US20210290930A1 - Intravascular blood pump and method for producing electrical conductor tracks - Google Patents
Intravascular blood pump and method for producing electrical conductor tracks Download PDFInfo
- Publication number
- US20210290930A1 US20210290930A1 US17/057,044 US201917057044A US2021290930A1 US 20210290930 A1 US20210290930 A1 US 20210290930A1 US 201917057044 A US201917057044 A US 201917057044A US 2021290930 A1 US2021290930 A1 US 2021290930A1
- Authority
- US
- United States
- Prior art keywords
- blood pump
- region
- electrical
- conductor tracks
- blood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/135—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/13—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel by means of a catheter allowing explantation, e.g. catheter pumps temporarily introduced via the vascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/165—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
- A61M60/17—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart inside a ventricle, e.g. intraventricular balloon pumps
- A61M60/174—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart inside a ventricle, e.g. intraventricular balloon pumps discharging the blood to the ventricle or arterial system via a cannula internal to the ventricle or arterial system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/205—Non-positive displacement blood pumps
- A61M60/216—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
- A61M60/237—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/403—Details relating to driving for non-positive displacement blood pumps
- A61M60/408—Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
- A61M60/411—Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/508—Electronic control means, e.g. for feedback regulation
- A61M60/515—Regulation using real-time patient data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/508—Electronic control means, e.g. for feedback regulation
- A61M60/515—Regulation using real-time patient data
- A61M60/531—Regulation using real-time patient data using blood pressure data, e.g. from blood pressure sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/508—Electronic control means, e.g. for feedback regulation
- A61M60/538—Regulation using real-time blood pump operational parameter data, e.g. motor current
- A61M60/554—Regulation using real-time blood pump operational parameter data, e.g. motor current of blood pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/802—Constructional details other than related to driving of non-positive displacement blood pumps
- A61M60/81—Pump housings
- A61M60/816—Sensors arranged on or in the housing, e.g. ultrasound flow sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/857—Implantable blood tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
- A61M2205/0238—General characteristics of the apparatus characterised by a particular materials the material being a coating or protective layer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3368—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2207/00—Methods of manufacture, assembly or production
Definitions
- the present invention relates to an intravascular blood pump, which can in particular be used as a cardiac support system.
- the invention further relates to a method for producing electrical conductor tracks in such a blood pump.
- So-called left ventricular assist devices are a known option for supporting the pumping function of the heart. These are surgically implantable mechanical pumps that support the heart. By continuously pumping blood, the blood is pumped from the left ventricle into the aorta, so that enough oxygen-rich blood can circulate in the body in a heart failure patient.
- So-called balloon pumps are known for this purpose.
- rotary blood pumps have already been developed that can in particular also be inserted into the left ventricle and the aorta in a minimally invasive manner.
- the right side of the heart for example, can also be supported in a corresponding manner.
- Such systems place high demands on overall size. The necessary small dimensions are achieved, for example, by reducing the wall thicknesses to a minimum.
- the object of the invention is to provide an improved intravascular blood pump and a method for producing such a blood pump.
- One object of the invention is in particular to create an intravascular blood pump, which [enables] the operation of electrical components, in particular the operation of sensors disposed, for example, in the region of a tip of the blood pump, and/or evaluation electronics disposed in said location.
- an intravascular blood pump having the features of Claim 1 .
- Such a blood pump can be produced with the method specified in Claim 11 .
- Advantageous embodiments of the invention are specified in the dependent claims.
- the invention provides an intravascular blood pump, which is in particular based on the rotary pump principle, that can in particular be used as a cardiac support system.
- the blood pump comprises a tip, a first region with at least one blood through-opening, a flow cannula, a second region with at least one blood through-opening, a motor-operated pump device and a conducting cable for the electrical supply and control of the system.
- the blood pump is characterized in that at least one electrical conductor track is provided by a surface coating structure at least in the region of the flow cannula. Electrical connections and/or sensors can be realized via the electrical conductor track(s).
- At least one electronic component can thus be disposed in the region of the tip, in particular one or more active electronic components, for the electrical connection of which the at least one electrical conductor track is used.
- Such electrical conductor tracks make it possible to reduce the thickness of the electrical connecting lines to a minimum in a particularly advantageous manner. This satisfies the need for small size for such systems.
- Such surface coating structures in particular make it possible to bridge the region of the flow cannula.
- other regions of the blood pump can also be bridged; for example the regions of the blood through-openings and the pump device or parts thereof.
- Electronic components in the tip of the system can thus be electrically connected to further away regions of the system, in particular to the conducting cable, so that power transmission and/or data transmission from or to external control devices and/or evaluation devices, for example, is possible.
- the invention permits a very advantageous electrical contacting of electronic components in the tip or also at another position, whereby the implementation of the electrical contacting or connection to the conducting cable can be very thin and space-saving and, at the same time, very firm, stable and reliable due to the electrical surface functionalization.
- the assembly process required for this can be realized in a cost-effective manner.
- the electronic components in the region of the tip can in particular be sensors, for example pressure sensors, flow measuring sensors, temperature sensors, etc.
- sensors can be realized using the conductor tracks themselves, for example strain sensors and/or breakage sensors and/or temperature sensors. In this way, sensors can be integrated into the surface structure in a very advantageous manner.
- the use of exposed electrodes for recording electrical excitation signals or for performing an electrical impedance measurement is possible as well.
- Such sensors can be realized by sensor regions within the surface coating structure which comprise meandering conductor tracks.
- the conductor tracks in the sensor region(s) can also be made of a different material than the conductor tracks outside the sensor regions.
- the conductor tracks in a sensor region can be made of platinum, for example, which allows the sensor region to be used as a temperature sensor.
- Such sensor regions can furthermore also be used as electrical sensors, so that the sensors can be used for dielectric characterization of the surrounding blood, for example.
- the coupling can be conductive or capacitive, comparable to an impedance spectroscopy. It is also possible to integrate a thin surface wave sensor, for example as a thin ceramic disc, for example for determining the blood viscosity.
- the flow cannula of the intravascular blood pump preferably comprises one or more coatable materials.
- a hose guide made of a coatable material can in particular be provided.
- the surface coating structure is applied to the coatable material or materials to realize the electrical conductor tracks.
- the hose guide can, for example, be equipped with a flexible skeletal structure, for example a spiral structure. Other options include zigzag or wave structures.
- the flexible structure e.g. the spiral structure
- Such flexible structures are particularly advantageously at least partially made of the coatable material.
- Nickel-titanium alloys which are already used in medical technology due to their particularly advantageous properties, are particularly preferred.
- nickel-titanium alloys also have the advantage of being directly coatable.
- Other suitable coatable materials are, for example, glass and/or ceramic.
- the surface coating structure can preferably have a multilayer structure, for example a two-layer structure, whereby the lower layer in the space between two conductor structures can be used for metallizing a further conductor layer, so that multiple conductor track layers are nested inside one another. On the one hand, this allows the overall conductor width to be reduced. On the other hand, the layer thickness of the conductor structure as a whole is reduced.
- electrical contact pads are provided.
- the contact pads can be disposed at the end of the flow cannula, for example, opposite the tip of the system.
- the invention further involves a method for producing electrical conductor tracks at least in the region of a flow cannula of an intravascular blood pump, wherein, concerning this blood pump, reference is made to the above description.
- the electrical conductor tracks are produced using a surface coating, in particular using surface lithographic techniques.
- optical lithographic methods e.g. UV lithography
- Flat 2D wafer processes can be used on cylindrical bodies, for example, so that conventional lithography processes can in principle be used by adapting the exposure devices.
- Photolithographic methods in particular three-dimensional UV photolithographic methods, are particularly suitable. Magnetron sputtering and, if necessary, wet chemical etching methods can in particular be used to produce the surface structuring.
- an insulating base layer can first be applied to the coatable material.
- This can be an oxide layer that is applied by sputtering, for example, or a polyimide.
- a photoresist is then applied and structured in accordance with the conductor tracks to be applied.
- a lithography mask is expediently applied, for example made of chrome-coated quartz substrate, before the photoresist is exposed and developed.
- the metallic conductor track structure is then applied by sputtering. For reasons of biocompatibility, gold is preferably used as the material for the conductor tracks.
- the photoresist is then removed.
- an electrically insulating and preferably biocompatible surface is applied. This too can again be done by sputtering oxide, for example, or by applying polyimide or parylene or something else.
- the layer thickness of the resulting sputtered surfaces is preferably in a range of several hundred nanometers.
- a conductor track structure with an increased layer thickness can be provided using the design variant of the method described in the following.
- an in principle complete conductive surface coating is produced first. This is windowed by a structured photoresist and the exposed windows are then galvanically thickened.
- an insulating base layer is applied first, for example an oxide layer by sputtering or a base layer of polyimide.
- an initial metallic conductor layer e.g. gold
- a photoresist is applied to the initial conductor layer and structured in accordance with the conductor tracks to be applied.
- the exposed metallic conductor tracks or the exposed windows are then thickened using a wet chemical electroplating process so that the desired conductivity can be produced in the exposed metal structures.
- the photoresist is removed.
- the surface is etched so that the electrical conductor track structures are exposed.
- an electrically insulating and preferably biocompatible surface is applied, for example by sputtering oxide or by applying polyimide or parylene or other materials.
- the process preferably also includes the structuring of the pipe material, in which a web structure is produced on which the conductor tracks are held (for example a spiral structure). This structuring can occur before or after the production of the conductor tracks. Finally, the windows of the web structure are closed with silicone or polyurethane, for example.
- FIG. 1 a sectional view of a human heart and lung with an inserted intravascular blood pump
- FIG. 2 components of an intravascular blood pump (LVAD system);
- FIG. 3 an isometric illustration of a flexible hose guide of the flow cannula of an intravascular blood pump
- FIG. 4 a detail view of the hose guide of a flow cannula having a surface coating structure according to the invention for the formation of conductor tracks;
- FIG. 5 a detail view of the hose guide of a flow cannula having a surface coating structure according to the invention with the configuration of sensor regions by the conductor tracks;
- FIG. 6 a detail view of the hose guide of a flow cannula having a surface coating structure according to the invention showing electrical contact pads;
- FIG. 7 a detail view of a cross-section through a flow cannula having a surface coating structure according to the invention.
- FIG. 8 a further detail view of a cross-section through a flow cannula having a surface coating structure according to the invention with a two-layer structure;
- FIG. 9 a further detail view of a cross-section through a surface coating structure with a multilayer structure.
- FIG. 10 a further detail view of a cross-section through a surface coating structure with a multilayer structure and shielding.
- FIG. 1 shows a human heart 10 and the surrounding lungs 20 , wherein an intravascular blood pump 100 is inserted in the left ventricle 11 .
- Pumping the blood pump 100 supports the pumping function of the heart 10 by moving oxygen-rich blood coming into the left ventricle 11 from the pulmonary vein 12 into the aorta 13 .
- the intravascular blood pump can be designed for continuous pumping, for example, or the pump is based on a pulsatile system, for example, in which the pump speed is modulated.
- FIG. 2 schematically shows the components of an intravascular blood pump 100 that is equipped according to the invention with a surface coating structure for the formation of electrical conductor tracks.
- the blood pump 100 comprises a tip 110 , wherein one or more electronic components 112 , in particular sensors, can be provided in a region within the tip 110 .
- the tip is closed by a slidable cap 111 .
- a first region 120 (inlet cage) with blood through-openings 121 adjoins the tip 110 .
- Blood can be drawn into the blood pump, for example from the left ventricle, through the blood through-openings 121 . This is adjoined by a flow cannula 130 and a second region 140 (impeller cage) having further blood through-openings 141 .
- region 150 for a motor-operated pump device.
- a motor-operated pump device Inside the region 140 there is a rotor (impeller), for example, that is operated via the pump device 150 , so that the pumped blood can exit through the blood through-openings 141 .
- the pump device 150 is adjoined by a back end 160 , via which the electrical connection is made.
- a supply cable 170 is provided for electrical supply and control.
- the motor-operated pump device is preferably a rotary pump (flow machine), wherein a reversal of the conveying direction can also be provided if necessary.
- the surface coating structure according to the invention allows sensors or sensor regions, for example breakage sensors or strain sensors or temperature sensors, to be realized, in particular in the region of the flow cannula.
- the surface coating structures can also be used to electrically connect any existing electronic components 112 of the tip 110 to the supply cable 170 .
- This allows the length of the flow cannula 130 in particular, but also the regions 120 and 140 and the region with the motor-operated pump device 150 , to be bridged.
- Different components can be combined and realized as one structural element.
- the first region 120 can be combined with the flow cannula 130 to one structural element, which can then very advantageously be equipped with the surface coating structure according to the invention for the formation of conductor tracks.
- FIG. 3 shows a combined configuration of the first region with blood through-openings 221 , which is directly adjoined by the flow cannula 230 .
- the flow cannula 230 is advantageously realized as a flexible inlet hose or as a flexible hose guide.
- the flexible flow cannula 230 is realized by a spiral-shaped structure formed by circumferential windowed webs 300 .
- a laser-structured tube made of NiTiNol material, for example, can be provided as the coatable material for this purpose.
- On the right side of the laser structured tube there is an elongated opening, which is provided for the passage of a guide wire in a per se known manner during the implantation process.
- the skeleton or web structures 300 of the NiTiNol material are electrically functionalized by surface coating for the formation of the conductor tracks, whereby the conductor tracks can in particular be used for electrically connecting electronic components and/or for the formation of sensors.
- the spiral structure of the NiTiNol tube can be produced by laser structuring.
- the exposed windows of the laser structured form can be closed by flexible materials, for example by silicone or polyurethane.
- the flexibility of the hose guide can also be achieved with other structures, for example by zigzag or wave patterns.
- the surface coating structure as such can be applied according to the method already described above. In this context, reference is also made to an article by Bechtold et al.
- FIG. 4 shows a detail view of the resulting exemplary conductor track structures on the flow cannula 230 .
- the webs 300 of the laser-structured spiral structure (see FIG. 3 ), which to a certain extent form the framework of the flexible flow cannula 230 , leave windows 301 open.
- the windows 301 are preferably closed in a flexible manner, for example using silicone or polyurethane.
- the webs 300 together with the closed windows 301 form the hose guide of the flow cannula 230 .
- electrical conductor track structures 302 , 303 are applied to the webs 300 using lithography and coating technologies.
- a lithography mask comprising the corresponding coating structures (electrical conductor track structures) is applied for each layer.
- the lithography mask can be a chrome-coated quartz substrate, for example.
- Non-conductors such as photoresist or polyimide can be applied over a large area by dipping, for example.
- Non-conductors such as parylene C can be deposited in a vacuum, for example.
- Initial metallic layers are in particular applied by sputtering, thicker layers by electrodeposition.
- Method 1 the tube material (for example NiTiNol) is first provided with the electrical surface coating for the formation of the conductor tracks.
- the flexible structure is produced, for example, by laser cutting (laser structuring), whereby the coating structure and the laser cutting contour are geometrically aligned to one another.
- the windows of the flexible structure are closed, for example by dipping or overmolding.
- the pipe material is structured first.
- the surface functionalization for the formation of the conductor tracks is then produced using the lithographic processes.
- the windows of the flexible structure are closed as in Method 1.
- Method 1 has the advantage that the lithography process is simplified.
- Method 2 has the advantage that shape embossments in the NiTiNol material are possible directly after the structuring of the pipe material; for example to “save” bends or cross-sectional changes to the cross-section of the starting material (e.g. widenings of the cross-section). Because of the process temperatures needed for the shape embossment, it is generally advantageous to perform this step before the lithographic surface coating.
- FIG. 5 shows particularly preferred configurations of the conductor tracks, in which the conductor track structure is designed as a sensor (left) or as an electrical connection and additionally as a sensor (right).
- the flow cannula 230 is equipped with conductor tracks 302 , 303 , which are formed by surface structuring of the webs 300 of the flow cannula 230 (right part of the illustration).
- Meandering conductor tracks are provided as well, which form the sensor regions 304 (left) or the additional sensor region 305 (right).
- Straight sections of the conductor tracks can be provided between individual sensor regions 304 , or the sensor region 305 is formed by a continuously meandering conductor track.
- the input and output lines 306 , 307 of the sensor regions 304 can be made of a different material than the sensor regions themselves.
- a plurality of sensor regions can be implemented via separate input lines or even with a common return channel line 308 , for example.
- the conductor tracks of the sensor regions 304 or 305 are made of platinum, because platinum has a very linear resistance-temperature relationship.
- the input and output tracks 306 , 307 , 308 expediently have the lowest possible resistance in order to have little influence on the sensor signal.
- the conductor track structures can also be used as strain or breakage sensors, for example. They can also be used as capacitive sensors, electrode surfaces or contact pads for further sensors, for example.
- FIG. 6 shows a preferred electrical contacting of the conductor tracks 302 , 303 via electrical contact pads 310 , 311 , 312 , 313 .
- This electrical contacting can take place, for example, at the end of the flow cannula 230 , i.e. in the direction toward the second region 140 .
- the conductor tracks can also be guided over other components of the blood pump, for example over the region 140 , 150 to the electrical connection region 160 .
- the electrical connection can be established by conductive gluing, soldering, bonding or frictional connection, for example.
- the connection can be made directly from NiTiNol component to NiTiNol component, for example, or from NiTiNol component directly to a cable or a thin-film substrate, depending on the configuration of the blood pump.
- FIG. 7 shows a cross-section through the resulting layer structure that realizes the electrical conductor tracks.
- 710 represents the underlying NiTiNol structure or another coatable material as the support structure of the flow cannula.
- 720 represents an insulating base layer, for example made of silicon oxide or polyimide.
- 730 shows the metallic conductor track structures, for example made of gold.
- 740 represents an insulating cover layer, for example made of silicon oxide, polyimide or parylene.
- a multilayer structure for example a two-layer structure as illustrated in FIG. 8 , can be created by repeating the surface coating several times (surface lithography).
- a further conductor track 750 disposed at a slightly higher level is additionally provided in the spaces between the conductor track structures 730 .
- the space (empty space) between the conductor track structures 730 on the lower layer is used for the metallization of the upper layer by disposing the metallic conductor layer in this space.
- This offset arrangement of the conductor tracks on different levels prevents the formation of larger protrusions or roughnesses of the surface structure in the regions in which metallic conductor tracks would be on top of one another. This can occur in particular in higher multilayer structures having six or more layers.
- this embodiment with an offset arrangement has the advantage over a purely coaxial embodiment that the resulting layer thickness of the conductor structure as a whole is reduced.
- This embodiment is also particularly advantageous compared to a coplanar design, because the overall conductor width is reduced. If an offset arrangement of the conductor tracks is not desired or possible, it is alternatively also possible to compensate any unevenness that may occur due to superimposed conductor tracks, for example with a silicone layer or the like.
- FIG. 9 shows a further structure of a multilayered conductor track structure.
- Four narrow conductor tracks 910 and two wide conductor tracks 920 are disposed one above the other on the coatable material (not shown in detail).
- the narrow conductor tracks 910 serve as a communication bus for a pressure sensor and a temperature sensor in the tip of the blood pump, for example.
- the wide conductor tracks 920 have a lower resistance (electrical power) and are used, for example, to connect an ultrasonic element in the tip of the blood pump. To produce such a structure, a total of seven layers are required for the surface coating.
- FIG. 10 shows a similar example of a 5 multilayered structure having four narrow conductor tracks 1010 and two wide conductor tracks 1020 .
- Metallizations which shield the conductor tracks 1010 and 1020 against one another and to the outside, are additionally provided as a shielding 1030 , so that a defined line impedance and less high-frequency radiation are achieved along with a shielded routing of the signals.
- a total of 11 layers are required to produce such a structure. In the contact pad region, the up to 11 layers can expediently be widened accordingly and, for example, passed into the top metal layer through a vertical through-connection.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Mechanical Engineering (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Medical Informatics (AREA)
- Transplantation (AREA)
- External Artificial Organs (AREA)
Abstract
Description
- The present invention relates to an intravascular blood pump, which can in particular be used as a cardiac support system. The invention further relates to a method for producing electrical conductor tracks in such a blood pump.
- So-called left ventricular assist devices (LVAD) are a known option for supporting the pumping function of the heart. These are surgically implantable mechanical pumps that support the heart. By continuously pumping blood, the blood is pumped from the left ventricle into the aorta, so that enough oxygen-rich blood can circulate in the body in a heart failure patient. So-called balloon pumps are known for this purpose. Moreover, rotary blood pumps have already been developed that can in particular also be inserted into the left ventricle and the aorta in a minimally invasive manner. The right side of the heart, for example, can also be supported in a corresponding manner. Such systems place high demands on overall size. The necessary small dimensions are achieved, for example, by reducing the wall thicknesses to a minimum. However, the integration of active electronic components or sensors in general with suitable connections is difficult. The international patent application WO 2013/160443 A1 describes an intravascular rotary blood pump in which an optical pressure sensor is integrated into the system, wherein the optical connection via optical fibers is implemented in a complex manner using neutral fibers along the flow cannula of the blood pump.
- The object of the invention is to provide an improved intravascular blood pump and a method for producing such a blood pump. One object of the invention is in particular to create an intravascular blood pump, which [enables] the operation of electrical components, in particular the operation of sensors disposed, for example, in the region of a tip of the blood pump, and/or evaluation electronics disposed in said location.
- This object is achieved by an intravascular blood pump having the features of Claim 1. Such a blood pump can be produced with the method specified in
Claim 11. Advantageous embodiments of the invention are specified in the dependent claims. - The invention provides an intravascular blood pump, which is in particular based on the rotary pump principle, that can in particular be used as a cardiac support system. The blood pump comprises a tip, a first region with at least one blood through-opening, a flow cannula, a second region with at least one blood through-opening, a motor-operated pump device and a conducting cable for the electrical supply and control of the system. The blood pump is characterized in that at least one electrical conductor track is provided by a surface coating structure at least in the region of the flow cannula. Electrical connections and/or sensors can be realized via the electrical conductor track(s). At least one electronic component can thus be disposed in the region of the tip, in particular one or more active electronic components, for the electrical connection of which the at least one electrical conductor track is used. Such electrical conductor tracks make it possible to reduce the thickness of the electrical connecting lines to a minimum in a particularly advantageous manner. This satisfies the need for small size for such systems. Such surface coating structures in particular make it possible to bridge the region of the flow cannula. However, other regions of the blood pump can also be bridged; for example the regions of the blood through-openings and the pump device or parts thereof. Electronic components in the tip of the system can thus be electrically connected to further away regions of the system, in particular to the conducting cable, so that power transmission and/or data transmission from or to external control devices and/or evaluation devices, for example, is possible. The invention permits a very advantageous electrical contacting of electronic components in the tip or also at another position, whereby the implementation of the electrical contacting or connection to the conducting cable can be very thin and space-saving and, at the same time, very firm, stable and reliable due to the electrical surface functionalization. The assembly process required for this can be realized in a cost-effective manner.
- The electronic components in the region of the tip can in particular be sensors, for example pressure sensors, flow measuring sensors, temperature sensors, etc. Optical sensors, acceleration or rotation rate sensors and acoustic sensors (microphones), for example, are possible as well. Any sensors or other electronic components and electrode surfaces that are suitable for medical monitoring of the patient and/or the function of the intravascular blood pump and/or for controlling the blood pump can be used.
- As an alternative or in addition to an electrical connection of electronic components via the conductor tracks, sensors can be realized using the conductor tracks themselves, for example strain sensors and/or breakage sensors and/or temperature sensors. In this way, sensors can be integrated into the surface structure in a very advantageous manner. The use of exposed electrodes for recording electrical excitation signals or for performing an electrical impedance measurement is possible as well. Such sensors can be realized by sensor regions within the surface coating structure which comprise meandering conductor tracks. The conductor tracks in the sensor region(s) can also be made of a different material than the conductor tracks outside the sensor regions. The conductor tracks in a sensor region can be made of platinum, for example, which allows the sensor region to be used as a temperature sensor. Such sensor regions can furthermore also be used as electrical sensors, so that the sensors can be used for dielectric characterization of the surrounding blood, for example. The coupling can be conductive or capacitive, comparable to an impedance spectroscopy. It is also possible to integrate a thin surface wave sensor, for example as a thin ceramic disc, for example for determining the blood viscosity.
- The flow cannula of the intravascular blood pump preferably comprises one or more coatable materials. A hose guide made of a coatable material can in particular be provided. The surface coating structure is applied to the coatable material or materials to realize the electrical conductor tracks. As a general rule, it is useful for the flow cannula to be flexible. For this purpose, the hose guide can, for example, be equipped with a flexible skeletal structure, for example a spiral structure. Other options include zigzag or wave structures. The flexible structure (e.g. the spiral structure) is expediently designed such that there is a continuous web structure on which the electrical conductor tracks are held. Such flexible structures are particularly advantageously at least partially made of the coatable material. Metallic materials, for example titanium and/or stainless steel, can be used as coatable materials. Nickel-titanium alloys (NiTiNol), which are already used in medical technology due to their particularly advantageous properties, are particularly preferred. In addition to their advantages in terms of their deformation properties, nickel-titanium alloys also have the advantage of being directly coatable. Other suitable coatable materials are, for example, glass and/or ceramic.
- The surface coating structure can preferably have a multilayer structure, for example a two-layer structure, whereby the lower layer in the space between two conductor structures can be used for metallizing a further conductor layer, so that multiple conductor track layers are nested inside one another. On the one hand, this allows the overall conductor width to be reduced. On the other hand, the layer thickness of the conductor structure as a whole is reduced.
- For electrical contacting of the conductor tracks it is preferable that electrical contact pads are provided. The contact pads can be disposed at the end of the flow cannula, for example, opposite the tip of the system.
- The invention further involves a method for producing electrical conductor tracks at least in the region of a flow cannula of an intravascular blood pump, wherein, concerning this blood pump, reference is made to the above description. The electrical conductor tracks are produced using a surface coating, in particular using surface lithographic techniques. First and foremost, optical lithographic methods (e.g. UV lithography) can be used. Flat 2D wafer processes can be used on cylindrical bodies, for example, so that conventional lithography processes can in principle be used by adapting the exposure devices. Photolithographic methods, in particular three-dimensional UV photolithographic methods, are particularly suitable. Magnetron sputtering and, if necessary, wet chemical etching methods can in particular be used to produce the surface structuring.
- In a preferred embodiment of the method, after a possibly necessary initial cleaning and surface activation of the material to be coated, an insulating base layer can first be applied to the coatable material. This can be an oxide layer that is applied by sputtering, for example, or a polyimide. A photoresist is then applied and structured in accordance with the conductor tracks to be applied. For this purpose, a lithography mask is expediently applied, for example made of chrome-coated quartz substrate, before the photoresist is exposed and developed. The metallic conductor track structure is then applied by sputtering. For reasons of biocompatibility, gold is preferably used as the material for the conductor tracks. The photoresist is then removed. Finally, an electrically insulating and preferably biocompatible surface is applied. This too can again be done by sputtering oxide, for example, or by applying polyimide or parylene or something else. The layer thickness of the resulting sputtered surfaces is preferably in a range of several hundred nanometers.
- In particular for applications that require a high conductivity of the conductor track structures, a conductor track structure with an increased layer thickness (for example several micrometers) can be provided using the design variant of the method described in the following. For this purpose, an in principle complete conductive surface coating is produced first. This is windowed by a structured photoresist and the exposed windows are then galvanically thickened. Specifically, in this variant, after a possibly necessary initial cleaning and surface activation, an insulating base layer is applied first, for example an oxide layer by sputtering or a base layer of polyimide. Then an initial metallic conductor layer (e.g. gold) is applied. A photoresist is applied to the initial conductor layer and structured in accordance with the conductor tracks to be applied.
- The exposed metallic conductor tracks or the exposed windows are then thickened using a wet chemical electroplating process so that the desired conductivity can be produced in the exposed metal structures. The photoresist is removed. To remove the initial metal conductor layer outside the conductor track structures, the surface is etched so that the electrical conductor track structures are exposed. Lastly, an electrically insulating and preferably biocompatible surface is applied, for example by sputtering oxide or by applying polyimide or parylene or other materials.
- In addition to the surface structuring for producing the conductor tracks, the process preferably also includes the structuring of the pipe material, in which a web structure is produced on which the conductor tracks are held (for example a spiral structure). This structuring can occur before or after the production of the conductor tracks. Finally, the windows of the web structure are closed with silicone or polyurethane, for example.
- Further features and advantages of the invention emerge from the following description of design examples in conjunction with the drawing. The individual features can be realized individually or in combination with one another.
- Advantageous embodiments of the invention are shown schematically in the drawings and are described in the following.
- The figures show:
-
FIG. 1 a sectional view of a human heart and lung with an inserted intravascular blood pump; -
FIG. 2 components of an intravascular blood pump (LVAD system); -
FIG. 3 an isometric illustration of a flexible hose guide of the flow cannula of an intravascular blood pump; -
FIG. 4 a detail view of the hose guide of a flow cannula having a surface coating structure according to the invention for the formation of conductor tracks; -
FIG. 5 a detail view of the hose guide of a flow cannula having a surface coating structure according to the invention with the configuration of sensor regions by the conductor tracks; -
FIG. 6 a detail view of the hose guide of a flow cannula having a surface coating structure according to the invention showing electrical contact pads; -
FIG. 7 a detail view of a cross-section through a flow cannula having a surface coating structure according to the invention; -
FIG. 8 a further detail view of a cross-section through a flow cannula having a surface coating structure according to the invention with a two-layer structure; -
FIG. 9 a further detail view of a cross-section through a surface coating structure with a multilayer structure; and -
FIG. 10 a further detail view of a cross-section through a surface coating structure with a multilayer structure and shielding. -
FIG. 1 shows ahuman heart 10 and the surroundinglungs 20, wherein anintravascular blood pump 100 is inserted in theleft ventricle 11. Pumping theblood pump 100 supports the pumping function of theheart 10 by moving oxygen-rich blood coming into theleft ventricle 11 from thepulmonary vein 12 into theaorta 13. The intravascular blood pump can be designed for continuous pumping, for example, or the pump is based on a pulsatile system, for example, in which the pump speed is modulated. -
FIG. 2 schematically shows the components of anintravascular blood pump 100 that is equipped according to the invention with a surface coating structure for the formation of electrical conductor tracks. Theblood pump 100 comprises atip 110, wherein one or moreelectronic components 112, in particular sensors, can be provided in a region within thetip 110. The tip is closed by aslidable cap 111. A first region 120 (inlet cage) with blood through-openings 121 adjoins thetip 110. Blood can be drawn into the blood pump, for example from the left ventricle, through the blood through-openings 121. This is adjoined by aflow cannula 130 and a second region 140 (impeller cage) having further blood through-openings 141. This is adjoined byregion 150 for a motor-operated pump device. Inside theregion 140 there is a rotor (impeller), for example, that is operated via thepump device 150, so that the pumped blood can exit through the blood through-openings 141. Thepump device 150 is adjoined by aback end 160, via which the electrical connection is made. Asupply cable 170 is provided for electrical supply and control. The motor-operated pump device is preferably a rotary pump (flow machine), wherein a reversal of the conveying direction can also be provided if necessary. - The surface coating structure according to the invention allows sensors or sensor regions, for example breakage sensors or strain sensors or temperature sensors, to be realized, in particular in the region of the flow cannula. The surface coating structures can also be used to electrically connect any existing
electronic components 112 of thetip 110 to thesupply cable 170. This allows the length of theflow cannula 130 in particular, but also the 120 and 140 and the region with the motor-operatedregions pump device 150, to be bridged. Different components can be combined and realized as one structural element. For example, thefirst region 120 can be combined with theflow cannula 130 to one structural element, which can then very advantageously be equipped with the surface coating structure according to the invention for the formation of conductor tracks. -
FIG. 3 shows a combined configuration of the first region with blood through-openings 221, which is directly adjoined by theflow cannula 230. Theflow cannula 230 is advantageously realized as a flexible inlet hose or as a flexible hose guide. In this example, theflexible flow cannula 230 is realized by a spiral-shaped structure formed by circumferentialwindowed webs 300. A laser-structured tube made of NiTiNol material, for example, can be provided as the coatable material for this purpose. On the right side of the laser structured tube there is an elongated opening, which is provided for the passage of a guide wire in a per se known manner during the implantation process. The skeleton orweb structures 300 of the NiTiNol material are electrically functionalized by surface coating for the formation of the conductor tracks, whereby the conductor tracks can in particular be used for electrically connecting electronic components and/or for the formation of sensors. The spiral structure of the NiTiNol tube can be produced by laser structuring. The exposed windows of the laser structured form can be closed by flexible materials, for example by silicone or polyurethane. The flexibility of the hose guide can also be achieved with other structures, for example by zigzag or wave patterns. The surface coating structure as such can be applied according to the method already described above. In this context, reference is also made to an article by Bechtold et al. (Biomed Microdevices, 2016 December; 18(6): 106) and an article by Lima de Miranda et al. (Rev. Sci. Instrum., 2009 January; 80(1): 015103), whereby these articles deal with surface structuring in general. Bechtold et al. describe the coating of thin films made of a nickel-titanium alloy to form insulated electrodes on the outer surface. Lima de Miranda et al. describe a rotational UV lithography for cylindrical geometries. The laser structuring of the NiTiNol tube to form the spiral structure, for example, can take place before or after the electrical functionalization. -
FIG. 4 shows a detail view of the resulting exemplary conductor track structures on theflow cannula 230. Thewebs 300 of the laser-structured spiral structure (seeFIG. 3 ), which to a certain extent form the framework of theflexible flow cannula 230, leavewindows 301 open. Thewindows 301 are preferably closed in a flexible manner, for example using silicone or polyurethane. Thewebs 300 together with theclosed windows 301 form the hose guide of theflow cannula 230. According to the invention, electrical 302, 303 are applied to theconductor track structures webs 300 using lithography and coating technologies. - For the actual production of the electrical conductor tracks, a lithography mask comprising the corresponding coating structures (electrical conductor track structures) is applied for each layer. The lithography mask can be a chrome-coated quartz substrate, for example. Non-conductors such as photoresist or polyimide can be applied over a large area by dipping, for example. Non-conductors such as parylene C can be deposited in a vacuum, for example. Initial metallic layers are in particular applied by sputtering, thicker layers by electrodeposition.
- There are two main approaches that can be used in the production process: According to Method 1, the tube material (for example NiTiNol) is first provided with the electrical surface coating for the formation of the conductor tracks. In the next step, the flexible structure is produced, for example, by laser cutting (laser structuring), whereby the coating structure and the laser cutting contour are geometrically aligned to one another. In the last step, the windows of the flexible structure are closed, for example by dipping or overmolding. According to Method 2, the pipe material is structured first. The surface functionalization for the formation of the conductor tracks is then produced using the lithographic processes. Lastly, the windows of the flexible structure are closed as in Method 1. Method 1 has the advantage that the lithography process is simplified. Method 2 has the advantage that shape embossments in the NiTiNol material are possible directly after the structuring of the pipe material; for example to “save” bends or cross-sectional changes to the cross-section of the starting material (e.g. widenings of the cross-section). Because of the process temperatures needed for the shape embossment, it is generally advantageous to perform this step before the lithographic surface coating.
-
FIG. 5 shows particularly preferred configurations of the conductor tracks, in which the conductor track structure is designed as a sensor (left) or as an electrical connection and additionally as a sensor (right). As inFIG. 4 , theflow cannula 230 is equipped with 302,303, which are formed by surface structuring of theconductor tracks webs 300 of the flow cannula 230 (right part of the illustration). Meandering conductor tracks are provided as well, which form the sensor regions 304 (left) or the additional sensor region 305 (right). Straight sections of the conductor tracks can be provided betweenindividual sensor regions 304, or thesensor region 305 is formed by a continuously meandering conductor track. The input and 306, 307 of theoutput lines sensor regions 304 can be made of a different material than the sensor regions themselves. A plurality of sensor regions can be implemented via separate input lines or even with a commonreturn channel line 308, for example. - For a temperature sensor, for example, it can be provided that the conductor tracks of the
304 or 305 are made of platinum, because platinum has a very linear resistance-temperature relationship. The input andsensor regions 306, 307, 308 expediently have the lowest possible resistance in order to have little influence on the sensor signal. The conductor track structures can also be used as strain or breakage sensors, for example. They can also be used as capacitive sensors, electrode surfaces or contact pads for further sensors, for example.output tracks -
FIG. 6 shows a preferred electrical contacting of the conductor tracks 302, 303 via 310, 311, 312, 313. This electrical contacting can take place, for example, at the end of theelectrical contact pads flow cannula 230, i.e. in the direction toward thesecond region 140. However, it is also possible for the conductor tracks to also be guided over other components of the blood pump, for example over the 140, 150 to theregion electrical connection region 160. The electrical connection can be established by conductive gluing, soldering, bonding or frictional connection, for example. The connection can be made directly from NiTiNol component to NiTiNol component, for example, or from NiTiNol component directly to a cable or a thin-film substrate, depending on the configuration of the blood pump. -
FIG. 7 shows a cross-section through the resulting layer structure that realizes the electrical conductor tracks. 710 represents the underlying NiTiNol structure or another coatable material as the support structure of the flow cannula. 720 represents an insulating base layer, for example made of silicon oxide or polyimide. 730 shows the metallic conductor track structures, for example made of gold. 740 represents an insulating cover layer, for example made of silicon oxide, polyimide or parylene. A multilayer structure, for example a two-layer structure as illustrated inFIG. 8 , can be created by repeating the surface coating several times (surface lithography). 710, 720, 730 and 740 represent the coatable structure, the insulating base layer, the first layer of the conductor track structures or the insulating cover layer, as inFIG. 7 . Afurther conductor track 750 disposed at a slightly higher level is additionally provided in the spaces between theconductor track structures 730. During production, the space (empty space) between theconductor track structures 730 on the lower layer is used for the metallization of the upper layer by disposing the metallic conductor layer in this space. This offset arrangement of the conductor tracks on different levels prevents the formation of larger protrusions or roughnesses of the surface structure in the regions in which metallic conductor tracks would be on top of one another. This can occur in particular in higher multilayer structures having six or more layers. In this respect, this embodiment with an offset arrangement has the advantage over a purely coaxial embodiment that the resulting layer thickness of the conductor structure as a whole is reduced. This embodiment is also particularly advantageous compared to a coplanar design, because the overall conductor width is reduced. If an offset arrangement of the conductor tracks is not desired or possible, it is alternatively also possible to compensate any unevenness that may occur due to superimposed conductor tracks, for example with a silicone layer or the like. -
FIG. 9 shows a further structure of a multilayered conductor track structure. Four narrow conductor tracks 910 and two wide conductor tracks 920 are disposed one above the other on the coatable material (not shown in detail). The narrow conductor tracks 910 serve as a communication bus for a pressure sensor and a temperature sensor in the tip of the blood pump, for example. The wide conductor tracks 920 have a lower resistance (electrical power) and are used, for example, to connect an ultrasonic element in the tip of the blood pump. To produce such a structure, a total of seven layers are required for the surface coating.FIG. 10 shows a similar example of a 5 multilayered structure having fournarrow conductor tracks 1010 and two wide conductor tracks 1020. Metallizations, which shield the conductor tracks 1010 and 1020 against one another and to the outside, are additionally provided as a shielding 1030, so that a defined line impedance and less high-frequency radiation are achieved along with a shielded routing of the signals. A total of 11 layers are required to produce such a structure. In the contact pad region, the up to 11 layers can expediently be widened accordingly and, for example, passed into the top metal layer through a vertical through-connection.
Claims (22)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102018208538.2 | 2018-05-30 | ||
| DE102018208538.2A DE102018208538A1 (en) | 2018-05-30 | 2018-05-30 | Intravascular blood pump and process for the production of electrical conductors |
| PCT/EP2019/064154 WO2019229220A1 (en) | 2018-05-30 | 2019-05-30 | Intravascular blood pump and method for producing electrical conductor tracks |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2019/064154 A-371-Of-International WO2019229220A1 (en) | 2018-05-30 | 2019-05-30 | Intravascular blood pump and method for producing electrical conductor tracks |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US19/018,309 Division US20250144397A1 (en) | 2018-05-30 | 2025-01-13 | Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20210290930A1 true US20210290930A1 (en) | 2021-09-23 |
| US12194287B2 US12194287B2 (en) | 2025-01-14 |
Family
ID=66793960
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/057,044 Active 2042-05-15 US12194287B2 (en) | 2018-05-30 | 2019-05-30 | Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump |
| US19/018,309 Pending US20250144397A1 (en) | 2018-05-30 | 2025-01-13 | Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US19/018,309 Pending US20250144397A1 (en) | 2018-05-30 | 2025-01-13 | Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US12194287B2 (en) |
| JP (1) | JP7359462B2 (en) |
| DE (1) | DE102018208538A1 (en) |
| WO (1) | WO2019229220A1 (en) |
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220047173A1 (en) * | 2018-06-06 | 2022-02-17 | Kardion Gmbh | Determination appliance and method for determining a viscosity of a fluid |
| US11368081B2 (en) | 2018-01-24 | 2022-06-21 | Kardion Gmbh | Magnetic coupling element with a magnetic bearing function |
| US11754075B2 (en) | 2018-07-10 | 2023-09-12 | Kardion Gmbh | Impeller for an implantable, vascular support system |
| US11944805B2 (en) | 2020-01-31 | 2024-04-02 | Kardion Gmbh | Pump for delivering a fluid and method of manufacturing a pump |
| US12005248B2 (en) | 2018-05-16 | 2024-06-11 | Kardion Gmbh | Rotor bearing system |
| US12064615B2 (en) | 2018-05-30 | 2024-08-20 | Kardion Gmbh | Axial-flow pump for a ventricular assist device and method for producing an axial-flow pump for a ventricular assist device |
| US12076549B2 (en) | 2018-07-20 | 2024-09-03 | Kardion Gmbh | Feed line for a pump unit of a cardiac assistance system, cardiac assistance system and method for producing a feed line for a pump unit of a cardiac assistance system |
| US12107474B2 (en) | 2018-05-16 | 2024-10-01 | Kardion Gmbh | End-face rotating joint for transmitting torques |
| CN118846366A (en) * | 2024-07-08 | 2024-10-29 | 深圳核心医疗科技股份有限公司 | Cannula assembly and blood pump |
| US12144976B2 (en) | 2018-06-21 | 2024-11-19 | Kardion Gmbh | Method and device for detecting a wear condition of a ventricular assist device and for operating same, and ventricular assist device |
| US12194287B2 (en) * | 2018-05-30 | 2025-01-14 | Kardion Gmbh | Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump |
| US12201821B2 (en) | 2018-06-06 | 2025-01-21 | Kardion Gmbh | Method for determining a flow rate of a fluid flowing through an implanted vascular support system, and implantable vascular support system |
| US12201823B2 (en) | 2018-05-30 | 2025-01-21 | Kardion Gmbh | Line device for conducting a blood flow for a heart support system, heart support system, and method for producing a line device |
| US12222267B2 (en) | 2018-06-06 | 2025-02-11 | Kardion Gmbh | Analysis device and method for analyzing a viscosity of a fluid |
| US12257424B2 (en) | 2018-06-06 | 2025-03-25 | Kardion Gmbh | Implantable ventricular assist system and method for operating same |
| US12263333B2 (en) | 2018-06-21 | 2025-04-01 | Kardion Gmbh | Stator vane device for guiding the flow of a fluid flowing out of an outlet opening of a ventricular assist device, ventricular assist device with stator vane device, method for operating a stator vane device and manufacturing method |
| US12310708B2 (en) | 2018-06-06 | 2025-05-27 | Kardion Gmbh | Systems and methods for determining a flow speed of a fluid flowing through a cardiac assist device |
| US12311160B2 (en) | 2018-06-06 | 2025-05-27 | Kardion Gmbh | Method and system for determining the speed of sound in a fluid in the region of a cardiac support system |
| US12324906B2 (en) | 2018-06-06 | 2025-06-10 | Kardion Gmbh | Systems and methods for determining a total blood volume flow in a cardiac support system and vascular support system |
| US12377256B2 (en) | 2018-06-06 | 2025-08-05 | Kardion Gmbh | Cardiac support system flow measurement using pressure sensors |
| US12383727B2 (en) | 2018-05-30 | 2025-08-12 | Kardion Gmbh | Motor housing module for a heart support system, and heart support system and method for mounting a heart support system |
| US12390633B2 (en) | 2018-08-07 | 2025-08-19 | Kardion Gmbh | Bearing device for a heart support system, and method for rinsing a space in a bearing device for a heart support system |
| US12447327B2 (en) | 2018-05-30 | 2025-10-21 | Kardion Gmbh | Electronics module and arrangement for a ventricular assist device, and method for producing a ventricular assist device |
| US12465744B2 (en) | 2018-07-10 | 2025-11-11 | Kardion Gmbh | Impeller housing for an implantable, vascular support system |
| US12478775B2 (en) | 2018-07-09 | 2025-11-25 | Kardion Gmbh | Cardiac assist system, and method for monitoring the integrity of a retaining structure of a cardiac assist system |
| US12478267B2 (en) | 2018-06-06 | 2025-11-25 | Kardion Gmbh | Sensor head device for a minimal invasive ventricular assist device and method for producing such a sensor head device |
| US12491357B2 (en) | 2018-06-06 | 2025-12-09 | Kardion Gmbh | Systems and methods for determining a blood volume flow through a cardiac support system and vascular support system |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102018208911A1 (en) * | 2018-06-06 | 2019-12-12 | Kardion Gmbh | A lead device for a cardiac assist system and method of manufacturing a lead device |
| KR20230082639A (en) * | 2020-10-07 | 2023-06-08 | 아비오메드 유럽 게엠베하 | Patch electrode assemblies for conductivity and admittance measurements |
| US20230173250A1 (en) | 2021-12-03 | 2023-06-08 | Kardion Gmbh | Cardiac pump with optical fiber for laser doppler |
| DE102023118223A1 (en) | 2022-07-11 | 2024-01-11 | Kardion Gmbh | LASER DOPPLER VELOCIMETERY FLOW MEASUREMENT |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6245007B1 (en) * | 1999-01-28 | 2001-06-12 | Terumo Cardiovascular Systems Corporation | Blood pump |
| US6912423B2 (en) * | 2000-12-15 | 2005-06-28 | Cardiac Pacemakers, Inc. | Terminal connector assembly for a medical device and method therefor |
| US8849398B2 (en) * | 2011-08-29 | 2014-09-30 | Minnetronix, Inc. | Expandable blood pump for cardiac support |
| US9878087B2 (en) * | 2006-02-23 | 2018-01-30 | Tc1 Llc | Pump-inflow-cannula, a pump-outflow-cannula and a blood managing system |
Family Cites Families (1186)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2254698A (en) | 1940-10-04 | 1941-09-02 | Gen Electric | Magnetic system |
| US2310923A (en) | 1941-10-02 | 1943-02-16 | Charles L Bean | Shaft bearing |
| GB648739A (en) | 1947-04-08 | 1951-01-10 | Pioneer Oil Sealing And Mouldi | Sealing means between relatively rotating parts |
| DE1001642B (en) | 1955-04-21 | 1957-01-24 | Kloeckner Humboldt Deutz Ag | Vibrating machine with slider crank drive, in particular for conveying, peeling or sieving bulk goods |
| US3088323A (en) | 1960-02-10 | 1963-05-07 | Gulton Ind Inc | Piezoresistive transducer |
| DE1165144B (en) | 1961-01-12 | 1964-03-12 | Siemens Ag | Drive unit |
| NL278086A (en) | 1961-08-14 | 1900-01-01 | ||
| US3085407A (en) | 1962-03-20 | 1963-04-16 | Sprague Engineering Corp | Coupling means |
| FR1458525A (en) | 1965-09-27 | 1966-03-04 | Blood pump | |
| US3505987A (en) | 1967-03-17 | 1970-04-14 | Medrad Inc | Intra-aortic heart pump |
| US3568659A (en) | 1968-09-24 | 1971-03-09 | James N Karnegis | Disposable percutaneous intracardiac pump and method of pumping blood |
| US3614181A (en) | 1970-07-02 | 1971-10-19 | Us Air Force | Magnetic bearing for combined radial and thrust loads |
| DE2108590A1 (en) | 1971-02-23 | 1972-09-07 | Siemens Ag | Arrangement for mounting a high-speed, in particular an electric motor driven shaft |
| US3995617A (en) | 1972-05-31 | 1976-12-07 | Watkins David H | Heart assist method and catheter |
| US4023562A (en) | 1975-09-02 | 1977-05-17 | Case Western Reserve University | Miniature pressure transducer for medical use and assembly method |
| DE2624058C2 (en) | 1976-05-28 | 1984-11-15 | Franz Klaus-Union, 4630 Bochum | Permanent magnet pump |
| JPS5775555A (en) | 1980-10-24 | 1982-05-12 | Fanuc Ltd | Dc motor |
| NO150015C (en) | 1981-11-13 | 1984-08-08 | Vingmed As | METHOD OF BLOOD FLOW SPEED MEASUREMENT WITH ULTRO SOUND, COMBINED WITH ECO-AMPLITUDE IMAGE, FOR THE INVESTIGATION OF LIVING BIOLOGICAL STRUCTURES |
| US4471252A (en) | 1981-11-27 | 1984-09-11 | Lucas Industries Limited Company | Rotary dynamo electric machine with protection against demagnetization of low flux portion of permanent magnet poles |
| JPS5980229A (en) | 1982-10-29 | 1984-05-09 | 株式会社島津製作所 | Pulse doppler ultrasonic blood flow meter |
| JPS59119788A (en) | 1982-12-27 | 1984-07-11 | 株式会社日立製作所 | Printed circuit board |
| US4522194A (en) | 1983-02-18 | 1985-06-11 | Baylor College Of Medicine | Method and an apparatus for intra-aortic balloon monitoring and leak detection |
| US4625712A (en) | 1983-09-28 | 1986-12-02 | Nimbus, Inc. | High-capacity intravascular blood pump utilizing percutaneous access |
| JPS6063151U (en) | 1983-09-29 | 1985-05-02 | 日東電工株式会社 | Adhesive cleaner |
| US4643641A (en) | 1984-09-10 | 1987-02-17 | Mici Limited Partnership Iv | Method and apparatus for sterilization of a centrifugal pump |
| JPS61125329A (en) | 1984-11-21 | 1986-06-13 | テルモ株式会社 | Heart pulse output measuring apparatus |
| DE3545214A1 (en) | 1984-12-28 | 1986-07-03 | Královopolská strojírna, N.P., Brünn/Brno | Hermetic magnetic coupling without a gland |
| US4785795A (en) | 1985-07-15 | 1988-11-22 | Abiomed Cardiovascular, Inc. | High-frequency intra-arterial cardiac support system |
| JPS6267625U (en) | 1985-10-16 | 1987-04-27 | ||
| JPS62113555A (en) | 1985-11-13 | 1987-05-25 | Canon Inc | Ink jet recorder |
| JPH0239464Y2 (en) * | 1985-12-31 | 1990-10-23 | ||
| JPS62204733A (en) | 1986-03-04 | 1987-09-09 | アロカ株式会社 | Ultrasonic doppler diagnostic apparatus |
| JPS62282284A (en) | 1986-05-30 | 1987-12-08 | Tokyo Keiki Co Ltd | Method and apparatus for measuring distance by ultrasonic wave |
| US4753221A (en) | 1986-10-22 | 1988-06-28 | Intravascular Surgical Instruments, Inc. | Blood pumping catheter and method of use |
| US4779614A (en) | 1987-04-09 | 1988-10-25 | Nimbus Medical, Inc. | Magnetically suspended rotor axial flow blood pump |
| US4902272A (en) | 1987-06-17 | 1990-02-20 | Abiomed Cardiovascular, Inc. | Intra-arterial cardiac support system |
| US4781525A (en) | 1987-07-17 | 1988-11-01 | Minnesota Mining And Manufacturing Company | Flow measurement system |
| JPS6468236A (en) | 1987-09-07 | 1989-03-14 | Aisin Seiki | Cannula equipped with detection electrode |
| US4971768A (en) | 1987-11-23 | 1990-11-20 | United Technologies Corporation | Diffuser with convoluted vortex generator |
| US4817586A (en) | 1987-11-24 | 1989-04-04 | Nimbus Medical, Inc. | Percutaneous bloom pump with mixed-flow output |
| US4846152A (en) | 1987-11-24 | 1989-07-11 | Nimbus Medical, Inc. | Single-stage axial flow blood pump |
| US4889131A (en) | 1987-12-03 | 1989-12-26 | American Health Products, Inc. | Portable belt monitor of physiological functions and sensors therefor |
| US4895557A (en) | 1987-12-07 | 1990-01-23 | Nimbus Medical, Inc. | Drive mechanism for powering intravascular blood pumps |
| US5061256A (en) | 1987-12-07 | 1991-10-29 | Johnson & Johnson | Inflow cannula for intravascular blood pumps |
| GB2213541B (en) | 1987-12-10 | 1991-12-11 | Sundstrand Corp | Mechanical shaft seal |
| US4888011A (en) | 1988-07-07 | 1989-12-19 | Abiomed, Inc. | Artificial heart |
| US4908012A (en) | 1988-08-08 | 1990-03-13 | Nimbus Medical, Inc. | Chronic ventricular assist system |
| US4965713A (en) | 1988-08-15 | 1990-10-23 | Viking Pump Inc. | Terminal element |
| US4896754A (en) | 1988-08-25 | 1990-01-30 | Lord Corporation | Electrorheological fluid force transmission and conversion device |
| JPH0279738A (en) | 1988-09-12 | 1990-03-20 | Mitsubishi Electric Corp | Rotor for synchronous type ac servomotor |
| US4964864A (en) | 1988-09-27 | 1990-10-23 | American Biomed, Inc. | Heart assist pump |
| US4943275A (en) | 1988-10-14 | 1990-07-24 | Abiomed Limited Partnership | Insertable balloon with curved support |
| US4968300A (en) | 1988-10-05 | 1990-11-06 | Abiomed Limited Partnership | Balloon stretch mechanism |
| US5090957A (en) | 1988-10-05 | 1992-02-25 | Abiomed, Inc. | Intraaortic balloon insertion |
| JPH0272056U (en) | 1988-11-18 | 1990-06-01 | ||
| US5112292A (en) | 1989-01-09 | 1992-05-12 | American Biomed, Inc. | Helifoil pump |
| US4989609A (en) | 1989-01-26 | 1991-02-05 | Minnesota Mining And Manufacturing Company | Doppler blood flow system and method using special zero flow rate analysis |
| US4944722A (en) | 1989-02-23 | 1990-07-31 | Nimbus Medical, Inc. | Percutaneous axial flow blood pump |
| US5045051A (en) | 1989-03-14 | 1991-09-03 | Abiomed, Inc. | Leak detector |
| US5089016A (en) | 1989-06-15 | 1992-02-18 | Abiomed Cardiovascular, Inc. | Blood pump |
| US4927407A (en) | 1989-06-19 | 1990-05-22 | Regents Of The University Of Minnesota | Cardiac assist pump with steady rate supply of fluid lubricant |
| US5044897A (en) | 1989-07-10 | 1991-09-03 | Regents Of The University Of Minnesota | Radial drive for implantable centrifugal cardiac assist pump |
| US4985014A (en) | 1989-07-11 | 1991-01-15 | Orejola Wilmo C | Ventricular venting loop |
| CA2004295C (en) | 1989-11-30 | 1998-02-10 | William F. Hayes | Primary fluid actuated, secondary fluid propelling system |
| US5116305A (en) | 1990-02-01 | 1992-05-26 | Abiomed, Inc. | Curved intra aortic balloon with non-folding inflated balloon membrane |
| JP3262789B2 (en) | 1990-08-27 | 2002-03-04 | 科学技術振興事業団 | Gene cloning method |
| CA2026692A1 (en) | 1990-10-02 | 1992-04-03 | David P. Summers | Heart assist pump |
| CA2026693A1 (en) | 1990-10-02 | 1992-04-03 | David P. Summers | Helifoil pump |
| US5195877A (en) | 1990-10-05 | 1993-03-23 | Kletschka Harold D | Fluid pump with magnetically levitated impeller |
| JPH04176471A (en) | 1990-11-06 | 1992-06-24 | American Biomed Inc | Circulation auxiliary pump |
| AU1279092A (en) | 1991-02-04 | 1992-10-06 | Kensey Nash Corporation | Apparatus and method for determining viscosity of the blood of a living being |
| RU2051695C1 (en) | 1991-02-20 | 1996-01-10 | Научно-Исследовательский Институт Трансплантологии И Искусственных Органов | Circulatory assist axial-flow impeller pump |
| JP2952438B2 (en) | 1991-09-20 | 1999-09-27 | トキコ株式会社 | Thermal flow meter |
| US5313765A (en) | 1991-11-04 | 1994-05-24 | Anderson-Martin Machine Company | Capping machine head with magnetic clutch |
| US6346120B1 (en) | 1992-06-23 | 2002-02-12 | Sun Medical Technology Research Corporation | Auxiliary artificial heart of an embedded type |
| US5300112A (en) | 1992-07-14 | 1994-04-05 | Aai Corporation | Articulated heart pump |
| US5676651A (en) | 1992-08-06 | 1997-10-14 | Electric Boat Corporation | Surgically implantable pump arrangement and method for pumping body fluids |
| JPH0669492B2 (en) | 1992-08-20 | 1994-09-07 | 日機装株式会社 | Blood pump |
| SE501215C2 (en) | 1992-09-02 | 1994-12-12 | Oeyvind Reitan | catheter Pump |
| US5344443A (en) | 1992-09-17 | 1994-09-06 | Rem Technologies, Inc. | Heart pump |
| US5376114A (en) | 1992-10-30 | 1994-12-27 | Jarvik; Robert | Cannula pumps for temporary cardiac support and methods of their application and use |
| US5297940A (en) | 1992-12-28 | 1994-03-29 | Ingersoll-Dresser Pump Company | Sealless pump corrosion detector |
| JP3312759B2 (en) | 1993-01-22 | 2002-08-12 | テルモ株式会社 | Medical pump drive |
| JP2569419B2 (en) | 1993-02-18 | 1997-01-08 | 工業技術院長 | Artificial heart pump |
| US5456715A (en) | 1993-05-21 | 1995-10-10 | Liotta; Domingo S. | Implantable mechanical system for assisting blood circulation |
| JPH06346917A (en) | 1993-06-03 | 1994-12-20 | Shicoh Eng Co Ltd | Pressure-proof water-proof sealing system using unidirectional dynamic pressure bearing |
| US5289821A (en) | 1993-06-30 | 1994-03-01 | Swartz William M | Method of ultrasonic Doppler monitoring of blood flow in a blood vessel |
| US5354271A (en) | 1993-08-05 | 1994-10-11 | Voda Jan K | Vascular sheath |
| JPH0747025A (en) | 1993-08-06 | 1995-02-21 | Itoki Co Ltd | Flexible partition |
| US5527159A (en) | 1993-11-10 | 1996-06-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Rotary blood pump |
| FR2715011B1 (en) | 1994-01-13 | 1996-03-29 | Schlumberger Ind Sa | System for driving in rotation of two mechanical members by magnetic coupling and fluid meter comprising such a system. |
| US5511958A (en) | 1994-02-10 | 1996-04-30 | Baxter International, Inc. | Blood pump system |
| GB9404321D0 (en) | 1994-03-04 | 1994-04-20 | Thoratec Lab Corp | Driver and method for driving pneumatic ventricular assist devices |
| NO942222D0 (en) | 1994-06-14 | 1994-06-14 | Vingmed Sound As | Method for determining blood flow velocity / time spectrum |
| JPH0857042A (en) | 1994-08-24 | 1996-03-05 | Terumo Corp | Medical pump |
| US5685989A (en) | 1994-09-16 | 1997-11-11 | Transonic Systems, Inc. | Method and apparatus to measure blood flow and recirculation in hemodialysis shunts |
| US5453576A (en) | 1994-10-24 | 1995-09-26 | Transonic Systems Inc. | Cardiovascular measurements by sound velocity dilution |
| US5613935A (en) | 1994-12-16 | 1997-03-25 | Jarvik; Robert | High reliability cardiac assist system |
| JPH08327527A (en) | 1995-05-31 | 1996-12-13 | Toyobo Co Ltd | Capillary type viscometer |
| WO1999015212A1 (en) | 1997-09-24 | 1999-04-01 | The Cleveland Clinic Foundation | Flow controlled blood pump system |
| US5752976A (en) | 1995-06-23 | 1998-05-19 | Medtronic, Inc. | World wide patient location and data telemetry system for implantable medical devices |
| US5691589A (en) | 1995-06-30 | 1997-11-25 | Kaman Electromagnetics Corporation | Detachable magnet carrier for permanent magnet motor |
| US5720771A (en) | 1995-08-02 | 1998-02-24 | Pacesetter, Inc. | Method and apparatus for monitoring physiological data from an implantable medical device |
| EP0764448B1 (en) | 1995-09-22 | 2003-07-30 | United States Surgical Corporation | Cardiac support device |
| DE19546336A1 (en) | 1995-11-17 | 1997-05-22 | Klein Schanzlin & Becker Ag | Magnet coupling arrangement for centrifugal pump |
| AU730235C (en) | 1996-02-20 | 2001-10-18 | Kriton Medical, Inc. | Sealless rotary blood pump |
| US5695471A (en) | 1996-02-20 | 1997-12-09 | Kriton Medical, Inc. | Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings |
| GB9604665D0 (en) | 1996-03-05 | 1996-05-01 | Montec Int Ltd | Flow measurement |
| US5980465A (en) | 1996-03-18 | 1999-11-09 | Medtronic, Inc. | Method for detecting changes in a patient s blood volume |
| DE69733551T2 (en) | 1996-03-29 | 2005-11-03 | Urenco (Capenhurst) Ltd., Capenhurst | METHOD FOR MAGNETIZING A CYLINDRICAL BODY |
| DE19613565C1 (en) | 1996-04-04 | 1997-07-24 | Guenter Prof Dr Rau | Intravasal blood pump with drive motor |
| US5911685A (en) | 1996-04-03 | 1999-06-15 | Guidant Corporation | Method and apparatus for cardiac blood flow assistance |
| DE19613564C1 (en) | 1996-04-04 | 1998-01-08 | Guenter Prof Dr Rau | Intravascular blood pump |
| US5746709A (en) | 1996-04-25 | 1998-05-05 | Medtronic, Inc. | Intravascular pump and bypass assembly and method for using the same |
| US5814011A (en) | 1996-04-25 | 1998-09-29 | Medtronic, Inc. | Active intravascular lung |
| WO1999053974A2 (en) | 1998-04-22 | 1999-10-28 | University Of Utah | Implantable centrifugal blood pump with hybrid magnetic bearings |
| US6254359B1 (en) | 1996-05-10 | 2001-07-03 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for providing a jewel bearing for supporting a pump rotor shaft |
| DE19625300A1 (en) | 1996-06-25 | 1998-01-02 | Guenter Prof Dr Rau | Blood pump |
| US6244835B1 (en) | 1996-06-26 | 2001-06-12 | James F. Antaki | Blood pump having a magnetically suspended rotor |
| AT404318B (en) | 1996-07-29 | 1998-10-27 | Heinrich Dr Schima | CENTRIFUGAL PUMP CONSTRUCTING A PUMP HEAD AND A DISC DRIVE FOR CONVEYING BLOOD AND OTHER SCISSOR-LIQUID LIQUIDS |
| JPH1052489A (en) | 1996-08-12 | 1998-02-24 | Buaayu:Kk | Cannula and supplemental circulation device |
| JP4016441B2 (en) | 1996-10-02 | 2007-12-05 | 株式会社ジェイ・エム・エス | Turbo blood pump |
| CA2268066C (en) | 1996-10-04 | 2006-06-13 | United States Surgical Corporation | Circulatory support system |
| US6071093A (en) | 1996-10-18 | 2000-06-06 | Abiomed, Inc. | Bearingless blood pump and electronic drive system |
| US5888242A (en) | 1996-11-01 | 1999-03-30 | Nimbus, Inc. | Speed control system for implanted blood pumps |
| AU717916B2 (en) | 1997-01-03 | 2000-04-06 | Biosense, Inc. | Pressure-sensing stent |
| EP0855515B1 (en) | 1997-01-22 | 2002-12-18 | Eugen Dr. Schmidt | Adjustable coolant pump for motor vehicles |
| US5957861A (en) | 1997-01-31 | 1999-09-28 | Medtronic, Inc. | Impedance monitor for discerning edema through evaluation of respiratory rate |
| US5971023A (en) | 1997-02-12 | 1999-10-26 | Medtronic, Inc. | Junction for shear sensitive biological fluid paths |
| CN1222862A (en) | 1997-04-02 | 1999-07-14 | 激励心脏技术有限公司 | intracardiac pump device |
| US5964694A (en) | 1997-04-02 | 1999-10-12 | Guidant Corporation | Method and apparatus for cardiac blood flow assistance |
| US5827203A (en) | 1997-04-21 | 1998-10-27 | Nita; Henry | Ultrasound system and method for myocardial revascularization |
| JP3985051B2 (en) | 1997-07-28 | 2007-10-03 | 独立行政法人 日本原子力研究開発機構 | Double wrap dry scroll vacuum pump |
| US6264645B1 (en) | 1997-08-14 | 2001-07-24 | Medtronic, Inc. | Method of pressurizing the right ventricle of the heart |
| US6731976B2 (en) | 1997-09-03 | 2004-05-04 | Medtronic, Inc. | Device and method to measure and communicate body parameters |
| US5904646A (en) | 1997-09-08 | 1999-05-18 | Jarvik; Robert | Infection resistant power cable system for medically implanted electric motors |
| DE59710092D1 (en) | 1997-09-25 | 2003-06-18 | Levitronix Llc Waltham | Centrifugal pump and centrifugal pump arrangement |
| AU9787498A (en) | 1997-10-02 | 1999-04-27 | Micromed Technology, Inc. | Implantable pump system |
| US6889082B2 (en) | 1997-10-09 | 2005-05-03 | Orqis Medical Corporation | Implantable heart assist system and method of applying same |
| US6610004B2 (en) | 1997-10-09 | 2003-08-26 | Orqis Medical Corporation | Implantable heart assist system and method of applying same |
| US6387037B1 (en) | 1997-10-09 | 2002-05-14 | Orqis Medical Corporation | Implantable heart assist system and method of applying same |
| US6398734B1 (en) | 1997-10-14 | 2002-06-04 | Vascusense, Inc. | Ultrasonic sensors for monitoring the condition of flow through a cardiac valve |
| US6007478A (en) | 1997-11-13 | 1999-12-28 | Impella Cardiotechnik Aktiengesellschaft | Cannula having constant wall thickness with increasing distal flexibility and method of making |
| US5928131A (en) | 1997-11-26 | 1999-07-27 | Vascor, Inc. | Magnetically suspended fluid pump and control system |
| US6314322B1 (en) | 1998-03-02 | 2001-11-06 | Abiomed, Inc. | System and method for treating dilated cardiomyopathy using end diastolic volume (EDV) sensing |
| DE29804046U1 (en) | 1998-03-07 | 1998-04-30 | Günther, Rolf W., Prof. Dr.med., 52074 Aachen | Percutaneously implantable, self-expanding axial pump for temporary heart support |
| US6050572A (en) | 1998-03-09 | 2000-04-18 | Bal Seal Engineering Company, Inc. | Rotary cartridge seals with retainer |
| GB2335242A (en) | 1998-03-12 | 1999-09-15 | Copal Electronics | Rotor support with one or two pairs of permanent magnetic bearings and a pivot |
| US5904708A (en) | 1998-03-19 | 1999-05-18 | Medtronic, Inc. | System and method for deriving relative physiologic signals |
| CN1192351A (en) | 1998-03-26 | 1998-09-09 | 王明时 | Instrument for quick measuring blood viscosity |
| AU3105899A (en) | 1998-03-30 | 1999-10-18 | Nimbus, Inc. | Sealed motor stator assembly for implantable blood pump |
| US6176822B1 (en) | 1998-03-31 | 2001-01-23 | Impella Cardiotechnik Gmbh | Intracardiac blood pump |
| US6023641A (en) | 1998-04-29 | 2000-02-08 | Medtronic, Inc. | Power consumption reduction in medical devices employing multiple digital signal processors |
| US6024704A (en) | 1998-04-30 | 2000-02-15 | Medtronic, Inc | Implantable medical device for sensing absolute blood pressure and barometric pressure |
| DE19821307C1 (en) | 1998-05-13 | 1999-10-21 | Impella Cardiotech Gmbh | Intra-cardiac blood pump |
| AU4315699A (en) | 1998-05-26 | 1999-12-13 | Circulation, Inc. | Apparatus for providing coronary retroperfusion and methods of use |
| US6575927B1 (en) | 1998-09-25 | 2003-06-10 | The Regents Of The University Of Michigan | System and method for determining blood flow rate in a vessel |
| US6149683A (en) | 1998-10-05 | 2000-11-21 | Kriton Medical, Inc. | Power system for an implantable heart pump |
| US6001056A (en) | 1998-11-13 | 1999-12-14 | Baxter International Inc. | Smooth ventricular assist device conduit |
| GB2345387A (en) | 1998-11-18 | 2000-07-05 | Schlumberger Holdings | Submersible electromechanical actuator |
| DE29821564U1 (en) | 1998-12-02 | 2000-07-13 | Impella Cardiotechnik AG, 52074 Aachen | Fluid-cooled electric motor with high power density |
| DE29821563U1 (en) | 1998-12-02 | 2000-07-13 | Impella Cardiotechnik AG, 52074 Aachen | Pressure sensor |
| DE29821565U1 (en) | 1998-12-02 | 2000-06-15 | Impella Cardiotechnik AG, 52074 Aachen | Bearingless blood pump |
| EP1013294B1 (en) | 1998-12-16 | 2007-04-18 | Levitronix LLC | Diagonal flux pump |
| TW374317U (en) | 1998-12-17 | 1999-11-11 | Nat Science Council | Ventricular assist device |
| US6158984A (en) | 1998-12-28 | 2000-12-12 | Kriton Medical, Inc. | Rotary blood pump with ceramic members |
| US6217541B1 (en) | 1999-01-19 | 2001-04-17 | Kriton Medical, Inc. | Blood pump using cross-flow principles |
| US6123659A (en) | 1999-01-26 | 2000-09-26 | Nimbus Inc. | Blood pump with profiled outflow region |
| US6018208A (en) | 1999-01-26 | 2000-01-25 | Nimbus, Inc. | Articulated motor stator assembly for a pump |
| US6186665B1 (en) | 1999-01-26 | 2001-02-13 | Nimbus, Inc. | Motor rotor bearing assembly for a blood pump |
| US6050975A (en) | 1999-02-25 | 2000-04-18 | Thermo Cardiosystems, Inc. | Control of tissue growth in textured blood-contacting surfaces |
| US6210318B1 (en) | 1999-03-09 | 2001-04-03 | Abiomed, Inc. | Stented balloon pump system and method for using same |
| US6438409B1 (en) | 1999-03-25 | 2002-08-20 | Medtronic, Inc. | Methods of characterizing ventricular operations and applications thereof |
| US6264601B1 (en) | 1999-04-02 | 2001-07-24 | World Heart Corporation | Implantable ventricular assist device |
| DE50010708D1 (en) | 1999-04-20 | 2005-08-18 | Berlin Heart Ag | Device for the axial transport of fluid media |
| EP1176999B8 (en) | 1999-04-23 | 2005-09-28 | Ventrassist Pty Ltd | A rotary blood pump and control system therefor |
| US6190324B1 (en) | 1999-04-28 | 2001-02-20 | Medtronic, Inc. | Implantable medical device for tracking patient cardiac status |
| AUPQ090499A0 (en) | 1999-06-10 | 1999-07-01 | Peters, William S | Heart assist device and system |
| EP1063753B1 (en) | 1999-06-22 | 2009-07-22 | Levitronix LLC | Electric rotary drive comprising a magnetically suspended rotor |
| US6231498B1 (en) | 1999-06-23 | 2001-05-15 | Pulsion Medical Systems Ag | Combined catheter system for IABP and determination of thermodilution cardiac output |
| US7138776B1 (en) | 1999-07-08 | 2006-11-21 | Heartware, Inc. | Method and apparatus for controlling brushless DC motors in implantable medical devices |
| US6512949B1 (en) | 1999-07-12 | 2003-01-28 | Medtronic, Inc. | Implantable medical device for measuring time varying physiologic conditions especially edema and for responding thereto |
| US6595743B1 (en) | 1999-07-26 | 2003-07-22 | Impsa International Inc. | Hydraulic seal for rotary pumps |
| US6136025A (en) | 1999-07-27 | 2000-10-24 | Barbut; Denise R. | Endoscopic arterial pumps for treatment of cardiac insufficiency and venous pumps for right-sided cardiac support |
| US7022100B1 (en) | 1999-09-03 | 2006-04-04 | A-Med Systems, Inc. | Guidable intravascular blood pump and related methods |
| EP1207934B1 (en) | 1999-09-03 | 2014-08-06 | A-Med Systems, Inc. | Guidable intravascular blood pump |
| US6579257B1 (en) | 1999-09-21 | 2003-06-17 | Medtronic, Inc. | Automated occlusion clamp for centrifugal blood pumps |
| US6227820B1 (en) | 1999-10-05 | 2001-05-08 | Robert Jarvik | Axial force null position magnetic bearing and rotary blood pumps which use them |
| US6445956B1 (en) | 1999-10-18 | 2002-09-03 | Abiomed, Inc. | Implantable medical device |
| US20010039828A1 (en) | 1999-11-12 | 2001-11-15 | Visco Technologies, Inc. | Mass detection capillary viscometer |
| DE19956380C1 (en) | 1999-11-24 | 2001-01-04 | Bosch Gmbh Robert | Fluid pump for vehicle cooling and heating systems has plastics motor housing with claw plates of claw pole stator formed as integral components thereof |
| DE29921352U1 (en) | 1999-12-04 | 2001-04-12 | Impella Cardiotechnik AG, 52074 Aachen | Intravascular blood pump |
| CN1118304C (en) | 1999-12-21 | 2003-08-20 | 马惠生 | Method for making assisted circulation of ventriculus cordis and its device |
| CN1254598A (en) | 1999-12-21 | 2000-05-31 | 马惠生 | Transplanted endarterial miniature auxiliary circulating device of ventricle |
| JP2001207988A (en) | 2000-01-26 | 2001-08-03 | Nipro Corp | Magnetic driving type axial flow pump |
| EP1123687A3 (en) | 2000-02-10 | 2004-02-04 | Aloka Co., Ltd. | Ultrasonic diagnostic apparatus |
| US6406422B1 (en) | 2000-03-02 | 2002-06-18 | Levram Medical Devices, Ltd. | Ventricular-assist method and apparatus |
| DE10016422B4 (en) | 2000-04-01 | 2013-10-31 | Impella Cardiosystems Ag | Paracardiac blood pump |
| US6361292B1 (en) | 2000-04-12 | 2002-03-26 | Sheldon S. L. Chang | Linear flow blood pump |
| US6561975B1 (en) | 2000-04-19 | 2003-05-13 | Medtronic, Inc. | Method and apparatus for communicating with medical device systems |
| US6432136B1 (en) | 2000-04-25 | 2002-08-13 | The Penn State Research Foundation | Apparatus and method for removing a pocket of air from a blood pump |
| US6530876B1 (en) | 2000-04-25 | 2003-03-11 | Paul A. Spence | Supplemental heart pump methods and systems for supplementing blood through the heart |
| US6540658B1 (en) | 2000-05-30 | 2003-04-01 | Abiomed, Inc. | Left-right flow control algorithm in a two chamber cardiac prosthesis |
| US6527698B1 (en) | 2000-05-30 | 2003-03-04 | Abiomed, Inc. | Active left-right flow control in a two chamber cardiac prosthesis |
| DE10040403A1 (en) | 2000-08-18 | 2002-02-28 | Impella Cardiotech Ag | Intracardiac blood pump |
| IL138073A0 (en) | 2000-08-24 | 2001-10-31 | Glucon Inc | Photoacoustic assay and imaging system |
| IT1318836B1 (en) | 2000-09-08 | 2003-09-10 | Marco Cipriani | MAGNETIC COUPLING DEVICE FOR TRANSMISSION AND TORQUE MEASUREMENT. |
| US6808508B1 (en) | 2000-09-13 | 2004-10-26 | Cardiacassist, Inc. | Method and system for closed chest blood flow support |
| JP3582467B2 (en) | 2000-09-14 | 2004-10-27 | 株式会社ジェイ・エム・エス | Turbo blood pump |
| GB0023412D0 (en) | 2000-09-23 | 2000-11-08 | Khaghani Asghar | Aortic counterpulsator |
| DE10058669B4 (en) | 2000-11-25 | 2004-05-06 | Impella Cardiotechnik Ag | micromotor |
| US6540659B1 (en) | 2000-11-28 | 2003-04-01 | Abiomed, Inc. | Cardiac assistance systems having bi-directional pumping elements |
| US6602182B1 (en) | 2000-11-28 | 2003-08-05 | Abiomed, Inc. | Cardiac assistance systems having multiple fluid plenums |
| DE10059714C1 (en) | 2000-12-01 | 2002-05-08 | Impella Cardiotech Ag | Intravasal pump has pump stage fitted with flexible expandible sleeve contricted during insertion through blood vessel |
| DE10060275A1 (en) | 2000-12-05 | 2002-06-13 | Impella Cardiotech Ag | Method for calibrating a pressure sensor or a flow sensor on a rotary pump |
| US6736403B2 (en) | 2000-12-22 | 2004-05-18 | Vr Dichtungen Gmbh | Rotary shaft seal with two sealing lips |
| DE10108815B4 (en) | 2001-02-16 | 2006-03-16 | Berlin Heart Ag | Device for axial delivery of body fluids |
| DE10108810A1 (en) | 2001-02-16 | 2002-08-29 | Berlin Heart Ag | Device for the axial conveyance of liquids |
| AU2002250250A1 (en) | 2001-03-01 | 2002-09-19 | Three Arch Partners | Intravascular device for treatment of hypertension |
| CN1376523A (en) | 2001-03-26 | 2002-10-30 | 张大幕 | Rotary magnetic field driven auxiliary circulating equipment |
| WO2002079676A2 (en) | 2001-03-28 | 2002-10-10 | Balseal Engineering Co., Inc. | Media isolation seal system |
| US20020147495A1 (en) | 2001-04-09 | 2002-10-10 | Christopher Petroff | Reduced-size replacement heart |
| DE10164898B4 (en) | 2001-04-30 | 2010-09-23 | Berlin Heart Gmbh | Method for controlling a support pump for pulsatile pressure fluid delivery systems |
| US6511413B2 (en) | 2001-05-16 | 2003-01-28 | Levram Medical Devices, Ltd. | Single cannula ventricular-assist method and apparatus |
| AU2002308409B2 (en) | 2001-05-21 | 2005-12-01 | Thoratec Corporation | Staged implantation of ventricular assist devices |
| US6879126B2 (en) | 2001-06-29 | 2005-04-12 | Medquest Products, Inc | Method and system for positioning a movable body in a magnetic bearing system |
| JP3882069B2 (en) | 2001-07-06 | 2007-02-14 | 独立行政法人産業技術総合研究所 | Abnormality determination method and abnormality determination device for artificial heart pump |
| US7191000B2 (en) | 2001-07-31 | 2007-03-13 | Cardiac Pacemakers, Inc. | Cardiac rhythm management system for edema |
| JP4440499B2 (en) | 2001-08-29 | 2010-03-24 | 泉工医科工業株式会社 | Centrifugal pump drive |
| US7338441B2 (en) | 2001-09-06 | 2008-03-04 | Houser Russell A | Superelastic/shape memory tissue stabilizers and surgical instruments |
| DE10155011B4 (en) | 2001-11-02 | 2005-11-24 | Impella Cardiosystems Ag | Intra-aortic pump |
| US6641378B2 (en) | 2001-11-13 | 2003-11-04 | William D. Davis | Pump with electrodynamically supported impeller |
| GB2383540B (en) | 2001-12-28 | 2004-12-08 | Michael Henein | Intravascular pump |
| US6666826B2 (en) | 2002-01-04 | 2003-12-23 | Cardiac Pacemakers, Inc. | Method and apparatus for measuring left ventricular pressure |
| WO2003057280A2 (en) | 2002-01-07 | 2003-07-17 | Micromed Technology, Inc. | Method and system for physiologic control of an implantable blood pump |
| US7396327B2 (en) | 2002-01-07 | 2008-07-08 | Micromed Technology, Inc. | Blood pump system and method of operation |
| ATE485850T1 (en) | 2002-01-08 | 2010-11-15 | Micromed Technology Inc | SYSTEM FOR DETECTING VENTRICULAR COLLAPSE |
| EP1503821A4 (en) | 2002-02-21 | 2007-05-30 | Design Mentor Inc | Fluid pump |
| US7238151B2 (en) | 2002-02-26 | 2007-07-03 | Frazier O Howard | Permanent heart assist system |
| CA2374989A1 (en) | 2002-03-08 | 2003-09-08 | Andre Garon | Ventricular assist device comprising a dual inlet hybrid flow blood pump |
| US6669624B2 (en) | 2002-03-26 | 2003-12-30 | O. Howard Frazier | Temporary heart-assist system |
| US10155082B2 (en) | 2002-04-10 | 2018-12-18 | Baxter International Inc. | Enhanced signal detection for access disconnection systems |
| CN2535055Y (en) | 2002-04-12 | 2003-02-12 | 许立庆 | Channel-skin heart assisting device |
| US6991595B2 (en) | 2002-04-19 | 2006-01-31 | Thoratec Corporation | Adaptive speed control for blood pump |
| US7024244B2 (en) | 2002-04-22 | 2006-04-04 | Medtronic, Inc. | Estimation of stroke volume cardiac output using an intracardiac pressure sensor |
| US6969369B2 (en) | 2002-04-22 | 2005-11-29 | Medtronic, Inc. | Implantable drug delivery system responsive to intra-cardiac pressure |
| AU2003236497A1 (en) | 2002-06-11 | 2003-12-22 | Walid Aboul-Hosn | Expandable blood pump and related methods |
| US20060155158A1 (en) | 2002-06-11 | 2006-07-13 | Aboul-Hosn Walid N | Percutaneously introduced blood pump and related methods |
| US7998190B2 (en) | 2002-06-17 | 2011-08-16 | California Institute Of Technology | Intravascular miniature stent pump |
| DE10227918A1 (en) | 2002-06-21 | 2004-01-15 | Bühler AG | Method for determining rheological parameters of a fluid |
| WO2004000148A2 (en) | 2002-06-25 | 2003-12-31 | Glucon Inc. | Method and apparatus for performing myocardial revascularization |
| US7241257B1 (en) | 2002-06-28 | 2007-07-10 | Abbott Cardiovascular Systems, Inc. | Devices and methods to perform minimally invasive surgeries |
| US6949066B2 (en) | 2002-08-21 | 2005-09-27 | World Heart Corporation | Rotary blood pump diagnostics and cardiac output controller |
| AU2002951685A0 (en) | 2002-09-30 | 2002-10-17 | Ventrassist Pty Ltd | Physiological demand responsive control system |
| US6841910B2 (en) | 2002-10-02 | 2005-01-11 | Quadrant Technology Corp. | Magnetic coupling using halbach type magnet array |
| US7207939B2 (en) | 2002-10-03 | 2007-04-24 | Coulter International Corp. | Apparatus and method for analyzing a liquid in a capillary tube of a hematology instrument |
| US20040102674A1 (en) | 2002-11-26 | 2004-05-27 | Zadini Filiberto P. | Minimally invasive percutaneous ventricular assist device |
| CA2506758C (en) | 2002-12-06 | 2014-03-11 | World Heart Corporation | Miniature, pulsatile implantable ventricular assist devices and methods of controlling ventricular assist devices |
| US7204798B2 (en) | 2003-01-24 | 2007-04-17 | Proteus Biomedical, Inc. | Methods and systems for measuring cardiac parameters |
| JP2006518631A (en) | 2003-01-31 | 2006-08-17 | ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ | Detection of apical motion for monitoring heart failure |
| US6887207B2 (en) | 2003-02-26 | 2005-05-03 | Medtronic, Inc. | Methods and apparatus for estimation of ventricular afterload based on ventricular pressure measurements |
| JP2004278375A (en) | 2003-03-14 | 2004-10-07 | Yasuhiro Fukui | Axial flow pump |
| US20040199052A1 (en) | 2003-04-01 | 2004-10-07 | Scimed Life Systems, Inc. | Endoscopic imaging system |
| CN2616217Y (en) | 2003-04-11 | 2004-05-19 | 田步升 | Fully-implanted hearth auxilairy pump |
| CN1202871C (en) | 2003-04-18 | 2005-05-25 | 清华大学 | Optimal non-constant speed control method for miniature axial flow type blood pumps |
| US7118525B2 (en) | 2003-04-23 | 2006-10-10 | Coleman Edward J | Implantable cardiac assist device |
| JP4108054B2 (en) | 2003-04-30 | 2008-06-25 | 三菱重工業株式会社 | Artificial heart pump |
| US7014620B2 (en) | 2003-05-05 | 2006-03-21 | Hakjin Kim | Lie-down massager |
| GB0310639D0 (en) | 2003-05-08 | 2003-06-11 | Corac Group Plc | Rotary electric machine |
| CA2428741A1 (en) | 2003-05-13 | 2004-11-13 | Cardianove Inc. | Dual inlet mixed-flow blood pump |
| US7052253B2 (en) | 2003-05-19 | 2006-05-30 | Advanced Bionics, Inc. | Seal and bearing-free fluid pump incorporating a passively suspended self-positioning impeller |
| US20080262289A1 (en) | 2003-05-28 | 2008-10-23 | Goldowsky Michael P | Blood Pump Having A Passive Non-Contacting Bearing Suspension |
| US20040241019A1 (en) | 2003-05-28 | 2004-12-02 | Michael Goldowsky | Passive non-contacting smart bearing suspension for turbo blood-pumps |
| TWI257543B (en) | 2003-07-02 | 2006-07-01 | Delta Electronics Inc | Equalizing temperature device |
| US7128538B2 (en) | 2003-07-07 | 2006-10-31 | Terumo Corporation | Centrifugal fluid pump apparatus |
| AU2003903726A0 (en) | 2003-07-18 | 2003-07-31 | Ventracor Limited | A device for detecting heart pumping state |
| US7951129B2 (en) | 2003-08-07 | 2011-05-31 | Medtronic, Inc. | Diastolic coronary perfusion detection for timed delivery of therapeutic and/or diagnostic agents |
| DE10336902C5 (en) | 2003-08-08 | 2019-04-25 | Abiomed Europe Gmbh | Intracardiac pumping device |
| WO2005020848A2 (en) | 2003-08-28 | 2005-03-10 | Advanced Research And Technology Institute, Inc. | Cavopulmonary assist device and associated method |
| US7245117B1 (en) | 2004-11-01 | 2007-07-17 | Cardiomems, Inc. | Communicating with implanted wireless sensor |
| DE10342758A1 (en) | 2003-09-16 | 2005-04-28 | Campus Gmbh & Co Kg | Device for insertion in body organs with marking of the position control |
| US20140296677A1 (en) | 2003-09-18 | 2014-10-02 | New Paradigm Concepts, LLC | Method of measuring total vascular hemoglobin mass |
| US7559894B2 (en) | 2003-09-18 | 2009-07-14 | New Paradigm Concepts, LLC | Multiparameter whole blood monitor and method |
| US7070398B2 (en) | 2003-09-25 | 2006-07-04 | Medforte Research Foundation | Axial-flow blood pump with magnetically suspended, radially and axially stabilized impeller |
| US20050137614A1 (en) | 2003-10-08 | 2005-06-23 | Porter Christopher H. | System and method for connecting implanted conduits |
| US7798952B2 (en) | 2003-10-09 | 2010-09-21 | Thoratec Corporation | Axial flow blood pump |
| US8428717B2 (en) | 2003-10-14 | 2013-04-23 | Medtronic, Inc. | Method and apparatus for monitoring tissue fluid content for use in an implantable cardiac device |
| US20050085683A1 (en) | 2003-10-15 | 2005-04-21 | Bolling Steven F. | Implantable heart assist system and method of applying same |
| WO2005037345A2 (en) | 2003-10-17 | 2005-04-28 | Vanderbilt University | Percutaneously-inserted ventricular assist devices and related methods |
| EP1677872B1 (en) | 2003-10-31 | 2015-12-02 | Sunshine Heart Company Pty Ltd | Synchronisation control system |
| US20050113631A1 (en) | 2003-11-12 | 2005-05-26 | Bolling Steven F. | Cannulae having a redirecting tip |
| WO2005051838A2 (en) | 2003-11-19 | 2005-06-09 | Transoma Medical, Inc. | Feedback control of ventricular assist devices |
| US7523649B2 (en) | 2003-11-26 | 2009-04-28 | Separation Technology, Inc. | Method and apparatus for ultrasonic determination of hematocrit and hemoglobin concentrations |
| TWI231749B (en) | 2003-12-24 | 2005-05-01 | Mau-Chin Shen | Restoring/positioning device for slide rail of drawer |
| JP2005192687A (en) | 2003-12-29 | 2005-07-21 | Sunao Kitamura | Indirect measuring method for pressure, flow rate and natural cardiac output in partial assist using rotating artificial heart pump |
| JP2005241546A (en) | 2004-02-27 | 2005-09-08 | Fuji Electric Systems Co Ltd | Doppler type ultrasonic flowmeter, its processing unit, program |
| DE102004019721A1 (en) | 2004-03-18 | 2005-10-06 | Medos Medizintechnik Ag | pump |
| US11832793B2 (en) | 2004-03-23 | 2023-12-05 | Boston Scientific Scimed, Inc. | Vivo visualization system |
| US7160243B2 (en) | 2004-03-25 | 2007-01-09 | Terumo Corporation | Method and system for controlling blood pump flow |
| US7591777B2 (en) | 2004-05-25 | 2009-09-22 | Heartware Inc. | Sensorless flow estimation for implanted ventricle assist device |
| US7513864B2 (en) | 2004-07-09 | 2009-04-07 | Kantrowitz Allen B | Synchronization system between aortic valve and cardiac assist device |
| WO2006006163A2 (en) | 2004-07-12 | 2006-01-19 | Coreolis Inc. | Apparatus and method for multiple organ assist |
| US7824358B2 (en) | 2004-07-22 | 2010-11-02 | Thoratec Corporation | Heart pump connector |
| ES2421526T3 (en) | 2004-08-13 | 2013-09-03 | Delgado Reynolds M Iii | Apparatus for long-term assistance of a left ventricle to pump blood |
| EP1793878A4 (en) | 2004-09-07 | 2010-01-13 | Micromed Cardiovascular Inc | METHOD AND SYSTEM FOR THE PHYSIOLOGICAL CONTROL OF BLOOD PUMP |
| US7393181B2 (en) | 2004-09-17 | 2008-07-01 | The Penn State Research Foundation | Expandable impeller pump |
| DE102004049986A1 (en) | 2004-10-14 | 2006-04-20 | Impella Cardiosystems Gmbh | Intracardiac blood pump |
| US20080269822A1 (en) | 2004-11-02 | 2008-10-30 | Karin Ljungstrom | Device for Evaluating Positions of an Implantable Medical Device |
| DE102004054714A1 (en) | 2004-11-12 | 2006-05-24 | Impella Cardiosystems Gmbh | Foldable intravascular insertable blood pump |
| CN101056663B (en) | 2004-11-16 | 2010-10-27 | 心血管微创医疗公司 | Remote data monitor for cardiac pump system |
| US8419609B2 (en) | 2005-10-05 | 2013-04-16 | Heartware Inc. | Impeller for a rotary ventricular assist device |
| DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
| WO2006080011A2 (en) | 2005-01-25 | 2006-08-03 | Ramot At Tel Aviv University Ltd. | Using pulsed-wave ultrasonography for determining an aliasing-free radial velocity spectrum of matter moving in a region |
| US8594790B2 (en) | 2005-01-27 | 2013-11-26 | Medtronic, Inc. | System and method for monitoring a ventricular pressure index to predict worsening heart failure |
| EP1850910A1 (en) | 2005-02-07 | 2007-11-07 | Medtronic, Inc. | Ion imbalance detector |
| US7479102B2 (en) | 2005-02-28 | 2009-01-20 | Robert Jarvik | Minimally invasive transvalvular ventricular assist device |
| CN1833736A (en) | 2005-03-17 | 2006-09-20 | 张杰民 | Pulsation axial flow blood pump |
| US7563248B2 (en) | 2005-03-17 | 2009-07-21 | Smisson-Cartledge Biomedical Llc | Infusion fluid heat exchanger and cartridge |
| US20060224110A1 (en) | 2005-03-17 | 2006-10-05 | Scott Michael J | Methods for minimally invasive vascular access |
| DE102005017546A1 (en) | 2005-04-16 | 2006-10-19 | Impella Cardiosystems Gmbh | Method for controlling a blood pump |
| WO2006122001A2 (en) | 2005-05-06 | 2006-11-16 | Vasonova, Inc. | Method and apparatus for endovascular device guiding and positioning |
| EP2666508B1 (en) | 2005-05-13 | 2019-07-24 | Boston Scientific Limited | Integrated stent repositioning and retrieval loop |
| AU2006255059A1 (en) | 2005-06-06 | 2006-12-14 | Foster-Miller, Inc. | Blood pump |
| WO2006133409A2 (en) | 2005-06-08 | 2006-12-14 | Micromed Technology, Inc. | Artificial heart system |
| US7527599B2 (en) | 2005-06-17 | 2009-05-05 | The Research Foundation Of State University Of New York | Method of determining cardiac indicators |
| CA2613241A1 (en) | 2005-06-21 | 2007-01-04 | Cardiomems, Inc. | Method of manufacturing implantable wireless sensor for in vivo pressure measurement |
| EP1738783A1 (en) | 2005-07-01 | 2007-01-03 | Universitätsspital Basel | Axial flow pump with helical blade |
| US20130209292A1 (en) | 2005-07-01 | 2013-08-15 | Doan Baykut | Axial flow blood pump with hollow rotor |
| DE102005039446B4 (en) | 2005-08-18 | 2009-06-25 | Ilias-Medical Gmbh | Device for accumulating and depleting substances in a liquid |
| DE102005045597B4 (en) | 2005-09-23 | 2017-05-18 | Siemens Healthcare Gmbh | In the human or animal body implantable pumping device and pumping device comprising such a pumping device |
| US8657875B2 (en) | 2005-09-26 | 2014-02-25 | Abiomed, Inc. | Method and apparatus for pumping blood |
| US20070073352A1 (en) | 2005-09-28 | 2007-03-29 | Euler David E | Method and apparatus for regulating a cardiac stimulation therapy |
| US7878967B1 (en) | 2005-10-06 | 2011-02-01 | Sanjaya Khanal | Heart failure/hemodynamic device |
| US20070088214A1 (en) | 2005-10-14 | 2007-04-19 | Cardiac Pacemakers Inc. | Implantable physiologic monitoring system |
| US20070142923A1 (en) | 2005-11-04 | 2007-06-21 | Ayre Peter J | Control systems for rotary blood pumps |
| US20070142696A1 (en) | 2005-12-08 | 2007-06-21 | Ventrassist Pty Ltd | Implantable medical devices |
| DE202005020288U1 (en) | 2005-12-23 | 2007-05-03 | H. Wernert & Co. Ohg | Permanent magnet contactless radial rotary coupler for e.g. vertical pump, has magnets polarized equally in circumferential direction, where magnets form non-contact operating passive radial support for receiving radial forces between units |
| EP1801420A3 (en) | 2005-12-23 | 2009-10-21 | H. Wernert & Co. oHG | Centrifugal pump with magnetic coupling |
| EP1813302A1 (en) | 2006-01-25 | 2007-08-01 | Debiotech S.A. | Fluid volume measurement device for medical use |
| DE102006001180B4 (en) | 2006-01-06 | 2010-12-23 | Technische Universität Chemnitz | Rheometer and evaluation method for the determination of flow curve and viscosity function of optically transparent Newtonian and non-Newtonian fluids |
| US8550973B2 (en) | 2006-01-09 | 2013-10-08 | Cardiacassist, Inc. | Percutaneous right ventricular assist apparatus and method |
| AU2012261669B2 (en) | 2006-01-13 | 2015-05-21 | Heartware, Inc. | Rotary blood pump |
| US20110022057A1 (en) | 2006-02-03 | 2011-01-27 | Pacesetter, Inc. | Apparatus and methods for transferring an implanted elongate body to a remote site |
| US7758531B2 (en) | 2006-03-02 | 2010-07-20 | Vinod Patel | Method and apparatus for treatment of congestive heart disease |
| WO2007105842A1 (en) | 2006-03-15 | 2007-09-20 | Korea University Industrial & Academic Collaboration Foundation | Rotary blood pump |
| AU2007201127B2 (en) | 2006-03-23 | 2012-02-09 | Thoratec Corporation | System For Preventing Diastolic Heart Failure |
| AU2007230945B2 (en) | 2006-03-23 | 2013-05-02 | The Penn State Research Foundation | Heart assist device with expandable impeller pump |
| EP1839601A1 (en) | 2006-03-30 | 2007-10-03 | Levitronix LLC | Self-expanding cannula |
| EP1839600A1 (en) | 2006-03-30 | 2007-10-03 | Levitronix LLC | Expandable conduit-guide |
| AT503628B1 (en) | 2006-04-25 | 2008-06-15 | Vc Trust Holding Gmbh | METHOD FOR MONITORING THE MAXIMUM DISTANCE OF TWO OBJECTS |
| US20070255352A1 (en) | 2006-04-27 | 2007-11-01 | Roline Glen M | Implantable sensors having current-based switches for improved fault tolerance |
| US7549964B2 (en) | 2006-05-04 | 2009-06-23 | Viasys Healthcare, Inc. | Multiple frequency doppler ultrasound probe |
| US7850594B2 (en) | 2006-05-09 | 2010-12-14 | Thoratec Corporation | Pulsatile control system for a rotary blood pump |
| AU2013203301B2 (en) | 2006-05-31 | 2015-10-29 | Star Bp, Inc. | Heart Assist Device |
| US7468039B2 (en) | 2006-06-02 | 2008-12-23 | Cook Vascular Incorporated | Adjustable tension cuff assembly |
| US7914436B1 (en) | 2006-06-12 | 2011-03-29 | Abiomed, Inc. | Method and apparatus for pumping blood |
| US7909770B2 (en) | 2006-07-05 | 2011-03-22 | Cardiomems, Inc. | Method for using a wireless pressure sensor to monitor pressure inside the human heart |
| DE102006032583A1 (en) | 2006-07-13 | 2008-01-17 | Biotronik Crm Patent Ag | introducer |
| DE102006035548B4 (en) | 2006-07-27 | 2009-02-12 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | artificial heart |
| US20080058925A1 (en) | 2006-08-02 | 2008-03-06 | Gordon Cohen | Bifurcated flow device for cardio-pulmonary assist or support and associated methods |
| DE102006036948A1 (en) | 2006-08-06 | 2008-02-07 | Akdis, Mustafa, Dipl.-Ing. | blood pump |
| US20080097595A1 (en) | 2006-08-22 | 2008-04-24 | Shlomo Gabbay | Intraventricular cardiac prosthesis |
| CA2663586C (en) | 2006-09-14 | 2014-10-28 | Circulite, Inc | Intravascular blood pump and catheter |
| EP1903000B1 (en) | 2006-09-25 | 2019-09-18 | Sorin CRM SAS | Implantable biocompatible component including an integrated active element such as a sensor for measuring a physiological parameter, electromechanical microsystem or electronic circuit |
| US7963905B2 (en) | 2006-10-11 | 2011-06-21 | Thoratec Corporation | Control system for a blood pump |
| US20080091239A1 (en) | 2006-10-16 | 2008-04-17 | St. Jude Medical Ab | Cardiac assist device and method using epicardially placed microphone |
| US20080133006A1 (en) | 2006-10-27 | 2008-06-05 | Ventrassist Pty Ltd | Blood Pump With An Ultrasonic Transducer |
| JP5283888B2 (en) | 2006-11-02 | 2013-09-04 | 株式会社東芝 | Ultrasonic diagnostic equipment |
| WO2008057478A2 (en) | 2006-11-03 | 2008-05-15 | The Regents Of The University Of Michigan | Method and system for determining volume flow in a blood conduit |
| US8202224B2 (en) | 2006-11-13 | 2012-06-19 | Pacesetter, Inc. | System and method for calibrating cardiac pressure measurements derived from signals detected by an implantable medical device |
| CN200977306Y (en) | 2006-11-30 | 2007-11-21 | 中国医学科学院阜外心血管病医院 | Minitype implantable axial flow type heart assist blood pump |
| CN101112628A (en) | 2006-11-30 | 2008-01-30 | 中国医学科学院阜外心血管病医院 | Miniature Implantable Axial Heart Assist Blood Pump |
| US9028392B2 (en) | 2006-12-01 | 2015-05-12 | NuCardia, Inc. | Medical device |
| JP5094111B2 (en) | 2006-12-28 | 2012-12-12 | 日立オートモティブシステムズ株式会社 | Permanent magnet rotating electrical machine, method of manufacturing the same, and automobile equipped with permanent magnet rotating electrical machine |
| AU2008219653B2 (en) | 2007-02-26 | 2014-01-16 | Heartware, Inc. | Intravascular ventricular assist device |
| AU2013273663B2 (en) | 2007-02-26 | 2015-07-30 | Heartware, Inc. | Intravascular ventricular assist device |
| AT504990B1 (en) | 2007-02-27 | 2008-12-15 | Miracor Medizintechnik Handels | CATHETER FOR SUPPORTING THE PERFORMANCE OF A HEART |
| DE102007012817A1 (en) | 2007-03-16 | 2008-09-18 | Mwf Consult Ltd. | Device for supporting the heart and the circulation |
| DE102007014224A1 (en) | 2007-03-24 | 2008-09-25 | Abiomed Europe Gmbh | Blood pump with micromotor |
| RU2009140665A (en) | 2007-04-05 | 2011-05-10 | Микромед Текнолоджи, Инк. (Us) | BLOOD PUMPING SYSTEM AND METHOD OF ITS OPERATION |
| US7762941B2 (en) | 2007-04-25 | 2010-07-27 | Robert Jarvik | Blood pump bearings with separated contact surfaces |
| EP1987774A1 (en) | 2007-05-03 | 2008-11-05 | BrainLAB AG | Measurement of sonographic acoustic velocity using a marker device |
| WO2008135988A2 (en) | 2007-05-03 | 2008-11-13 | Leviticus-Cardio Ltd. | Permanent ventricular assist device for treating heart failure |
| JP5266464B2 (en) | 2007-05-10 | 2013-08-21 | ライニッシュ−ヴェストフェリッシェ・テクニッシェ・ホッホシューレ・アーヘン | Cardiac function change evaluation device |
| US7828710B2 (en) | 2007-06-05 | 2010-11-09 | Medical Value Partners, Llc | Apparatus comprising a drive cable for a medical device |
| EP2000159A1 (en) | 2007-06-07 | 2008-12-10 | NewCorTec S.p.A. | A duct for a ventricular assistance device |
| US8731664B2 (en) | 2007-06-14 | 2014-05-20 | Calon Cardio Technology Limited | Reduced diameter axial rotary pump for cardiac assist |
| JP5201887B2 (en) | 2007-06-20 | 2013-06-05 | テルモ株式会社 | Blood pump system for artificial heart and device monitoring system |
| JP4994971B2 (en) | 2007-06-29 | 2012-08-08 | アネスト岩田株式会社 | Magnetic bearing, magnetic coupling device, and scroll type fluid machine using the same |
| US20090024042A1 (en) | 2007-07-03 | 2009-01-22 | Endotronix, Inc. | Method and system for monitoring ventricular function of a heart |
| DE602007004842D1 (en) | 2007-07-18 | 2010-04-01 | Surgery In Motion Ltd | Device for assisting in cardiac treatment |
| GB0714124D0 (en) | 2007-07-20 | 2007-08-29 | Foster Graham | Cardiac pumps |
| US20090025459A1 (en) | 2007-07-23 | 2009-01-29 | Cardiac Pacemakers, Inc. | Implantable viscosity monitoring device and method therefor |
| EP2020246A1 (en) | 2007-08-03 | 2009-02-04 | Berlin Heart GmbH | Control of rotary blood pump with selectable therapeutic options |
| EP2949292B8 (en) | 2007-08-21 | 2016-06-15 | Symetis Sa | Replacement valve |
| US8079948B2 (en) | 2007-08-29 | 2011-12-20 | NuCardia, Inc. | Article comprising an impeller |
| EP2037236A3 (en) | 2007-09-11 | 2011-01-19 | Levitronix LLC | Calibration method of a flow measurement in a flow system and a flow system for carrying out the method |
| US20160166747A1 (en) | 2007-10-01 | 2016-06-16 | Oscar H. Frazier | Intraatrial ventricular assist device |
| US10226234B2 (en) | 2011-12-01 | 2019-03-12 | Maui Imaging, Inc. | Motion detection using ping-based and multiple aperture doppler ultrasound |
| EP2047872B1 (en) | 2007-10-08 | 2010-09-08 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
| US8489190B2 (en) | 2007-10-08 | 2013-07-16 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
| EP2047873B1 (en) | 2007-10-08 | 2010-12-15 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
| US8439859B2 (en) | 2007-10-08 | 2013-05-14 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
| US20090105799A1 (en) | 2007-10-23 | 2009-04-23 | Flowmedica, Inc. | Renal assessment systems and methods |
| US9199020B2 (en) | 2007-11-01 | 2015-12-01 | Abiomed, Inc. | Purge-free miniature rotary pump |
| US8323202B2 (en) | 2007-11-16 | 2012-12-04 | Pneumrx, Inc. | Method and system for measuring pulmonary artery circulation information |
| US8376926B2 (en) | 2007-11-29 | 2013-02-19 | Micromed Technology, Inc. | Rotary blood pump |
| US7794384B2 (en) | 2007-12-07 | 2010-09-14 | Terumo Heart, Inc. | Dual communication interface for artificial heart system |
| AU2007362036B2 (en) | 2007-12-07 | 2012-01-19 | NuCardia, Inc. | Medical device |
| EP2072150B1 (en) | 2007-12-19 | 2023-09-27 | Ueda Japan Radio Co., Ltd. | Ultrasonic transducer |
| CN201150675Y (en) | 2007-12-29 | 2008-11-19 | 同济大学附属东方医院 | Pump and machine unifying implanted axial flow blood pump channel structure |
| CN101214158A (en) | 2007-12-29 | 2008-07-09 | 同济大学附属东方医院 | Implantable real-time flow detector |
| US7856335B2 (en) | 2008-01-25 | 2010-12-21 | Micromed Technology, Inc. | Device, method, and system for calibration of a flow meter used in conjunction with a ventricular assist device |
| AU2009210744B2 (en) | 2008-02-08 | 2014-06-12 | Heartware, Inc. | Ventricular assist device for intraventricular placement |
| US10117981B2 (en) | 2008-02-08 | 2018-11-06 | Heartware, Inc. | Platinum-cobalt-boron blood pump element |
| US20090204205A1 (en) | 2008-02-08 | 2009-08-13 | Larose Jeffrey A | Platinum-cobalt-boron blood pump element |
| EP2242538B1 (en) | 2008-02-11 | 2016-04-06 | Cardiac Pacemakers, Inc. | Methods of monitoring hemodynamic status for ryhthm discrimination within the heart |
| JP4681625B2 (en) | 2008-02-22 | 2011-05-11 | 三菱重工業株式会社 | Blood pump and pump unit |
| DE102008011858B4 (en) | 2008-02-29 | 2009-12-24 | Gebrüder Frei GmbH & Co. KG | Device for damping a rotary movement |
| JP5170751B2 (en) | 2008-03-28 | 2013-03-27 | テルモ株式会社 | Blood pump device |
| US20090264820A1 (en) | 2008-04-16 | 2009-10-22 | Abiomed, Inc. | Method and apparatus for implanting an endoluminal prosthesis such as a prosthetic valve |
| US8211028B2 (en) | 2008-04-30 | 2012-07-03 | Medtronic, Inc. | System and method of determining arterial blood pressure and ventricular fill parameters from ventricular blood pressure waveform data |
| US8641604B2 (en) | 2008-05-13 | 2014-02-04 | Boston Scientific Scimed, Inc. | Steering system with locking mechanism |
| CN101579233A (en) | 2008-05-14 | 2009-11-18 | 深圳市盛力康实业发展有限公司 | Method, system and device for detecting cardiovascular function |
| US20090312650A1 (en) | 2008-06-12 | 2009-12-17 | Cardiac Pacemakers, Inc. | Implantable pressure sensor with automatic measurement and storage capabilities |
| JP5473085B2 (en) | 2008-06-23 | 2014-04-16 | カーディオブリッジ ゲーエムベーハー | Catheter pump for circulatory assistance |
| DE102008040266A1 (en) | 2008-07-09 | 2010-01-14 | Biotronik Crm Patent Ag | Implantable measuring arrangement |
| EP2187807B1 (en) | 2008-07-31 | 2012-06-27 | Medtronic, Inc. | System using multiple diagnostic parameters for predicting heart failure events |
| US9713701B2 (en) | 2008-07-31 | 2017-07-25 | Medtronic, Inc. | Using multiple diagnostic parameters for predicting heart failure events |
| CA2734775C (en) | 2008-09-10 | 2015-02-03 | Heartware, Inc. | Tet system for implanted medical device |
| EP2340067B1 (en) | 2008-09-26 | 2019-07-24 | Carnegie Mellon University | Magnetically-levitated blood pump with optimization method enabling miniaturization |
| WO2010039876A1 (en) | 2008-09-30 | 2010-04-08 | Ihc Intellectual Asset Management, Llc | Physiological characteristic determination for a medical device user |
| WO2010039063A1 (en) | 2008-09-30 | 2010-04-08 | St. Jude Medical Ab | Heart failure detector |
| US8435182B1 (en) | 2008-10-02 | 2013-05-07 | Hitachi Aloka Medical, Ltd. | Methods and apparatus for ultrasound imaging |
| AU2009302471B2 (en) | 2008-10-06 | 2015-03-19 | Indiana University Research And Technology Corporation | Methods and apparatus for active or passive assistance in the circulatory system |
| PL2344218T3 (en) | 2008-10-10 | 2022-01-10 | Medicaltree Patent Ltd. | Heart help pump |
| US8550974B2 (en) | 2008-11-13 | 2013-10-08 | Robert Jarvik | Sub-miniature electromechanical medical implants with integrated hermetic feedthroughs |
| DE102008060357A1 (en) | 2008-12-03 | 2010-06-10 | Audi Ag | Electrical machine e.g. permanent magnet-excited synchronous machine, controlling device for use in motor vehicle, has cooling body arranged at side of power unit, and connecting arrangement arranged at other side of power unit |
| EP2194278A1 (en) | 2008-12-05 | 2010-06-09 | ECP Entwicklungsgesellschaft mbH | Fluid pump with a rotor |
| WO2010080717A1 (en) | 2009-01-12 | 2010-07-15 | The Board Of Trustees Of The Leland Stanford Junior University | Drainage device and method |
| US7993259B2 (en) | 2009-01-23 | 2011-08-09 | Wei-Chang Kang | Percutaneous intra-aortic ventricular assist device |
| DE102009007216A1 (en) | 2009-02-03 | 2010-08-12 | Siemens Aktiengesellschaft | Blood pump e.g. right ventricular impella blood pump, for insertion into heart of patient, has position sensor for determining position and/or location of pump in patient's body, where pump is connected to catheter at proximal end |
| EP2218469B1 (en) | 2009-02-12 | 2012-10-31 | ECP Entwicklungsgesellschaft mbH | Casing for a functional element |
| US20100222633A1 (en) | 2009-02-27 | 2010-09-02 | Victor Poirier | Blood pump system with controlled weaning |
| US8449444B2 (en) | 2009-02-27 | 2013-05-28 | Thoratec Corporation | Blood flow meter |
| US20100222635A1 (en) | 2009-02-27 | 2010-09-02 | Thoratec Corporation | Maximizing blood pump flow while avoiding left ventricle collapse |
| US8562507B2 (en) | 2009-02-27 | 2013-10-22 | Thoratec Corporation | Prevention of aortic valve fusion |
| US20100222878A1 (en) | 2009-02-27 | 2010-09-02 | Thoratec Corporation | Blood pump system with arterial pressure monitoring |
| DE102009011726A1 (en) | 2009-03-04 | 2010-09-09 | Siemens Aktiengesellschaft | Medical device for controlling location of e.g. left-ventricular, minimally invasive catheter-based cardiac assist device-blood pump in heart of patient, has reference position sensor arranged at surface of heart of patient |
| EP2405807A2 (en) | 2009-03-13 | 2012-01-18 | Proteus Biomedical, Inc. | Volume sensing |
| BRPI1013613A2 (en) | 2009-03-24 | 2016-04-19 | Norcross Corp | in-line viscometer with no moving parts, and computer-readable method and medium to maintain desired viscosity |
| CN201437016U (en) | 2009-03-26 | 2010-04-14 | 同济大学附属东方医院 | implantable ventricular assist device |
| GB0906642D0 (en) | 2009-04-17 | 2009-06-03 | Calon Cardio Technology Ltd | Cardiac pump |
| JP5506234B2 (en) | 2009-04-24 | 2014-05-28 | 三菱電機株式会社 | Anisotropic magnet, motor, and method for manufacturing anisotropic magnet |
| EP2246078A1 (en) | 2009-04-29 | 2010-11-03 | ECP Entwicklungsgesellschaft mbH | Shaft assembly with a shaft which moves within a fluid-filled casing |
| EP2248544A1 (en) | 2009-05-05 | 2010-11-10 | ECP Entwicklungsgesellschaft mbH | Fluid pump with variable circumference, particularly for medical use |
| DE202009018416U1 (en) | 2009-05-05 | 2011-08-11 | Ecp Entwicklungsgesellschaft Mbh | Diameter changeable fluid pump |
| RU2536418C2 (en) | 2009-05-13 | 2014-12-20 | Конинклейке Филипс Электроникс Н.В. | Ultrasonic doppler audio device for monitoring blood flow with pitch shifting |
| WO2010133567A1 (en) | 2009-05-18 | 2010-11-25 | Cardiobridge Gmbh | Catheter pump |
| US8231519B2 (en) | 2009-05-20 | 2012-07-31 | Thoratec Corporation | Multi-lumen cannula |
| US9782527B2 (en) | 2009-05-27 | 2017-10-10 | Tc1 Llc | Monitoring of redundant conductors |
| JP5224221B2 (en) | 2009-06-09 | 2013-07-03 | 独立行政法人産業技術総合研究所 | Vascular function testing device |
| WO2010142286A1 (en) | 2009-06-12 | 2010-12-16 | Technische Universität Dresden | Assembly and method for the combined determination of sonic speeds and distances in media using ultrasound |
| DE102009025464A1 (en) | 2009-06-12 | 2011-01-27 | Technische Universität Dresden | Arrangement and method for the combined determination of sound velocities and distances in liquid and solid media by means of ultrasound |
| US20100324378A1 (en) | 2009-06-17 | 2010-12-23 | Tran Binh C | Physiologic signal monitoring using ultrasound signals from implanted devices |
| EP2266640A1 (en) | 2009-06-25 | 2010-12-29 | ECP Entwicklungsgesellschaft mbH | Compressible and expandable turbine blade for a fluid pump |
| DE102009027195A1 (en) | 2009-06-25 | 2010-12-30 | Sorin Group Deutschland Gmbh | Device for pumping blood in an extracorporeal circuit |
| US8535211B2 (en) | 2009-07-01 | 2013-09-17 | Thoratec Corporation | Blood pump with expandable cannula |
| US8784310B2 (en) | 2009-07-02 | 2014-07-22 | Cardiac Pacemakers, Inc. | Vascular pressure sensor with electrocardiogram electrodes |
| EP2461465B1 (en) | 2009-07-29 | 2018-12-19 | Thoratec Corporation | Rotation drive device and centrifugal pump device |
| EP2282070B1 (en) | 2009-08-06 | 2012-10-17 | ECP Entwicklungsgesellschaft mbH | Catheter device with a coupling device for a drive device |
| US20160008531A1 (en) | 2009-08-11 | 2016-01-14 | W-Z Biotech, Llc | Dual lumen cannula for artificial lung and right ventricular assist device |
| US8684362B2 (en) | 2009-08-12 | 2014-04-01 | Bal Seal Engineering, Inc. | Cartridge seal assemblies and associated methods |
| DE102009039658B4 (en) | 2009-09-02 | 2016-08-04 | Ringfeder Power-Transmission Gmbh | Permanent magnet coupling for the synchronous transmission of rotational movements |
| US9278189B2 (en) | 2009-09-09 | 2016-03-08 | Abiomed, Inc. | Apparatus for simultaneously delivering fluid to a dual lumen catheter with a single fluid source |
| US8628460B2 (en) | 2009-09-21 | 2014-01-14 | Heartware, Inc. | Hard-wired implanted controller system |
| EP4215752A1 (en) | 2009-09-22 | 2023-07-26 | ECP Entwicklungsgesellschaft mbH | Compressible rotor for a fluid pump |
| EP2298371A1 (en) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Function element, in particular fluid pump with a housing and a transport element |
| EP2298372A1 (en) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Rotor for an axial pump for transporting a fluid |
| EP2298373A1 (en) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Fluid pump with at least one turbine blade and a seating device |
| US9943236B2 (en) | 2009-09-30 | 2018-04-17 | Medtronic, Inc. | Methods for guiding heart failure decompensation therapy |
| DE102009047844A1 (en) | 2009-09-30 | 2011-03-31 | Abiomed Europe Gmbh | Lockable quick release |
| DE102009043795B4 (en) | 2009-09-30 | 2017-10-19 | AdjuCor GmbH | Cardiac assist device and method for its control |
| DE102009047845A1 (en) | 2009-09-30 | 2011-03-31 | Abiomed Europe Gmbh | Ventricular Assist Device |
| CN101711683A (en) | 2009-10-30 | 2010-05-26 | 中国人民解放军第三军医大学第一附属医院 | Method for measuring flow velocity of arterial blood |
| US8690749B1 (en) | 2009-11-02 | 2014-04-08 | Anthony Nunez | Wireless compressible heart pump |
| CN102665785A (en) | 2009-11-04 | 2012-09-12 | 理查德·瓦姆普勒 | Heart failure treatment methods and devices |
| EP2319552B1 (en) | 2009-11-06 | 2014-01-08 | Berlin Heart GmbH | Blood pump |
| US9682180B2 (en) | 2009-11-15 | 2017-06-20 | Thoratec Corporation | Attachment system, device and method |
| CN201658687U (en) | 2009-11-17 | 2010-12-01 | 陈洵 | Micro screw rod-type blood pump |
| BRPI0904483A2 (en) | 2009-11-25 | 2011-07-12 | Alessandro Verona | ventricular assist device and method for supplementing blood flow |
| EP2333514A1 (en) | 2009-11-30 | 2011-06-15 | Berlin Heart GmbH | Device and method for measuring material parameters of a fluid which affect flow mechanics |
| US8608798B2 (en) | 2009-12-03 | 2013-12-17 | Richard Wampler | Total artificial heart |
| US8734508B2 (en) | 2009-12-21 | 2014-05-27 | Boston Scientific Scimed, Inc. | Systems and methods for making and using percutaneously-delivered pumping systems for providing hemodynamic support |
| EP2338541A1 (en) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Radial compressible and expandable rotor for a fluid pump |
| EP2338539A1 (en) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Pump device with a detection device |
| EP2338540A1 (en) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Delivery blade for a compressible rotor |
| DE102009060668A1 (en) | 2009-12-28 | 2011-06-30 | Fresenius Medical Care Deutschland GmbH, 61352 | Apparatus and method for monitoring extracorporeal blood treatment |
| US8152845B2 (en) | 2009-12-30 | 2012-04-10 | Thoratec Corporation | Blood pump system with mounting cuff |
| AU2009357386B2 (en) | 2009-12-30 | 2013-06-20 | Thoratec Corporation | Blood pump system with mounting cuff |
| US8562508B2 (en) | 2009-12-30 | 2013-10-22 | Thoratec Corporation | Mobility-enhancing blood pump system |
| EP2519274B1 (en) | 2009-12-30 | 2016-04-20 | Thoratec Corporation | Mobility-enhancing blood pump system |
| US8864644B2 (en) | 2010-01-19 | 2014-10-21 | Heartware, Inc. | Physiologically responsive VAD |
| EP2347778A1 (en) | 2010-01-25 | 2011-07-27 | ECP Entwicklungsgesellschaft mbH | Fluid pump with a radially compressible rotor |
| FR2955499B1 (en) | 2010-01-28 | 2013-06-14 | Fineheart | "AUTONOMOUS CARDIAC PUMP AND METHOD USED IN SUCH A PUMP". |
| JP2013519497A (en) | 2010-02-17 | 2013-05-30 | ノビタ セラピューティクス エルエルシー | System and method for increasing the overall diameter of a vein |
| KR20110098192A (en) | 2010-02-26 | 2011-09-01 | 강원대학교산학협력단 | Blood pump |
| EP2363157A1 (en) | 2010-03-05 | 2011-09-07 | ECP Entwicklungsgesellschaft mbH | Device for exerting mechanical force on a medium, in particular fluid pump |
| US9028413B2 (en) | 2010-03-08 | 2015-05-12 | Siemens Medical Solutions Usa, Inc. | Prediction-based flow estimation for ultrasound diagnostic imaging |
| DE102010011798B4 (en) | 2010-03-17 | 2017-07-13 | Fresenius Medical Care Deutschland Gmbh | Method and device for determining the pressure or volume flow of medical fluids |
| RS20100326A2 (en) | 2010-03-20 | 2012-04-30 | Uroš BABIĆ | Manual device for cardio-circulatory resuscitation |
| SE535140C2 (en) | 2010-03-25 | 2012-04-24 | Jan Otto Solem | An implantable device, kit and system for improving cardiac function, including means for generating longitudinal movement of the mitral valve |
| CN201618200U (en) | 2010-03-29 | 2010-11-03 | 赵菁 | Intravascular mini blood supply pump |
| US10512537B2 (en) | 2010-04-16 | 2019-12-24 | Abiomed, Inc. | Flow optimized polymeric heart valve |
| EP2388029A1 (en) | 2010-05-17 | 2011-11-23 | ECP Entwicklungsgesellschaft mbH | Pump array |
| DK3586887T3 (en) | 2010-05-26 | 2022-06-13 | Abiomed Inc | ANATOMIC ADAPTATION OF A PERCUTANE WAD TO THE RIGHT HEART SUPPORT |
| CN201710717U (en) | 2010-06-08 | 2011-01-19 | 中山哈特人工心脏实验室有限公司 | A micro-screw blood pump |
| WO2011160056A1 (en) | 2010-06-18 | 2011-12-22 | Heartware, Inc. | Hydrodynamic chamfer thrust bearing |
| WO2011163421A1 (en) | 2010-06-22 | 2011-12-29 | Thoratec Corporation | Fluid delivery system and method for monitoring fluid delivery system |
| EP2399639A1 (en) | 2010-06-25 | 2011-12-28 | ECP Entwicklungsgesellschaft mbH | System for introducing a pump |
| DE102011115454A1 (en) | 2010-06-29 | 2012-01-19 | Schaeffler Technologies Gmbh & Co. Kg | Magnetic assembly, in particular for an electrical machine and method for producing an assembly |
| EP2407186A1 (en) | 2010-07-15 | 2012-01-18 | ECP Entwicklungsgesellschaft mbH | Rotor for a pump, produced with an initial elastic material |
| EP2407187A3 (en) | 2010-07-15 | 2012-06-20 | ECP Entwicklungsgesellschaft mbH | Blood pump for invasive application within the body of a patient |
| EP2407185A1 (en) | 2010-07-15 | 2012-01-18 | ECP Entwicklungsgesellschaft mbH | Radial compressible and expandable rotor for a pump with a turbine blade |
| WO2012012552A1 (en) | 2010-07-22 | 2012-01-26 | Thoratec Corporation | Controlling implanted blood pumps |
| WO2012018917A1 (en) | 2010-08-03 | 2012-02-09 | World Heart Corporation | Conformal cannula device and related methods |
| US20120035645A1 (en) | 2010-08-05 | 2012-02-09 | Rainbow Medical Ltd. | Dynamic and static blood filters |
| WO2012024493A1 (en) | 2010-08-20 | 2012-02-23 | Thoratec Corporation | Implantable blood pump |
| EP2618863B1 (en) | 2010-09-24 | 2016-11-09 | Thoratec Corporation | Generating artificial pulse |
| US9227001B2 (en) | 2010-10-07 | 2016-01-05 | Everheart Systems Inc. | High efficiency blood pump |
| CA2814122A1 (en) | 2010-10-13 | 2012-04-19 | Thoratec Corporation | Pumping blood |
| US9775936B2 (en) | 2010-10-18 | 2017-10-03 | WorldHeart Corp. | Blood pump with separate mixed-flow and axial-flow impeller stages, components therefor and related methods |
| EP2635340A1 (en) | 2010-11-05 | 2013-09-11 | Tufts Medical Center, Inc. | Cannula with bifurcated tip for a cardiac assist device |
| UA97202C2 (en) | 2010-11-05 | 2012-01-10 | Константин Витальевич Паливода | Magnetic clutch |
| US8608636B2 (en) | 2010-11-12 | 2013-12-17 | Libraheart, Inc.V | Ventricular assist device cannula and ventricular assist device including the same |
| CN102475923A (en) | 2010-11-22 | 2012-05-30 | 大连创达技术交易市场有限公司 | Novel intrusive assisted circulation device |
| WO2012075262A1 (en) | 2010-12-01 | 2012-06-07 | Abiomed, Inc. | Loading guide lumen |
| CN201894758U (en) | 2010-12-03 | 2011-07-13 | 中山哈特人工心脏实验室有限公司 | A miniature axial flow blood pump |
| US10517667B2 (en) | 2014-05-16 | 2019-12-31 | Biosense Webster (Israel) Ltd. | Catheter tip with microelectrodes |
| AT510914B1 (en) | 2011-01-03 | 2012-10-15 | Lang Leonh | MEDICAL ELECTRODE WITH PRINTED INTRODUCTION AND METHOD FOR THE PRODUCTION THEREOF |
| US8597170B2 (en) | 2011-01-05 | 2013-12-03 | Thoratec Corporation | Catheter pump |
| US8485961B2 (en) | 2011-01-05 | 2013-07-16 | Thoratec Corporation | Impeller housing for percutaneous heart pump |
| WO2012094641A2 (en) | 2011-01-06 | 2012-07-12 | Thoratec Corporation | Percutaneous heart pump |
| WO2012094535A2 (en) | 2011-01-06 | 2012-07-12 | Thoratec Corporation | Percutaneous heart pump |
| GB201100826D0 (en) | 2011-01-18 | 2011-03-02 | Bremner Christopher P J | Improvements in magnetic couplings |
| US9511179B2 (en) | 2011-01-21 | 2016-12-06 | Heartware, Inc. | Flow estimation in a blood pump |
| US9492601B2 (en) | 2011-01-21 | 2016-11-15 | Heartware, Inc. | Suction detection on an axial blood pump using BEMF data |
| US9283315B2 (en) | 2011-02-08 | 2016-03-15 | Fresenius Medical Care Holdings, Inc. | Apparatus and method for real time measurement of a constituent of blood to monitor blood volume |
| TR201101396A1 (en) | 2011-02-15 | 2012-09-21 | Toptop Koral | Axial current heart pump. |
| US8876686B2 (en) | 2011-02-18 | 2014-11-04 | Vascor, Inc | Control of blood flow assist systems |
| EP2505847B1 (en) | 2011-03-29 | 2019-09-18 | ABB Schweiz AG | Method of detecting wear in a pump driven with a frequency converter |
| CN102743801A (en) | 2011-04-19 | 2012-10-24 | 薛恒春 | Magnetic fluid suspension type axial blood pump without shaft ends |
| US9050089B2 (en) | 2011-05-31 | 2015-06-09 | Covidien Lp | Electrosurgical apparatus with tissue site sensing and feedback control |
| EP2717765A4 (en) | 2011-06-08 | 2015-05-06 | Nader Najafi | IMPLANTABLE WIRELESS SENSOR SYSTEMS |
| DE102011106142A1 (en) | 2011-06-10 | 2012-12-27 | Rheinisch-Westfälische Technische Hochschule Aachen | Blood collection cannula of a heart function replacing or supporting pump |
| US8897873B2 (en) | 2011-06-27 | 2014-11-25 | Heartware, Inc. | Flow estimation in a blood pump |
| JP5849343B2 (en) | 2011-06-29 | 2016-01-27 | 株式会社プロスパイン | Magnetic coupling and stirring device |
| WO2013014339A1 (en) | 2011-07-28 | 2013-01-31 | Fineheart | Removable heart pump, and method implemented in such a pump |
| JP5809359B2 (en) | 2011-08-05 | 2015-11-10 | サーキュライト・インコーポレーテッド | Cannula lined with tissue ingrowth material and method of use thereof |
| WO2013023009A1 (en) | 2011-08-11 | 2013-02-14 | Spence Paul A | Devices, methods and systems for counterpulsation and blood flow conduit connection |
| US8613696B2 (en) | 2011-08-15 | 2013-12-24 | Thoratec Corporation | Non-invasive diagnostics for ventricle assist device |
| BR112014003425B1 (en) | 2011-08-17 | 2020-12-15 | Flow Forward Medical, Inc | BLOOD CENTRIFUGAL PUMP SYSTEM |
| US8961698B2 (en) | 2011-08-21 | 2015-02-24 | Reliant Heart, Inc. | Pump clean-out system |
| US8734331B2 (en) | 2011-08-29 | 2014-05-27 | Minnetronix, Inc. | Expandable blood pumps and methods of their deployment and use |
| US9162017B2 (en) | 2011-08-29 | 2015-10-20 | Minnetronix, Inc. | Expandable vascular pump |
| DE202011110389U1 (en) | 2011-09-05 | 2013-09-26 | Ecp Entwicklungsgesellschaft Mbh | Medical device having a functional element for invasive use in the body of a patient |
| EP2564771A1 (en) | 2011-09-05 | 2013-03-06 | ECP Entwicklungsgesellschaft mbH | Medicinal product with a functional element for invasive use in the body of a patient |
| EP2570143B1 (en) | 2011-09-14 | 2014-01-15 | BIOTRONIK SE & Co. KG | Implantable cardiac therapy device |
| WO2013037380A1 (en) | 2011-09-14 | 2013-03-21 | Ihab Daoud Hanna | Intracardiac implant-total artificial heart |
| US9517348B2 (en) | 2011-09-14 | 2016-12-13 | Biotronik Se & Co. Kg | Implantable cardiac therapy device |
| US8864643B2 (en) | 2011-10-13 | 2014-10-21 | Thoratec Corporation | Pump and method for mixed flow blood pumping |
| WO2013061280A1 (en) | 2011-10-28 | 2013-05-02 | Hemodynamix Medical Systems Inc. | Fluid temperature and flow sensor apparatus and system for cardiovascular and other medical applications |
| US20130116575A1 (en) | 2011-11-04 | 2013-05-09 | Marlin Mickle | Implantable doppler blood flow monitor and doppler probe |
| CN202314596U (en) | 2011-11-12 | 2012-07-11 | 陈丽华 | Percutaneous heart assist device |
| ES2973492T3 (en) | 2011-11-23 | 2024-06-20 | Abiomed Inc | Graft to be used with a counterpulsation device |
| EP2785391B1 (en) | 2011-11-28 | 2015-09-23 | Mi-vad, Inc. | Ventricular assist device and method |
| EP2607712B1 (en) | 2011-12-22 | 2016-07-13 | ECP Entwicklungsgesellschaft mbH | Pump housing with an interior for holding a pump rotor |
| EP2874944A4 (en) | 2011-12-22 | 2016-04-27 | Uop Llc | SYNTHESIS OF ZEOLITES BY CONVERSION IN LAYERS |
| EP2617443B1 (en) | 2012-01-17 | 2015-10-21 | PulseCath B.V. | Pressure actuated single-lumen blood pumping device |
| US11389638B2 (en) | 2012-02-07 | 2022-07-19 | Hridaya, Inc. | Hemodynamic assist device |
| IN2014DN07493A (en) | 2012-02-07 | 2015-04-24 | Hridaya Inc | |
| NL2008276C2 (en) | 2012-02-13 | 2013-09-02 | Egbert Jan Constant Ottevanger | Method and system for detecting cardiac tamponade in a patient. |
| DE102012202411B4 (en) | 2012-02-16 | 2018-07-05 | Abiomed Europe Gmbh | INTRAVASAL BLOOD PUMP |
| CN102545538A (en) | 2012-02-20 | 2012-07-04 | 上海电机学院 | Halbach disc type magnetic coupling |
| US9981076B2 (en) | 2012-03-02 | 2018-05-29 | Tc1 Llc | Ventricular cuff |
| US9572915B2 (en) | 2012-03-26 | 2017-02-21 | Procyrion, Inc. | Systems and methods for fluid flows and/or pressures for circulation and perfusion enhancement |
| DE102012207056B4 (en) | 2012-04-27 | 2021-11-11 | Abiomed Europe Gmbh | CATHETHER SYSTEM AND INTRAVASAL BLOOD PUMP WITH THIS CATHETER SYSTEM |
| DE102012207042B4 (en) | 2012-04-27 | 2017-09-07 | Abiomed Europe Gmbh | PULSATIONSBLUTPUMPE |
| DE102012207053A1 (en) | 2012-04-27 | 2013-10-31 | Abiomed Europe Gmbh | INTRAVASAL ROTATION BLOOD PUMP |
| DE102012207049A1 (en) | 2012-04-27 | 2015-08-13 | Abiomed Europe Gmbh | INTRAVASAL ROTATION BLOOD PUMP |
| EP2662099B1 (en) | 2012-05-09 | 2014-09-10 | Abiomed Europe GmbH | Intravascular blood pump |
| KR20150008155A (en) | 2012-05-11 | 2015-01-21 | 하트웨어, 인코포레이티드 | Silver motor stator for implantable blood pump |
| US9872947B2 (en) | 2012-05-14 | 2018-01-23 | Tc1 Llc | Sheath system for catheter pump |
| US9327067B2 (en) | 2012-05-14 | 2016-05-03 | Thoratec Corporation | Impeller for catheter pump |
| US8721517B2 (en) | 2012-05-14 | 2014-05-13 | Thoratec Corporation | Impeller for catheter pump |
| US9446179B2 (en) | 2012-05-14 | 2016-09-20 | Thoratec Corporation | Distal bearing support |
| GB2504176A (en) | 2012-05-14 | 2014-01-22 | Thoratec Corp | Collapsible impeller for catheter pump |
| US20130330219A1 (en) | 2012-05-17 | 2013-12-12 | Heartware, Inc. | Magnetically suspended pump |
| EP3566636B1 (en) | 2012-06-13 | 2024-02-21 | Boston Scientific Scimed, Inc. | Medical device visualization system |
| TR201207222A2 (en) | 2012-06-21 | 2012-11-21 | Oran B�Lent | Intravenous heart support device. |
| JP2014004303A (en) | 2012-06-21 | 2014-01-16 | iMed Japan株式会社 | Blood regeneration pump |
| US9358329B2 (en) | 2012-07-03 | 2016-06-07 | Thoratec Corporation | Catheter pump |
| US9421311B2 (en) | 2012-07-03 | 2016-08-23 | Thoratec Corporation | Motor assembly for catheter pump |
| EP4186557A1 (en) | 2012-07-03 | 2023-05-31 | Tc1 Llc | Motor assembly for catheter pump |
| WO2014011915A2 (en) | 2012-07-11 | 2014-01-16 | Robert Bosch Gmbh | Self-powered pressure sensor assembly |
| WO2014015300A1 (en) | 2012-07-19 | 2014-01-23 | Regents Of The University Of Minnesota | Cardiac assist device with pulse wave analysis |
| JP5660737B2 (en) | 2012-07-20 | 2015-01-28 | 日本ライフライン株式会社 | Electrode catheter and method for producing the same |
| EP4257174A3 (en) | 2012-07-27 | 2023-12-27 | Tc1 Llc | Thermal management for implantable wireless power transfer systems |
| EP2692369B1 (en) | 2012-07-31 | 2015-04-15 | Rheinisch-Westfälische Technische Hochschule Aachen | Axial flow blood pump device |
| WO2014036410A1 (en) | 2012-08-31 | 2014-03-06 | Thoratec Corporation | Start-up algorithm for an implantable blood pump |
| EP2892583B1 (en) | 2012-09-05 | 2023-01-25 | Heartware, Inc. | Vad integrated flow sensor |
| HK1210062A1 (en) | 2012-09-13 | 2016-04-15 | Circulite, Inc. | Blood flow system with variable speed control |
| CN104822400B (en) | 2012-09-21 | 2017-07-14 | 纯净之心有限公司 | Method of controlling the rate of a ventricular assist device (VAD) and ventricular assist device |
| DE102013012391A1 (en) | 2012-09-26 | 2014-03-27 | CircuLite GmbH | Pump, system with a blood pump and method of making a blood pump |
| EP2719403B1 (en) | 2012-10-12 | 2016-09-28 | Abiomed Europe GmbH | Centrifugal blood pump |
| US9585991B2 (en) | 2012-10-16 | 2017-03-07 | Heartware, Inc. | Devices, systems, and methods for facilitating flow from the heart to a blood pump |
| WO2014066470A1 (en) | 2012-10-24 | 2014-05-01 | Evergreen Medical Technologies, Inc. | Flex circuit ribbon based elongated members and attachments |
| WO2014070290A2 (en) | 2012-11-01 | 2014-05-08 | Boston Scientific Neuromodulation Corporation | Systems and methods for voa model generation and use |
| US10857274B2 (en) | 2012-11-06 | 2020-12-08 | Queen Mary University Of London | Mechanical circulatory support device with centrifugal impeller designed for implantation in the descending aorta |
| DE102012022456A1 (en) | 2012-11-15 | 2014-05-15 | Volkswagen Aktiengesellschaft | Planetary gear for torque transfer device, has gear units each comprising set of permanent magnets that interact with corresponding set of magnets of sun gear and/or internal gear to transmit torque |
| US9713662B2 (en) | 2012-11-30 | 2017-07-25 | The Penn State Research Foundation | Smart tip LVAD inlet cannula |
| US10124102B2 (en) | 2012-12-20 | 2018-11-13 | Oran Bulent | Endovascular permanent heart assist device |
| CN103143072B (en) | 2012-12-21 | 2015-06-17 | 北京工业大学 | Auxiliary circulation blood pump adopted in serially connecting operation modes and installing method of auxiliary circulation blood pump |
| EP2745869A1 (en) | 2012-12-21 | 2014-06-25 | ECP Entwicklungsgesellschaft mbH | Sluice assembly for the introduction of a cord-like body, in particular of a catheter, into a patient |
| DE102013200154A1 (en) | 2013-01-08 | 2014-07-10 | AdjuCor GmbH | A heart support device having a shell and first and second sheaths |
| US9220824B2 (en) | 2013-01-08 | 2015-12-29 | AdjuCor GmbH | Implanting cardiac devices |
| US8968174B2 (en) | 2013-01-16 | 2015-03-03 | Thoratec Corporation | Motor fault monitor for implantable blood pump |
| US8834345B2 (en) | 2013-01-16 | 2014-09-16 | Thoratec Corporation | Backflow detection for centrifugal blood pump |
| US9371826B2 (en) | 2013-01-24 | 2016-06-21 | Thoratec Corporation | Impeller position compensation using field oriented control |
| US9876407B2 (en) | 2013-02-20 | 2018-01-23 | Raymond James Walsh | Halbach motor and generator |
| US9556873B2 (en) | 2013-02-27 | 2017-01-31 | Tc1 Llc | Startup sequence for centrifugal pump with levitated impeller |
| US9108019B2 (en) | 2013-03-13 | 2015-08-18 | Boston Scientific Limited | Catheter system |
| JP6530367B2 (en) | 2013-03-13 | 2019-06-12 | ティーシーワン エルエルシー | Fluid outlet / inlet system |
| CN113616920B (en) | 2013-03-13 | 2024-10-25 | 马真塔医药有限公司 | Blood pump device and method for manufacturing a blood pump |
| US11033728B2 (en) | 2013-03-13 | 2021-06-15 | Tc1 Llc | Fluid handling system |
| US10583231B2 (en) | 2013-03-13 | 2020-03-10 | Magenta Medical Ltd. | Blood pump |
| US8882477B2 (en) | 2013-03-14 | 2014-11-11 | Circulite, Inc. | Magnetically levitated and driven blood pump and method for using the same |
| US20140275721A1 (en) | 2013-03-14 | 2014-09-18 | Thoratec Corporation | Centrifugal Blood Pump With Partitioned Implantable Device |
| US9144638B2 (en) | 2013-03-14 | 2015-09-29 | Thoratec Corporation | Blood pump rotor bearings |
| EP4190376A1 (en) | 2013-03-15 | 2023-06-07 | Tc1 Llc | Catheter pump assembly including a stator |
| US9848899B2 (en) | 2013-03-15 | 2017-12-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Pressure sensing of irrigant backpressure for aligning directional medical devices with target tissue |
| DE112014001418T5 (en) | 2013-03-15 | 2015-12-17 | Minnetronix, Inc. | Expandable blood pump for cardiac support |
| EP2968716B1 (en) | 2013-03-15 | 2023-09-13 | VASCOR, Inc. | Thoracic aorta ventricular assist system |
| US9192705B2 (en) | 2013-03-25 | 2015-11-24 | Thoratec Corporation | Percutaneous cable with redundant conductors for implantable blood pump |
| JP5608848B2 (en) | 2013-03-27 | 2014-10-15 | 株式会社サンメディカル技術研究所 | Artificial heart control device and artificial heart system |
| DE102013013700A1 (en) | 2013-04-05 | 2014-10-09 | CircuLite GmbH | Implantable blood pump, blood pump system and method for data transmission in a blood pump system |
| WO2014165993A1 (en) | 2013-04-08 | 2014-10-16 | Harobase Innovations Inc. | Left ventricular cardiac assist pump and methods therefor |
| EP2796156A1 (en) | 2013-04-24 | 2014-10-29 | ETH Zurich | Biomedical apparatus for pumping blood of a human or an animal patient through a secondary intra- or extracorporeal blood circuit |
| US9713663B2 (en) | 2013-04-30 | 2017-07-25 | Tc1 Llc | Cardiac pump with speed adapted for ventricle unloading |
| US10052420B2 (en) | 2013-04-30 | 2018-08-21 | Tc1 Llc | Heart beat identification and pump speed synchronization |
| DE102013007562A1 (en) | 2013-05-02 | 2014-11-06 | Minebea Co., Ltd. | Rotor for an electric machine |
| US10111994B2 (en) | 2013-05-14 | 2018-10-30 | Heartware, Inc. | Blood pump with separate mixed-flow and axial-flow impeller stages and multi-stage stators |
| US10499820B2 (en) | 2013-05-22 | 2019-12-10 | Boston Scientific Scimed, Inc. | Pressure sensing guidewire systems including an optical connector cable |
| US20160045654A1 (en) | 2014-08-14 | 2016-02-18 | Medibotics Llc | Implanted Extracardiac Device for Circulatory Assistance |
| EP3003421B1 (en) | 2013-06-04 | 2021-10-13 | Heartware, Inc. | Suction detection in a blood pump |
| US9427508B2 (en) | 2013-06-04 | 2016-08-30 | Heartware, Inc. | Axial flow pump pressure algorithm |
| DE102013106352A1 (en) | 2013-06-18 | 2014-12-18 | Universität Zu Lübeck | Cardiac support system and cardiac assistive procedure |
| GB201311494D0 (en) | 2013-06-27 | 2013-08-14 | Univ Oslo Hf | Monitoring of a cardiac assist device |
| US9968719B2 (en) | 2013-07-30 | 2018-05-15 | Heartware, Inc. | Wire scaffold device for ventricular assist device |
| EP3033120B1 (en) | 2013-08-14 | 2017-10-04 | Heartware, Inc. | Impeller for axial flow pump |
| AU2014306398B2 (en) | 2013-08-16 | 2019-01-31 | Cardiobionic Pty Ltd | Heart assist system and/or device |
| US10441802B2 (en) | 2013-08-28 | 2019-10-15 | Heartware, Inc. | Pass-through assembly |
| CN104436338B (en) | 2013-09-17 | 2020-06-19 | 上海微创医疗器械(集团)有限公司 | Implanted self-suspension axial flow blood pump |
| EP2851099A1 (en) | 2013-09-20 | 2015-03-25 | Berlin Heart GmbH | Blood pump control system for controlling a blood pump |
| EP2851100A1 (en) | 2013-09-20 | 2015-03-25 | Berlin Heart GmbH | Blood pump control system and method for controlling a blood pump |
| EP2860849B1 (en) | 2013-10-11 | 2016-09-14 | ECP Entwicklungsgesellschaft mbH | Compressible motor, implanting assembly and method for positioning the motor |
| EP2859911A1 (en) | 2013-10-11 | 2015-04-15 | qSTAR Medical SAS | Vascular access port devices with incorporated sensors |
| EP2860399A1 (en) | 2013-10-14 | 2015-04-15 | ECP Entwicklungsgesellschaft mbH | Method for operating a supply device that supplies a channel with a liquid, and supply device |
| CN103519847A (en) | 2013-10-25 | 2014-01-22 | 中国科学院深圳先进技术研究院 | Doppler blood flow velocity estimation method and system based on ultrasonic echo radio frequency signals |
| EP2868345A1 (en) | 2013-10-31 | 2015-05-06 | Berlin Heart GmbH | Electric assembly comprising an implantable cable element |
| EP2868331B1 (en) | 2013-11-01 | 2016-07-13 | ECP Entwicklungsgesellschaft mbH | Pump, in particular blood pump |
| EP2868289A1 (en) | 2013-11-01 | 2015-05-06 | ECP Entwicklungsgesellschaft mbH | Flexible catheter with a drive shaft |
| CN107773273B (en) | 2013-11-19 | 2023-12-01 | 港大科桥有限公司 | Ultrasonic fluid vector imaging device and method thereof |
| US9616158B2 (en) | 2013-12-04 | 2017-04-11 | Heartware, Inc. | Molded VAD |
| US20150157216A1 (en) | 2013-12-06 | 2015-06-11 | Volcano Corporation | Device, system, and method for assessing intravascular pressure |
| WO2015085220A1 (en) | 2013-12-06 | 2015-06-11 | Volcano Corporation | Device, system, and method for assessing intravascular pressure |
| JP2015122448A (en) | 2013-12-24 | 2015-07-02 | 住友電工プリントサーキット株式会社 | Fluororesin substrate, printed wiring board, biological information measuring device and artificial organ |
| US20150365738A1 (en) | 2014-01-09 | 2015-12-17 | Rick Purvis | Telemetry arrangements for implantable devices |
| WO2015109028A1 (en) | 2014-01-14 | 2015-07-23 | Kaiser Daniel Walter | Apparatus and methods for optimizing intra cardiac filling pressures, heart rate, and cardiac output |
| US9707402B2 (en) | 2014-02-14 | 2017-07-18 | Boston Scientific Neuromodulation Corporation | Plug-in accessory for configuring a mobile device into an external controller for an implantable medical device |
| WO2015130768A2 (en) | 2014-02-25 | 2015-09-03 | KUSHWAHA, Sudhir | Ventricular assist device and method |
| DE102014012850A1 (en) | 2014-09-03 | 2016-03-03 | Novapump Gmbh | catheter |
| DE102014003153B4 (en) | 2014-03-03 | 2015-10-08 | Novapump Gmbh | Catheter for directionally directing a fluid, in particular a body fluid |
| US11583670B2 (en) | 2014-03-03 | 2023-02-21 | Novapump Gmbh | Catheter for the directional conveyance of a fluid, particularly a body fluid |
| US9616159B2 (en) | 2014-03-05 | 2017-04-11 | Medtronic Vascular Galway | Modular implantable ventricular assist device |
| CN103845766B (en) | 2014-03-07 | 2016-06-22 | 上海市杨浦区市东医院 | Untouchable electromagnetic coupled cylinder type liquid pumping system |
| GB2527075A (en) | 2014-03-17 | 2015-12-16 | Daassist As | Percutaneous system, devices and methods |
| JP6301696B2 (en) | 2014-03-25 | 2018-03-28 | テルモ株式会社 | Flow sensor, extracorporeal circulation apparatus provided with flow sensor, and control method thereof |
| CN103861162B (en) | 2014-03-28 | 2016-02-24 | 北京工业大学 | A kind of artificial heart pump case of small axial dimension formula |
| DE102015004177A1 (en) | 2014-04-02 | 2015-10-08 | Em-Tec Gmbh | Implantable sensor technology for integration in cardiac assist systems, heart assist systems and methods for controlling and controlling a sensor system |
| CN103877630B (en) | 2014-04-15 | 2016-02-24 | 长治市久安人工心脏科技开发有限公司 | Axial magnetic unload-type axial-flow pump heart-assist device |
| WO2015160943A1 (en) | 2014-04-15 | 2015-10-22 | Thoratec Corporation | Sensors for catheter pumps |
| CN106456853B (en) | 2014-04-15 | 2019-04-23 | Tc1有限责任公司 | Method and system for controlling a blood pump |
| EP3479854A1 (en) | 2014-04-15 | 2019-05-08 | Tc1 Llc | Catheter pump with access ports |
| US10583232B2 (en) | 2014-04-15 | 2020-03-10 | Tc1 Llc | Catheter pump with off-set motor position |
| CN203842087U (en) | 2014-04-15 | 2014-09-24 | 长治市久安人工心脏科技开发有限公司 | Axial magnetic force uninstalling type axial flow pump heart auxiliary device |
| WO2015160990A1 (en) | 2014-04-15 | 2015-10-22 | Thoratec Corporation | Catheter pump introducer systems and methods |
| US9849224B2 (en) | 2014-04-15 | 2017-12-26 | Tc1 Llc | Ventricular assist devices |
| CN106464029B (en) | 2014-04-15 | 2020-08-04 | 哈特威尔公司 | Improvements in Transcutaneous Energy Delivery Systems |
| WO2015160993A1 (en) | 2014-04-15 | 2015-10-22 | Thoratec Corporation | Methods and systems for providing battery feedback to patient |
| US10363349B2 (en) | 2014-04-15 | 2019-07-30 | Tc1 Llp | Heart pump providing adjustable outflow |
| US10293090B2 (en) | 2014-04-25 | 2019-05-21 | Yale University | Percutaneous device and method for promoting movement of a bodily fluid |
| US20170343043A1 (en) | 2014-05-12 | 2017-11-30 | Raymond James Walsh | Radial-loading Magnetic Reluctance Device |
| WO2015175711A1 (en) | 2014-05-13 | 2015-11-19 | Abiomed, Inc. | Blood pump housing component |
| ES2912878T3 (en) | 2014-05-13 | 2022-05-30 | Abiomed Inc | cannula assembly |
| AT515555B1 (en) | 2014-05-15 | 2015-10-15 | Univ Wien Tech | magnetic coupling |
| EP3744362B1 (en) | 2014-05-19 | 2023-11-15 | Magenta Medical Ltd. | Blood pump |
| WO2015179351A2 (en) | 2014-05-20 | 2015-11-26 | Circulite, Inc. | Heart assist systems and methods |
| EP3148604B1 (en) | 2014-05-29 | 2020-09-30 | St Vincent's Hospital Sydney Limited | Ventricular assist device method and apparatus |
| DE102014210299A1 (en) | 2014-05-30 | 2015-12-03 | Mahle International Gmbh | magnetic coupling |
| CN103977464B (en) | 2014-06-06 | 2016-08-17 | 清华大学 | A kind of implantable micro-axial blood pump of exit gradual change flow region |
| GB2527059A (en) | 2014-06-10 | 2015-12-16 | Calon Cardio Technology Ltd | Cardiac pump |
| DE102014211216A1 (en) | 2014-06-12 | 2015-12-17 | Universität Duisburg-Essen | Pump for implantation in a vessel |
| DE102014108530A1 (en) | 2014-06-17 | 2015-12-17 | B. Braun Avitum Ag | Method for sterilizing a hollow fiber filter module, hollow fiber filter module with closure and oxygen absorbing closure |
| US20190167878A1 (en) | 2014-06-17 | 2019-06-06 | Stanton J. Rowe | Catheter-based pump for improving organ function |
| WO2015195916A1 (en) | 2014-06-18 | 2015-12-23 | Eartware, Inc. | Methods and devices for identifying suction events |
| US9308305B2 (en) | 2014-06-18 | 2016-04-12 | Ch Biomedical (Usa) Inc. | Implantable blood pump with integrated controller |
| CN203971004U (en) | 2014-06-20 | 2014-12-03 | 冯森铭 | The axial flow blood pump that a kind of close structure and gap are little |
| EP2960515B1 (en) | 2014-06-24 | 2018-10-31 | Grundfos Holding A/S | Magnetic coupling |
| DE102014212323A1 (en) | 2014-06-26 | 2015-12-31 | Cortronik GmbH | An ultrasound apparatus and method for inspecting a viewed substrate |
| US20160183808A1 (en) | 2014-06-26 | 2016-06-30 | Cardiovascular Systems, Inc. | Methods, devices and systems for sensing, measuring and/or characterizing vessel and/or lesion compliance and/or elastance changes during vascular procedures |
| EP2962710A1 (en) | 2014-07-03 | 2016-01-06 | Berlin Heart GmbH | Method and heart support system for determining an outlet pressure |
| EP3650076A1 (en) | 2014-07-04 | 2020-05-13 | Abiomed Europe GmbH | Sheath for sealed access to a vessel |
| ES2774936T3 (en) | 2014-07-04 | 2020-07-23 | Abiomed Europe Gmbh | Sheath for watertight access to a glass |
| US9345824B2 (en) | 2014-07-07 | 2016-05-24 | Assistocor Gmbh & Co Kg | Ventricular assist device |
| DE102014213233A1 (en) | 2014-07-08 | 2016-01-14 | Continental Automotive Gmbh | Device for determining a speed of sound of a sound signal in a fluid |
| WO2016004466A1 (en) | 2014-07-10 | 2016-01-14 | Thorvascular Pty Ltd | Low cost ventricular device and system thereof |
| WO2016014704A1 (en) | 2014-07-22 | 2016-01-28 | Heartware, Inc. | Cardiac support system and methods |
| DE102015112098A1 (en) | 2014-07-25 | 2016-01-28 | Minnetronix, Inc. | Coil parameters and control |
| AU2014402333A1 (en) | 2014-08-01 | 2017-02-16 | Vadovations, Inc. | Coring dilator for defining an aperture in a tissue wall |
| US10029040B2 (en) | 2014-08-08 | 2018-07-24 | Heartware, Inc. | Implantable pump with tapered diffuser region |
| WO2016028644A1 (en) | 2014-08-18 | 2016-02-25 | Thoratec Corporation | Guide features for percutaneous catheter pump |
| EP3182930B1 (en) | 2014-08-18 | 2020-09-23 | St. Jude Medical, Cardiology Division, Inc. | Sensors for prosthetic heart devices |
| CN104225696B (en) | 2014-09-04 | 2017-06-27 | 江苏大学 | A foldable minimally invasive implanted intraventricular axial blood pump |
| CN104162192B (en) | 2014-09-05 | 2016-09-28 | 长治市久安人工心脏科技开发有限公司 | A kind of liquid magnetic suspension shaft streaming blood pump |
| CN104208763B (en) | 2014-09-15 | 2016-09-14 | 长治市久安人工心脏科技开发有限公司 | A kind of magnetic suspension shaft streaming blood pump |
| CN204219479U (en) | 2014-09-26 | 2015-03-25 | 长治市久安人工心脏科技开发有限公司 | A kind of magnetic liquid suspension formula axial-flow pump heart-assist device |
| CN104208764B (en) | 2014-09-26 | 2016-08-17 | 长治市久安人工心脏科技开发有限公司 | A kind of magnetic liquid suspension formula axial-flow pump heart-assist device |
| CN107223062B (en) | 2014-10-01 | 2019-12-17 | 心脏器械股份有限公司 | Has an updated backup controller system |
| CN204106671U (en) | 2014-10-13 | 2015-01-21 | 长治市久安人工心脏科技开发有限公司 | A kind of miniature apex of the heart axial blood pump |
| CN104274873A (en) | 2014-10-13 | 2015-01-14 | 长治市久安人工心脏科技开发有限公司 | Miniature apex cordis axial-flow blood pump and implanting method thereof |
| EP3212097B1 (en) | 2014-10-30 | 2018-07-11 | Peter Osypka Stiftung | Transmyocardial insertion unit |
| US9623162B2 (en) | 2014-11-05 | 2017-04-18 | Reliantheart Inc. | Implantable blood pump |
| SG11201703943VA (en) | 2014-11-19 | 2017-06-29 | Advanced Cardiac Therapeutics Inc | Ablation devices, systems and methods of using a high-resolution electrode assembly |
| US20160144166A1 (en) | 2014-11-25 | 2016-05-26 | Medtronic Bakken Research Center B.V. | Medical lead with thin film |
| WO2016086137A1 (en) | 2014-11-26 | 2016-06-02 | Thoratec Corporation | Pump and method for mixed flow blood pumping |
| DE102014224151A1 (en) | 2014-11-26 | 2016-06-02 | Mahle International Gmbh | Device for non-contact transmission of rotational movements |
| WO2016092913A1 (en) | 2014-12-12 | 2016-06-16 | テルモ株式会社 | Extracorporeal circulation device |
| US20170274128A1 (en) | 2014-12-16 | 2017-09-28 | Corrado TAMBURINO | Pumping systems, endoluminal devices and systems for creating two-way blood flow |
| US9717832B2 (en) | 2015-01-06 | 2017-08-01 | HeartWave, Inc. | Axial flow rotor with downstream bearing wash flow |
| WO2016118781A2 (en) | 2015-01-22 | 2016-07-28 | Thoratec Corporation | Motor assembly with heat exchanger for catheter pump |
| US9675738B2 (en) | 2015-01-22 | 2017-06-13 | Tc1 Llc | Attachment mechanisms for motor of catheter pump |
| EP3247420B1 (en) | 2015-01-22 | 2019-10-02 | Tc1 Llc | Reduced rotational mass motor assembly for catheter pump |
| US10184564B2 (en) | 2015-02-02 | 2019-01-22 | Bal Seal Engineering, Inc. | Seal assemblies and related methods |
| CA2975804C (en) | 2015-02-09 | 2023-07-11 | Coraflo Ltd. | A flow and delivery apparatus |
| WO2016130846A1 (en) | 2015-02-11 | 2016-08-18 | Thoratec Corporation | Heart beat identification and pump speed synchronization |
| US10371152B2 (en) | 2015-02-12 | 2019-08-06 | Tc1 Llc | Alternating pump gaps |
| US10245362B2 (en) | 2015-02-24 | 2019-04-02 | Heartware, Inc. | Blood pump for treatment of bradycardia |
| US9919085B2 (en) | 2015-03-03 | 2018-03-20 | Drexel University | Dual-pump continuous-flow total artificial heart |
| EP3069741A1 (en) | 2015-03-17 | 2016-09-21 | Berlin Heart GmbH | Heart pump device and method of operating the same |
| DK3821938T3 (en) | 2015-03-18 | 2024-08-19 | Abiomed Europe Gmbh | BLOOD PUMP |
| DK3069740T3 (en) | 2015-03-18 | 2021-01-25 | Abiomed Europe Gmbh | BLOOD PUMP |
| ES2964493T3 (en) | 2015-03-18 | 2024-04-08 | Abiomed Europe Gmbh | blood pump |
| US9726195B2 (en) | 2015-03-25 | 2017-08-08 | Renzo Cecere | Axial flow blood pump |
| CN104707194B (en) | 2015-03-30 | 2017-11-17 | 武汉理工大学 | A kind of implantable axial flow type blood pump supported based on blood flow dynamic pressure and Pivot |
| US9907890B2 (en) | 2015-04-16 | 2018-03-06 | Tc1 Llc | Catheter pump with positioning brace |
| CN104888293B (en) | 2015-04-28 | 2017-03-22 | 武汉理工大学 | Implantable axial-flow type blood pump temperature detection system and method based on fiber bragg gratings |
| EP3088016A1 (en) | 2015-04-29 | 2016-11-02 | Berlin Heart GmbH | Pump and method for operating a pump for liquids |
| CN107548309B (en) | 2015-04-30 | 2024-06-11 | Ecp发展有限责任公司 | Rotor for fluid pump and manufacturing method and mold thereof |
| EP4427791A3 (en) | 2015-05-11 | 2025-01-08 | White Swell Medical Ltd | Systems for reducing pressure at an outflow of a duct |
| EP3294367A4 (en) | 2015-05-15 | 2019-01-16 | Tc1 Llc | BLOOD PUMP WITH IMPROVED AXIAL FLOW |
| WO2016185473A1 (en) | 2015-05-18 | 2016-11-24 | Magenta Medical Ltd. | Blood pump |
| EP3103391B1 (en) | 2015-05-21 | 2018-10-10 | BIOTRONIK SE & Co. KG | Implantable device with an oxygen sensor |
| DE202015009422U1 (en) | 2015-06-16 | 2017-07-12 | Berlin Heart Gmbh | Implantable heart pump |
| EP3106187A1 (en) | 2015-06-16 | 2016-12-21 | Berlin Heart GmbH | Implantable heart pump |
| EP3108909B1 (en) | 2015-06-23 | 2018-09-26 | Abiomed Europe GmbH | Blood pump |
| WO2017004175A1 (en) | 2015-06-29 | 2017-01-05 | Thoratec Corporation | Ventricular assist devices having a hollow rotor and methods of use |
| EP3115755B1 (en) | 2015-07-06 | 2022-02-16 | ABB Schweiz AG | System and method for measuring a speed of sound in a liquid or gaseous medium |
| CN106333707B (en) | 2015-07-09 | 2020-12-01 | 深圳迈瑞生物医疗电子股份有限公司 | Ultrasound Doppler spectrum correction method, device and ultrasound diagnosis system |
| WO2017015268A1 (en) | 2015-07-20 | 2017-01-26 | Thoratec Corporation | Flow estimation using hall-effect sensors |
| EP3120880A1 (en) | 2015-07-20 | 2017-01-25 | Berlin Heart GmbH | Implantable pump system and method for inserting a pump system at a location |
| US10722630B2 (en) | 2015-07-20 | 2020-07-28 | Tc1 Llc | Strain gauge for flow estimation |
| WO2017015476A1 (en) | 2015-07-21 | 2017-01-26 | Thoratec Corporation | Cantilevered rotor pump and methods for axial flow blood pumping |
| EP3329237A4 (en) | 2015-07-29 | 2019-04-10 | Hydro-Québec | STATICALLY BALANCED MECHANISM USING HALBACH CYLINDERS |
| ES3026736T3 (en) | 2015-08-04 | 2025-06-12 | Abiomed Europe Gmbh | Blood pump with self-flushing bearing |
| JP6572056B2 (en) | 2015-08-11 | 2019-09-04 | 株式会社イワキ | Perfusion pump |
| US10737008B2 (en) | 2015-08-17 | 2020-08-11 | Abiomed, Inc. | Dual lumen sheath for arterial access |
| EP3135325A1 (en) | 2015-08-24 | 2017-03-01 | Berlin Heart GmbH | Controlling device and method for a heart pump |
| EP3135326A1 (en) | 2015-08-24 | 2017-03-01 | Berlin Heart GmbH | Heart pump and method for operating a heart pump |
| FR3040304B1 (en) | 2015-08-25 | 2020-11-13 | Fineheart | BLOOD FLOW PUMP FOR VENTRICULAR ASSISTANCE |
| WO2017040817A1 (en) | 2015-09-04 | 2017-03-09 | Boston Scientific Scimed, Inc. | Pressure sensing guidewires |
| US9821146B2 (en) | 2015-09-22 | 2017-11-21 | Abiomed, Inc. | Guidewire for cannula placement |
| WO2017053988A1 (en) | 2015-09-25 | 2017-03-30 | Procyrion, Inc. | Non-occluding intravascular blood pump providing reduced hemolysis |
| US10206651B2 (en) | 2015-09-30 | 2019-02-19 | General Electric Company | Methods and systems for measuring cardiac output |
| EP3153190A1 (en) | 2015-10-09 | 2017-04-12 | ECP Entwicklungsgesellschaft mbH | Pump, in particular blood pump |
| EP3153191A1 (en) | 2015-10-09 | 2017-04-12 | ECP Entwicklungsgesellschaft mbH | Blood pump |
| US20180271445A1 (en) | 2015-10-14 | 2018-09-27 | St. Jude Medical, Cardiology Division, Inc. | Vascular sensor implantation devices and methods |
| US10709827B2 (en) | 2015-10-14 | 2020-07-14 | Technische Universität Wien | Membrane catheter |
| US10632240B2 (en) | 2015-10-23 | 2020-04-28 | Heartware, Inc. | Physiologically responsive blood pump for ischemia detection and treatment |
| EP3370797B1 (en) | 2015-11-02 | 2023-01-04 | Heartware, Inc. | Methods and systems for adverse event prediction using pump operating data |
| US10117983B2 (en) | 2015-11-16 | 2018-11-06 | Tc1 Llc | Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device |
| US10130743B2 (en) | 2015-11-17 | 2018-11-20 | Dale J. Yeatts | Wireless diagnostic system for indirect flow measurement in artificial heart pumps |
| WO2017087785A1 (en) | 2015-11-20 | 2017-05-26 | Tc1 Llc | Energy management of blood pump controllers |
| WO2017087380A1 (en) | 2015-11-20 | 2017-05-26 | Tc1 Llc | System architecture that allows patient replacement of vad controller/interface module without disconnection of old module |
| EP3377135B1 (en) | 2015-11-20 | 2020-05-06 | Tc1 Llc | Blood pump controllers having daisy-chained batteries |
| US11324442B1 (en) | 2015-11-25 | 2022-05-10 | Maquet Cardiovascular Llc | Broadband impedance spectroscopy and its use for tissue welding |
| EP3173107A1 (en) | 2015-11-25 | 2017-05-31 | Berlin Heart GmbH | Attachment device |
| CN205215814U (en) | 2015-11-26 | 2016-05-11 | 曾宪林 | Circulator is assisted to ventricle |
| GB2558436B (en) | 2015-12-04 | 2019-12-18 | Halliburton Energy Services Inc | A Method of Bootstrapping a Magnetic coupling for downhole applications |
| US10426879B2 (en) | 2015-12-14 | 2019-10-01 | Heartware, Inc. | Blood pump with restart lockout |
| EP3181163A1 (en) | 2015-12-14 | 2017-06-21 | Berlin Heart GmbH | Blood pump used for cardiac support and method of operating the same |
| CN108541223A (en) | 2015-12-21 | 2018-09-14 | 心脏器械股份有限公司 | Axial-flow type with outlet volute can plant Mechanical circulatory support equipment |
| US10413647B2 (en) | 2015-12-21 | 2019-09-17 | Heartware, Inc. | Implantable mechanical circulatory support devices |
| CN105498002B (en) | 2015-12-23 | 2018-06-15 | 丰凯医疗器械(上海)有限公司 | Pump blood impeller |
| CN106902404B (en) | 2015-12-23 | 2019-08-02 | 丰凯医疗器械(上海)有限公司 | Percutaneous auxiliary blood pumping device |
| GB2545750A (en) | 2015-12-25 | 2017-06-28 | Cambridge Reactor Design Ltd | An implantable blood pump |
| CN108697351A (en) | 2015-12-28 | 2018-10-23 | 波士顿科学国际有限公司 | Medical treatment device with anticoagulant coatings |
| US10732583B2 (en) | 2015-12-28 | 2020-08-04 | HeartWave, Inc. | Pump motor control with adaptive startup |
| WO2017117215A1 (en) | 2015-12-28 | 2017-07-06 | Heartware, Inc. | Vad controller tester |
| CN108430560B (en) | 2016-01-15 | 2021-05-07 | 泰尔茂株式会社 | How to use percutaneous catheter and percutaneous catheter |
| AU2017212812B2 (en) | 2016-01-29 | 2021-10-07 | Abiomed, Inc. | Thermoform cannula with variable cannula body stiffness |
| CN107019824A (en) | 2016-01-29 | 2017-08-08 | 林春妮 | One kind prevention conduit thrombus circulating pump |
| EP3202433A1 (en) | 2016-02-04 | 2017-08-09 | Berlin Heart GmbH | Outlet graft and system comprising a blood pump and an outlet graft |
| CN108601873A (en) | 2016-02-05 | 2018-09-28 | 柏林心脏有限公司 | With the supported blood pump of passive magnetic means |
| US9883836B2 (en) | 2016-02-08 | 2018-02-06 | International Business Machines Corporation | Embedded device for flow monitoring |
| US9623163B1 (en) | 2016-02-11 | 2017-04-18 | Michael Fischi | Left ventricle heart-assist device |
| EP3205359B1 (en) | 2016-02-11 | 2018-08-29 | Abiomed Europe GmbH | Blood pump system |
| EP3205360B1 (en) | 2016-02-11 | 2018-08-29 | Abiomed Europe GmbH | Blood pump |
| EP3419688A4 (en) | 2016-02-24 | 2019-08-14 | Oscar H. Frazier | Intraatrial ventricular assist device |
| JP6757400B2 (en) | 2016-03-08 | 2020-09-16 | テルモ株式会社 | Component measuring device, component measuring method and component measuring program |
| JP2019080594A (en) | 2016-03-18 | 2019-05-30 | テルモ株式会社 | Catheter pump and treatment method |
| EP3222301B1 (en) | 2016-03-23 | 2018-05-09 | Abiomed Europe GmbH | Blood pump |
| EP3222302B1 (en) | 2016-03-23 | 2018-05-16 | Abiomed Europe GmbH | Blood pump with filter |
| JP2017176719A (en) | 2016-03-31 | 2017-10-05 | 日本ゼオン株式会社 | catheter |
| EP3436104B1 (en) | 2016-03-31 | 2021-04-28 | Heartware, Inc. | Crenellated inflow cannula |
| EP3228336A1 (en) | 2016-04-08 | 2017-10-11 | Berlin Heart GmbH | Cannula assembly and blood pump system and their use |
| US10238782B2 (en) | 2016-04-11 | 2019-03-26 | Abiomed, Inc. | Magnetic fixation apparatus for percutaneous catheter |
| CA3021657A1 (en) | 2016-04-29 | 2017-11-02 | Flow Forward Medical, Inc. | Conduit tips and systems and methods for use |
| CN109414533B (en) | 2016-05-02 | 2021-07-06 | 韦德威申思有限公司 | heart assist device |
| CN206007680U (en) | 2016-05-16 | 2017-03-15 | 北京精密机电控制设备研究所 | A kind of Implanted ventricular assist device |
| US10722625B2 (en) | 2016-05-17 | 2020-07-28 | Abiomed, Inc. | Corkscrew shape for right-sided cardiac device |
| US20170340789A1 (en) | 2016-05-27 | 2017-11-30 | Yale University | Cavo-arterial pump |
| US11986602B2 (en) | 2016-05-31 | 2024-05-21 | Abiomed, Inc. | Catheter of a heart pump shaped for anatomic fit |
| US20190224394A1 (en) | 2016-06-01 | 2019-07-25 | Peter Ayre | Ventricle assist device |
| EP3463505B1 (en) | 2016-06-06 | 2021-09-01 | Abiomed, Inc. | Blood pump assembly having a sensor and a sensor shield |
| EP3263148B1 (en) | 2016-06-29 | 2019-05-08 | Berlin Heart GmbH | Method for determining the operating parameters of a blood pump |
| EP3266475A1 (en) | 2016-07-07 | 2018-01-10 | Berlin Heart GmbH | Blood pump used for cardiac support |
| CN109475671B (en) | 2016-07-19 | 2021-08-03 | 心脏器械股份有限公司 | Ventricular assist device and its integrated sensor |
| EP3804804A1 (en) | 2016-07-21 | 2021-04-14 | Tc1 Llc | Fluid seals for catheter pump motor assembly |
| US10857273B2 (en) | 2016-07-21 | 2020-12-08 | Tc1 Llc | Rotary seal for cantilevered rotor pump and methods for axial flow blood pumping |
| EP3808402A1 (en) | 2016-07-21 | 2021-04-21 | Tc1 Llc | Gas-filled chamber for catheter pump motor assembly |
| CN109562212B (en) | 2016-08-01 | 2021-06-08 | 心脏器械股份有限公司 | VAD with aortic valve opening detection |
| CN113499538B (en) | 2016-08-01 | 2024-07-05 | 心脏器械股份有限公司 | Heart rate determination based on VAD current waveforms |
| WO2018031741A1 (en) | 2016-08-12 | 2018-02-15 | Tc1 Llc | Devices and methods for monitoring bearing and seal performance |
| CN106310410B (en) | 2016-08-12 | 2018-07-17 | 常俊 | A kind of adaptive artificial heart of pulsation |
| US10894116B2 (en) | 2016-08-22 | 2021-01-19 | Tc1 Llc | Heart pump cuff |
| EP3287154B1 (en) | 2016-08-23 | 2019-10-09 | Abiomed Europe GmbH | Ventricular assist device |
| WO2018039479A1 (en) | 2016-08-26 | 2018-03-01 | Tc1 Llc | Prosthetic rib with integrated percutaneous connector for ventricular assist devices |
| JP7108603B2 (en) | 2016-09-01 | 2022-07-28 | アビオメド インコーポレイテッド | Anti-sucking blood pump inlet |
| EP3290066B1 (en) | 2016-09-01 | 2019-10-23 | Abiomed Europe GmbH | Blood pump with flow cannula |
| WO2018048800A1 (en) | 2016-09-06 | 2018-03-15 | Heartware, Inc. | Integrated sensors for intraventricular vad |
| EP3511033A4 (en) | 2016-09-08 | 2020-04-22 | Kabushiki Kaisya Advance | INFORMATION MANAGEMENT SYSTEM CONCERNING DIFFERENCES BETWEEN INDIVIDUALS IN DIALYSIS TREATMENT |
| DK3515523T3 (en) | 2016-09-19 | 2021-05-17 | Abiomed Inc | CARDIOVASCULAR AID SYSTEM THAT QUANTIFIES HEART FUNCTION AND PROMOTES HEART RESTORATION |
| CN110267692B (en) | 2016-09-19 | 2022-11-01 | 伊娃哈特股份有限公司 | Heart cannula |
| RO131676B1 (en) | 2016-09-29 | 2021-06-30 | Grigore Tinică | Blood circulation assist device |
| EP3520705B1 (en) | 2016-09-29 | 2024-11-06 | Terumo Kabushiki Kaisha | Control device and program |
| JP7349357B2 (en) | 2016-10-05 | 2023-09-22 | オーバスネイチ・メディカル・プライベート・リミテッド | modular vascular catheter |
| US10537672B2 (en) | 2016-10-07 | 2020-01-21 | Nuheart As | Transcatheter device and system for the delivery of intracorporeal devices |
| CN206443963U (en) | 2016-10-09 | 2017-08-29 | 丰凯医疗器械(上海)有限公司 | Flexible transmission system, percutaneous auxiliary blood pumping device and Intravascular Thrombus suction system |
| CN106512117B (en) | 2016-10-09 | 2023-08-04 | 丰凯利医疗器械(上海)有限公司 | Flexible transmission system, percutaneous auxiliary blood pumping device and intravascular thrombus aspiration system |
| CN106421947B (en) | 2016-10-13 | 2018-10-09 | 苏州大学 | A kind of intra-ventricle pulsatory blood pump |
| DK3311859T3 (en) | 2016-10-19 | 2020-02-03 | Abiomed Europe Gmbh | VENTRICULAR ASSISTANCE MANAGEMENT |
| WO2018075733A1 (en) | 2016-10-20 | 2018-04-26 | Heartware, Inc. | Inflow cannula |
| WO2018081040A1 (en) | 2016-10-24 | 2018-05-03 | Heartware, Inc. | Blood pump with in-situ attaching motor stators |
| CN115040776A (en) | 2016-10-25 | 2022-09-13 | 马真塔医药有限公司 | Ventricular assist device |
| EP3319098A1 (en) | 2016-11-02 | 2018-05-09 | Abiomed Europe GmbH | Intravascular blood pump comprising corrosion resistant permanent magnet |
| RU2637605C1 (en) | 2016-11-09 | 2017-12-05 | Алексей Васильевич Коротеев | Microaxial pump for circulation maintenance (versions) |
| DE102016013334B3 (en) | 2016-11-10 | 2018-04-05 | Fresenius Medical Care Deutschland Gmbh | Medical device with a connection piece for establishing a fluid connection between fluid-carrying lines |
| EP3858421A1 (en) | 2016-11-14 | 2021-08-04 | Tc1 Llc | Sheath assembly for catheter pump |
| US10179197B2 (en) | 2016-11-21 | 2019-01-15 | Cardiobridge Gmbh | Catheter pump with a pump head for insertion into the aorta |
| US11033727B2 (en) | 2016-11-23 | 2021-06-15 | Magenta Medical Ltd. | Blood pumps |
| US9839734B1 (en) | 2016-12-02 | 2017-12-12 | Berlin Heart Gmbh | Aortic pump devices and methods |
| EP3335741A1 (en) | 2016-12-14 | 2018-06-20 | Berlin Heart GmbH | Control apparatus for an implantable heart pump with two implantable controllers and with an implantable switch connected to these |
| CN212662465U (en) | 2016-12-19 | 2021-03-09 | 阿比奥梅德公司 | Cardiac pump with passive purification system |
| JP6309606B1 (en) | 2016-12-21 | 2018-04-11 | 三井電気精機株式会社 | Centrifuge system |
| JP7150616B2 (en) | 2017-01-18 | 2022-10-11 | テルモ株式会社 | pump |
| WO2018135477A1 (en) | 2017-01-18 | 2018-07-26 | テルモ株式会社 | Blood pump |
| WO2018139508A1 (en) | 2017-01-27 | 2018-08-02 | テルモ株式会社 | Impeller and blood pump |
| DK3357523T3 (en) | 2017-02-07 | 2021-03-22 | Abiomed Europe Gmbh | BLOOD PUMPS |
| DE102017102823A1 (en) | 2017-02-13 | 2018-08-16 | Cardiobridge Gmbh | Catheter pump with a pump head for insertion into the arterial vasculature |
| DE102017102828A1 (en) | 2017-02-13 | 2018-08-16 | Cardiobridge Gmbh | Catheter pump with a pump head for insertion into the arterial vasculature |
| DE102017102824A1 (en) | 2017-02-13 | 2018-08-16 | Cardiobridge Gmbh | Catheter pump with drive unit and catheter |
| DE102017102825A1 (en) | 2017-02-13 | 2018-08-16 | Cardiobridge Gmbh | Catheter pump with drive unit and catheter |
| EP4252824A3 (en) | 2017-03-02 | 2023-11-08 | White Swell Medical Ltd | Systems and methods for reducing pressure at outflow of a duct |
| US10478542B2 (en) | 2017-03-20 | 2019-11-19 | Abiomed, Inc. | Cannula having nitinol reinforced inflow region |
| KR102665182B1 (en) | 2017-03-21 | 2024-05-17 | 아비오메드, 인크. | System and method for determining native cardiac output while continuing support to the heart with a catheter-mounted intracardiac blood pump having an imbedded thermistor |
| EP4424357A1 (en) | 2017-03-29 | 2024-09-04 | Tc1 Llc | Pressure sensing ventricular assist devices |
| EP3928830B1 (en) | 2017-03-29 | 2024-07-10 | Tc1 Llc | Adjusting pump protocol based on irregular heart rhythm |
| WO2018183567A1 (en) | 2017-03-29 | 2018-10-04 | Tc1 Llc | Communication methods and architecture for heart treatment systems |
| DE202017001760U1 (en) | 2017-03-29 | 2017-05-31 | Anas Aboud | Defibrillator - heart pump |
| AU2018242620B2 (en) | 2017-03-31 | 2023-11-16 | CorWave SA | Implantable pump system having a rectangular membrane |
| IL318031A (en) | 2017-04-07 | 2025-02-01 | Ecp Entw Mbh | External drive unit for an implantable heart assist pump |
| US10926013B2 (en) | 2017-04-07 | 2021-02-23 | Ecp Entwicklungsgesellschaft Mbh | Methods and systems for an external drive unit for an implantable heart assist pump |
| CN110769744B (en) | 2017-04-18 | 2024-02-13 | 波士顿科学医学有限公司 | Annotated histograms for electrophysiology signals |
| EP3615103B1 (en) | 2017-04-25 | 2021-03-24 | Heartware, Inc. | Anti-thrombus surface potential ceramic element |
| US10404093B2 (en) | 2017-04-26 | 2019-09-03 | Biosense Webster (Israel) Ltd. | Using location transmission signals for charging a wireless medical tool of an electromagnetic navigation system |
| US10537670B2 (en) | 2017-04-28 | 2020-01-21 | Nuheart As | Ventricular assist device and method |
| WO2018197306A1 (en) | 2017-04-28 | 2018-11-01 | Nuheart As | Ventricular assist device and method |
| EP3398626B1 (en) | 2017-05-04 | 2021-02-24 | Abiomed Europe GmbH | Intravascular blood pump with balloon |
| EP3398624A1 (en) | 2017-05-04 | 2018-11-07 | Abiomed Europe GmbH | Blood pump with reinforced catheter |
| EP3398625A1 (en) | 2017-05-04 | 2018-11-07 | Abiomed Europe GmbH | Blood pump with reinforced catheter |
| EP3621669B1 (en) | 2017-05-11 | 2023-11-01 | Tc1 Llc | Thermal interconnect for implantable blood pump |
| US20180326132A1 (en) | 2017-05-12 | 2018-11-15 | Edwards Lifesciences Corporation | Pump for treating congestive heart failure |
| WO2018213089A1 (en) | 2017-05-16 | 2018-11-22 | Heartware, Inc. | Intra ventricular ambulatory implantable pv loop system |
| WO2018213666A1 (en) | 2017-05-19 | 2018-11-22 | Heartware, Inc. | Center rod magnet |
| US11944495B2 (en) | 2017-05-31 | 2024-04-02 | Foundry Innovation & Research 1, Ltd. | Implantable ultrasonic vascular sensor |
| CN110944689B (en) | 2017-06-07 | 2022-12-09 | 施菲姆德控股有限责任公司 | Intravascular fluid movement devices, systems, and methods of use |
| CN115814262B (en) | 2017-06-09 | 2025-09-16 | 阿比奥梅德公司 | Determination of cardiac parameters for regulating blood pump support |
| US10959627B2 (en) | 2017-06-20 | 2021-03-30 | Boston Scientific Scimed, Inc. | Devices and methods for determining blood flow around a body lumen |
| EP3437668A1 (en) | 2017-06-21 | 2019-02-06 | Abiomed Europe GmbH | Cannula for intravascular blood pump |
| US11217344B2 (en) | 2017-06-23 | 2022-01-04 | Abiomed, Inc. | Systems and methods for capturing data from a medical device |
| JP7194128B2 (en) | 2017-06-29 | 2022-12-21 | イェンタイ クワンティシジョン ディアグノスティックス インク | Method and apparatus for absolute quantification of biomarkers for diagnosis of solid tumors |
| JP7208896B2 (en) | 2017-07-10 | 2023-01-19 | テルモ株式会社 | Pressure sensing device and extracorporeal circulation device |
| EP3651822B1 (en) | 2017-07-13 | 2022-03-30 | Heartware, Inc. | Hvad circadian tracker (phi+) |
| DE102017212193A1 (en) | 2017-07-17 | 2019-01-17 | Robert Bosch Gmbh | A rotor assembly for a cardiac assist system and method of manufacturing a rotor assembly for a cardiac assist system |
| CN107281567A (en) | 2017-07-27 | 2017-10-24 | 胡春雷 | Left ventricle auxiliary pump |
| EP3668558B1 (en) | 2017-08-14 | 2025-07-23 | Heartware, Inc. | Pump to motor connection system |
| US10780206B2 (en) | 2017-08-14 | 2020-09-22 | Heartware, Inc. | Pump to motor connection system |
| CN115998976A (en) | 2017-08-15 | 2023-04-25 | 马里兰大学巴尔的摩 | Dual chamber gas exchanger and method for respiratory support |
| EP3443993A1 (en) | 2017-08-17 | 2019-02-20 | Berlin Heart GmbH | Pump with a rotor sensor for recording physiologic parameters, flow and motion parameters |
| EP3668561B1 (en) | 2017-08-18 | 2021-10-20 | HeartWare, Inc. | Therapeutic uv blood treatment in a blood pump |
| EP3668560B1 (en) | 2017-08-18 | 2024-01-10 | Heartware, Inc. | Thrombus detection and removal using a flexible electronic sensor and emitter |
| CN107632167B (en) | 2017-08-21 | 2019-12-06 | 天津大学 | Two-phase Flow Velocity Measurement Method Based on Ultrasonic Pulse Doppler and Electrical Multi-sensor |
| ES2896901T3 (en) | 2017-08-23 | 2022-02-28 | Ecp Entw Mbh | Drive shaft cover with a heat-conducting part |
| IL317710A (en) | 2017-09-14 | 2025-02-01 | Abiomed Inc | Integrated expandable access for medical device introducer |
| US11316679B2 (en) | 2017-09-19 | 2022-04-26 | Abiomed, Inc. | Systems and methods for time-based one-time password management for a medical device |
| EP3456367A1 (en) | 2017-09-19 | 2019-03-20 | Abiomed Europe GmbH | Blood pump |
| CN111386090B (en) | 2017-09-19 | 2022-05-17 | 波士顿科学国际有限公司 | Percutaneous repair of mitral valve prolapse |
| US10786612B2 (en) | 2017-09-26 | 2020-09-29 | Heartware, Inc. | Instrumented driveline using a flexible artificial skin sensory array |
| US11273300B2 (en) | 2017-10-04 | 2022-03-15 | Heartware, Inc. | Magnetically suspended blood driving piston circulatory assist device |
| WO2019074705A1 (en) | 2017-10-13 | 2019-04-18 | Heartware, Inc. | Dynamic hq for closed loop control |
| US11351355B2 (en) | 2017-10-19 | 2022-06-07 | Datascope Corporation | Devices for pumping blood, related systems, and related methods |
| EP3473279B1 (en) | 2017-10-20 | 2020-07-08 | PulseCath B.V. | Catheter pump system |
| JP2019080749A (en) | 2017-10-30 | 2019-05-30 | テルモ株式会社 | Treatment method |
| CN111295210B (en) | 2017-11-06 | 2022-12-20 | 心脏器械股份有限公司 | Ventricular assist device (VAD) with fluid access port in housing |
| EP3710076B1 (en) | 2017-11-13 | 2023-12-27 | Shifamed Holdings, LLC | Intravascular fluid movement devices, systems, and methods of use |
| EP3485926A1 (en) | 2017-11-16 | 2019-05-22 | Berlin Heart GmbH | Inlet cannula for a fluid pump |
| US20190167122A1 (en) | 2017-12-01 | 2019-06-06 | Cook Medical Technologies Llc | Sensor system for endovascular pulsation balloon |
| WO2019112825A1 (en) | 2017-12-05 | 2019-06-13 | Heartware, Inc. | Blood pump with impeller rinse operation |
| WO2019118522A1 (en) | 2017-12-12 | 2019-06-20 | Boston Scientific Scimed, Inc. | Rotational medical device |
| JP7013591B2 (en) | 2017-12-18 | 2022-01-31 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Closure device with expandable members |
| EP3727492B1 (en) | 2017-12-19 | 2025-01-29 | Boston Scientific Scimed, Inc. | Heart rate measurement using blood pump impeller location |
| ES2994022T3 (en) | 2017-12-21 | 2025-01-16 | Abiomed Inc | Systems and methods for predicting patient health status |
| US11191947B2 (en) | 2018-01-02 | 2021-12-07 | Tc1 Llc | Fluid treatment system for a driveline cable and methods of assembly and use |
| CA3088846A1 (en) | 2018-01-08 | 2019-07-11 | Vadovations, Inc. | Heart assist device |
| EP3508230A1 (en) | 2018-01-09 | 2019-07-10 | Abiomed Europe GmbH | Method and apparatus for calibration and use in estimating blood flow in an intravascular blood pump |
| CN115177858A (en) | 2018-01-10 | 2022-10-14 | 马真塔医药有限公司 | Ventricular assist device |
| JP7090165B2 (en) | 2018-01-10 | 2022-06-23 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Atherectomy system |
| KR102667251B1 (en) | 2018-01-10 | 2024-05-21 | 터프츠 메디컬 센터, 인크 | Left ventricular unloading system and method in the treatment of myocardial infarction |
| US10905808B2 (en) | 2018-01-10 | 2021-02-02 | Magenta Medical Ltd. | Drive cable for use with a blood pump |
| US10973967B2 (en) | 2018-01-10 | 2021-04-13 | Tc1 Llc | Bearingless implantable blood pump |
| DE102018201030B4 (en) | 2018-01-24 | 2025-10-16 | Kardion Gmbh | Magnetic dome element with magnetic bearing function |
| WO2019147444A1 (en) | 2018-01-26 | 2019-08-01 | Heartware, Inc. | Early warning of lvad thrombus formation |
| WO2019152363A1 (en) | 2018-01-31 | 2019-08-08 | Heartware, Inc. | Axial blood pump with impeller rinse operation |
| WO2019152875A1 (en) | 2018-02-01 | 2019-08-08 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
| US12144977B2 (en) | 2018-02-13 | 2024-11-19 | White Swell Medical Ltd | Intravascular catheters |
| EP4606416A3 (en) | 2018-02-15 | 2025-11-19 | Abiomed, Inc. | Expandable introducer sheath for medical device |
| US11540732B2 (en) | 2018-02-22 | 2023-01-03 | Welling Medical B.V. | Dual pressure sensor aortic-valve catheter |
| EP4070720B1 (en) | 2018-02-23 | 2023-11-08 | Boston Scientific Scimed, Inc. | Methods for assessing a vessel with sequential physiological measurements |
| EP3536955A1 (en) | 2018-03-08 | 2019-09-11 | Berlin Heart GmbH | Drive device for a membrane fluid pump and operation method |
| EP4420712A3 (en) | 2018-03-09 | 2024-11-13 | Boston Scientific Scimed Inc. | Magnetic coupler for hemostatic rotor sealing |
| EP3765110B1 (en) | 2018-03-13 | 2022-04-06 | Boston Scientific Scimed, Inc. | Circulatory assist device |
| US11517740B2 (en) | 2018-03-15 | 2022-12-06 | Tc1 Llc | Methods for controlling a left ventricular assist device |
| SG11202008640QA (en) | 2018-03-16 | 2020-10-29 | Abiomed Inc | Systems and methods for estimating a position of a heart pump |
| EP3768349A4 (en) | 2018-03-20 | 2021-12-29 | Second Heart Assist, Inc. | Circulatory assist pump |
| US10940251B2 (en) | 2018-03-20 | 2021-03-09 | Tc1 Llc | Mechanical gauge for estimating inductance changes in resonant power transfer systems with flexible coils for use with implanted medical devices |
| WO2019182691A1 (en) | 2018-03-21 | 2019-09-26 | Tc1 Llc | Improved driveline connectors and methods for use with heart pump controllers |
| US11389641B2 (en) | 2018-03-21 | 2022-07-19 | Tc1 Llc | Modular flying lead cable and methods for use with heart pump controllers |
| US11951297B2 (en) | 2018-03-23 | 2024-04-09 | Abiomed Europe Gmbh | Method of manufacturing a blood pump |
| WO2019183432A1 (en) | 2018-03-23 | 2019-09-26 | Boston Scientific Scimed, Inc. | Medical device with pressure sensor |
| EP3542836A1 (en) | 2018-03-23 | 2019-09-25 | Abiomed Europe GmbH | Intravascular blood pump with ceramic inner sleeve |
| ES2819923T3 (en) | 2018-03-23 | 2021-04-19 | Abiomed Europe Gmbh | Intravascular blood pump |
| EP3542835A1 (en) | 2018-03-23 | 2019-09-25 | Abiomed Europe GmbH | Method of manufacturing a blood pump |
| US10918773B2 (en) | 2018-03-26 | 2021-02-16 | Tci Llc | Collapsible and self-expanding cannula for a percutaneous heart pump and method of manufacturing |
| EP3766428B1 (en) | 2018-03-29 | 2023-11-08 | TERUMO Kabushiki Kaisha | Imaging device |
| CN112543656A (en) | 2018-04-04 | 2021-03-23 | 亚历山大·狄奥多西 | Removable mechanical circulation support device for short term use |
| EP4649991A2 (en) | 2018-04-06 | 2025-11-19 | Boston Scientific Scimed, Inc. | Multi-input speed response algorithm for a blood pump |
| EP3773245A4 (en) | 2018-04-06 | 2022-05-04 | Singru, Kanha Vijay | VENTRICULAR DECOMPRESSION AND ASSISTANCE DEVICE |
| CN111936090B (en) | 2018-04-09 | 2024-01-23 | 波士顿科学国际有限公司 | Support frame |
| JP7102544B2 (en) | 2018-04-18 | 2022-07-19 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Evaluation method of blood vessels by sequential physiological measurement |
| US11020582B2 (en) | 2018-04-20 | 2021-06-01 | Cardiovascular Systems, Inc. | Intravascular pump with expandable region |
| WO2019209697A1 (en) | 2018-04-24 | 2019-10-31 | Tc1 Llc | Percutaneous heart pump transitionable between separated and operational configurations |
| US11031729B2 (en) | 2018-04-30 | 2021-06-08 | Tc1 Llc | Blood pump connectors |
| DE102018206750A1 (en) | 2018-05-02 | 2019-11-07 | Kardion Gmbh | Device for inductive energy transfer into a human body and its use |
| US11298519B2 (en) | 2018-05-08 | 2022-04-12 | Abiomed, Inc. | Use of cardiac assist device to improve kidney function |
| EP3567619B1 (en) | 2018-05-08 | 2020-11-25 | Abiomed Europe GmbH | Corrosion-resistant permanent magnet and intravascular blood pump comprising the magnet |
| US11446481B2 (en) | 2018-05-10 | 2022-09-20 | Heartware, Inc. | Axial pump pressure algorithm with field oriented control |
| US11141580B2 (en) | 2018-05-15 | 2021-10-12 | Cardiovascular Systems, Inc. | Intravascular blood pump system with integrated conductor(s) in housing and methods thereof |
| US11167121B2 (en) | 2018-05-15 | 2021-11-09 | Cardiovascular Systems, Inc. | Intravascular pump with integrated isolated conductor(s) and methods thereof |
| DE102018207564A1 (en) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Magnetic coupling for contactless torque transmission along a rotation axis and method for producing a magnetic coupling |
| DE102018207622A1 (en) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Permanent magnetic radial rotary coupling and micropump with such a radial rotary coupling |
| DE102018207575A1 (en) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Magnetic face turning coupling for the transmission of torques |
| DE102018207594A1 (en) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Rotor, magnetic coupling device, electric motor for a cardiac assist system, pump unit for a cardiac assist system and method for manufacturing a rotor |
| DE102018207611A1 (en) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Rotor bearing system |
| DE102018207608A1 (en) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Permanent magnetic radial rotary coupling |
| DE102018207585A1 (en) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Magnetic coupling for contactless torque transmission and method for producing a magnetic coupling |
| DE102018207578A1 (en) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Method for producing a cylindrical permanent magnet and method for producing radial couplings |
| DE102018207624A1 (en) | 2018-05-16 | 2020-01-16 | Kardion Gmbh | Permanent magnetic radial rotary coupling, permanent magnet for a permanent magnetic radial rotary coupling, segment for a permanent magnet and pump with such a radial rotary coupling, such a permanent magnet and / or such a segment |
| DE102018207591A1 (en) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Mounting device and method for attaching at least one magnet segment to a cylinder body for a cardiac assist system |
| US11235139B2 (en) | 2018-05-17 | 2022-02-01 | Heartware, Inc. | Current-speed relationship for instantaneous suction detection algorithm in LVADS |
| EP3574932A1 (en) | 2018-05-28 | 2019-12-04 | Berlin Heart GmbH | Blood pump |
| DE102018208536A1 (en) | 2018-05-30 | 2019-12-05 | Kardion Gmbh | A lead apparatus for directing blood flow to a cardiac assist system, method of making a lead apparatus, and method of assembling a cardiac assist system |
| DE102018208538A1 (en) * | 2018-05-30 | 2019-12-05 | Kardion Gmbh | Intravascular blood pump and process for the production of electrical conductors |
| DE102018208540A1 (en) | 2018-05-30 | 2019-12-05 | Kardion Gmbh | A pump housing apparatus and method of manufacturing a pump housing apparatus and pump having a pump housing apparatus |
| DE102018208549A1 (en) | 2018-05-30 | 2019-12-05 | Kardion Gmbh | Electronic module for a cardiac assist system and method for manufacturing an electronic module for a cardiac assist system |
| DE102018208550A1 (en) | 2018-05-30 | 2019-12-05 | Kardion Gmbh | A lead device for directing blood flow to a cardiac assist system, cardiac assist system, and method of making a lead device |
| DE102018208539A1 (en) | 2018-05-30 | 2019-12-05 | Kardion Gmbh | A motor housing module for sealing an engine compartment of a motor of a cardiac assist system and cardiac assistance system and method for mounting a cardiac assist system |
| DE102018208541A1 (en) | 2018-05-30 | 2019-12-05 | Kardion Gmbh | Axial pump for a cardiac assist system and method of making an axial pump for a cardiac assist system |
| US11224736B2 (en) | 2018-05-31 | 2022-01-18 | Tc1 Llc | Blood pump controllers |
| US10668195B2 (en) | 2018-06-01 | 2020-06-02 | Fbr Medical, Inc. | Catheter pump with fixed-diameter impeller |
| DE102018208933A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | A method of determining a flow rate of fluid flowing through an implanted vascular support system |
| DE102018208911A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | A lead device for a cardiac assist system and method of manufacturing a lead device |
| DE102018208916A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | Sensor unit for an implantation system for medical support of a patient and method for producing a sensor unit |
| DE102018208899A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | A method for determining the speed of sound in a fluid in the region of an implanted vascular support system |
| DE102018208862A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | Implantable vascular support system |
| DE102018208931A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | Apparatus for determining cardiac output for a cardiac assist system, cardiac assistive system and method for determining cardiac output |
| DE102018208936A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | Determining device and method for determining a viscosity of a fluid |
| DE102018208913A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | A method of operating an implanted ventricular assist device |
| DE102018208879A1 (en) | 2018-06-06 | 2020-01-30 | Kardion Gmbh | Method for determining a total fluid volume flow in the area of an implanted, vascular support system |
| DE102018208945A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | An analysis device and method for analyzing a viscosity of a fluid |
| DE102018208927A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | An implantable device for determining a fluid volume flow through a blood vessel |
| DE102018208870A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | A method of determining a fluid volume flow through an implanted vascular support system |
| DE102018208892A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | A sensor head device for a minimally invasive cardiac assist system and method of manufacturing a sensor head device for a cardiac assist system |
| DE102018208929A1 (en) | 2018-06-06 | 2019-12-12 | Kardion Gmbh | A method of determining a flow rate of fluid flowing through an implanted vascular support system |
| WO2019239259A1 (en) | 2018-06-12 | 2019-12-19 | Venstramedical Pty Limited | Intracardiac percutaneous pump for circulatory support and related systems and methods |
| EP3806923A4 (en) | 2018-06-13 | 2022-04-20 | Yale University | INTRACARDIA DEVICE |
| SG11202012262XA (en) | 2018-06-19 | 2021-01-28 | Abiomed Inc | Systems and methods for determining cardiac performance |
| DE102018210058A1 (en) | 2018-06-21 | 2019-12-24 | Kardion Gmbh | Stator blade device for guiding the flow of a fluid flowing out of an outlet opening of a heart support system, heart support system with stator blade device, method for operating a stator blade device and manufacturing method |
| DE102018210076A1 (en) | 2018-06-21 | 2019-12-24 | Kardion Gmbh | Method and device for detecting a state of wear of a cardiac support system, method and device for operating a cardiac support system and cardiac support system |
| EP3810219B1 (en) | 2018-06-25 | 2024-09-11 | Ballout, Bashar | Percutaneous blood pump and introducer system |
| DE102018211297A1 (en) | 2018-07-09 | 2020-01-09 | Kardion Gmbh | Cardiac support system and method for monitoring the integrity of a support structure of a cardiac support system |
| DE102018211328A1 (en) | 2018-07-10 | 2020-01-16 | Kardion Gmbh | Impeller housing for an implantable vascular support system |
| DE102018211327A1 (en) | 2018-07-10 | 2020-01-16 | Kardion Gmbh | Impeller for an implantable vascular support system |
| US11241570B2 (en) | 2018-07-17 | 2022-02-08 | Tc1 Llc | Systems and methods for inertial sensing for VAD diagnostics and closed loop control |
| AU2019308272B9 (en) | 2018-07-19 | 2025-04-24 | Abiomed, Inc. | Systems and methods for reducing leaks from a catheter |
| DE102018212153A1 (en) | 2018-07-20 | 2020-01-23 | Kardion Gmbh | Inlet line for a pump unit of a cardiac support system, cardiac support system and method for producing an inlet line for a pump unit of a cardiac support system |
| USD929576S1 (en) | 2018-07-24 | 2021-08-31 | Evaheart, Inc. | Cannula |
| US11013904B2 (en) | 2018-07-30 | 2021-05-25 | Cardiovascular Systems, Inc. | Intravascular pump with proximal and distal pressure or flow sensors and distal sensor tracking |
| US10729833B2 (en) | 2018-07-30 | 2020-08-04 | Cardiovascular Systems, Inc. | Intravascular pump with expandable region at least partially collapsible into recesses defined between impeller blades |
| US11541224B2 (en) | 2018-07-30 | 2023-01-03 | Cardiovascular Systems, Inc. | Intravascular pump without inducer and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing |
| US11219753B2 (en) | 2018-07-30 | 2022-01-11 | Cardiovascular Systems, Inc. | Intravascular pump with expandable and collapsible inlet region and methods thereof |
| US11202900B2 (en) | 2018-07-31 | 2021-12-21 | Cardiovascular Systems, Inc. | Intravascular pump with controls and display screen on handle |
| WO2020028537A1 (en) | 2018-07-31 | 2020-02-06 | Shifamed Holdings, Llc | Intravascaular blood pumps and methods of use |
| DE102018213151A1 (en) | 2018-08-07 | 2020-02-13 | Kardion Gmbh | Implantable vascular support system |
| AU2019320533B2 (en) | 2018-08-07 | 2024-11-21 | Kardion Gmbh | Bearing device for a cardiac support system, and method for flushing an intermediate space in a bearing device for a cardiac support system |
| DE102018213350A1 (en) | 2018-08-08 | 2020-02-13 | Kardion Gmbh | Device and method for monitoring a patient's health |
| JP7516266B2 (en) | 2018-08-28 | 2024-07-16 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Axial flux motor for percutaneous circulatory assist devices |
| US11120908B2 (en) | 2018-09-20 | 2021-09-14 | Abiomed, Inc. | Data storage and retrieval system for non-contiguous medical device operational data |
| IL314934A (en) | 2018-09-21 | 2024-10-01 | Abiomed Inc | Using a fiber optic sensor as a diagnostic tool in catheter-based medical devices |
| CN113164271B (en) | 2018-09-24 | 2025-01-21 | 波士顿科学国际有限公司 | Repositionable and removable bracket |
| EP3856274B1 (en) | 2018-09-25 | 2024-04-17 | Tc1 Llc | Adaptive speed control algorithms and controllers for optimizing flow in ventricular assist devices |
| DE102018216305A1 (en) | 2018-09-25 | 2020-03-26 | Kardion Gmbh | Method for determining a flow rate of a fluid flowing through an implanted vascular support system |
| EP3856275B1 (en) | 2018-09-27 | 2023-01-18 | Heartware, Inc. | Map estimation on vad patients |
| DE102018216695A1 (en) | 2018-09-28 | 2020-04-02 | Kardion Gmbh | Encapsulated micropump |
| US12220570B2 (en) | 2018-10-05 | 2025-02-11 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use |
| DK3866876T3 (en) | 2018-10-18 | 2022-12-19 | Abiomed Inc | SYSTEMS TO MINIMIZE LEAKS DURING INSERTION OF PUMPS |
| CN112689716B (en) | 2018-10-18 | 2023-06-30 | 波士顿科学国际有限公司 | Blood pump shaft bearing |
| US11497906B2 (en) | 2018-10-19 | 2022-11-15 | Tc1 Llc | Implantable blood pump assembly including outflow graft fixation clip |
| DE102018218770A1 (en) | 2018-11-02 | 2020-05-07 | Kardion Gmbh | System and method for controlling a cardiac assist system |
| CN111166948A (en) | 2018-11-09 | 2020-05-19 | 上海微创医疗器械(集团)有限公司 | Percutaneous blood pump and basket thereof |
| CN111166949A (en) | 2018-11-13 | 2020-05-19 | 上海微创医疗器械(集团)有限公司 | Impeller, method for manufacturing impeller, and percutaneous blood pump |
| CN209790495U (en) | 2018-11-15 | 2019-12-17 | 安徽通灵仿生科技有限公司 | Pulsating catheter device for assisting left ventricle function |
| EP3656411A1 (en) | 2018-11-26 | 2020-05-27 | Berlin Heart GmbH | Blood pump for supporting a cardiac function and method for producing a pump housing of a blood pump |
| CN113226436B (en) | 2018-12-19 | 2024-12-31 | 波士顿科学国际有限公司 | Circulation support device |
| US12263292B2 (en) | 2018-12-19 | 2025-04-01 | Boston Scientific Scimed, Inc. | Dampening element for fluid management system |
| US11925570B2 (en) | 2018-12-19 | 2024-03-12 | Boston Scientific Scimed, Inc. | Stent including anti-migration capabilities |
| US11484698B2 (en) | 2019-07-09 | 2022-11-01 | Boston Scientific Scimed, Inc. | Circulatory support device |
| IL318620A (en) | 2018-12-21 | 2025-03-01 | Abiomed Inc | Using natural language processing to find side effects |
| EP3873554B1 (en) | 2018-12-21 | 2024-11-20 | Tc1 Llc | Implantable blood pump assembly including pressure sensor and methods of assembling same |
| JP7434337B2 (en) | 2019-01-16 | 2024-02-20 | アビオメド インコーポレイテッド | How to estimate left ventricular volume and cardiac output using machine learning models |
| US20210170081A1 (en) | 2019-01-21 | 2021-06-10 | William R. Kanz | Percutaneous Blood Pump Systems and Related Methods |
| EP3782666B1 (en) | 2019-01-24 | 2021-08-11 | Magenta Medical Ltd. | Manufacturing an impeller |
| CN118217518A (en) | 2019-01-28 | 2024-06-21 | 阿比奥梅德公司 | Internal balloon sheath |
| CN111561519B (en) | 2019-02-14 | 2021-06-25 | 苏州心擎医疗技术有限公司 | Rigidity gain mechanism for magnetic suspension bearing, magnetic suspension bearing and blood pump |
| EP3698820A1 (en) | 2019-02-22 | 2020-08-26 | ECP Entwicklungsgesellschaft mbH | Catheter device with a drive shaft cover |
| US11318295B2 (en) | 2019-02-28 | 2022-05-03 | Heartware, Inc. | HVAD rinse via a non-uniform thrust bearing gap |
| CA3131860A1 (en) | 2019-02-28 | 2020-09-03 | Tc1 Llc | Inflow cannula including expandable sleeve and methods of implanting same |
| US11590336B2 (en) | 2019-03-05 | 2023-02-28 | Tc1 Llc | Systems and methods for evaluating blood behavior when flowing through implantable medical devices |
| US11413445B2 (en) | 2019-03-12 | 2022-08-16 | Heartware, Inc. | Method of monitoring health conditions of a patient having an implantable blood pump |
| US12097016B2 (en) | 2019-03-14 | 2024-09-24 | Abiomed, Inc. | Blood flow rate measurement system |
| US11337724B2 (en) | 2019-03-15 | 2022-05-24 | Terumo Kabushiki Kaisha | Method and system for controlling rotational speed of an agitator or catheter |
| EP3711786A1 (en) | 2019-03-19 | 2020-09-23 | Abiomed Europe GmbH | Blood pump |
| EP3711785A1 (en) | 2019-03-19 | 2020-09-23 | Abiomed Europe GmbH | Blood pump |
| EP3711787A1 (en) | 2019-03-19 | 2020-09-23 | Abiomed Europe GmbH | Blood pump |
| EP3711784A1 (en) | 2019-03-19 | 2020-09-23 | Abiomed Europe GmbH | Blood pump |
| US10824898B2 (en) | 2019-03-21 | 2020-11-03 | Abiomed, Inc. | Intelligent image segmentation prior to optical character recognition (OCR) |
| EP4238606A3 (en) | 2019-03-26 | 2023-11-08 | Puzzle Medical Devices Inc. | Modular mammalian body implantable fluid flow influencing device |
| US12257021B2 (en) | 2019-03-26 | 2025-03-25 | Abiomed, Inc. | Dynamically adjustable frame rate from medical device controller |
| US20200312450A1 (en) | 2019-03-30 | 2020-10-01 | Abiomed, Inc. | Medical Device Location and Tracking System |
| JP2022530392A (en) | 2019-04-22 | 2022-06-29 | アビオメド インコーポレイテッド | Variable size rearrangement sheath |
| CN109939282A (en) | 2019-04-23 | 2019-06-28 | 四川大学 | A percutaneous left ventricular assisted circulatory system |
| CN210020563U (en) | 2019-04-23 | 2020-02-07 | 四川大学 | A percutaneous left ventricular assisted circulatory system |
| EP3962346A4 (en) | 2019-04-30 | 2023-04-19 | Gentuity LLC | IMAGING PROBE WITH FLUID PRESSURE ELEMENT |
| US11690606B2 (en) | 2019-05-01 | 2023-07-04 | Tc1 Llc | Introducer sheath assembly for catheter systems and methods of using same |
| CA3132063A1 (en) | 2019-05-17 | 2020-11-26 | Boston Scientific Scimed, Inc. | Medical imaging devices and systems |
| CN114040794B (en) | 2019-05-23 | 2025-01-24 | 马真塔医药有限公司 | Blood pump |
| CN117679626A (en) | 2019-05-29 | 2024-03-12 | 阿比奥梅德公司 | Coil winding pattern to improve motor efficiency |
| AU2020282983A1 (en) | 2019-05-31 | 2022-02-10 | Abiomed, Inc. | Intra-aortic pressure forecasting |
| EP3979940A1 (en) | 2019-06-07 | 2022-04-13 | Boston Scientific Scimed Inc. | Zero force catheter |
| WO2020251948A1 (en) | 2019-06-10 | 2020-12-17 | Boston Scientific Scimed, Inc. | Medical cleaning valve |
| EP3753594A1 (en) | 2019-06-18 | 2020-12-23 | Abiomed Europe GmbH | System and method for preparing a catheter before use |
| JP7352630B2 (en) | 2019-06-19 | 2023-09-28 | テルモ株式会社 | pump equipment |
| US12097315B2 (en) | 2019-06-26 | 2024-09-24 | Berlin Heart Gmbh | Cardiac drainage cannula and related methods and systems |
| EP3990047B1 (en) | 2019-06-28 | 2025-05-28 | Abiomed, Inc. | Intravascular blood pump having multilayer coreless coils |
| EP3989799A1 (en) | 2019-06-28 | 2022-05-04 | Abiomed, Inc. | Blood pump with capability of electrocardiogram (ekg) monitoring, defibrillation and pacing |
| US11527322B2 (en) | 2019-06-30 | 2022-12-13 | Abiomed, Inc. | Context-based user interface to medical database |
| US11654275B2 (en) | 2019-07-22 | 2023-05-23 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
| CN110665079B (en) | 2019-08-20 | 2022-03-15 | 安徽通灵仿生科技有限公司 | Left ventricle auxiliary device of percutaneous intervention |
| US11517737B2 (en) | 2019-08-21 | 2022-12-06 | Boston Scientific Scimed, Inc. | Circulatory support pump centering anchoring and centering device |
| US11666748B2 (en) | 2019-08-30 | 2023-06-06 | Boston Scientific Scimed, Inc. | Hybrid bearing seal for use in blood pump |
| US11583672B2 (en) | 2019-08-30 | 2023-02-21 | Boston Scientific Scimed, Inc. | Glass impeller for a blood pump |
| EP3785745A1 (en) | 2019-09-02 | 2021-03-03 | Abiomed Europe GmbH | Blood pump |
| WO2021046275A1 (en) | 2019-09-05 | 2021-03-11 | Boston Scientific Scimed Inc | Circulatory support device with integrated cannula |
| US11638813B2 (en) | 2019-09-24 | 2023-05-02 | Tc1 Llc | Implantable blood pump assembly including anti-rotation mechanism for outflow cannula and method of assembling same |
| WO2021062265A1 (en) | 2019-09-25 | 2021-04-01 | Shifamed Holdings, Llc | Intravascular blood pump systems and methods of use and control thereof |
| US11577067B2 (en) | 2019-10-03 | 2023-02-14 | Boston Scientific Scimed, Inc. | Reduced thrombosis blood pump |
| AU2020372991B2 (en) | 2019-10-31 | 2024-09-19 | Terumo Cardiovascular Systems Corporation | Heart-lung machine with augmented reality display |
| US11923078B2 (en) | 2019-11-01 | 2024-03-05 | Terumo Cardiovascular Systems Corporation | Semi-autonomous medical systems and methods |
| EP3822996A1 (en) | 2019-11-12 | 2021-05-19 | Abiomed Europe GmbH | Corrosion-resistant permanent magnet for an intravascular blood pump |
| US11707617B2 (en) | 2019-11-22 | 2023-07-25 | Heartware, Inc. | Method to extract and quantify the cardiac end diastolic point/mitral valve closing point from the HVAD estimated flow waveform |
| IL293625A (en) | 2019-12-03 | 2022-08-01 | Procyrion Inc | Blood pumps |
| WO2021119478A1 (en) | 2019-12-11 | 2021-06-17 | Shifamed Holdings, Llc | Descending aorta and vena cava blood pumps |
| WO2021119413A1 (en) | 2019-12-13 | 2021-06-17 | Procyrion, Inc. | Support structures for intravascular blood pumps |
| JP7686647B2 (en) | 2019-12-20 | 2025-06-02 | ティーシー1 エルエルシー | Systems and methods for personalized cardiovascular analysis - Patents.com |
| US11534596B2 (en) | 2020-01-09 | 2022-12-27 | Heartware, Inc. | Pulsatile blood pump via contraction with smart material |
| US11806518B2 (en) | 2020-01-10 | 2023-11-07 | Heartware, Inc. | Passive thrust bearing angle |
| WO2021150355A1 (en) | 2020-01-21 | 2021-07-29 | Boston Scientific Scimed Inc | Electromagnetically driven blood pump |
| US11832868B2 (en) | 2020-01-28 | 2023-12-05 | Boston Scientific Scimed, Inc. | Measuring the presence time of a catheter in a patient during a medical procedure |
| EP3858399A1 (en) | 2020-01-31 | 2021-08-04 | ECP Entwicklungsgesellschaft mbH | Intravascular blood pump |
| EP3858397A1 (en) | 2020-01-31 | 2021-08-04 | Abiomed Europe GmbH | Intravascular blood pump |
| DE102020102474A1 (en) | 2020-01-31 | 2021-08-05 | Kardion Gmbh | Pump for conveying a fluid and method for manufacturing a pump |
| US11648393B2 (en) | 2020-03-17 | 2023-05-16 | Heartware, Inc. | Implantable blood pump with thrombus diverter |
| EP3884968A1 (en) | 2020-03-27 | 2021-09-29 | Abiomed Europe GmbH | Blood pump |
| EP3884970A1 (en) | 2020-03-27 | 2021-09-29 | Abiomed Europe GmbH | Device and method for determination of a co2 partial pressure value on a blood side of an oxygenator |
| EP3884969A1 (en) | 2020-03-27 | 2021-09-29 | Abiomed Europe GmbH | Blood pump |
| WO2021207034A1 (en) | 2020-04-06 | 2021-10-14 | Boston Scientific Scimed, Inc. | Image processing systems and methods of using the same |
| WO2021205346A2 (en) | 2020-04-07 | 2021-10-14 | Magenta Medical Ltd | Ventricular assist device |
| WO2021217055A1 (en) | 2020-04-23 | 2021-10-28 | Shifamed Holdings, Llc | Intracardiac sensors with switchable configurations and associated systems and methods |
| US11694539B2 (en) | 2020-06-16 | 2023-07-04 | Heartware, Inc. | Notification system for low-level preventative LVAD alerts |
| WO2022056542A1 (en) | 2020-09-14 | 2022-03-17 | Kardion Gmbh | Cardiovascular support pump having an impeller with a variable flow area |
| TW202218705A (en) | 2020-09-22 | 2022-05-16 | 德商阿比奥梅德歐洲有限公司 | Blood pump |
| CN116419706A (en) | 2020-09-25 | 2023-07-11 | 波士顿科学国际有限公司 | medical imaging device |
| USD1017699S1 (en) | 2020-09-25 | 2024-03-12 | Boston Scientific Scimed, Inc. | Indicator sticker with combined inner and outer portions |
| CA3197467A1 (en) | 2020-09-30 | 2022-04-07 | Boston Scientific Neuromodulation Corporation | Adjustment of advertising interval in communications between an implantable medical device and an external device |
| US20230414920A1 (en) | 2020-10-02 | 2023-12-28 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use |
| KR20230082639A (en) | 2020-10-07 | 2023-06-08 | 아비오메드 유럽 게엠베하 | Patch electrode assemblies for conductivity and admittance measurements |
| WO2022076862A1 (en) | 2020-10-08 | 2022-04-14 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use |
| US20230390544A1 (en) | 2020-10-09 | 2023-12-07 | Shifamed Holdings, Llc | Intravascular blood pumps |
| US20220161021A1 (en) | 2020-11-20 | 2022-05-26 | Kardion Gmbh | Mechanical circulatory support system with insertion tool |
| US20230293878A1 (en) | 2020-11-20 | 2023-09-21 | Kardion Gmbh | Heart pump tips and delivery system couplings for mechanical circulatory support systems |
| AU2021381515A1 (en) | 2020-11-20 | 2023-07-06 | Kardion Gmbh | Purgeless mechanical circulatory support system with magnetic drive |
| JP2023550938A (en) | 2020-11-20 | 2023-12-06 | カルディオン ゲーエムベーハー | Mechanical circulatory support system with guidewire aid |
| AU2021390484B2 (en) | 2020-12-02 | 2024-12-12 | Boston Scientific Scimed, Inc. | Stent with improved deployment characteristics |
| EP4291286A4 (en) | 2021-02-10 | 2025-01-22 | Shifamed Holdings, LLC | CATHETER BLOOD PUMPS WITH FOLDABLE PUMP HOUSING AND SENSOR SYSTEM |
| US11980385B2 (en) | 2021-02-11 | 2024-05-14 | Cardiovascular Systems, Inc. | Drive shaft design, conditioning and stabilization methods for rotational medical devices |
| EP4556053A3 (en) | 2021-03-09 | 2025-08-27 | Magenta Medical Ltd. | Ventricular assist device |
| EP4320353A4 (en) | 2021-04-08 | 2025-03-05 | Abiomed, Inc. | INTRAVASCULAR CIRCULATORY ASSISTANCE PUMP ROTOR |
| WO2023278570A1 (en) | 2021-07-01 | 2023-01-05 | Abiomed, Inc. | Heart pump assembly with a blood inlet configured to increase blood flow |
| US20240285935A1 (en) | 2021-07-02 | 2024-08-29 | Kardion Gmbh | Cardiac assist system with flow guiding nozzle |
| WO2023014742A1 (en) | 2021-08-04 | 2023-02-09 | Kardion Gmbh | Seal for a mechanical circulatory support device |
| WO2023049813A1 (en) | 2021-09-23 | 2023-03-30 | Kardion Gmbh | Method and apparatus for manufacturing a cardiac support system |
| US20230191141A1 (en) | 2021-10-07 | 2023-06-22 | Kardion Gmbh | Transcutaneous energy transfer |
| EP4252825A3 (en) | 2021-10-11 | 2023-12-27 | Magenta Medical Ltd. | Ventricular assist device |
| WO2023076869A1 (en) | 2021-10-26 | 2023-05-04 | Kardion Gmbh | Heart pump implant system with fastening and releasing devices |
| USD1014552S1 (en) | 2021-11-02 | 2024-02-13 | Abiomed, Inc. | Display panel or portion thereof with graphical user interface |
| USD1017634S1 (en) | 2021-11-02 | 2024-03-12 | Abiomed, Inc. | Display panel or portion thereof with graphical user interface |
| US20230173250A1 (en) | 2021-12-03 | 2023-06-08 | Kardion Gmbh | Cardiac pump with optical fiber for laser doppler |
| USD1001146S1 (en) | 2021-12-10 | 2023-10-10 | Abiomed, Inc. | Display panel or portion thereof with graphical user interface |
| USD1001145S1 (en) | 2021-12-10 | 2023-10-10 | Abiomed, Inc. | Display panel or portion thereof with graphical user interface |
| USD1012284S1 (en) | 2022-02-09 | 2024-01-23 | Boston Scientific Scimed, Inc. | Medical device system and removable connectors set |
| US20230277836A1 (en) | 2022-03-03 | 2023-09-07 | Kardion Gmbh | Sensor device for sensing at least one functional value of a medical device and a method for operating the sensor device |
| WO2023167987A1 (en) | 2022-03-03 | 2023-09-07 | Boston Scientific Medical Device Limited | Tuohy valve tightening port for percutaneous circulatory support device repositioning and axial locking |
| DE102023118223A1 (en) | 2022-07-11 | 2024-01-11 | Kardion Gmbh | LASER DOPPLER VELOCIMETERY FLOW MEASUREMENT |
| US20240074828A1 (en) | 2022-09-06 | 2024-03-07 | Kardion Gmbh | Medical device holding and mounting system |
| US20240075277A1 (en) | 2022-09-09 | 2024-03-07 | Kardion Gmbh | Cardiac support system inlets and connecting devices |
| US11746906B1 (en) | 2022-11-01 | 2023-09-05 | Bal Seal Engineering, Llc | Lip seals and related methods |
-
2018
- 2018-05-30 DE DE102018208538.2A patent/DE102018208538A1/en active Pending
-
2019
- 2019-05-30 JP JP2021517523A patent/JP7359462B2/en active Active
- 2019-05-30 US US17/057,044 patent/US12194287B2/en active Active
- 2019-05-30 WO PCT/EP2019/064154 patent/WO2019229220A1/en not_active Ceased
-
2025
- 2025-01-13 US US19/018,309 patent/US20250144397A1/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6245007B1 (en) * | 1999-01-28 | 2001-06-12 | Terumo Cardiovascular Systems Corporation | Blood pump |
| US6912423B2 (en) * | 2000-12-15 | 2005-06-28 | Cardiac Pacemakers, Inc. | Terminal connector assembly for a medical device and method therefor |
| US9878087B2 (en) * | 2006-02-23 | 2018-01-30 | Tc1 Llc | Pump-inflow-cannula, a pump-outflow-cannula and a blood managing system |
| US8849398B2 (en) * | 2011-08-29 | 2014-09-30 | Minnetronix, Inc. | Expandable blood pump for cardiac support |
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11368081B2 (en) | 2018-01-24 | 2022-06-21 | Kardion Gmbh | Magnetic coupling element with a magnetic bearing function |
| US11804767B2 (en) | 2018-01-24 | 2023-10-31 | Kardion Gmbh | Magnetic coupling element with a magnetic bearing function |
| US12005248B2 (en) | 2018-05-16 | 2024-06-11 | Kardion Gmbh | Rotor bearing system |
| US12107474B2 (en) | 2018-05-16 | 2024-10-01 | Kardion Gmbh | End-face rotating joint for transmitting torques |
| US12194287B2 (en) * | 2018-05-30 | 2025-01-14 | Kardion Gmbh | Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump |
| US12447327B2 (en) | 2018-05-30 | 2025-10-21 | Kardion Gmbh | Electronics module and arrangement for a ventricular assist device, and method for producing a ventricular assist device |
| US12383727B2 (en) | 2018-05-30 | 2025-08-12 | Kardion Gmbh | Motor housing module for a heart support system, and heart support system and method for mounting a heart support system |
| US12064615B2 (en) | 2018-05-30 | 2024-08-20 | Kardion Gmbh | Axial-flow pump for a ventricular assist device and method for producing an axial-flow pump for a ventricular assist device |
| US12201823B2 (en) | 2018-05-30 | 2025-01-21 | Kardion Gmbh | Line device for conducting a blood flow for a heart support system, heart support system, and method for producing a line device |
| US12377256B2 (en) | 2018-06-06 | 2025-08-05 | Kardion Gmbh | Cardiac support system flow measurement using pressure sensors |
| US12324906B2 (en) | 2018-06-06 | 2025-06-10 | Kardion Gmbh | Systems and methods for determining a total blood volume flow in a cardiac support system and vascular support system |
| US12178554B2 (en) * | 2018-06-06 | 2024-12-31 | Kardion Gmbh | Systems and methods for determining a viscosity of a fluid |
| US12491357B2 (en) | 2018-06-06 | 2025-12-09 | Kardion Gmbh | Systems and methods for determining a blood volume flow through a cardiac support system and vascular support system |
| US12201821B2 (en) | 2018-06-06 | 2025-01-21 | Kardion Gmbh | Method for determining a flow rate of a fluid flowing through an implanted vascular support system, and implantable vascular support system |
| US12478267B2 (en) | 2018-06-06 | 2025-11-25 | Kardion Gmbh | Sensor head device for a minimal invasive ventricular assist device and method for producing such a sensor head device |
| US12222267B2 (en) | 2018-06-06 | 2025-02-11 | Kardion Gmbh | Analysis device and method for analyzing a viscosity of a fluid |
| US12257424B2 (en) | 2018-06-06 | 2025-03-25 | Kardion Gmbh | Implantable ventricular assist system and method for operating same |
| US20220047173A1 (en) * | 2018-06-06 | 2022-02-17 | Kardion Gmbh | Determination appliance and method for determining a viscosity of a fluid |
| US12310708B2 (en) | 2018-06-06 | 2025-05-27 | Kardion Gmbh | Systems and methods for determining a flow speed of a fluid flowing through a cardiac assist device |
| US12311160B2 (en) | 2018-06-06 | 2025-05-27 | Kardion Gmbh | Method and system for determining the speed of sound in a fluid in the region of a cardiac support system |
| US12144976B2 (en) | 2018-06-21 | 2024-11-19 | Kardion Gmbh | Method and device for detecting a wear condition of a ventricular assist device and for operating same, and ventricular assist device |
| US12263333B2 (en) | 2018-06-21 | 2025-04-01 | Kardion Gmbh | Stator vane device for guiding the flow of a fluid flowing out of an outlet opening of a ventricular assist device, ventricular assist device with stator vane device, method for operating a stator vane device and manufacturing method |
| US12478775B2 (en) | 2018-07-09 | 2025-11-25 | Kardion Gmbh | Cardiac assist system, and method for monitoring the integrity of a retaining structure of a cardiac assist system |
| US11754075B2 (en) | 2018-07-10 | 2023-09-12 | Kardion Gmbh | Impeller for an implantable, vascular support system |
| US12465744B2 (en) | 2018-07-10 | 2025-11-11 | Kardion Gmbh | Impeller housing for an implantable, vascular support system |
| US12076549B2 (en) | 2018-07-20 | 2024-09-03 | Kardion Gmbh | Feed line for a pump unit of a cardiac assistance system, cardiac assistance system and method for producing a feed line for a pump unit of a cardiac assistance system |
| US12390633B2 (en) | 2018-08-07 | 2025-08-19 | Kardion Gmbh | Bearing device for a heart support system, and method for rinsing a space in a bearing device for a heart support system |
| US11944805B2 (en) | 2020-01-31 | 2024-04-02 | Kardion Gmbh | Pump for delivering a fluid and method of manufacturing a pump |
| US12478776B2 (en) | 2020-01-31 | 2025-11-25 | Kardion Gmbh | Pump for delivering a fluid and method of manufacturing a pump |
| CN118846366A (en) * | 2024-07-08 | 2024-10-29 | 深圳核心医疗科技股份有限公司 | Cannula assembly and blood pump |
Also Published As
| Publication number | Publication date |
|---|---|
| JP7359462B2 (en) | 2023-10-11 |
| WO2019229220A1 (en) | 2019-12-05 |
| JP2021526069A (en) | 2021-09-30 |
| US12194287B2 (en) | 2025-01-14 |
| US20250144397A1 (en) | 2025-05-08 |
| DE102018208538A1 (en) | 2019-12-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20250144397A1 (en) | Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump | |
| CN110461400B (en) | Steerable medical device and method of making same | |
| US8141556B2 (en) | Metallization with tailorable coefficient of thermal expansion | |
| US20210339004A1 (en) | Line device for a ventricular assist device and method for producing a line device | |
| US20060235314A1 (en) | Medical and surgical devices with an integrated sensor | |
| EP1918027A1 (en) | Ultrasonic transducer, method for manufacturing ultrasonic transducer, and ultrasonic endoscope | |
| CN111374758A (en) | Flexible Nested Sensing Electrodes | |
| CN115297770B (en) | Sensing device | |
| US20070282210A1 (en) | Implantable wireless sensor for in vivo pressure measurement and continuous output determination | |
| US10238302B2 (en) | Pressure-sensing intravascular devices, systems, and methods | |
| JPWO2019229220A5 (en) | ||
| CN110522508B (en) | Improved heat transfer through conduit tips | |
| CN106231999A (en) | Have with the endovascular device of separate sections of core component engaged, system and method | |
| US9616223B2 (en) | Media-exposed interconnects for transducers | |
| JP6290250B2 (en) | Pressure sensing endovascular device, system, and method | |
| JP7259010B2 (en) | Fluid barriers and related devices, systems and methods for intraluminal ultrasound imaging | |
| CN111885962B (en) | Medical device including sensor array and system for measuring | |
| US20080265423A1 (en) | Layered structure for corrosion resistant interconnect contacts | |
| US20080077050A1 (en) | Electrical connector for medical device | |
| JP2008062067A (en) | Sensor and guide wire assembly | |
| KR101096533B1 (en) | Wireless wireless flow sensor structure and manufacturing method for flow sensor | |
| JP7010972B2 (en) | Electrophysiological device with electrodes with increased surface area | |
| US20230320664A1 (en) | Vascular graft system and a method of processing an arterial pressure pulse trace |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| AS | Assignment |
Owner name: EDWARDS LIFESCIENCES HOLDING, INC., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:KARDION GMBH;REEL/FRAME:056046/0422 Effective date: 20210423 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: ROBERT BOSCH GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KASSEL, JULIAN;SCHLEBUSCH, THOMAS ALEXANDER;SIGNING DATES FROM 20210809 TO 20210810;REEL/FRAME:058765/0394 Owner name: ROBERT BOSCH GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KASSEL, JULIAN;SCHLEBUSCH, THOMAS ALEXANDER;SIGNING DATES FROM 20210809 TO 20210810;REEL/FRAME:058765/0364 |
|
| AS | Assignment |
Owner name: KARDION GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROBERT BOSCH GMBH;REEL/FRAME:062896/0150 Effective date: 20190415 Owner name: KARDION GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNOR'S INTEREST;ASSIGNOR:ROBERT BOSCH GMBH;REEL/FRAME:062896/0150 Effective date: 20190415 |
|
| AS | Assignment |
Owner name: KARDION GMBH, GERMANY Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NO. 17055502 TO READ 17055023 PREVIOUSLY RECORDED AT REEL: 062896 FRAME: 0150. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:ROBERT BOSCH GMBH;REEL/FRAME:063116/0438 Effective date: 20190415 |
|
| AS | Assignment |
Owner name: KARDION GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROBERT BOSCH GMBH;REEL/FRAME:063099/0043 Effective date: 20190415 Owner name: KARDION GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNOR'S INTEREST;ASSIGNOR:ROBERT BOSCH GMBH;REEL/FRAME:063099/0043 Effective date: 20190415 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |