffusive mat), INV, versus another separator with a conventional glass mat, PA.
  • FIG. 3 is a graphical comparison of the inventive separator (diffusive mat), INV, versus another separator with a conventional glass mat, PA.
  • FIG. 4 is a graphical comparison of the inventive separator (diffusive mat), INV, versus another separator with a conventional glass mat, PA.
  • FIG. 5 is a graphical comparison of the inventive separator (diffusive mat), INV, versus another separator with a conventional glass mat, PA.
  • Lead/acid batteries are well known, see for example, Linden, Handbook of Batteries, 2nd Edition, McGraw-Hill, Inc. New York, N.Y. (1995) and/or Besenhard, Handbook of Battery Materials, Wiley-VCH Verlag GmbH, Weinheim, Germany (1999), both incorporated herein by reference.
  • a separator may be used in any lead/acid battery.
  • the lead/acid battery is a flood lead/acid (FLA) battery, such as those used as inverter batteries, enhanced flood batteries (EFB), ISS batteries, stationary batteries, golf cart batteries, and the like.
  • FLA flood lead/acid
  • a diffusive mat is included with a microporous membrane to improve battery performance by, for example, imparting superior diffusion properties that retard acid stratification, reducing antimony poisoning, improving oxidation resistance, and improving micro short protection (arising from dendrite growth).
  • the laminate of the DM and microporous membrane also protects against water loss by keeping the electrodes from drying out through the action of electrolyte wicking, thereby addressing the dry-out situation and protecting against acid stratification by improved diffusion properties.
  • the diffusive mat is not a conventional glass mat.
  • Conventional glass mats are passive, and do not have diffusive or wicking capability.
  • the DM may have the ability to wick 25 ⁇ or more than the conventional wet or dry glass mat.
  • the wicking rate is inversely proportional to the acid stratification.
  • the conventional glass mat has a ‘three hour wick’ of no greater than 0.6 cm, while the DM has a ‘three hour wick’ of at least about 2.5 cm.
  • the DM may have a ‘three hour wick’ of at least about 2.5 cm, or at least about 3.0 cm, or at least about 4.0 cm, or in the range of about 2.5-about 10.0 cm, or in the range of about 3.0-about 10.0 cm, or in the range of about 4.0-about 10.0 cm, or sub-combinations thereof.
  • the ‘three hour wick’ test is performed by inserting a standard sized piece of the material in a liquid (sulfuric acid with a specific gravity of 1.280), waiting three hours, and measuring the height of travel of the liquid up the material.
  • ‘Standard sized piece’ means the same width and length, but thickness may vary according to the natural thickness of the material being tested, so that meaningful comparisons may be made.
  • the sample has a width of 1 inch and a length of at least 40 cm. The sample is marked every centimeter up the vertical axis of the sample. The sample, held in a clamp above the liquid, is inserted into the liquid to a depth of 2 cm. The wick height is measured, from the graduations on the sample, at one, five, ten, and fifteen minutes and for a maximum wick height after three hours.
  • the DM may further include a particulate filler, such as silica.
  • the DM may be laminated on to the microporous membrane in any manner.
  • the DM may be affixed to the microporous membrane by welding or glue.
  • the DM may be formed into pockets, sleeves, leaves, of an CS' wrap.
  • the DM may be a nonwoven or woven or knitted fabric made of fibers.
  • the DM may be made of glass fibers, synthetic fibers, natural fibers, or combinations thereof. In one embodiment, the DM may be made of glass fibers and synthetic fibers.
  • the DM has sufficient physical integrity to perform as a positive active material (PAM) retention mat and prevents shedding of PAM.
  • the DM protects the separator from strong oxidizers (e.g., Cr, Mn, Ti).
  • the separator In use in the battery, the separator is placed in the battery, so that the DM faces, or is in contact with the positive electrode (or plate) of the battery.
  • the separator may envelope the negative and/or positive plate(s). In another embodiment, the separator may envelope the negative plate(s).
  • Diffusive Mat (DM) Diffusive Mat (DM) Synthetic fibers Glass fibers Conventional Glass Mat Category Units [INV] [INV] [Prior Art] Composition Synthetic fiber + Synthetic Fine Glass Coated Glass fiber Glass fiber Silica wood Pulp + fiber Glass fiber + retention mat 1 retention mat Silica Silica (wet-laid (dry-laid process) process) Overall (mm) 0.305 0.373 0.3 0.215 0.5 mm 0.5 mm Puncture (N) 23.1 9.9 9.3 12.6 14.4 7.8 Tensile-MD (N/mm 2 ) 8.7 5.3 9.5 23 4.5 1.0 Tensile- (N/mm 2 ) 6.8 3.3 5.4 11.8 4.3 2.8 CMD ER (10/20) (mohm- 41.7 87.6 12 15 2.7 2.3 cm 2 ) Basis (gsm) 122.4 146.3 40 68 80.22 68.62 Weight 3 hour Wick (cm) 6 4.8 6.2 5.5 0.5 0 Stiffness (mN
  • Microporous membranes may be made from: sheets of polyolefin (e.g., polyethylene, polypropylene, ultra high molecular weight polyethylene (UHMWPE), and combinations thereof), polyvinyl chloride (PVC), phenol-formaldehyde resins (including, for example, cellulosic and/or synthetic fiber impregnated with phenol-formaldehyde resins), crosslinked rubber, or nonwoven (e.g., inert fibers including cellulosic fibers or glass fibers).
  • the microporous membrane may be made from polyethylene, UHWMPE, or a combination of both and may include a particulate filler, as is known.
  • the microporous membrane may have a ribbed profile.
  • the ribs may be conventional, e.g., running in the machine direction (MD) on the side to the positive electrode (e.g., to, among other things, separate the separator from the positive electrode, and form gas channels that allow gas to escape and promotes mixing during over charge conditions), but the ribs may also extend in the cross machine direction (CMD) on the side to the negative electrode (to retard acid stratification).
  • MD machine direction
  • CMD cross machine direction
  • rubber may be added to the separator to address the oxidation issue arising from the contaminants.
  • Rubber refers to rubber latex, tire crumb, and combinations thereof.
  • the rubber may be un-cross-linked or uncured rubber.
  • the rubber latex may be natural or synthetic rubber latex.
  • the rubber may be natural rubber latex.
  • the rubber may be tire crumb.
  • Natural rubbers may include, for example, any grade (e.g., latex grades), such as ribbed smoked sheet, white and pale crepes, pure blanket crepes or re-mills, thick brown crepes or ambers, and flat bark crepes. Natural rubbers may include Hevea rubbers.
  • Synthetic rubbers may include, for example, methyl rubber, polybutadiene, chloropene rubbers, and copolymer rubbers.
  • Copolymer rubbers may include, for example, styrene/butadiene rubbers, acrylonitrile/butadiene rubbers, ethylene/propylene rubbers (ELM and PERM), and ethylene/vinyl acetate rubbers.
  • Other rubbers may include, for example, butyl rubber, bromobutyl rubber, polyurethane rubber, epichlorhydrin rubber, polysulphide rubber, chlorosulphonyl polyethylene, polynorborene rubber, acrylate rubber, fluorinated rubber, isoprene rubber, and silicone rubber. These rubbers may be used alone or in various combinations.
  • the rubber may be impregnated into the microporous membrane. Impregnated, as used herein, means that the rubber is incorporated into the body of the separator, and is not a layer formed onto the separator. So, the rubber may be mixed or blended into one or more the materials used to from the separator.
  • the rubber for example the latex, is still chemically active (i.e., uncured and/or uncross-linked) after extrusion.
  • the rubber is a component integral with, or distributed within, or uniformly blended throughout, or intimately blended in the materials of, the separator.
  • the rubber may comprise any portion of the microporous membrane.
  • the rubber may comprise no more than about 12% by weight of the microporous membrane when added to the formulation (i.e., the ‘by weight’ of the raw materials before extrusion).
  • the rubber may comprise about 1-12% by weight of the microporous membrane.
  • the rubber may comprise about 1.2-6% by weight of the microporous membrane.
  • the rubber may comprise about 2-4% by weight of the microporous membrane.
  • the rubber may comprise about 2.5-3.5% by weight of the microporous membrane.
  • the rubber may comprise about 3% by weight of the microporous membrane.
  • the microporous membrane may be made in any conventional fashion.
  • the rubber in a PE microporous membrane, the rubber may be mixed with the processing oil and mixed with the PE during extrusion.
  • FIGS. 1 - 5 are a comparison of the inventive separators with the diffusive mat (DM) to separators with the conventional glass mats.
  • the separators are equivalent but one separator has the DM and the other has the conventional glass mat.
  • the information presented in these graphs was generated using a conventional Inverter Battery Simulation using a 12V150 Ah battery ( ⁇ 100% depth of discharge, DoD) with the positive plate enveloped ( FIGS. 1-2 ) or the negative plate enveloped ( FIGS. 3-5 ) and with a discharge at 43 A for 1 hour and 54 minutes at 10.50V, followed by recharge at 13.80V with a limit current of 15 A for 10 hours and 6 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Secondary Cells (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A battery separator for a lead acid battery addresses the issues of acid stratification and separator oxidation arising from contaminants. The separator includes a microporous membrane and a diffusive mat affixed thereto. The diffusive mat has a three hour wick of: at least about 2.5 cm. The diffusive mat may be made of synthetic fibers, glass fibers, natural fibers, and combinations thereof. The diffusive mat may include silica. The separator may include a rubber.

Description

    RELATED APPLICATION
  • This application is a Divisional application to U.S. application Ser. No. 14/200,066, filed Mar. 7, 2014, which claims the benefit of co-pending U.S. provisional application Ser. No. 61/774,144 filed Mar. 7, 2013, incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention is directed to a battery separator for a lead/acid batteries having a diffusive mat affixed to a microporous membrane.
  • BACKGROUND
  • In abusive heat applications (e.g., congested regions with high traffic, tropical or desert regions, outside storage applications and the like), batteries (e.g., lead acid batteries, particularly flooded lead acid (FLA) batteries) are prone to electrolyte loss. The electrolyte may be a mixture of water and acid (e.g., sulfuric acid). Loss of the electrolyte exposes the electrodes to the gaseous environment contained within the battery head-space and heat, which can ultimately lead to dry-out of the electrode plates and, in turn, accelerated corrosion of the electrodes that leads to premature battery failure.
  • Further, during charging of the battery (e.g., a lead acid battery), the acid in the electrolyte may become stratified. Acid stratification detrimentally impacts the performance and life of the battery. Prior art solutions to the acid stratification problem in batteries (e.g., lead acid batteries) include the use of ‘glass mats’ affixed to the separator. These glass mats, however, significantly drive up the cost of the separator, have large pores (thus, do not wick well), and in some cases do not lend themselves to high speed manufacturing techniques (e.g., formation of ‘pockets’ and welding to the separator).
  • In some areas of the world, for example, Asia, lead/acid batteries are sold as ‘dry charge’ batteries. These dry charge batteries are purchased without the water/acid included. The dry charge battery has a longer shelf life. However, the user may not be careful to fill the battery with uncontaminated water/acid. The contaminated water/acid will lead to oxidation of the separator and ultimately to battery failure. The contaminants in the water/acid may be sourced from the water/acid containers, e.g., steel drums.
  • Additionally, oxidation of the separator, e.g., separators for lead/acid batteries, may reduce a battery's cycle life, and thereby reduce the effective life of the battery. This oxidation may arise from contaminants in the water or acid added to the ‘dry charge’ battery. Oxidation causes the embrittlement (measured by, for example, loss of % elongation) of the separator which may lead to partial or complete failure of the battery.
  • Contaminants typically originate from the water and/or the sulfuric acid added to the battery, as well as from impurities in the alloys and active materials that comprise the electrode plates, and such contaminants may cause oxidation. Such contaminants typically include the transition metals of the periodic table, for example: chromium (Cr), manganese (Mn), titanium (Ti), copper (Cu), and the like. Contaminant levels (Cr, Mn, and/or Ti) of greater than about 2.0 ppm [2.0 mg/L] are not recommended. Cu contaminant levels greater than 26 ppm [26 mg/L] are not recommended.
  • U.S. Pat. No. 5,221,587 discloses the use of latex in the separator to prevent antimony (Sb) poisoning of the lead/acid battery. Antimony is sourced from the lead plates (electrodes) of the battery. Antimony is used as an alloying agent in the lead to improve the manufacture of the plates and the cycle life of the battery. Those of ordinary skill would not consider the teachings of U.S. Pat. No. 5,221,587 in arriving at a solution to the separator oxidation problem mentioned above.
  • U.S. Pat. No. 6,242,127 discloses the use of cured, porous rubber in a conventional polyolefin separator to improve the electrochemical properties (antimony suppression) of the separator.
  • There is a need for a new separator (e.g., for lead/acid batteries) that addresses the foregoing acid stratification and oxidation issues.
  • SUMMARY OF THE INVENTION
  • A battery separator for a lead acid battery addresses the issues of acid stratification and/or separator oxidation arising from contaminants. The separator includes a microporous membrane and a diffusive mat affixed thereto. The diffusive mat has a three hour wick of at least about 2.5 cm. The diffusive mat may be made of synthetic fibers, glass fibers, natural fibers, and combinations thereof. The diffusive mat may include silica. The separator may include a rubber.
  • DESCRIPTION OF THE DRAWINGS
  • For the purpose of illustrating the invention, there is shown in the drawings a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.
  • FIG. 1 is a graphical comparison of the inventive separator (diffusive mat), INV, versus a separator with a conventional glass mat, PA.
  • FIG. 2 is a graphical comparison of the inventive separator (diffusive mat), INV, versus another separator with a conventional glass mat, PA.
  • FIG. 3 is a graphical comparison of the inventive separator (diffusive mat), INV, versus another separator with a conventional glass mat, PA.
  • FIG. 4 is a graphical comparison of the inventive separator (diffusive mat), INV, versus another separator with a conventional glass mat, PA.
  • FIG. 5 is a graphical comparison of the inventive separator (diffusive mat), INV, versus another separator with a conventional glass mat, PA.
  • DESCRIPTION OF THE INVENTION
  • Lead/acid batteries are well known, see for example, Linden, Handbook of Batteries, 2nd Edition, McGraw-Hill, Inc. New York, N.Y. (1995) and/or Besenhard, Handbook of Battery Materials, Wiley-VCH Verlag GmbH, Weinheim, Germany (1999), both incorporated herein by reference. A separator may be used in any lead/acid battery. In one embodiment, the lead/acid battery is a flood lead/acid (FLA) battery, such as those used as inverter batteries, enhanced flood batteries (EFB), ISS batteries, stationary batteries, golf cart batteries, and the like.
  • In a first aspect of the invention, a diffusive mat (DM) is included with a microporous membrane to improve battery performance by, for example, imparting superior diffusion properties that retard acid stratification, reducing antimony poisoning, improving oxidation resistance, and improving micro short protection (arising from dendrite growth). The laminate of the DM and microporous membrane also protects against water loss by keeping the electrodes from drying out through the action of electrolyte wicking, thereby addressing the dry-out situation and protecting against acid stratification by improved diffusion properties.
  • The diffusive mat (DM) is not a conventional glass mat. Conventional glass mats are passive, and do not have diffusive or wicking capability. The DM may have the ability to wick 25× or more than the conventional wet or dry glass mat. The wicking rate is inversely proportional to the acid stratification. The conventional glass mat has a ‘three hour wick’ of no greater than 0.6 cm, while the DM has a ‘three hour wick’ of at least about 2.5 cm. Alternatively, the DM may have a ‘three hour wick’ of at least about 2.5 cm, or at least about 3.0 cm, or at least about 4.0 cm, or in the range of about 2.5-about 10.0 cm, or in the range of about 3.0-about 10.0 cm, or in the range of about 4.0-about 10.0 cm, or sub-combinations thereof.
  • The ‘three hour wick’ test is performed by inserting a standard sized piece of the material in a liquid (sulfuric acid with a specific gravity of 1.280), waiting three hours, and measuring the height of travel of the liquid up the material. ‘Standard sized piece’ means the same width and length, but thickness may vary according to the natural thickness of the material being tested, so that meaningful comparisons may be made. For the ‘three hour wick’ test, the sample has a width of 1 inch and a length of at least 40 cm. The sample is marked every centimeter up the vertical axis of the sample. The sample, held in a clamp above the liquid, is inserted into the liquid to a depth of 2 cm. The wick height is measured, from the graduations on the sample, at one, five, ten, and fifteen minutes and for a maximum wick height after three hours. The DM may further include a particulate filler, such as silica.
  • The DM may be laminated on to the microporous membrane in any manner. The DM may be affixed to the microporous membrane by welding or glue. The DM may be formed into pockets, sleeves, leaves, of an CS' wrap. The DM may be a nonwoven or woven or knitted fabric made of fibers. The DM may be made of glass fibers, synthetic fibers, natural fibers, or combinations thereof. In one embodiment, the DM may be made of glass fibers and synthetic fibers. The DM has sufficient physical integrity to perform as a positive active material (PAM) retention mat and prevents shedding of PAM. The DM protects the separator from strong oxidizers (e.g., Cr, Mn, Ti). Several examples of suitable DM (INV) are set forth in the TABLE below, along with a comparison to conventional glass mats (Prior Art).
  • In use in the battery, the separator is placed in the battery, so that the DM faces, or is in contact with the positive electrode (or plate) of the battery. In one embodiment, the separator may envelope the negative and/or positive plate(s). In another embodiment, the separator may envelope the negative plate(s).
  • TABLE
    Diffusive Mat (DM) Diffusive Mat (DM)
    Synthetic fibers Glass fibers Conventional Glass Mat
    Category Units [INV] [INV] [Prior Art]
    Composition Synthetic fiber + Synthetic Fine Glass Coated Glass fiber Glass fiber
    Silica wood Pulp + fiber Glass fiber + retention mat1 retention mat
    Silica Silica (wet-laid (dry-laid
    process) process)
    Overall (mm) 0.305 0.373 0.3 0.215    0.5 mm    0.5 mm
    Puncture (N) 23.1 9.9 9.3 12.6 14.4  7.8
    Tensile-MD (N/mm2) 8.7 5.3 9.5 23 4.5 1.0
    Tensile- (N/mm2) 6.8 3.3 5.4 11.8 4.3 2.8
    CMD
    ER (10/20) (mohm- 41.7 87.6 12 15 2.7 2.3
    cm2)
    Basis (gsm) 122.4 146.3 40 68 80.22 68.62
    Weight
    3 hour Wick (cm) 6 4.8 6.2 5.5 0.5 0  
    Stiffness (mN) 456 324 92 392 192    192   
    (MD)
    Stiffness (mN) 377 259 47 241 355    355   
    (CMD)
    1Commercially available from Johns-Manville as DURA GLASS B-20 (20 mil thick standard glass mat).
  • Microporous membranes may be made from: sheets of polyolefin (e.g., polyethylene, polypropylene, ultra high molecular weight polyethylene (UHMWPE), and combinations thereof), polyvinyl chloride (PVC), phenol-formaldehyde resins (including, for example, cellulosic and/or synthetic fiber impregnated with phenol-formaldehyde resins), crosslinked rubber, or nonwoven (e.g., inert fibers including cellulosic fibers or glass fibers). In one embodiment, the microporous membrane may be made from polyethylene, UHWMPE, or a combination of both and may include a particulate filler, as is known. The microporous membrane may have a ribbed profile. The ribs may be conventional, e.g., running in the machine direction (MD) on the side to the positive electrode (e.g., to, among other things, separate the separator from the positive electrode, and form gas channels that allow gas to escape and promotes mixing during over charge conditions), but the ribs may also extend in the cross machine direction (CMD) on the side to the negative electrode (to retard acid stratification).
  • In another aspect of the invention, rubber may be added to the separator to address the oxidation issue arising from the contaminants. Rubber, as used herein, refers to rubber latex, tire crumb, and combinations thereof. In one embodiment, the rubber may be un-cross-linked or uncured rubber. In another embodiment, the rubber latex may be natural or synthetic rubber latex. In another embodiment, the rubber may be natural rubber latex. In yet another embodiment, the rubber may be tire crumb. Natural rubbers may include, for example, any grade (e.g., latex grades), such as ribbed smoked sheet, white and pale crepes, pure blanket crepes or re-mills, thick brown crepes or ambers, and flat bark crepes. Natural rubbers may include Hevea rubbers. Synthetic rubbers may include, for example, methyl rubber, polybutadiene, chloropene rubbers, and copolymer rubbers. Copolymer rubbers may include, for example, styrene/butadiene rubbers, acrylonitrile/butadiene rubbers, ethylene/propylene rubbers (ELM and PERM), and ethylene/vinyl acetate rubbers. Other rubbers may include, for example, butyl rubber, bromobutyl rubber, polyurethane rubber, epichlorhydrin rubber, polysulphide rubber, chlorosulphonyl polyethylene, polynorborene rubber, acrylate rubber, fluorinated rubber, isoprene rubber, and silicone rubber. These rubbers may be used alone or in various combinations.
  • In one embodiment, the rubber may be impregnated into the microporous membrane. Impregnated, as used herein, means that the rubber is incorporated into the body of the separator, and is not a layer formed onto the separator. So, the rubber may be mixed or blended into one or more the materials used to from the separator. The rubber, for example the latex, is still chemically active (i.e., uncured and/or uncross-linked) after extrusion. Thus, the rubber is a component integral with, or distributed within, or uniformly blended throughout, or intimately blended in the materials of, the separator.
  • The rubber, as described above, may comprise any portion of the microporous membrane. In one embodiment, the rubber may comprise no more than about 12% by weight of the microporous membrane when added to the formulation (i.e., the ‘by weight’ of the raw materials before extrusion). In another embodiment, the rubber may comprise about 1-12% by weight of the microporous membrane. In another embodiment, the rubber may comprise about 1.2-6% by weight of the microporous membrane. In yet another embodiment, the rubber may comprise about 2-4% by weight of the microporous membrane. In still another embodiment, the rubber may comprise about 2.5-3.5% by weight of the microporous membrane. In another embodiment, the rubber may comprise about 3% by weight of the microporous membrane.
  • The microporous membrane may be made in any conventional fashion. For example, in a PE microporous membrane, the rubber may be mixed with the processing oil and mixed with the PE during extrusion.
  • EXAMPLES
  • Figures (graphs) 1-5 are a comparison of the inventive separators with the diffusive mat (DM) to separators with the conventional glass mats. The separators are equivalent but one separator has the DM and the other has the conventional glass mat. The information presented in these graphs was generated using a conventional Inverter Battery Simulation using a 12V150 Ah battery (≈100% depth of discharge, DoD) with the positive plate enveloped (FIGS. 1-2) or the negative plate enveloped (FIGS. 3-5) and with a discharge at 43A for 1 hour and 54 minutes at 10.50V, followed by recharge at 13.80V with a limit current of 15 A for 10 hours and 6 minutes.
  • The present invention may be embodied in other forms without departing from the spirit and the essential attributes thereof, and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicated the scope of the invention.

Claims (19)

1-17. (canceled)
18. A battery separator for a flooded lead acid battery comprising:
a microporous membrane made from a sheet of one or more selected from polyolefin, polyvinyl chloride, and phenol-formaldehyde resin, and
a diffusive mat affixed to the microporous membrane, said diffusive mat having an electrolyte wicking defined by a three hour wick of at least 2.5 cm, and
wherein the diffusive mat improves the flooded lead acid battery performance when compared to an equivalent flooded lead acid battery with a glass mat by inhibiting battery electrodes from drying out through wicking of free liquid electrolyte in the flooded lead acid battery and protecting against acid stratification by improved diffusion properties obtained from the electrolyte wicking.
19. The separator flooded lead acid battery of claim 18, wherein said diffusive mat has a basis weight greater than about 35 gsm.
20. The separator flooded lead acid battery of claim 18, wherein said diffusive mat is made of synthetic fibers, glass fibers, or a combination of both.
21. The separator flooded lead acid battery of claim 18 wherein said diffusive mat has an MD stiffness of greater than about 90 mN, and a CMD stiffness of greater than about 45 mN.
22. The separator flooded lead acid battery of claim 18, wherein said diffusive mat comprises particulate silica.
23. The separator flooded lead acid battery of claim 18 wherein the microporous membrane is impregnated with uncured rubber.
24. The separator of claim 23, wherein said uncured rubber comprises no more than 12% by weight of the separator.
25. The separator flooded lead acid battery of claim 24, wherein said uncured rubber comprises 2.5-3.5% by weight of the separator.
26. The separator of claim 23, wherein said uncured rubber is a natural latex.
27. The separator of claim 23, wherein said uncured rubber is a synthetic latex.
28. The separator of claim 23, wherein said uncured rubber is a natural rubber.
29. The separator of claim 18, wherein said microporous membrane is made from a microporous sheet of polyolefin.
30. The separator of claim 18 wherein said diffusive mat comprises fine glass fibers.
31. The separator of claim 18 wherein said diffusive mat comprises a natural fiber.
15. The separator of claim 18, wherein the diffusive mat has a thickness greater than 0.2 mm.
32. The separator of claim 18, wherein the diffusive mat has a thickness from 0.2 mm to 0.5 mm.
33. A flooded lead acid battery comprising the separator of claim 18.
34. The flooded lead acid battery of claim 33, the battery being selected from inverter batteries, enhanced flood batteries (EFB), ISS batteries, stationary batteries, or golf cart batteries.
US17/458,921 2013-03-07 2021-08-27 Laminated oxidation protected separator Abandoned US20210399385A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/458,921 US20210399385A1 (en) 2013-03-07 2021-08-27 Laminated oxidation protected separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361774144P 2013-03-07 2013-03-07
US14/200,066 US20140255752A1 (en) 2013-03-07 2014-03-07 Laminated oxidation protected separator
US17/458,921 US20210399385A1 (en) 2013-03-07 2021-08-27 Laminated oxidation protected separator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/200,066 Division US20140255752A1 (en) 2013-03-07 2014-03-07 Laminated oxidation protected separator

Publications (1)

Publication Number Publication Date
US20210399385A1 true US20210399385A1 (en) 2021-12-23

Family

ID=51488185

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/200,066 Pending US20140255752A1 (en) 2013-03-07 2014-03-07 Laminated oxidation protected separator
US15/363,591 Abandoned US20170077479A1 (en) 2013-03-07 2016-11-29 Laminated oxidation protected separator
US17/458,921 Abandoned US20210399385A1 (en) 2013-03-07 2021-08-27 Laminated oxidation protected separator

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/200,066 Pending US20140255752A1 (en) 2013-03-07 2014-03-07 Laminated oxidation protected separator
US15/363,591 Abandoned US20170077479A1 (en) 2013-03-07 2016-11-29 Laminated oxidation protected separator

Country Status (8)

Country Link
US (3) US20140255752A1 (en)
EP (1) EP2965368A4 (en)
JP (3) JP2016513861A (en)
KR (4) KR20150126903A (en)
CN (2) CN105378974A (en)
BR (1) BR112015021454B1 (en)
PH (1) PH12015501950B1 (en)
WO (1) WO2014138509A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463673A (en) 2014-03-22 2017-02-22 霍林斯沃思和沃斯有限公司 Battery separator with low apparent density
CN107431167A (en) * 2015-02-19 2017-12-01 霍林斯沃思和沃斯有限公司 Battery separator comprising chemical addition agent and/or other components
ES2949694T3 (en) 2015-02-26 2023-10-02 Daramic Llc Separators with improved water loss used with lead acid batteries, systems for improved water loss performance and their manufacturing and use procedures
KR20250037602A (en) * 2015-10-05 2025-03-17 다라믹 엘엘씨 Functionalized lead acid battery separators, improved lead acid batteries, and related methods
WO2017209748A1 (en) * 2016-06-01 2017-12-07 Daramic, Llc Improved hybrid separators for lead acid batteries
WO2018147866A1 (en) 2017-02-10 2018-08-16 Daramic, Llc Improved separators with fibrous mat, lead acid batteries, and methods and systems associated therewith
KR102600641B1 (en) 2017-03-18 2023-11-09 다라믹 엘엘씨 Improved composite layer or separator for lead acid batteries
WO2019116268A1 (en) * 2017-12-13 2019-06-20 Johnson Matthey Public Limited Company Improved nh3 abatement with greater selectivity to n2
US11549631B2 (en) 2018-01-10 2023-01-10 Lydall, Inc. Asymmetrical stretch composite for pipe liner
WO2019217759A1 (en) * 2018-05-09 2019-11-14 Amtek Research International Llc Acid stratification mitigation, electrolytes, devices, and methods related thereto
US20200328390A1 (en) * 2019-04-12 2020-10-15 Hollingsworth & Vose Company Separators for lead-acid batteries
US11557815B2 (en) 2019-12-30 2023-01-17 Microporous, Llc Battery separator configured for reducing acid stratification for enhanced flooded batteries
US12401090B2 (en) 2020-02-10 2025-08-26 Hollingsworth & Vose Company Embossed separators
JP7453397B2 (en) 2020-04-03 2024-03-19 エルジー エナジー ソリューション リミテッド Lithium secondary battery separator, its manufacturing method, and lithium secondary battery including the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819412A (en) * 1972-02-07 1974-06-25 Tyco Laboratories Inc Plates for lead acid batteries
US3988165A (en) * 1974-07-08 1976-10-26 Gould Inc. Method of making a lead-acid storage battery, and cell, capable of activation by the addition of electrolyte
GB2020479A (en) * 1978-05-09 1979-11-14 Eltra Corp Improvements in storage batteries
EP0507090A1 (en) * 1991-03-09 1992-10-07 Daramic, Inc. Lead/sulphuric acid storage battery
US5221587A (en) * 1991-03-09 1993-06-22 W. R. Grace & Co.-Conn. Lead/sulphuric acid storage battery
US5808445A (en) * 1995-12-06 1998-09-15 The University Of Virginia Patent Foundation Method for monitoring remaining battery capacity
US6242127B1 (en) * 1999-08-06 2001-06-05 Microporous Products, L.P. Polyethylene separator for energy storage cell
US20020177033A1 (en) * 2001-04-03 2002-11-28 Japan Storage Battery Co., Ltd. Dry-charged lead acid battery and process for the production thereof
US20030054237A1 (en) * 2001-09-20 2003-03-20 Jerry Zucker Laminated multilayer separator for lead-acid batteries
US20050017684A1 (en) * 2001-10-03 2005-01-27 Brecht William B System and method for battery charging
US20070160903A1 (en) * 2004-04-08 2007-07-12 Kazuhiro Sugie Lead storage battery
US20110287324A1 (en) * 2010-05-21 2011-11-24 Hollingsworth & Vose Company Surface modified glass fibers
US20130022860A1 (en) * 2010-03-01 2013-01-24 Shin-Kobe Electric Machinery Co., Ltd. Lead acid storage battery
US20140227585A1 (en) * 2011-09-21 2014-08-14 Hollingsworth & Vose Company Battery components with leachable metal ions and uses thereof

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288503A (en) * 1978-06-16 1981-09-08 Amerace Corporation Laminated microporous article
ZA832713B (en) * 1982-04-20 1984-08-29 Evans Adlard & Co Glass fibre paper separator for electrochemical cells
JPS58179761U (en) * 1982-05-26 1983-12-01 新神戸電機株式会社 lead acid battery
JPS59138058A (en) * 1983-01-25 1984-08-08 Nippon Glass Seni Kk Separator for storage battery
JPS61245463A (en) * 1985-04-23 1986-10-31 Yuasa Battery Co Ltd Enclosed lead storage battery
JPS6229059A (en) * 1985-07-30 1987-02-07 Nippon Muki Kk Separator for maintenance free lead storage battery
JPS6290847A (en) * 1985-10-16 1987-04-25 Sanyo Kokusaku Pulp Co Ltd Manufacture of separator for storage battery
JPH01294352A (en) * 1988-02-16 1989-11-28 Yuasa Battery Co Ltd Sealed lead-acid battery
JPH0266850A (en) * 1988-08-31 1990-03-06 Yuasa Battery Co Ltd Sealed lead-acid battery
US5091275A (en) * 1990-04-25 1992-02-25 Evanite Fiber Corporation Glass fiber separator and method of making
US5154988A (en) * 1991-03-18 1992-10-13 W. R. Grace & Co.-Conn. Deep cycle battery separators
DE4242661C2 (en) * 1992-12-17 1999-09-09 Sonnenschein Accumulatoren Maintenance-free, high-capacity lead accumulator
JP2603141Y2 (en) * 1993-11-30 2000-02-28 古河電池株式会社 Bag-shaped separator for lead-acid battery and lead-acid battery
JP3374665B2 (en) * 1996-07-23 2003-02-10 松下電器産業株式会社 Sealed lead-acid battery
JPH10106526A (en) * 1996-09-26 1998-04-24 G S Kasei Kogyo Kk Separator for lead-acid battery and manufacture thereof
US5894055A (en) * 1997-04-11 1999-04-13 Amtek Research International Llc Battery separator
US6514639B2 (en) * 1998-03-20 2003-02-04 Ensci Inc Negative plate element for a lead acid battery containing efficiency improving additives
JP2001102027A (en) * 1999-09-30 2001-04-13 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP4968983B2 (en) * 2000-12-26 2012-07-04 日本板硝子株式会社 Sealed separator for sealed lead-acid battery
JP2002304977A (en) * 2001-04-04 2002-10-18 Nippon Sheet Glass Co Ltd Separator for sealed lead-acid battery and sealed lead- acid battery having the separator built-in
JP2002313305A (en) * 2001-04-18 2002-10-25 Nippon Sheet Glass Co Ltd Lead storage battery separator and lead storage battery using the same
US6703161B2 (en) * 2001-09-20 2004-03-09 Daramic, Inc. Multilayer separator for lead-acid batteries
CA2475296A1 (en) * 2002-02-07 2003-08-14 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators, electrolyte therefor, and absorbent separators therefor
JP3979467B2 (en) * 2002-02-18 2007-09-19 日本板硝子株式会社 Sealed lead-acid battery separator and sealed lead-acid battery
US7144633B2 (en) * 2002-07-29 2006-12-05 Evanite Fiber Corporation Glass compositions
DE10327080B4 (en) * 2003-06-13 2007-08-16 Daramic, Inc. Separator material for forming a separator for an acid accumulator and method for its production
JP4550391B2 (en) * 2003-09-25 2010-09-22 日本板硝子株式会社 Lead-acid battery separator
US20050084762A1 (en) * 2003-10-15 2005-04-21 Vaccaro Frank J. Hybrid gelled-electrolyte valve-regulated lead-acid battery
EP1585182B1 (en) * 2004-04-05 2010-06-30 Exide Technologies, S.A. Lead-acid battery with microfibre separator having improved absorption characteristics
JP5044888B2 (en) * 2004-12-03 2012-10-10 パナソニック株式会社 Liquid lead-acid battery
JP2005302395A (en) * 2004-04-08 2005-10-27 Matsushita Electric Ind Co Ltd Lead acid battery
JP4771678B2 (en) * 2004-09-29 2011-09-14 古河電池株式会社 Open-type lead-acid battery for automobiles
JP4417232B2 (en) * 2004-11-29 2010-02-17 古河電池株式会社 Lead acid battery
US8722231B2 (en) * 2006-11-14 2014-05-13 Mp Assets Corporation Smart battery separators
JP5012105B2 (en) * 2007-03-14 2012-08-29 パナソニック株式会社 Control valve type lead acid battery
CN105870379B (en) * 2007-06-01 2022-02-01 达拉米克有限责任公司 Lead acid battery separator with enhanced stiffness
KR20100096232A (en) * 2007-12-11 2010-09-01 피. 에이치. 글랫펠터 컴퍼니 Battery separator structures
WO2009102946A1 (en) * 2008-02-14 2009-08-20 Firefly Energy Inc. Battery with electrolyte diffusing separator
JP5160285B2 (en) * 2008-03-31 2013-03-13 日本板硝子株式会社 Sealed lead-acid battery separator and sealed lead-acid battery
US9935302B2 (en) * 2009-10-20 2018-04-03 Daramic, Llc Battery separators with cross ribs and related methods
JP5432813B2 (en) * 2010-05-11 2014-03-05 日本板硝子株式会社 Sealed lead-acid battery separator and sealed lead-acid battery
US20110318629A1 (en) * 2010-06-25 2011-12-29 Ho Marvin C Separator for lead acid battery
RU2013155484A (en) * 2011-05-13 2015-06-20 Син-Кобэ Электрик Машинери Ко., Лтд. LEAD ACID BATTERY
WO2013008454A1 (en) * 2011-07-11 2013-01-17 パナソニック株式会社 Lead storage cell
WO2014008422A1 (en) * 2012-07-03 2014-01-09 Amtek Research International Llc Method of making a rubber-containing polyolefin separator

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819412A (en) * 1972-02-07 1974-06-25 Tyco Laboratories Inc Plates for lead acid batteries
US3988165A (en) * 1974-07-08 1976-10-26 Gould Inc. Method of making a lead-acid storage battery, and cell, capable of activation by the addition of electrolyte
GB2020479A (en) * 1978-05-09 1979-11-14 Eltra Corp Improvements in storage batteries
EP0507090A1 (en) * 1991-03-09 1992-10-07 Daramic, Inc. Lead/sulphuric acid storage battery
US5221587A (en) * 1991-03-09 1993-06-22 W. R. Grace & Co.-Conn. Lead/sulphuric acid storage battery
US5808445A (en) * 1995-12-06 1998-09-15 The University Of Virginia Patent Foundation Method for monitoring remaining battery capacity
US6242127B1 (en) * 1999-08-06 2001-06-05 Microporous Products, L.P. Polyethylene separator for energy storage cell
US20020177033A1 (en) * 2001-04-03 2002-11-28 Japan Storage Battery Co., Ltd. Dry-charged lead acid battery and process for the production thereof
US20030054237A1 (en) * 2001-09-20 2003-03-20 Jerry Zucker Laminated multilayer separator for lead-acid batteries
US20050017684A1 (en) * 2001-10-03 2005-01-27 Brecht William B System and method for battery charging
US20070160903A1 (en) * 2004-04-08 2007-07-12 Kazuhiro Sugie Lead storage battery
US20130022860A1 (en) * 2010-03-01 2013-01-24 Shin-Kobe Electric Machinery Co., Ltd. Lead acid storage battery
US20110287324A1 (en) * 2010-05-21 2011-11-24 Hollingsworth & Vose Company Surface modified glass fibers
US20140227585A1 (en) * 2011-09-21 2014-08-14 Hollingsworth & Vose Company Battery components with leachable metal ions and uses thereof

Also Published As

Publication number Publication date
KR20150126903A (en) 2015-11-13
KR102754406B1 (en) 2025-01-21
JP7219244B2 (en) 2023-02-07
JP2023052625A (en) 2023-04-11
WO2014138509A1 (en) 2014-09-12
PH12015501950A1 (en) 2016-01-11
EP2965368A1 (en) 2016-01-13
KR20230152786A (en) 2023-11-03
CN105378974A (en) 2016-03-02
CN108448038A (en) 2018-08-24
US20170077479A1 (en) 2017-03-16
JP7675115B2 (en) 2025-05-12
EP2965368A4 (en) 2016-11-30
KR20210041128A (en) 2021-04-14
JP2020115490A (en) 2020-07-30
US20140255752A1 (en) 2014-09-11
PH12015501950B1 (en) 2016-01-11
KR102754433B1 (en) 2025-01-21
CN108448038B (en) 2022-01-04
KR20220071298A (en) 2022-05-31
BR112015021454B1 (en) 2021-11-23
BR112015021454A2 (en) 2017-07-18
JP2016513861A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
US20210399385A1 (en) Laminated oxidation protected separator
US20250046881A1 (en) Oxidation protected separator
US20230420804A1 (en) Lead acid battery separators, batteries, and related methods
US9093694B2 (en) Composite battery separator
EP2781637A1 (en) Nonwoven fabric formed from fiber coated with organic binder polymer compound, electrochemical device comprising nonwoven fabric, and method for manufacturing nonwoven fabric
US20250038356A1 (en) Separators, lead acid batteries, and methods and systems associated therewith
KR20240044427A (en) Pasting paper for lead acid batteries

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION