US20210381653A1 - Pipeline supplemental containment wall systems and methods - Google Patents
Pipeline supplemental containment wall systems and methods Download PDFInfo
- Publication number
- US20210381653A1 US20210381653A1 US17/408,701 US202117408701A US2021381653A1 US 20210381653 A1 US20210381653 A1 US 20210381653A1 US 202117408701 A US202117408701 A US 202117408701A US 2021381653 A1 US2021381653 A1 US 2021381653A1
- Authority
- US
- United States
- Prior art keywords
- containment wall
- shell
- pipe fitting
- fitting
- supplemental
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000000153 supplemental effect Effects 0.000 title claims abstract description 176
- 238000000034 method Methods 0.000 title claims description 65
- 238000007789 sealing Methods 0.000 claims description 13
- 239000003566 sealing material Substances 0.000 claims description 9
- 239000012530 fluid Substances 0.000 abstract description 92
- 239000010410 layer Substances 0.000 description 61
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 18
- 210000003739 neck Anatomy 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229920001903 high density polyethylene Polymers 0.000 description 5
- 239000004700 high-density polyethylene Substances 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000011343 solid material Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000011016 integrity testing Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L33/00—Arrangements for connecting hoses to rigid members; Rigid hose-connectors, i.e. single members engaging both hoses
- F16L33/20—Undivided rings, sleeves, or like members contracted on the hose or expanded inside the hose by means of tools; Arrangements using such members
- F16L33/207—Undivided rings, sleeves, or like members contracted on the hose or expanded inside the hose by means of tools; Arrangements using such members only a sleeve being contracted on the hose
- F16L33/2071—Undivided rings, sleeves, or like members contracted on the hose or expanded inside the hose by means of tools; Arrangements using such members only a sleeve being contracted on the hose the sleeve being a separate connecting member
- F16L33/2073—Undivided rings, sleeves, or like members contracted on the hose or expanded inside the hose by means of tools; Arrangements using such members only a sleeve being contracted on the hose the sleeve being a separate connecting member directly connected to the rigid member
- F16L33/2076—Undivided rings, sleeves, or like members contracted on the hose or expanded inside the hose by means of tools; Arrangements using such members only a sleeve being contracted on the hose the sleeve being a separate connecting member directly connected to the rigid member by plastic deformation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D5/00—Protection or supervision of installations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L13/00—Non-disconnectable pipe joints, e.g. soldered, adhesive, or caulked joints
- F16L13/14—Non-disconnectable pipe joints, e.g. soldered, adhesive, or caulked joints made by plastically deforming the material of the pipe, e.g. by flanging, rolling
- F16L13/141—Non-disconnectable pipe joints, e.g. soldered, adhesive, or caulked joints made by plastically deforming the material of the pipe, e.g. by flanging, rolling by crimping or rolling from the outside
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L3/00—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
- F16L3/08—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets substantially surrounding the pipe, cable or protective tubing
- F16L3/10—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets substantially surrounding the pipe, cable or protective tubing divided, i.e. with two members engaging the pipe, cable or protective tubing
- F16L3/1091—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets substantially surrounding the pipe, cable or protective tubing divided, i.e. with two members engaging the pipe, cable or protective tubing with two members, the two members being fixed to each other with fastening members on each side
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L35/00—Special arrangements used in connection with end fittings of hoses, e.g. safety or protecting devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L39/00—Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
- F16L39/02—Joints or fittings for double-walled or multi-channel pipes or pipe assemblies for hoses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D1/00—Pipe-line systems
- F17D1/08—Pipe-line systems for liquids or viscous products
- F17D1/14—Conveying liquids or viscous products by pumping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L2201/00—Special arrangements for pipe couplings
- F16L2201/30—Detecting leaks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/14—Arrangements for the insulation of pipes or pipe systems
- F16L59/16—Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
- F16L59/163—Branch units; Insulation forming a whole with branches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/14—Arrangements for the insulation of pipes or pipe systems
- F16L59/16—Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
- F16L59/18—Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints
- F16L59/20—Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints for non-disconnectable joints
Definitions
- the present disclosure generally relates to pipeline systems and, more particularly, to a supplemental containment wall assembly that may be deployed at least at a pipe fitting (e.g., connector) in a pipeline system.
- a pipe fitting e.g., connector
- Pipeline systems are often implemented and/or operated to facilitate transporting (e.g., conveying) fluid, such as liquid and/or gas, from a fluid source to a fluid destination.
- a pipeline system may be used to transport one or more hydrocarbons, such as crude oil, petroleum, natural gas, or any combination thereof.
- a pipeline system may be used to transport one or more other types of fluid, such as produced water, fresh water, fracturing fluid, flowback fluid, carbon dioxide, or any combination thereof.
- a pipeline system may include one or more pipe segments in addition to pipe fittings (e.g., connectors), such as a midline pipe fitting and/or a pipe end fitting.
- a pipe segment may include tubing, which defines (e.g., encloses) a bore that provides a primary fluid conveyance (e.g., flow) path through the pipe segment.
- the tubing of a pipe segment may be implemented to facilitate isolating (e.g., insulating) fluid being conveyed within its bore from environmental conditions external to the pipe segment, for example, to reduce the likelihood of the conveyed (e.g., bore) fluid being lost to the external environmental conditions and/or the external environmental conditions contaminating the conveyed fluid.
- the tubing of a pipe segment may be implemented to provide multiple (e.g., double) containment walls, for example, at least in part by implementing the pipe segment tubing to include an inner tubing layer and an outer tubing layer separated by a tubing annulus.
- at least a portion of a pipe fitting secured to the pipe segment may be considered as providing a single containment wall. Accordingly, at least in such instances, deploying the pipe fitting considered as having a single containment wall in a pipeline system may potentially limit the ability of the pipeline system to provide multi-wall (e.g., double wall) containment.
- a pipeline system includes a pipe fitting to be secured to a pipe segment including tubing that defines a pipe bore and a fluid conduit implemented in a tubing annulus of the tubing, in which the pipe fitting includes a fitting grab notch implemented on an outer surface of the pipe fitting, and a supplemental containment wall assembly to be deployed at the pipe fitting.
- the supplemental containment wall assembly includes a containment wall shell to be secured circumferentially around the pipe fitting to define a fitting annulus that is sealed at least between the outer surface of the pipe fitting and an inner surface of the containment wall shell to facilitate providing multi-wall containment in the pipeline system and a shell grab tab implemented on the inner surface of the containment wall shell, in which the shell grab tab matingly interlocks with the fitting grab notch on the outer surface of the pipe fitting to facilitate securing the containment wall shell to the pipe fitting.
- a method of implementing a pipeline system to provide multi-wall containment includes implementing a supplemental containment wall assembly to be deployed at least at a pipe fitting in the pipeline system, in which the supplemental containment wall assembly includes a containment wall shell and a shell grab tab implemented circumferentially along an inner surface of the containment wall shell, circumferentially covering at least a portion of the pipe fitting using the containment wall shell, in which the portion of the pipe fitting includes a grab ring having a fitting grab notch that runs circumferentially along an outer surface of the pipe fitting, and securing the containment wall shell circumferentially around at least the portion of the pipe fitting at least in part by tightening one or more fasteners of the supplemental containment wall assembly such that the shell grab tab on the inner surface of the containment wall shell matingly interlocks with the fitting grab notch on the outer surface of the pipe fitting and a sealed fitting annulus is defined between at least the inner surface of the containment wall shell and the outer surface of the pipe fitting.
- a supplemental containment wall assembly to be deployed in a pipeline system includes a containment wall shell to be secured circumferentially around at least a pipe fitting in the pipeline system to facilitate defining a fitting annulus at least between an inner surface of the containment wall shell and an outer surface of the pipe fitting, a shell grab tab implemented circumferentially along the inner surface of the containment wall shell, in which the shell grab tab matingly interlocks with a fitting grab notch that runs circumferentially along the outer surface of the pipe fitting to facilitate securing the containment wall shell to the pipe fitting, and one or more containment wall seals implemented circumferentially along the inner surface of the containment wall shell, in which the one or more containment wall seals seal the fitting annulus defined at least between the containment wall shell and the pipe fitting to facilitate providing multi-wall containment at the pipe fitting in the pipeline system.
- FIG. 1 is a block diagram of an example of a pipeline system including pipe segments and pipe fittings (e.g., connectors), in accordance with an embodiment of the present disclosure.
- FIG. 2 is a side view of an example of a pipe segment of FIG. 1 that includes a bore defined by its tubing as well as fluid conduits implemented within an annulus of its tubing, in accordance with an embodiment of the present disclosure.
- FIG. 3 is a perspective view of an example of the pipe segment of FIG. 2 with a helically shaped fluid conduit implemented within the annulus of its tubing, in accordance with an embodiment of the present disclosure.
- FIG. 4 is an axial cross-section profile of an example of deployment equipment coupled to a portion of the pipeline system of FIG. 1 , in accordance with an embodiment of the present disclosure.
- FIG. 5 is an axial cross-section profile of an example of a supplemental containment wall assembly coupled to the portion of the pipeline system of FIG. 4 , in accordance with an embodiment of the present disclosure.
- FIG. 6 is a side view of an example of the supplemental containment wall assembly, which includes a clamp containment wall shell, and the portion of the pipeline system of FIG. 5 , in accordance with an embodiment of the present disclosure.
- FIG. 7 is a side view of another example of the supplemental containment wall assembly, which includes a sleeve containment wall shell, and the portion of the pipeline system of FIG. 5 , in accordance with an embodiment of the present disclosure.
- FIG. 8 is a side view of a further example of the supplemental containment wall assembly, which includes a wrap containment wall shell, and the portion of the pipeline system of FIG. 5 , in accordance with an embodiment of the present disclosure.
- FIG. 9 is an axial cross-section profile of an example of a portion of a supplemental containment wall assembly coupled to another portion of the pipeline system of FIG. 1 , in accordance with an embodiment of the present disclosure.
- FIG. 10 is a top view of a portion of the pipeline system of FIG. 1 that includes the other portion of the pipeline system of FIG. 9 , in accordance with an embodiment of the present disclosure.
- FIG. 11 is a perspective exploded view of another example of a supplemental containment wall assembly to be deployed at the portion of the pipeline system of FIG. 10 , in accordance with an embodiment of the present disclosure.
- FIG. 12 is a flow diagram of an example process for implementing a pipeline system to provide multi-wall containment, in accordance with an embodiment of the present disclosure.
- FIG. 13 is a flow diagram of an example process for implementing a supplemental containment wall assembly to be deployed in a pipeline system, in accordance with an embodiment of the present disclosure.
- Coupled or “coupled to” may indicate establishing either a direct or indirect connection and, thus, is not limited to either unless expressly referenced as such.
- set may refer to one or more items.
- like or identical reference numerals are used in the figures to identify common or the same features.
- the figures are not necessarily to scale. In particular, certain features and/or certain views of the figures may be shown exaggerated in scale for purposes of clarification.
- a pipeline system may include pipe fittings (e.g., connectors), such as a midline pipe fitting and/or a pipe end fitting, and one or more pipe segments, which each includes tubing that defines (e.g., encloses) a corresponding pipe bore.
- pipe fittings e.g., connectors
- pipe segments which each includes tubing that defines (e.g., encloses) a corresponding pipe bore.
- a pipe segment may generally be secured and sealed in one or more pipe fittings to facilitate fluidly coupling the pipe segment to another pipe segment, a fluid source, and/or a fluid destination.
- a pipeline system may include a first pipe end fitting that couples a first pipe segment to a fluid source, a midline pipe fitting that couples the first pipe segment to a second pipe segment, and a second pipe end fitting that couples the second pipe segment to a fluid destination.
- a pipeline system may be implemented to provide multi-wall (e.g., double wall) containment to facilitate improving fluid isolation provided by the pipeline system.
- a portion of the pipeline system may provide multi-wall containment when, moving radially outward, the portion of the pipeline system includes multiple structural layers separated by one or more corresponding annuli.
- the tubing of a pipe segment deployed in the pipeline system may include an inner layer and an outer layer separated by a tubing annulus, for example, which is implemented using one or more intermediate layers that each has one or more openings (e.g., fluid conduits) devoid of solid material.
- a pipe segment may be secured in a pipe fitting.
- the pipe fitting may be secured to the pipe segment using swaging techniques.
- the pipe fitting may include a fitting tube, which defines (e.g., encloses) a fitting bore through the pipe fitting, and a fitting jacket, which is coupled around the fitting jacket to define (e.g., enclose) a tubing cavity in which the tubing of the pipe segment is to be secured.
- the pipe fitting may be secured to a pipe segment at least in part by inserting the tubing of the pipe segment into the tubing cavity and conformally deforming the pipe fitting around the pipe segment tubing.
- at least the portion of the pipe fitting at which the pipe segment tubing is secured may provide multi-wall containment.
- deployment equipment such as a swage machine
- the pipe fitting may include a grab ring with a fitting grab notch that runs circumferentially along an outer surface of the grab ring.
- the deployment equipment may include a grab plate with an equipment grab tab, which is implemented (e.g., sized and/or shaped) to matingly interlock (e.g., engage and/or interface) with the fitting grab notch of the pipe fitting.
- a grab ring of a pipe fitting may be coupled to the fitting tube of the pipe fitting such that the grab ring is at least partially external from a fitting jacket of the pipe fitting.
- at least a portion of the grab ring may not be implemented between the fitting tube and the fitting jacket and, thus, pipe segment tubing may not be present between the fitting tube and the grab ring even when the pipe segment tubing is fully inserted into a tubing cavity defined between the fitting tube and the fitting jacket.
- the portion of the pipe fitting may nevertheless be considered as providing single wall containment, for example, due to the grab ring directly abutting the fitting tube resulting in the lack of an annulus therebetween.
- the present disclosure provides techniques for implementing and/or deploying a supplemental containment wall assembly in the pipeline system, for example, at least at one or more pipe fittings considered as providing single wall containment.
- the supplemental containment wall assembly may include a containment wall shell, which is implemented to be secured and sealed circumferentially around at least a portion of a pipe fitting.
- the supplemental containment wall may include one or more fasteners, which are implemented to facilitate securing the containment wall shell around the pipe fitting.
- different embodiments of a supplemental containment wall assembly may include different types of containment wall shells and/or different types of fasteners.
- a supplemental containment wall assembly may include a clamp containment wall shell with multiple clamp shell segments, which are implemented to be clamped circumferentially around at least a portion of a pipe fitting.
- the clamp containment wall shell may include a first clamp shell segment implemented to be secured around a first portion (e.g., top half) of the pipe fitting, a second clamp segment implemented to be secured around a second portion (e.g., bottom half) of the pipe fitting, and so on.
- the clamp shell segments may include threaded fastener openings, which are implemented to enable corresponding threaded fasteners, such as a bolt or a screw, to be selectively tightened therein.
- the supplemental containment wall assembly may include threaded fasteners, which may be tightened in the threaded fastener openings to facilitate securing and sealing the clamp shell segments around the pipe fitting and, thus, implementing a sealed fitting annulus between at least the pipe fitting and the clamp containment wall shell.
- a supplemental containment wall assembly may include a sleeve containment wall shell, which is implemented to be slid over and secured around at least a portion of a pipe fitting.
- the supplemental containment wall assembly may include internal worm clamp fasteners implemented circumferentially within the sleeve containment wall shell, for example, around a shell grab tab, a containment wall seal, and/or an end of the sleeve containment wall shell.
- tightening one or more of the internal worm clamp fasteners may compress the sleeve containment wall shell inwardly, which may facilitate securing and sealing the sleeve containment wall shell around the pipe fitting and, thus, implementing a sealed fitting annulus between at least the pipe fitting and the sleeve containment wall shell.
- a supplemental containment wall assembly may include a wrap containment wall shell, which is implemented to be wrapped and secured around at least a portion of a pipe fitting.
- the supplemental containment wall assembly may include external worm clamp fasteners, which are implemented to be wrapped circumferentially around the wrap containment wall shell, for example, over a shell grab tab, over a containment wall seal, and/or over an end of the sleeve containment wall shell.
- tightening one or more of the external worm clamp fasteners may compress the wrap containment wall shell inwardly, which may facilitate securing and sealing the wrap containment wall shell around the pipe fitting and, thus, implementing a sealed fitting annulus between at least the pipe fitting and the wrap containment wall shell.
- the supplemental containment wall assembly may include one or more shell grab tabs, which are each implemented on an inner surface of its containment wall shell.
- the shell grab tabs may each be implemented (e.g., sized and/or shaped) to matingly interlock (e.g., engage and/or interface) with at least a portion of a corresponding fitting grab notch implemented along the outer surface of the pipe fitting.
- a first clamp shell segment of a clamp containment wall shell may include a first shell grab tab that is implemented on its inner surface to matingly interface with a first portion of the fitting grab notch
- a second clamp shell segment of the clamp containment wall shell may include a second shell grab tab that is implemented on its inner surface to matingly interface with a second portion of the fitting grab notch
- a shell grab tab that is implemented to matingly interface with the fitting grab notch on the pipe fitting may be implemented circumferentially along an inner surface of a sleeve containment wall shell or an inner surface of a wrap containment wall shell.
- one or more containment wall seals may be implemented on an inner surface of the containment wall shell of a supplemental containment wall assembly.
- the supplemental containment wall assembly may include one or more containment wall seals integrated with corresponding shell grab tabs.
- an integrated containment wall seal may be implemented at least in part by coating a shell grab tab with a sealing material, such as rubber.
- a supplemental containment wall assembly may include one or more discrete containment wall seals, such as an O-ring or a belt seal.
- a first portion of a discrete containment wall seal may be implemented on an inner surface of a first clamp shell segment
- a second portion of the discrete containment wall seal may be implemented on an inner surface of a second clamp shell segment, and so on.
- multiple discrete containment wall seals may be implemented on the inner surface of a containment wall shell.
- a first discrete containment wall seal may be implemented on a first (e.g., inner) side of a shell grab tab on an inner surface of the containment wall shell and a second discrete containment wall seal may be implemented on a second (e.g., outer) side of the shell grab tab on the inner surface of the containment wall shell.
- deploying a supplemental containment wall assembly at least at a pipe fitting in a pipeline system may facilitate providing multi-wall containment in the pipeline, for example, at least in part by defining (e.g., enclosing) a sealed fitting annulus between the pipe fitting and the supplemental containment wall assembly.
- the pipeline system 10 may be coupled between a bore fluid source 12 and a bore fluid destination 14 .
- the bore fluid source 12 may be a production well and the bore fluid destination 14 may be a fluid storage tank.
- the bore fluid source 12 may be a first (e.g., lease facility) storage tank and the bore fluid destination 14 may be a second (e.g., refinery) storage tank.
- the pipeline system 10 may generally be implemented and/or operated to facilitate transporting (e.g., conveying) fluid, such as gas and/or liquid, from the bore fluid source 12 to the bore fluid destination 14 .
- the pipeline system 10 may be used in many applications, including without limitation, both onshore and offshore oil and gas applications.
- the pipeline system 10 may be used to transport one or more hydrocarbons, such as crude oil, petroleum, natural gas, or any combination thereof.
- the pipeline system 10 may be used to transport one or more other types of fluid, such as produced water, fresh water, fracturing fluid, flowback fluid, carbon dioxide, or any combination thereof.
- the bore fluid source 12 may include one or more bore fluid pumps 16 that are implemented and/or operated to inject (e.g., pump and/or supply) fluid from the bore fluid source 12 into a bore of the pipeline system 10 .
- the depicted example is merely intended to be illustrative and not limiting.
- one or more bore fluid pumps 16 may not be implemented at the bore fluid source 12 , for example, when fluid flow through the bore of the pipeline system 10 is produced by gravity.
- one or more bore fluid pumps 16 may be implemented in the pipeline system 10 and/or at the bore fluid destination 14 .
- a pipeline system 10 may include one or more pipe fittings (e.g., connectors) 18 and one or more pipe segments 20 .
- the depicted pipeline system 10 includes a first pipe segment 20 A, a second pipe segment 20 B, and an Nth pipe segment 20 N.
- the depicted pipeline system 10 includes a first pipe (e.g., end) fitting 18 A, which couples the bore fluid source 12 to the first pipe segment 20 A, a second (e.g., midline) pipe fitting 18 B, which couples the first pipe segment 20 A to the second pipe segment 20 B, and an Nth pipe (e.g., end) fitting 18 N, which couples the Nth pipe segment 20 N to the bore fluid destination 14 .
- a first pipe (e.g., end) fitting 18 A which couples the bore fluid source 12 to the first pipe segment 20 A
- a second (e.g., midline) pipe fitting 18 B which couples the first pipe segment 20 A to the second pipe segment 20 B
- an Nth pipe (e.g., end) fitting 18 N which couples the Nth pipe segment 20 N to the bore fluid destination 14 .
- a pipeline system 10 may include fewer (e.g., one) pipe segments 20 . Additionally or alternatively, in other embodiments, a pipeline system 10 may include fewer (e.g., two) pipe fittings 18 .
- a pipe segment 20 generally includes tubing that may be used to convey (e.g., transfer and/or transport) water, gas, oil, and/or any other suitable type of fluid.
- the tubing of a pipe segment 20 may be made of any suitable type of material, such as plastic, metal, and/or a composite (e.g., fiber-reinforced composite) material.
- the tubing of a pipe segment 20 may be implemented using multiple different layers.
- the tubing of a pipe segment 20 may include a first high-density polyethylene (e.g., internal corrosion protection) layer, one or more reinforcement (e.g., steel strip) layers external to the first high-density polyethylene layer, and a second high-density polyethylene (e.g., external corrosion protection) layer external to the one or more reinforcement layers.
- a first high-density polyethylene e.g., internal corrosion protection
- reinforcement e.g., steel strip
- second high-density polyethylene e.g., external corrosion protection
- one or more (e.g., second and/or Nth) pipe segments 20 in a pipeline system 10 may be curved.
- the pipe segment 20 may be flexible, for example, such that the pipe segment 20 is spoolable on a pipe reel and/or a pipe drum (e.g., during transport and/or before deployment of the pipe segment 20 ).
- one or more pipe segments 20 in the pipeline system 10 may be a flexible pipe, such as a bonded flexible pipe, an unbonded flexible pipe, a flexible composite pipe (FCP), a thermoplastic composite pipe (TCP), or a reinforced thermoplastic pipe (RTP).
- FCP flexible composite pipe
- TCP thermoplastic composite pipe
- RTP reinforced thermoplastic pipe
- increasing flexibility of a pipe segment 20 may facilitate improving deployment efficiency of a pipeline system 10 , for example, by obviating a curved (e.g., elbow) pipe fitting 18 and/or enabling the pipe segment 20 to be transported to the pipeline system 10 , deployed in the pipeline system 10 , or both using a tighter spool.
- the tubing of a pipe segment 20 that defines (e.g., encloses) its pipe bore may include one or more openings devoid of solid material.
- an opening in the tubing of a pipe segment 20 may run (e.g., span) the length of the pipe segment 20 and, thus, define (e.g., enclose) a fluid conduit in the annulus of the tubing, which is separate from the pipe bore.
- fluid may flow through a pipe segment 20 via its pipe bore, a fluid conduit implemented within its tubing annulus, or both.
- FIG. 2 an example of a pipe segment 20 , which includes tubing 22 with fluid conduits 24 implemented in its annulus 25 , is shown in FIG. 2 .
- the pipe segment tubing 22 is implemented with multiple layers including an inner (e.g., innermost) layer 26 and an outer (e.g., outermost) layer 28 .
- the inner layer 26 and/or the outer layer 28 of the pipe segment tubing 22 may be implemented using composite material and/or plastic, such as high-density polyethylene (HDPE) and/or raised temperature polyethylene (PE-RT).
- HDPE high-density polyethylene
- PE-RT raised temperature polyethylene
- an inner surface 30 of the inner layer 26 defines (e.g., encloses) a pipe bore 32 through which fluid can flow, for example, to facilitate transporting fluid from a bore fluid source 12 to a bore fluid destination 14 .
- the annulus 25 of the pipe segment tubing 22 is implemented between its inner layer 26 and its outer layer 28 .
- the tubing annulus 25 may include one or more intermediate layer of the pipe segment tubing 22 .
- fluid conduits 24 running along the length of the pipe segment 20 are defined (e.g., enclosed) in the tubing annulus 25 .
- a fluid conduit 24 in the tubing annulus 25 may be devoid of solid material.
- pipe segment tubing 22 that includes one or more fluid conduits 24 therein may include less solid material and, thus, exert less resistance to flexure, for example, compared to solid pipe segment tubing 22 and/or pipe segment tubing 22 that does not include fluid conduits 24 implemented therein.
- one or more layers in the tubing 22 of a pipe segment 20 may be unbonded from one or more other layers in the tubing 22 and, thus, the pipe segment 20 may be an unbonded pipe.
- pipe segment tubing 22 may include fewer (e.g., one) or more (e.g., three, four, or more) fluid conduits 24 defined in its tubing annulus 25 .
- a fluid conduit 24 defined in the tubing annulus 25 of a pipe segment 20 may run non-parallel to the pipe bore 32 of the pipe segment 20 , for example, such that the fluid conduit 24 is skewed relative to the axial (e.g., longitudinal) extent of the pipe bore 32 .
- one or more intermediate layers 34 of pipe segment tubing 22 may be implemented at least in part using composite material and/or metal, such as carbon steel, stainless steel, duplex stainless steel, super duplex stainless steel, or any combination thereof.
- the intermediate layer 34 of the pipe segment tubing 22 may be implemented using electrically conductive, which, at least in some instances, may enable communication of electrical (e.g., control and/or sensor) signals via the intermediate layer 34 .
- the intermediate layer 34 is helically disposed (e.g., wound and/or wrapped) on the inner layer 26 such that gaps (e.g., openings) are left between adjacent windings to define a fluid conduit 24 .
- the intermediate layer 34 may be implemented at least in part by winding a metal (e.g., steel) strip around the inner layer 26 at a non-zero lay angle (e.g., fifty-four degrees) relative to the axial (e.g., longitudinal) extent of the pipe bore 32 .
- the resulting fluid conduit 24 runs helically along the pipe segment 20 , for example, such that the fluid conduit 24 is skewed fifty-four degrees relative to the axial extent of the pipe bore 32 .
- an outer layer 28 may be disposed directly over the depicted intermediate layer 34 and, thus, cover and/or define (e.g., enclose) the depicted fluid conduit 24 .
- the tubing annulus 25 of pipe segment tubing 22 may include multiple (e.g., two, three, four, or more) intermediate layers 34 .
- one or more other intermediate layers 34 may be disposed over the depicted intermediate layer 34 .
- the one or more other intermediate layers 34 may also each be helically disposed such that gaps are left between adjacent windings to implement one or more corresponding fluid conduits 24 in the pipe segment tubing 22 .
- a first other intermediate layer 34 may be helically disposed on the depicted intermediate layer 34 using the same non-zero lay angle as the depicted intermediate layer 34 to cover (e.g., define and/or enclose) the depicted fluid conduit 24 and to implement another fluid conduit 24 in the first other intermediate layer 34 .
- a second other intermediate layer 34 may be helically disposed on the first other intermediate layer 34 using another non-zero lay angle, which is the inverse of the non-zero lay angle of the depicted intermediate layer 34 , to implement another fluid conduit 24 in the second other intermediate layer 34 .
- a third other intermediate layer 34 may be helically disposed on the second other intermediate layer 34 using the same non-zero lay angle as the second other intermediate layer 34 to cover the other fluid conduit 24 in the second other intermediate layer 34 and to implement another fluid conduit 24 in the third other intermediate layer 34 .
- an outer layer 28 may be disposed over the third other intermediate layer 34 and, thus, cover (e.g., define and/or enclose) the other fluid conduit 24 in the third other intermediate layer 34 .
- one or more pipe fittings 18 may be secured to a pipe segment 20 .
- a pipe fitting 18 may be secured to a pipe segment 20 using swaging techniques, for example, which conformally deform the pipe fitting 18 around tubing 22 of the pipe segment 20 .
- deployment equipment such as a swage machine, may be implemented and/or operated to facilitate securing a pipe fitting 18 to a pipe segment 20 during deployment of a pipeline system 10 .
- the portion 40 of the pipeline system 10 includes a first pipe segment 20 A, a second pipe segment 20 B, and a pipe fitting 18 , which is coupled between the first pipe segment 20 A and the second pipe segment 20 B.
- the pipe fitting 18 includes a fitting tube 44 and a grab ring 46 , which is implemented around the fitting tube 44 .
- the fitting tube 44 defines (e.g., encloses) a fitting bore 48 , which is fluidly coupled to a first pipe bore 32 A of the first pipe segment 20 A and a second pipe bore 32 B of the second pipe segment 20 B.
- the pipe fitting 18 in FIG. 4 may be a midline pipe fitting 18 .
- the depicted example is merely intended to be illustrative and not limiting.
- the techniques described in the present disclosure may additionally or alternatively be used with other types of pipe fittings 18 , such as a pipe end fitting 18 .
- the pipe fitting 18 includes fitting jackets 50 —namely a first fitting jacket 50 A and a second fitting jacket 50 B—and fitting seals 52 —namely a first fitting seal 52 A and a second fitting seal 52 B—implemented circumferentially around the fitting tube 44 .
- first tubing 22 A of the first pipe segment 20 A is disposed in a first tubing cavity 54 A of the pipe fitting 18 , which is defined between the first fitting jacket 50 A and the fitting tube 44 .
- second tubing 22 B of the second pipe segment 20 B is disposed in a second tubing cavity 54 B of the pipe fitting 18 , which is defined between the second fitting jacket 50 B and the fitting tube 44 .
- open space 56 is present between the second tubing 22 B of the second pipe segment 20 B and the pipe fitting 18 whereas minimal open space is present between the first tubing 22 A of the first pipe segment 20 A and the pipe fitting 18 .
- the pipe fitting 18 may exert more resistance to tubing movement in the first tubing cavity 54 A and, thus, facilitate securing the pipe fitting 18 to the first pipe segment 20 A, for example, in addition to sealing the first tubing 22 A of the first pipe segment 20 A via the first fitting seal 52 A.
- the pipe fitting 18 may exert less resistance to tubing movement in the second tubing cavity 54 B, which, at least in some instances, may enable the second tubing 22 B of the second pipe segment 20 B to move relatively freely into and/or out from the second tubing cavity 54 B of the pipe fitting 18 .
- the deployment equipment 38 may be operated to conformally deform (e.g., swage) the second fitting jacket 50 B around the second tubing 22 B of the second pipe segment 20 B, thereby consuming at least a portion (e.g., majority) of the open space 56 .
- the deployment equipment 38 may include a grab plate 58 , a die plate 60 , one or more guide rods 62 , and one or more actuators 64 . More specifically, in the depicted example, the deployment equipment 38 includes a first actuator 64 A, which is coupled to the grab plate 58 via a first guide rod 62 A that extends through the die plate 60 . Additionally, the deployment equipment 38 includes a second actuator 64 B, which is coupled to the grab plate 58 via a second guide rod 62 B that extends through the die plate 60 . As such, in some embodiments, the first actuator 64 A and/or the second actuator 64 B may be operated to selectively push the die plate 60 toward the grab plate 58 and/or to selectively pull the die plate 60 away from the grab plate 58 .
- a die e.g., one or more die segments or die halves
- the shape of the die 63 may compress the fitting jacket 50 inwardly in a radial direction 65 , for example, such that the fitting jacket 50 and pipe segment tubing 22 disposed in a corresponding tubing cavity 54 are conformally deformed.
- different dies 63 may be selectively used in the die plate 60 , for example, during successive compression cycles and/or depending on characteristics, such as diameter and/or material thickness, of the fitting jacket 50 .
- the grab plate 58 of the deployment equipment 38 may be secured to the pipe fitting 18 via one or more equipment grab tabs 66 .
- an equipment grab tab 66 on the deployment equipment 38 may be implemented (e.g., sized and/or shaped) to matingly interlock (e.g., interface and/or engage) with a corresponding fitting grab notch 68 on the grab ring 46 of the pipe fitting 18 and, thus, facilitate securing the deployment equipment 38 to the pipe fitting 18 .
- the deployment equipment 38 may then force (e.g., push and/or compress) its die plate 60 and, thus, its die 63 toward its grab plate 58 , which may conformally deform the second fitting jacket 50 B of the pipe fitting 18 and the second tubing 22 B of the second pipe segment 20 B and, thus, facilitate securing the pipe fitting 18 to the pipe segment 20 B, for example, in addition to sealing the second tubing 22 B of second pipe segment 20 B via the second fitting seal 52 B.
- force e.g., push and/or compress
- a pipeline system 10 may be implemented to provide multi-wall containment.
- a portion of the pipeline system 10 may provide multi-wall containment when, moving radially outward, the portion of the pipeline system 10 includes multiple structural layers separated by one or more corresponding annuli.
- the tubing 22 of a pipe segment 20 deployed in the pipeline system 10 may include an inner layer 26 and an outer layer 28 separated by a tubing annulus 25 , for example, which is implemented using one or more intermediate layers 34 that each has one or more fluid conduits 24 (e.g., openings) devoid of solid material.
- portion of a pipe fitting 18 in which the pipe segment tubing 22 is secured may also be considered as providing multi-wall containment, for example, due to the pipe segment tubing 22 itself already providing multi-wall containment.
- the portion of the pipe fitting 18 in which the pipe segment tubing 22 is to be secured may be considered as providing multi-wall containment even before the pipe segment tubing 22 has been disposed therein, for example, due to a fitting jacket 50 and the fitting tube 44 being separated by a corresponding tubing cavity (e.g., annulus) 54 .
- a different portion of a pipe fitting 18 may be considered as providing single wall containment even after pipe segment tubing 22 has been secured and sealed therein. More specifically, as in the depicted example, the grab ring 46 of the pipe fitting 18 may be implemented at least partially external from the fitting jackets 50 and, thus, pipe segment tubing 22 may not be present between the fitting tube 44 and the grab ring 46 even when the pipe segment tubing 20 is fully inserted into a tubing cavity 54 defined between the fitting tube 44 and a fitting jacket 50 .
- the different portion of the pipe fitting 18 may nevertheless be considered as providing a single wall containment, for example, due to the grab ring 46 directly abutting the fitting tube 44 resulting in the lack of an annulus therebetween.
- the present disclosure describes techniques for implementing and/or deploying a supplemental containment wall assembly at least at one or more pipe fittings 18 in a pipeline system 10 .
- FIG. 5 an example of a portion 70 of a pipeline system 10 , which includes a supplemental containment wall assembly 72 , is shown in FIG. 5 .
- the portion 70 of the pipeline system 10 includes a first pipe segment 20 A, a second pipe segment 20 B, and a pipe fitting 18 .
- the pipe fitting 18 is coupled between the first pipe segment 20 A and the second pipe segment 20 B.
- the pipe fitting 18 in FIG. 5 may be a midline pipe fitting 18 .
- the depicted example is merely intended to be illustrative and not limiting.
- the techniques described in the present disclosure may additionally or alternatively be used with other types of pipe fittings 18 , such as a pipe end fitting 18 .
- the supplemental containment wall assembly 72 includes a containment wall shell 74 , which is implemented to be secured and sealed circumferentially around at least a portion of the pipe fitting 18 to define (e.g., enclose) a fitting annulus 76 between an outer surface 78 of the pipe fitting 18 and an inner surface 80 of the containment wall shell 74 .
- the containment wall shell 74 of a supplemental containment wall assembly 72 may be a clamp containment wall shell 74 implemented to be clamped circumferentially around at least the portion of the pipe fitting 18 .
- the containment wall shell 74 may be a sleeve containment wall shell 74 , which is implemented to be slid over (e.g., around) at least the portion of the pipe fitting 18 , or a wrap containment wall shell 74 , which is implemented to be wrapped circumferentially around at least the portion of the pipe fitting 18 .
- the supplemental containment wall assembly 72 may include one or more fasteners 82 .
- the fasteners 82 of a supplemental containment wall assembly 72 may include one or more threaded fasteners 82 , such as a screw or a bolt.
- the fasteners 82 of a supplemental containment wall assembly 72 may include one or more worm clamp fasteners 82 , for example, which may be implemented circumferentially within a sleeve containment wall shell 74 and/or circumferentially around a wrap containment wall shell 74 .
- a supplemental containment wall assembly 72 may include one or more shell grab tabs 84 implemented on the inner surface 80 of its containment wall shell 74 .
- a shell grab tab 84 on the containment wall shell 74 may be implemented (e.g., sized and/or shaped) to matingly interlock (e.g., interface and/or engage) with a fitting grab notch 68 on the grab ring 46 of the pipe fitting 18 .
- deployment equipment 38 such as a swage machine, may be coupled to the pipe fitting 18 via the fitting grab notch 68 on the grab ring 46 of the pipe fitting 18 .
- the fitting grab notch 68 on the grab ring 46 of the pipe fitting 18 may be matingly interlocked with an equipment grab tab 66 of deployment equipment 38 to facilitate securing the pipe fitting 18 to a pipe segment 20 during a first time period and matingly interlocked with a shell grab tab 84 on the containment wall shell 74 to facilitate securing the containment wall shell 74 circumferentially around the pipe fitting 18 during a second (e.g., subsequent and/or non-overlapping) time period.
- a supplemental containment wall assembly 72 may include one or more containment wall seals 86 implemented on the inner surface 80 of its containment wall shell 74 .
- a first discrete containment wall seal 86 A such as an O-ring seal or a belt seal
- a second discrete containment wall seal 86 B such as another O-ring seal or another belt seal
- the supplemental containment wall assembly 72 may additionally or alternatively include one or more containment wall seals 86 integrated with corresponding shell grab tabs 84 on the containment wall shell 74 , for example, which are implemented at least in part by coating the shell grab tabs 84 with sealing material, such as rubber.
- a supplemental containment wall assembly 72 may additionally include one or more ports 83 that open through its containment wall shell 74 , for example, to enable fluid in a corresponding fitting annulus 76 to be sampled to facilitate integrity testing a pipeline system 10 in which the supplemental containment wall assembly 72 is deployed.
- the containment wall shell 74 of a supplemental containment wall assembly 72 deployed at a pipe fitting 18 may be extended such that the containment wall shell 74 is secured circumferentially around at least a portion of a pipe segment 20 secured to the pipe fitting 18 .
- different embodiments of supplemental containment wall assemblies 72 may include different types of containment wall shells 74 and/or different types of fasteners 82 .
- a more detailed example of a portion 70 A of a pipeline system 10 which includes a supplemental containment wall assembly 72 A with a clamp containment wall shell 74 A and threaded fasteners 82 A, is shown in FIG. 6 .
- the portion 70 A of the pipeline system 10 includes a first pipe segment 20 A, a second pipe segment 20 B, and a pipe fitting 18 .
- the pipe fitting 18 is coupled between the first pipe segment 20 A and the second pipe segment 20 B.
- the pipe fitting 18 in FIG. 6 may be a midline pipe fitting 18 .
- the depicted example is merely intended to be illustrative and not limiting.
- the techniques described in the present disclosure may additionally or alternatively be used with other types of pipe fittings 18 , such as a pipe end fitting 18 .
- the clamp containment wall shell 74 A secured circumferentially around the pipe fitting 18 includes multiple clamp shell segments 88 .
- the clamp containment wall shell 74 A includes a first clamp shell segment 88 A, which is implemented to be secured around a first portion (e.g., top half) of the pipe fitting 18 .
- the clamp containment wall shell 74 A includes a second clamp shell segment 88 B, which is implemented to be secured around a second portion (e.g., bottom half) of the pipe fitting 18 .
- the clamp shell segments 88 may each include one or more threaded fastener openings 90 , which are implemented to be aligned with a corresponding threaded fastener opening 90 in another (e.g., opposite) clamp shell segment 88 to enable a threaded fastener 82 A to be selectively tightened therein.
- tightening a threaded fastener 82 A in a threaded fastener opening 90 implemented in the first clamp shell segment 88 A and a corresponding (e.g., aligned) threaded fastener opening 90 implemented in the second clamp shell segment 88 B may force the first clamp shell segment 88 A and the second clamp shell segment 88 B toward one another.
- tightening the threaded fastener 82 A may facilitate securing the supplemental containment wall assembly 74 A circumferentially around at least a portion of the pipe fitting 18 .
- clamp shell segments 88 of a clamp containment wall shell 74 A may be coupled together on one side via a hinge.
- other embodiments of a supplemental containment wall assembly 72 may include different types of containment wall shells 74 and/or different types of fasteners 82 .
- FIG. 7 another more detailed example of a portion 70 B of a pipeline system 10 , which includes a supplemental containment wall assembly 72 B with a sleeve containment wall shell 74 B and internal worm clamp fasteners 82 B, is shown in FIG. 7 .
- the portion 70 B of the pipeline system 10 includes a first pipe segment 20 A, a second pipe segment 20 B, and a pipe fitting 18 .
- the pipe fitting 18 is coupled between the first pipe segment 20 A and the second pipe segment 20 B.
- the pipe fitting 18 in FIG. 7 may be a midline pipe fitting 18 .
- the depicted example is merely intended to be illustrative and not limiting.
- the techniques described in the present disclosure may additionally or alternatively be used with other types of pipe fittings 18 , such as a pipe end fitting 18 .
- the supplemental containment wall assembly 72 B includes a sleeve containment wall shell 74 B, which is implemented to be slid over and secured circumferentially around at least a portion of the pipe fitting 18 .
- the supplemental containment wall assembly 72 B may include one or more internal worm clamp fasteners 82 B implemented within the sleeve containment wall shell 74 B.
- a first internal worm clamp fastener 82 B may be implemented around (e.g., over) a first discrete containment wall seal 86 A on an inner surface 80 of the sleeve containment wall shell 74 B
- a second internal worm clamp fastener 82 B may be implemented around a shell grab tab 84 on the inner surface 80 of the sleeve containment wall shell 74 B
- a third internal worm clamp fastener 82 B may be implemented around a second discrete containment wall seal 86 B on the inner surface 80 of the sleeve containment wall shell 74 B.
- tightening an internal worm clamp fastener 82 B may compress the sleeve containment wall shell 74 B inwardly and, thus, facilitate securing the supplemental containment wall assembly 74 B circumferentially around at least a portion of the pipe fitting 18 .
- one or more worm clamp fasteners 82 may additionally or alternatively be implemented external to a sleeve containment wall shell 74 B of a supplemental containment wall assembly 72 .
- a supplemental containment wall assembly 72 may include different types of containment wall shells 74 and/or different types of fasteners 82 .
- FIG. 8 another more detailed example of a portion 70 C of a pipeline system 10 , which includes a supplemental containment wall assembly 72 C with a wrap containment wall shell 74 C and external worm clamp fasteners 82 C, is shown in FIG. 8 .
- the portion 70 C of the pipeline system 10 includes a first pipe segment 20 A, a second pipe segment 20 B, and a pipe fitting 18 .
- the pipe fitting 18 is coupled between the first pipe segment 20 A and the second pipe segment 20 B.
- the pipe fitting 18 in FIG. 8 may be a midline pipe fitting 18 .
- the depicted example is merely intended to be illustrative and not limiting.
- the techniques described in the present disclosure may additionally or alternatively be used with other types of pipe fittings 18 , such as a pipe end fitting 18 .
- the supplemental containment wall assembly 72 C includes a wrap containment wall shell 74 C, which is implemented to be wrapped and secured circumferentially around at least a portion of the pipe fitting 18 .
- the supplemental containment wall assembly 72 C may include one or more external worm clamp fasteners 82 C implemented around the wrap containment wall shell 74 C.
- a first external worm clamp fastener 82 C may be implemented around (e.g., over) a first discrete containment wall seal 86 A on an inner surface 80 of the wrap containment wall shell 74 C
- a second external worm clamp fastener 82 C may be implemented around a shell grab tab 84 on the inner surface 80 of the wrap containment wall shell 74 C
- a third external worm clamp fastener 82 C may be implemented around a second discrete containment wall seal 86 B on the inner surface 80 of the wrap containment wall shell 74 C.
- tightening an external worm clamp fastener 82 C may compress the wrap containment wall shell 74 C inwardly and, thus, facilitate securing the supplemental containment wall assembly 74 C circumferentially around at least a portion of the pipe fitting 18 .
- one or more worm clamp fasteners 82 may additionally or alternatively be implemented internal to a wrap containment wall shell 74 C of a supplemental containment wall assembly 72 .
- the techniques described in the present disclosure may additionally or alternatively be implemented with a pipe end fitting 18 .
- FIG. 9 an example of a portion 91 of a pipeline system 10 , which includes a supplemental containment wall assembly 72 and a pipe end fitting 18 , is shown in FIG. 9 .
- the portion 91 of the pipeline system 10 additionally includes a pipe segment 20 , which is secured in the pipe end fitting 18 .
- tubing 22 of the pipe segment 22 is secured in a tubing cavity 54 defined between a fitting jacket 50 and a fitting tube 44 of the pipe fitting 18 .
- the fitting tube 44 of the pipe end fitting 18 includes a fitting weld neck 92 .
- the fitting weld neck 92 includes a single layer and, thus, may be considered as providing single wall containment.
- the supplemental containment wall assembly 72 may be secured circumferentially around the fitting weld neck 92 , for example, in addition to being secured circumferentially around the grab ring 46 of the pipe fitting 18 .
- a containment wall shell 74 of the supplemental containment wall assembly 72 may be secured around the pipe fitting 18 via one or more fasteners 82 such that a shell grab tab 84 implemented on an inner surface 80 of the containment wall shell 74 matingly interlocks with a fitting grab notch 68 on an outer surface 78 of the pipe fitting 18 and a fitting annulus 76 is sealed between the inner surface 80 of the containment wall shell 74 and the outer surface 78 of the pipe fitting 18 .
- the supplemental containment wall assembly 72 may include one or more containment wall seals 86 .
- the supplemental containment wall assembly 72 may include a first discrete containment wall seal 86 A implemented on a first (e.g., inner) side of the shell grab tab 84 and/or a second discrete containment wall seal 86 B implemented on a second (e.g., outer) side of the shell grab tab 84 .
- the supplemental containment wall assembly 72 may include a containment wall seal 86 integrated with the shell grab tab 84 , for example, which is implemented at least in part by coating the shell grab tab 84 with a sealing material, such as rubber.
- a discrete containment wall seal 86 implemented on an inner side of a shell grab tab 84 may be obviated by a containment wall seal 86 integrated with the shell grab tab 84 and, thus, not included in a supplemental containment wall assembly 72 .
- a discrete containment wall seal 86 implemented on an outer side of a shell grab tab 84 may be obviated by a containment wall seal 86 integrated with the shell grab tab 84 and, thus, not included in a supplemental containment wall assembly 72 .
- a supplemental containment wall assembly 72 may include one or more ports 83 that open through its containment wall shell 74 , for example, to enable fluid in a corresponding fitting annulus 76 to be sampled to facilitate integrity testing the pipeline system 10 in which the supplemental containment wall assembly 72 is deployed.
- the fitting weld neck 92 of the pipe fitting 18 may be used to facilitate fluidly coupling the pipe fitting 18 to a bore fluid source 12 and/or a bore fluid destination 14 , for example, at least in part by securing (e.g., welding) the fitting weld neck 92 directly thereto and/or via a flange secured (e.g., welded) to the weld neck 92 .
- the weld neck 92 of the pipe fitting 18 may be used to facilitate fluidly coupling the pipe fitting 18 to another pipe fitting 18 in the pipeline system 10 .
- the pipe fittings 18 may be fluidly coupled at least in part by securing (e.g., welding) a fitting connector between the fitting weld necks 92 of the pipe fittings 18 .
- FIG. 10 an example of a portion 94 of a pipeline system 10 , which includes a fitting connector 96 , is shown in FIG. 10 .
- the portion 94 of the pipeline system 10 includes a first pipe segment 20 A, a first pipe end fitting 18 A, a second pipe segment 20 B, a second pipe end fitting 18 B, a third pipe segment 20 C, and a third pipe end fitting 18 C.
- first pipe segment 20 A is secured within a fitting jacket 50 of the first pipe end fitting 18 A
- second pipe segment 20 B is secured within a fitting jacket 50 of the second pipe end fitting 18 B
- third pipe segment 20 C is secured within a fitting jacket 50 of the third pipe end fitting 18 C.
- a pipe fitting 18 such as a pipe end fitting 18
- the first pipe end fitting 18 A includes a first grab ring 46 A with a first fitting grab notch 68 A.
- the second pipe end fitting 18 B includes a second grab ring 46 B with a second fitting grab notch 68 B
- the third pipe end fitting 18 C includes a third grab ring 46 C with a third grab notch 68 C.
- the pipe end fittings 18 each include a fitting weld neck 92 , which is coupled (e.g., secured and/or welded) to a corresponding connector weld neck 98 of the fitting connector 96 .
- the first pipe end fitting 18 A includes a first fitting weld neck 92 A, which is coupled to a first connector weld neck 98 A of the fitting connector 96 .
- the second pipe end fitting 18 B includes a second fitting weld neck 92 B, which is coupled to a second connector weld neck 98 B of the fitting connector 96
- the third pipe end fitting 18 C includes a third fitting weld neck 92 C, which is coupled to a third connector weld neck 98 C of the fitting connector 96 .
- a fitting weld neck 92 of a pipe end fitting 18 may be considered as providing single wall containment.
- the fitting connector 96 may also be considered as providing single wall containment, for example, due to the fitting connector 96 including a single structural layer.
- a supplemental containment wall assembly 72 may be secured circumferentially around at least a portion of each of the pipe end fittings 18 as well as the pipe fitting connector 96 .
- a supplemental containment wall assembly 72 D which may be secured around multiple pipe end fittings 18 and a pipe fitting connector 96 , is shown in FIG. 11 .
- the supplemental containment wall assembly 72 D includes threaded fasteners 82 A, such as a nut or a bolt, and a clamp containment wall shell 74 D, which includes a first clamp shell segment 88 A and a second clamp shell segment 88 B.
- the clamp shell segments 88 of the supplemental containment wall assembly 72 D each include threaded fastener openings 90 , which may be aligned with corresponding threading fastener openings 90 in the other clamp shell segment 88 of the supplemental containment wall assembly 72 D to enable a threaded fastener 82 A to be selectively tightened therein.
- the supplemental containment wall assembly 72 may include one or more shell grab tabs 84 on the inner surface 80 of its containment wall shell 74 , which are implemented (e.g., sized and/or shaped) to matingly interlock (e.g., interface and/or engage) with fitting grab notches 68 of pipe fittings 18 in the pipeline system 10 .
- first shell grab tab 84 A which is implemented partially on a first inner surface 80 A of the first clamp shell segment 88 A and partially on a second inner surface 80 B of the second clamp shell segment 88 B.
- the portion of the first fitting grab notch 68 A on the first inner surface 80 A of the first clamp shell segment 88 A may be implemented to matingly interlock with a first portion of a first fitting grab notch 68 A on a first pipe end fitting 18 A while the portion of the first fitting grab notch 68 A on the second inner surface 80 B of the second clamp shell segment 88 B may be implemented to matingly interlock with a second (e.g., different and/or opposite) portion of the first fitting grab notch 68 A on the first pipe end fitting 18 A.
- the supplemental containment wall assembly 72 D includes a second shell grab tab 84 B, which is implemented to matingly interlock with a second fitting grab notch 68 B on a second pipe end fitting 18 B, and a third shell grab tab 84 C, which is implemented to matingly interlock with a third fitting grab notch 68 C on a third pipe end fitting 18 C.
- a portion of the second shell grab tab 84 B and a portion of the third shell grab tab 84 C are both implemented on the second inner surface 80 B of the second clamp shell segment 88 B.
- another (e.g., different and/or opposite) portion of the second shell grab tab 84 B and another portion of the third shell grab tab 84 C may be implemented on the first inner surface 80 A of the first clamp shell segment 88 A.
- a supplemental containment wall assembly 72 may include one or more containment wall seals 86 .
- the supplemental containment wall assembly 72 D of FIG. 11 may include a first containment wall seal 86 that is integrated with the first shell grab tab 84 A at least in part by coating (e.g., covering) the first shell grab tab 84 A with a sealing material, such as rubber.
- the supplemental containment wall assembly 72 D may additionally or alternatively include a second containment wall seal 86 that is integrated with the second shell grab tab 84 B and/or a third containment wall seal 86 that is integrated with the third shell grab tab 84 C.
- a supplemental containment wall assembly 72 may additionally or alternatively include a discrete containment wall seal 86 implemented on an inner side of each shell grab tab 84 and/or a discrete containment wall seal 86 implemented on an outer side of each shell grab tab 84 .
- implementing a supplemental containment wall assembly 72 in a pipeline system 10 in this manner may facilitate providing multi-wall containment in the pipeline system 10 , which, at least in some instances, may facilitate improving fluid isolation and, thus, operational efficiency of the pipeline system 10 .
- process 100 for implementing a pipeline system 10 to provide multi-wall containment is described in FIG. 12 .
- the process 100 includes implementing a supplemental containment wall assembly (process block 102 ), covering a pipe fitting with the supplemental containment wall assembly (process block 104 ), and securing the supplemental containment wall assembly around the pipe fitting (process block 106 ).
- process block 102 a supplemental containment wall assembly
- process block 104 covering a pipe fitting with the supplemental containment wall assembly
- process block 106 securing the supplemental containment wall assembly around the pipe fitting
- a process 100 for implementing a pipeline system 10 to provide multi-wall containment may include one or more additional process blocks and/or omit one or more of the depicted process blocks.
- a supplemental containment wall assembly 72 may be deployed at least at a pipe fitting 18 in a pipeline system 10 to facilitate providing multi-wall containment.
- implementing the pipeline system 10 to provide multi-wall containment may include implementing a supplemental containment wall assembly 72 (process block 102 ).
- the supplemental containment wall assembly 72 may be implemented such that, when deployed at the pipe fitting 18 in the pipeline system 10 , a fitting annulus 76 is sealed at least between the supplemental containment wall assembly 72 and the pipe fitting 18 .
- process 108 for implementing a supplemental containment wall assembly 72 , which may be deployed in a pipeline system 10 , is described in FIG. 13 .
- the process 108 includes implementing a containment wall shell with a shell grab tab (process block 110 ).
- the process 108 generally includes implementing a fastener to be used to secure the containment wall shell around a pipe fitting (process block 112 ) and implementing a containment wall seal on an inner surface of the containment wall shell (process block 114 )
- a process 108 for implementing a supplemental containment wall assembly 72 may include one or more additional process blocks and/or omit one or more of the depicted process blocks. Additionally or alternatively, in other embodiments, a process 108 for implementing a supplemental containment wall assembly 72 may perform the depicted process blocks in a different order, for example such that the containment wall seal 86 is implemented before the fastener 82 .
- a supplemental containment wall assembly 72 may include a containment wall shell 74 having one or more shell grab tabs 84 , which are each implemented (e.g., sized and/or shaped) to matingly interlock (e.g., engage and/or interface) with at least a portion of a corresponding fitting grab notch 68 on a grab ring 46 of a pipe fitting 18 .
- implementing the supplemental containment wall assembly 72 may include implementing a containment wall shell 74 with one or more shell grab tabs 84 on its inner surface 80 (process block 110 ).
- the containment wall shell 74 may be implemented at least in part by milling the containment wall shell 74 from a block of material, such as metal. Additionally or alternatively, the containment wall shell 74 may be implemented at least in part by deforming (e.g., bending and/or molding) material, such as metal or plastic.
- deforming e.g., bending and/or molding
- the containment wall shell 74 of a supplemental containment wall assembly 72 may be a clamp containment wall shell 74 A.
- implementing containment wall shell 74 may include implementing a clamp containment wall shell 74 A (process block 116 ).
- the clamp containment wall shell 74 may include multiple clamp shell segments 88 , which are implemented to be disposed circumferentially around at least a portion of a pipe fitting 18 .
- implementing the clamp containment wall shell 74 A may include implementing multiple clamp shell segments 88 , for example, which each include one or more threaded fastener openings 90 .
- the containment wall shell 74 of a supplemental containment wall assembly 72 may be a sleeve containment wall shell 74 B, which is implemented to be slid over at least a portion of a pipe fitting 18 .
- implementing the containment wall shell 74 may include implementing a sleeve containment wall shell 74 B (process block 118 ).
- the containment wall shell 74 of a supplemental containment wall assembly 72 may be a wrap containment wall shell 74 C, which is implemented to be wrapped circumferentially around at least a portion of a pipe fitting 18 .
- implementing the containment wall shell 74 may include implementing a wrap containment wall shell 74 C (process block 120 ).
- a supplemental containment wall assembly 72 may include one or more fasteners 82 , which are implemented to facilitate securing the supplemental containment wall assembly 72 circumferentially around at least a portion of a pipe fitting 18 .
- implementing the supplemental containment wall assembly 72 may include implementing one or more fasteners 82 to be used to facilitate securing the containment wall shell 74 circumferentially around at least the pipe fitting 18 (process block 112 ).
- a fastener 82 of a supplemental containment wall assembly 72 may be a threaded fastener 82 A, which is implemented to be selectively tightened in corresponding threaded fastener openings 90 in the containment wall shell 74 .
- implementing the fastener 82 may include implementing a threaded fastener 82 A, such as screw or a bolt (process block 122 ).
- a fastener 82 of a supplemental containment wall assembly 72 may be a worm clamp fastener 82 , such as an internal worm clamp fastener 82 B that is implemented circumferentially within the containment wall shell 74 and/or an external worm clamp fastener 82 C that is implemented circumferentially around the containment wall shell 74 .
- implementing the fastener 82 may include implementing a worm clamp fastener 82 (process block 124 ).
- implementing the worm clamp fastener 82 may include implementing an internal worm clamp fastener 82 B circumferentially within the containment wall shell 74 , for example, such that the internal worm clamp fastener 82 B is disposed circumferentially around an end of the containment wall shell 74 , a containment wall seal 86 on an inner surface 80 of the containment wall shell 74 , and/or a shell grab tab 84 on the inner surface 80 of the containment wall shell 74 .
- implementing the worm clamp fastener 82 may include implementing an external worm clamp fastener 82 C circumferentially around the containment wall shell 74 , for example, such that the external worm clamp fastener 82 C is disposed circumferentially around an end of the containment wall shell 74 , a containment wall seal 86 on an inner surface 80 of the containment wall shell 74 , and/or a shell grab tab 84 on the inner surface 80 of the containment wall shell 74 .
- a supplemental containment wall assembly 72 may include one or more containment wall seals 86 implemented on an inner surface 80 of its containment wall shell 74 to facilitate sealing a fitting annulus 76 defined between at least the pipe fitting 18 and the supplemental containment wall assembly 72 .
- implementing the supplemental containment wall assembly 72 may include implementing one or more containment wall seals 86 on the inner surface 80 of the containment wall shell 74 (process block 114 ).
- a containment wall seal 86 may be integrated with a shell grab tab 84 on the containment wall shell 74 .
- implementing the containment wall seal 86 may include implementing an integrated containment wall seal 86 , for example, at least in part by covering (e.g., coating) the shell grab tab 84 with a sealing material, such as rubber (process block 126 ).
- a supplemental containment wall assembly 72 may additionally or alternatively include one or more discrete containment wall seals 86 .
- implementing the containment wall seal 86 may include implementing a discrete containment wall seal 86 (process block 128 ).
- a discrete containment wall seal 86 may be implemented at least in part by disposing an O-ring seal or a belt seal circumferentially along the inner surface 80 of the containment wall shell 74 . In this manner, a supplemental containment wall assembly 72 to be deployed in a pipeline system 10 to facilitate providing multi-wall (e.g., double wall) containment may be implemented.
- the supplemental containment wall assembly 72 may then be used to circumferentially cover at least a portion of a pipe fitting 18 in the pipeline system 10 , for example, in addition to portions of one or more other pipe fittings 18 in the pipeline system 10 , portions of one or more pipe segments 20 secured to the pipe fittings 18 , and/or a fitting connector 96 secured between the pipe fittings 18 (process block 104 ). More specifically, covering a portion of a pipeline system 10 with the supplemental containment wall assembly 72 may include covering the portion of the pipeline system 10 with the containment wall shell 74 of the supplemental containment wall assembly 72 .
- the containment wall shell 74 of a supplemental containment wall assembly 72 may be a clamp containment wall shell 74 A, which includes multiple clamp shell segments 88 .
- circumferentially covering at least a portion of the pipe fitting 18 with the supplemental containment wall assembly 72 may include disposing multiple clamp shell segments 88 circumferentially around at least the portion of the pipe fitting 18 (process block 130 ).
- the containment wall shell 74 of a supplemental containment wall assembly 72 may be a sleeve containment wall shell 74 B, which is implemented to be slid over at least a portion of a pipe fitting 18 .
- circumferentially covering at least a portion of the pipe fitting 18 with the supplemental containment wall assembly 72 may include sliding the sleeve containment wall shell 74 B over at least the portion of the pipe fitting 18 (process block 132 ).
- the containment wall shell 74 of a supplemental containment wall assembly 72 may be a wrap containment wall shell 74 C, which is implemented to be wrapped circumferentially around at least a portion of a pipe fitting 18 .
- circumferentially covering at least a portion of the pipe fitting 18 with the supplemental containment wall assembly 72 may include wrapping the wrap containment sleeve shell 74 C circumferentially around at least the portion of the pipe fitting 18 (process block 134 ).
- supplemental containment wall assembly 72 may then be secured circumferentially around at least the portion of the pipe fitting 18 , for example, in addition to portions of one or more other pipe fittings 18 , portions of one or more pipe segments 20 secured to the pipe fittings 18 , and/or a fitting connector 96 secured between the pipe fittings 18 (process block 106 ).
- a supplemental containment wall assembly 72 may include one or more threaded fasteners 82 A, which are implemented to be selectively tightened in corresponding threaded fastener openings 90 in the containment wall shell 74 to facilitate securing the supplemental containment wall assembly 72 circumferentially around the pipe fitting 18 .
- securing the supplemental containment wall assembly 72 circumferentially around at least the portion of the pipe fitting 18 may include tightening one or more threaded fasteners 82 A, such as a screw or a bolt, in corresponding threaded fastener openings 90 implemented in the containment wall shell 74 (process block 136 ).
- threaded fasteners 82 A such as a screw or a bolt
- a supplemental containment wall assembly 72 may include one or more worm clamp fasteners 82 , such as an internal worm clamp fastener 82 B implemented circumferentially within the containment wall shell 74 of the supplemental containment wall assembly 72 and/or an external worm clamp fastener 82 C implemented circumferentially around the containment wall shell 74 of the supplemental containment wall assembly 72 .
- tightening a worm clamp fastener 82 of the supplement containment wall assembly 72 may compress the containment wall shell 74 inwardly and, thus, facilitate securing the supplemental containment wall assembly 72 around at least a portion of the pipe fitting 18 .
- securing the supplemental containment wall assembly 72 at least around a portion of the pipe fitting 18 may include tightening one or more of its worm clamp fasteners 82 (process block 138 ).
- the containment wall shell 74 of the supplemental containment wall assembly 72 may include a shell grab tab 84 , which is implemented (e.g., sized and/or shaped) on the inner surface 80 of the containment wall shell 74 to matingly interlock (e.g., engage and/or interface) with a fitting grab notch 68 on a grab ring 46 of the pipe fitting 18 .
- securing the supplemental containment wall assembly 72 circumferentially around at least a portion of the pipe fitting 18 may include matingly interlocking (e.g., engaging and/or interfacing) the shell grab tab 84 on its containment wall shell 74 with the fitting grab notch 68 on the grab ring 46 of the pipe fitting 18 (process block 140 ).
- tightening one or more threaded fasteners 82 A and/or tightening one or more worm clamp fasteners 82 may compress the containment wall shell 74 inwardly and, thus, facilitate matingly interfacing the shell grab tab 84 on the inner surface 80 of the containment wall shell 74 with the fitting grab notch 68 on the grab ring 46 of the pipe fitting 18 (process block 142 ).
- one or more containment wall seals 86 may be implemented on the inner surface 80 of the containment wall shell 74 .
- compressing the containment wall shell 74 inwardly at least in part by tightening one or more threaded fasteners 82 and/or tightening one or more worm clamp fasteners 82 may compress one or more containment wall seals 86 against a structural layer, such as an outer surface 78 of the pipe fitting 18 , an outer surface of a fitting connector 96 secured to the pipe fitting 18 , and/or an outer layer 28 of a pipe segment 20 secured to the pipe fitting 18 .
- a supplemental containment wall assembly may be deployed at least at a pipe fitting in a pipeline system to facilitate defining a seal fitting annulus between the pipe fitting and the supplemental containment wall assembly and, thus, providing multi-wall (e.g., double wall) containment, which, at least in some instances, may facilitate improving fluid isolation provided by the pipeline system and, thus, operational efficiency of the pipeline system.
- multi-wall e.g., double wall
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Pipe Accessories (AREA)
Abstract
In one embodiment, a pipeline system includes a pipe fitting to be secured to a pipe segment including tubing that defines a pipe bore and a fluid conduit implemented in a tubing annulus of the tubing, in which the pipe fitting includes a fitting grab notch implemented on an outer surface of the pipe fitting, and a supplemental containment wall assembly to be deployed at the pipe fitting. The supplemental containment wall assembly includes a containment wall shell to be secured circumferentially around the pipe fitting to define a fitting annulus that is sealed at least between the outer surface of the pipe fitting and an inner surface of the containment wall shell to facilitate providing multi-wall containment in the pipeline system and a shell grab tab implemented on the inner surface of the containment wall shell, in which the shell grab tab matingly interlocks with the fitting grab notch on the outer surface of the pipe fitting to facilitate securing the containment wall shell to the pipe fitting.
Description
- The present disclosure is a continuation of U.S. patent application Ser. No. 16/795,415, entitled “PIPELINE SUPPLEMENTAL CONTAINMENT WALL SYSTEMS AND METHODS” and filed Feb. 19, 2020, which is incorporated herein by reference in its entirety for all purposes.
- The present disclosure generally relates to pipeline systems and, more particularly, to a supplemental containment wall assembly that may be deployed at least at a pipe fitting (e.g., connector) in a pipeline system.
- Pipeline systems are often implemented and/or operated to facilitate transporting (e.g., conveying) fluid, such as liquid and/or gas, from a fluid source to a fluid destination. For example, a pipeline system may be used to transport one or more hydrocarbons, such as crude oil, petroleum, natural gas, or any combination thereof. Additionally or alternatively, a pipeline system may be used to transport one or more other types of fluid, such as produced water, fresh water, fracturing fluid, flowback fluid, carbon dioxide, or any combination thereof.
- To facilitate transporting fluid, a pipeline system may include one or more pipe segments in addition to pipe fittings (e.g., connectors), such as a midline pipe fitting and/or a pipe end fitting. Generally, a pipe segment may include tubing, which defines (e.g., encloses) a bore that provides a primary fluid conveyance (e.g., flow) path through the pipe segment. More specifically, the tubing of a pipe segment may be implemented to facilitate isolating (e.g., insulating) fluid being conveyed within its bore from environmental conditions external to the pipe segment, for example, to reduce the likelihood of the conveyed (e.g., bore) fluid being lost to the external environmental conditions and/or the external environmental conditions contaminating the conveyed fluid.
- To facilitate improving fluid isolation provided, in some instances, the tubing of a pipe segment may be implemented to provide multiple (e.g., double) containment walls, for example, at least in part by implementing the pipe segment tubing to include an inner tubing layer and an outer tubing layer separated by a tubing annulus. However, in some instances, at least a portion of a pipe fitting secured to the pipe segment may be considered as providing a single containment wall. Accordingly, at least in such instances, deploying the pipe fitting considered as having a single containment wall in a pipeline system may potentially limit the ability of the pipeline system to provide multi-wall (e.g., double wall) containment.
- This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
- In one embodiment, a pipeline system includes a pipe fitting to be secured to a pipe segment including tubing that defines a pipe bore and a fluid conduit implemented in a tubing annulus of the tubing, in which the pipe fitting includes a fitting grab notch implemented on an outer surface of the pipe fitting, and a supplemental containment wall assembly to be deployed at the pipe fitting. The supplemental containment wall assembly includes a containment wall shell to be secured circumferentially around the pipe fitting to define a fitting annulus that is sealed at least between the outer surface of the pipe fitting and an inner surface of the containment wall shell to facilitate providing multi-wall containment in the pipeline system and a shell grab tab implemented on the inner surface of the containment wall shell, in which the shell grab tab matingly interlocks with the fitting grab notch on the outer surface of the pipe fitting to facilitate securing the containment wall shell to the pipe fitting.
- In another embodiment, a method of implementing a pipeline system to provide multi-wall containment includes implementing a supplemental containment wall assembly to be deployed at least at a pipe fitting in the pipeline system, in which the supplemental containment wall assembly includes a containment wall shell and a shell grab tab implemented circumferentially along an inner surface of the containment wall shell, circumferentially covering at least a portion of the pipe fitting using the containment wall shell, in which the portion of the pipe fitting includes a grab ring having a fitting grab notch that runs circumferentially along an outer surface of the pipe fitting, and securing the containment wall shell circumferentially around at least the portion of the pipe fitting at least in part by tightening one or more fasteners of the supplemental containment wall assembly such that the shell grab tab on the inner surface of the containment wall shell matingly interlocks with the fitting grab notch on the outer surface of the pipe fitting and a sealed fitting annulus is defined between at least the inner surface of the containment wall shell and the outer surface of the pipe fitting.
- In another embodiment, a supplemental containment wall assembly to be deployed in a pipeline system includes a containment wall shell to be secured circumferentially around at least a pipe fitting in the pipeline system to facilitate defining a fitting annulus at least between an inner surface of the containment wall shell and an outer surface of the pipe fitting, a shell grab tab implemented circumferentially along the inner surface of the containment wall shell, in which the shell grab tab matingly interlocks with a fitting grab notch that runs circumferentially along the outer surface of the pipe fitting to facilitate securing the containment wall shell to the pipe fitting, and one or more containment wall seals implemented circumferentially along the inner surface of the containment wall shell, in which the one or more containment wall seals seal the fitting annulus defined at least between the containment wall shell and the pipe fitting to facilitate providing multi-wall containment at the pipe fitting in the pipeline system.
-
FIG. 1 is a block diagram of an example of a pipeline system including pipe segments and pipe fittings (e.g., connectors), in accordance with an embodiment of the present disclosure. -
FIG. 2 is a side view of an example of a pipe segment ofFIG. 1 that includes a bore defined by its tubing as well as fluid conduits implemented within an annulus of its tubing, in accordance with an embodiment of the present disclosure. -
FIG. 3 is a perspective view of an example of the pipe segment ofFIG. 2 with a helically shaped fluid conduit implemented within the annulus of its tubing, in accordance with an embodiment of the present disclosure. -
FIG. 4 is an axial cross-section profile of an example of deployment equipment coupled to a portion of the pipeline system ofFIG. 1 , in accordance with an embodiment of the present disclosure. -
FIG. 5 is an axial cross-section profile of an example of a supplemental containment wall assembly coupled to the portion of the pipeline system ofFIG. 4 , in accordance with an embodiment of the present disclosure. -
FIG. 6 is a side view of an example of the supplemental containment wall assembly, which includes a clamp containment wall shell, and the portion of the pipeline system ofFIG. 5 , in accordance with an embodiment of the present disclosure. -
FIG. 7 is a side view of another example of the supplemental containment wall assembly, which includes a sleeve containment wall shell, and the portion of the pipeline system ofFIG. 5 , in accordance with an embodiment of the present disclosure. -
FIG. 8 is a side view of a further example of the supplemental containment wall assembly, which includes a wrap containment wall shell, and the portion of the pipeline system ofFIG. 5 , in accordance with an embodiment of the present disclosure. -
FIG. 9 is an axial cross-section profile of an example of a portion of a supplemental containment wall assembly coupled to another portion of the pipeline system ofFIG. 1 , in accordance with an embodiment of the present disclosure. -
FIG. 10 is a top view of a portion of the pipeline system ofFIG. 1 that includes the other portion of the pipeline system ofFIG. 9 , in accordance with an embodiment of the present disclosure. -
FIG. 11 is a perspective exploded view of another example of a supplemental containment wall assembly to be deployed at the portion of the pipeline system ofFIG. 10 , in accordance with an embodiment of the present disclosure. -
FIG. 12 is a flow diagram of an example process for implementing a pipeline system to provide multi-wall containment, in accordance with an embodiment of the present disclosure. -
FIG. 13 is a flow diagram of an example process for implementing a supplemental containment wall assembly to be deployed in a pipeline system, in accordance with an embodiment of the present disclosure. - One or more specific embodiments of the present disclosure will be described below with reference to the figures. As used herein, the term “coupled” or “coupled to” may indicate establishing either a direct or indirect connection and, thus, is not limited to either unless expressly referenced as such. The term “set” may refer to one or more items. Wherever possible, like or identical reference numerals are used in the figures to identify common or the same features. The figures are not necessarily to scale. In particular, certain features and/or certain views of the figures may be shown exaggerated in scale for purposes of clarification.
- The present disclosure generally relates to pipeline systems that may be implemented and/or operated to transport (e.g., convey) fluid, such as liquid and/or gas, from a fluid source to a fluid destination. Generally, a pipeline system may include pipe fittings (e.g., connectors), such as a midline pipe fitting and/or a pipe end fitting, and one or more pipe segments, which each includes tubing that defines (e.g., encloses) a corresponding pipe bore. In particular, a pipe segment may generally be secured and sealed in one or more pipe fittings to facilitate fluidly coupling the pipe segment to another pipe segment, a fluid source, and/or a fluid destination. Merely as an illustrative non-limiting example, a pipeline system may include a first pipe end fitting that couples a first pipe segment to a fluid source, a midline pipe fitting that couples the first pipe segment to a second pipe segment, and a second pipe end fitting that couples the second pipe segment to a fluid destination.
- Additionally, in some instances, a pipeline system may be implemented to provide multi-wall (e.g., double wall) containment to facilitate improving fluid isolation provided by the pipeline system. In particular, a portion of the pipeline system may provide multi-wall containment when, moving radially outward, the portion of the pipeline system includes multiple structural layers separated by one or more corresponding annuli. Thus, to facilitate providing multi-wall containment, the tubing of a pipe segment deployed in the pipeline system may include an inner layer and an outer layer separated by a tubing annulus, for example, which is implemented using one or more intermediate layers that each has one or more openings (e.g., fluid conduits) devoid of solid material.
- In any case, as described above, a pipe segment may be secured in a pipe fitting. In particular, in some instances, the pipe fitting may be secured to the pipe segment using swaging techniques. To facilitate securing a pipe segment thereto using swaging techniques, the pipe fitting may include a fitting tube, which defines (e.g., encloses) a fitting bore through the pipe fitting, and a fitting jacket, which is coupled around the fitting jacket to define (e.g., enclose) a tubing cavity in which the tubing of the pipe segment is to be secured. Thus, in such instances, the pipe fitting may be secured to a pipe segment at least in part by inserting the tubing of the pipe segment into the tubing cavity and conformally deforming the pipe fitting around the pipe segment tubing. In fact, when pipe segment tubing implemented with multiple containment walls is inserted, at least the portion of the pipe fitting at which the pipe segment tubing is secured may provide multi-wall containment.
- To facilitate conformally deforming a pipe fitting around pipe segment tubing, in some instances, deployment equipment, such as a swage machine, may be coupled to the pipe fitting. In particular, to facilitate coupling deployment equipment thereto, the pipe fitting may include a grab ring with a fitting grab notch that runs circumferentially along an outer surface of the grab ring. Additionally, the deployment equipment may include a grab plate with an equipment grab tab, which is implemented (e.g., sized and/or shaped) to matingly interlock (e.g., engage and/or interface) with the fitting grab notch of the pipe fitting.
- However, in some instances, a grab ring of a pipe fitting may be coupled to the fitting tube of the pipe fitting such that the grab ring is at least partially external from a fitting jacket of the pipe fitting. In other words, in such instances, at least a portion of the grab ring may not be implemented between the fitting tube and the fitting jacket and, thus, pipe segment tubing may not be present between the fitting tube and the grab ring even when the pipe segment tubing is fully inserted into a tubing cavity defined between the fitting tube and the fitting jacket. Although implemented with multiple layers (e.g., fitting tube and grab ring), in some instances, the portion of the pipe fitting may nevertheless be considered as providing single wall containment, for example, due to the grab ring directly abutting the fitting tube resulting in the lack of an annulus therebetween.
- Accordingly, to facilitate providing multi-wall containment in a pipeline system, the present disclosure provides techniques for implementing and/or deploying a supplemental containment wall assembly in the pipeline system, for example, at least at one or more pipe fittings considered as providing single wall containment. In particular, as will be described in more detail below, the supplemental containment wall assembly may include a containment wall shell, which is implemented to be secured and sealed circumferentially around at least a portion of a pipe fitting. Additionally, the supplemental containment wall may include one or more fasteners, which are implemented to facilitate securing the containment wall shell around the pipe fitting. However, as will be described in more detail below, different embodiments of a supplemental containment wall assembly may include different types of containment wall shells and/or different types of fasteners.
- For example, in some embodiments, a supplemental containment wall assembly may include a clamp containment wall shell with multiple clamp shell segments, which are implemented to be clamped circumferentially around at least a portion of a pipe fitting. For example, the clamp containment wall shell may include a first clamp shell segment implemented to be secured around a first portion (e.g., top half) of the pipe fitting, a second clamp segment implemented to be secured around a second portion (e.g., bottom half) of the pipe fitting, and so on. In some such embodiments, the clamp shell segments may include threaded fastener openings, which are implemented to enable corresponding threaded fasteners, such as a bolt or a screw, to be selectively tightened therein. In other words, in such embodiments, the supplemental containment wall assembly may include threaded fasteners, which may be tightened in the threaded fastener openings to facilitate securing and sealing the clamp shell segments around the pipe fitting and, thus, implementing a sealed fitting annulus between at least the pipe fitting and the clamp containment wall shell.
- In other embodiments, a supplemental containment wall assembly may include a sleeve containment wall shell, which is implemented to be slid over and secured around at least a portion of a pipe fitting. In some such embodiments, the supplemental containment wall assembly may include internal worm clamp fasteners implemented circumferentially within the sleeve containment wall shell, for example, around a shell grab tab, a containment wall seal, and/or an end of the sleeve containment wall shell. In other words, in such embodiments, tightening one or more of the internal worm clamp fasteners may compress the sleeve containment wall shell inwardly, which may facilitate securing and sealing the sleeve containment wall shell around the pipe fitting and, thus, implementing a sealed fitting annulus between at least the pipe fitting and the sleeve containment wall shell.
- In still further embodiments, a supplemental containment wall assembly may include a wrap containment wall shell, which is implemented to be wrapped and secured around at least a portion of a pipe fitting. In some such embodiments, the supplemental containment wall assembly may include external worm clamp fasteners, which are implemented to be wrapped circumferentially around the wrap containment wall shell, for example, over a shell grab tab, over a containment wall seal, and/or over an end of the sleeve containment wall shell. In other words, in such embodiments, tightening one or more of the external worm clamp fasteners may compress the wrap containment wall shell inwardly, which may facilitate securing and sealing the wrap containment wall shell around the pipe fitting and, thus, implementing a sealed fitting annulus between at least the pipe fitting and the wrap containment wall shell.
- In any case, to facilitate reducing the likelihood of a supplemental containment wall assembly moving relative to a pipe fitting at which it is deployed, the supplemental containment wall assembly may include one or more shell grab tabs, which are each implemented on an inner surface of its containment wall shell. In particular, the shell grab tabs may each be implemented (e.g., sized and/or shaped) to matingly interlock (e.g., engage and/or interface) with at least a portion of a corresponding fitting grab notch implemented along the outer surface of the pipe fitting. For example, a first clamp shell segment of a clamp containment wall shell may include a first shell grab tab that is implemented on its inner surface to matingly interface with a first portion of the fitting grab notch, a second clamp shell segment of the clamp containment wall shell may include a second shell grab tab that is implemented on its inner surface to matingly interface with a second portion of the fitting grab notch, and so on. Additionally or alternatively, a shell grab tab that is implemented to matingly interface with the fitting grab notch on the pipe fitting may be implemented circumferentially along an inner surface of a sleeve containment wall shell or an inner surface of a wrap containment wall shell.
- Furthermore, to facilitate implementing a sealed fitting annulus and, thus, providing multi-wall containment, one or more containment wall seals may be implemented on an inner surface of the containment wall shell of a supplemental containment wall assembly. For example, in some embodiments, the supplemental containment wall assembly may include one or more containment wall seals integrated with corresponding shell grab tabs. In particular, in such embodiments, an integrated containment wall seal may be implemented at least in part by coating a shell grab tab with a sealing material, such as rubber.
- Additionally or alternatively, a supplemental containment wall assembly may include one or more discrete containment wall seals, such as an O-ring or a belt seal. For example, a first portion of a discrete containment wall seal may be implemented on an inner surface of a first clamp shell segment, a second portion of the discrete containment wall seal may be implemented on an inner surface of a second clamp shell segment, and so on. In fact, in some embodiments, multiple discrete containment wall seals may be implemented on the inner surface of a containment wall shell. For example, a first discrete containment wall seal may be implemented on a first (e.g., inner) side of a shell grab tab on an inner surface of the containment wall shell and a second discrete containment wall seal may be implemented on a second (e.g., outer) side of the shell grab tab on the inner surface of the containment wall shell. Thus, as will be described in more detail below, deploying a supplemental containment wall assembly at least at a pipe fitting in a pipeline system may facilitate providing multi-wall containment in the pipeline, for example, at least in part by defining (e.g., enclosing) a sealed fitting annulus between the pipe fitting and the supplemental containment wall assembly.
- To help illustrate, an example of a
pipeline system 10 is shown inFIG. 1 . As in the depicted example, thepipeline system 10 may be coupled between a borefluid source 12 and abore fluid destination 14. Merely as an illustrative not limiting example, thebore fluid source 12 may be a production well and thebore fluid destination 14 may be a fluid storage tank. In other instances, thebore fluid source 12 may be a first (e.g., lease facility) storage tank and thebore fluid destination 14 may be a second (e.g., refinery) storage tank. - In any case, the
pipeline system 10 may generally be implemented and/or operated to facilitate transporting (e.g., conveying) fluid, such as gas and/or liquid, from thebore fluid source 12 to thebore fluid destination 14. In fact, in some embodiments, thepipeline system 10 may be used in many applications, including without limitation, both onshore and offshore oil and gas applications. For example, in such embodiments, thepipeline system 10 may be used to transport one or more hydrocarbons, such as crude oil, petroleum, natural gas, or any combination thereof. Additionally or alternatively, thepipeline system 10 may be used to transport one or more other types of fluid, such as produced water, fresh water, fracturing fluid, flowback fluid, carbon dioxide, or any combination thereof. - To facilitate flowing fluid to the
bore fluid destination 14, in some embodiments, thebore fluid source 12 may include one or more bore fluid pumps 16 that are implemented and/or operated to inject (e.g., pump and/or supply) fluid from thebore fluid source 12 into a bore of thepipeline system 10. However, it should be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, in other embodiments, one or more bore fluid pumps 16 may not be implemented at thebore fluid source 12, for example, when fluid flow through the bore of thepipeline system 10 is produced by gravity. Additionally or alternatively, in other embodiments, one or more bore fluid pumps 16 may be implemented in thepipeline system 10 and/or at thebore fluid destination 14. - To facilitate transporting fluid from the
bore fluid source 12 to thebore fluid destination 14, as in the depicted example, apipeline system 10 may include one or more pipe fittings (e.g., connectors) 18 and one ormore pipe segments 20. For example, the depictedpipeline system 10 includes afirst pipe segment 20A, asecond pipe segment 20B, and anNth pipe segment 20N. Additionally, the depictedpipeline system 10 includes a first pipe (e.g., end) fitting 18A, which couples thebore fluid source 12 to thefirst pipe segment 20A, a second (e.g., midline) pipe fitting 18B, which couples thefirst pipe segment 20A to thesecond pipe segment 20B, and an Nth pipe (e.g., end) fitting 18N, which couples theNth pipe segment 20N to thebore fluid destination 14. - However, it should again be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, in other embodiments, a
pipeline system 10 may include fewer (e.g., one)pipe segments 20. Additionally or alternatively, in other embodiments, apipeline system 10 may include fewer (e.g., two)pipe fittings 18. - In any case, as described above, a
pipe segment 20 generally includes tubing that may be used to convey (e.g., transfer and/or transport) water, gas, oil, and/or any other suitable type of fluid. The tubing of apipe segment 20 may be made of any suitable type of material, such as plastic, metal, and/or a composite (e.g., fiber-reinforced composite) material. In fact, as will be described in more detail below, in some embodiments, the tubing of apipe segment 20 may be implemented using multiple different layers. For example, the tubing of apipe segment 20 may include a first high-density polyethylene (e.g., internal corrosion protection) layer, one or more reinforcement (e.g., steel strip) layers external to the first high-density polyethylene layer, and a second high-density polyethylene (e.g., external corrosion protection) layer external to the one or more reinforcement layers. - Additionally, as in the depicted example, one or more (e.g., second and/or Nth)
pipe segments 20 in apipeline system 10 may be curved. To facilitate implementing a curve in apipe segment 20, in some embodiments, thepipe segment 20 may be flexible, for example, such that thepipe segment 20 is spoolable on a pipe reel and/or a pipe drum (e.g., during transport and/or before deployment of the pipe segment 20). In other words, in some embodiments, one ormore pipe segments 20 in thepipeline system 10 may be a flexible pipe, such as a bonded flexible pipe, an unbonded flexible pipe, a flexible composite pipe (FCP), a thermoplastic composite pipe (TCP), or a reinforced thermoplastic pipe (RTP). In fact, at least in some instances, increasing flexibility of apipe segment 20 may facilitate improving deployment efficiency of apipeline system 10, for example, by obviating a curved (e.g., elbow) pipe fitting 18 and/or enabling thepipe segment 20 to be transported to thepipeline system 10, deployed in thepipeline system 10, or both using a tighter spool. - To facilitate improving pipe flexibility, in some embodiments, the tubing of a
pipe segment 20 that defines (e.g., encloses) its pipe bore may include one or more openings devoid of solid material. In fact, in some embodiments, an opening in the tubing of apipe segment 20 may run (e.g., span) the length of thepipe segment 20 and, thus, define (e.g., enclose) a fluid conduit in the annulus of the tubing, which is separate from the pipe bore. In other words, in such embodiments, fluid may flow through apipe segment 20 via its pipe bore, a fluid conduit implemented within its tubing annulus, or both. - To help illustrate, an example of a
pipe segment 20, which includestubing 22 withfluid conduits 24 implemented in itsannulus 25, is shown inFIG. 2 . As depicted, thepipe segment tubing 22 is implemented with multiple layers including an inner (e.g., innermost)layer 26 and an outer (e.g., outermost)layer 28. In some embodiments, theinner layer 26 and/or theouter layer 28 of thepipe segment tubing 22 may be implemented using composite material and/or plastic, such as high-density polyethylene (HDPE) and/or raised temperature polyethylene (PE-RT). In any case, as depicted, aninner surface 30 of theinner layer 26 defines (e.g., encloses) a pipe bore 32 through which fluid can flow, for example, to facilitate transporting fluid from abore fluid source 12 to abore fluid destination 14. - Additionally, as depicted, the
annulus 25 of thepipe segment tubing 22 is implemented between itsinner layer 26 and itsouter layer 28. As will be described in more detail below, thetubing annulus 25 may include one or more intermediate layer of thepipe segment tubing 22. Furthermore, as depicted,fluid conduits 24 running along the length of thepipe segment 20 are defined (e.g., enclosed) in thetubing annulus 25. As described above, afluid conduit 24 in thetubing annulus 25 may be devoid of solid material. As such,pipe segment tubing 22 that includes one or morefluid conduits 24 therein may include less solid material and, thus, exert less resistance to flexure, for example, compared to solidpipe segment tubing 22 and/orpipe segment tubing 22 that does not includefluid conduits 24 implemented therein. Moreover, to facilitate further improving pipe flexibility, in some embodiments, one or more layers in thetubing 22 of apipe segment 20 may be unbonded from one or more other layers in thetubing 22 and, thus, thepipe segment 20 may be an unbonded pipe. - However, it should be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, in other embodiments,
pipe segment tubing 22 may include fewer (e.g., one) or more (e.g., three, four, or more)fluid conduits 24 defined in itstubing annulus 25. Additionally or alternatively, in other embodiments, afluid conduit 24 defined in thetubing annulus 25 of apipe segment 20 may run non-parallel to the pipe bore 32 of thepipe segment 20, for example, such that thefluid conduit 24 is skewed relative to the axial (e.g., longitudinal) extent of the pipe bore 32. - To help illustrate, an example of a
portion 36 of apipe segment 20, which includes aninner layer 26 and anintermediate layer 34 included in theannulus 25 of itspipe segment tubing 22, is shown inFIG. 3 . In some embodiments, one or moreintermediate layers 34 ofpipe segment tubing 22 may be implemented at least in part using composite material and/or metal, such as carbon steel, stainless steel, duplex stainless steel, super duplex stainless steel, or any combination thereof. In other words, at least in some such embodiments, theintermediate layer 34 of thepipe segment tubing 22 may be implemented using electrically conductive, which, at least in some instances, may enable communication of electrical (e.g., control and/or sensor) signals via theintermediate layer 34. - In any case, as depicted, the
intermediate layer 34 is helically disposed (e.g., wound and/or wrapped) on theinner layer 26 such that gaps (e.g., openings) are left between adjacent windings to define afluid conduit 24. In other words, in some embodiments, theintermediate layer 34 may be implemented at least in part by winding a metal (e.g., steel) strip around theinner layer 26 at a non-zero lay angle (e.g., fifty-four degrees) relative to the axial (e.g., longitudinal) extent of the pipe bore 32. In any case, as depicted, the resultingfluid conduit 24 runs helically along thepipe segment 20, for example, such that thefluid conduit 24 is skewed fifty-four degrees relative to the axial extent of the pipe bore 32. - In some embodiments, an
outer layer 28 may be disposed directly over the depictedintermediate layer 34 and, thus, cover and/or define (e.g., enclose) the depictedfluid conduit 24. However, in other embodiments, thetubing annulus 25 ofpipe segment tubing 22 may include multiple (e.g., two, three, four, or more)intermediate layers 34. In other words, in such embodiments, one or more otherintermediate layers 34 may be disposed over the depictedintermediate layer 34. In fact, in some such embodiments, the one or more otherintermediate layers 34 may also each be helically disposed such that gaps are left between adjacent windings to implement one or more correspondingfluid conduits 24 in thepipe segment tubing 22. - For example, a first other
intermediate layer 34 may be helically disposed on the depictedintermediate layer 34 using the same non-zero lay angle as the depictedintermediate layer 34 to cover (e.g., define and/or enclose) the depictedfluid conduit 24 and to implement anotherfluid conduit 24 in the first otherintermediate layer 34. Additionally, a second otherintermediate layer 34 may be helically disposed on the first otherintermediate layer 34 using another non-zero lay angle, which is the inverse of the non-zero lay angle of the depictedintermediate layer 34, to implement anotherfluid conduit 24 in the second otherintermediate layer 34. Furthermore, a third otherintermediate layer 34 may be helically disposed on the second otherintermediate layer 34 using the same non-zero lay angle as the second otherintermediate layer 34 to cover the otherfluid conduit 24 in the second otherintermediate layer 34 and to implement anotherfluid conduit 24 in the third otherintermediate layer 34. In some embodiments, anouter layer 28 may be disposed over the third otherintermediate layer 34 and, thus, cover (e.g., define and/or enclose) the otherfluid conduit 24 in the third otherintermediate layer 34. - In any case, to facilitate flowing fluid from a
bore fluid source 12 to abore fluid destination 14, as described above, one ormore pipe fittings 18, such as a midline pipe fitting 18 and/or a pipe end fitting 18, may be secured to apipe segment 20. In particular, as described above, in some instances, a pipe fitting 18 may be secured to apipe segment 20 using swaging techniques, for example, which conformally deform the pipe fitting 18 aroundtubing 22 of thepipe segment 20. In fact, in some embodiments, deployment equipment, such as a swage machine, may be implemented and/or operated to facilitate securing a pipe fitting 18 to apipe segment 20 during deployment of apipeline system 10. - To help illustrate, an example cross-section of
deployment equipment 38 and aportion 40 of apipeline system 10 is shown inFIG. 4 . As depicted, theportion 40 of thepipeline system 10 includes afirst pipe segment 20A, asecond pipe segment 20B, and a pipe fitting 18, which is coupled between thefirst pipe segment 20A and thesecond pipe segment 20B. Additionally, as depicted, the pipe fitting 18 includes afitting tube 44 and agrab ring 46, which is implemented around thefitting tube 44. In particular, as depicted, thefitting tube 44 defines (e.g., encloses) afitting bore 48, which is fluidly coupled to a first pipe bore 32A of thefirst pipe segment 20A and a second pipe bore 32B of thesecond pipe segment 20B. - In other words, the pipe fitting 18 in
FIG. 4 may be a midline pipe fitting 18. However, it should be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, as will be described in more detail below, the techniques described in the present disclosure may additionally or alternatively be used with other types ofpipe fittings 18, such as a pipe end fitting 18. - In any case, as depicted, the pipe fitting 18 includes
fitting jackets 50—namely a firstfitting jacket 50A and a secondfitting jacket 50B—and fitting seals 52—namely a first fitting seal 52A and a secondfitting seal 52B—implemented circumferentially around thefitting tube 44. In particular, as depicted,first tubing 22A of thefirst pipe segment 20A is disposed in afirst tubing cavity 54A of the pipe fitting 18, which is defined between the firstfitting jacket 50A and thefitting tube 44. Similarly,second tubing 22B of thesecond pipe segment 20B is disposed in asecond tubing cavity 54B of the pipe fitting 18, which is defined between the secondfitting jacket 50B and thefitting tube 44. - However, as depicted,
open space 56 is present between thesecond tubing 22B of thesecond pipe segment 20B and the pipe fitting 18 whereas minimal open space is present between thefirst tubing 22A of thefirst pipe segment 20A and thepipe fitting 18. In other words, the pipe fitting 18 may exert more resistance to tubing movement in thefirst tubing cavity 54A and, thus, facilitate securing the pipe fitting 18 to thefirst pipe segment 20A, for example, in addition to sealing thefirst tubing 22A of thefirst pipe segment 20A via the first fitting seal 52A. On the other hand, the pipe fitting 18 may exert less resistance to tubing movement in thesecond tubing cavity 54B, which, at least in some instances, may enable thesecond tubing 22B of thesecond pipe segment 20B to move relatively freely into and/or out from thesecond tubing cavity 54B of thepipe fitting 18. As such, to facilitate securing the pipe fitting 18 to thesecond pipe segment 20B, thedeployment equipment 38 may be operated to conformally deform (e.g., swage) the secondfitting jacket 50B around thesecond tubing 22B of thesecond pipe segment 20B, thereby consuming at least a portion (e.g., majority) of theopen space 56. - To facilitate conformally deforming a
fitting jacket 50 aroundpipe segment tubing 22, as in the depicted example, thedeployment equipment 38 may include agrab plate 58, adie plate 60, one or more guide rods 62, and one or more actuators 64. More specifically, in the depicted example, thedeployment equipment 38 includes afirst actuator 64A, which is coupled to thegrab plate 58 via afirst guide rod 62A that extends through thedie plate 60. Additionally, thedeployment equipment 38 includes asecond actuator 64B, which is coupled to thegrab plate 58 via asecond guide rod 62B that extends through thedie plate 60. As such, in some embodiments, thefirst actuator 64A and/or thesecond actuator 64B may be operated to selectively push thedie plate 60 toward thegrab plate 58 and/or to selectively pull thedie plate 60 away from thegrab plate 58. - Furthermore, as depicted, a die (e.g., one or more die segments or die halves) 63 is disposed in the
die plate 60. When compressed against afitting jacket 50 in anaxial direction 61, the shape of the die 63 may compress thefitting jacket 50 inwardly in aradial direction 65, for example, such that thefitting jacket 50 andpipe segment tubing 22 disposed in acorresponding tubing cavity 54 are conformally deformed. In fact, in some embodiments, different dies 63 may be selectively used in thedie plate 60, for example, during successive compression cycles and/or depending on characteristics, such as diameter and/or material thickness, of thefitting jacket 50. - To facilitate compressing the
die plate 60 and, thus, itsdie 63 against afitting jacket 50, as in the depicted example, thegrab plate 58 of thedeployment equipment 38 may be secured to the pipe fitting 18 via one or moreequipment grab tabs 66. In particular, as in the depicted example, anequipment grab tab 66 on thedeployment equipment 38 may be implemented (e.g., sized and/or shaped) to matingly interlock (e.g., interface and/or engage) with a correspondingfitting grab notch 68 on thegrab ring 46 of the pipe fitting 18 and, thus, facilitate securing thedeployment equipment 38 to thepipe fitting 18. As described above, thedeployment equipment 38 may then force (e.g., push and/or compress) itsdie plate 60 and, thus, itsdie 63 toward itsgrab plate 58, which may conformally deform the secondfitting jacket 50B of the pipe fitting 18 and thesecond tubing 22B of thesecond pipe segment 20B and, thus, facilitate securing the pipe fitting 18 to thepipe segment 20B, for example, in addition to sealing thesecond tubing 22B ofsecond pipe segment 20B via the secondfitting seal 52B. - To facilitate improving fluid isolation provided, as described above, a
pipeline system 10 may be implemented to provide multi-wall containment. In particular, a portion of thepipeline system 10 may provide multi-wall containment when, moving radially outward, the portion of thepipeline system 10 includes multiple structural layers separated by one or more corresponding annuli. For example, to facilitate providing multi-wall (e.g., double wall) containment, as described above, thetubing 22 of apipe segment 20 deployed in thepipeline system 10 may include aninner layer 26 and anouter layer 28 separated by atubing annulus 25, for example, which is implemented using one or moreintermediate layers 34 that each has one or more fluid conduits 24 (e.g., openings) devoid of solid material. Moreover, the portion of a pipe fitting 18 in which thepipe segment tubing 22 is secured may also be considered as providing multi-wall containment, for example, due to thepipe segment tubing 22 itself already providing multi-wall containment. In fact, in some embodiments, the portion of the pipe fitting 18 in which thepipe segment tubing 22 is to be secured may be considered as providing multi-wall containment even before thepipe segment tubing 22 has been disposed therein, for example, due to afitting jacket 50 and thefitting tube 44 being separated by a corresponding tubing cavity (e.g., annulus) 54. - However, a different portion of a pipe fitting 18 may be considered as providing single wall containment even after
pipe segment tubing 22 has been secured and sealed therein. More specifically, as in the depicted example, thegrab ring 46 of the pipe fitting 18 may be implemented at least partially external from thefitting jackets 50 and, thus,pipe segment tubing 22 may not be present between thefitting tube 44 and thegrab ring 46 even when thepipe segment tubing 20 is fully inserted into atubing cavity 54 defined between thefitting tube 44 and afitting jacket 50. Although implemented with multiple structural layers (e.g.,fitting tube 44 and grab ring 46), in some instances, the different portion of the pipe fitting 18 may nevertheless be considered as providing a single wall containment, for example, due to thegrab ring 46 directly abutting thefitting tube 44 resulting in the lack of an annulus therebetween. Thus, to facilitate providing multi-wall (e.g., double wall) containment, the present disclosure describes techniques for implementing and/or deploying a supplemental containment wall assembly at least at one ormore pipe fittings 18 in apipeline system 10. - To help illustrate, an example of a
portion 70 of apipeline system 10, which includes a supplementalcontainment wall assembly 72, is shown inFIG. 5 . In addition to the supplementalcontainment wall assembly 72, as depicted, theportion 70 of thepipeline system 10 includes afirst pipe segment 20A, asecond pipe segment 20B, and apipe fitting 18. In particular, as depicted, the pipe fitting 18 is coupled between thefirst pipe segment 20A and thesecond pipe segment 20B. - In other words, the pipe fitting 18 in
FIG. 5 may be a midline pipe fitting 18. However, it should be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, as will be described in more detail below, the techniques described in the present disclosure may additionally or alternatively be used with other types ofpipe fittings 18, such as a pipe end fitting 18. - In any case, as depicted, the supplemental
containment wall assembly 72 includes acontainment wall shell 74, which is implemented to be secured and sealed circumferentially around at least a portion of the pipe fitting 18 to define (e.g., enclose) afitting annulus 76 between anouter surface 78 of the pipe fitting 18 and aninner surface 80 of thecontainment wall shell 74. As will be described in more detail below, in some embodiments, thecontainment wall shell 74 of a supplementalcontainment wall assembly 72 may be a clampcontainment wall shell 74 implemented to be clamped circumferentially around at least the portion of thepipe fitting 18. In other embodiments, as will be described in more detail below, thecontainment wall shell 74 may be a sleevecontainment wall shell 74, which is implemented to be slid over (e.g., around) at least the portion of the pipe fitting 18, or a wrapcontainment wall shell 74, which is implemented to be wrapped circumferentially around at least the portion of thepipe fitting 18. - To facilitate securing the
containment wall shell 74 circumferentially around the pipe fitting 18, as in the depicted example, the supplementalcontainment wall assembly 72 may include one ormore fasteners 82. As will be described in more detail below, in some embodiments, thefasteners 82 of a supplementalcontainment wall assembly 72 may include one or more threadedfasteners 82, such as a screw or a bolt. In other embodiments, thefasteners 82 of a supplementalcontainment wall assembly 72 may include one or moreworm clamp fasteners 82, for example, which may be implemented circumferentially within a sleevecontainment wall shell 74 and/or circumferentially around a wrapcontainment wall shell 74. - Additionally, to facilitate reducing the likelihood of it moving relative to the pipe fitting 18, as in the depicted example, a supplemental
containment wall assembly 72 may include one or moreshell grab tabs 84 implemented on theinner surface 80 of itscontainment wall shell 74. In particular, as depicted, ashell grab tab 84 on thecontainment wall shell 74 may be implemented (e.g., sized and/or shaped) to matingly interlock (e.g., interface and/or engage) with afitting grab notch 68 on thegrab ring 46 of thepipe fitting 18. As described above, in some embodiments,deployment equipment 38, such as a swage machine, may be coupled to the pipe fitting 18 via thefitting grab notch 68 on thegrab ring 46 of thepipe fitting 18. In other words, in such embodiments, thefitting grab notch 68 on thegrab ring 46 of the pipe fitting 18 may be matingly interlocked with anequipment grab tab 66 ofdeployment equipment 38 to facilitate securing the pipe fitting 18 to apipe segment 20 during a first time period and matingly interlocked with ashell grab tab 84 on thecontainment wall shell 74 to facilitate securing thecontainment wall shell 74 circumferentially around the pipe fitting 18 during a second (e.g., subsequent and/or non-overlapping) time period. - Furthermore, to facilitate sealing the
fitting annulus 76, as in the depicted example, a supplementalcontainment wall assembly 72 may include one or more containment wall seals 86 implemented on theinner surface 80 of itscontainment wall shell 74. For example, a first discretecontainment wall seal 86A, such as an O-ring seal or a belt seal, may be implemented circumferentially at a first end of thecontainment wall shell 74 while a second discretecontainment wall seal 86B, such as another O-ring seal or another belt seal, may be implemented circumferentially at a second (e.g., opposite) end of thecontainment wall shell 74. In some embodiments, the supplementalcontainment wall assembly 72 may additionally or alternatively include one or more containment wall seals 86 integrated with correspondingshell grab tabs 84 on thecontainment wall shell 74, for example, which are implemented at least in part by coating theshell grab tabs 84 with sealing material, such as rubber. - However, it should be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, in some embodiments, a supplemental
containment wall assembly 72 may additionally include one ormore ports 83 that open through itscontainment wall shell 74, for example, to enable fluid in a correspondingfitting annulus 76 to be sampled to facilitate integrity testing apipeline system 10 in which the supplementalcontainment wall assembly 72 is deployed. Additionally, in other embodiments, thecontainment wall shell 74 of a supplementalcontainment wall assembly 72 deployed at a pipe fitting 18 may be extended such that thecontainment wall shell 74 is secured circumferentially around at least a portion of apipe segment 20 secured to thepipe fitting 18. Moreover, as described above, different embodiments of supplementalcontainment wall assemblies 72 may include different types ofcontainment wall shells 74 and/or different types offasteners 82. - To help illustrate, a more detailed example of a
portion 70A of apipeline system 10, which includes a supplementalcontainment wall assembly 72A with a clampcontainment wall shell 74A and threadedfasteners 82A, is shown inFIG. 6 . In addition to the supplementalcontainment wall assembly 72A, as depicted, theportion 70A of thepipeline system 10 includes afirst pipe segment 20A, asecond pipe segment 20B, and apipe fitting 18. In particular, as depicted, the pipe fitting 18 is coupled between thefirst pipe segment 20A and thesecond pipe segment 20B. - In other words, the pipe fitting 18 in
FIG. 6 may be a midline pipe fitting 18. However, it should be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, as will be described in more detail below, the techniques described in the present disclosure may additionally or alternatively be used with other types ofpipe fittings 18, such as a pipe end fitting 18. - In any case, as depicted, the clamp
containment wall shell 74A secured circumferentially around the pipe fitting 18 includes multiple clamp shell segments 88. In particular, as depicted, the clamp containment wall shell 74A includes a firstclamp shell segment 88A, which is implemented to be secured around a first portion (e.g., top half) of thepipe fitting 18. Additionally, the clamp containment wall shell 74A includes a secondclamp shell segment 88B, which is implemented to be secured around a second portion (e.g., bottom half) of thepipe fitting 18. - To facilitate securing the clamp
containment wall shell 74A around the pipe fitting 18, the clamp shell segments 88 may each include one or more threadedfastener openings 90, which are implemented to be aligned with a corresponding threadedfastener opening 90 in another (e.g., opposite) clamp shell segment 88 to enable a threadedfastener 82A to be selectively tightened therein. For example, tightening a threadedfastener 82A in a threadedfastener opening 90 implemented in the firstclamp shell segment 88A and a corresponding (e.g., aligned) threadedfastener opening 90 implemented in the secondclamp shell segment 88B may force the firstclamp shell segment 88A and the secondclamp shell segment 88B toward one another. In other words, tightening the threadedfastener 82A may facilitate securing the supplementalcontainment wall assembly 74A circumferentially around at least a portion of thepipe fitting 18. - However, it should again be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, in some embodiments, the clamp shell segments 88 of a clamp
containment wall shell 74A may be coupled together on one side via a hinge. Moreover, as described above, other embodiments of a supplementalcontainment wall assembly 72 may include different types ofcontainment wall shells 74 and/or different types offasteners 82. - To further help illustrate, another more detailed example of a
portion 70B of apipeline system 10, which includes a supplementalcontainment wall assembly 72B with a sleevecontainment wall shell 74B and internalworm clamp fasteners 82B, is shown inFIG. 7 . In addition to the supplementalcontainment wall assembly 72B, as depicted, theportion 70B of thepipeline system 10 includes afirst pipe segment 20A, asecond pipe segment 20B, and apipe fitting 18. In particular, as depicted, the pipe fitting 18 is coupled between thefirst pipe segment 20A and thesecond pipe segment 20B. - In other words, the pipe fitting 18 in
FIG. 7 may be a midline pipe fitting 18. However, it should be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, as will be described in more detail below, the techniques described in the present disclosure may additionally or alternatively be used with other types ofpipe fittings 18, such as a pipe end fitting 18. - In any case, as depicted, the supplemental
containment wall assembly 72B includes a sleevecontainment wall shell 74B, which is implemented to be slid over and secured circumferentially around at least a portion of thepipe fitting 18. To facilitate securing the sleevecontainment wall shell 74B circumferentially around the pipe fitting 18, as in the depicted example, the supplementalcontainment wall assembly 72B may include one or more internalworm clamp fasteners 82B implemented within the sleevecontainment wall shell 74B. For example, a first internalworm clamp fastener 82B may be implemented around (e.g., over) a first discretecontainment wall seal 86A on aninner surface 80 of the sleevecontainment wall shell 74B, a second internalworm clamp fastener 82B may be implemented around ashell grab tab 84 on theinner surface 80 of the sleevecontainment wall shell 74B, and a third internalworm clamp fastener 82B may be implemented around a second discretecontainment wall seal 86B on theinner surface 80 of the sleevecontainment wall shell 74B. In any case, tightening an internalworm clamp fastener 82B may compress the sleevecontainment wall shell 74B inwardly and, thus, facilitate securing the supplementalcontainment wall assembly 74B circumferentially around at least a portion of thepipe fitting 18. - However, it should again be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, in other embodiments, one or more
worm clamp fasteners 82 may additionally or alternatively be implemented external to a sleevecontainment wall shell 74B of a supplementalcontainment wall assembly 72. Moreover, as described above, other embodiments of a supplementalcontainment wall assembly 72 may include different types ofcontainment wall shells 74 and/or different types offasteners 82. - To further help illustrate, another more detailed example of a
portion 70C of apipeline system 10, which includes a supplementalcontainment wall assembly 72C with a wrapcontainment wall shell 74C and externalworm clamp fasteners 82C, is shown inFIG. 8 . In addition to the supplementalcontainment wall assembly 72C, as depicted, theportion 70C of thepipeline system 10 includes afirst pipe segment 20A, asecond pipe segment 20B, and apipe fitting 18. In particular, as depicted, the pipe fitting 18 is coupled between thefirst pipe segment 20A and thesecond pipe segment 20B. - In other words, the pipe fitting 18 in
FIG. 8 may be a midline pipe fitting 18. However, it should be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, as will be described in more detail below, the techniques described in the present disclosure may additionally or alternatively be used with other types ofpipe fittings 18, such as a pipe end fitting 18. - In any case, as depicted, the supplemental
containment wall assembly 72C includes a wrapcontainment wall shell 74C, which is implemented to be wrapped and secured circumferentially around at least a portion of thepipe fitting 18. To facilitate securing the wrapcontainment wall shell 74C circumferentially around the pipe fitting 18, as in the depicted example, the supplementalcontainment wall assembly 72C may include one or more externalworm clamp fasteners 82C implemented around the wrapcontainment wall shell 74C. For example, a first externalworm clamp fastener 82C may be implemented around (e.g., over) a first discretecontainment wall seal 86A on aninner surface 80 of the wrapcontainment wall shell 74C, a second externalworm clamp fastener 82C may be implemented around ashell grab tab 84 on theinner surface 80 of the wrapcontainment wall shell 74C, and a third externalworm clamp fastener 82C may be implemented around a second discretecontainment wall seal 86B on theinner surface 80 of the wrapcontainment wall shell 74C. In any case, tightening an externalworm clamp fastener 82C may compress the wrapcontainment wall shell 74C inwardly and, thus, facilitate securing the supplementalcontainment wall assembly 74C circumferentially around at least a portion of thepipe fitting 18. - However, it should again be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, in other embodiments, one or more
worm clamp fasteners 82 may additionally or alternatively be implemented internal to a wrapcontainment wall shell 74C of a supplementalcontainment wall assembly 72. Moreover, as described above, the techniques described in the present disclosure may additionally or alternatively be implemented with a pipe end fitting 18. - To help illustrate, an example of a
portion 91 of apipeline system 10, which includes a supplementalcontainment wall assembly 72 and a pipe end fitting 18, is shown inFIG. 9 . As depicted, theportion 91 of thepipeline system 10 additionally includes apipe segment 20, which is secured in the pipe end fitting 18. In particular, as depicted,tubing 22 of thepipe segment 22 is secured in atubing cavity 54 defined between afitting jacket 50 and afitting tube 44 of thepipe fitting 18. - Additionally, as depicted, the
fitting tube 44 of the pipe end fitting 18 includes afitting weld neck 92. However, as depicted, thefitting weld neck 92 includes a single layer and, thus, may be considered as providing single wall containment. As such, to facilitate providing multi-wall (e.g., double wall) containment, the supplementalcontainment wall assembly 72 may be secured circumferentially around thefitting weld neck 92, for example, in addition to being secured circumferentially around thegrab ring 46 of thepipe fitting 18. In particular, as depicted, acontainment wall shell 74 of the supplementalcontainment wall assembly 72 may be secured around the pipe fitting 18 via one ormore fasteners 82 such that ashell grab tab 84 implemented on aninner surface 80 of thecontainment wall shell 74 matingly interlocks with afitting grab notch 68 on anouter surface 78 of the pipe fitting 18 and afitting annulus 76 is sealed between theinner surface 80 of thecontainment wall shell 74 and theouter surface 78 of thepipe fitting 18. - To facilitate sealing the
fitting annulus 76, as described above, the supplementalcontainment wall assembly 72 may include one or more containment wall seals 86. For example, the supplementalcontainment wall assembly 72 may include a first discretecontainment wall seal 86A implemented on a first (e.g., inner) side of theshell grab tab 84 and/or a second discretecontainment wall seal 86B implemented on a second (e.g., outer) side of theshell grab tab 84. Additionally or alternatively, the supplementalcontainment wall assembly 72 may include a containment wall seal 86 integrated with theshell grab tab 84, for example, which is implemented at least in part by coating theshell grab tab 84 with a sealing material, such as rubber. - However, it should be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, in some embodiments, a discrete containment wall seal 86 implemented on an inner side of a
shell grab tab 84 may be obviated by a containment wall seal 86 integrated with theshell grab tab 84 and, thus, not included in a supplementalcontainment wall assembly 72. Additionally or alternatively, a discrete containment wall seal 86 implemented on an outer side of ashell grab tab 84 may be obviated by a containment wall seal 86 integrated with theshell grab tab 84 and, thus, not included in a supplementalcontainment wall assembly 72. Moreover, in some embodiments, a supplementalcontainment wall assembly 72 may include one ormore ports 83 that open through itscontainment wall shell 74, for example, to enable fluid in a correspondingfitting annulus 76 to be sampled to facilitate integrity testing thepipeline system 10 in which the supplementalcontainment wall assembly 72 is deployed. - In any case, in some embodiments, the
fitting weld neck 92 of the pipe fitting 18 may be used to facilitate fluidly coupling the pipe fitting 18 to abore fluid source 12 and/or abore fluid destination 14, for example, at least in part by securing (e.g., welding) thefitting weld neck 92 directly thereto and/or via a flange secured (e.g., welded) to theweld neck 92. In other embodiments, theweld neck 92 of the pipe fitting 18 may be used to facilitate fluidly coupling the pipe fitting 18 to another pipe fitting 18 in thepipeline system 10. For example, in some such embodiments, thepipe fittings 18 may be fluidly coupled at least in part by securing (e.g., welding) a fitting connector between thefitting weld necks 92 of thepipe fittings 18. - To help illustrate, an example of a
portion 94 of apipeline system 10, which includes afitting connector 96, is shown inFIG. 10 . In addition to thefitting connector 96, as depicted, theportion 94 of thepipeline system 10 includes afirst pipe segment 20A, a first pipe end fitting 18A, asecond pipe segment 20B, a second pipe end fitting 18B, athird pipe segment 20C, and a third pipe end fitting 18C. In particular, as depicted, thefirst pipe segment 20A is secured within afitting jacket 50 of the first pipe end fitting 18A, thesecond pipe segment 20B is secured within afitting jacket 50 of the second pipe end fitting 18B, and thethird pipe segment 20C is secured within afitting jacket 50 of the third pipe end fitting 18C. - To facilitate securing a
pipe segment 20 thereto, as described above, a pipe fitting 18, such as a pipe end fitting 18, may include agrab ring 46 with afitting grab notch 68 that is implemented (e.g., sized and/or shaped) to matingly interlock (e.g., engage and/or interface) with anequipment grab tab 66 ondeployment equipment 38, such as a swage machine. Thus, as depicted, the first pipe end fitting 18A includes afirst grab ring 46A with a firstfitting grab notch 68A. Similarly, as depicted, the second pipe end fitting 18B includes asecond grab ring 46B with a secondfitting grab notch 68B and the third pipe end fitting 18C includes athird grab ring 46C with athird grab notch 68C. - Additionally, as depicted, the
pipe end fittings 18 each include afitting weld neck 92, which is coupled (e.g., secured and/or welded) to a corresponding connector weld neck 98 of thefitting connector 96. In particular, as depicted, the first pipe end fitting 18A includes a firstfitting weld neck 92A, which is coupled to a firstconnector weld neck 98A of thefitting connector 96. Similarly, as depicted, the second pipe end fitting 18B includes a secondfitting weld neck 92B, which is coupled to a secondconnector weld neck 98B of thefitting connector 96, and the third pipe end fitting 18C includes a thirdfitting weld neck 92C, which is coupled to a thirdconnector weld neck 98C of thefitting connector 96. - However, as described above, in some embodiments, a
fitting weld neck 92 of a pipe end fitting 18 may be considered as providing single wall containment. Moreover, in some embodiments, thefitting connector 96 may also be considered as providing single wall containment, for example, due to thefitting connector 96 including a single structural layer. Thus, to facilitate providing multi-wall (e.g., double wall) containment, in such embodiments, a supplementalcontainment wall assembly 72 may be secured circumferentially around at least a portion of each of thepipe end fittings 18 as well as thepipe fitting connector 96. - To help illustrate, an example of a supplemental
containment wall assembly 72D, which may be secured around multiplepipe end fittings 18 and apipe fitting connector 96, is shown inFIG. 11 . As depicted, the supplementalcontainment wall assembly 72D includes threadedfasteners 82A, such as a nut or a bolt, and a clampcontainment wall shell 74D, which includes a firstclamp shell segment 88A and a secondclamp shell segment 88B. To facilitate securing the supplementalcontainment wall assembly 72D circumferentially around multiplepipe end fittings 18 and apipe fitting connector 96, as depicted, the clamp shell segments 88 of the supplementalcontainment wall assembly 72D each include threadedfastener openings 90, which may be aligned with corresponding threadingfastener openings 90 in the other clamp shell segment 88 of the supplementalcontainment wall assembly 72D to enable a threadedfastener 82A to be selectively tightened therein. - Additionally, to facilitate reducing the likelihood of a supplemental
containment wall assembly 72 inadvertently moving from a location in apipeline system 10 at which it is deployed, as described above, the supplementalcontainment wall assembly 72 may include one or moreshell grab tabs 84 on theinner surface 80 of itscontainment wall shell 74, which are implemented (e.g., sized and/or shaped) to matingly interlock (e.g., interface and/or engage) withfitting grab notches 68 ofpipe fittings 18 in thepipeline system 10. As depicted, the supplementalcontainment wall assembly 72D ofFIG. 11 includes a firstshell grab tab 84A, which is implemented partially on a firstinner surface 80A of the firstclamp shell segment 88A and partially on a secondinner surface 80B of the secondclamp shell segment 88B. In particular, the portion of the firstfitting grab notch 68A on the firstinner surface 80A of the firstclamp shell segment 88A may be implemented to matingly interlock with a first portion of a firstfitting grab notch 68A on a first pipe end fitting 18A while the portion of the firstfitting grab notch 68A on the secondinner surface 80B of the secondclamp shell segment 88B may be implemented to matingly interlock with a second (e.g., different and/or opposite) portion of the firstfitting grab notch 68A on the first pipe end fitting 18A. - Similarly, as depicted, the supplemental
containment wall assembly 72D includes a secondshell grab tab 84B, which is implemented to matingly interlock with a secondfitting grab notch 68B on a second pipe end fitting 18B, and a thirdshell grab tab 84C, which is implemented to matingly interlock with a thirdfitting grab notch 68C on a third pipe end fitting 18C. In particular, as depicted, a portion of the secondshell grab tab 84B and a portion of the thirdshell grab tab 84C are both implemented on the secondinner surface 80B of the secondclamp shell segment 88B. Although obscured from view, another (e.g., different and/or opposite) portion of the secondshell grab tab 84B and another portion of the thirdshell grab tab 84C may be implemented on the firstinner surface 80A of the firstclamp shell segment 88A. - Moreover, as described above, to facilitate sealing a
fitting annulus 76 defined therein, a supplementalcontainment wall assembly 72 may include one or more containment wall seals 86. For example, in some embodiments, the supplementalcontainment wall assembly 72D ofFIG. 11 may include a first containment wall seal 86 that is integrated with the firstshell grab tab 84A at least in part by coating (e.g., covering) the firstshell grab tab 84A with a sealing material, such as rubber. In such embodiments, the supplementalcontainment wall assembly 72D may additionally or alternatively include a second containment wall seal 86 that is integrated with the secondshell grab tab 84B and/or a third containment wall seal 86 that is integrated with the thirdshell grab tab 84C. - However, it should be appreciated that the depicted example is merely intended to be illustrative and not limiting. In particular, in other embodiments, a supplemental
containment wall assembly 72 may additionally or alternatively include a discrete containment wall seal 86 implemented on an inner side of eachshell grab tab 84 and/or a discrete containment wall seal 86 implemented on an outer side of eachshell grab tab 84. In any case, implementing a supplementalcontainment wall assembly 72 in apipeline system 10 in this manner may facilitate providing multi-wall containment in thepipeline system 10, which, at least in some instances, may facilitate improving fluid isolation and, thus, operational efficiency of thepipeline system 10. - To help further illustrate, an example of a
process 100 for implementing apipeline system 10 to provide multi-wall containment is described inFIG. 12 . Generally, theprocess 100 includes implementing a supplemental containment wall assembly (process block 102), covering a pipe fitting with the supplemental containment wall assembly (process block 104), and securing the supplemental containment wall assembly around the pipe fitting (process block 106). Although described in a specific order, which corresponds with an embodiment of the present disclosure, it should be appreciated that theexample process 100 is merely intended to be illustrative and not limiting. In particular, in other embodiments, aprocess 100 for implementing apipeline system 10 to provide multi-wall containment may include one or more additional process blocks and/or omit one or more of the depicted process blocks. - In any case, as described above, a supplemental
containment wall assembly 72 may be deployed at least at a pipe fitting 18 in apipeline system 10 to facilitate providing multi-wall containment. Thus, implementing thepipeline system 10 to provide multi-wall containment may include implementing a supplemental containment wall assembly 72 (process block 102). As described above, the supplementalcontainment wall assembly 72 may be implemented such that, when deployed at the pipe fitting 18 in thepipeline system 10, afitting annulus 76 is sealed at least between the supplementalcontainment wall assembly 72 and thepipe fitting 18. - To help illustrate, an example of a
process 108 for implementing a supplementalcontainment wall assembly 72, which may be deployed in apipeline system 10, is described inFIG. 13 . Generally, theprocess 108 includes implementing a containment wall shell with a shell grab tab (process block 110). Additionally, theprocess 108 generally includes implementing a fastener to be used to secure the containment wall shell around a pipe fitting (process block 112) and implementing a containment wall seal on an inner surface of the containment wall shell (process block 114) - Although described in a specific order, which corresponds with an embodiment of the present disclosure, it should be appreciated that the
example process 108 is merely intended to be illustrative and not limiting. In particular, in other embodiments, aprocess 108 for implementing a supplementalcontainment wall assembly 72 may include one or more additional process blocks and/or omit one or more of the depicted process blocks. Additionally or alternatively, in other embodiments, aprocess 108 for implementing a supplementalcontainment wall assembly 72 may perform the depicted process blocks in a different order, for example such that the containment wall seal 86 is implemented before thefastener 82. - In any case, as described above, a supplemental
containment wall assembly 72 may include acontainment wall shell 74 having one or moreshell grab tabs 84, which are each implemented (e.g., sized and/or shaped) to matingly interlock (e.g., engage and/or interface) with at least a portion of a correspondingfitting grab notch 68 on agrab ring 46 of apipe fitting 18. As such, implementing the supplementalcontainment wall assembly 72 may include implementing acontainment wall shell 74 with one or moreshell grab tabs 84 on its inner surface 80 (process block 110). More specifically, in some embodiments, thecontainment wall shell 74 may be implemented at least in part by milling thecontainment wall shell 74 from a block of material, such as metal. Additionally or alternatively, thecontainment wall shell 74 may be implemented at least in part by deforming (e.g., bending and/or molding) material, such as metal or plastic. - Furthermore, as described above, in some embodiments, the
containment wall shell 74 of a supplementalcontainment wall assembly 72 may be a clampcontainment wall shell 74A. In other words, in such embodiments, implementingcontainment wall shell 74 may include implementing a clampcontainment wall shell 74A (process block 116). Additionally, as described above, in some embodiments, the clampcontainment wall shell 74 may include multiple clamp shell segments 88, which are implemented to be disposed circumferentially around at least a portion of apipe fitting 18. Thus, in such embodiments, implementing the clampcontainment wall shell 74A may include implementing multiple clamp shell segments 88, for example, which each include one or more threadedfastener openings 90. - Moreover, as described above, in other embodiments, the
containment wall shell 74 of a supplementalcontainment wall assembly 72 may be a sleevecontainment wall shell 74B, which is implemented to be slid over at least a portion of apipe fitting 18. In other words, in such embodiments, implementing thecontainment wall shell 74 may include implementing a sleevecontainment wall shell 74B (process block 118). Additionally, as described above, in still other embodiments, thecontainment wall shell 74 of a supplementalcontainment wall assembly 72 may be a wrapcontainment wall shell 74C, which is implemented to be wrapped circumferentially around at least a portion of apipe fitting 18. In other words, in such embodiments, implementing thecontainment wall shell 74 may include implementing a wrapcontainment wall shell 74C (process block 120). - Furthermore, as described above, a supplemental
containment wall assembly 72 may include one ormore fasteners 82, which are implemented to facilitate securing the supplementalcontainment wall assembly 72 circumferentially around at least a portion of apipe fitting 18. As such, implementing the supplementalcontainment wall assembly 72 may include implementing one ormore fasteners 82 to be used to facilitate securing thecontainment wall shell 74 circumferentially around at least the pipe fitting 18 (process block 112). More specifically, as described above, in some embodiments, afastener 82 of a supplementalcontainment wall assembly 72 may be a threadedfastener 82A, which is implemented to be selectively tightened in corresponding threadedfastener openings 90 in thecontainment wall shell 74. In other words, in such embodiments, implementing thefastener 82 may include implementing a threadedfastener 82A, such as screw or a bolt (process block 122). - Additionally, as described above, in other embodiments, a
fastener 82 of a supplementalcontainment wall assembly 72 may be aworm clamp fastener 82, such as an internalworm clamp fastener 82B that is implemented circumferentially within thecontainment wall shell 74 and/or an externalworm clamp fastener 82C that is implemented circumferentially around thecontainment wall shell 74. Thus, in such embodiments, implementing thefastener 82 may include implementing a worm clamp fastener 82 (process block 124). In particular, in some embodiments, implementing theworm clamp fastener 82 may include implementing an internalworm clamp fastener 82B circumferentially within thecontainment wall shell 74, for example, such that the internalworm clamp fastener 82B is disposed circumferentially around an end of thecontainment wall shell 74, a containment wall seal 86 on aninner surface 80 of thecontainment wall shell 74, and/or ashell grab tab 84 on theinner surface 80 of thecontainment wall shell 74. Additionally or alternatively, implementing theworm clamp fastener 82 may include implementing an externalworm clamp fastener 82C circumferentially around thecontainment wall shell 74, for example, such that the externalworm clamp fastener 82C is disposed circumferentially around an end of thecontainment wall shell 74, a containment wall seal 86 on aninner surface 80 of thecontainment wall shell 74, and/or ashell grab tab 84 on theinner surface 80 of thecontainment wall shell 74. - Furthermore, as described above, a supplemental
containment wall assembly 72 may include one or more containment wall seals 86 implemented on aninner surface 80 of itscontainment wall shell 74 to facilitate sealing afitting annulus 76 defined between at least the pipe fitting 18 and the supplementalcontainment wall assembly 72. Thus, implementing the supplementalcontainment wall assembly 72 may include implementing one or more containment wall seals 86 on theinner surface 80 of the containment wall shell 74 (process block 114). In particular, as described above, in some embodiments, a containment wall seal 86 may be integrated with ashell grab tab 84 on thecontainment wall shell 74. In other words, in such embodiments, implementing the containment wall seal 86 may include implementing an integrated containment wall seal 86, for example, at least in part by covering (e.g., coating) theshell grab tab 84 with a sealing material, such as rubber (process block 126). - As described above, in some embodiments, a supplemental
containment wall assembly 72 may additionally or alternatively include one or more discrete containment wall seals 86. Thus, in such embodiments, implementing the containment wall seal 86 may include implementing a discrete containment wall seal 86 (process block 128). More specifically, in some embodiments, a discrete containment wall seal 86 may be implemented at least in part by disposing an O-ring seal or a belt seal circumferentially along theinner surface 80 of thecontainment wall shell 74. In this manner, a supplementalcontainment wall assembly 72 to be deployed in apipeline system 10 to facilitate providing multi-wall (e.g., double wall) containment may be implemented. - Returning to the
process 100 ofFIG. 12 , the supplementalcontainment wall assembly 72 may then be used to circumferentially cover at least a portion of a pipe fitting 18 in thepipeline system 10, for example, in addition to portions of one or moreother pipe fittings 18 in thepipeline system 10, portions of one ormore pipe segments 20 secured to thepipe fittings 18, and/or afitting connector 96 secured between the pipe fittings 18 (process block 104). More specifically, covering a portion of apipeline system 10 with the supplementalcontainment wall assembly 72 may include covering the portion of thepipeline system 10 with thecontainment wall shell 74 of the supplementalcontainment wall assembly 72. - As described above, in some embodiments, the
containment wall shell 74 of a supplementalcontainment wall assembly 72 may be a clampcontainment wall shell 74A, which includes multiple clamp shell segments 88. Thus, in such embodiments, circumferentially covering at least a portion of the pipe fitting 18 with the supplementalcontainment wall assembly 72 may include disposing multiple clamp shell segments 88 circumferentially around at least the portion of the pipe fitting 18 (process block 130). In other embodiments, as described above, thecontainment wall shell 74 of a supplementalcontainment wall assembly 72 may be a sleevecontainment wall shell 74B, which is implemented to be slid over at least a portion of apipe fitting 18. Thus, in such embodiments, circumferentially covering at least a portion of the pipe fitting 18 with the supplementalcontainment wall assembly 72 may include sliding the sleevecontainment wall shell 74B over at least the portion of the pipe fitting 18 (process block 132). In still other embodiments, as described above, thecontainment wall shell 74 of a supplementalcontainment wall assembly 72 may be a wrapcontainment wall shell 74C, which is implemented to be wrapped circumferentially around at least a portion of apipe fitting 18. Thus, in such embodiments, circumferentially covering at least a portion of the pipe fitting 18 with the supplementalcontainment wall assembly 72 may include wrapping the wrapcontainment sleeve shell 74C circumferentially around at least the portion of the pipe fitting 18 (process block 134). - In any case, the supplemental
containment wall assembly 72 may then be secured circumferentially around at least the portion of the pipe fitting 18, for example, in addition to portions of one or moreother pipe fittings 18, portions of one ormore pipe segments 20 secured to thepipe fittings 18, and/or afitting connector 96 secured between the pipe fittings 18 (process block 106). As described above, in some embodiments, a supplementalcontainment wall assembly 72 may include one or more threadedfasteners 82A, which are implemented to be selectively tightened in corresponding threadedfastener openings 90 in thecontainment wall shell 74 to facilitate securing the supplementalcontainment wall assembly 72 circumferentially around thepipe fitting 18. Thus, in such embodiments, securing the supplementalcontainment wall assembly 72 circumferentially around at least the portion of the pipe fitting 18 may include tightening one or more threadedfasteners 82A, such as a screw or a bolt, in corresponding threadedfastener openings 90 implemented in the containment wall shell 74 (process block 136). - In other embodiments, as described above, a supplemental
containment wall assembly 72 may include one or moreworm clamp fasteners 82, such as an internalworm clamp fastener 82B implemented circumferentially within thecontainment wall shell 74 of the supplementalcontainment wall assembly 72 and/or an externalworm clamp fastener 82C implemented circumferentially around thecontainment wall shell 74 of the supplementalcontainment wall assembly 72. In such embodiments, tightening aworm clamp fastener 82 of the supplementcontainment wall assembly 72 may compress thecontainment wall shell 74 inwardly and, thus, facilitate securing the supplementalcontainment wall assembly 72 around at least a portion of thepipe fitting 18. In other words, in such embodiments, securing the supplementalcontainment wall assembly 72 at least around a portion of the pipe fitting 18 may include tightening one or more of its worm clamp fasteners 82 (process block 138). - Additionally, to facilitate securing a supplemental
containment wall assembly 72 at a pipe fitting 18, as described above, thecontainment wall shell 74 of the supplementalcontainment wall assembly 72 may include ashell grab tab 84, which is implemented (e.g., sized and/or shaped) on theinner surface 80 of thecontainment wall shell 74 to matingly interlock (e.g., engage and/or interface) with afitting grab notch 68 on agrab ring 46 of thepipe fitting 18. As such, securing the supplementalcontainment wall assembly 72 circumferentially around at least a portion of the pipe fitting 18 may include matingly interlocking (e.g., engaging and/or interfacing) theshell grab tab 84 on itscontainment wall shell 74 with thefitting grab notch 68 on thegrab ring 46 of the pipe fitting 18 (process block 140). In fact, in some embodiments, tightening one or more threadedfasteners 82A and/or tightening one or moreworm clamp fasteners 82 may compress thecontainment wall shell 74 inwardly and, thus, facilitate matingly interfacing theshell grab tab 84 on theinner surface 80 of thecontainment wall shell 74 with thefitting grab notch 68 on thegrab ring 46 of the pipe fitting 18 (process block 142). - Furthermore, as described above, one or more containment wall seals 86 may be implemented on the
inner surface 80 of thecontainment wall shell 74. As such, compressing thecontainment wall shell 74 inwardly at least in part by tightening one or more threadedfasteners 82 and/or tightening one or moreworm clamp fasteners 82 may compress one or more containment wall seals 86 against a structural layer, such as anouter surface 78 of the pipe fitting 18, an outer surface of afitting connector 96 secured to the pipe fitting 18, and/or anouter layer 28 of apipe segment 20 secured to thepipe fitting 18. In this manner, a supplemental containment wall assembly may be deployed at least at a pipe fitting in a pipeline system to facilitate defining a seal fitting annulus between the pipe fitting and the supplemental containment wall assembly and, thus, providing multi-wall (e.g., double wall) containment, which, at least in some instances, may facilitate improving fluid isolation provided by the pipeline system and, thus, operational efficiency of the pipeline system. - While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. Accordingly, the scope of the disclosure should be limited only by the attached claims.
Claims (20)
1. A pipeline system comprising:
a pipe fitting configured to be secured to a pipe segment, wherein the pipe fitting comprises a fitting grab notch implemented on an outer surface of the pipe fitting, wherein the fitting grab notch is configured to matingly interlock with an equipment grab tab on deployment equipment that operates to facilitate securing the pipe fitting to the pipe segment during a first time period; and
a supplemental containment wall assembly configured to be deployed at the pipe fitting, wherein the supplemental containment wall assembly comprises:
a containment wall shell configured to be secured circumferentially around the pipe fitting to facilitate define a fitting annulus that is sealed at least between the outer surface of the pipe fitting and an inner surface of the containment wall shell;
a shell grab tab implemented on the inner surface of the containment wall shell, wherein the shell grab tab is configured to matingly interlock with the fitting grab notch on the pipe fitting to facilitate securing the supplemental containment wall assembly to the pipe fitting during a second time period following the first time period; and
a containment wall seal implemented on the inner surface of the containment wall shell to enable the containment wall seal to be compressed directly between the inner surface of the containment wall shell and the outer surface of the pipe fitting to facilitate sealing the fitting annulus.
2. The pipeline system of claim 1 , wherein the containment wall seal is integrated with the shell grab tab at least in part by covering the shell grab tab with sealing material.
3. The pipeline system of claim 1 , wherein
the containment wall seal in the supplemental containment wall assembly is implemented on the inner surface of the containment wall shell to enable the containment wall seal to be compressed directly between first ends of the inner surface of the containment wall shell and the outer surface of the pipe fitting to facilitate sealing the fitting annulus; and
the supplemental containment wall assembly comprises another containment wall seal implemented on the inner surface of the containment wall shell to enable the another containment wall seal to be compressed directly between second ends of the inner surface of the containment wall shell and the outer surface of the pipe fitting to facilitate sealing the fitting annulus.
4. The pipeline system of claim 3 , wherein:
the containment wall seal in the supplemental containment wall assembly comprises a first O-ring seal secured to the inner surface of the containment wall shell or a first belt seal secured to the inner surface of the containment wall shell; and
the another containment wall seal in the supplemental containment wall assembly comprises a second O-ring seal secured to the inner surface of the containment wall shell or a second belt seal secured to the inner surface of the containment wall shell.
5. The pipeline system of claim 1 , wherein:
the containment wall shell of the supplemental containment wall assembly comprises a clamp containment wall shell configured to be clamped circumferentially around the pipe fitting; and
the supplemental containment wall assembly comprises one or more threaded fasteners configured to be selectively tightened in corresponding threaded fastener openings implemented in the clamp containment wall shell to facilitate securing the clamp containment wall shell circumferentially around the pipe fitting.
6. The pipeline system of claim 1 , wherein:
the containment wall shell of the supplemental containment wall assembly comprises a sleeve containment wall shell configured to be slid over the pipe fitting; and
the supplemental containment wall assembly comprises one or more worm clamp fasteners embedded circumferentially within the sleeve containment wall shell, wherein the one or more worm clamp fasteners are configured to be selectively tightened such that the sleeve containment wall shell is compressed inwardly to facilitate securing the sleeve containment wall shell circumferentially around the pipe fitting.
7. The pipeline system of claim 1 , wherein:
the containment wall shell of the supplemental containment wall assembly comprises a wrap containment wall shell configured to be wrapped circumferentially around the pipe fitting; and
the supplemental containment wall assembly comprises one or more worm clamp, wherein the one or more worm clamp fasteners are configured to be selectively tightened circumferentially around the wrap containment wall shell such that the wrap containment wall shell is compressed inwardly to facilitate securing the wrap containment wall shell circumferentially around the pipe fitting.
8. The pipeline system of claim 1 , comprising another pipe fitting configured to be secured to another pipe segment and the pipe fitting, wherein:
the another pipe fitting comprises another fitting grab notch implemented on another outer surface of the another pipe fitting;
the containment wall shell is configured to be secured circumferentially around the another pipe fitting to facilitate defining the fitting annulus such that the fitting annulus is sealed at least between the another outer surface of the another pipe fitting and the inner surface of the containment wall shell;
another shell grab tab implemented on the inner surface of the containment wall shell, wherein the another shell grab tab is configured to matingly interlock with the another fitting grab notch on the another pipe fitting to facilitate securing the supplemental containment wall assembly to the another pipe fitting; and
another containment wall seal implemented on the inner surface of the containment wall shell to enable the another containment wall seal to be compressed directly between the inner surface of the containment wall shell and the another outer surface of the another pipe fitting to facilitate sealing the fitting annulus.
9. The pipeline system of claim 8 , comprising a fitting connector configured to be coupled between the pipe fitting and the another pipe fitting, wherein the containment wall shell is configured to be secured circumferentially around the pipe fitting, the another pipe fitting, and the fitting connector.
10. A method of implementing a pipeline system, comprising:
securing a pipe fitting to a pipe segment at least in part by matingly interlocking a swage machine with a fitting grab notch on the pipe fitting during a first time period, wherein the fitting grab notch runs circumferentially along an outer surface of the pipe fitting;
disposing a containment wall shell of a supplemental containment wall assembly circumferentially around at least a portion of the pipe fitting, wherein the supplemental containment wall assembly comprises:
a shell grab tab implemented on an inner surface of the containment wall shell;
a containment wall seal implemented on the inner surface of the containment wall shell; and
one or more fasteners; and
tightening the one or more fasteners of the supplemental containment wall assembly such that:
the shell grab tab on the inner surface of the containment wall shell matingly interlocks with the fitting grab notch on the outer surface of the pipe fitting during a second period of time following the first period of time to facilitate securing the supplemental containment wall assembly to the pipe fitting; and
the containment wall seal is compressed directly between the inner surface of the containment wall shell and the outer surface of the pipe fitting to facilitate defining a fitting annulus that is sealed at least between the outer surface of the pipe fitting and the inner surface of the containment wall shell.
11. The method of claim 10 , wherein the containment wall seal of the supplemental containment wall assembly is integrated with the shell grab tab at least in part by covering the shell grab tab with sealing material.
12. The method of claim 10 , wherein:
disposing the containment wall shell of the supplemental containment wall assembly circumferentially around at least the portion of the pipe fitting comprises disposing a first clamp shell segment of the containment wall shell and a second clamp shell segment of the containment wall shell around the pipe fitting such that a first threaded fastener opening in the first clamp shell segment is aligned with a second threaded fastener opening in the second clamp shell segment; and
tightening the one or more fasteners of the supplemental containment wall assembly comprises tightening a threaded fastener in the first threaded fastener opening in the first clamp shell segment and the second threaded fastener opening in the second clamp shell segment such that the first clamp shell segment and the second clamp shell segment are forced toward one another.
13. The method of claim 10 , wherein:
disposing the containment wall shell of the supplemental containment wall assembly circumferentially around at least the portion of the pipe fitting comprises sliding a sleeve containment wall shell over at least the portion of the pipe fitting; and
tightening the one or more fasteners of the supplemental containment wall assembly comprises tightening a worm clamp fastener that is embedded within the sleeve containment wall shell such that the sleeve containment wall shell is compressed inwardly.
14. The method of claim 10 , wherein:
disposing the containment wall shell of the supplemental containment wall assembly circumferentially around at least the portion of the pipe fitting comprises wrapping a wrap containment wall shell circumferentially around at least the portion of the pipe fitting; and
tightening the one or more fasteners of the supplemental containment wall assembly comprises tightening a worm clamp circumferentially around the wrap containment wall shell such that the wrap containment wall shell is compressed inwardly.
15. The method of claim 10 , wherein the containment wall seal in the supplemental containment wall assembly comprises an O-ring seal or a belt seal.
16. The method of claim 10 , comprising disposing the containment wall shell of the supplemental containment wall assembly circumferentially around at least another portion of another pipe fitting that is secured to the pipe fitting, wherein:
the another pipe fitting comprises another fitting grab notch that runs circumferentially along another outer surface of the another pipe fitting;
the supplemental containment wall assembly comprises:
another shell grab tab implemented on the inner surface of the containment wall shell; and
another containment wall seal implemented on the inner surface of the containment wall shell; and
tightening the one or more fasteners of the supplemental containment wall assembly comprises tightening the one or more fasteners such that:
the another shell grab tab on the inner surface of the containment wall shell matingly interlocks with the another fitting grab notch on the another outer surface of the another pipe fitting to facilitate securing the supplemental containment wall assembly to the another pipe fitting; and
the another containment wall seal is compressed directly between the inner surface of the containment wall shell and the another outer surface of the another pipe fitting to facilitate defining the fitting annulus such that the fitting annulus is sealed at least between the another outer surface of the another pipe fitting and the inner surface of the containment wall shell.
17. A supplemental containment wall assembly configured to be deployed in a pipeline system, comprising:
a containment wall shell configured to be secured circumferentially around at least a first pipe fitting and a second pipe fitting in the pipeline system, wherein the first pipe fitting is connected to the second pipe fitting;
a first containment wall seal implemented on an inner surface of the containment wall shell to enable the first containment wall seal to be compressed directly between the inner surface of the containment wall shell and a first outer surface of the first pipe fitting to facilitate defining a fitting annulus that is sealed at least between the inner surface of the containment wall shell and the first outer surface of the first pipe fitting; and
a second containment wall seal implemented on the inner surface of the containment wall shell to enable the second containment wall seal to be compressed directly between the inner surface of the containment wall shell and a second outer surface of the second pipe fitting to facilitate defining the fitting annulus such that the fitting annulus is sealed at least between the inner surface of the containment wall shell and the second outer surface of the second pipe fitting.
18. The supplemental containment wall assembly of claim 17 , comprising:
a first shell grab tab implemented on the inner surface of the containment wall shell, wherein the first shell grab tab is configured to matingly interlock with a first fitting grab notch on the first outer surface of the first pipe fitting to facilitate securing the supplemental containment wall assembly to the first pipe fitting; and
a second shell grab tab implemented on the inner surface of the containment wall shell, wherein the second shell grab tab is configured to matingly interlock with a second fitting grab notch on the second outer surface of the second pipe fitting to facilitate securing the supplemental containment wall assembly to the second pipe fitting.
19. The supplemental containment wall assembly of claim 17 , wherein:
the first containment wall seal comprises a first integrated seal that is implemented at least in part by covering the first shell grab tab with sealing material; and
the second containment wall seal comprises a second integrated seal that is implemented at least in part by covering the second shell grab tab with sealing material.
20. The supplemental containment wall assembly of claim 17 , wherein:
the first containment wall seal comprises a first O-ring seal or a first belt seal; and
the second containment wall seal comprises a second O-ring seal or a second belt seal.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/408,701 US20210381653A1 (en) | 2020-02-19 | 2021-08-23 | Pipeline supplemental containment wall systems and methods |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/795,415 US11098853B1 (en) | 2020-02-19 | 2020-02-19 | Pipeline supplemental containment wall systems and methods |
| US17/408,701 US20210381653A1 (en) | 2020-02-19 | 2021-08-23 | Pipeline supplemental containment wall systems and methods |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/795,415 Continuation US11098853B1 (en) | 2020-02-19 | 2020-02-19 | Pipeline supplemental containment wall systems and methods |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20210381653A1 true US20210381653A1 (en) | 2021-12-09 |
Family
ID=77272513
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/795,415 Active US11098853B1 (en) | 2020-02-19 | 2020-02-19 | Pipeline supplemental containment wall systems and methods |
| US17/408,701 Abandoned US20210381653A1 (en) | 2020-02-19 | 2021-08-23 | Pipeline supplemental containment wall systems and methods |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/795,415 Active US11098853B1 (en) | 2020-02-19 | 2020-02-19 | Pipeline supplemental containment wall systems and methods |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US11098853B1 (en) |
| EP (1) | EP4107417A4 (en) |
| WO (1) | WO2021168253A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11098853B1 (en) * | 2020-02-19 | 2021-08-24 | Trinity Bay Equipment Holdings, LLC | Pipeline supplemental containment wall systems and methods |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5312137A (en) * | 1990-03-27 | 1994-05-17 | Ramco Manufacturing Company, Inc. | Safety shield |
| US11098853B1 (en) * | 2020-02-19 | 2021-08-24 | Trinity Bay Equipment Holdings, LLC | Pipeline supplemental containment wall systems and methods |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US793135A (en) * | 1901-07-13 | 1905-06-27 | Robert M Kellogg | Apparatus for repairing leaks. |
| US1004634A (en) * | 1909-10-06 | 1911-10-03 | Safety Car Heating & Lighting | Hose appliance. |
| US2016905A (en) * | 1935-06-03 | 1935-10-08 | Goodrich Co B F | Method of applying insulation to a fluid conduit and apparatus therefor |
| US3257132A (en) * | 1962-08-22 | 1966-06-21 | Anchor Coupling Co Inc | Split clamp hose bite coupling |
| US3674292A (en) * | 1969-10-15 | 1972-07-04 | Amp Inc | Tubular connection devices |
| US3726548A (en) | 1971-04-29 | 1973-04-10 | Perfection Corp | Pipe fitting |
| US4039212A (en) * | 1975-04-28 | 1977-08-02 | Wirsbo Bruks Aktiebolag | Hose end fittings |
| US4139224A (en) * | 1977-07-13 | 1979-02-13 | Jaffrey Fire Protection Company, Inc. | Hose clamp for thin wall, high pressure fire hose |
| DE2941020A1 (en) * | 1979-10-10 | 1981-04-23 | Klöckner-Humboldt-Deutz AG, 5000 Köln | High pressure hose connection - has clamping sleeve with extension forming safety chamber connected by drillings to atmosphere |
| ZA8400569B (en) * | 1981-08-24 | Stratoflex, Inc. | Hose fitting and method of assembly | |
| US4593942A (en) * | 1984-07-16 | 1986-06-10 | Hydrasearch Co., Inc. | Coupling for thin-walled flexible hose |
| US4887646A (en) * | 1988-02-18 | 1989-12-19 | The Boeing Company | Test fitting |
| US5871239A (en) | 1996-10-31 | 1999-02-16 | Stanley Aviation Corporation | Positive lock coupling |
| DE19922106A1 (en) * | 1999-05-17 | 2000-11-23 | Klenk Gmbh | Pipeline for conveying liquid fuel comprises inner pipe and outer sleeve forming intermediate chamber which allows leaks to be detected and which contains distance piece ensuring minimum clearance between pipe and sleeve |
| US6220302B1 (en) * | 2000-01-27 | 2001-04-24 | Jim B. Nolley | Chambered leak repairing device and method |
| FR2826705B1 (en) * | 2001-07-02 | 2004-08-06 | Geci | RECOVERABLE FITTING ADAPTABLE TO THE END OF A FITTED FLEXIBLE PIPE |
| US7108292B2 (en) * | 2003-04-08 | 2006-09-19 | Fiskars Brands, Inc. | Hose coupler |
| WO2005010422A1 (en) | 2003-07-28 | 2005-02-03 | Su Gen Kim | Pipe joint device by flange |
| DE102006011617A1 (en) * | 2006-03-14 | 2007-09-20 | Norma Germany Gmbh | Connecting arrangement for connecting a pipe socket with a hose |
| EP2304299B1 (en) * | 2008-06-09 | 2017-10-04 | Flexsteel Pipeline Technologies, Inc. | Flexible pipe joint |
| US8091928B2 (en) * | 2009-02-26 | 2012-01-10 | Eaton Corporation | Coupling assembly for connection to a hose |
| US8393647B2 (en) * | 2009-07-31 | 2013-03-12 | Delaware Capital Formation, Inc. | Bolt-on transition coupling for piping system |
| DE202009016975U1 (en) * | 2009-12-16 | 2011-04-28 | Uponor Innovation Ab | Fitting for a pipe |
| DE102012105655A1 (en) * | 2012-06-28 | 2014-01-02 | Viega Gmbh & Co. Kg | Press jaw and method for producing a permanent pipe connection and system of a pressing jaw and a fitting |
| US10309565B2 (en) * | 2014-05-29 | 2019-06-04 | Australasian Steel Products Pty Ltd. | Anchoring arrangement for a protective sleeve |
| US10550972B2 (en) * | 2015-10-13 | 2020-02-04 | R.W. Lyall Company, Inc. | Mechanical fitting for plastic pipe |
-
2020
- 2020-02-19 US US16/795,415 patent/US11098853B1/en active Active
-
2021
- 2021-02-19 WO PCT/US2021/018787 patent/WO2021168253A1/en not_active Ceased
- 2021-02-19 EP EP21756271.9A patent/EP4107417A4/en not_active Withdrawn
- 2021-08-23 US US17/408,701 patent/US20210381653A1/en not_active Abandoned
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5312137A (en) * | 1990-03-27 | 1994-05-17 | Ramco Manufacturing Company, Inc. | Safety shield |
| US11098853B1 (en) * | 2020-02-19 | 2021-08-24 | Trinity Bay Equipment Holdings, LLC | Pipeline supplemental containment wall systems and methods |
Also Published As
| Publication number | Publication date |
|---|---|
| EP4107417A1 (en) | 2022-12-28 |
| EP4107417A4 (en) | 2024-01-17 |
| WO2021168253A1 (en) | 2021-08-26 |
| US20210254795A1 (en) | 2021-08-19 |
| US11098853B1 (en) | 2021-08-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11674622B2 (en) | Wedged protrusion profile fitting seal systems and methods | |
| US12000511B2 (en) | Multi-annuli pipe fitting systems and methods | |
| US11204114B2 (en) | Reusable pipe fitting systems and methods | |
| US20250010351A1 (en) | Outward direction pipe fitting swage machine systems and methods | |
| US11318522B2 (en) | Forward stroke pipe fitting swage machine systems and methods | |
| US11236851B1 (en) | Quick connect pipe fitting systems and methods | |
| US11098853B1 (en) | Pipeline supplemental containment wall systems and methods | |
| US20230074656A1 (en) | Swage machine hinge systems and methods | |
| US11185911B1 (en) | Swage machine modular grab adapter systems and methods | |
| US11090709B1 (en) | Multiple die set swage machine systems and methods | |
| US11154922B1 (en) | Swage machine die retainer systems and methods | |
| US20250305610A1 (en) | Compact End Fitting Assembly For Composite Pipe | |
| US20210207747A1 (en) | Re-deployable pipe fitting systems and methods | |
| US11142981B2 (en) | Pipe pull head systems and methods |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |