[go: up one dir, main page]

US20210339758A1 - Systems and methods for monitoring tracked vehicles - Google Patents

Systems and methods for monitoring tracked vehicles Download PDF

Info

Publication number
US20210339758A1
US20210339758A1 US17/272,634 US201917272634A US2021339758A1 US 20210339758 A1 US20210339758 A1 US 20210339758A1 US 201917272634 A US201917272634 A US 201917272634A US 2021339758 A1 US2021339758 A1 US 2021339758A1
Authority
US
United States
Prior art keywords
track
vehicle
component
information
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/272,634
Other versions
US12254616B2 (en
Inventor
Ghislain LAPERLE
David Gingras
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Camso Inc
Original Assignee
Camso Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Camso Inc filed Critical Camso Inc
Priority to US17/272,634 priority Critical patent/US12254616B2/en
Publication of US20210339758A1 publication Critical patent/US20210339758A1/en
Assigned to CAMSO INC. reassignment CAMSO INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GINGRAS, DAVID, LAPERLE, Ghislain
Application granted granted Critical
Publication of US12254616B2 publication Critical patent/US12254616B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/32Assembly, disassembly, repair or servicing of endless-track systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/03Endless-tracks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/97Determining parameters from multiple pictures
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/44Tracked vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/065Multi-track vehicles, i.e. more than two tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts
    • B62D55/244Moulded in one piece, with either smooth surfaces or surfaces having projections, e.g. incorporating reinforcing elements
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/56Particle system, point based geometry or rendering

Definitions

  • This disclosure relates generally to tracked vehicles (e.g., agricultural vehicles or other industrial vehicles, etc.) and, more particularly, to monitoring track systems of such vehicles.
  • tracked vehicles e.g., agricultural vehicles or other industrial vehicles, etc.
  • Off-road vehicles including industrial vehicles such as agricultural vehicles (e.g., tractors, harvesters, combines, etc.), construction vehicles (e.g., loaders, excavators, bulldozers, etc.), and forestry vehicles (e.g., feller-bunchers, tree chippers, knuckleboom loaders, etc.), military vehicles (e.g., combat engineering vehicles (CEVs), etc.), snowmobiles, and all-terrain vehicles (ATVs), are used on soft, slippery and/or irregular grounds (e.g., soil, mud, sand, ice, snow, etc.) for work and/or other purposes. To enhance their traction and floatation on such grounds, certain off-road vehicles are equipped with track systems. In some cases, off-road vehicles may also be operable on paved roads.
  • agricultural vehicles e.g., tractors, harvesters, combines, etc.
  • construction vehicles e.g., loaders, excavators, bulldozers, etc.
  • agricultural vehicles can travel in agricultural fields to perform agricultural work and possibly on paved roads (e.g., to travel between agricultural fields).
  • Numerous factors affect performance of the agricultural vehicles and efficiency of agricultural work they do, including their components (e.g., track systems) and their environments (e.g., grounds on which they operate). While some of these factors may be managed by users (e.g., operators) of the agricultural vehicles, this may lead to suboptimal agricultural work, greater wear or other deterioration of components of the agricultural vehicles, and/or other issues in some cases.
  • a vehicle e.g., an agricultural vehicle or other off-road vehicle
  • a track system can be monitored to obtain information regarding the vehicle, including information regarding the track system, such as an indication of a physical state (e.g., wear, damage and/or other deterioration) of a track and/or other component of the track system based on at least one image of the track and/or other component of the track system, respectively, which can be used for various purposes, such as, for example, to: convey the information to a user (e.g., an operator of the vehicle); control the vehicle (e.g., a speed of the vehicle, operation of a work implement, etc.); transmit the information to a remote party (e.g., a provider such as a manufacturer or distributor of the track system, the track and/or another component thereof, and/or of the vehicle; a service provider for servicing (e.g., maintenance or repair of) the track system, the track and/or another component thereof, etc.).
  • a remote party e.g.,
  • this disclosure relates to a system for monitoring a track for traction of a vehicle.
  • the system comprises an interface configured to receive data regarding at least one image of the track.
  • the system also comprises a processor configured to process the data regarding the at least one image of the track to obtain an indication of a physical state of the track, and to generate a signal based on the indication of the physical state of the track.
  • this disclosure relates to a method of monitoring a track for traction of a vehicle.
  • the method comprises receiving data regarding at least one image of the track.
  • the method also comprises processing the data regarding the at least one image of the track to obtain an indication of a physical state of the track.
  • the method also comprises generating a signal based on the indication of the physical state of the track.
  • this disclosure relates to a system for monitoring a component of a track system for traction of a vehicle.
  • the system comprises an interface configured to receive data regarding at least one image of the component of the track system.
  • the system also comprises a processor configured to process the data regarding the at least one image of the component of the track system to obtain an indication of a physical state of the component of the track system.
  • the processor is also configured to generate a signal based on the indication of the physical state of the component of the track system.
  • this disclosure relates to method of monitoring a component of a track system for traction of a vehicle.
  • the method comprises receiving data regarding at least one image of the component of the track system.
  • the method also comprises processing the data regarding the at least one image of the component of the track system to obtain an indication of a physical state of the component of the track system.
  • the method also comprises generating a signal based on the indication of the physical state of the component of the track system.
  • this disclosure relates to a track system monitoring system.
  • the system comprises an image data capture device configured to capture image data relating to a track system component.
  • the system also comprises an image processing device, in data communication with the image capture device.
  • the image processing device is configured to receive captured image data from the image data capture device and process the captured image data to determine at least one physical characteristic of the track system component.
  • this disclosure relates to track system monitoring system.
  • the system comprises a 3D scanning device configured to generate a 3D scan relating to a track system component.
  • the system also comprises a processing device, in data communication with the 3D scanning device.
  • the processing device is configured to receive the 3D scan from the 3D scanning device and process the 3D scan to determine at least one physical characteristic of the track system component.
  • this disclosure relates to a track system monitoring system.
  • the system comprises an image data capture device configured to capture image data relating to a track system component.
  • the system also comprises an image processing device in data communication with the image capture device.
  • the image processing device is configured to receive captured image data from the image data capture device and generate a 3D model of at least a portion of the track system component based on the image data.
  • the image processing device is also configured to compare the 3D model to at least one known 3D model of a track system component to determine at least one aspect of the physical state of the track system component.
  • FIG. 1 shows an example of an embodiment of a vehicle comprising track systems
  • FIGS. 2 and 3 show a perspective view and a side view of a given one of the track systems
  • FIGS. 4 to 7 show an outer plan view, a side view, an inner plan view, and a cross-sectional view of a track of the given one of the track systems;
  • FIG. 8 shows a diagram of an image processing system according to one embodiment
  • FIG. 9 shows a schematic network diagram of a system for monitoring off road vehicles, according to one embodiment
  • FIG. 10 shows a diagram of a computer of a vehicle according to one embodiment
  • FIG. 11 shows a schematic network diagram of a system for monitoring off road vehicles, according to another embodiment
  • FIG. 12 A to C illustrate representations of different databases according to various embodiments
  • FIGS. 13 to 19 shows flowcharts of the use of a monitoring system, according to various embodiments
  • FIGS. 20 to 23 show data capture for a system according to various embodiments
  • FIG. 24 shows the communication of a result in a system according to one embodiment
  • FIG. 25 shows scheduling of maintenance according to one embodiment
  • FIG. 26 shows a system capable of facilitating the purchase of parts according to one embodiment
  • FIG. 27 shows a system able schedule a maintenance request according to one embodiment
  • FIG. 28 shows a system able to connect two electronic devices, according to one embodiment
  • FIGS. 29 to 31 show a system that can determine that the vehicle has a critical malfunction according to various embodiments
  • FIG. 32 shows an example of a camera station for inspecting track systems
  • FIG. 33 shows an example of a laser line scanner station for inspecting track systems
  • FIG. 34 shows an embodiment of a drone device for inspecting the track system
  • FIG. 35 shows the drone device for inspecting the track system
  • FIG. 36 shows an example of a vehicle-mounted inspection device for inspecting track systems
  • FIG. 37 shows an example of an embodiment of a computing apparatus
  • FIG. 38 shows an example 3D track model generated using the system described herein
  • FIGS. 39 to 48 show example 3D track models of used and/or damaged tracks generated using the system described herein, overlaid by 3D track models of unused and/or undamaged track;
  • FIGS. 49 and 50 show examples of wear/damage being detected and characterized using 2D recognition techniques.
  • FIGS. 51 to 53 shows flowcharts of the use of a monitoring system, according to various embodiments.
  • FIG. 1 shows an example of a vehicle 10 comprising example track systems 16 1 - 16 4 .
  • the vehicle 10 is a heavy-duty work vehicle for performing agricultural, construction or other industrial work, or military work. More particularly, in this embodiment, the vehicle 10 is an agricultural vehicle for performing agricultural work. Specifically, in this example, the agricultural vehicle 10 is a tractor. In other examples, the agricultural vehicle 10 may be a harvester, a planter, or any other type of agricultural vehicle.
  • the vehicle 10 comprises a frame 11 , a powertrain 15 , a steering mechanism 18 , a suspension 24 , and an operator cabin 20 that enable a user to move the vehicle 10 on the ground, including on an agricultural field and possibly on a paved road (e.g., between agricultural fields), using the track systems 16 1 - 16 4 and perform work using a work implement 13 .
  • the agricultural vehicle 10 can be monitored (e.g., while the agricultural vehicle 10 is parked, inspected or otherwise at rest and/or during operation of the agricultural vehicle 10 ) to obtain information regarding the agricultural vehicle 10 , including information regarding the track systems 16 1 - 16 4 , such as indications of physical states of tracks and/or other components of the track systems 16 1 - 16 4 (e.g., information indicative of wear or other degradation thereof) that is derivable from one or more images of the tracks and/or other components of the track systems 16 1 - 16 4 , which can be used for various purposes, such as, for example, to: convey the information to a user (e.g., the operator); control the agricultural vehicle 10 (e.g., a speed of the agricultural vehicle 10 , operation of the work implement 13 , etc.); transmit the information to a remote party (e.g., a provider such as a manufacturer or distributor of the track systems 16 1 - 16 4 or
  • a remote party e.g., a provider such as a manufacturer or distributor
  • This may be useful, for example, to gain knowledge about the agricultural vehicle 10 , the track systems 16 1 - 16 4 , and/or their environment to enhance efficiency of agricultural work performed by the agricultural vehicle 10 and to help prevent excessive wear or other deterioration of the track systems 16 1 - 16 4 , to schedule maintenance or replacement of the track system 16 1 - 16 4 or individual components thereof, to effectively manage the wear of the track system 16 1 - 16 4 or individual components thereof, for the agricultural vehicle 10 or a fleet of such agricultural vehicles, to achieve any of various other outcomes herein described, and/or for various other reasons.
  • the powertrain 15 is configured to generate power for the agricultural vehicle 10 , including motive power for the track systems 16 1 - 16 4 to propel the vehicle 10 on the ground.
  • the powertrain 15 comprises a power source 14 (e.g., a primer mover) that includes one or more motors.
  • the power source 14 comprises an internal combustion engine.
  • the power source 14 may comprise another type of motor (e.g., an electric motor) or a combination of different types of motor (e.g., an internal combustion engine and an electric motor).
  • the powertrain 15 can transmit power from the power source 14 to one or more of the track systems 16 1 - 16 4 in any suitable way (e.g., via a transmission, a differential, a direct connection, and/or any other suitable mechanism).
  • at least part of the powertrain 15 e.g., a motor and/or a transmission
  • the operator cabin 20 is where the user sits and controls the vehicle 10 . More particularly, the operator cabin 20 comprises a user interface 70 allowing the user to steer the vehicle 10 on the ground, operate the work implement 13 , and control other aspects of the vehicle 10 .
  • the user interface 70 comprises input devices, such as an accelerator, a brake control, and a steering device (e.g., a steering wheel, a stick, etc.) that are operated by the user to control motion of the vehicle 10 on the ground.
  • the user interface 70 also comprises output devices such as an instrument panel (e.g., a dashboard) which provides indicators (e.g., a speedometer indicator, a tachometer indicator, etc.) to convey information to the user.
  • an instrument panel e.g., a dashboard
  • indicators e.g., a speedometer indicator, a tachometer indicator, etc.
  • the work implement 13 is used to perform agricultural work.
  • the work implement 13 may include a combine head, a cutter, a scraper pan, a tool bar, a planter, or any other type of agricultural work implement.
  • the track systems 16 1 - 16 4 engage the ground to provide traction to the vehicle 10 . More particularly, in this embodiment, front ones of the track systems 16 1 - 16 4 provide front traction to the vehicle 10 , while rear ones of the track systems 16 1 - 16 4 provide rear traction to the vehicle 10 .
  • each of the front ones of the track systems 16 1 - 16 4 is pivotable relative to the frame 11 of the vehicle 10 about a steering axis 19 by the steering mechanism 18 (e.g., in response to input of the user at the steering device of the user interface 70 ) to change the orientation of that track system relative to the frame 11 in order to steer the vehicle 10 on the ground.
  • the orientation of each of the front ones of the track systems 16 1 - 16 4 relative to a longitudinal axis 33 of the vehicle 10 which defines a steering angle ⁇ of that track system, is thus changeable.
  • the steering mechanism 18 includes a steering unit 34 (e.g., comprising a steering knuckle) on each side of the vehicle 10 dedicated to each of the front ones of the track systems 16 1 - 16 4 and defining the steering axis 19 for that track system.
  • a steering unit 34 e.g., comprising a steering knuckle
  • each track system 16 i comprises a track 41 and a track-engaging assembly 17 that is configured to drive and guide the track 41 around the track-engaging assembly 17 .
  • the track-engaging assembly 17 comprises a frame 44 and a plurality of track-contacting wheels which includes a drive wheel 42 and a plurality of idler wheels 50 1 - 50 8 , which includes leading idler wheels 50 1 , 50 2 , trailing idler wheels 50 7 , 50 8 , and roller wheels 50 3 - 50 6 between the leading idler wheels 50 1 , 50 2 and the trailing idler wheels 50 7 , 50 8 .
  • the track system 16 i has a front longitudinal end 57 and a rear longitudinal end 59 that define a length of the track system 16 i .
  • a width of the track system 16 i is defined by a width W T of the track 41 .
  • the track system 16 i has a longitudinal direction, a widthwise direction, and a heightwise direction.
  • the track 41 engages the ground to provide traction to the vehicle 10 .
  • a length of the track 41 allows the track 41 to be mounted around the track-engaging assembly 17 .
  • the track 41 can be referred to as an “endless” track.
  • the track 41 comprises an inner side 45 facing the wheels 42 , 50 1 - 50 8 and defining an inner area of the track 41 in which these wheels are located.
  • the track 41 also comprises a ground-engaging outer side 47 opposite the inner side 45 for engaging the ground on which the vehicle 10 travels. Lateral edges 63 1 , 63 2 of the track 41 define its width W T .
  • the track 41 has a top run 65 which extends between the longitudinal ends 57 , 59 of the track system 16 i and over the track-engaging assembly 17 , and a bottom run 66 which extends between the longitudinal ends 57 , 59 of the track system 16 i and under the track-engaging assembly 17 .
  • the track 41 has a longitudinal direction, a widthwise direction, and a thicknesswise direction.
  • the track 41 is elastomeric, i.e., comprises elastomeric material, allowing it to flex around the wheels 42 , 50 1 - 50 8 .
  • the elastomeric material of the track 41 can include any polymeric material with suitable elasticity.
  • the elastomeric material includes rubber.
  • Various rubber compounds may be used and, in some cases, different rubber compounds may be present in different areas of the track 41 .
  • the elastomeric material of the track 41 may include another elastomer in addition to or instead of rubber (e.g., polyurethane elastomer).
  • the track 41 can be molded into shape in a mold by a molding process during which its elastomeric material is cured.
  • the track 41 comprises an elastomeric belt-shaped body 36 underlying its inner side 45 and its ground-engaging outer side 47 .
  • the body 36 can be referred to as a “carcass”.
  • the carcass 36 comprises elastomeric material 37 which allows the track 41 to flex around the wheels 42 , 50 1 - 50 8 .
  • the carcass 36 comprises a plurality of reinforcements embedded in its elastomeric material 37 .
  • a reinforcement is a layer of reinforcing cables 38 1 - 38 C that are adjacent to one another and that extend in the longitudinal direction of the track 41 to enhance strength in tension of the track 41 along its longitudinal direction.
  • a reinforcing cable may be a cord or wire rope including a plurality of strands or wires.
  • a reinforcing cable may be another type of cable and may be made of any material suitably flexible longitudinally (e.g., fibers or wires of metal, plastic or composite material).
  • Another example of a reinforcement is a layer of reinforcing fabric 40 .
  • Reinforcing fabric comprises pliable material made usually by weaving, felting, or knitting natural or synthetic fibers.
  • a layer of reinforcing fabric may comprise a ply of reinforcing woven fibers (e.g., nylon fibers or other synthetic fibers).
  • Various other types of reinforcements may be provided in the carcass 36 in other embodiments.
  • the carcass 36 may be molded into shape in the track's molding process during which its elastomeric material 37 is cured.
  • layers of elastomeric material providing the elastomeric material 37 of the carcass 36 , the reinforcing cables 38 1 - 38 C and the layer of reinforcing fabric 40 may be placed into the mold and consolidated during molding.
  • the inner side 45 of the track 41 comprises an inner surface 32 of the carcass 36 and a plurality of wheel-contacting projections 48 1 - 48 N that project from the inner surface 32 to contact at least some of the wheels 42 , 50 1 - 50 8 and that are used to do at least one of driving (i.e., imparting motion to) the track 41 and guiding the track 41 .
  • the wheel-contacting projections 48 1 - 48 N can be referred to as “drive/guide projections”, meaning that each drive/guide projection is used to do at least one of driving the track 41 and guiding the track 41 .
  • drive/guide projections are sometimes referred to as “drive/guide lugs” and will thus be referred to as such herein.
  • the drive/guide lugs 48 1 - 48 N interact with the drive wheel 42 in order to cause the track 41 to be driven, and also interact with the idler wheels 50 1 - 50 8 in order to guide the track 41 as it is driven by the drive wheel 42 .
  • the drive/guide lugs 48 1 - 48 N are thus used to both drive the track 41 and guide the track 41 in this embodiment.
  • the drive/guide lugs 48 1 - 48 N are spaced apart along the longitudinal direction of the track 41 .
  • the drive/guide lugs 48 1 - 48 N are arranged in a plurality of rows that are spaced apart along the widthwise direction of the track 41 .
  • the drive/guide lugs 48 1 - 48 N may be arranged in other manners in other embodiments (e.g., a single row or more than two rows).
  • Each of the drive/guide lugs 48 1 - 48 N is an elastomeric drive/guide lug in that it comprises elastomeric material 68 .
  • the drive/guide lugs 48 1 - 48 N can be provided and connected to the carcass 36 in the mold during the track's molding process.
  • the ground-engaging outer side 47 of the track 41 comprises a ground-engaging outer surface 31 of the carcass 36 and a plurality of traction projections 61 1 - 61 M that project from the outer surface 31 and engage and may penetrate into the ground to enhance traction.
  • the traction projections 61 1 - 61 M which can sometimes be referred to as “traction lugs”, are spaced apart in the longitudinal direction of the track system 16 i .
  • the ground-engaging outer side 47 comprises a plurality of traction-projection-free areas 71 1 - 71 F (i.e., areas free of traction projections) between successive ones of the traction projections 61 1 - 61 M .
  • each of the traction projections 61 1 - 61 M is an elastomeric traction projection in that it comprises elastomeric material 69 .
  • the traction projections 61 1 - 61 M can be provided and connected to the carcass 36 in the mold during the track's molding process.
  • the track 41 may be constructed in various other ways in other embodiments.
  • the track 41 may comprise a plurality of parts (e.g., rubber sections) interconnected to one another in a closed configuration, the track 41 may have recesses or holes that interact with the drive wheel 42 in order to cause the track 41 to be driven (e.g., in which case the drive/guide lugs 48 1 - 48 N may be used only to guide the track 41 without being used to drive the track 41 ), and/or the ground-engaging outer side 47 of the track 41 may comprise various patterns of traction projections.
  • the drive wheel 42 is rotatable about an axis of rotation 49 for driving the track 41 in response to rotation of an axle of the vehicle 10 .
  • the axis of rotation 49 corresponds to the axle of the vehicle 10 .
  • the drive wheel 42 has a hub which is mounted to the axle of the vehicle 10 such that power generated by the power source 14 and delivered over the powertrain 15 of the vehicle 10 rotates the axle, which rotates the drive wheel 42 , which imparts motion of the track 41 .
  • the drive wheel 42 comprises a drive sprocket engaging the drive/guide lugs 48 1 - 48 N of the inner side 45 of the track 41 in order to drive the track 41 .
  • the drive sprocket 42 comprises a plurality of drive members 46 1 - 46 T (e.g., bars, teeth, etc.) distributed circumferentially of the drive sprocket 42 to define a plurality of lug-receiving spaces therebetween that receive the drive/guide lugs 48 1 - 48 N of the track 41 .
  • the drive wheel 42 may be configured in various other ways in other embodiments.
  • the drive wheel 42 may have teeth that enter these recesses or holes in order to drive the track 41 .
  • the drive wheel 42 may frictionally engage the inner side 45 of the track 41 in order to frictionally drive the track 41 .
  • the idler wheels 50 1 - 50 8 are not driven by power supplied by the powertrain 15 , but are rather used to do at least one of supporting part of a weight of the vehicle 10 on the ground via the track 41 , guiding the track 41 as it is driven by the drive wheel 42 , and tensioning the track 41 . More particularly, in this embodiment, the leading and trailing idler wheels 50 1 , 50 2 , 50 7 , 50 8 maintain the track 41 in tension, and can help to support part of the weight of the vehicle 10 on the ground via the track 41 .
  • the roller wheels 50 3 - 50 6 roll on the inner side 45 of the track 41 along the bottom run 66 of the track 41 to apply the bottom run 66 on the ground.
  • the idler wheels 50 1 - 50 8 may be arranged in other configurations and/or the track system 16 i may comprise more or less idler wheels in other embodiments.
  • the frame 44 of the track system 16 i supports components of the track system 16 i , including the idler wheels 50 1 - 50 8 . More particularly, in this embodiment, the front idler wheels 50 1 , 50 2 are mounted to the frame 44 in a front longitudinal end region of the frame 44 proximate the front longitudinal end 57 of the track system 16 i , while the rear idler wheels 50 7 , 50 8 are mounted to the frame 44 in a rear longitudinal end region of the frame 44 proximate the rear longitudinal end 59 of the track system 16 i .
  • the roller wheels 50 3 - 50 6 are mounted to the frame 44 in a central region of the frame 44 between the front idler wheels 50 1 , 50 2 and the rear idler wheels 50 7 , 50 8 .
  • Each of the roller wheels 50 3 - 50 6 may be rotatably mounted directly to the frame 44 or may be rotatably mounted to a link which is pivotally mounted to the frame 44 to which is rotatably mounted an adjacent one of the roller wheels 50 3 - 50 6 (e.g., forming a “tandem”).
  • the frame 44 of the track system 16 i is supported at a support area 39 . More specifically, in this embodiment, the frame 44 is supported by the axle of the vehicle 10 to which is coupled the drive wheel 42 , such that the support area 39 is intersected by the axis of rotation 49 of the drive wheel 42 .
  • the track system 16 i comprises a tensioner 93 for tensioning the track 41 .
  • the tensioner 93 comprises an actuator (e.g., a hydraulic actuator) mounted at one end to the frame 44 of the track system 16 i and at another end to a hub of the leading idler wheels 50 1 , 50 2 . This allows the tensioner 93 to modify a distance between the front idler wheels 50 1 , 50 2 and the rear idler wheels 50 7 , 50 8 in the longitudinal direction of the track system 16 i .
  • FIG. 8 shows a schematic block diagram of an image processing system 500 for use with a system 100 for monitoring off-road vehicles such as one or more track vehicles like the agricultural vehicle 10 .
  • one or more images captured by an electronic device 501 can be processed using the image processing system 500 .
  • the electronic device 501 may transmit image information relating to a track or other component of a track system of a vehicle, such as the track 41 or another component of the track system 16 i of the vehicle 10 , through a communication network 502 , to an image processing entity 505 over a communication link, which may be implemented over a cellular network, a WiFi network or other wireless LAN, a WiMAX network or other wireless WAN, etc.
  • the electronic device 501 can be a smartphone, a tablet, a smartwatch, a computer, etc., of a user, who may be the operator of the vehicle or another person having access to the vehicle. In other examples, the electronic device 501 may be integrated with the vehicle.
  • the image processing entity 505 can be an application running on a server. In other embodiments, the image processing entity 505 can be a dedicated network appliance. In yet other embodiments, the image processing entity 505 may be an application running on the electronic device 501 .
  • the image processing entity 505 comprises a memory 506 for storing image information and instructions for processing images, a processor 507 implementing a plurality of computing modules 508 x (for example, Artificial Intelligence, or “AI”, modules) for performing image recognition, pattern recognition and 3D model matching in order to assess a level and nature of wear, degradation and/or other deterioration of the track 41 or other track system component.
  • computing modules 508 x for example, Artificial Intelligence, or “AI”, modules
  • the computing modules 508 x can be implemented using a processor 507 . In some embodiments, the computing modules 508 x me be implemented by way of an Application Program Interface (API) that results in the computing modules 508 x being implemented on a separate device or system.
  • API Application Program Interface
  • Computing modules 508 x may for example be implemented using known computer vision products, such as, AutoML VisionTM and/or Vision APITM, each provided by GoogleTM. In other embodiments, computing modules 508 x may comprise standalone AI or machine-learning solutions forming part of image processing entity 505 .
  • AI refers to some implementation of artificial intelligence and/or machine learning (e.g., heuristics, support vector machines, artificial neural networks, convolutional neural networks, etc.) in software, hardware or some combination of both.
  • complex algorithms like artificial intelligence, are used to categorize what may be considered uncategorizable data.
  • the system 100 can be configured for generating conclusions about a physical state of a track based on one or more images of the track itself. This analysis can include whether or not there is a defect in the track, according to some embodiments. In some embodiments, this can include indications as to the physical state of the track and/or useful life remaining.
  • a machine learning algorithm may be trained to identify a defect or other characteristic in a track by way of image analysis.
  • computing modules 508 x are first taught how to identify parameters in a training mode (sometimes referred to as supervised learning mode). This is done by analyzing a given set of values, making quantitative comparisons, and cross-referencing conclusions with known results. Iterative refinement of these analyses and comparisons allows an algorithm to achieve greater predictive certainty. This process is continued iteratively until the solution converges or reaches a desired accuracy.
  • a training mode sometimes referred to as supervised learning mode
  • computing modules 508 x can compare image data for a given track to a previously-analyzed mass of known data.
  • information can be generated from already populated track data provided to the computing modules 508 x .
  • this data could contain images of tracks, along with determinations of the remaining life of the tracks.
  • both the inputs and the outputs are provided to the system 100 .
  • the system 100 can process the given inputs and compare the calculated outputs according to its algorithm to the provided outputs. Based on this comparison, the system 100 can determine a metric to represent the percentage of error between calculated and provided outputs. Using this error metric, the system 100 can adjust its method of calculating an output.
  • the system 100 can continuously repeat analysis of different inputs and provided outputs in order to fine-tune its method of determining track information.
  • the computing modules 508 x may require initial supervised learning, as the computing modules 508 x continue to gain access to data, they may be able to further refine their predictive analytics based on new inputs. For example, if a user is able to confirm that an assessment (e.g. broken/exposed reinforcing cables 38 1 - 38 C ) or prediction (e.g. 6 months of use left in a given track) made by the system 100 is/was incorrect, the user can upload to the system 100 what the correct conclusion/prediction was. This allows the computing modules 508 x to continue to improve accuracy in their analysis.
  • an assessment e.g. broken/exposed reinforcing cables 38 1 - 38 C
  • prediction e.g. 6 months of use left in a given track
  • multiple computing modules 508 x can be configured to determine different characteristics of a given track. Each of these modules can offer a different analysis for a given input.
  • the processor may direct these modules to be used independently or concurrently based on an operational parameter determined by a given user. For example, the system 100 may use a different analytical technique to determine track life compared to drive wheel misalignment. Based on an image communicated to the system 100 from an electronic device, the system 100 may analyze a given for track life, drive wheel misalignment, or other forms of wear and/or damage.
  • the computing modules 508 x are configured to assess a level of wear, damage and/or other deterioration of the track 41 or other track system component. For example, a computing module 508 x can be configured to determine that the traction projections 61 1 - 61 M are worn to 30% of the level of wear that would require replacement of the track. In some embodiments, the computing modules 508 x are configured to assess the nature of damage to the track 41 or other track system component. For example, a computing module 508 x can be configured to determine that a midroller (or any other track system component, such as a sprocket) is damaged or missing.
  • the computing modules 508 x are further configured to predict the cause of the wear and/or damage to the track 41 or other track system component.
  • a computing module 508 1 is configured to predict whether a specific wear pattern of the elastomeric material of a track 41 is caused by a misaligned drive wheel.
  • a computing module 508 2 is configured to predict whether a specific wear pattern of the elastomeric material of a traction projections 61 1 - 61 M is caused by excessive roading (i.e. traversing a paved road).
  • another computing module 508 3 is configured to predict whether a specific wear pattern of the track (e.g.
  • each computing module 508 x can be implemented using a combination of deep learning, supervised or unsupervised machine learning, image recognition and/or machine vision.
  • the system 100 is configured to capture one or more 2D images to detect specific patterns of wear and/or damage.
  • the system 100 may be configured to implement one or more computer vision (CV) models to detect specific visible wear/damage features.
  • CV computer vision
  • visible wear/damage features include, but are not limited to, broken and/or exposed reinforcing cables 38 1 - 38 C , linear recesses in the carcass 36 caused by delamination and changes in the shape of drive wheel 42 (sprocket) teeth, evidencing sprocket tooth wear caused by debris and/or normal engagement with drive/guide lugs 48 1 - 48 N .
  • the image processing system 500 may produce a three-dimensional (3D) scan to generate a 3D model of at least part of the track 41 or other track system component.
  • the image data received by the electronic device 501 or any other image capture means are processed by way of photogrammetry in order to create the 3D model of the track 41 and/or track component.
  • laser line scanners are instead used to generate the 3D model of the track 41 and/or track component.
  • Such precise 3D models can be compared to 3D models of unworn and/or undamaged tracks in order to precisely measure wear, damage and/or other deterioration. For example, by comparing the 3D model of a worn track 41 to the 3D model of a new, unworn track, it is possible to precisely measure a volumetric loss of material of the worn track 41 , and thereby assess the wear and/or other deterioration of the worn track 41 , very precisely.
  • the system 100 may generate a 3D model 55 of a track 41 , or track system 16 x component, using any of the above methods, or a combination thereof.
  • the system 100 can then be superimposed onto an image of the track 41 captured by electronic device 501 .
  • Such superimposition may be achieved using known augmented reality (AR) techniques and processes.
  • AR augmented reality
  • the system 100 can implement a 2D recognition technique.
  • the system 100 can implement a 3D recognition technique.
  • the system 100 can implement a combination of a 2D recognition technique and a 3D recognition technique.
  • the 3D recognition technique used is based on generating a 3D model using a point cloud.
  • method 5100 can be used to identify track component wear/damage and/or the extent thereof.
  • a plurality of images of the track system component can be acquired using the electronic device 501 , before sending the images to the image processing entity 505 at step 5102 .
  • the system 100 generates a 3D point cloud using the plurality of images. This can be accomplished by system 100 using, for example, open source algorithms, such as those available from Point Cloud Library (PCL). Alternatively, the point cloud can be generated a third party, through use of an Application Program Interface (API) by system 100 .
  • API Application Program Interface
  • the system 100 uses the generated 3D point cloud to generate a 3D model of the track system component.
  • the 3D model is matched to known 3D models of track system components in a track system components database at step 5105 .
  • wear, damage and/or the extent thereof can be identified by comparing the generated 3D model to the known 3D model, as described in more detail below.
  • 2D recognition techniques include four basic steps, namely image acquisition, image processing, feature extraction and classification.
  • Such techniques include, but are not limited to, Optical Character Recognition (OCR), feature detection, image gradient analysis, pattern recognition algorithms and feature/pattern classification algorithms.
  • OCR Optical Character Recognition
  • the system 100 can be configured to implement the method of FIG. 52 .
  • the electronic device 501 can acquire one or more images of a track system component, before sending the images to the image processing entity 505 at step 5202 .
  • the image processing entity 505 can perform image processing steps prior to feature extraction.
  • the image processing entity 505 can be configured to perform image processing including the use of fiducial markers.
  • the image processing entity 505 can perform feature extraction in order to detect and isolate various portions or shapes (features) of the image or images.
  • Feature extraction can include, but is not limited to, edge detection, corner detection, blob detection, ridge detection, scale-invariant feature transform, thresholding, blob extraction, Haar-like feature extraction, template matching, Hough transforms and generalized Hough transforms.
  • the system 100 can perform feature classification.
  • feature classification can include, but is not limited to, the use of nearest neighbor classification, cascading classifiers, neural networks, statistical classification techniques and/or Bayesian classification techniques.
  • features which represent undamaged/unused parts of the track system component, and features (e.g. cracks, exposed cables, etc.) which represent patterns of wear or damage.
  • features relating to patterns of wear or damage have been detected, it is possible for the system 100 to perform further feature classification on the wear or damage pattern.
  • system 100 is configured to use the system of FIG. 52 in order to detect damage or wear patterns in track system components.
  • system 100 can be configured to detect partially embedded (though exposed) cables 55 A using the 2D analysis method described with reference to FIG. 52 .
  • system 100 can be configured to recognize a narrow (though potentially deep) crack 55 B in carcass 77 .
  • such patterns are difficult to detect using volumetric analysis alone.
  • the 3D recognition techniques of the present disclosure can be combined with any of the 2D recognition techniques in order to facilitate track system component matching, as well as wear and/or damage recognition and characterization.
  • the 2D recognition techniques of the present disclosure can be used on images generated by the system 100 of various views of the 3D model generated using the 3D recognition techniques of the present disclosure.
  • the system 100 can sequentially use 3D recognition at step 5302 and then 2D recognition at step 5303 in order to detect patterns of wear and/or damage on a track system component.
  • 2D recognition may be performed before 3D recognition.
  • 3D recognition is performed first, as in such an arrangement, the system 100 may be configured to superimpose 2D features onto 3D models, thereby allowing a more precise classification of the type of wear and/or damage.
  • the system 100 is configured to generate a 3D model 55 of a used and/or damaged track and compare it to a 3D model 77 of an unused and undamaged track.
  • the 3D model 77 of an unused and undamaged track may be generated by the system 100 based on a previously-scanned track, may be acquired by the system 100 from a database of 3D models of tracks, or may be acquired by the system in any other suitable way.
  • Once the 3D model 77 of an unused and undamaged track is acquired or generated by the system 100 it can be compared to the 3D model 55 of a used and/or damaged track generated by the system 100 using various volumetric comparison techniques.
  • the system 100 may compare the models by calculating the amount of missing material of a given track feature (e.g. traction projections 61 1 - 61 M ). For example, volumetric comparison of the 3D model 55 of a used and/or damaged track and a 3D model 77 of an unused and undamaged track can establish that a given traction projection 61 x has been worn to 78% of its original volume.
  • a given track feature e.g. traction projections 61 1 - 61 M
  • the cause and/or nature of the wear and/or damage of the track 41 , or other track system component can be established by the system 100 performing a volumetric comparison of the 3D model 55 of a used and/or damaged track and a 3D model 77 of an unused and undamaged track.
  • the system 100 can determine a pattern of tread wear that is indicative of the cause and/or nature of the tread wear.
  • the trailing edge wear pattern detected by the system 100 in the traction projections 61 1 - 61 M of FIG. 39 is typically caused by a weight balance bias towards the rear of a vehicle 41 .
  • the “wheel path” wear pattern detected by the system 100 in the traction projections 61 1 - 61 M of FIG. 40 is caused by an increase in wear in the area under the highest load (known as the wheel path).
  • the system 100 can determine a pattern of damage that is indicative of the cause and/or nature of the damage.
  • the minor delamination damage detected by the system 100 in the traction projections 61 1 - 61 M of FIG. 41 is typically caused by incomplete or improper curing, contamination of source material and/or poor quality source material.
  • the “chunking” damage detected by the system 100 in the traction projections 61 1 - 61 M of FIG. 42 is typically caused by highly abrasive or hard/irregular ground conditions.
  • the system 100 can determine a pattern of non-tread wear that is indicative of the cause and/or nature of the non-tread wear.
  • the wear pattern detected by the system 100 in the drive/guide lugs 48 1 - 48 N of FIG. 43 relates to typical drive/guide lug break-in wear.
  • the wear pattern detected by the system 100 on the inside of the carcass 36 of FIG. 44 relates to typical carcass wear due to use of the vehicle 10 for abrasive/construction applications.
  • the system 100 can determine a pattern of damage that is indicative of the cause and/or nature of the damage.
  • the straight crack located near a joint area at the outer diameter of the track 47 detected by the system 100 in the carcass 36 of FIG. 41 is typically caused by incomplete or improper curing, contamination of source material and/or poor quality source material.
  • the system 100 can determine a pattern of track system component wear that is indicative of the cause and/or nature of the wear.
  • the sprocket (drive wheel 42 ) wear pattern detected by the system 100 in the sprocket teeth of FIG. 46 is typically caused by normal operation.
  • the system 100 can determine if and when a sprocket requires replacing.
  • the system 100 can determine a pattern of damage that is indicative of the cause and/or nature of the damage.
  • the tread delamination or carcass 36 layer separation detected by the system 100 in the carcass 36 of FIG. 47 is typically caused by poor adhesion of the layer delaminating layer due to contamination or improper curing of the track.
  • the system 100 can determine a pattern of non-tread wear that is indicative of the cause and/or nature of the non-tread wear.
  • the central wear pattern detected by the system 100 in the drive bars of FIG. 43 relates to a drive wheel 42 that is not adapted to the track 41 , possibly because the teeth of the drive wheel 42 itself are worn beyond a threshold.
  • system 100 can use the 2D recognition technique described above to recognize and characterize the presence of exposed track cables 55 A . Also, as shown in FIG. 50 , the system 100 can use the 2D recognition technique described above to recognize and characterize the presence of a crack 55 B in the carcass of track 77 .
  • the image processing entity 505 may send data relating to the cause, level and/or nature of the wear and/or damage of the track 41 or other track system component back to electronic device 501 for further processing and/or notification to a user.
  • electronic device 501 may determine that an event arising from usage of a track system 16 x , such as a usage threshold event (e.g. an amount of tread wear, an amount of time such as a number of hours the track 41 has been used), wear threshold event (e.g. the number of exposed reinforcing cables caused by chunking) and/or damage event (e.g. one or more severed reinforcing cables), has occurred.
  • a usage threshold event e.g. an amount of tread wear, an amount of time such as a number of hours the track 41 has been used
  • wear threshold event e.g. the number of exposed reinforcing cables caused by chunking
  • damage event e.g. one or more severed reinforcing cables
  • the computing modules 508 x may have access to information stored elsewhere on the internet.
  • the computing modules 508 x may be configured to query databases stored on external servers by sending requests over the network in order to analyze the image based on pertinent cross-referential data. This may include weather, humidity, or information about the vehicle or track that can be periodically updated.
  • FIG. 9 illustrates a schematic network diagram of a system 100 for monitoring vehicles such as one or more track vehicles like the agricultural vehicle 10 , according to one embodiment.
  • the system 100 includes an electronic device 501 , a network 124 , and a system server 1142 that can implement the image processing entity 500 of FIG. 8 .
  • the server includes a memory 1146 , processor 1144 , and network interface 1148 .
  • the electronic device 501 may include elements such as a processor, a memory, a display, a data input module, and a network interface.
  • the electronic device 501 may include other components, but these have been omitted for the sake of brevity.
  • the electronic device 501 is configured to perform the operations described herein.
  • the electronic device 501 processor may be configured to execute instructions stored in memory. The instructions, when executed, cause the electronic device 501 to perform the operations described herein.
  • the instructions may be part of a software application downloaded into memory by the electronic device 501 .
  • some or all of the functionality described herein may be implemented using dedicated circuitry, such as an ASIC, a GPU, or a programmed FPGA for performing the operations of the processor.
  • an application (“app”, i.e., software) may be installed on the electronic device 501 to interact with the system server 1142 and or the vehicle 10 .
  • the user e.g., the operator
  • a repository e.g., Apple's App Store, iTunes, Google Play, Android Market, etc.
  • the user may access certain features relating to the system server 1142 and/or the vehicle 10 locally on the electronic device 501 .
  • a user can use the electronic device 501 to generate data about the vehicle 10 .
  • the electronic device is a smart phone equipped with a camera
  • the user can take one or more images of a track 41 of the vehicle 10 .
  • the system 100 may then take the image data captured by the electronic device 501 and transmit the image data over a network 124 to a system server 1142 .
  • the electronic device 501 may be a portable electronic device with multiple uses such as a mobile phone, tablet or laptop. According to other embodiments, the electronic device may be a single-use electronic device, such that the device is designed to only be used in operation with the system 100 . Further, the electronic device 501 may also be capable of establishing a communicable link with an accessory device. This communicable link be may be wireless, wired, or partly wireless and partly wired (e.g., Bluetooth or other short-range or near-field wireless connection, WiFi or other wireless LAN, WiMAX or other wireless WAN, cellular, Universal Serial Bus (USB), etc.).
  • This communicable link be may be wireless, wired, or partly wireless and partly wired (e.g., Bluetooth or other short-range or near-field wireless connection, WiFi or other wireless LAN, WiMAX or other wireless WAN, cellular, Universal Serial Bus (USB), etc.).
  • the electronic device 501 may integrated into an internal computer 1342 in the off-road vehicle (as shown in FIG. 10 ).
  • the internal computer 1342 may have a vehicle memory 1346 , processor 1344 , network interface 1348 , and internal sensor network 1350 .
  • vehicle internal computer 1342 can communicate and upload images to system server 1142 independently.
  • the internal sensor network 1350 can include sensors to provide information about the vehicle or the track of the vehicle. For example, this may include a camera positioned to take images of the track.
  • the system 100 may be configured to continuously monitor the track. This can be achieved by continuously capturing data, for example, images of the vehicle track, at various intervals.
  • the electronic device 501 can then automatically upload the data over the network 124 to the system server 1142 for image processing. After processing, the image processing entity 505 can automatically communicate over the network 124 if a fault state has been determined.
  • the electronic device 501 can also send additional data to the image processing entity 505 over the network 124 .
  • this can include (but is not limited to) GPS location, date and time, or any information from an onboard computer within the vehicle.
  • This data can be cross-referenced and analyzed within the computing modules 508 x .
  • the AI module can access the specific weather and weather history for the vehicle location. In some embodiments, such information may be used in, for example, determining the end-of-life of a track (i.e. the amount of time until a track is expected to fail or until the likelihood of track failure rises above a predetermined threshold).
  • the internal computer 1342 may periodically receive and record information relating to the vehicle 10 and/or track systems 16 1 - 16 4 determined by the internal sensor network 1350 .
  • the internal sensor network 1350 may include an image taken of the track or information about the vehicle 10 , such as the speed of the vehicle 10 .
  • the electronic device 501 may communicate a unique identifier for a specific track under inspection.
  • the unique identifier can be a serial number of the track. This allows the server 1146 and/or internal computer 1342 to catalog the inspection and produce a history of a given track.
  • the internal computer 1342 and/or the server 1146 may store data about the serial numbers of the tracks installed on the vehicle 10 .
  • the electronic device 501 may be capable of determining a serial number from a track based on an image of the track. This can be done by the electronic device 501 capturing an image of an embossed serial number on a surface of the track, and using the image processing entity 505 to determine the specific characters of the serial number. This can be cross-referenced with a database stored in server memory 1146 (or otherwise accessible by system server 1142 ) to determine elements such as the model and date of manufacture of the track.
  • Serial number analysis may be performed using AI techniques employed by the computing modules 508 x , may be performed using techniques such as optical character recognition (OCR), or a combination thereof. These techniques may include preprocessing of an image in order to improve the ability to analyze the target components, such as de-skewing, layout analysis, and binarization.
  • OCR optical character recognition
  • a track system and/or track system component can be identified by way of another marking or tag suitable for communicating information relating to the track system and/or track system component.
  • markings or tags can include, but are not limited to, barcodes, Quick Response (QR) codes or other matrix barcodes and Radio Frequency Identification (RFID) tags.
  • the electronic device 501 may be configured to analyze the tread pattern and measure track width to determine a number of characteristics about the track. The electronic device 501 may then send this data and information to the system server 1142 for further data analysis to identify the type of track.
  • the type of track may be a track brand, model number, or any other suitable information capable of identifying a track.
  • the vehicle may be capable of communicating all the necessary data over the network without the use of an external electronic device 501 such as a mobile phone.
  • the vehicle 10 may be equipped with a network interface capable of independently communicating with the system server 1142 over the network 124 .
  • a system server 1142 hosts the image processing entity 505 .
  • Server processor 1144 is able to access instructions stored in the memory 1146 that can initialize the image processing entity 505 . This initialization can include operational parameters that include which AI module 508 x to use.
  • Image processing entity 505 can store instructions relating to a specific AI module 508 x within the memory 1146 .
  • the processor 1144 may instruct the server to save the data received from the network via the network interface 1148 in memory 1146 .
  • the processor 1144 may analyze the data in memory 1146 and determine information about the track 41 . Based on the data analysis, the processor 1144 may send a communication to the electronic device 501 over the network 124 via the network interface 1148 .
  • FIG. 11 illustrates a schematic network diagram of a system 100 for monitoring off road vehicles, according to another embodiment.
  • the system 100 can communicate with multiple vehicles 10 A - 10 N . While this figure shows the vehicles 10 A - 10 N communicating independently with the system server 1142 over the network 124 , the vehicles may alternatively each be communicably linked with an electronic device 501 as described with reference to FIG. 9 .
  • the system server 1142 may communicate with an electronic device 501 located at a dispatch center 1102 , a service center 1104 , or a parts supplier 1107 .
  • the system server 1142 may communicate with the user via an electronic device 501 or the vehicle 10 , a dispatch center 1102 , a service center 1104 , or a parts supplier 1106 .
  • the system 100 may also communicate with any combination of these, or any other suitable device registered within the system 100 .
  • This communication can contain information such as that indicating the determination of track wear and/or damage concluded by the image processing entity 505 .
  • the dispatch center 1502 or user may schedule maintenance with the service center 1104 .
  • the system 100 can determine the amount of time required or parts available at the service center 1104 and facilitate scheduling a maintenance appointment or a shipment from the parts supplier 1106 . This can be done by maintaining a database of inventory at the service center, along with a calendar.
  • FIG. 12 A to C illustrate representations of different databases that may be generated by the server processor 1144 based on information stored in memory 1146 .
  • the server memory 1146 can store a history of all information necessary for performance of the system 100 , including a record of all inspections and conclusions made.
  • These databases, or the information stored within them, may be accessible to users and administrators of the system 100 , or to software able to interact with the system 100 through the use of an application programming interface (API).
  • API application programming interface
  • FIG. 12A shows an example of a visual representation of a database that can be generated by the system 100 according to an embodiment directed towards a specific track manufacturer. This includes an indication of track model, a serial number for the track, the date of an inspection, the type of inspection, along with the registered owner. This database representation gives the manufacturer access to all registered tracks sold and registered within the system 100 , and allows access to information on track wear and damage.
  • FIG. 12B shows an example of a visual representation of a database that can be generated by the system 100 according to an embodiment directed towards a vehicle fleet manager.
  • the database includes an indication of track model, a unique identifier for the vehicle itself, the date of an inspection, track status, and an additional field for manager notes.
  • This database representation gives the fleet manager access to all vehicles registered within the system 100 , and allows them to access a history of information on track wear and/or damage.
  • FIG. 12C shows an example of a visual representation of a database that can be generated by the system 100 according to an embodiment directed towards a specific vehicle manufacturer. This includes an indication of vehicle model, track model, a date of an inspection, track status, and an additional field for manager notes.
  • This database representation gives the vehicle manufacturer access to all of their vehicles registered within the system 100 , and allows them to access a history of information on track wear and/or damage.
  • database representations are structured merely by way of example for illustrative purposes, and a skilled reader would know that these visual representations can be changed to include more or less information available to the system 100 .
  • FIG. 13 shows an example flowchart of the use of the system 100 which could be used (e.g., by the operator of the vehicle 10 , in a rental market, etc.) to monitor usage of track system components.
  • a user can use the electronic device 501 to generate image data relating to the track 41 and/or track system 16 x of the vehicle 10 .
  • the electronic device 501 may also access internal information stored on the vehicle onboard computer 1342 .
  • the electronic device 501 may then communicate both the data captured and the information retrieved by the electronic device 501 over the network 124 to the system server 1142 to be stored in memory 1146 .
  • the processor 1144 may determine information about the track 41 . Based on the data analysis, the processor 1144 may send a communication to the electronic device 501 over the network 124 via the network interface 1148 .
  • the system 100 determines that an event arising from use of a track system 16 x , such as a usage threshold event (e.g. an amount of time such as a number of hours the track 41 has been used) or a deterioration threshold event (e.g. chunking or other loss of elastomeric material of the track, the number of exposed reinforcing cables, one or more severed reinforcing cables, etc.), has occurred.
  • a usage threshold event e.g. an amount of time such as a number of hours the track 41 has been used
  • a deterioration threshold event e.g. chunking or other loss of elastomeric material of the track, the number of exposed reinforcing cables, one or more severed reinforcing cables, etc.
  • the system 100 identifies the track system component for which the usage threshold event or deterioration threshold event has occurred.
  • the track system component information and information relating to the usage threshold event and deterioration threshold event is conveyed to the operator of the vehicle by the system 100 in order to facilitate scheduling of track system component servicing and/or other maintenance.
  • the usage threshold event or deterioration threshold event is for the track 41 .
  • the system 100 may issue a notification conveying this information to the operator via the user interface of the operator cabin 20 of the vehicle 10 and/or the electronic device 501 .
  • the electronic device 501 is a mobile phone
  • the system 100 conveys the track system component information and information relating to the usage threshold event and deterioration threshold event to an organization providing maintenance services.
  • the system 100 may issue a notification conveying this information to a system server 1142 associated with the organization via a network 124 (e.g. which may be implemented by the Internet, a cellular connection, and/or any other network infrastructure).
  • the organization can schedule maintenance of the vehicle at step 1303 , and subsequently replace or repair the track system component. Accordingly, track system component maintenance operations can be initiated and scheduled without the need for input from the vehicle operator.
  • the system 100 may allow organizations to provide track-as-a-service type payment/usage models, in which tracks are not purchased, but are rather provided as a service to vehicle operators in exchange for a subscription fee. For example, for a monthly fee, an organization may provide vehicle operators with tracks, as well as usage rights to the system 100 described herein which will allow the organization to ensure that the vehicle operator is never without an operable/functional track, regardless of how much and how (i.e. under what circumstances) the vehicle operator uses the track.
  • the system 100 determines that an event arising from usage of a track system 16 x , such as a usage threshold event (e.g. an amount of tread wear, an amount of time such as a number of hours the track 41 has been used), deterioration threshold event (e.g. the number of exposed reinforcing cables) and/or deterioration event (e.g. one or more severed reinforcing cables), has occurred.
  • a usage threshold event e.g. an amount of tread wear, an amount of time such as a number of hours the track 41 has been used
  • deterioration threshold event e.g. the number of exposed reinforcing cables
  • deterioration event e.g. one or more severed reinforcing cables
  • the system 100 conveys the track system component information, vehicle location information and information relating to the usage threshold event, deterioration threshold event and/or deterioration event to the track-as-a-service organization.
  • GPS Global Positioning System
  • the system 100 may communicate with the system server 1142 of the track-as-a-service organization over a network 124 (e.g. which may be implemented by the Internet, a cellular connection, and/or any other network infrastructure).
  • a network 124 e.g. which may be implemented by the Internet, a cellular connection, and/or any other network infrastructure.
  • the track-as-a-service organization ships a replacement track system component to a location related to the geographic location of the vehicle.
  • the track-as-a-service location could ship the replacement track system component to the nearest maintenance service dispatch location or third party maintenance organization.
  • the track-as-a-service organization can schedule a maintenance of the track system.
  • the track-as-a-service organization schedules a third party mobile maintenance team to perform onsite maintenance based on the geographic location of the vehicle.
  • the track-as-a-service organization, or an agent thereof replaces the track system component. In some embodiments, this can be performed onsite, based at least in part on the vehicle location information received from the track-as-a-service organization.
  • FIG. 15 shows an example flowchart of the use of the system 100 which could be used, for example, by a fleet manager to monitor usage of track system components.
  • the preferences of a given fleet manager can be included in any part purchase or system maintenance request. For example, a fleet manager may consider a specific track to be superior to all other on the market. The fleet manager may want to only purchase that specific brand of track. Another example of purchase preferences may include only to purchase a specific track if the supplier inventory and price database indicates that the part is available with a discount. Further, if there is no supply of a first preferred track in the inventory, the user may store a preference for an alternate track to be purchased.
  • steps 1501 and 1502 are the same as those described in steps 1301 , 1401 , and 1302 , 1402 respectively.
  • the system 100 will query the memory to determine if the specific user has a purchase preference stored in the system 100 . If the system 100 has a purchase preference stored for the given user, the system 100 will order the track system component for replacement based on the saved preference at step 1506 . If the system 100 does not find a purchase preference for the given user, the system 100 may send a communication to the user's electronic device 501 with information indicating the part purchase options and information about the parts (for example the various options of price and part characteristics). The system 100 may also send a communication instructing the electronic device 501 to prompt the user to store a purchase preference. Based on this information, the system 100 will order the track system component at step 1507 .
  • the system 100 may schedule maintenance with a given service center or technician.
  • user preferences may also be considered. For example, a user may be able to store in their profile a preference for scheduling. This may include a preference for the first available time to service the vehicle. Alternatively, a fleet manager may try and coordinate scheduling of maintenance with other vehicles within a fleet. This could include wanting all vehicles to be serviced at the same time, or to stagger vehicle services. Scheduling preferences may also include a time of day preference for the user to have maintenance scheduled. Based on these preferences, the user may be automatically scheduled for maintenance.
  • the system 100 may prompt the user via a date and time entry interface, such as a calendar interface, on the electronic device 501 to input a date and time for maintenance. Based on this input data, the system 100 can schedule maintenance with a technician or service center.
  • a date and time entry interface such as a calendar interface
  • the track-as-a-service organization replaces the track system component. In some embodiments, this can be performed onsite, based at least in part on the vehicle location information received from the track-as-a-service organization.
  • FIG. 16 shows an example flowchart of the use of the system 100 which could be used, for example, by a fleet manager to monitor usage of track system components.
  • inventory of the track system components at a given service center can be monitored.
  • the system 100 allows organizations managing large fleets (e.g. vehicle rental companies, construction companies, forestry companies, etc.) to ensure that maintenance operations can be scheduled and carried out effectively and efficiently. For example, by monitoring the wear of track system components, it is possible to more precisely predict when a track system component will fail and/or when a replacement track system component should be ordered and/or shipped.
  • the system 100 determines that an event arising from usage of a track system 16 x , such as a usage threshold event (e.g. an amount of tread wear, an amount of time such as a number of hours the track 41 has been used), deterioration threshold event (e.g. the number of exposed reinforcing cables) and/or deterioration event (e.g. one or more snapped or broken reinforcing cables), has occurred.
  • a usage threshold event e.g. an amount of tread wear, an amount of time such as a number of hours the track 41 has been used
  • deterioration threshold event e.g. the number of exposed reinforcing cables
  • deterioration event e.g. one or more snapped or broken reinforcing cables
  • the system 100 identifies the track system component for which the usage threshold event, deterioration threshold event and/or deterioration event has occurred.
  • the system 100 conveys the track system component information and information relating to the usage threshold event, deterioration threshold event and/or deterioration event to an automated fleet management system.
  • the system 100 may communicate with the automated fleet management system over a network 124 (e.g. which may be implemented by the Internet, a cellular connection, and/or any other network infrastructure).
  • the automated feet management system queries a track system component supply database to determine whether the identified track system component is available or needs to be ordered.
  • the track system component supply database can be managed by the fleet management system, or can be managed by a third-party track system component supplier. If the identified track system component is available, the vehicle can be scheduled for maintenance. If, on the other hand, the track system component is not available, the fleet management system can cause the track system component to be ordered at step 1604 , before scheduling maintenance of the vehicle at step 1605 . This system may also include ordering based on stored user preference as previously described.
  • the scheduling of the vehicle maintenance is at least in part based on the estimated delivery time for an ordered track system component.
  • the dispatching of the vehicle relating to the identified track system component can, at least partially, be based on a pre-scheduled maintenance.
  • This system 100 may also include scheduling based on stored user preference as previously described.
  • FIG. 17 shows an example flowchart of the use of the system 100 which could be used, for example, by a vehicle operator to monitor usage of track system components.
  • the system 100 has determined a critical error to have taken place or imminent.
  • steps 1701 and 1702 are similar to those described in steps 1301 , 1401 , and 1302 , 1402 respectively.
  • the system 100 can prompt the user to establish an audiovisual and/or textual connection with a technician at 1703 .
  • This could be achieved by using a Voice Over IP (VoIP) system, a phone call over a cellular network, or any other means of text, audio or video communication.
  • VoIP Voice Over IP
  • the technician may instruct the user to drive the vehicle to a safe location and wait for the technician to arrive.
  • the technician may be able to instruct the user to point the camera of the electronic device at a specific component of the vehicle 10 in order to provide the technician with more information about the vehicle status.
  • FIG. 18 shows an example flowchart of the use of the system 100 which could be used, for example, by a vehicle operator to monitor usage of track system components.
  • the system 100 has determined a critical status of the track and/or track system.
  • steps 1801 and 1802 are similar to those described in steps 1301 , 1401 , and 1302 , 1402 respectively.
  • the system 100 alerts relevant parties of the critical status. This can include fleet managers, technicians or other operators.
  • the system 100 may send a text message, email or app push notification to any interested party that the status and operability of a given vehicle with a unique identifier has reached a certain threshold of wear or damage.
  • the vehicle operator or fleet manager may override the decision determined by the system 100 and continue to operate the vehicle.
  • the system 100 may have the capability to safely disable the vehicle given specific parameters. For example, the system 100 may only allow the vehicle to operate for another specific distance or time, or may not allow the vehicle to restart after it has switched off without an appointment with a technician.
  • FIG. 19 shows an example flowchart of the use of the system 100 by, for example, a vehicle operator to monitor usage of track system components.
  • the system 100 is able to determine a specific track brand or type, and cross-reference this brand or type with a database of compatible brands stored in a memory.
  • steps 1901 and 1902 are similar to those described in steps 1301 , 1401 , and 1302 , 1402 respectively.
  • the system 100 is able to identify the track characteristics 1903 . These characteristics may include thickness, length, weight, width, tread pattern, internal cable strength, etc. Based on an analysis of the vehicle's track, the system 100 can determine track alternatives at step 1904 . This can be done using a pre-populated database stored on a server of all major available track brands and products, along with compatible alternatives. Once the system 100 has determined the track and track characteristics, it can query the database to find all other products that could be used for the vehicle.
  • the system 100 can then communicate the tracks to the user at step 1905 . This can be done by sending the information over the network to the electronic device.
  • the user may determine that an alternative track could be used for the vehicle. If the user selects the alternative track, the system 100 will send that message back to the server over the network and proceed to organize any part replacement using the user's selection.
  • the electronic device 501 can display an instruction to the user to position and/or move the electronic device 501 in order to optimally capture the image.
  • FIG. 20 shows an embodiment in which the system 100 may instruct the user to take an image of the vehicle 10 .
  • the electronic device 501 will communicate this image along with any other information to be communicated to the system server 1142 for analysis, as described above.
  • the system 100 may also or instead instruct the user to take a video of the track 41 .
  • the electronic device 501 may then communicate this video along with any other information to be communicated to the system server 1142 for data analysis, as described above.
  • the system 100 can instruct the user to use an accessory device 2202 in conjunction with the vehicle 10 in order to generate data about the track 41 and or track system.
  • the accessory device 2202 can be an optical sensor communicatively linked to the electronic device 501 .
  • the accessory device 2202 can communicate the image data captured to the electronic device 501 .
  • the electronic device 501 may communicate this data along with any other information to be communicated to the system server 1142 for analysis, as described above.
  • the electronic device 501 can be communicably linked to the vehicle, according to some embodiments.
  • the electronic device 501 communicates with an onboard computer 1342 in the vehicle 10 in order to generate data about the vehicle.
  • the electronic device 501 may communicate this data along with any other information to be communicated to the system server 1142 for analysis, as described above.
  • the information determined about the vehicle based on the analysis conducted by the system 100 is communicated to the electronic device 501 over the network 124 .
  • the information was a length of time before the track needed to be replaced.
  • the system 100 has already communicated to the electronic device that based on the data analysis, vehicle maintenance is required.
  • the electronic device 501 can then prompt the user to schedule the maintenance. If the user decides to schedule the maintenance, the electronic device 501 can communicate directly with a service center 2604 in order to schedule the maintenance over the network 124 .
  • the user may have access to a booking calendar for the service center and select a time. Based on this selection, the parties will be notified that maintenance has been booked.
  • the system 100 may have access to information about the service center 2604 , such as parts inventory. Based on this inventory, the system 100 can calculate any lead time if required that can be factored into the booking span.
  • the system 100 can order new parts through the network 124 by creating a request to a retailer or parts center 2704 .
  • the system 100 may create a request to the parts center to ship the part to the service center in advance of the booked maintenance time.
  • the system 100 may have access to pricing information or alternative replacement parts available at the parts center 2704 .
  • the system 100 may present the user with pricing options, sale information for different components they may require ordering for replacement. The user may then inform the system 100 of their preference and the system 100 will submit the order to the parts center accordingly.
  • the system 100 is configured to schedule a maintenance request over the network 124 without requiring a user to select a time. This time may be based on a user preference saved in the server memory for a given vehicle owner. For example, an owner may have a preference that all vehicles are scheduled for maintenance one month before the system 100 determined date. Accordingly, the system 100 can notify the user of scheduled maintenance as it is automatically scheduled.
  • the system 100 is able to make purchase requests over the network 124 without requiring the user to select a part component. This choice may be based on a user preference saved in the server memory for a given vehicle owner. For example, an owner may have a preference for a specific brand of vehicle parts. Accordingly the system 100 can notify the user of the part purchase as it is automatically scheduled.
  • the electronic device may be communicably linked to a technician 3204 .
  • the technician can also be notified over the network 124 of any determined vehicle information, scheduled maintenance, parts purchased, location of maintenance etc. Based on the user selection the user can be connected to a technician 3204 via the network 124 .
  • This connection could be by way of a telephone call, wherein the system 100 communicates a phone number over the network for the electronic device.
  • the system 100 may use a Voice Over IP (VoIP) connection between the user and the technician.
  • VoIP Voice Over IP
  • the communication between user and technician established could be a video call, wherein the technician is able to view a feed coming from a camera module within the user's electronic device.
  • the system 100 may determine that the vehicle has a critical malfunction. This could be determined through information captured form the onboard computer's internal sensor network or through data captured via the electronic device. For example, the vehicle track may have been damaged to the point where further driving would cause greater permanent damage to the vehicle and may endanger the safety of the driver.
  • the system 100 can instruct the electronic device to prompt a user with a notification of the critical malfunction and request instruction for whether or not the vehicle should be allowed to continue to operate. Based on this decision, the electronic device can instruct an onboard computer in the vehicle that the vehicle should not be operated again until the system 100 has determined the vehicle is no longer in a critical malfunction state.
  • the electronic device may offer the user a choice to immediately disable the vehicle. Based on this decision, the electronic device can instruct an onboard computer in the vehicle that the vehicle should not be operated again until the system 100 has determined that the vehicle, track system and/or track is no longer in a critical state.
  • the electronic device may not offer the user a choice and immediately disable the vehicle. Based on this decision, the electronic device can instruct an onboard computer in the vehicle that the vehicle should not be operated again until the system 100 has determined the vehicle, track system and/or track is no longer in a critical state.
  • the electronic device may not offer the user a choice and may disable the vehicle once the vehicle has been returned to a specific location. This can be done by using a location coordinate determined by either the electronic device 501 or in the vehicle itself. While the vehicle may be continued to be used to complete the current job, when the location coordinate of the vehicle is determined to be the same as a specific location such as a storage facility, the electronic device can instruct an onboard computer in the vehicle that the vehicle should not be operated again until the system 100 has determined that the vehicle, track system and/or track is no longer in a critical state.
  • the system server 1142 may receive image data from an inspection station for inspecting vehicles such as the vehicle 10 when they are in proximity.
  • the system 100 may include a imaging inspection station 433 for inspecting track systems of vehicles 431 x .
  • the imaging inspection station 433 comprises camera systems 432 x arranged to capture images of each of the track system 16 1 , 16 2 and their environment. The captured images can then be optionally processed and analyzed locally or remotely in system 100 .
  • the camera systems 432 x can include directional cameras having any configuration of lenses suitable for inspecting the system 16 1 , 16 2 and their environment.
  • the system server 1142 may receive image data from a scanning inspection station 443 for inspecting track systems of vehicles 441 x .
  • the inspection station 443 comprises laser line scanner and/or laser area scanner systems 442 x arranged to scan each of the track system 16 1 , 16 2 and their environment as each vehicle 441 x moves past the inspection station 443 .
  • the information generated by the laser line scanner and/or laser area scanner systems 442 x can then be optionally processed and analyzed locally or remotely by system server 1142 . This embodiment is particularly advantageous for producing 3D scanning data suitable for subsequent volumetric analysis, as described in more detail above.
  • the system server 1142 may receive image data from a drone 3201 for inspecting the track 22 and/or other components of each of the track systems 16 1 , 16 2 and/or their environment (e.g., detecting the presence of debris, etc.), so that information derived from the drone 3210 may be relayed to the operator of the vehicle 10 and/or another remote device or person.
  • the vehicle 10 may comprise a drone mount 3220 configured to mount the drone 3220 to the vehicle 10 and release the drone 3201 when the drone 3201 is to monitor the vehicle 10 by moving around it.
  • the drone 3201 is arranged to follow the vehicle, capture and analyze images of each of the track system 16 1 , 16 2 and their environment.
  • the drone 3201 is equipped with a laser line scanner for scanning the track system 16 1 , 16 2 and their environment.
  • Communication between the drone 3201 and the vehicle 10 can be provided for by any suitable means, including but not limited to any combination of Global Positioning System (GPS) signals, Radio Frequency (RF) signals, Bluetooth signals, LIDAR, and RADAR signals.
  • GPS Global Positioning System
  • RF Radio Frequency
  • the drone 3210 is an aerial drone configured to fly about the vehicle 10 . While the drone 3201 shown in FIG. 34 is a multi-rotor flying drone, other drones are possible, including but not limited to fixed-wing drones, or any other type of unmanned aerial vehicle. Also, in other embodiments, the drone 3210 may be a land drone configured to travel on the ground about the vehicle 10 (e.g., on wheels or on tracks).
  • the system server 1142 may receive image data from a vehicle-mounted inspection device 4801 for inspecting the track systems 16 1 , 16 2 of the vehicle 10 .
  • the system 100 may include one or more vehicle-mounted inspection device 4801 for inspecting track systems 16 1 , 16 2 of vehicles by way of image data.
  • each track system 16 1 and 16 2 is provided with a vehicle-mounted inspection device 4801 .
  • the vehicle-mounted inspection device 4801 comprises a camera system arranged to capture images of the track system 16 1 , 16 2 and its environment as the track 22 moves around the track-engaging assembly 21 .
  • the information generated by the camera system can then be optionally processed and analyzed locally or remotely by the system server 1142 .
  • the vehicle-mounted inspection device 4801 comprises a laser line scanner system and/or a laser area scanner system arranged to scan the track system 16 1 , 16 2 and its environment as the track 22 move around the track-engaging assembly 21 .
  • the information generated by the laser line scanner and/or laser area scanner systems can then be optionally processed and analyzed locally or remotely by system server 1142 .
  • This embodiment is particularly advantageous for producing 3D scanning data suitable for subsequent volumetric analysis, as described in more detail above.
  • a given component mentioned herein may comprise a computing system 1500 comprising suitable hardware and/or software (e.g., firmware) configured to implement functionality of that given component.
  • the computing system 1500 comprises an interface 1520 , a processor 1540 , and a memory 1560 .
  • the interface 1520 comprises one or more inputs and outputs allowing the computing system 1500 to receive signals from and send signals to other components to which the computing system 1500 is connected (i.e., directly or indirectly connected).
  • the processor 1540 comprises one or more processing devices for performing processing operations that implement functionality of the computing system 1500 .
  • a processing device of the processor 1540 may be a general-purpose processor executing program code stored in the memory 1560 .
  • a processing device of the processor 1540 may be a specific-purpose processor comprising one or more preprogrammed hardware or firmware elements (e.g., application-specific integrated circuits (ASICs), electrically erasable programmable read-only memories (EEPROMs), etc.) or other related elements).
  • ASICs application-specific integrated circuits
  • EEPROMs electrically erasable programmable read-only memories
  • the memory 1560 comprises one or more memory elements for storing program code executed by the processor 1540 and/or data used during operation of the processor 1540 .
  • a memory element of the memory portion 1560 may be a semiconductor medium (including, e.g., a solid state memory), a magnetic storage medium, an optical storage medium, and/or any other suitable type of memory element.
  • a memory element of the memory portion 1560 may be read-only memory (ROM) and/or random-access memory (RAM), for example.
  • two or more elements of the computing system 1500 may be implemented by devices that are physically distinct from one another (e.g., located in a common site or in remote sites) and may be connected to one another via a bus (e.g., one or more electrical conductors or any other suitable bus) or via a communication link which may be wired, wireless, or both and which may traverse one or more networks (e.g., the Internet or any other computer network such as a local-area network (LAN) or wide-area network (WAN), a cellular network, etc.).
  • LAN local-area network
  • WAN wide-area network
  • cellular network e.g., cellular network
  • the vehicle 10 may be another type of work vehicle such as a knuckleboom loader, etc.) for performing forestry work, or a military vehicle (e.g., a combat engineering vehicle (CEV), etc.) for performing military work, a carrier (e.g. carrying a boom, a rig, and/or other equipment t), or may be any other type of vehicle operable off paved road. Although operable off paved roads, the vehicle 10 may also be operable on paved roads in some cases. Also, while in embodiments considered above the off-road vehicle 10 is driven by a human operator in the vehicle 10 , in other embodiments, the vehicle 10 may be an unmanned ground vehicle (e.g., a teleoperated or autonomous unmanned ground vehicle).
  • a knuckleboom loader e.g., a combat engineering vehicle (CEV), etc.
  • a carrier e.g. carrying a boom, a rig, and/or other equipment t
  • the vehicle 10 may also be operable

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A vehicle comprising a track system can be monitored to obtain information regarding the vehicle, including information regarding the track system, such as an indication of a physical state of a track and/or other component of the track system based on at least on 3D recognition and/or 2D recognition of image data of a track system component.

Description

    FIELD
  • This disclosure relates generally to tracked vehicles (e.g., agricultural vehicles or other industrial vehicles, etc.) and, more particularly, to monitoring track systems of such vehicles.
  • BACKGROUND
  • Off-road vehicles, including industrial vehicles such as agricultural vehicles (e.g., tractors, harvesters, combines, etc.), construction vehicles (e.g., loaders, excavators, bulldozers, etc.), and forestry vehicles (e.g., feller-bunchers, tree chippers, knuckleboom loaders, etc.), military vehicles (e.g., combat engineering vehicles (CEVs), etc.), snowmobiles, and all-terrain vehicles (ATVs), are used on soft, slippery and/or irregular grounds (e.g., soil, mud, sand, ice, snow, etc.) for work and/or other purposes. To enhance their traction and floatation on such grounds, certain off-road vehicles are equipped with track systems. In some cases, off-road vehicles may also be operable on paved roads.
  • For example, agricultural vehicles can travel in agricultural fields to perform agricultural work and possibly on paved roads (e.g., to travel between agricultural fields). Numerous factors affect performance of the agricultural vehicles and efficiency of agricultural work they do, including their components (e.g., track systems) and their environments (e.g., grounds on which they operate). While some of these factors may be managed by users (e.g., operators) of the agricultural vehicles, this may lead to suboptimal agricultural work, greater wear or other deterioration of components of the agricultural vehicles, and/or other issues in some cases.
  • Similar considerations may arise in relation to other off-road vehicles (e.g., construction vehicles, snowmobiles, ATVs, etc.) in some cases.
  • For these and other reasons, there is a need to improve monitoring tracks and track systems of off-road vehicles.
  • SUMMARY
  • In accordance with various aspects of this disclosure, a vehicle (e.g., an agricultural vehicle or other off-road vehicle) comprising a track system can be monitored to obtain information regarding the vehicle, including information regarding the track system, such as an indication of a physical state (e.g., wear, damage and/or other deterioration) of a track and/or other component of the track system based on at least one image of the track and/or other component of the track system, respectively, which can be used for various purposes, such as, for example, to: convey the information to a user (e.g., an operator of the vehicle); control the vehicle (e.g., a speed of the vehicle, operation of a work implement, etc.); transmit the information to a remote party (e.g., a provider such as a manufacturer or distributor of the track system, the track and/or another component thereof, and/or of the vehicle; a service provider for servicing (e.g., maintenance or repair of) the track system, the track and/or another component thereof, etc.).
  • In accordance with an aspect, this disclosure relates to a system for monitoring a track for traction of a vehicle. The system comprises an interface configured to receive data regarding at least one image of the track. The system also comprises a processor configured to process the data regarding the at least one image of the track to obtain an indication of a physical state of the track, and to generate a signal based on the indication of the physical state of the track.
  • In accordance with another aspect, this disclosure relates to a method of monitoring a track for traction of a vehicle. The method comprises receiving data regarding at least one image of the track. The method also comprises processing the data regarding the at least one image of the track to obtain an indication of a physical state of the track. The method also comprises generating a signal based on the indication of the physical state of the track.
  • In accordance with yet another aspect, this disclosure relates to a system for monitoring a component of a track system for traction of a vehicle. The system comprises an interface configured to receive data regarding at least one image of the component of the track system. The system also comprises a processor configured to process the data regarding the at least one image of the component of the track system to obtain an indication of a physical state of the component of the track system. The processor is also configured to generate a signal based on the indication of the physical state of the component of the track system.
  • In accordance with yet another aspect, this disclosure relates to method of monitoring a component of a track system for traction of a vehicle. The method comprises receiving data regarding at least one image of the component of the track system. The method also comprises processing the data regarding the at least one image of the component of the track system to obtain an indication of a physical state of the component of the track system. The method also comprises generating a signal based on the indication of the physical state of the component of the track system.
  • In accordance with yet another aspect, this disclosure relates to a track system monitoring system. The system comprises an image data capture device configured to capture image data relating to a track system component. The system also comprises an image processing device, in data communication with the image capture device. The image processing device is configured to receive captured image data from the image data capture device and process the captured image data to determine at least one physical characteristic of the track system component.
  • In accordance with yet another aspect, this disclosure relates to track system monitoring system. The system comprises a 3D scanning device configured to generate a 3D scan relating to a track system component. The system also comprises a processing device, in data communication with the 3D scanning device. The processing device is configured to receive the 3D scan from the 3D scanning device and process the 3D scan to determine at least one physical characteristic of the track system component.
  • In accordance with yet another aspect, this disclosure relates to a track system monitoring system. The system comprises an image data capture device configured to capture image data relating to a track system component. The system also comprises an image processing device in data communication with the image capture device. The image processing device is configured to receive captured image data from the image data capture device and generate a 3D model of at least a portion of the track system component based on the image data. The image processing device is also configured to compare the 3D model to at least one known 3D model of a track system component to determine at least one aspect of the physical state of the track system component.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A detailed description of embodiments is provided below, by way of example only, with reference to accompanying drawings, in which:
  • FIG. 1 shows an example of an embodiment of a vehicle comprising track systems;
  • FIGS. 2 and 3 show a perspective view and a side view of a given one of the track systems;
  • FIGS. 4 to 7 show an outer plan view, a side view, an inner plan view, and a cross-sectional view of a track of the given one of the track systems;
  • FIG. 8 shows a diagram of an image processing system according to one embodiment;
  • FIG. 9 shows a schematic network diagram of a system for monitoring off road vehicles, according to one embodiment;
  • FIG. 10 shows a diagram of a computer of a vehicle according to one embodiment;
  • FIG. 11 shows a schematic network diagram of a system for monitoring off road vehicles, according to another embodiment;
  • FIG. 12 A to C illustrate representations of different databases according to various embodiments;
  • FIGS. 13 to 19 shows flowcharts of the use of a monitoring system, according to various embodiments;
  • FIGS. 20 to 23 show data capture for a system according to various embodiments;
  • FIG. 24 shows the communication of a result in a system according to one embodiment;
  • FIG. 25 shows scheduling of maintenance according to one embodiment;
  • FIG. 26 shows a system capable of facilitating the purchase of parts according to one embodiment;
  • FIG. 27 shows a system able schedule a maintenance request according to one embodiment;
  • FIG. 28 shows a system able to connect two electronic devices, according to one embodiment;
  • FIGS. 29 to 31 show a system that can determine that the vehicle has a critical malfunction according to various embodiments;
  • FIG. 32 shows an example of a camera station for inspecting track systems;
  • FIG. 33 shows an example of a laser line scanner station for inspecting track systems;
  • FIG. 34 shows an embodiment of a drone device for inspecting the track system;
  • FIG. 35 shows the drone device for inspecting the track system;
  • FIG. 36 shows an example of a vehicle-mounted inspection device for inspecting track systems;
  • FIG. 37 shows an example of an embodiment of a computing apparatus;
  • FIG. 38 shows an example 3D track model generated using the system described herein;
  • FIGS. 39 to 48 show example 3D track models of used and/or damaged tracks generated using the system described herein, overlaid by 3D track models of unused and/or undamaged track;
  • FIGS. 49 and 50 show examples of wear/damage being detected and characterized using 2D recognition techniques; and
  • FIGS. 51 to 53 shows flowcharts of the use of a monitoring system, according to various embodiments.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • FIG. 1 shows an example of a vehicle 10 comprising example track systems 16 1-16 4. In this embodiment, the vehicle 10 is a heavy-duty work vehicle for performing agricultural, construction or other industrial work, or military work. More particularly, in this embodiment, the vehicle 10 is an agricultural vehicle for performing agricultural work. Specifically, in this example, the agricultural vehicle 10 is a tractor. In other examples, the agricultural vehicle 10 may be a harvester, a planter, or any other type of agricultural vehicle.
  • In this embodiment, the vehicle 10 comprises a frame 11, a powertrain 15, a steering mechanism 18, a suspension 24, and an operator cabin 20 that enable a user to move the vehicle 10 on the ground, including on an agricultural field and possibly on a paved road (e.g., between agricultural fields), using the track systems 16 1-16 4 and perform work using a work implement 13.
  • As further discussed later, in this embodiment, the agricultural vehicle 10, including the track systems 16 1-16 4, can be monitored (e.g., while the agricultural vehicle 10 is parked, inspected or otherwise at rest and/or during operation of the agricultural vehicle 10) to obtain information regarding the agricultural vehicle 10, including information regarding the track systems 16 1-16 4, such as indications of physical states of tracks and/or other components of the track systems 16 1-16 4 (e.g., information indicative of wear or other degradation thereof) that is derivable from one or more images of the tracks and/or other components of the track systems 16 1-16 4, which can be used for various purposes, such as, for example, to: convey the information to a user (e.g., the operator); control the agricultural vehicle 10 (e.g., a speed of the agricultural vehicle 10, operation of the work implement 13, etc.); transmit the information to a remote party (e.g., a provider such as a manufacturer or distributor of the track systems 16 1-16 4 or their tracks or other components and/or of the agricultural vehicle 10; a service provider for servicing (e.g., maintenance or repair of) the track system, the track and/or another component thereof, etc.); etc. This may be useful, for example, to gain knowledge about the agricultural vehicle 10, the track systems 16 1-16 4, and/or their environment to enhance efficiency of agricultural work performed by the agricultural vehicle 10 and to help prevent excessive wear or other deterioration of the track systems 16 1-16 4, to schedule maintenance or replacement of the track system 16 1-16 4 or individual components thereof, to effectively manage the wear of the track system 16 1-16 4 or individual components thereof, for the agricultural vehicle 10 or a fleet of such agricultural vehicles, to achieve any of various other outcomes herein described, and/or for various other reasons.
  • The powertrain 15 is configured to generate power for the agricultural vehicle 10, including motive power for the track systems 16 1-16 4 to propel the vehicle 10 on the ground. To that end, the powertrain 15 comprises a power source 14 (e.g., a primer mover) that includes one or more motors. For example, in this embodiment, the power source 14 comprises an internal combustion engine. In other embodiments, the power source 14 may comprise another type of motor (e.g., an electric motor) or a combination of different types of motor (e.g., an internal combustion engine and an electric motor). The powertrain 15 can transmit power from the power source 14 to one or more of the track systems 16 1-16 4 in any suitable way (e.g., via a transmission, a differential, a direct connection, and/or any other suitable mechanism). In some embodiments, at least part of the powertrain 15 (e.g., a motor and/or a transmission) may be part of one or more of the track systems 16 1-16 4.
  • The operator cabin 20 is where the user sits and controls the vehicle 10. More particularly, the operator cabin 20 comprises a user interface 70 allowing the user to steer the vehicle 10 on the ground, operate the work implement 13, and control other aspects of the vehicle 10. In this embodiment, the user interface 70 comprises input devices, such as an accelerator, a brake control, and a steering device (e.g., a steering wheel, a stick, etc.) that are operated by the user to control motion of the vehicle 10 on the ground. The user interface 70 also comprises output devices such as an instrument panel (e.g., a dashboard) which provides indicators (e.g., a speedometer indicator, a tachometer indicator, etc.) to convey information to the user.
  • The work implement 13 is used to perform agricultural work. For example, in some embodiments, the work implement 13 may include a combine head, a cutter, a scraper pan, a tool bar, a planter, or any other type of agricultural work implement.
  • The track systems 16 1-16 4 engage the ground to provide traction to the vehicle 10. More particularly, in this embodiment, front ones of the track systems 16 1-16 4 provide front traction to the vehicle 10, while rear ones of the track systems 16 1-16 4 provide rear traction to the vehicle 10.
  • In this embodiment, each of the front ones of the track systems 16 1-16 4 is pivotable relative to the frame 11 of the vehicle 10 about a steering axis 19 by the steering mechanism 18 (e.g., in response to input of the user at the steering device of the user interface 70) to change the orientation of that track system relative to the frame 11 in order to steer the vehicle 10 on the ground. The orientation of each of the front ones of the track systems 16 1-16 4 relative to a longitudinal axis 33 of the vehicle 10, which defines a steering angle θ of that track system, is thus changeable. In this example, the steering mechanism 18 includes a steering unit 34 (e.g., comprising a steering knuckle) on each side of the vehicle 10 dedicated to each of the front ones of the track systems 16 1-16 4 and defining the steering axis 19 for that track system. Each of the front ones of the track systems 16 1-16 4 is therefore steerable.
  • With additional reference to FIGS. 2 and 3, in this embodiment, each track system 16 i comprises a track 41 and a track-engaging assembly 17 that is configured to drive and guide the track 41 around the track-engaging assembly 17. In this example, the track-engaging assembly 17 comprises a frame 44 and a plurality of track-contacting wheels which includes a drive wheel 42 and a plurality of idler wheels 50 1-50 8, which includes leading idler wheels 50 1, 50 2, trailing idler wheels 50 7, 50 8, and roller wheels 50 3-50 6 between the leading idler wheels 50 1, 50 2 and the trailing idler wheels 50 7, 50 8. The track system 16 i has a front longitudinal end 57 and a rear longitudinal end 59 that define a length of the track system 16 i. A width of the track system 16 i is defined by a width WT of the track 41. The track system 16 i has a longitudinal direction, a widthwise direction, and a heightwise direction.
  • The track 41 engages the ground to provide traction to the vehicle 10. A length of the track 41 allows the track 41 to be mounted around the track-engaging assembly 17. In view of its closed configuration without ends that allows it to be disposed and moved around the track-engaging assembly 17, the track 41 can be referred to as an “endless” track. Referring additionally to FIGS. 4 to 7, the track 41 comprises an inner side 45 facing the wheels 42, 50 1-50 8 and defining an inner area of the track 41 in which these wheels are located. The track 41 also comprises a ground-engaging outer side 47 opposite the inner side 45 for engaging the ground on which the vehicle 10 travels. Lateral edges 63 1, 63 2 of the track 41 define its width WT. The track 41 has a top run 65 which extends between the longitudinal ends 57, 59 of the track system 16 i and over the track-engaging assembly 17, and a bottom run 66 which extends between the longitudinal ends 57, 59 of the track system 16 i and under the track-engaging assembly 17. The track 41 has a longitudinal direction, a widthwise direction, and a thicknesswise direction.
  • The track 41 is elastomeric, i.e., comprises elastomeric material, allowing it to flex around the wheels 42, 50 1-50 8. The elastomeric material of the track 41 can include any polymeric material with suitable elasticity. In this embodiment, the elastomeric material includes rubber. Various rubber compounds may be used and, in some cases, different rubber compounds may be present in different areas of the track 41. In other embodiments, the elastomeric material of the track 41 may include another elastomer in addition to or instead of rubber (e.g., polyurethane elastomer). The track 41 can be molded into shape in a mold by a molding process during which its elastomeric material is cured.
  • More particularly, the track 41 comprises an elastomeric belt-shaped body 36 underlying its inner side 45 and its ground-engaging outer side 47. In view of its underlying nature, the body 36 can be referred to as a “carcass”. The carcass 36 comprises elastomeric material 37 which allows the track 41 to flex around the wheels 42, 50 1-50 8.
  • In this embodiment, the carcass 36 comprises a plurality of reinforcements embedded in its elastomeric material 37. One example of a reinforcement is a layer of reinforcing cables 38 1-38 C that are adjacent to one another and that extend in the longitudinal direction of the track 41 to enhance strength in tension of the track 41 along its longitudinal direction. In some cases, a reinforcing cable may be a cord or wire rope including a plurality of strands or wires. In other cases, a reinforcing cable may be another type of cable and may be made of any material suitably flexible longitudinally (e.g., fibers or wires of metal, plastic or composite material). Another example of a reinforcement is a layer of reinforcing fabric 40. Reinforcing fabric comprises pliable material made usually by weaving, felting, or knitting natural or synthetic fibers. For instance, a layer of reinforcing fabric may comprise a ply of reinforcing woven fibers (e.g., nylon fibers or other synthetic fibers). Various other types of reinforcements may be provided in the carcass 36 in other embodiments.
  • The carcass 36 may be molded into shape in the track's molding process during which its elastomeric material 37 is cured. For example, in this embodiment, layers of elastomeric material providing the elastomeric material 37 of the carcass 36, the reinforcing cables 38 1-38 C and the layer of reinforcing fabric 40 may be placed into the mold and consolidated during molding.
  • In this embodiment, the inner side 45 of the track 41 comprises an inner surface 32 of the carcass 36 and a plurality of wheel-contacting projections 48 1-48 N that project from the inner surface 32 to contact at least some of the wheels 42, 50 1-50 8 and that are used to do at least one of driving (i.e., imparting motion to) the track 41 and guiding the track 41. In that sense, the wheel-contacting projections 48 1-48 N can be referred to as “drive/guide projections”, meaning that each drive/guide projection is used to do at least one of driving the track 41 and guiding the track 41. Also, such drive/guide projections are sometimes referred to as “drive/guide lugs” and will thus be referred to as such herein. More particularly, in this embodiment, the drive/guide lugs 48 1-48 N interact with the drive wheel 42 in order to cause the track 41 to be driven, and also interact with the idler wheels 50 1-50 8 in order to guide the track 41 as it is driven by the drive wheel 42. The drive/guide lugs 48 1-48 N are thus used to both drive the track 41 and guide the track 41 in this embodiment.
  • The drive/guide lugs 48 1-48 N are spaced apart along the longitudinal direction of the track 41. In this case, the drive/guide lugs 48 1-48 N are arranged in a plurality of rows that are spaced apart along the widthwise direction of the track 41. The drive/guide lugs 48 1-48 N may be arranged in other manners in other embodiments (e.g., a single row or more than two rows). Each of the drive/guide lugs 48 1-48 N is an elastomeric drive/guide lug in that it comprises elastomeric material 68. The drive/guide lugs 48 1-48 N can be provided and connected to the carcass 36 in the mold during the track's molding process.
  • The ground-engaging outer side 47 of the track 41 comprises a ground-engaging outer surface 31 of the carcass 36 and a plurality of traction projections 61 1-61 M that project from the outer surface 31 and engage and may penetrate into the ground to enhance traction. The traction projections 61 1-61 M, which can sometimes be referred to as “traction lugs”, are spaced apart in the longitudinal direction of the track system 16 i. The ground-engaging outer side 47 comprises a plurality of traction-projection-free areas 71 1-71 F (i.e., areas free of traction projections) between successive ones of the traction projections 61 1-61 M. In this example, each of the traction projections 61 1-61 M is an elastomeric traction projection in that it comprises elastomeric material 69. The traction projections 61 1-61 M can be provided and connected to the carcass 36 in the mold during the track's molding process.
  • The track 41 may be constructed in various other ways in other embodiments. For example, in some embodiments, the track 41 may comprise a plurality of parts (e.g., rubber sections) interconnected to one another in a closed configuration, the track 41 may have recesses or holes that interact with the drive wheel 42 in order to cause the track 41 to be driven (e.g., in which case the drive/guide lugs 48 1-48 N may be used only to guide the track 41 without being used to drive the track 41), and/or the ground-engaging outer side 47 of the track 41 may comprise various patterns of traction projections.
  • The drive wheel 42 is rotatable about an axis of rotation 49 for driving the track 41 in response to rotation of an axle of the vehicle 10. In this example, the axis of rotation 49 corresponds to the axle of the vehicle 10. More particularly, in this example, the drive wheel 42 has a hub which is mounted to the axle of the vehicle 10 such that power generated by the power source 14 and delivered over the powertrain 15 of the vehicle 10 rotates the axle, which rotates the drive wheel 42, which imparts motion of the track 41.
  • In this embodiment, the drive wheel 42 comprises a drive sprocket engaging the drive/guide lugs 48 1-48 N of the inner side 45 of the track 41 in order to drive the track 41. In this case, the drive sprocket 42 comprises a plurality of drive members 46 1-46 T (e.g., bars, teeth, etc.) distributed circumferentially of the drive sprocket 42 to define a plurality of lug-receiving spaces therebetween that receive the drive/guide lugs 48 1-48 N of the track 41. The drive wheel 42 may be configured in various other ways in other embodiments. For example, in embodiments where the track 41 comprises recesses or holes, the drive wheel 42 may have teeth that enter these recesses or holes in order to drive the track 41. As yet another example, in some embodiments, the drive wheel 42 may frictionally engage the inner side 45 of the track 41 in order to frictionally drive the track 41.
  • The idler wheels 50 1-50 8 are not driven by power supplied by the powertrain 15, but are rather used to do at least one of supporting part of a weight of the vehicle 10 on the ground via the track 41, guiding the track 41 as it is driven by the drive wheel 42, and tensioning the track 41. More particularly, in this embodiment, the leading and trailing idler wheels 50 1, 50 2, 50 7, 50 8 maintain the track 41 in tension, and can help to support part of the weight of the vehicle 10 on the ground via the track 41. The roller wheels 50 3-50 6 roll on the inner side 45 of the track 41 along the bottom run 66 of the track 41 to apply the bottom run 66 on the ground. The idler wheels 50 1-50 8 may be arranged in other configurations and/or the track system 16 i may comprise more or less idler wheels in other embodiments.
  • The frame 44 of the track system 16 i supports components of the track system 16 i, including the idler wheels 50 1-50 8. More particularly, in this embodiment, the front idler wheels 50 1, 50 2 are mounted to the frame 44 in a front longitudinal end region of the frame 44 proximate the front longitudinal end 57 of the track system 16 i, while the rear idler wheels 50 7, 50 8 are mounted to the frame 44 in a rear longitudinal end region of the frame 44 proximate the rear longitudinal end 59 of the track system 16 i. The roller wheels 50 3-50 6 are mounted to the frame 44 in a central region of the frame 44 between the front idler wheels 50 1, 50 2 and the rear idler wheels 50 7, 50 8. Each of the roller wheels 50 3-50 6 may be rotatably mounted directly to the frame 44 or may be rotatably mounted to a link which is pivotally mounted to the frame 44 to which is rotatably mounted an adjacent one of the roller wheels 50 3-50 6 (e.g., forming a “tandem”).
  • The frame 44 of the track system 16 i is supported at a support area 39. More specifically, in this embodiment, the frame 44 is supported by the axle of the vehicle 10 to which is coupled the drive wheel 42, such that the support area 39 is intersected by the axis of rotation 49 of the drive wheel 42.
  • In this example of implementation, the track system 16 i comprises a tensioner 93 for tensioning the track 41. For instance, in this embodiment, the tensioner 93 comprises an actuator (e.g., a hydraulic actuator) mounted at one end to the frame 44 of the track system 16 i and at another end to a hub of the leading idler wheels 50 1, 50 2. This allows the tensioner 93 to modify a distance between the front idler wheels 50 1, 50 2 and the rear idler wheels 50 7, 50 8 in the longitudinal direction of the track system 16 i.
  • FIG. 8 shows a schematic block diagram of an image processing system 500 for use with a system 100 for monitoring off-road vehicles such as one or more track vehicles like the agricultural vehicle 10. In some embodiments, one or more images captured by an electronic device 501 can be processed using the image processing system 500. For example, in some embodiments, the electronic device 501 may transmit image information relating to a track or other component of a track system of a vehicle, such as the track 41 or another component of the track system 16 i of the vehicle 10, through a communication network 502, to an image processing entity 505 over a communication link, which may be implemented over a cellular network, a WiFi network or other wireless LAN, a WiMAX network or other wireless WAN, etc.
  • In some examples, the electronic device 501 can be a smartphone, a tablet, a smartwatch, a computer, etc., of a user, who may be the operator of the vehicle or another person having access to the vehicle. In other examples, the electronic device 501 may be integrated with the vehicle.
  • In some embodiments, the image processing entity 505 can be an application running on a server. In other embodiments, the image processing entity 505 can be a dedicated network appliance. In yet other embodiments, the image processing entity 505 may be an application running on the electronic device 501. In the embodiment of FIG. 8, the image processing entity 505 comprises a memory 506 for storing image information and instructions for processing images, a processor 507 implementing a plurality of computing modules 508 x (for example, Artificial Intelligence, or “AI”, modules) for performing image recognition, pattern recognition and 3D model matching in order to assess a level and nature of wear, degradation and/or other deterioration of the track 41 or other track system component. In some embodiments, the computing modules 508 x can be implemented using a processor 507. In some embodiments, the computing modules 508 x me be implemented by way of an Application Program Interface (API) that results in the computing modules 508 x being implemented on a separate device or system.
  • Computing modules 508 x may for example be implemented using known computer vision products, such as, AutoML Vision™ and/or Vision API™, each provided by Google™. In other embodiments, computing modules 508 x may comprise standalone AI or machine-learning solutions forming part of image processing entity 505. As defined herein, AI refers to some implementation of artificial intelligence and/or machine learning (e.g., heuristics, support vector machines, artificial neural networks, convolutional neural networks, etc.) in software, hardware or some combination of both.
  • In some embodiments, complex algorithms, like artificial intelligence, are used to categorize what may be considered uncategorizable data. For example, the system 100 can be configured for generating conclusions about a physical state of a track based on one or more images of the track itself. This analysis can include whether or not there is a defect in the track, according to some embodiments. In some embodiments, this can include indications as to the physical state of the track and/or useful life remaining. As will be described below, a machine learning algorithm may be trained to identify a defect or other characteristic in a track by way of image analysis.
  • In some embodiments, computing modules 508 x are first taught how to identify parameters in a training mode (sometimes referred to as supervised learning mode). This is done by analyzing a given set of values, making quantitative comparisons, and cross-referencing conclusions with known results. Iterative refinement of these analyses and comparisons allows an algorithm to achieve greater predictive certainty. This process is continued iteratively until the solution converges or reaches a desired accuracy.
  • In this embodiment, computing modules 508 x can compare image data for a given track to a previously-analyzed mass of known data. When placed in a supervised learning mode, information can be generated from already populated track data provided to the computing modules 508 x. For example, this data could contain images of tracks, along with determinations of the remaining life of the tracks. In other words, in the supervised learning mode, both the inputs and the outputs are provided to the system 100. The system 100 can process the given inputs and compare the calculated outputs according to its algorithm to the provided outputs. Based on this comparison, the system 100 can determine a metric to represent the percentage of error between calculated and provided outputs. Using this error metric, the system 100 can adjust its method of calculating an output. During training, the system 100 can continuously repeat analysis of different inputs and provided outputs in order to fine-tune its method of determining track information.
  • In some embodiments, while the computing modules 508 x may require initial supervised learning, as the computing modules 508 x continue to gain access to data, they may be able to further refine their predictive analytics based on new inputs. For example, if a user is able to confirm that an assessment (e.g. broken/exposed reinforcing cables 38 1-38 C) or prediction (e.g. 6 months of use left in a given track) made by the system 100 is/was incorrect, the user can upload to the system 100 what the correct conclusion/prediction was. This allows the computing modules 508 x to continue to improve accuracy in their analysis.
  • In some embodiments, multiple computing modules 508 x can be configured to determine different characteristics of a given track. Each of these modules can offer a different analysis for a given input. The processor may direct these modules to be used independently or concurrently based on an operational parameter determined by a given user. For example, the system 100 may use a different analytical technique to determine track life compared to drive wheel misalignment. Based on an image communicated to the system 100 from an electronic device, the system 100 may analyze a given for track life, drive wheel misalignment, or other forms of wear and/or damage.
  • In some embodiments, the computing modules 508 x are configured to assess a level of wear, damage and/or other deterioration of the track 41 or other track system component. For example, a computing module 508 x can be configured to determine that the traction projections 61 1-61 M are worn to 30% of the level of wear that would require replacement of the track. In some embodiments, the computing modules 508 x are configured to assess the nature of damage to the track 41 or other track system component. For example, a computing module 508 x can be configured to determine that a midroller (or any other track system component, such as a sprocket) is damaged or missing.
  • In some embodiments, the computing modules 508 x are further configured to predict the cause of the wear and/or damage to the track 41 or other track system component. In one specific example, a computing module 508 1 is configured to predict whether a specific wear pattern of the elastomeric material of a track 41 is caused by a misaligned drive wheel. In another specific example, a computing module 508 2 is configured to predict whether a specific wear pattern of the elastomeric material of a traction projections 61 1-61 M is caused by excessive roading (i.e. traversing a paved road). In another specific example, another computing module 508 3 is configured to predict whether a specific wear pattern of the track (e.g. the abnormal relative position of two adjoining track links) is caused by a broken reinforcing cable 38 1-38 C. As will be appreciated, each computing module 508 x can be implemented using a combination of deep learning, supervised or unsupervised machine learning, image recognition and/or machine vision.
  • In some embodiments, the system 100 is configured to capture one or more 2D images to detect specific patterns of wear and/or damage. For example, the system 100 may be configured to implement one or more computer vision (CV) models to detect specific visible wear/damage features. Examples of such visible wear/damage features include, but are not limited to, broken and/or exposed reinforcing cables 38 1-38 C, linear recesses in the carcass 36 caused by delamination and changes in the shape of drive wheel 42 (sprocket) teeth, evidencing sprocket tooth wear caused by debris and/or normal engagement with drive/guide lugs 48 1-48 N.
  • In some embodiments, the image processing system 500 may produce a three-dimensional (3D) scan to generate a 3D model of at least part of the track 41 or other track system component. For example, in some embodiments, the image data received by the electronic device 501 or any other image capture means are processed by way of photogrammetry in order to create the 3D model of the track 41 and/or track component. In some embodiments, as described in more detail below, laser line scanners are instead used to generate the 3D model of the track 41 and/or track component.
  • Such precise 3D models can be compared to 3D models of unworn and/or undamaged tracks in order to precisely measure wear, damage and/or other deterioration. For example, by comparing the 3D model of a worn track 41 to the 3D model of a new, unworn track, it is possible to precisely measure a volumetric loss of material of the worn track 41, and thereby assess the wear and/or other deterioration of the worn track 41, very precisely.
  • With reference to FIG. 38, in some embodiments, the system 100 may generate a 3D model 55 of a track 41, or track system 16 x component, using any of the above methods, or a combination thereof. In some embodiments, the system 100 can then be superimposed onto an image of the track 41 captured by electronic device 501. Such superimposition may be achieved using known augmented reality (AR) techniques and processes.
  • As described above, in some embodiments, the system 100 can implement a 2D recognition technique. In some embodiments, the system 100 can implement a 3D recognition technique. In some embodiments, the system 100 can implement a combination of a 2D recognition technique and a 3D recognition technique.
  • In some embodiments, the 3D recognition technique used is based on generating a 3D model using a point cloud. For example, as shown in FIG. 51, method 5100 can be used to identify track component wear/damage and/or the extent thereof. At step 5010, a plurality of images of the track system component can be acquired using the electronic device 501, before sending the images to the image processing entity 505 at step 5102. At step 5103, the system 100 generates a 3D point cloud using the plurality of images. This can be accomplished by system 100 using, for example, open source algorithms, such as those available from Point Cloud Library (PCL). Alternatively, the point cloud can be generated a third party, through use of an Application Program Interface (API) by system 100. At step 5104, the system 100 uses the generated 3D point cloud to generate a 3D model of the track system component. Once generated, the 3D model is matched to known 3D models of track system components in a track system components database at step 5105. Once matched, at step 5106, wear, damage and/or the extent thereof can be identified by comparing the generated 3D model to the known 3D model, as described in more detail below.
  • 2D recognition techniques include four basic steps, namely image acquisition, image processing, feature extraction and classification. Such techniques include, but are not limited to, Optical Character Recognition (OCR), feature detection, image gradient analysis, pattern recognition algorithms and feature/pattern classification algorithms.
  • In some embodiments, the system 100 can be configured to implement the method of FIG. 52. In particular, at step 5201, the electronic device 501 can acquire one or more images of a track system component, before sending the images to the image processing entity 505 at step 5202. In some embodiments, the image processing entity 505 can perform image processing steps prior to feature extraction. For example, in some embodiments, the image processing entity 505 can be configured to perform image processing including the use of fiducial markers. Then, at step 5204, the image processing entity 505 can perform feature extraction in order to detect and isolate various portions or shapes (features) of the image or images. Feature extraction can include, but is not limited to, edge detection, corner detection, blob detection, ridge detection, scale-invariant feature transform, thresholding, blob extraction, Haar-like feature extraction, template matching, Hough transforms and generalized Hough transforms.
  • Then at step 5205, the system 100 can perform feature classification. In some embodiments, feature classification can include, but is not limited to, the use of nearest neighbor classification, cascading classifiers, neural networks, statistical classification techniques and/or Bayesian classification techniques. Once the features have been classified, it is possible to separate, at step 5206, features which represent undamaged/unused parts of the track system component, and features (e.g. cracks, exposed cables, etc.) which represent patterns of wear or damage. Once features relating to patterns of wear or damage have been detected, it is possible for the system 100 to perform further feature classification on the wear or damage pattern.
  • As shown in FIGS. 49 and 50, in some embodiments, system 100 is configured to use the system of FIG. 52 in order to detect damage or wear patterns in track system components. For example, as shown in FIG. 49, system 100 can be configured to detect partially embedded (though exposed) cables 55 A using the 2D analysis method described with reference to FIG. 52. Similarly, as shown in FIG. 50, system 100 can be configured to recognize a narrow (though potentially deep) crack 55 B in carcass 77. As will be appreciated by the skilled reader, such patterns are difficult to detect using volumetric analysis alone. As such, the 3D recognition techniques of the present disclosure can be combined with any of the 2D recognition techniques in order to facilitate track system component matching, as well as wear and/or damage recognition and characterization. Moreover, the 2D recognition techniques of the present disclosure can be used on images generated by the system 100 of various views of the 3D model generated using the 3D recognition techniques of the present disclosure.
  • As shown in the method of FIG. 53, once a plurality of images are acquired at step 5201, the system 100 can sequentially use 3D recognition at step 5302 and then 2D recognition at step 5303 in order to detect patterns of wear and/or damage on a track system component. In some embodiments, 2D recognition may be performed before 3D recognition. Advantageously however, 3D recognition is performed first, as in such an arrangement, the system 100 may be configured to superimpose 2D features onto 3D models, thereby allowing a more precise classification of the type of wear and/or damage.
  • As shown in FIGS. 39 to 44, in some embodiments the system 100 is configured to generate a 3D model 55 of a used and/or damaged track and compare it to a 3D model 77 of an unused and undamaged track. The 3D model 77 of an unused and undamaged track may be generated by the system 100 based on a previously-scanned track, may be acquired by the system 100 from a database of 3D models of tracks, or may be acquired by the system in any other suitable way. Once the 3D model 77 of an unused and undamaged track is acquired or generated by the system 100, it can be compared to the 3D model 55 of a used and/or damaged track generated by the system 100 using various volumetric comparison techniques. For example, the system 100 may compare the models by calculating the amount of missing material of a given track feature (e.g. traction projections 61 1-61 M). For example, volumetric comparison of the 3D model 55 of a used and/or damaged track and a 3D model 77 of an unused and undamaged track can establish that a given traction projection 61 x has been worn to 78% of its original volume.
  • In some embodiment, the cause and/or nature of the wear and/or damage of the track 41, or other track system component, can be established by the system 100 performing a volumetric comparison of the 3D model 55 of a used and/or damaged track and a 3D model 77 of an unused and undamaged track.
  • For example, as shown in FIGS. 39 and 40, based on a comparison of the 3D model 55 of a used track and a 3D model 77 of an unused track, in some embodiments the system 100 can determine a pattern of tread wear that is indicative of the cause and/or nature of the tread wear. In particular, the trailing edge wear pattern detected by the system 100 in the traction projections 61 1-61 M of FIG. 39 is typically caused by a weight balance bias towards the rear of a vehicle 41. The “wheel path” wear pattern detected by the system 100 in the traction projections 61 1-61 M of FIG. 40 is caused by an increase in wear in the area under the highest load (known as the wheel path).
  • As shown in FIGS. 41 and 42, based on a comparison of the 3D model 55 of a damaged track and a 3D model 77 of an undamaged track, in some embodiments the system 100 can determine a pattern of damage that is indicative of the cause and/or nature of the damage. In particular, the minor delamination damage detected by the system 100 in the traction projections 61 1-61 M of FIG. 41 is typically caused by incomplete or improper curing, contamination of source material and/or poor quality source material. The “chunking” damage detected by the system 100 in the traction projections 61 1-61 M of FIG. 42 is typically caused by highly abrasive or hard/irregular ground conditions.
  • As shown in FIG. 43, based on a comparison of the 3D model 55 of a used track and a 3D model 77 of an unused track, in some embodiments the system 100 can determine a pattern of non-tread wear that is indicative of the cause and/or nature of the non-tread wear. In particular, in the case of some agricultural and construction vehicle track systems, the wear pattern detected by the system 100 in the drive/guide lugs 48 1-48 N of FIG. 43 relates to typical drive/guide lug break-in wear. The wear pattern detected by the system 100 on the inside of the carcass 36 of FIG. 44 relates to typical carcass wear due to use of the vehicle 10 for abrasive/construction applications.
  • As shown in FIG. 45, based on a comparison of the 3D model 55 of a damaged track and a 3D model 77 of an undamaged track, in some embodiments the system 100 can determine a pattern of damage that is indicative of the cause and/or nature of the damage. In particular, the straight crack located near a joint area at the outer diameter of the track 47 detected by the system 100 in the carcass 36 of FIG. 41 is typically caused by incomplete or improper curing, contamination of source material and/or poor quality source material.
  • For example, as shown in FIG. 46, based on a comparison of the 3D model 55 of a used track system component and a 3D model 77 of an unused track system component, in some embodiments the system 100 can determine a pattern of track system component wear that is indicative of the cause and/or nature of the wear. In particular, the sprocket (drive wheel 42) wear pattern detected by the system 100 in the sprocket teeth of FIG. 46 is typically caused by normal operation. By determine the extent of the wear using the techniques described above, the system 100 can determine if and when a sprocket requires replacing.
  • As shown in FIG. 47, based on a comparison of the 3D model 55 of a damaged track and a 3D model 77 of an undamaged track, in some embodiments the system 100 can determine a pattern of damage that is indicative of the cause and/or nature of the damage. In particular, the tread delamination or carcass 36 layer separation detected by the system 100 in the carcass 36 of FIG. 47 is typically caused by poor adhesion of the layer delaminating layer due to contamination or improper curing of the track.
  • As shown in FIG. 48, based on a comparison of the 3D model 55 of a used track and a 3D model 77 of an unused track, in some embodiments the system 100 can determine a pattern of non-tread wear that is indicative of the cause and/or nature of the non-tread wear. In particular, in the case of construction vehicle track systems, the central wear pattern detected by the system 100 in the drive bars of FIG. 43 relates to a drive wheel 42 that is not adapted to the track 41, possibly because the teeth of the drive wheel 42 itself are worn beyond a threshold.
  • As described above, and as shown in FIG. 49, system 100 can use the 2D recognition technique described above to recognize and characterize the presence of exposed track cables 55 A. Also, as shown in FIG. 50, the system 100 can use the 2D recognition technique described above to recognize and characterize the presence of a crack 55 B in the carcass of track 77.
  • Once the computing modules 508 x has determined the cause, level and/or nature of the wear and/or damage of the track 41 or other track system component, the image processing entity 505 may send data relating to the cause, level and/or nature of the wear and/or damage of the track 41 or other track system component back to electronic device 501 for further processing and/or notification to a user. By using this information, electronic device 501 may determine that an event arising from usage of a track system 16 x, such as a usage threshold event (e.g. an amount of tread wear, an amount of time such as a number of hours the track 41 has been used), wear threshold event (e.g. the number of exposed reinforcing cables caused by chunking) and/or damage event (e.g. one or more severed reinforcing cables), has occurred.
  • According to some embodiments, the computing modules 508 x may have access to information stored elsewhere on the internet. For example, the computing modules 508 x may be configured to query databases stored on external servers by sending requests over the network in order to analyze the image based on pertinent cross-referential data. This may include weather, humidity, or information about the vehicle or track that can be periodically updated.
  • FIG. 9 illustrates a schematic network diagram of a system 100 for monitoring vehicles such as one or more track vehicles like the agricultural vehicle 10, according to one embodiment. In the embodiment of FIG. 9, the system 100 includes an electronic device 501, a network 124, and a system server 1142 that can implement the image processing entity 500 of FIG. 8. The server includes a memory 1146, processor 1144, and network interface 1148.
  • The electronic device 501 may include elements such as a processor, a memory, a display, a data input module, and a network interface. The electronic device 501 may include other components, but these have been omitted for the sake of brevity. In operation, the electronic device 501 is configured to perform the operations described herein. The electronic device 501 processor may be configured to execute instructions stored in memory. The instructions, when executed, cause the electronic device 501 to perform the operations described herein. In some embodiments, the instructions may be part of a software application downloaded into memory by the electronic device 501. Alternatively, some or all of the functionality described herein may be implemented using dedicated circuitry, such as an ASIC, a GPU, or a programmed FPGA for performing the operations of the processor.
  • In some embodiments, an application (“app”, i.e., software) may be installed on the electronic device 501 to interact with the system server 1142 and or the vehicle 10. For example, in some embodiments, such as where the electronic device 501 is a smartphone, a tablet, a computer, etc., the user (e.g., the operator) may download the app from a repository (e.g., Apple's App Store, iTunes, Google Play, Android Market, etc.) or any other website onto the electronic device 501. Upon activation of the app on the electronic device 501, the user may access certain features relating to the system server 1142 and/or the vehicle 10 locally on the electronic device 501.
  • In operation, a user can use the electronic device 501 to generate data about the vehicle 10. For example, for embodiments where the electronic device is a smart phone equipped with a camera, the user can take one or more images of a track 41 of the vehicle 10. The system 100 may then take the image data captured by the electronic device 501 and transmit the image data over a network 124 to a system server 1142.
  • According to some embodiments, the electronic device 501 may be a portable electronic device with multiple uses such as a mobile phone, tablet or laptop. According to other embodiments, the electronic device may be a single-use electronic device, such that the device is designed to only be used in operation with the system 100. Further, the electronic device 501 may also be capable of establishing a communicable link with an accessory device. This communicable link be may be wireless, wired, or partly wireless and partly wired (e.g., Bluetooth or other short-range or near-field wireless connection, WiFi or other wireless LAN, WiMAX or other wireless WAN, cellular, Universal Serial Bus (USB), etc.).
  • According to other embodiments, the electronic device 501 may integrated into an internal computer 1342 in the off-road vehicle (as shown in FIG. 10). The internal computer 1342 may have a vehicle memory 1346, processor 1344, network interface 1348, and internal sensor network 1350. In some embodiments, vehicle internal computer 1342 can communicate and upload images to system server 1142 independently.
  • The internal sensor network 1350 can include sensors to provide information about the vehicle or the track of the vehicle. For example, this may include a camera positioned to take images of the track. In some embodiments where the electronic device is integrated into an internal computer in the off-road vehicle, the system 100 may be configured to continuously monitor the track. This can be achieved by continuously capturing data, for example, images of the vehicle track, at various intervals. The electronic device 501 can then automatically upload the data over the network 124 to the system server 1142 for image processing. After processing, the image processing entity 505 can automatically communicate over the network 124 if a fault state has been determined.
  • The electronic device 501 can also send additional data to the image processing entity 505 over the network 124. For example, this can include (but is not limited to) GPS location, date and time, or any information from an onboard computer within the vehicle. This data can be cross-referenced and analyzed within the computing modules 508 x. For example, given GPS and date and time data, the AI module can access the specific weather and weather history for the vehicle location. In some embodiments, such information may be used in, for example, determining the end-of-life of a track (i.e. the amount of time until a track is expected to fail or until the likelihood of track failure rises above a predetermined threshold).
  • This may be achieved by a separate electronic device 501 being communicably linked to an internal computer 1342 of a vehicle 10. The internal computer 1342 may periodically receive and record information relating to the vehicle 10 and/or track systems 16 1-16 4 determined by the internal sensor network 1350. For example, the internal sensor network 1350 may include an image taken of the track or information about the vehicle 10, such as the speed of the vehicle 10.
  • According to some embodiments, the electronic device 501 may communicate a unique identifier for a specific track under inspection. In some embodiments, the unique identifier can be a serial number of the track. This allows the server 1146 and/or internal computer 1342 to catalog the inspection and produce a history of a given track. According to some embodiments, the internal computer 1342 and/or the server 1146 may store data about the serial numbers of the tracks installed on the vehicle 10.
  • According to some embodiments, the electronic device 501 may be capable of determining a serial number from a track based on an image of the track. This can be done by the electronic device 501 capturing an image of an embossed serial number on a surface of the track, and using the image processing entity 505 to determine the specific characters of the serial number. This can be cross-referenced with a database stored in server memory 1146 (or otherwise accessible by system server 1142) to determine elements such as the model and date of manufacture of the track.
  • Serial number analysis may be performed using AI techniques employed by the computing modules 508 x, may be performed using techniques such as optical character recognition (OCR), or a combination thereof. These techniques may include preprocessing of an image in order to improve the ability to analyze the target components, such as de-skewing, layout analysis, and binarization. In some embodiments, a track system and/or track system component (such as a track) can be identified by way of another marking or tag suitable for communicating information relating to the track system and/or track system component. Such markings or tags can include, but are not limited to, barcodes, Quick Response (QR) codes or other matrix barcodes and Radio Frequency Identification (RFID) tags.
  • Another method of track identification that can be performed by the electronic device 501 is track pattern recognition. The electronic device 501 may be configured to analyze the tread pattern and measure track width to determine a number of characteristics about the track. The electronic device 501 may then send this data and information to the system server 1142 for further data analysis to identify the type of track. The type of track may be a track brand, model number, or any other suitable information capable of identifying a track.
  • According to some embodiments, the vehicle may be capable of communicating all the necessary data over the network without the use of an external electronic device 501 such as a mobile phone. For example, the vehicle 10 may be equipped with a network interface capable of independently communicating with the system server 1142 over the network 124.
  • According to some embodiments, a system server 1142 hosts the image processing entity 505. Server processor 1144 is able to access instructions stored in the memory 1146 that can initialize the image processing entity 505. This initialization can include operational parameters that include which AI module 508 x to use.
  • Image processing entity 505 can store instructions relating to a specific AI module 508 x within the memory 1146. The processor 1144 may instruct the server to save the data received from the network via the network interface 1148 in memory 1146. The processor 1144 may analyze the data in memory 1146 and determine information about the track 41. Based on the data analysis, the processor 1144 may send a communication to the electronic device 501 over the network 124 via the network interface 1148.
  • FIG. 11 illustrates a schematic network diagram of a system 100 for monitoring off road vehicles, according to another embodiment. According to this embodiment, the system 100 can communicate with multiple vehicles 10 A-10 N. While this figure shows the vehicles 10 A-10 N communicating independently with the system server 1142 over the network 124, the vehicles may alternatively each be communicably linked with an electronic device 501 as described with reference to FIG. 9. According to this embodiment, the system server 1142 may communicate with an electronic device 501 located at a dispatch center 1102, a service center 1104, or a parts supplier 1107.
  • In operation, based on the analysis determined by the image processing entity 505, the system server 1142 may communicate with the user via an electronic device 501 or the vehicle 10, a dispatch center 1102, a service center 1104, or a parts supplier 1106. The system 100 may also communicate with any combination of these, or any other suitable device registered within the system 100. This communication can contain information such as that indicating the determination of track wear and/or damage concluded by the image processing entity 505. Based on this information, the dispatch center 1502 or user may schedule maintenance with the service center 1104. Based on the conclusion on track wear and/or damage (for example, that the track needs to be replaced) and vehicle information (track type, vehicle type) available, the system 100 can determine the amount of time required or parts available at the service center 1104 and facilitate scheduling a maintenance appointment or a shipment from the parts supplier 1106. This can be done by maintaining a database of inventory at the service center, along with a calendar.
  • FIG. 12 A to C illustrate representations of different databases that may be generated by the server processor 1144 based on information stored in memory 1146. The server memory 1146 can store a history of all information necessary for performance of the system 100, including a record of all inspections and conclusions made. These databases, or the information stored within them, may be accessible to users and administrators of the system 100, or to software able to interact with the system 100 through the use of an application programming interface (API).
  • FIG. 12A shows an example of a visual representation of a database that can be generated by the system 100 according to an embodiment directed towards a specific track manufacturer. This includes an indication of track model, a serial number for the track, the date of an inspection, the type of inspection, along with the registered owner. This database representation gives the manufacturer access to all registered tracks sold and registered within the system 100, and allows access to information on track wear and damage.
  • FIG. 12B shows an example of a visual representation of a database that can be generated by the system 100 according to an embodiment directed towards a vehicle fleet manager. The database includes an indication of track model, a unique identifier for the vehicle itself, the date of an inspection, track status, and an additional field for manager notes. This database representation gives the fleet manager access to all vehicles registered within the system 100, and allows them to access a history of information on track wear and/or damage.
  • FIG. 12C shows an example of a visual representation of a database that can be generated by the system 100 according to an embodiment directed towards a specific vehicle manufacturer. This includes an indication of vehicle model, track model, a date of an inspection, track status, and an additional field for manager notes. This database representation gives the vehicle manufacturer access to all of their vehicles registered within the system 100, and allows them to access a history of information on track wear and/or damage.
  • The disclosed embodiments of database representations are structured merely by way of example for illustrative purposes, and a skilled reader would know that these visual representations can be changed to include more or less information available to the system 100.
  • FIG. 13 shows an example flowchart of the use of the system 100 which could be used (e.g., by the operator of the vehicle 10, in a rental market, etc.) to monitor usage of track system components.
  • In operation, a user can use the electronic device 501 to generate image data relating to the track 41 and/or track system 16 x of the vehicle 10. According to some embodiments, the electronic device 501 may also access internal information stored on the vehicle onboard computer 1342. The electronic device 501 may then communicate both the data captured and the information retrieved by the electronic device 501 over the network 124 to the system server 1142 to be stored in memory 1146. Using both the data captured and the information retrieved the processor 1144 may determine information about the track 41. Based on the data analysis, the processor 1144 may send a communication to the electronic device 501 over the network 124 via the network interface 1148.
  • At step 1301, the system 100 determines that an event arising from use of a track system 16 x, such as a usage threshold event (e.g. an amount of time such as a number of hours the track 41 has been used) or a deterioration threshold event (e.g. chunking or other loss of elastomeric material of the track, the number of exposed reinforcing cables, one or more severed reinforcing cables, etc.), has occurred. As described above, the system 100 can make these determinations by analysis of the images taken by the image capture devices described above.
  • At step 1302, the system 100 identifies the track system component for which the usage threshold event or deterioration threshold event has occurred. In some embodiments, the track system component information and information relating to the usage threshold event and deterioration threshold event is conveyed to the operator of the vehicle by the system 100 in order to facilitate scheduling of track system component servicing and/or other maintenance.
  • For purposes of this example, it is assumed that the usage threshold event or deterioration threshold event is for the track 41.
  • For example, the system 100 may issue a notification conveying this information to the operator via the user interface of the operator cabin 20 of the vehicle 10 and/or the electronic device 501. According to embodiments wherein the electronic device 501 is a mobile phone, this could be in the form of a push notification sent to the app over the network 124. In other embodiments, the system 100 conveys the track system component information and information relating to the usage threshold event and deterioration threshold event to an organization providing maintenance services. For example, the system 100 may issue a notification conveying this information to a system server 1142 associated with the organization via a network 124 (e.g. which may be implemented by the Internet, a cellular connection, and/or any other network infrastructure). Once the information is received, the organization can schedule maintenance of the vehicle at step 1303, and subsequently replace or repair the track system component. Accordingly, track system component maintenance operations can be initiated and scheduled without the need for input from the vehicle operator.
  • As shown in FIG. 14, the system 100 may allow organizations to provide track-as-a-service type payment/usage models, in which tracks are not purchased, but are rather provided as a service to vehicle operators in exchange for a subscription fee. For example, for a monthly fee, an organization may provide vehicle operators with tracks, as well as usage rights to the system 100 described herein which will allow the organization to ensure that the vehicle operator is never without an operable/functional track, regardless of how much and how (i.e. under what circumstances) the vehicle operator uses the track.
  • This can lead to significant savings in term of vehicle downtime and logistics. For example, at step 1401, the system 100 determines that an event arising from usage of a track system 16 x, such as a usage threshold event (e.g. an amount of tread wear, an amount of time such as a number of hours the track 41 has been used), deterioration threshold event (e.g. the number of exposed reinforcing cables) and/or deterioration event (e.g. one or more severed reinforcing cables), has occurred. At step 1402, the system 100 identifies the track system component for which the usage threshold event, deterioration threshold event and/or deterioration event has occurred. At step 1403, vehicle location information relating to the geographic location of the vehicle is determined. This can be achieved by any suitable means including, but not limited to, Global Positioning System (GPS) receivers. In some embodiment, the system 100 conveys the track system component information, vehicle location information and information relating to the usage threshold event, deterioration threshold event and/or deterioration event to the track-as-a-service organization.
  • As shown in above, the system 100 may communicate with the system server 1142 of the track-as-a-service organization over a network 124 (e.g. which may be implemented by the Internet, a cellular connection, and/or any other network infrastructure). Then, at step 1404, the track-as-a-service organization ships a replacement track system component to a location related to the geographic location of the vehicle. For example, the track-as-a-service location could ship the replacement track system component to the nearest maintenance service dispatch location or third party maintenance organization. At step 1405, the track-as-a-service organization can schedule a maintenance of the track system. In some embodiments, the track-as-a-service organization schedules a third party mobile maintenance team to perform onsite maintenance based on the geographic location of the vehicle. Finally, at step 1406, the track-as-a-service organization, or an agent thereof, replaces the track system component. In some embodiments, this can be performed onsite, based at least in part on the vehicle location information received from the track-as-a-service organization.
  • FIG. 15 shows an example flowchart of the use of the system 100 which could be used, for example, by a fleet manager to monitor usage of track system components. In this system 100, the preferences of a given fleet manager can be included in any part purchase or system maintenance request. For example, a fleet manager may consider a specific track to be superior to all other on the market. The fleet manager may want to only purchase that specific brand of track. Another example of purchase preferences may include only to purchase a specific track if the supplier inventory and price database indicates that the part is available with a discount. Further, if there is no supply of a first preferred track in the inventory, the user may store a preference for an alternate track to be purchased. In this embodiment, steps 1501 and 1502 are the same as those described in steps 1301, 1401, and 1302, 1402 respectively.
  • At step 1503, the system 100 will query the memory to determine if the specific user has a purchase preference stored in the system 100. If the system 100 has a purchase preference stored for the given user, the system 100 will order the track system component for replacement based on the saved preference at step 1506. If the system 100 does not find a purchase preference for the given user, the system 100 may send a communication to the user's electronic device 501 with information indicating the part purchase options and information about the parts (for example the various options of price and part characteristics). The system 100 may also send a communication instructing the electronic device 501 to prompt the user to store a purchase preference. Based on this information, the system 100 will order the track system component at step 1507.
  • At step 1509, the system 100 may schedule maintenance with a given service center or technician. At this step user preferences may also be considered. For example, a user may be able to store in their profile a preference for scheduling. This may include a preference for the first available time to service the vehicle. Alternatively, a fleet manager may try and coordinate scheduling of maintenance with other vehicles within a fleet. This could include wanting all vehicles to be serviced at the same time, or to stagger vehicle services. Scheduling preferences may also include a time of day preference for the user to have maintenance scheduled. Based on these preferences, the user may be automatically scheduled for maintenance.
  • According to other embodiments, the system 100 may prompt the user via a date and time entry interface, such as a calendar interface, on the electronic device 501 to input a date and time for maintenance. Based on this input data, the system 100 can schedule maintenance with a technician or service center.
  • Finally, at step 1520, the track-as-a-service organization, or an agent thereof, replaces the track system component. In some embodiments, this can be performed onsite, based at least in part on the vehicle location information received from the track-as-a-service organization.
  • FIG. 16 shows an example flowchart of the use of the system 100 which could be used, for example, by a fleet manager to monitor usage of track system components. According to this embodiment, inventory of the track system components at a given service center can be monitored. The system 100 allows organizations managing large fleets (e.g. vehicle rental companies, construction companies, forestry companies, etc.) to ensure that maintenance operations can be scheduled and carried out effectively and efficiently. For example, by monitoring the wear of track system components, it is possible to more precisely predict when a track system component will fail and/or when a replacement track system component should be ordered and/or shipped.
  • Moreover, for an organization managing a fleet of vehicles, knowing which vehicles will shortly require maintenance and/or replacement parts contributes to efficient and effective deployment of vehicles and maintenance resources. For example, at step 1601, the system 100 determines that an event arising from usage of a track system 16 x, such as a usage threshold event (e.g. an amount of tread wear, an amount of time such as a number of hours the track 41 has been used), deterioration threshold event (e.g. the number of exposed reinforcing cables) and/or deterioration event (e.g. one or more snapped or broken reinforcing cables), has occurred. At step 1602, the system 100 identifies the track system component for which the usage threshold event, deterioration threshold event and/or deterioration event has occurred. In some embodiments, as shown in FIG. 15, the system 100 conveys the track system component information and information relating to the usage threshold event, deterioration threshold event and/or deterioration event to an automated fleet management system. The system 100 may communicate with the automated fleet management system over a network 124 (e.g. which may be implemented by the Internet, a cellular connection, and/or any other network infrastructure). At step 1603, the automated feet management system queries a track system component supply database to determine whether the identified track system component is available or needs to be ordered.
  • The track system component supply database can be managed by the fleet management system, or can be managed by a third-party track system component supplier. If the identified track system component is available, the vehicle can be scheduled for maintenance. If, on the other hand, the track system component is not available, the fleet management system can cause the track system component to be ordered at step 1604, before scheduling maintenance of the vehicle at step 1605. This system may also include ordering based on stored user preference as previously described.
  • In some embodiments, the scheduling of the vehicle maintenance is at least in part based on the estimated delivery time for an ordered track system component. In other embodiments, the dispatching of the vehicle relating to the identified track system component can, at least partially, be based on a pre-scheduled maintenance. This system 100 may also include scheduling based on stored user preference as previously described. Finally, at step 1606, the maintenance operation is carried out and the track system component is replaced or repaired.
  • FIG. 17 shows an example flowchart of the use of the system 100 which could be used, for example, by a vehicle operator to monitor usage of track system components. According to this embodiment, the system 100 has determined a critical error to have taken place or imminent. In this embodiment, steps 1701 and 1702 are similar to those described in steps 1301, 1401, and 1302, 1402 respectively.
  • If the system 100 has determined that a critical error has taken place or is imminent, it can prompt the user to establish an audiovisual and/or textual connection with a technician at 1703. This could be achieved by using a Voice Over IP (VoIP) system, a phone call over a cellular network, or any other means of text, audio or video communication. This will allow the vehicle operator to communicate with the technician and get or receive pertinent information to vehicle maintenance. For example, the technician may instruct the user to drive the vehicle to a safe location and wait for the technician to arrive. In the case of a video call, the technician may be able to instruct the user to point the camera of the electronic device at a specific component of the vehicle 10 in order to provide the technician with more information about the vehicle status.
  • FIG. 18 shows an example flowchart of the use of the system 100 which could be used, for example, by a vehicle operator to monitor usage of track system components. According to this embodiment, the system 100 has determined a critical status of the track and/or track system. In this embodiment, steps 1801 and 1802 are similar to those described in steps 1301, 1401, and 1302, 1402 respectively.
  • At step 1803, the system 100 alerts relevant parties of the critical status. This can include fleet managers, technicians or other operators. For example, the system 100 may send a text message, email or app push notification to any interested party that the status and operability of a given vehicle with a unique identifier has reached a certain threshold of wear or damage. Based on the information determined by the system 100, the vehicle operator or fleet manager may override the decision determined by the system 100 and continue to operate the vehicle. Alternatively, the system 100 may have the capability to safely disable the vehicle given specific parameters. For example, the system 100 may only allow the vehicle to operate for another specific distance or time, or may not allow the vehicle to restart after it has switched off without an appointment with a technician.
  • FIG. 19 shows an example flowchart of the use of the system 100 by, for example, a vehicle operator to monitor usage of track system components. According to this embodiment, the system 100 is able to determine a specific track brand or type, and cross-reference this brand or type with a database of compatible brands stored in a memory. In this embodiment, steps 1901 and 1902 are similar to those described in steps 1301, 1401, and 1302, 1402 respectively.
  • According to this embodiment, the system 100 is able to identify the track characteristics 1903. These characteristics may include thickness, length, weight, width, tread pattern, internal cable strength, etc. Based on an analysis of the vehicle's track, the system 100 can determine track alternatives at step 1904. This can be done using a pre-populated database stored on a server of all major available track brands and products, along with compatible alternatives. Once the system 100 has determined the track and track characteristics, it can query the database to find all other products that could be used for the vehicle.
  • The system 100 can then communicate the tracks to the user at step 1905. This can be done by sending the information over the network to the electronic device. The user may determine that an alternative track could be used for the vehicle. If the user selects the alternative track, the system 100 will send that message back to the server over the network and proceed to organize any part replacement using the user's selection.
  • As shown in FIGS. 20 to 23, image data capture is shown according to different embodiments. According to some embodiments, the electronic device 501 can display an instruction to the user to position and/or move the electronic device 501 in order to optimally capture the image.
  • FIG. 20 shows an embodiment in which the system 100 may instruct the user to take an image of the vehicle 10. The electronic device 501 will communicate this image along with any other information to be communicated to the system server 1142 for analysis, as described above.
  • As shown in FIG. 21, the system 100 may also or instead instruct the user to take a video of the track 41. The electronic device 501 may then communicate this video along with any other information to be communicated to the system server 1142 for data analysis, as described above.
  • As shown in FIG. 22, the system 100 can instruct the user to use an accessory device 2202 in conjunction with the vehicle 10 in order to generate data about the track 41 and or track system. According to this embodiment, the accessory device 2202 can be an optical sensor communicatively linked to the electronic device 501. The accessory device 2202 can communicate the image data captured to the electronic device 501.
  • The electronic device 501 may communicate this data along with any other information to be communicated to the system server 1142 for analysis, as described above.
  • As shown in FIG. 23, the electronic device 501 can be communicably linked to the vehicle, according to some embodiments. According to this embodiment, the electronic device 501 communicates with an onboard computer 1342 in the vehicle 10 in order to generate data about the vehicle. The electronic device 501 may communicate this data along with any other information to be communicated to the system server 1142 for analysis, as described above.
  • As shown in FIG. 24, the information determined about the vehicle based on the analysis conducted by the system 100 is communicated to the electronic device 501 over the network 124. According to this embodiment, the information was a length of time before the track needed to be replaced.
  • As shown in FIG. 25, the system 100 has already communicated to the electronic device that based on the data analysis, vehicle maintenance is required. The electronic device 501 can then prompt the user to schedule the maintenance. If the user decides to schedule the maintenance, the electronic device 501 can communicate directly with a service center 2604 in order to schedule the maintenance over the network 124. For example, the user may have access to a booking calendar for the service center and select a time. Based on this selection, the parties will be notified that maintenance has been booked. According to some embodiments, the system 100 may have access to information about the service center 2604, such as parts inventory. Based on this inventory, the system 100 can calculate any lead time if required that can be factored into the booking span.
  • According to other embodiments such as those shown in FIG. 26, the system 100 can order new parts through the network 124 by creating a request to a retailer or parts center 2704. In this embodiment, if the service center requires a unique part that they do not have, the system 100 may create a request to the parts center to ship the part to the service center in advance of the booked maintenance time.
  • According to another embodiment, the system 100 may have access to pricing information or alternative replacement parts available at the parts center 2704. The system 100 may present the user with pricing options, sale information for different components they may require ordering for replacement. The user may then inform the system 100 of their preference and the system 100 will submit the order to the parts center accordingly.
  • As shown in FIG. 27, according to some embodiments, the system 100 is configured to schedule a maintenance request over the network 124 without requiring a user to select a time. This time may be based on a user preference saved in the server memory for a given vehicle owner. For example, an owner may have a preference that all vehicles are scheduled for maintenance one month before the system 100 determined date. Accordingly, the system 100 can notify the user of scheduled maintenance as it is automatically scheduled.
  • Similarly, according to some embodiments, the system 100 is able to make purchase requests over the network 124 without requiring the user to select a part component. This choice may be based on a user preference saved in the server memory for a given vehicle owner. For example, an owner may have a preference for a specific brand of vehicle parts. Accordingly the system 100 can notify the user of the part purchase as it is automatically scheduled.
  • As shown in FIG. 28, the electronic device may be communicably linked to a technician 3204. Alongside the user of the electronic device, the technician can also be notified over the network 124 of any determined vehicle information, scheduled maintenance, parts purchased, location of maintenance etc. Based on the user selection the user can be connected to a technician 3204 via the network 124. This connection could be by way of a telephone call, wherein the system 100 communicates a phone number over the network for the electronic device. Alternatively, the system 100 may use a Voice Over IP (VoIP) connection between the user and the technician. According to other embodiments, the communication between user and technician established could be a video call, wherein the technician is able to view a feed coming from a camera module within the user's electronic device.
  • According to the embodiments disclosed in FIGS. 29-31, the system 100 may determine that the vehicle has a critical malfunction. This could be determined through information captured form the onboard computer's internal sensor network or through data captured via the electronic device. For example, the vehicle track may have been damaged to the point where further driving would cause greater permanent damage to the vehicle and may endanger the safety of the driver. Using the communication link between the electronic device and the vehicle, the system 100 can instruct the electronic device to prompt a user with a notification of the critical malfunction and request instruction for whether or not the vehicle should be allowed to continue to operate. Based on this decision, the electronic device can instruct an onboard computer in the vehicle that the vehicle should not be operated again until the system 100 has determined the vehicle is no longer in a critical malfunction state.
  • According to another embodiment and shown in FIG. 29, the electronic device may offer the user a choice to immediately disable the vehicle. Based on this decision, the electronic device can instruct an onboard computer in the vehicle that the vehicle should not be operated again until the system 100 has determined that the vehicle, track system and/or track is no longer in a critical state.
  • According to another embodiment and shown in FIG. 30, the electronic device may not offer the user a choice and immediately disable the vehicle. Based on this decision, the electronic device can instruct an onboard computer in the vehicle that the vehicle should not be operated again until the system 100 has determined the vehicle, track system and/or track is no longer in a critical state.
  • According to yet another embodiment and shown in FIG. 31, the electronic device may not offer the user a choice and may disable the vehicle once the vehicle has been returned to a specific location. This can be done by using a location coordinate determined by either the electronic device 501 or in the vehicle itself. While the vehicle may be continued to be used to complete the current job, when the location coordinate of the vehicle is determined to be the same as a specific location such as a storage facility, the electronic device can instruct an onboard computer in the vehicle that the vehicle should not be operated again until the system 100 has determined that the vehicle, track system and/or track is no longer in a critical state.
  • In some embodiments, with additional reference to FIGS. 32 and 33, in addition to or instead of the electronic device 501, the system server 1142 may receive image data from an inspection station for inspecting vehicles such as the vehicle 10 when they are in proximity.
  • For example, in some embodiments, as shown in FIG. 32, the system 100 may include a imaging inspection station 433 for inspecting track systems of vehicles 431 x. In some embodiments, the imaging inspection station 433 comprises camera systems 432 x arranged to capture images of each of the track system 16 1, 16 2 and their environment. The captured images can then be optionally processed and analyzed locally or remotely in system 100. The camera systems 432 x can include directional cameras having any configuration of lenses suitable for inspecting the system 16 1, 16 2 and their environment.
  • In other embodiments, with additional reference to FIG. 33, the system server 1142 may receive image data from a scanning inspection station 443 for inspecting track systems of vehicles 441 x. In some embodiments, the inspection station 443 comprises laser line scanner and/or laser area scanner systems 442 x arranged to scan each of the track system 16 1, 16 2 and their environment as each vehicle 441 x moves past the inspection station 443. The information generated by the laser line scanner and/or laser area scanner systems 442 x can then be optionally processed and analyzed locally or remotely by system server 1142. This embodiment is particularly advantageous for producing 3D scanning data suitable for subsequent volumetric analysis, as described in more detail above.
  • In some embodiments, with additional reference to FIGS. 34 and 35, the system server 1142 may receive image data from a drone 3201 for inspecting the track 22 and/or other components of each of the track systems 16 1, 16 2 and/or their environment (e.g., detecting the presence of debris, etc.), so that information derived from the drone 3210 may be relayed to the operator of the vehicle 10 and/or another remote device or person. The vehicle 10 may comprise a drone mount 3220 configured to mount the drone 3220 to the vehicle 10 and release the drone 3201 when the drone 3201 is to monitor the vehicle 10 by moving around it.
  • In some embodiments, the drone 3201 is arranged to follow the vehicle, capture and analyze images of each of the track system 16 1, 16 2 and their environment. In other embodiments, the drone 3201 is equipped with a laser line scanner for scanning the track system 16 1, 16 2 and their environment. Communication between the drone 3201 and the vehicle 10 (e.g., between the drone 3201 and the processing entity 88) can be provided for by any suitable means, including but not limited to any combination of Global Positioning System (GPS) signals, Radio Frequency (RF) signals, Bluetooth signals, LIDAR, and RADAR signals. This embodiment is particularly advantageous for producing 3D scanning data suitable for subsequent volumetric analysis, as described in more detail above.
  • In this embodiment, the drone 3210 is an aerial drone configured to fly about the vehicle 10. While the drone 3201 shown in FIG. 34 is a multi-rotor flying drone, other drones are possible, including but not limited to fixed-wing drones, or any other type of unmanned aerial vehicle. Also, in other embodiments, the drone 3210 may be a land drone configured to travel on the ground about the vehicle 10 (e.g., on wheels or on tracks).
  • In some embodiments, with additional reference to FIG. 36, in addition to or instead of the electronic device 501, the system server 1142 may receive image data from a vehicle-mounted inspection device 4801 for inspecting the track systems 16 1, 16 2 of the vehicle 10. In particular, the system 100 may include one or more vehicle-mounted inspection device 4801 for inspecting track systems 16 1, 16 2 of vehicles by way of image data. In some embodiments, each track system 16 1 and 16 2 is provided with a vehicle-mounted inspection device 4801.
  • In some embodiments, the vehicle-mounted inspection device 4801 comprises a camera system arranged to capture images of the track system 16 1, 16 2 and its environment as the track 22 moves around the track-engaging assembly 21. The information generated by the camera system can then be optionally processed and analyzed locally or remotely by the system server 1142.
  • In some embodiments, the vehicle-mounted inspection device 4801 comprises a laser line scanner system and/or a laser area scanner system arranged to scan the track system 16 1, 16 2 and its environment as the track 22 move around the track-engaging assembly 21. The information generated by the laser line scanner and/or laser area scanner systems can then be optionally processed and analyzed locally or remotely by system server 1142. This embodiment is particularly advantageous for producing 3D scanning data suitable for subsequent volumetric analysis, as described in more detail above.
  • In some embodiments, as shown in FIG. 37, a given component mentioned herein (e.g., the electronic device 501, the image processing entity 505, the server 1142, etc.) may comprise a computing system 1500 comprising suitable hardware and/or software (e.g., firmware) configured to implement functionality of that given component. The computing system 1500 comprises an interface 1520, a processor 1540, and a memory 1560.
  • The interface 1520 comprises one or more inputs and outputs allowing the computing system 1500 to receive signals from and send signals to other components to which the computing system 1500 is connected (i.e., directly or indirectly connected).
  • The processor 1540 comprises one or more processing devices for performing processing operations that implement functionality of the computing system 1500. A processing device of the processor 1540 may be a general-purpose processor executing program code stored in the memory 1560. Alternatively, a processing device of the processor 1540 may be a specific-purpose processor comprising one or more preprogrammed hardware or firmware elements (e.g., application-specific integrated circuits (ASICs), electrically erasable programmable read-only memories (EEPROMs), etc.) or other related elements).
  • The memory 1560 comprises one or more memory elements for storing program code executed by the processor 1540 and/or data used during operation of the processor 1540. A memory element of the memory portion 1560 may be a semiconductor medium (including, e.g., a solid state memory), a magnetic storage medium, an optical storage medium, and/or any other suitable type of memory element. A memory element of the memory portion 1560 may be read-only memory (ROM) and/or random-access memory (RAM), for example.
  • In some embodiments, two or more elements of the computing system 1500 may be implemented by devices that are physically distinct from one another (e.g., located in a common site or in remote sites) and may be connected to one another via a bus (e.g., one or more electrical conductors or any other suitable bus) or via a communication link which may be wired, wireless, or both and which may traverse one or more networks (e.g., the Internet or any other computer network such as a local-area network (LAN) or wide-area network (WAN), a cellular network, etc.). In other embodiments, two or more elements of the computing system 1500 may be implemented by a single device.
  • While in embodiments considered above the off-road vehicle 10 is a construction or agricultural vehicle, in other embodiments, the vehicle 10 may be another type of work vehicle such as a knuckleboom loader, etc.) for performing forestry work, or a military vehicle (e.g., a combat engineering vehicle (CEV), etc.) for performing military work, a carrier (e.g. carrying a boom, a rig, and/or other equipment t), or may be any other type of vehicle operable off paved road. Although operable off paved roads, the vehicle 10 may also be operable on paved roads in some cases. Also, while in embodiments considered above the off-road vehicle 10 is driven by a human operator in the vehicle 10, in other embodiments, the vehicle 10 may be an unmanned ground vehicle (e.g., a teleoperated or autonomous unmanned ground vehicle).
  • Any feature of any embodiment discussed herein may be combined with any feature of any other embodiment discussed herein in some examples of implementation.
  • Certain additional elements that may be needed for operation of certain embodiments have not been described or illustrated as they are assumed to be within the purview of those of ordinary skill in the art. Moreover, certain embodiments may be free of, may lack and/or may function without any element that is not specifically disclosed herein.
  • Although various embodiments and examples have been presented, this was for purposes of description, but should not be limiting. Various modifications and enhancements will become apparent to those of ordinary skill in the art.

Claims (29)

1. A system for monitoring a track for traction of a vehicle on a ground, the track being mounted around a plurality of wheels, the track comprising a ground-engaging outer surface configured to engage the ground and an inner surface opposite to the ground-engaging outer surface, the track including elastomeric material to flex around the wheels, the system comprising:
an interface configured to receive data regarding at least one image of the track; and
a processor configured to:
perform a two-dimensional (2D) image analysis based on the data regarding the at least one image of the track to obtain a result of the 2D image analysis;
create a three-dimensional (3D) model of the track based on the data regarding the at least one image of the track; and
generate information on a state of the track based on at least one of the result of the 2D image analysis and the 3D model of the track.
2. (canceled)
3. The system of claim 1, wherein the information on the state of the track includes an indication of a volumetric loss of the elastomeric material of the track.
4. The system of claim 1, wherein the processor is configured to issue a signal based on the information on the state of the track to inform a user of the system of an action to be performed in respect of the track.
5. The system of claim 4, wherein the action to be performed in respect of the track is replacement of the track by a new track.
6. The system of claim 1, wherein the processor is configured to issue a signal based on the information on the state of the track that is directed to the vehicle.
7. The system of claim 6, wherein the signal is issued to control the vehicle.
8.-15. (canceled)
16. The system of claim 1, wherein the at least one image of the track is captured by a wireless communication device.
17. The system of claim 1, wherein the 3D model of the track is generated using a 3D point cloud.
18.-20. (canceled)
21. The system of claim 1, wherein the result of the 2D image analysis is an indication of a defect of the track.
22. The system of claim 21, wherein: the track comprises a reinforcement embedded in the elastomeric material; and the defect of the track relates to the reinforcement.
23. The system of claim 22, wherein the defect of the track comprises an exposure of the reinforcement.
24. The system of claim 22, wherein the defect of the track comprises a breakage of the reinforcement.
25. The system of claim 22, wherein the reinforcement is a reinforcing cable extending in a longitudinal direction of the track.
26. The system of claim 21, wherein the defect of the track comprises a crack in the track.
27. The system of claim 1, wherein the processor comprises an artificial intelligence module configured to perform the 2D image analysis.
28. The system of claim 27, wherein the artificial intelligence module comprises a neural network.
29. The system of claim 1, wherein the processor is configured to compare the 3D model of the track to a 3D model of a reference track to generate the information on the state of the track.
30. The system of claim 1, wherein the processor is configured to generate the information on the state of the track based on both the result of the 2D image analysis and the 3D model of the track.
31. The system of claim 1, wherein the information on the state of the track comprises an indication of a level of wear of the track.
32. The system of claim 1, wherein the information on the state of the track comprises an indication of a remaining useful life of the track.
33. A system for monitoring a track system for traction of a vehicle on a ground, the track system comprising a plurality of wheels and a track mounted around the wheels, the track comprising a ground-engaging outer surface configured to engage the ground and an inner surface opposite to the ground-engaging outer surface, the track including elastomeric material to flex around the wheels, the system comprising:
an interface configured to receive data regarding at least one image of a component of the track system; and
a processor configured to:
perform a 2D image analysis based on the data regarding the at least one image of the component of the track system to obtain a result of the 2D image analysis;
create a 3D model of the component of the track system based on the data regarding the at least one image of the component of the track system; and
generate information on a state of the component of the track system based on at least one of the result of the 2D image analysis and the 3D model of the component of the track system.
34. The system of claim 33, wherein the component of the track system is the track.
35. The system of claim 33, wherein the component of the track system is a given one of the wheels.
36. A system for monitoring a track system for traction of a vehicle on a ground, the track system comprising a plurality of wheels and a track mounted around the wheels, the track comprising a ground-engaging outer surface configured to engage the ground and an inner surface opposite to the ground-engaging outer surface, the track including elastomeric material to flex around the wheels, the system comprising:
an interface configured to receive data regarding at least one image of a component of the track system; and
a processor configured to:
perform a 2D image analysis based on the data regarding the at least one image of the component of the track system to obtain a result of the 2D image analysis; and
generate information on a state of the component of the track system based on the result of the 2D image analysis without using a 3D model of the component of the track system.
37. The system of claim 36, wherein the component of the track system is the track.
38. The system of claim 36, wherein the component of the track system is a given one of the wheels.
US17/272,634 2018-08-30 2019-08-30 Systems and methods for monitoring tracked vehicles Active 2041-08-19 US12254616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/272,634 US12254616B2 (en) 2018-08-30 2019-08-30 Systems and methods for monitoring tracked vehicles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862724846P 2018-08-30 2018-08-30
US201962861677P 2019-06-14 2019-06-14
PCT/CA2019/051217 WO2020041897A1 (en) 2018-08-30 2019-08-30 Systems and methods for monitoring tracked vehicles
US17/272,634 US12254616B2 (en) 2018-08-30 2019-08-30 Systems and methods for monitoring tracked vehicles

Publications (2)

Publication Number Publication Date
US20210339758A1 true US20210339758A1 (en) 2021-11-04
US12254616B2 US12254616B2 (en) 2025-03-18

Family

ID=69643103

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/272,634 Active 2041-08-19 US12254616B2 (en) 2018-08-30 2019-08-30 Systems and methods for monitoring tracked vehicles

Country Status (4)

Country Link
US (1) US12254616B2 (en)
EP (1) EP3844474B1 (en)
CA (1) CA3111039A1 (en)
WO (1) WO2020041897A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200193203A1 (en) * 2018-12-12 2020-06-18 Streem, Inc. Automatic detection and recognition of visual tags
US20220188774A1 (en) * 2020-12-15 2022-06-16 Caterpillar Inc. Systems and methods for wear assessment and part replacement timing optimization
US11579590B2 (en) * 2019-10-31 2023-02-14 Deere & Company Wireless mobile work machine component detection and control system
CN116215685A (en) * 2023-03-13 2023-06-06 中联重科股份有限公司 Assembly system and assembly method
US20230175235A1 (en) * 2021-12-07 2023-06-08 Deere & Company Propel limiting system and method for rear collision avoidance
US11835955B2 (en) 2017-12-08 2023-12-05 Camso Inc. Systems and methods for monitoring off-road vehicles
US11879814B2 (en) * 2017-09-18 2024-01-23 Board Of Regents, The University Of Texas System Mobile railway track defect detection
US11897558B2 (en) 2015-03-04 2024-02-13 Camso Inc. Track system for traction of a vehicle
US12008846B2 (en) 2015-06-29 2024-06-11 Camso Inc. Systems and methods for monitoring a track system for traction of a vehicle
WO2024133040A1 (en) * 2022-12-19 2024-06-27 Compagnie Generale Des Etablissements Michelin Method for measuring tread wear of a track
US12063882B2 (en) 2019-10-31 2024-08-20 Deere & Company Volumetric metering system with improved roller detection
US20240295470A1 (en) * 2023-03-03 2024-09-05 Caterpillar Inc. System, apparatus, computer program product, and method for determining track pitch distance measurement
US12090795B2 (en) 2018-08-30 2024-09-17 Camso Inc. Systems and methods for monitoring vehicles with tires
US12284936B2 (en) 2021-03-08 2025-04-29 Deere & Company Row unit plugging detection and control system
US20250139822A1 (en) * 2023-10-25 2025-05-01 Caterpillar Inc. Identification of a track based on track bolt orientation

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8967737B2 (en) 2010-06-30 2015-03-03 Camoplast Solideal Inc. Wheel of a track assembly of a tracked vehicle
US8985250B1 (en) 2010-12-14 2015-03-24 Camoplast Solideal Inc. Track drive mode management system and methods
US12254616B2 (en) 2018-08-30 2025-03-18 Camso Inc. Systems and methods for monitoring tracked vehicles
DE102020122304A1 (en) 2020-08-26 2022-03-03 Deere & Company Method for checking the status of a mobile user unit or a maintenance station
DE102020127743A1 (en) 2020-10-21 2022-04-21 Deere & Company Method for supplying a mobile unit with a consumable
DE102020127739A1 (en) 2020-10-21 2022-04-21 Deere & Company Method for checking an error status of a mobile user unit
US20230135656A1 (en) * 2021-11-04 2023-05-04 Caterpillar Inc. Systems and methods for undercarriage wear prediction
EP4253669B1 (en) * 2022-03-29 2025-11-26 MOBA Mobile Automation AG Measuring system for a building and working machine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010017531A1 (en) * 2010-06-23 2011-12-29 Continental Reifen Deutschland Gmbh Method for automatic detection of defects in material layer with reinforcements for manufacture of vehicle tires, involves providing material layer of elastomer material with embedded parallel and consecutive arranged reinforcements
US20140105481A1 (en) * 2012-10-17 2014-04-17 Caterpillar Inc. Methods and systems for determining part wear based on digital image of part
JP2014126370A (en) * 2012-12-25 2014-07-07 Sumitomo Rubber Ind Ltd Method for evaluating crack of cross-linked rubber
WO2017000068A1 (en) * 2015-06-29 2017-01-05 Camso Inc. Systems and methods for monitoring a track system for traction of a vehicle
US9805697B1 (en) * 2012-06-01 2017-10-31 Hunter Engineering Company Method for tire tread depth modeling and image annotation
CN108061735A (en) * 2017-12-01 2018-05-22 工业互联网创新中心(上海)有限公司 The recognition methods of component surface defect and device
WO2018165753A1 (en) * 2017-03-14 2018-09-20 University Of Manitoba Structure defect detection using machine learning algorithms
US20190066283A1 (en) * 2017-08-23 2019-02-28 General Electric Company Three-dimensional modeling of an object
US20190392569A1 (en) * 2018-06-22 2019-12-26 Caterpillar Inc. Measurement platform that automatically determines wear of machine components based on images

Family Cites Families (316)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1539582A (en) 1924-04-19 1925-05-26 Landry Joseph Adalbert Traction device
US1673541A (en) 1924-12-17 1928-06-12 Thew Shovel Co Endless track-propelled vehicle
US2025999A (en) 1932-01-25 1935-12-31 Edward C Myers Rubber covered flexible track
US2040696A (en) 1934-08-11 1936-05-12 Int Harvester Co Track for track type tractors
US2369130A (en) 1942-03-03 1945-02-13 Arthur E Benson Reinforced rubber tread for track shoes
US2461150A (en) 1944-06-15 1949-02-08 Theodore P Flynn Endless track
US2523182A (en) 1947-08-27 1950-09-19 Battaglia Robert Steelflex tire
US2596919A (en) 1948-03-23 1952-05-13 Goodrich Co B F Band track
US2562264A (en) 1949-03-14 1951-07-31 Product Miniature Company Tread for crawler models
US2854294A (en) 1955-02-02 1958-09-30 Schield Bantam Company Crawler tumbler and track shoe
US3019061A (en) 1958-03-20 1962-01-30 William H Schomers Track mechanism for vehicles
US3118709A (en) 1960-02-25 1964-01-21 Us Rubber Co Track for track-laying vehicles
NL6616744A (en) 1966-09-21 1968-03-22
US3582154A (en) 1968-06-03 1971-06-01 Gates Rubber Co Endless track for multiterrain vehicles
US3612626A (en) 1969-09-12 1971-10-12 Stanley F Fuchs Snowmobile traction belt
US3747995A (en) 1971-07-12 1973-07-24 Gates Rubber Co Reinforcement for endless track
US3747996A (en) 1972-01-05 1973-07-24 Dayco Corp Track section and endless track using same
US3767275A (en) 1972-04-19 1973-10-23 Gates Rubber Co Stiffener and traction element for endless track
US3781067A (en) 1972-09-21 1973-12-25 Goodyear Tire & Rubber Belt track structure
CA1043488A (en) 1973-04-13 1978-11-28 Bridgestone Tire Company Limited One-shot mouldable cis-polyisoprene rubber composition
US3858948A (en) 1973-04-30 1975-01-07 Goodyear Tire & Rubber Belt track for vehicles
US3887244A (en) 1973-11-30 1975-06-03 Caterpillar Tractor Co Resilient mid-pitch lug for an endless track
US3914990A (en) 1974-07-18 1975-10-28 Us Army Dynamic terrain simulator
US3944006A (en) 1974-08-15 1976-03-16 Outboard Marine Corporation Endless cleated track
US4059313A (en) 1976-09-27 1977-11-22 Caterpillar Tractor Co. Track belt assembly
US4150858A (en) 1978-01-16 1979-04-24 Caterpillar Tractor Co. Tensioned cushioning lug for track-type vehicles
US4218101A (en) 1978-04-03 1980-08-19 De Lorean Manufacturing Company Low disturbance track cleat and ice calk structure for firm or icy snow
US4279449A (en) 1978-07-20 1981-07-21 The Goodyear Tire & Rubber Company Slide surface compound for track-driven vehicle
US4538860A (en) 1981-03-05 1985-09-03 Gkn Technology Limited Wear resistant wheel for track laying vehicle
CH658028A5 (en) 1982-02-23 1986-10-15 Bloechlinger H Ag CHAIN CLUTCHES FOR TRUCK VEHICLES.
US4587280A (en) 1983-03-04 1986-05-06 Budd Company Tank tread pad and composition for making
US4583791A (en) 1984-03-13 1986-04-22 Kabushiki Kaisha Komatsu Seisakusho Crawler vehicle undercarriage
US4607892A (en) 1984-04-12 1986-08-26 Motor Wheel Corporation Tracked vehicle road wheel
US4614508A (en) 1985-03-01 1986-09-30 Precision Handling Devices Inc. Drive mechanism especially for web feed tractors
DE3515918C2 (en) 1985-05-03 1987-05-07 Hoesch Ag, 4600 Dortmund Idler wheel for tracked vehicles
USD298018S (en) 1985-05-16 1988-10-11 Tracker Industries, Inc. Crawler-track attachment for an all-terrain vehicle
DE3676813D1 (en) 1985-11-15 1991-02-14 Altrack Ltd THE BASIC TOUCHING AREA FOR TRACKS, WHEELS AND TIRES.
US4721498A (en) 1986-04-14 1988-01-26 Caterpillar Inc. Endless elastomeric drive belt
SU1446017A2 (en) 1987-06-10 1988-12-23 Белорусский Политехнический Институт Crawler tractor
US4844561A (en) 1987-11-30 1989-07-04 General Motors Corporation Composite tread for track-laying vehicles
US4880283A (en) 1988-01-11 1989-11-14 General Motors Corporation Composite tread for track-laying vehicles
US4843114A (en) 1988-01-29 1989-06-27 The United States Of America As Represented By The Secretary Of The Army Rubber compound for tracked vehicle track pads
CA1293757C (en) 1988-02-09 1991-12-31 Bronislaw Kadela All terrain off road vehicle
JPH0274476A (en) 1988-09-07 1990-03-14 Ohtsu Tire & Rubber Co Ltd :The Elastic crawler
US4953919A (en) 1989-02-15 1990-09-04 Phoenix Engineering, Inc. Track suspension system
JPH02110592U (en) 1989-02-23 1990-09-04
JP2550685Y2 (en) 1989-03-18 1997-10-15 福山ゴム工業 株式会社 Rubber track
FR2653731B1 (en) 1989-10-31 1992-01-03 Alsthom Cge Alcatel METHOD FOR DETERMINING VEHICLE SUPPORT PARAMETERS AND INTERVENTION VEHICLE FOR DAMAGED SOILS.
US5320585A (en) 1989-11-06 1994-06-14 Fukuyama Gomu Kogyo Kabushiki Kaisha Endless track belt assembly
WO1991007306A1 (en) 1989-11-13 1991-05-30 Warane Pty. Ltd. Positively driven elastomeric tracked work vehicle
US5380076A (en) 1990-02-14 1995-01-10 Kabushiki Kaisha Komatsu Seisakusho Rubber crawler belt of a tracked vehicle
US5050710A (en) 1990-04-10 1991-09-24 Caterpillar Inc. Wet disc brake mechanism
JPH078660B2 (en) 1990-04-17 1995-02-01 福山ゴム工業株式会社 Connection link type rubber crawler
US5018591A (en) 1990-04-24 1991-05-28 Caterpillar Inc. Track laying work vehicle
CA2062549C (en) 1991-05-07 1995-11-07 Robert Willis Brittain Drive wheel for a belted track crawler
US5511869A (en) 1991-08-26 1996-04-30 Edwards, Harper, Mcnew & Company Replacement endless vehicle tracks
IL102928A (en) 1991-08-26 1996-03-31 Edwards Harper Mcnew & Co Replacement endless vehicle tracks
US5299860A (en) 1992-05-07 1994-04-05 Anderson Lynn J Snowmobile stud fastener
AU648220B2 (en) 1992-07-10 1994-04-14 Bridgestone Corporation Rubber track assembly
US5293948A (en) 1992-09-25 1994-03-15 Caterpillar Inc. Undercarriage assembly for a vehicle
US5632537A (en) 1993-06-04 1997-05-27 Honda Giken Kogyo Kabushiki Kaisha Crawler belt for crawler motor vehicle
JPH072151A (en) 1993-06-18 1995-01-06 Honda Motor Co Ltd Crawler belt type vehicle
US5452949A (en) 1993-12-13 1995-09-26 Kelderman; Gary L. Track system for vehicles
JP3348747B2 (en) 1994-04-26 2002-11-20 株式会社小松製作所 Rubber track core metal, rubber track and winding method thereof
US5513683A (en) 1994-07-01 1996-05-07 The Goodyear Tire & Rubber Company Tires made using elastomers containing springy fibers
CA2132807C (en) 1994-09-23 2001-05-01 Denis Courtemanche Track-belt for track driven vehicles
US5498188A (en) 1995-01-05 1996-03-12 Deahr; Christine M. Child-constructable toys that are assembled using a system of color-coordinated components and tools
US6139121A (en) 1995-05-10 2000-10-31 Bridgestone/Firestone, Inc. Positive drive rubber track
US5529267A (en) 1995-07-21 1996-06-25 Union Switch & Signal Inc. Railway structure hazard predictor
US5707123A (en) 1995-09-21 1998-01-13 Caterpillar Inc. Positive drive rubber belted track system
JPH09164980A (en) 1995-12-19 1997-06-24 Bridgestone Corp Lug rubber composition for rubber crawler
US6095275A (en) 1995-12-19 2000-08-01 Shaw; Charles T. Conversion system for all terrain vehicles
JP3609194B2 (en) 1996-02-16 2005-01-12 本田技研工業株式会社 Snow vehicle
US5866265A (en) 1996-03-08 1999-02-02 The Goodyear Tire & Rubber Company Rubber article having a surface design for high abrasion resistance
US5984438A (en) 1996-05-16 1999-11-16 Bridgestone Corporation Rubber track
US6186604B1 (en) 1996-06-19 2001-02-13 Tyman H. Fikse Tractor endless tread
US6030057A (en) 1996-06-19 2000-02-29 Fikse; Tyman H. Tractor endless tread
JP3262990B2 (en) 1996-06-25 2002-03-04 本田技研工業株式会社 Crawler belt device
US6056656A (en) 1997-03-04 2000-05-02 Bando Chemical Industries, Ltd. V-ribbed belt
CA2229629C (en) 1997-03-13 2007-08-14 The Goodyear Tire & Rubber Company High modulus belt composition and belts made therewith
US6079802A (en) 1997-07-23 2000-06-27 Bridgestone Corporation Rubber crawler
EP1008509B1 (en) 1997-09-05 2005-11-23 Komatsu Ltd Elastic flat tread
US5997109A (en) 1997-09-19 1999-12-07 Caterpillar Paving Products Inc. Undercarriage assembly for a belted work machine
US6024183A (en) 1997-10-24 2000-02-15 Caterpillar Inc. Track belt tension management system
EP0913321B1 (en) 1997-10-29 2003-07-30 Bridgestone Corporation Rubber crawler
JPH11129946A (en) 1997-11-04 1999-05-18 Toyota Autom Loom Works Ltd Crawlers and vehicles
US6120405A (en) 1998-01-06 2000-09-19 Caterpillar Inc. Drive sprocket which has rotating members which are engaged by drive lugs of a track
US6176557B1 (en) 1998-01-10 2001-01-23 Bridgestone Corporation Inner periphery driving type rubber crawler
US6129426A (en) 1998-02-25 2000-10-10 Tucker Sno-Cat Corporation Tracked vehicle with improved guide wheel assembly
JPH11245230A (en) 1998-03-03 1999-09-14 Bridgestone Corp Crawler molding method
US6224172B1 (en) 1998-03-20 2001-05-01 Cedarapids Tensioning device for a tracked vehicle
US6068354A (en) 1998-06-05 2000-05-30 Bridgestone/Firestone, Inc. Non vibration tread angle for rubber track
US6065818A (en) 1998-07-02 2000-05-23 Caterpillar, Inc. Rubber track belt with improved traction and durability
US6074025A (en) 1998-07-10 2000-06-13 Agtracks, Inc. Track apparatus incorporating cantilever mounted wheels
US6259361B1 (en) 1998-07-13 2001-07-10 Prince Corporation Tire monitoring system
JP2000053037A (en) 1998-08-12 2000-02-22 Yokohama Rubber Co Ltd:The Snow vehicular rubber crawler
US6386652B1 (en) 1998-09-02 2002-05-14 The Goodyear Tire & Rubber Company Pneumatic driver tire for tracked vehicle
US6386654B1 (en) 1998-12-08 2002-05-14 Caterpillar Inc. Protective cover for guide blocks
US6676549B1 (en) 1998-12-18 2004-01-13 Shimano, Inc. Motion sensor for use with a bicycle sprocket assembly
US6299264B1 (en) 1999-01-27 2001-10-09 Caterpillar Inc. Heat shielded mid-roller
BE1012772A3 (en) 1999-07-02 2001-03-06 Tweco Rubber chain.
US6193335B1 (en) 1999-07-06 2001-02-27 John W. Edwards Endless drive track with improved drive lug configuration
US6296329B1 (en) 1999-05-12 2001-10-02 The Goodyear Tire & Rubber Company Endless rubber track and vehicle containing such track
US6206492B1 (en) 1999-07-20 2001-03-27 Caterpillar Inc. Mid-roller for endless track laying work machine
US6581449B1 (en) 1999-09-15 2003-06-24 The Goodyear Tire & Rubber Company Low pressure warning system for pneumatic tires with RF tags and monitors for each tire
US6241327B1 (en) 1999-11-05 2001-06-05 Torvec, Inc. Endless track for high speed multi-terrain vehicles
JP2001180544A (en) 1999-12-24 2001-07-03 Komatsu Ltd Elastic footboard
US6386653B1 (en) 2000-03-23 2002-05-14 Caterpillar Paving Products Inc. Apparatus and method for measuring and realigning track misalignment
CA2305924C (en) 2000-04-13 2003-12-30 Camoplast Inc. Snowmobile track belt
US6652043B2 (en) 2000-04-20 2003-11-25 Caterpillar Inc Reduced sound transmitting idler for track-type vehicles
US6416142B1 (en) 2000-04-20 2002-07-09 Caterpillar Inc. Reduced sound transmitting idler for track-type vehicles
US7740084B2 (en) 2000-05-02 2010-06-22 Lyn Rosenboom Agricultural implement frame, track assembly and cart
EP1283152A4 (en) 2000-05-15 2004-09-29 Fukuyama Rubber Ind Rubber crawler
JP4567145B2 (en) 2000-05-25 2010-10-20 福山ゴム工業株式会社 Rubber crawler
US6352320B1 (en) 2000-06-19 2002-03-05 The Goodyear Tire & Rubber Company Directional annular elastic track
JP4680355B2 (en) 2000-08-10 2011-05-11 ヤンマー株式会社 Combine
US6474756B2 (en) 2000-08-30 2002-11-05 Komatsu Ltd. Rubber crawler belt
FR2814238B1 (en) 2000-09-15 2004-06-25 Dufournier Technologies S A S METHOD AND SYSTEM OR CENTRAL FOR MONITORING THE CONDITION OF TIRES, AND DETECTION OF THE PRESENCE OF CHAINS OR SNOW NAILS, ON A VEHICLE
CA2319934C (en) 2000-09-18 2004-11-09 Soucy International Inc. Rubber-band track with various hardnesses
US20040004395A1 (en) 2000-09-18 2004-01-08 Gilles Soucy Endless track for a vehicle
US6913329B1 (en) 2000-10-10 2005-07-05 The Goodyear Tire & Rubber Company Endless rubber track having guide lugs with guide lug support layer, and vehicle containing such track
US6951143B1 (en) 2000-11-28 2005-10-04 Michelin Recherche Et Technique S.A. Three-axis sensor assembly for use in an elastomeric material
WO2002044957A1 (en) 2000-11-30 2002-06-06 Pirelli Pneumatici S.P.A. System and method for monitoring tyres
JP3805974B2 (en) 2000-12-01 2006-08-09 住友ゴム工業株式会社 Elastic crawler
US6671609B2 (en) 2000-12-05 2003-12-30 Lear Corporation Tire pressure vehicle speed limiting
US20020070607A1 (en) 2000-12-08 2002-06-13 Edwards John W. Endless drive track system with guiding brace and method
US6579930B2 (en) 2001-02-01 2003-06-17 The Goodyear Tire & Rubber Company Tire with minimal-marking tread and skid steering, fixed axle, tire/wheel or vehicular track assembly where said tire or track has a minimal-marking tread
CA2337466C (en) 2001-02-22 2004-01-27 Soucy International Inc. Track with a drive pitch different from the tread pitch
FI115620B (en) 2001-03-08 2005-06-15 Turvanasta Dev Oy Tire stud
JP4181314B2 (en) 2001-04-16 2008-11-12 株式会社ブリヂストン Rubber crawler
US6536853B2 (en) 2001-04-20 2003-03-25 Caterpillar Inc Arrangement for supporting a track chain of a track type work machine
JP2002347675A (en) 2001-05-23 2002-12-04 Ohtsu Tire & Rubber Co Ltd :The Elastic crawler
DE60138049D1 (en) 2001-06-07 2009-04-30 Komatsu Mfg Co Ltd SOCKET FOR TRACKING VEHICLES AND METHOD AND DEVICE FOR THEIR PRODUCTION
US20030034189A1 (en) 2001-06-07 2003-02-20 Gary Lemke Slick track
JP4688356B2 (en) 2001-07-03 2011-05-25 住友ゴム工業株式会社 Elastic crawler traveling device and crawler track sprocket used in the elastic crawler traveling device
US6554377B2 (en) 2001-07-19 2003-04-29 The Goodyear Tire & Rubber Company Rubber track and improved method and method for producing the track
JP2003034275A (en) 2001-07-23 2003-02-04 Komatsu Ltd Elastic track
JP2003034276A (en) 2001-07-24 2003-02-04 Komatsu Ltd Elastic track
EP1279526B1 (en) 2001-07-24 2008-10-08 TÜV Automotive GmbH Unternehmensgruppe TÜV Süddeutschland Method and system for monitoring the functionning of a vehicle tyre, vehicle tyre
CA2390209A1 (en) 2001-08-10 2003-02-10 The Goodyear Tire & Rubber Company Endless two part rubber track comprised of polyurethane based tread component and rubber carcass component and vehicle containing such track
CA2482196C (en) 2001-09-11 2010-08-03 Soucy International Inc. Sprocket wheel and endless track system for high speed multi-terrain vehicles
US6799815B2 (en) 2001-09-12 2004-10-05 The Goodyear Tire & Rubber Company Cold environment endless rubber track and vehicle containing such track
JP4828059B2 (en) 2001-09-18 2011-11-30 住友ゴム工業株式会社 Elastic crawler
DE10154651C1 (en) 2001-10-30 2003-05-22 Kaessbohrer Gelaendefahrzeug Tracked vehicle with a drive system
US7676307B2 (en) 2001-11-05 2010-03-09 Ford Global Technologies System and method for controlling a safety system of a vehicle in response to conditions sensed by tire sensors related applications
TW539627B (en) 2001-12-17 2003-07-01 Taiheiyo Kogyo Kk Apparatus and method for monitoring tire condition
US6874586B2 (en) 2002-02-27 2005-04-05 A & D Boivin Design Inc. Track assembly for an all-terrain vehicle
US6948784B2 (en) 2002-03-06 2005-09-27 Deere & Company Track pin bushing having a metallurgically bonded coating
USD488171S1 (en) 2002-03-18 2004-04-06 Agtracks, Inc. Track apparatus for use in place of a vehicle wheel
DE20207342U1 (en) 2002-05-08 2002-08-22 Felasto-PUR GmbH & Co. KG, 27616 Beverstedt Drive wheel for a crawler belt vehicle drive
JP2003335275A (en) 2002-05-22 2003-11-25 Fukuyama Rubber Ind Co Ltd Rubber crawler
US7156474B2 (en) 2002-06-28 2007-01-02 A.S.V., Inc. Track and drive mechanism for a vehicle
US6733093B2 (en) 2002-07-25 2004-05-11 Soucy International Inc. Split wheel and method for installing endless track
USD476599S1 (en) 2002-08-06 2003-07-01 Peter C. Whittington Vehicle design
CA2405908C (en) 2002-10-01 2016-10-18 Camoplast Inc. Track for all terrain vehicle
CA2412182A1 (en) 2002-11-20 2004-05-20 Camoplast Inc. Endless track for industrial or agricultural vehicles
JP3963842B2 (en) 2003-01-10 2007-08-22 株式会社クボタ Rear traveling device
USD505136S1 (en) 2003-01-21 2005-05-17 Glen Brazier Belted track assembly
US6904986B2 (en) 2003-01-21 2005-06-14 Glen Brazier Terrain conforming track assembly
US7597161B2 (en) 2003-01-21 2009-10-06 Glen Brazier Terrain conforming track assembly
US6923515B2 (en) 2003-02-24 2005-08-02 Arctic Cat Inc. Low noise track profile
JP2004314938A (en) 2003-03-31 2004-11-11 Komatsu Ltd Track tension adjustment device
JP4282366B2 (en) 2003-05-02 2009-06-17 住友ゴム工業株式会社 Elastic crawler
US7114788B2 (en) 2003-05-19 2006-10-03 Soucy International Inc. Angled traction lugs for endless band
EP1627804B1 (en) 2003-05-28 2010-03-31 Bridgestone Corporation Rubber track with excellent straight-line stability
FR2855402B1 (en) 2003-06-02 2006-06-02 Hmc2Developpement AUTOMOTIVE TRUCKING VEHICLE TO EVOLVE ON FLAT FLOOR, ACCIDENTAL GROUND AND STAIRCASE
JP4675236B2 (en) 2003-07-02 2011-04-20 福山ゴム工業株式会社 Rubber crawler and manufacturing method of core metal for rubber crawler
EP1657143B1 (en) 2003-08-19 2009-12-30 Bridgestone Corporation Rubber crawler traveling device
JP4215597B2 (en) 2003-08-26 2009-01-28 横浜ゴム株式会社 Tire failure alarm device and pneumatic tire
US6983812B2 (en) 2003-09-17 2006-01-10 Tucker Sno-Cat Corporation Tracked vehicle with improved track drive unit
US7137675B1 (en) 2003-09-19 2006-11-21 Gs Engineering, Inc. Road wheel for tracked vehicles
US7077216B2 (en) 2003-10-21 2006-07-18 Ati, Inc. Earth scraper with track apparatus
US7222924B2 (en) 2003-11-11 2007-05-29 Fargo Products, Llc Track system for a ground engaging vehicle
US20050104449A1 (en) 2003-11-19 2005-05-19 Denys Lavoie Mid-roller wheels for endless drive track system
US20050103540A1 (en) 2003-11-19 2005-05-19 Denys Lavoie Track with low friction reinforced guide blocks
JP4272580B2 (en) 2003-12-04 2009-06-03 ゼニス産業株式会社 Elastic crawler
US7202777B2 (en) 2004-01-09 2007-04-10 Denso Corporation Tire condition monitoring system
CA2455279A1 (en) 2004-01-16 2005-07-16 Camoplast Inc. (Power Sports) Manoeuvrable traction track
CA2456455C (en) 2004-01-28 2007-05-01 Camoplast Inc Power Sports Reinforced stud mount
US8083297B2 (en) 2004-01-29 2011-12-27 Bridgestone Corporation Coreless rubber crawler traveling device
JP4069085B2 (en) 2004-02-04 2008-03-26 住友ゴム工業株式会社 Rubber crawler
US7784884B2 (en) 2004-03-03 2010-08-31 Soucy International Inc. Elastomeric track with guide lug reinforcements
JP4042858B2 (en) 2004-03-09 2008-02-06 住友ゴム工業株式会社 Elastic crawler
CA2463399A1 (en) 2004-04-06 2005-10-06 Camoplast Inc. (Power Sports) Wheel assembly for a tracked vehicle
US20060060395A1 (en) 2004-06-09 2006-03-23 Denis Boivin Track assembly for an all-terrain vehicle
WO2006018215A1 (en) 2004-08-11 2006-02-23 Harain Verwaltungsgesellschaft Mbh & Co. Kg Traveling mechanism for agricultural machines and off-road vehicles having an endless belt-band travelling gear and a corresponding belt-band travelling gear
FR2875737B1 (en) 2004-09-29 2008-07-04 Michelin Soc Tech TIRE FOR VEHICLE AND METHOD FOR AIDING DRIVING A VEHICLE
JP2006103482A (en) 2004-10-05 2006-04-20 Sumitomo Rubber Ind Ltd Elastic crawler
US7748107B2 (en) 2004-10-12 2010-07-06 Syron Engineering & Manufacturing, Llc Bar mounted tool adaptor
US20060090558A1 (en) 2004-10-28 2006-05-04 Raskas Eric J Tire wear sensor
CN100560422C (en) 2004-12-02 2009-11-18 株式会社普利司通 Coreless rubber crawler
RU2378144C2 (en) 2004-12-21 2010-01-10 Бомбардир Рекриейшнл Продактс Инк. Automotive closed-tape drive system
CA2533517C (en) 2005-01-28 2012-11-20 Soucy International Inc. Traction assembly for a vehicle
JP2006213165A (en) 2005-02-03 2006-08-17 Yamaha Motor Co Ltd Snowmobile
US7299432B2 (en) 2005-04-14 2007-11-20 International Business Machines Corporation Method for preserving constraints during sequential reparameterization
US7197922B2 (en) 2005-05-17 2007-04-03 Gm Global Technology Operations, Inc. Tire rotation detection using tire temperature profiling
DE602006017356D1 (en) 2005-05-19 2010-11-18 Bridgestone Corp CORELESS CHAIN CHAIN
CA2509059A1 (en) 2005-06-02 2006-12-02 Camoplast Inc. Drive track for snowmobile or tracked vehicle
US7367637B2 (en) 2005-06-15 2008-05-06 Torvec, Inc. Endless track for high speed multi-terrain vehicles
JP4713964B2 (en) 2005-07-15 2011-06-29 株式会社ブリヂストン Crawler drive projection structure
US20070046100A1 (en) 2005-08-31 2007-03-01 The Goodyear Tire & Rubber Company Rubber track
US20070075456A1 (en) 2005-10-05 2007-04-05 Feldmann Thomas B Method to cure endless track belts
USD528133S1 (en) 2005-11-01 2006-09-12 Glen Brazier Belted track assembly
CN101312872B (en) 2005-11-24 2010-05-19 株式会社普利司通 Coreless rubber crawler track
US20070126286A1 (en) 2005-12-02 2007-06-07 Feldmann Thomas B Endless track belt
CA2532292C (en) 2006-01-06 2011-02-15 Soucy International Inc. Traction band with improved ground-engaging lugs
US20090195062A1 (en) 2006-01-24 2009-08-06 Bridgestone Corporation Coreless rubber crawler and traveling device
CN101432186B (en) 2006-05-02 2011-09-28 株式会社普利司通 Coreless rubber crawler track
EP2030876B1 (en) 2006-06-22 2010-10-06 Bridgestone Corporation Structure of rubber crawler track
US20090309415A1 (en) 2006-07-06 2009-12-17 Nobuo Shimozono Rubber crawler
CA2893235C (en) 2006-07-12 2018-08-14 9301011 Canada Inc. Endless track suspension
US7625050B2 (en) 2006-07-28 2009-12-01 Bair Products, Inc. Individual drive lug for an endless rubber track
WO2008022157A2 (en) 2006-08-15 2008-02-21 Vxv Solutions, Inc. Adaptive tuning of biometric engines
US7806487B2 (en) 2006-09-22 2010-10-05 Camoplast Inc. Noiseless rubber tracks for tracked vehicles
US8327960B2 (en) 2006-10-06 2012-12-11 Irobot Corporation Robotic vehicle
CA2865783C (en) 2006-12-11 2017-06-27 Vermeer Manufacturing Company Apparatus for converting a wheeled vehicle to a tracked vehicle
WO2008073969A1 (en) 2006-12-12 2008-06-19 Veyance Technologies, Inc. Endless track belt and method of making same
US7686109B2 (en) 2007-01-11 2010-03-30 Glen Brazier Motorized snowboard
WO2008088355A1 (en) 2007-01-16 2008-07-24 Polaris Industries Inc. Light weight track for a snowmobile
US7779947B2 (en) 2007-01-31 2010-08-24 Caterpillar Inc Acceleration based automated slip control system
WO2008096749A1 (en) 2007-02-05 2008-08-14 Bridgestone Corporation Rubber crawler track
US7641293B2 (en) 2007-02-28 2010-01-05 Mclaren Group Holdings Pte, Ltd. Offset track
US7533945B2 (en) 2007-03-01 2009-05-19 Srj, Inc. Tread pattern for endless track
US20100033010A1 (en) 2007-03-06 2010-02-11 Bridgestone Corporation Rubber track
US7778741B2 (en) 2007-03-29 2010-08-17 Ford Global Technologies Vehicle stability control system with tire monitoring
ITMI20070188U1 (en) 2007-05-25 2008-11-26 Rolic Invest Sarl VEHICLE BAPTIST
US7798260B2 (en) 2007-08-22 2010-09-21 Clark Equipment Company Track vehicle having drive and suspension systems
KR100829059B1 (en) 2007-08-30 2008-05-16 현대로템 주식회사 Pad management system of tank track
JP5097482B2 (en) 2007-09-04 2012-12-12 株式会社ブリヂストン Rubber crawler and core for rubber crawler
JP4306776B2 (en) 2007-09-06 2009-08-05 トヨタ自動車株式会社 Hybrid vehicle
US20090085398A1 (en) 2007-09-28 2009-04-02 Bombardier Recreational Products Inc. Vehicle track and track system
CA2606039C (en) 2007-10-03 2016-03-29 Camoplast Inc. A track assembly for an all-terrain vehicle
BRPI0722237B1 (en) 2007-11-30 2020-02-11 Volvo Lastvagnar Ab WHEEL MONITORING MODULE
US8844665B2 (en) 2007-12-27 2014-09-30 Swissauto Powersport Llc Skid steered all terrain vehicle
ATE469812T1 (en) 2008-02-27 2010-06-15 Solideal Holding Sa RUBBER TRACK, METHOD FOR PRODUCING THE RUBBER TRACK AND VEHICLE HAVING THE RUBBER TRACK
WO2009105892A1 (en) 2008-02-28 2009-09-03 Camoplast Inc. Endless track for an off-road work vehicle to produce a net non-null lateral force
JP5373311B2 (en) 2008-04-10 2013-12-18 株式会社ブリヂストン Rubber crawler
US8152248B2 (en) 2008-06-06 2012-04-10 Glen Brazier Track drive assembly
EP2141029B1 (en) 2008-06-30 2011-08-31 The Yokohama Rubber Co., Ltd. Tire rubber composition
JP2010018091A (en) 2008-07-09 2010-01-28 Sumitomo Rubber Ind Ltd Rubber crawler
JP2010047040A (en) 2008-08-19 2010-03-04 Bridgestone Corp Rubber crawler
US8279048B2 (en) 2008-09-29 2012-10-02 Amtech Systems, LLC RFID tag with piezoelectric sensor for power and input data
JP5279438B2 (en) 2008-10-10 2013-09-04 株式会社ブリヂストン Coreless rubber crawler
DE102008059467A1 (en) 2008-11-28 2010-06-10 Claas Selbstfahrende Erntemaschinen Gmbh Agricultural tractor
US8245800B2 (en) 2008-12-09 2012-08-21 Vermeer Manufacturing Company Apparatus for converting a wheeled vehicle to a tracked vehicle
JP5009943B2 (en) 2009-01-28 2012-08-29 日立建機株式会社 Travel drive device for work vehicle
USD603880S1 (en) 2009-02-13 2009-11-10 Glen Brazier Conversion track assembly
JP2010274872A (en) 2009-06-01 2010-12-09 Komatsu Ltd Rolling wheels for crawler type vehicles
EP2275326A3 (en) 2009-07-17 2011-05-11 Camoplast Inc. Endless track for traction of a vehicle, with enhanced elastomeric material curing capability
US20110068620A1 (en) 2009-09-18 2011-03-24 Marc Delisle Wear protectors for protecting guide and/or drive lugs of an endless track for traction of an off-road vehicle
US20120242142A1 (en) 2009-10-01 2012-09-27 Camoplast Solideal Inc. Track Assembly for Traction of a Vehicle
US8567876B2 (en) 2009-11-25 2013-10-29 Veyance Technologies, Inc. Vehicle track
KR101146092B1 (en) 2009-12-11 2012-05-15 한국카모플라스트(주) Rubber crawler that component shock suction a groove
DE102009059789A1 (en) 2009-12-21 2011-06-22 Continental Automotive GmbH, 30165 Wheel electronics, vehicle wheel and vehicle
JP5396490B2 (en) 2010-02-10 2014-01-22 株式会社小松製作所 Wear amount measuring apparatus, wear amount measuring method, wear amount measuring program, and recording medium
EP2577027A2 (en) 2010-06-03 2013-04-10 Polaris Industries Inc. Electronic throttle control
USD644670S1 (en) 2010-06-21 2011-09-06 Claas Kgaa Mbh Vehicle crawler mechanism
CA2744681C (en) 2010-06-28 2018-08-28 Camoplast Solideal Inc. All-terrain vehicle (atv) propellable on wheels or endless tracks
US8967737B2 (en) 2010-06-30 2015-03-03 Camoplast Solideal Inc. Wheel of a track assembly of a tracked vehicle
US8736147B1 (en) 2010-08-29 2014-05-27 Daniel Wang Sound and vibration harnessing energy generator
CA2756859C (en) 2010-11-02 2020-01-21 Camoplast Solideal Inc. Track assembly for providing traction to an off-road vehicle such as an all-terrain vehicle (atv) or a snowmobile
KR20120055071A (en) 2010-11-23 2012-05-31 주식회사 훼카 State inspection apparatus and method for automobile tire
US9067631B1 (en) 2010-12-14 2015-06-30 Camoplast Solideal Inc. Endless track for traction of a vehicle
US8985250B1 (en) 2010-12-14 2015-03-24 Camoplast Solideal Inc. Track drive mode management system and methods
US9334001B2 (en) 2010-12-14 2016-05-10 Camso Inc. Drive sprocket, drive lug configuration and track drive arrangement for an endless track vehicle
EP2502807B1 (en) 2011-03-21 2018-07-11 ContiTech USA, Inc. Vehicle track
CA2838935C (en) 2011-06-29 2018-01-02 Bombardier Recreational Products Inc. Drive track for a tracked vehicle
US8692562B2 (en) 2011-08-01 2014-04-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wireless open-circuit in-plane strain and displacement sensor requiring no electrical connections
US20130073157A1 (en) 2011-09-19 2013-03-21 Hb Performance Systems, Inc. Enhanced torque model for vehicle having a cvt
US20130082846A1 (en) 2011-09-30 2013-04-04 Timothy Allen McKinley Sensor system and method
KR20130043954A (en) 2011-10-21 2013-05-02 현대모비스 주식회사 Alarm device and method for detecting the state of vehicles' tires using sensors
CA3093117C (en) 2011-11-29 2024-11-12 Camso Inc Traction system for off-road vehicles such as snowmobiles or all-terrain vehicles (ATVs)
JP5946301B2 (en) 2012-03-19 2016-07-06 本田技研工業株式会社 Vehicle control device
US10046815B2 (en) 2012-03-27 2018-08-14 Wearpro Incorporated Wear monitoring device and method of monitoring undercarriage and roller wear
US9043113B2 (en) 2012-05-31 2015-05-26 Caterpillar Inc. Drive system having ongoing pull-slip learning
USD680561S1 (en) 2012-10-11 2013-04-23 Camoplast Solideal Inc. Endless track of an off-road vehicle
USD681071S1 (en) 2012-10-11 2013-04-30 Camoplast Solidcal Inc. Endless track of an off-road vehicle
WO2014056089A1 (en) 2012-10-12 2014-04-17 Camoplast Solideal Inc. Track assembly for an off-road vehicle
USD683769S1 (en) 2012-10-26 2013-06-04 Camoplast Solideal Inc. Endless track of an off-road vehicle
USD683371S1 (en) 2012-10-26 2013-05-28 Camoplast Solideal Inc. Endless track of an off-road vehicle
US9296437B2 (en) 2012-11-02 2016-03-29 Caterpillar Inc. Roller collar configured to reduce seal packing
US9085205B2 (en) 2012-12-21 2015-07-21 Continental Automotive Systems, Inc. Tire tread temperature sensor and diagnostics for in-vehicle display
AU2014241527B2 (en) 2013-03-25 2017-05-04 Polaris Industries Inc. Tracked all-terrain vehicle
WO2014168851A1 (en) 2013-04-11 2014-10-16 Google Inc. Methods and systems for detecting weather conditions using vehicle onboard sensors
US9169623B2 (en) 2013-04-25 2015-10-27 Caterpillar Inc. Wear monitoring system for track type machine
KR20150004969A (en) 2013-07-03 2015-01-14 동의대학교 산학협력단 System for checking tire status using a internet connection device and method of the same
USD711928S1 (en) 2013-09-10 2014-08-26 Glen Brazier Track assembly
TWI501277B (en) 2013-10-18 2015-09-21 Primax Electronics Ltd Illuminated keyboard
GB201318824D0 (en) 2013-10-24 2013-12-11 Wheelright Ltd Tyre condition analysis
GB2520284A (en) 2013-11-14 2015-05-20 Moorend Ltd A Support Structure
US9475526B2 (en) * 2014-08-23 2016-10-25 Caterpillar Inc. Track link having a wear sensing device
BE1022408B1 (en) 2014-09-03 2016-03-24 Cnh Industrial Belgium Nv CONTROLLER FOR A VEHICLE
US9868482B2 (en) 2014-10-29 2018-01-16 Caterpillar Inc. Track roller assembly with a wear measurement system
US9592866B2 (en) 2014-11-06 2017-03-14 Caterpillar Inc. Track assembly having a wear monitoring system
JP6279163B1 (en) 2014-12-22 2018-02-14 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ Method and apparatus for detecting tire defects in a tire manufacturing process
US9434427B1 (en) 2015-02-18 2016-09-06 Ati, Inc. Track-module bogie-suspension system
EP3747746B1 (en) 2015-03-04 2023-05-31 Camso Inc. Track system for traction of a vehicle
RU2707723C2 (en) 2015-06-30 2019-11-28 Пирелли Тайр С.П.А. Method and device for analysis of tire surface
US10875591B2 (en) 2015-08-04 2020-12-29 Camso Inc. Track system for traction of an agricultural vehicle travelling on fields and roads
WO2017049393A1 (en) 2015-09-21 2017-03-30 Soucy International Inc. Smart track system having embedded sensors and method of using the same
US10464419B2 (en) 2015-09-30 2019-11-05 Cnh Industrial America Llc System and method for automatically controlling vehicle speed based on track-related temperatures of a work vehicle
US9883626B2 (en) 2015-10-02 2018-02-06 Deere & Company Controlling an agricultural vehicle based on sensed inputs
US10864954B2 (en) 2015-11-03 2020-12-15 Camso Inc. Track system for traction of a vehicle
BR112018006040B1 (en) 2015-11-05 2022-11-16 Agco Corporation TRACKING WORK MACHINE WITH ARTICULATION STRUCTURE
US9989976B2 (en) 2015-12-22 2018-06-05 Deere & Company Vehicle control system with track temperature sensing
US9880075B2 (en) * 2016-02-11 2018-01-30 Caterpillar Inc. Wear measurement system using a computer model
US9855843B2 (en) 2016-02-24 2018-01-02 Cnh Industrial America Llc System and method for controlling the speed of a track-driven work vehicle based on monitored loads to avoid track overheating
EP3721200B1 (en) 2017-12-08 2023-11-29 Camso Inc. Track for traction of a vehicle
JP2021130312A (en) 2018-05-24 2021-09-09 株式会社ブリヂストン Temperature measurement system of crawler unit and crawler vehicle
US20200070906A1 (en) 2018-08-30 2020-03-05 Camso Inc. Systems and methods for monitoring vehicles
US12254616B2 (en) 2018-08-30 2025-03-18 Camso Inc. Systems and methods for monitoring tracked vehicles
EP3844473A4 (en) 2018-08-30 2022-06-08 Camso Inc. SYSTEMS AND METHODS FOR MONITORING VEHICLES HAVING TIRES
CA3110606A1 (en) 2018-09-07 2020-03-12 Soucy International Inc. Track system
CN110588813B (en) 2019-10-21 2024-11-29 庄锦程 Track advancing device easy to adjust shape
EP4127643A4 (en) 2020-03-27 2024-05-01 Camso Inc. MONITORING A TRACK SYSTEM FOR VEHICLE TRACTION
EP3960593A1 (en) 2020-08-18 2022-03-02 Camso Inc. Monitoring of track system for traction of a vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010017531A1 (en) * 2010-06-23 2011-12-29 Continental Reifen Deutschland Gmbh Method for automatic detection of defects in material layer with reinforcements for manufacture of vehicle tires, involves providing material layer of elastomer material with embedded parallel and consecutive arranged reinforcements
US9805697B1 (en) * 2012-06-01 2017-10-31 Hunter Engineering Company Method for tire tread depth modeling and image annotation
US20140105481A1 (en) * 2012-10-17 2014-04-17 Caterpillar Inc. Methods and systems for determining part wear based on digital image of part
JP2014126370A (en) * 2012-12-25 2014-07-07 Sumitomo Rubber Ind Ltd Method for evaluating crack of cross-linked rubber
WO2017000068A1 (en) * 2015-06-29 2017-01-05 Camso Inc. Systems and methods for monitoring a track system for traction of a vehicle
WO2018165753A1 (en) * 2017-03-14 2018-09-20 University Of Manitoba Structure defect detection using machine learning algorithms
US20190066283A1 (en) * 2017-08-23 2019-02-28 General Electric Company Three-dimensional modeling of an object
CN108061735A (en) * 2017-12-01 2018-05-22 工业互联网创新中心(上海)有限公司 The recognition methods of component surface defect and device
US20190392569A1 (en) * 2018-06-22 2019-12-26 Caterpillar Inc. Measurement platform that automatically determines wear of machine components based on images

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Perelmuter et al., Classification of Bidimensional Images Using Artificial Intelligence Techniques, 1996, IEEE Conferences, Proceedings II Workshop on Cybernetic Vision (Page(s): 39-44) (Year: 1996) *
"Perelmuter et al.,Classification of Bidimensional Images Using Artificial Intelligence Techniques,1996,IEEE Conferences, ProceedingsWorkshoponCyberneticVision(Page(s):39-44)(Year:1996) (Year: 1996) *
CN-108061735 ("Bian") translation and original (Year: 2018) *
JP-2014126370 ("Saka") translation and original (Year: 2014) *
WO-2018165753 ("Cha") translation and original (Year: 2018) *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11897558B2 (en) 2015-03-04 2024-02-13 Camso Inc. Track system for traction of a vehicle
US12008846B2 (en) 2015-06-29 2024-06-11 Camso Inc. Systems and methods for monitoring a track system for traction of a vehicle
US11879814B2 (en) * 2017-09-18 2024-01-23 Board Of Regents, The University Of Texas System Mobile railway track defect detection
US11835955B2 (en) 2017-12-08 2023-12-05 Camso Inc. Systems and methods for monitoring off-road vehicles
US12090795B2 (en) 2018-08-30 2024-09-17 Camso Inc. Systems and methods for monitoring vehicles with tires
US12131297B2 (en) * 2018-12-12 2024-10-29 Streem, Llc Automatic detection and recognition of visual tags
US20200193203A1 (en) * 2018-12-12 2020-06-18 Streem, Inc. Automatic detection and recognition of visual tags
US12063882B2 (en) 2019-10-31 2024-08-20 Deere & Company Volumetric metering system with improved roller detection
US11579590B2 (en) * 2019-10-31 2023-02-14 Deere & Company Wireless mobile work machine component detection and control system
US20230341837A1 (en) * 2019-10-31 2023-10-26 Deere & Company Wireless mobile work machine component detection and control system
US12189368B2 (en) * 2019-10-31 2025-01-07 Deere & Company Wireless mobile work machine component detection and control system
US11961052B2 (en) * 2020-12-15 2024-04-16 Caterpillar Inc. Systems and methods for wear assessment and part replacement timing optimization
US20220188774A1 (en) * 2020-12-15 2022-06-16 Caterpillar Inc. Systems and methods for wear assessment and part replacement timing optimization
US12284936B2 (en) 2021-03-08 2025-04-29 Deere & Company Row unit plugging detection and control system
US20230175235A1 (en) * 2021-12-07 2023-06-08 Deere & Company Propel limiting system and method for rear collision avoidance
WO2024133040A1 (en) * 2022-12-19 2024-06-27 Compagnie Generale Des Etablissements Michelin Method for measuring tread wear of a track
US20240295470A1 (en) * 2023-03-03 2024-09-05 Caterpillar Inc. System, apparatus, computer program product, and method for determining track pitch distance measurement
US12345605B2 (en) * 2023-03-03 2025-07-01 Caterpillar Inc. System, apparatus, computer program product, and method for determining track pitch distance measurement
CN116215685A (en) * 2023-03-13 2023-06-06 中联重科股份有限公司 Assembly system and assembly method
US20250139822A1 (en) * 2023-10-25 2025-05-01 Caterpillar Inc. Identification of a track based on track bolt orientation

Also Published As

Publication number Publication date
WO2020041897A1 (en) 2020-03-05
EP3844474B1 (en) 2024-11-27
CA3111039A1 (en) 2020-03-05
EP3844474C0 (en) 2024-11-27
EP3844474A4 (en) 2022-07-13
EP3844474A1 (en) 2021-07-07
US12254616B2 (en) 2025-03-18

Similar Documents

Publication Publication Date Title
US12254616B2 (en) Systems and methods for monitoring tracked vehicles
US12090795B2 (en) Systems and methods for monitoring vehicles with tires
US11835955B2 (en) Systems and methods for monitoring off-road vehicles
US20230356792A1 (en) Systems and methods for monitoring vehicles
US11494930B2 (en) Techniques for volumetric estimation
US7301445B2 (en) Tire maintenance system
CA3227432A1 (en) Autonomous electric mower system and related methods
EP4010534B1 (en) Methods and systems for determining part wear using a bounding model
US20180255704A1 (en) Zone control system for a robotic vehicle
US20170356164A1 (en) Wear Prediction and Notification System
CA3154590A1 (en) System and method for validating availability of machine at worksite
US20170284072A1 (en) Project management system for worksite including machines performing operations and method thereof
US20250209859A1 (en) Process and system for estimating the remaining useful life of transport vehicle tires on the basis of telematic data
US20200387168A1 (en) Automated Convoy Assembly in Tactical Assembly Area
EP4426900B1 (en) Systems and methods for undercarriage wear prediction
US20230002981A1 (en) System and method for determining paving machine productivity
US20240246450A1 (en) Systems and methods for identifying modifications to terrain characteristics of a worksite for battery performance
US20240353837A1 (en) System and method for responding to obstacles in worksites using autonomous machines
Talami et al. Path Planning and Controller Development for UGVs
EP4488900A1 (en) A transport asset monitoring system for monitoring operating states of one or more transport assets and a method to be executed in the transport asset monitoring system
US20250156774A1 (en) System and method for vehicle defect detection
US20250390806A1 (en) System and method for vehicle defect detection
US20250198094A1 (en) System and method for indicating movement path of work machine
US20250076876A1 (en) Computer implemented method and system for suppressing false dump events
CN119678724A (en) Operation management method, operation management program and operation management system

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: CAMSO INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GINGRAS, DAVID;LAPERLE, GHISLAIN;SIGNING DATES FROM 20220429 TO 20220517;REEL/FRAME:060144/0901

Owner name: CAMSO INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNOR'S INTEREST;ASSIGNORS:GINGRAS, DAVID;LAPERLE, GHISLAIN;SIGNING DATES FROM 20220429 TO 20220517;REEL/FRAME:060144/0901

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE