US20210261721A1 - Use of heterocyclic amines containing primary or secondary amines as a polymer catalyst or hardener - Google Patents
Use of heterocyclic amines containing primary or secondary amines as a polymer catalyst or hardener Download PDFInfo
- Publication number
- US20210261721A1 US20210261721A1 US17/250,186 US201917250186A US2021261721A1 US 20210261721 A1 US20210261721 A1 US 20210261721A1 US 201917250186 A US201917250186 A US 201917250186A US 2021261721 A1 US2021261721 A1 US 2021261721A1
- Authority
- US
- United States
- Prior art keywords
- less
- psi
- kpa
- component
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000642 polymer Polymers 0.000 title claims description 52
- -1 heterocyclic amines Chemical class 0.000 title claims description 17
- 150000003335 secondary amines Chemical class 0.000 title claims description 17
- 239000004848 polyfunctional curative Substances 0.000 title claims description 16
- 150000003141 primary amines Chemical class 0.000 title claims description 14
- 239000003054 catalyst Substances 0.000 title description 7
- 239000004593 Epoxy Substances 0.000 claims abstract description 67
- 239000000203 mixture Substances 0.000 claims abstract description 50
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 39
- 239000003822 epoxy resin Substances 0.000 claims abstract description 35
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 9
- 239000000047 product Substances 0.000 claims abstract description 7
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 claims description 102
- 229920005989 resin Polymers 0.000 claims description 50
- 239000011347 resin Substances 0.000 claims description 50
- 239000000835 fiber Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 20
- 239000011342 resin composition Substances 0.000 claims description 19
- 150000004982 aromatic amines Chemical class 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 6
- 230000009477 glass transition Effects 0.000 claims description 6
- 150000002466 imines Chemical class 0.000 claims description 6
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical group C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims description 5
- 239000012458 free base Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 4
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 claims description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 150000003512 tertiary amines Chemical class 0.000 claims description 4
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 claims description 3
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 claims description 3
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000012783 reinforcing fiber Substances 0.000 claims description 3
- DEURIUYJZZLADZ-UHFFFAOYSA-N 2-(1h-imidazol-2-yl)ethanamine Chemical compound NCCC1=NC=CN1 DEURIUYJZZLADZ-UHFFFAOYSA-N 0.000 claims description 2
- CXXSQMDHHYTRKY-UHFFFAOYSA-N 4-amino-2,3,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1=C(O)C(CC2OC2)=C(CC2OC2)C(N)=C1CC1CO1 CXXSQMDHHYTRKY-UHFFFAOYSA-N 0.000 claims description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 229920003043 Cellulose fiber Polymers 0.000 claims description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 claims description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 claims description 2
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 claims description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 2
- 150000001299 aldehydes Chemical class 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 239000004202 carbamide Substances 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 claims description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 claims description 2
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 2
- 239000011152 fibreglass Substances 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 229920001903 high density polyethylene Polymers 0.000 claims description 2
- 239000004700 high-density polyethylene Substances 0.000 claims description 2
- 150000002431 hydrogen Chemical group 0.000 claims description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 2
- 239000012948 isocyanate Substances 0.000 claims description 2
- 150000002513 isocyanates Chemical class 0.000 claims description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 2
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 claims description 2
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 claims description 2
- 150000002576 ketones Chemical class 0.000 claims description 2
- 229920001684 low density polyethylene Polymers 0.000 claims description 2
- 239000004702 low-density polyethylene Substances 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 239000002114 nanocomposite Substances 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 229920000927 poly(p-phenylene benzobisoxazole) Polymers 0.000 claims description 2
- 229920002401 polyacrylamide Polymers 0.000 claims description 2
- 229920000058 polyacrylate Polymers 0.000 claims description 2
- 229920001470 polyketone Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- KTKBIIGPCQPDIO-UHFFFAOYSA-N silylidenemethylidenesilane Chemical compound [SiH2]=C=[SiH2] KTKBIIGPCQPDIO-UHFFFAOYSA-N 0.000 claims description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 2
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 claims description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 claims 2
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 claims 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 claims 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 claims 2
- CRZDNISJUXVSKX-UHFFFAOYSA-N 1h-imidazol-2-ylmethanamine Chemical compound NCC1=NC=CN1 CRZDNISJUXVSKX-UHFFFAOYSA-N 0.000 claims 1
- MPCYZPCWSYUWMJ-UHFFFAOYSA-N 1h-imidazol-5-ylmethanamine Chemical compound NCC1=CNC=N1 MPCYZPCWSYUWMJ-UHFFFAOYSA-N 0.000 claims 1
- 229940117900 2,2-bis(4-glycidyloxyphenyl)propane Drugs 0.000 claims 1
- HQNOODJDSFSURF-UHFFFAOYSA-N 3-(1h-imidazol-2-yl)propan-1-amine Chemical group NCCCC1=NC=CN1 HQNOODJDSFSURF-UHFFFAOYSA-N 0.000 claims 1
- IHDFTEVCMVTMSP-UHFFFAOYSA-N 3-(1h-imidazol-5-yl)propan-1-amine Chemical compound NCCCC1=CN=CN1 IHDFTEVCMVTMSP-UHFFFAOYSA-N 0.000 claims 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-L Oxalate Chemical compound [O-]C(=O)C([O-])=O MUBZPKHOEPUJKR-UHFFFAOYSA-L 0.000 claims 1
- XUCHXOAWJMEFLF-UHFFFAOYSA-N bisphenol F diglycidyl ether Chemical compound C1OC1COC(C=C1)=CC=C1CC(C=C1)=CC=C1OCC1CO1 XUCHXOAWJMEFLF-UHFFFAOYSA-N 0.000 claims 1
- 229940087305 limonene Drugs 0.000 claims 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Natural products CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 claims 1
- 235000001510 limonene Nutrition 0.000 claims 1
- 238000001723 curing Methods 0.000 description 60
- 229960001340 histamine Drugs 0.000 description 50
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 11
- 238000009472 formulation Methods 0.000 description 11
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 10
- 229920001187 thermosetting polymer Polymers 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 125000003700 epoxy group Chemical group 0.000 description 8
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 7
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229920003986 novolac Polymers 0.000 description 7
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 5
- 150000002118 epoxides Chemical class 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 0 *C1=CNC([2*])=N1 Chemical compound *C1=CNC([2*])=N1 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 150000002989 phenols Chemical class 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- LJUQGASMPRMWIW-UHFFFAOYSA-N 5,6-dimethylbenzimidazole Chemical compound C1=C(C)C(C)=CC2=C1NC=N2 LJUQGASMPRMWIW-UHFFFAOYSA-N 0.000 description 2
- AMSBHFHUPXRNPC-TYGIQNDOSA-N C1=CC2=C(C=C1)N=CC2.C=C(O)C(N)CC1=CN=CN1.C=CC(N)CC1=CN=CN1.CC(=O)/C=C/C1=CN=CC1.CC(=O)C(CC1=CN=CC1)N(C)C.CC(=O)C1=C(N)N=CN1.CC(=O)CCC1=CN=CC1.CC(=O)NC(CC1=CN=CC1)C(C)=O.CC(N)C(=O)CC(CC1=CC=CN1)C(=O)O.CC1=CC2=C(C=C1C)N=CC2.CC1=NCCC(C(=O)O)N1.CCC(N)CC1=CN=CN1.CCC1CCN=C(C)N1.CN(C)C(CC1=CN=CC1)C(=O)O.NCCC(=O)CC(CC1=CN=CN1)C(=O)O.NCCCC(=O)CC(CC1=CC=CN1)C(=O)O.O=CCC1=CN=CC1 Chemical compound C1=CC2=C(C=C1)N=CC2.C=C(O)C(N)CC1=CN=CN1.C=CC(N)CC1=CN=CN1.CC(=O)/C=C/C1=CN=CC1.CC(=O)C(CC1=CN=CC1)N(C)C.CC(=O)C1=C(N)N=CN1.CC(=O)CCC1=CN=CC1.CC(=O)NC(CC1=CN=CC1)C(C)=O.CC(N)C(=O)CC(CC1=CC=CN1)C(=O)O.CC1=CC2=C(C=C1C)N=CC2.CC1=NCCC(C(=O)O)N1.CCC(N)CC1=CN=CN1.CCC1CCN=C(C)N1.CN(C)C(CC1=CN=CC1)C(=O)O.NCCC(=O)CC(CC1=CN=CN1)C(=O)O.NCCCC(=O)CC(CC1=CC=CN1)C(=O)O.O=CCC1=CN=CC1 AMSBHFHUPXRNPC-TYGIQNDOSA-N 0.000 description 2
- PYQJCUKLKGYMTC-UHFFFAOYSA-N CC(=O)C(N)CC1=CNC=N1.CC(=O)C(N)CC1=CNC=N1.CC(=O)C(N)CC1=NC=CC1.CC(=O)C(N)CC1=NC=CC1.CCC(=O)C1=CNC=N1.CCC(=O)C1=NC=CC1.CCC(N)C1=NC=CC1.CCC(N)CC1=CNC=N1.CCC(N)CC1=CNC=N1.CCC(N)CC1=NC=CC1.CCC(N)CC1=NC=CC1.CCC(O)C1=NC=CC1.CCC(O)CC1=CNC=N1.CCC(O)CC1=NC=CC1.CCC1=CNC=N1.CCC1=NC=CC1.CCCCC1=CNC=N1.CCCCC1=NC=CC1.NC(CO)C1=CNC=N1.NC1=CNC=N1.NC1=NC=CC1.NCC(O)C1=CNC=N1.NCCC1=CNC=N1.NCCC1=NC=CC1 Chemical compound CC(=O)C(N)CC1=CNC=N1.CC(=O)C(N)CC1=CNC=N1.CC(=O)C(N)CC1=NC=CC1.CC(=O)C(N)CC1=NC=CC1.CCC(=O)C1=CNC=N1.CCC(=O)C1=NC=CC1.CCC(N)C1=NC=CC1.CCC(N)CC1=CNC=N1.CCC(N)CC1=CNC=N1.CCC(N)CC1=NC=CC1.CCC(N)CC1=NC=CC1.CCC(O)C1=NC=CC1.CCC(O)CC1=CNC=N1.CCC(O)CC1=NC=CC1.CCC1=CNC=N1.CCC1=NC=CC1.CCCCC1=CNC=N1.CCCCC1=NC=CC1.NC(CO)C1=CNC=N1.NC1=CNC=N1.NC1=NC=CC1.NCC(O)C1=CNC=N1.NCCC1=CNC=N1.NCCC1=NC=CC1 PYQJCUKLKGYMTC-UHFFFAOYSA-N 0.000 description 2
- VYABYOQXDYHWDF-UHFFFAOYSA-N CCC1=CNC(CN)=N1.CCCC1=CNC(CCN)=N1.CCCCC1=CNC(CCCN)=N1.NC1=CNC(N)=N1 Chemical compound CCC1=CNC(CN)=N1.CCCC1=CNC(CCN)=N1.CCCCC1=CNC(CCCN)=N1.NC1=CNC(N)=N1 VYABYOQXDYHWDF-UHFFFAOYSA-N 0.000 description 2
- ZQISRDCJNBUVMM-UHFFFAOYSA-N L-Histidinol Natural products OCC(N)CC1=CN=CN1 ZQISRDCJNBUVMM-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- ZQISRDCJNBUVMM-YFKPBYRVSA-N L-histidinol Chemical compound OC[C@@H](N)CC1=CNC=N1 ZQISRDCJNBUVMM-YFKPBYRVSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QLBRROYTTDFLDX-UHFFFAOYSA-N [3-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCCC(CN)C1 QLBRROYTTDFLDX-UHFFFAOYSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229940106691 bisphenol a Drugs 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 229960004592 isopropanol Drugs 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000011417 postcuring Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000004634 thermosetting polymer Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WTFAGPBUAGFMQX-UHFFFAOYSA-N 1-[2-[2-(2-aminopropoxy)propoxy]propoxy]propan-2-amine Chemical compound CC(N)COCC(C)OCC(C)OCC(C)N WTFAGPBUAGFMQX-UHFFFAOYSA-N 0.000 description 1
- TZLVUWBGUNVFES-UHFFFAOYSA-N 2-ethyl-5-methylpyrazol-3-amine Chemical compound CCN1N=C(C)C=C1N TZLVUWBGUNVFES-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- KDHWOCLBMVSZPG-UHFFFAOYSA-N 3-imidazol-1-ylpropan-1-amine Chemical compound NCCCN1C=CN=C1 KDHWOCLBMVSZPG-UHFFFAOYSA-N 0.000 description 1
- MECNWXGGNCJFQJ-UHFFFAOYSA-N 3-piperidin-1-ylpropane-1,2-diol Chemical compound OCC(O)CN1CCCCC1 MECNWXGGNCJFQJ-UHFFFAOYSA-N 0.000 description 1
- RBHIUNHSNSQJNG-UHFFFAOYSA-N 6-methyl-3-(2-methyloxiran-2-yl)-7-oxabicyclo[4.1.0]heptane Chemical compound C1CC2(C)OC2CC1C1(C)CO1 RBHIUNHSNSQJNG-UHFFFAOYSA-N 0.000 description 1
- 241000408659 Darpa Species 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000004844 aliphatic epoxy resin Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WAQJWJHUIZCDFA-UHFFFAOYSA-N bis(7-oxabicyclo[4.1.0]heptan-4-ylmethyl) heptanedioate Chemical compound C1CC2OC2CC1COC(=O)CCCCCC(=O)OCC1CC2OC2CC1 WAQJWJHUIZCDFA-UHFFFAOYSA-N 0.000 description 1
- DJUWPHRCMMMSCV-UHFFFAOYSA-N bis(7-oxabicyclo[4.1.0]heptan-4-ylmethyl) hexanedioate Chemical compound C1CC2OC2CC1COC(=O)CCCCC(=O)OCC1CC2OC2CC1 DJUWPHRCMMMSCV-UHFFFAOYSA-N 0.000 description 1
- LHQZPSHKKVHDTB-UHFFFAOYSA-N bis(7-oxabicyclo[4.1.0]heptan-4-ylmethyl) oxalate Chemical compound C1CC2OC2CC1COC(=O)C(=O)OCC1CC2OC2CC1 LHQZPSHKKVHDTB-UHFFFAOYSA-N 0.000 description 1
- XFUOBHWPTSIEOV-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohexane-1,2-dicarboxylate Chemical compound C1CCCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 XFUOBHWPTSIEOV-UHFFFAOYSA-N 0.000 description 1
- LMMDJMWIHPEQSJ-UHFFFAOYSA-N bis[(3-methyl-7-oxabicyclo[4.1.0]heptan-4-yl)methyl] hexanedioate Chemical compound C1C2OC2CC(C)C1COC(=O)CCCCC(=O)OCC1CC2OC2CC1C LMMDJMWIHPEQSJ-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- ZWAJLVLEBYIOTI-UHFFFAOYSA-N cyclohexene oxide Chemical compound C1CCCC2OC21 ZWAJLVLEBYIOTI-UHFFFAOYSA-N 0.000 description 1
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohexene oxide Natural products O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000004845 glycidylamine epoxy resin Substances 0.000 description 1
- PPZMYIBUHIPZOS-UHFFFAOYSA-N histamine dihydrochloride Chemical compound Cl.Cl.NCCC1=CN=CN1 PPZMYIBUHIPZOS-UHFFFAOYSA-N 0.000 description 1
- 229960004931 histamine dihydrochloride Drugs 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- 239000013029 homogenous suspension Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/5033—Amines aromatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/504—Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/5046—Amines heterocyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/5046—Amines heterocyclic
- C08G59/5053—Amines heterocyclic containing only nitrogen as a heteroatom
- C08G59/5073—Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/56—Amines together with other curing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
- C08G59/686—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3445—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
Definitions
- the present disclosure relates generally to the area of polymer resin compositions for manufacturing composite parts and, more particularly, to fast curing epoxy resin compositions yielding cured products with high tensile and flexural strength suitable for use in applications that require such properties.
- thermosetting resin compositions or systems find applications in binding or impregnating various materials, such as glass fibers, carbon fibers mats or wovens, as well as other reinforcing materials. Manufacturing techniques for such composite structures are also known and can vary. Practical conditions of molding vary based on industry ranging from consumer goods over electronics to energy and transportation. Also, there are different resin systems used for either high or low pressure molding, for example, under partial vacuum to improve resin penetration into the reinforcement.
- Thermosets include polyester, epoxy, phenolic, vinyl esters, polyurethanes, silicones, polyamides, polyimides, and combinations thereof.
- the resins range from liquids to powders but are rarely used as pure resins.
- the resins require curing agents, hardeners, and other additives such as inhibitors and plasticizers. Additional ingredients may be required to confer specific properties onto the composite, such as flame retardancy, ultraviolet stability, electrical conductivity, moisture or gas penetration hindrance, and others.
- the amount of additives mixed into a thermoset resin is often substantial and can extent to a third or more of the resin weight thereby interacting with the mechanical properties of the final product after curing.
- conventional epoxy systems require 20-60 phr of hardener.
- the curative concentration is expressed in parts per hundred or phr and reflects amount in, e.g., grams to be mixed with 100 grams of resins.
- JEFFAMINE® D230 sold by Huntsman Corp. (The Woodlands, Tex.) is regularly used at 32 phr for epoxy resins, diethylenetriamine (‘DETA’) hardener at 21 phr, aminoethylpiperazine (AEP) at phr of 23.
- DETA diethylenetriamine
- AEP aminoethylpiperazine
- Resin transfer molding is an increasingly common form of molding wherein a catalyzed, low viscosity resin composition is pumped into a mold under pressure, displacing the air at the edges, until the mold is filled.
- the mold can be packed with fibers preform or dry fiber reinforcement prior to resin injection.
- the resin cure cycle begins wherein the mold is heated to a temperature of about 100° C. or greater and the resin polymerizes to a rigid state
- HP-RTM high-pressure resin transfer molding
- closed loop control resin injection can be managed and controlled. After the mold is closed, a high compression force is applied and the resin is injected at a high pressure of about 30 to about 100 bar (atm), completing impregnation and curing the resin.
- the resin system used needs to have a cure time of about 10 minutes or less, preferably about 5 minutes or less at typical molding temperatures of about 120° C. to about 140° C., and yield substantially fully cured composite parts having a resin glass transition temperature (‘T g ’) of greater than 130° C. without the use of a post cure or multifunctional resins.
- T g resin glass transition temperature
- Resin systems used to manufacture such composite parts, particularly thermosetting polymer composite parts, prepared by a crosslinking reaction using an appropriate curing agent and epoxy resin desirably have the following properties: (a) low viscosity suitable for HP-RTM (e.g., about 120 cP or less at an injection temperature of about 120° C.); (b) fast cure reaction rate (e.g., about 5 minutes or less at 120° C.
- epoxy resins such as epoxy novolac resins and/or phenols such as those based on bisphenol-A (‘BPA’) and bisphenol-F (‘BPF’), among others.
- BPA bisphenol-A
- BPF bisphenol-F
- the epoxy resin used can affect different properties of the resin system, such as the mechanical properties and viscosity of the system.
- the resin formulation also includes a hardener or curing agent such as polyethyleneimine; cycloaliphatic anhydride; dicyanamide (‘DICY’); imidazoles, such as N-(3-aminopropyl)imidazole (‘API’); and amines, such as diethylenetriamine (‘DETA’) and 1,3-bis(aminomethyl)cyclohexane (‘1,3-BAC’).
- the resin formulation may also require an accelerator or catalyst for accelerating the reactivity of the curing agent with the epoxy.
- a hardener or curing agent such as polyethyleneimine; cycloaliphatic anhydride; dicyanamide (‘DICY’); imidazoles, such as N-(3-aminopropyl)imidazole (‘API’); and amines, such as diethylenetriamine (‘DETA’) and 1,3-bis(aminomethyl)cyclohexane (‘1,3-BAC’).
- the resin formulation may also
- an article comprises a cured polymer.
- the cured polymer includes a tensile strength as determined by ISO 527-1 (2012) of not less than 10,000 psi (68,948 kPa).
- the cured polymer can include a flexural strength as determined by ISO 178 (2010) of not less than 17,000 psi (117,211 kPa).
- the cured also includes an elongation at break as determined by ISO 527-1 (2012) of at least 2% or a flexural strain as determined by ISO 178 (2010) of at least 4%.
- a resin composition in a second aspect, includes about 70 wt % to about 98 wt % by weight of the resin composition of at least one polymer component.
- the resin composition further includes a curing component comprising 2 wt % to about 30 wt % by weight of the composition.
- the curing component can include a chemical that has a secondary amine or a primary amine.
- the chemical can further include a tertiary amine, an aromatic amine, or an imine.
- the chemical can have a molecular weight in a free-base form of greater than 70 g/mol.
- a process comprises mixing a curing component and a polymer component to form a resin.
- the process further includes transferring the resin into a mold.
- the process can further include curing the resin at a curing temperature T c of less than 120° for not more than 10 minutes.
- the process can include removing a substantially cured article from the mold.
- the article includes a tensile strength as determined by ISO 527-1 (2012) of not less than 10,000 psi (68,948 kPa) or a flexural strength as determined by ISO 178 (2010) of not less than 17,000 psi (117,211 kPa).
- the article can have an elongation at break as determined ISO 527-1 (2012) of at least 2% or a flexural strain as determined by ISO 178 (2010) of at least 4%.
- an epoxy resin composition comprises about 70 wt % to about 95 wt % by weight of the composition of an epoxy component.
- the epoxy resin can further include a curing component comprising about 5 wt % to about 30 wt % by weight of the composition.
- the curing component includes an imidazole.
- the imidazole can be selected from
- R 1 and R 2 are not concurrently hydrogen and are selected from the group consisting of amino alkyl, hydroxy alkyl, amino-hydroxy alkyl, and any combination thereof.
- the epoxy component and the curing component react together at a temperature of about 100° C. to about 130° C. to form a substantially cured reaction product in about 10 minutes or less.
- the cured reaction product includes a tensile strength as determined by ISO 527-1 (2012) of not less than 10,000 psi (68,948 kPa) or a flexural strength as determined by ISO 178 (2010) of not less than 17,000 psi (117,211 kPa).
- the cure reaction can also include an elongation at break as determined by ISO 527-1 (2012) of at least 2% or a flexural strain as determined by ISO 178 (2010) of at least 4%.
- FIG. 1 displays a reaction pathway for epoxy curing.
- FIG. 2 illustrates mechanical properties and glass transition temperatures of various epoxy formulations.
- the cured polymer can have a tensile strength as determined by ISO 527-1 (2012) of not less than 10,000 psi (68,948 kPa) or a fle flexural strength as determined by ISO 178 (2010) of not less than 17,000 psi (117,211 kPa).
- the tensile strength can be not less than 10,500 psi (72,395 kPa), such as not less than 11,000 psi (75,843 kPa), not less than 11,300 psi (77,911 kPa), not less than 11,500 psi (79,290 kPa), not less than 11,800 psi (81,359 kPa), not less than 12,000 psi (82,738 kPa), not less than 12,200 psi (84,117 kPa), not less than 12,400 psi (85,495 kPa), not less than 12,600 psi (86,874 kPa), or not less than 12,800 psi (88,253 kPa).
- the flexural strength can be not less than 17,500 psi (120,659 kPa), such as not less than 18,000 psi (124,106 kPa), not less than 18,500 psi (127,554 kPa), not less than 19,000 psi (131,001 kPa), not less than 19,500 psi (134,448 kPa), not less than 20,000 psi (137,896 kPa), not less than 20,200 psi (139,275 kPa), not less than 20,400 psi (140,653 kPa), not less than 20,600 psi (142,032 kPa), not less than 20,800 psi (143,411 kPa), not less than 21,000 psi (144,790 kPa), not less than 21,200 psi (146,169 kPa), not less than 21,400 psi (147,549 kPa
- the cured polymer can have an elongation at break as determined by ISO 527-1 (2012) of at least 2% or a flexural strain as determined by ISO 178 (2010) of at least 4%.
- the elongation at break can be at least 2.1%, such as at least 2.2%, at least 2.3%, at least 2.4%, at least 2.5%, at least 2.6%, at least 2.7%, at least 2.8%, at least 2.9%, at least 3%, at least 3.2%, at least 3.4%, at least 3.6%, at least 3.8%, at least 4%, at least 4.3%, at least 4.5%, at least 4.8%, at least 5%, at least 5.3%, at least 5.5%, at least 5.8%, or at least 6%.
- the cured polymer can have a flexural strain that is at least 4.1%, such as at least 4.2%, at least 4.3%, at least 4.4%, at least 4.5%, at least 4.6%, at least 4.7%, at least 4.8%, at least 4.9%, at least 5%, at least 5.2%, at least 5.4%, at least 5.6%, at least 5.8%, at least 6%, at least 6.3%, at least 6.5%, at least 6.8%, at least 7%, at least 7.3%, at least 7.5%, at least 7.8%, or at least 8%.
- a flexural strain that is at least 4.1%, such as at least 4.2%, at least 4.3%, at least 4.4%, at least 4.5%, at least 4.6%, at least 4.7%, at least 4.8%, at least 4.9%, at least 5%, at least 5.2%, at least 5.4%, at least 5.6%, at least 5.8%, at least 6%, at least 6.3%, at least 6.5%, at least 6.8%, at least 7%, at least 7.3%, at least 7.5%, at least 7.8%
- the cured polymer can have a glass transition temperature T g as determined by differential scanning calorimetry according to ASTM D7028 of at least 120° C., such as at least 125° C., at least 130° C., at least 132° C., at least 134° C., at least 136° C., at least 138° C., at least 140° C., at least 142° C., at least 144° C., at least 146° C., at least 148° C., at least 150° C., at least 152° C., or at least 154° C.
- T g glass transition temperature
- the T g is greater than the curing temperature T cure , i.e. the temperature during processing at which the cured polymer is obtained from a mixture of a resin, a curing component, and any other optional additives.
- the difference between T g and T cure is at least 10° C., such as at least at least 15° C., at least 20° C., at least 25° C., at least 30° C., at least 35° C., at least 40° C., at least 45° C., or at least 50° C.
- the cured polymer of the polymer can include an epoxy polymer, a polyester, a polyamide, a polyimide, a polyurethane, a polyacrylate, a polyacrylamide, a polyketone, or any combination thereof.
- the cured polymer consists essentially of an epoxy polymer.
- a polymer is understood to be the reaction product of a polymer component and a curing component.
- an epoxy polymer is understood to be the reaction product of an epoxy component and a curing component.
- the polymer component can be present in an amount of about 50 wt % to about 99 wt % by weight of the composition. In one embodiment, the polymer component is present in an amount of about 70 wt % to about 98 wt % by weight of the composition.
- the polymer component can be a single resin, or it can be a mixture or blend of mutually compatible resins.
- an epoxy resin component and a curing component In addressing epoxy polymers, an epoxy resin component and a curing component.
- the epoxy component can be present in an amount of about 50 wt % to about 98 wt % by weight of the composition. In one embodiment, the epoxy component is present in an amount of about 70 wt % to about 95 wt % by weight of the composition.
- the epoxy resin can be a single resin, or it can be a mixture or blend of mutually compatible epoxy resins.
- Suitable epoxy resins include, but are not limited to, bi-functional epoxies, based on phenols such as 2,2-bis-(4-hydroxyphenyl)-propane (a/k/a bisphenol A) and bis-(4-hydroxyphenyl)-methane (a/k/a bisphenol F). These phenols can be reacted with epichlorohydrin to form the diglycidyl ethers of these polyhydric phenols (e.g., bisphenol A diglycidyl ether, or DGEBA).
- Multifunctional epoxy resin as utilized herein, describes compounds containing two (i.e., di-functional) or more (i.e., multi-functional) 1,2-epoxy groups per molecule. Epoxide compounds of this type are well known to those of skill in the art.
- the epoxy component can be an aliphatic epoxy resin, which include glycidyl epoxy resins and cycloaliphatic (alicyclic) epoxide.
- Glycidyl epoxy resins include dodecanol glycidyl ether, diglycidyl ester of hexahydrophthalic acid, and trimethylolpropane triglycidyl ether. These resins typically display low viscosity at room temperature (10-200 mPa ⁇ s) and can be used to reduce the viscosity of other resins.
- Suitable cycloaliphatic epoxides include diepoxides of cycloaliphatic esters of dicarboxylic acids such as bis(3,4-epoxycyclohexylmethyl)oxalate, bis(3,4-epoxycyclohexylmethyl)adipate, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, vinylyclohexene diepoxides; limonene diepoxide; bis(3,4-epoxycyclohexylmethyl)pimelate; dicyclopentadiene diepoxide; and other suitable cycloaliphatic epoxides.
- the cycloaliphatic epoxides also display low viscosity at room temperature; however, their room temperature reactivity is rather low, and high temperature curing with suitable accelerators is normally required.
- epoxy novolac resins which are the glycidyl ethers of novolac resins, can be used as multifunctional epoxy resins in accordance with the present disclosure.
- Suitable epoxy novolac resins include polyepoxides (epoxy phenol novolac resin) and epoxy cresol novolac resin. These are typically highly viscous resins having a high epoxide functionality of around 2 to 6, providing high temperature and chemical resistance when cured but low flexibility.
- the viscosity of the epoxy resin composition can be reduced by modifying the epoxy component.
- the epoxy component can comprise at least one multifunctional epoxy resin and/or one or more monofunctional epoxy resins.
- Monoepoxides include, but are not limited to, styrene oxide, cyclohexene oxide and the glycidyl ethers of phenol, cresols, tert-butylphenol, other alkyl phenols, butanol, 2-ethylhexanol, C 4 to C 14 alcohols, and the like, or combinations thereof.
- the multifunctional epoxy resin can also be present in a solution or emulsion, with the diluent being water, an organic solvent, or a mixture thereof.
- epoxy resins suitable for use in the present invention include higher functionality epoxies such as the glycidylamine epoxy resins.
- epoxies such as the glycidylamine epoxy resins.
- glycidylamine epoxy resins examples include triglycidyl-p-aminophenol (functionality 3) and N,N,N,N-tetraglycidyl-4,5-methylenebis benzylamine (functionality 4). These resins are low to medium viscosity at room temperature, making them easy to process.
- the resin composition further includes a curing component.
- the curing component includes a secondary amine or primary amine.
- the curing component can further include a tertiary amine, an aromatic amine, or an imine.
- the curing component can include a molecular weight in a free-base form of greater than 70 g/mol, such as greater than 75 g/mol, greater than 80 g/mol, greater than 85 g/mol, greater than 90 g/mol, greater than 95 g/mol, greater than 100 g/mol, greater than 105 g/mol, greater than 110 g/mol, greater than 120 g/mol, greater than 130 g/mol, greater than 140 g/mol, greater than 150 g/mol, or greater than 160 g/mol.
- the curing component can include a primary amine, a secondary amine and an aromatic amine.
- the curing component can include two primary amines, one secondary amine, and an aromatic amine.
- the aromatic amine includes a moiety selected from an imidazole, a pyridine, a pyrimidine, a pyrazine, a benzimidazole, a thiazole, an oxazole, a pyrazole, an isooxazole, an isothiazole, or any mixture thereof
- the curing component is selected from
- R 1 and R 2 can be not concurrently hydrogen.
- R 1 and R 2 can be selected from the group consisting of amino alkyl, hydroxy alkyl, amino-hydroxy alkyl, or any combination thereof.
- the curing component can be selected from
- the group R 3 can be selected from hydrogen, methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, tert-butyl, or isobutyl.
- the curing component consists essentially of histamine.
- the curing component consists essentially of 2-(2-aminoethyl)imidazole.
- an exemplary curing reaction on epoxy resin is displayed. More specifically, histamine is shown as a curing component.
- the primary amine is most reactive and reacts with two epoxy group of an epoxy resin. Thereby, the primary amine becomes a linker in a first chain of an epoxy polymer back bone.
- the secondary amine of the imidazole ring reacts with one epoxy group. Accordingly, the secondary amine becomes the end unit of a second epoxy polymer chain.
- the heterocyclic aromatic amine becomes active and reacts with an epoxy group, thereby generating a zwitterion.
- the zwitterion alkoxide can actually further react with another epoxy group thereby further catalyzing polymerization of epoxy itself.
- chain transfer i.e., where the activity of a growing polymer chain is transferred to another molecule (P•+XR ⁇ PX+R•) is omitted in this polymerization process, but it may also contribute to polymerization of epoxy itself.
- the epoxy system Since prior to the third step (aromatic amine reaction), the epoxy system is already crosslinked, the polymerization that began with the aromatic amine and comprises alkoxides can actually further grow and link all unreacted epoxy groups, either directly or via a chain transfer process, or even react with another polymer chain by hydrogen bond or nucleophilic substitution of a hydroxyl group, which results macroscopically in a stronger polymer material.
- Similar hardeners such as 1-(aminopropylene)imidazole (‘API’), do not have a secondary amine that reacts with epoxy, thereby missing a potential to crosslink epoxy prior to epoxy homopolymerization.
- the presence of protic amino and non-protic imino or aromatic amines in the curing component have an effect on the tensile and flexural properties of the resulting cured polymer.
- the distance of the protic and non-protic nitrogens can affect the resulting crosslinking reactivity of the curing agent, since the distance determines how close the polymer chains that the protic amines form come to each other. Therefore, in one embodiment, the primary amine of the curing component can be within a radius of less than 100 nm, less than 90 nm, less than 80 nm, less than 70 nm, less than 60 nm, or less than 50 nm from the secondary amine nitrogen. In another embodiment, the aromatic amine or imine can be within a radius of less than 50 nm, less than 40 nm, less than 30 nm, less than 20 nm from the secondary amine nitrogen.
- the curing component can include a product that is a naturally occurring substance.
- the curing component can be selected from
- the polymer component can be selected from an epoxy component, a carboxylic acid component, a carboxylic ester component, a carboxylic anhydride component, an isocyanate component, an acrylonitrile component, a urea component, an aldehyde component, a ketone component, or any combination thereof.
- the polymer component and the curing component react together at a temperature of about 90° C. to about 140° C. in less than 10 minutes to substantially form a cured polymer. In another embodiment, they react together at a temperature of about 100° C. to about 135° C. in less than 8 minutes, less than 6 minutes, less than 5 minutes, or less than 4 minutes to substantially form a cured polymer.
- a process comprises mixing a curing component and a polymer component to form a resin.
- the process further includes transferring the resin into a mold.
- the process can further include curing the resin at a curing temperature T c of less than 120° for not more than 10 minutes.
- the process can include removing a substantially cured article from the mold.
- the article includes a tensile strength as determined by ISO 527-1 (2012) of not less than 10,000 psi (68,948 kPa) or a flexural strength as determined by ISO 178 (2010) of not less than 17,000 psi (117,211 kPa).
- the article can have an elongation at break as determined ISO 527-1 (2012) of at least 2% or a flexural strain as determined by ISO 178 (2010) of at least 4%.
- the curing component can be added at less than the theoretical stoichiometry needed to have all reactive sites of the polymer component reacted with the curing agent. This can be understood in light of FIG. 1 and the foregoing description. Since the aromatic amine creates a zwitterion, epoxy functions can homo-polymerize.
- the curing component can be added at not greater than 90% of the theoretical stoichiometry, such as at not greater than 80%, at not greater than 70%, at not greater than 60%, at not greater than 55%, at not greater than 50%, at not greater than 45%, at not greater than 40%, at not greater than 35%, at not greater than 30%, or at not greater than 25% of the theoretical stoichiometry.
- the polymer component includes a number of reactive functionalities n r , e.g., epoxy functions
- the curing component includes a curing functionality n c , e.g., primary amines (factor 2), secondary amine (factor 1), and heterocyclic aromatic-amines (factor 1).
- n r n c .
- the resin has a ratio of n c :n r of not greater than 0.98, not greater than 0.95, not greater than 0.9, not greater than 0.85, not greater than 0.8, not greater than 0.75, not greater than 0.7, not greater than 0.65, not greater than 0.6, not greater than 0.55, not greater than 0.5, not greater than 0.45, not greater than 0.4, not greater than 0.38, not greater than 0.36, not greater than 0.34, not greater than 0.32, not greater than 0.30, not greater than 0.28, not greater than 0.26, not greater than 0.24, not greater than 0.22, not greater than 0.2, not greater than 0.18, or not greater than 0.16.
- the resin can further include reinforcement fibers.
- the reinforcing fiber can be selected from glass fiber, fiberglass, silicon carbide fiber, disilicon carbide fiber, carbon fiber, graphite fiber, boron fiber, quartz fiber, aluminum oxide fiber, carbon nanotubes, nano composite fibers, polyaramide fiber, poly(p-phenylene benzobisoxazole) fiber, ultrahigh molecular weight polyethylene fiber, high and low density polyethylene fiber, polypropylene fiber, nylon fiber, cellulose fiber, natural fiber, biodegradable fiber, or combinations thereof.
- FIG. 2 discloses tensile strength and glass transition temperature results for epoxy polymers (from Epon 828) with histamine at various phr.
- the Histamine can cure epoxy at parts per hundred (phr's) of 6-16, lower than at theoretical (stoichiometric) phr of 20 with excellent thermo-mechanical properties, which are equal or better than those at theoretical phr (as measured by T g , tensile and flexural strength and hardness).
- Histamine because of its melting point of 84° C. can be isolated as solid and milled to a fine powder.
- Basic experiment was performed that such fine powder can be mixed at room temperature with Epon 828 epoxy resin at histamine phr of 19.7 to produce a paste that remained as a viscous liquid for longer periods of time; much longer than when histamine was used as liquid (either melted histamine or warmed up adduct.) The time that paste remained liquid is temperature dependent and at lower temperatures paste remains viscous longer.
- Histamine dihydrochloride (905 g, 4.92 moles) was dissolved in 825 g of water and 786.7 g of 50% sodium hydroxide (9.84 moles) was added. The pH of the solution was 10. The reaction mixture was concentrated on rotary evaporator and 750 mL of isopropanol (IPA) was added. Sodium chloride was filtered off and another portion of 750 mL of IPA was added. The mixture was concentrated and left under high vacuum overnight. The product crystallized out as solid mass with a yield of 470 g (86%). Similarly, the procedure can be performed using sodium carbonate in iso-propanol or essentially any inorganic base.
- IPA isopropanol
- the melting point of histamine is 84° C. When isolated as a free base, it crystallizes in the form of large fused crystals. The crystals can be milled to form powdery solids. Histamine powder is hygroscopic, but the milled histamine can be stored for long periods of time under dry and sealed containment.
- an adduct with Epon 828 (DGEBA) in a 13:1 mol ratio (“Histamine-13”) was developed. This form remains a viscous liquid for long periods of time and can easily be reheated to workable liquid.
- Cured epoxy thermoset plastic discs were prepared with the use of the above-mentioned melted or warmed-up Histamine-13 and additional Epon 828 (DGEBA).
- the parts of histamine per hundred parts of epoxy resin (PHR) was calculated and the corresponding quantities of histamine were speed-mixed with epoxy resin using a dual asymmetric centrifugal laboratory mixer system for 5 minutes at 2500 rpm in a disposable container. This procedure eliminated air bubbles and/or produced homogenous suspension of components (for pre-preg evaluation).
- the samples were either cured in epoxy sample discs or aluminum molds (size 10 inch ⁇ 10 inch ⁇ 0.25 inch). The samples were poured and left overnight at room temperature (RT). The partially cured samples were then post-cured in an oven at 125° C. for 10 minutes to 1-3 hours, unless stated otherwise.
- Table 1 discloses the relationship of histamine content and its corresponding T g value after postcuring for 10 minutes
- thermoset yields a T g that is similar to the T g at around stoichiometric combinations (Ex. 9 and 10, 19.7 phr being 100% stoichiometric), while in between, the T g undergoes a minimum with increasing histamine concentration, however the T g never drops below 132° C.
- prepared samples were determined with a Shore D hardness tester and all formulations in Table 1 showed a close range of hardness between 88 and 89 D
- histamine at an amount less than the theoretical phr of 100%, more specifically at a range not less than 30% phr and less than 100% phr, the samples show very high tensile and flexural strengths.
- the mechanical performance of histamine cured Epon 828 epoxy plates shows high strength over range of phr of 40-80% theoretical phr.
- the tensile strength was measured to be the highest: 87.5 MPa (12,692 psi) and 5.1% elongation at break.
- the flexural strength was measured to be highest at 40% of theoretical phr as well, namely 152.48 MPa (22,118 psi) and 6.3% strain at break.
- the strength of histamine cured epoxy plates drops significantly.
- Pre-preg materials are usually composed of three components: 1) high viscosity epoxy resin; 2) a curing agent; and 3) a cure accelerator.
- Epotec's YDPN 638 (a semi-solid phenol novolac based epoxy) was used as the resin, 7% of Evonik's Dicyanex 1408 (2-cyanoguanidine, DICY) was used as the hardener and 1% of melted histamine (Experiment 16) or 1% of Evonik's Imicure AMI2 (2-methyl imidazole) as the accelerator. Histamine was evaluated as replacement of 2-methyl imidazole in pre-pregs.
- Both studied pre-preg formulations produced white tacky paste after mixed warm using a high sheer dispensing impeller. After cooling the formulation remained tacky and rubbery for more than a week at room temperature.
- the pre-preg formulations were tested in the oven for curing speed at three different sets of temperatures and times, as shown in Table 3. The selected conditions were based on typically used for pre-pregs. When cured at 110° C. both formulations were under-cured, but cured rapidly at 120° C., as seen from the results below.
- histamine has catalytic properties equivalent to 2-methyl imidazole.
- the presence of a primary amine group as in histamine does not affect the catalytic properties or impacts storage or premature polymerization.
- Cured epoxy thermoset plastic discs were prepared with the use of Jeffamine D230 and histamine and additional Epon 828 (DGEBA). The parts of Jeffamine D230 per hundred parts of epoxy resin (PHR) was 30.5 and the PHR of histamine was 7.5. The mixtures were briefly mixed and poured into molds. The samples were then placed into the rheometer to determine pot life.
- DGEBA Jeffamine D230 and histamine and additional Epon 828
- Sample prep Instrument was preheated to desired temperature before inserting premixed sample. A stopwatch was used to measure the time between sample insertion on preheated instrument and the initiation of data collection (typically 30-40 seconds). Gel time and pot life values were corrected to account for this time.
- Pot life is defined as the amount of time it takes for an initial viscosity measured upon mixing to double. Timing starts from the moment the product is mixed and unless provided otherwise, is measured at room temperature (23° C.). As for the gel time, this is the time it takes until a resin becomes stringy or gel-like. Gel time is measured at an elevated temperature. Finally, cure time is the time it takes for a resin mix to fully cure at a certain temperature. The following table discloses the results of measurements.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Epoxy Resins (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
- This application claims the benefit of U.S. provisional application No. 62/685,837, filed Jun. 15, 2018, which is hereby incorporated by reference in its entirety.
- This invention was made with Government support under Agreement No. HR0011-15-9-0014, awarded by DARPA. The Government has certain rights in the invention.
- The present disclosure relates generally to the area of polymer resin compositions for manufacturing composite parts and, more particularly, to fast curing epoxy resin compositions yielding cured products with high tensile and flexural strength suitable for use in applications that require such properties.
- It is well known that thermosetting resin compositions or systems find applications in binding or impregnating various materials, such as glass fibers, carbon fibers mats or wovens, as well as other reinforcing materials. Manufacturing techniques for such composite structures are also known and can vary. Practical conditions of molding vary based on industry ranging from consumer goods over electronics to energy and transportation. Also, there are different resin systems used for either high or low pressure molding, for example, under partial vacuum to improve resin penetration into the reinforcement.
- Thermosets include polyester, epoxy, phenolic, vinyl esters, polyurethanes, silicones, polyamides, polyimides, and combinations thereof. The resins range from liquids to powders but are rarely used as pure resins.
- Aside from reinforcement materials to contribute to mechanical properties, the resins require curing agents, hardeners, and other additives such as inhibitors and plasticizers. Additional ingredients may be required to confer specific properties onto the composite, such as flame retardancy, ultraviolet stability, electrical conductivity, moisture or gas penetration hindrance, and others.
- The amount of additives mixed into a thermoset resin is often substantial and can extent to a third or more of the resin weight thereby interacting with the mechanical properties of the final product after curing. For example, conventional epoxy systems require 20-60 phr of hardener. The curative concentration is expressed in parts per hundred or phr and reflects amount in, e.g., grams to be mixed with 100 grams of resins. JEFFAMINE® D230 sold by Huntsman Corp. (The Woodlands, Tex.) is regularly used at 32 phr for epoxy resins, diethylenetriamine (‘DETA’) hardener at 21 phr, aminoethylpiperazine (AEP) at phr of 23. Accordingly, there is a need in the industry to achieve alternatives that reduces the amount of additives or combines functionalities such as, e.g., curing and hardening in order to avoid loss in performance of the thermoset while not impeding on conventional processing techniques.
- Resin transfer molding (‘RTM’) is an increasingly common form of molding wherein a catalyzed, low viscosity resin composition is pumped into a mold under pressure, displacing the air at the edges, until the mold is filled. The mold can be packed with fibers preform or dry fiber reinforcement prior to resin injection. Once the mold is filled with resin, the resin cure cycle begins wherein the mold is heated to a temperature of about 100° C. or greater and the resin polymerizes to a rigid state
- In the automotive industry, high-pressure resin transfer molding (‘HP-RTM’) is one type of manufacturing solutions used by OEMs and their suppliers to manufacture automotive structures. Such equipment typically utilizes intelligent or computerized filling processes with closed loop control, as well as a high-pressure metering system with sensors for monitoring internal mold pressure. Using closed loop control, resin injection can be managed and controlled. After the mold is closed, a high compression force is applied and the resin is injected at a high pressure of about 30 to about 100 bar (atm), completing impregnation and curing the resin.
- In order to meet manufacturing demands, the resin system used needs to have a cure time of about 10 minutes or less, preferably about 5 minutes or less at typical molding temperatures of about 120° C. to about 140° C., and yield substantially fully cured composite parts having a resin glass transition temperature (‘Tg’) of greater than 130° C. without the use of a post cure or multifunctional resins. Resin systems used to manufacture such composite parts, particularly thermosetting polymer composite parts, prepared by a crosslinking reaction using an appropriate curing agent and epoxy resin, desirably have the following properties: (a) low viscosity suitable for HP-RTM (e.g., about 120 cP or less at an injection temperature of about 120° C.); (b) fast cure reaction rate (e.g., about 5 minutes or less at 120° C. or about 3 minutes or less at 130° C.); (c) are substantially fully cured at the end of the reaction period (e.g., about 95 to 100% cured) and therefore do not require post-curing after molding; and (d) have high resin Tg's (e.g., greater than about 120° C.) and high composite Tg's (e.g., greater than about 130° C.). One skilled in the art, however, recognizes that it is difficult to formulate epoxy resin compositions having all the properties desirable for manufacturing composite structures that will cure rapidly. For example, it is usually difficult to achieve ultimate Tg of the epoxy, normally attainable under slow curing conditions, when curing epoxy rapidly. Typically, the Tg of rapidly cured samples are lower by 20 degrees than those of slowly cured ones.
- Different resin systems or formulations have been known and available for many years. These systems typically include one or more epoxy resins such as epoxy novolac resins and/or phenols such as those based on bisphenol-A (‘BPA’) and bisphenol-F (‘BPF’), among others. However, the epoxy resin used can affect different properties of the resin system, such as the mechanical properties and viscosity of the system.
- Conventionally, the resin formulation also includes a hardener or curing agent such as polyethyleneimine; cycloaliphatic anhydride; dicyanamide (‘DICY’); imidazoles, such as N-(3-aminopropyl)imidazole (‘API’); and amines, such as diethylenetriamine (‘DETA’) and 1,3-bis(aminomethyl)cyclohexane (‘1,3-BAC’). The resin formulation may also require an accelerator or catalyst for accelerating the reactivity of the curing agent with the epoxy. However, the combinations of epoxies, hardeners and catalyst can negatively affect properties noted above needed to work in HP-RTM molding manufacturing processes. Therefore, there is a need for fast curing epoxy compositions suitable for use in HP-RTM manufacturing processes that meets the manufacturing requirements of low viscosity, fast cure and high resin Tg's. These needs are addressed by the embodiments of the present disclosure as described below and defined by the claims that follow.
- In a first aspect, an article comprises a cured polymer. The cured polymer includes a tensile strength as determined by ISO 527-1 (2012) of not less than 10,000 psi (68,948 kPa). Alternatively, the cured polymer can include a flexural strength as determined by ISO 178 (2010) of not less than 17,000 psi (117,211 kPa). In addition to the tensile or the flexural strength, the cured also includes an elongation at break as determined by ISO 527-1 (2012) of at least 2% or a flexural strain as determined by ISO 178 (2010) of at least 4%.
- In a second aspect, a resin composition includes about 70 wt % to about 98 wt % by weight of the resin composition of at least one polymer component. The resin composition further includes a curing component comprising 2 wt % to about 30 wt % by weight of the composition. The curing component can include a chemical that has a secondary amine or a primary amine. The chemical can further include a tertiary amine, an aromatic amine, or an imine. Moreover, the chemical can have a molecular weight in a free-base form of greater than 70 g/mol.
- In a third aspect, a process comprises mixing a curing component and a polymer component to form a resin. The process further includes transferring the resin into a mold. The process can further include curing the resin at a curing temperature Tc of less than 120° for not more than 10 minutes. Moreover, the process can include removing a substantially cured article from the mold. In embodiments, the article includes a tensile strength as determined by ISO 527-1 (2012) of not less than 10,000 psi (68,948 kPa) or a flexural strength as determined by ISO 178 (2010) of not less than 17,000 psi (117,211 kPa). Moreover, the article can have an elongation at break as determined ISO 527-1 (2012) of at least 2% or a flexural strain as determined by ISO 178 (2010) of at least 4%.
- In a fourth aspect, an epoxy resin composition comprises about 70 wt % to about 95 wt % by weight of the composition of an epoxy component. The epoxy resin can further include a curing component comprising about 5 wt % to about 30 wt % by weight of the composition. The curing component includes an imidazole. The imidazole can be selected from
- wherein R1 and R2 are not concurrently hydrogen and are selected from the group consisting of amino alkyl, hydroxy alkyl, amino-hydroxy alkyl, and any combination thereof. Moreover, the epoxy component and the curing component react together at a temperature of about 100° C. to about 130° C. to form a substantially cured reaction product in about 10 minutes or less. Even further, the cured reaction product includes a tensile strength as determined by ISO 527-1 (2012) of not less than 10,000 psi (68,948 kPa) or a flexural strength as determined by ISO 178 (2010) of not less than 17,000 psi (117,211 kPa). The cure reaction can also include an elongation at break as determined by ISO 527-1 (2012) of at least 2% or a flexural strain as determined by ISO 178 (2010) of at least 4%.
- Embodiments are illustrated by way of example and are not limited in the accompanying figures.
-
FIG. 1 displays a reaction pathway for epoxy curing. -
FIG. 2 illustrates mechanical properties and glass transition temperatures of various epoxy formulations. - Skilled artisans appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the disclosure.
- The following description in combination with the figures is provided to assist in understanding the teachings disclosed herein. The following discussion will focus on specific implementations and embodiments of the teachings. This focus is provided to assist in describing the teachings and should not be interpreted as a limitation on the scope or applicability of the teachings. However, other embodiments can be used based on the teachings as disclosed in this application.
- The terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a method, article, or apparatus that comprises a list of features is not necessarily limited only to those features but may include other features not expressly listed or inherent to such method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive-or and not to an exclusive-or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
- Also, the use of “a” or “an” is employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the disclosure. This description should be read to include one, at least one, or the singular as also including the plural, or vice versa, unless it is clear that it is meant otherwise. For example, when a single item is described herein, more than one item may be used in place of a single item. Similarly, where more than one item is described herein, a single item may be substituted for that more than one item.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The materials, methods, and examples are illustrative only and not intended to be limiting. To the extent not described herein, many details regarding specific materials and processing acts are conventional and may be found in textbooks and other sources within the composites, polymers, thermosets and polymer formulations.
- As described above as the first aspect in the Summary of the Disclosure, the cured polymer can have a tensile strength as determined by ISO 527-1 (2012) of not less than 10,000 psi (68,948 kPa) or a fle flexural strength as determined by ISO 178 (2010) of not less than 17,000 psi (117,211 kPa). In one embodiment, the tensile strength can be not less than 10,500 psi (72,395 kPa), such as not less than 11,000 psi (75,843 kPa), not less than 11,300 psi (77,911 kPa), not less than 11,500 psi (79,290 kPa), not less than 11,800 psi (81,359 kPa), not less than 12,000 psi (82,738 kPa), not less than 12,200 psi (84,117 kPa), not less than 12,400 psi (85,495 kPa), not less than 12,600 psi (86,874 kPa), or not less than 12,800 psi (88,253 kPa).
- In another embodiment, the flexural strength can be not less than 17,500 psi (120,659 kPa), such as not less than 18,000 psi (124,106 kPa), not less than 18,500 psi (127,554 kPa), not less than 19,000 psi (131,001 kPa), not less than 19,500 psi (134,448 kPa), not less than 20,000 psi (137,896 kPa), not less than 20,200 psi (139,275 kPa), not less than 20,400 psi (140,653 kPa), not less than 20,600 psi (142,032 kPa), not less than 20,800 psi (143,411 kPa), not less than 21,000 psi (144,790 kPa), not less than 21,200 psi (146,169 kPa), not less than 21,400 psi (147,549 kPa), not less than 21,600 psi (148,927 kPa), or not less than 21,800 psi (150,306 kPa).
- In further addressing the first aspect, the cured polymer can have an elongation at break as determined by ISO 527-1 (2012) of at least 2% or a flexural strain as determined by ISO 178 (2010) of at least 4%. In one embodiment, the elongation at break can be at least 2.1%, such as at least 2.2%, at least 2.3%, at least 2.4%, at least 2.5%, at least 2.6%, at least 2.7%, at least 2.8%, at least 2.9%, at least 3%, at least 3.2%, at least 3.4%, at least 3.6%, at least 3.8%, at least 4%, at least 4.3%, at least 4.5%, at least 4.8%, at least 5%, at least 5.3%, at least 5.5%, at least 5.8%, or at least 6%.
- In another embodiment, the cured polymer can have a flexural strain that is at least 4.1%, such as at least 4.2%, at least 4.3%, at least 4.4%, at least 4.5%, at least 4.6%, at least 4.7%, at least 4.8%, at least 4.9%, at least 5%, at least 5.2%, at least 5.4%, at least 5.6%, at least 5.8%, at least 6%, at least 6.3%, at least 6.5%, at least 6.8%, at least 7%, at least 7.3%, at least 7.5%, at least 7.8%, or at least 8%.
- In one further embodiment, the cured polymer can have a glass transition temperature Tg as determined by differential scanning calorimetry according to ASTM D7028 of at least 120° C., such as at least 125° C., at least 130° C., at least 132° C., at least 134° C., at least 136° C., at least 138° C., at least 140° C., at least 142° C., at least 144° C., at least 146° C., at least 148° C., at least 150° C., at least 152° C., or at least 154° C.
- In one further embodiment, the Tg is greater than the curing temperature Tcure, i.e. the temperature during processing at which the cured polymer is obtained from a mixture of a resin, a curing component, and any other optional additives. In one particular embodiment, the difference between Tg and Tcure is at least 10° C., such as at least at least 15° C., at least 20° C., at least 25° C., at least 30° C., at least 35° C., at least 40° C., at least 45° C., or at least 50° C.
- In one embodiment, the cured polymer of the polymer can include an epoxy polymer, a polyester, a polyamide, a polyimide, a polyurethane, a polyacrylate, a polyacrylamide, a polyketone, or any combination thereof. In one particular embodiment, the cured polymer consists essentially of an epoxy polymer. In this regard, a polymer is understood to be the reaction product of a polymer component and a curing component. For example, an epoxy polymer is understood to be the reaction product of an epoxy component and a curing component.
- The polymer component can be present in an amount of about 50 wt % to about 99 wt % by weight of the composition. In one embodiment, the polymer component is present in an amount of about 70 wt % to about 98 wt % by weight of the composition. The polymer component can be a single resin, or it can be a mixture or blend of mutually compatible resins.
- In addressing epoxy polymers, an epoxy resin component and a curing component. The epoxy component can be present in an amount of about 50 wt % to about 98 wt % by weight of the composition. In one embodiment, the epoxy component is present in an amount of about 70 wt % to about 95 wt % by weight of the composition. The epoxy resin can be a single resin, or it can be a mixture or blend of mutually compatible epoxy resins.
- Suitable epoxy resins include, but are not limited to, bi-functional epoxies, based on phenols such as 2,2-bis-(4-hydroxyphenyl)-propane (a/k/a bisphenol A) and bis-(4-hydroxyphenyl)-methane (a/k/a bisphenol F). These phenols can be reacted with epichlorohydrin to form the diglycidyl ethers of these polyhydric phenols (e.g., bisphenol A diglycidyl ether, or DGEBA). Multifunctional epoxy resin, as utilized herein, describes compounds containing two (i.e., di-functional) or more (i.e., multi-functional) 1,2-epoxy groups per molecule. Epoxide compounds of this type are well known to those of skill in the art.
- The epoxy component can be an aliphatic epoxy resin, which include glycidyl epoxy resins and cycloaliphatic (alicyclic) epoxide. Glycidyl epoxy resins include dodecanol glycidyl ether, diglycidyl ester of hexahydrophthalic acid, and trimethylolpropane triglycidyl ether. These resins typically display low viscosity at room temperature (10-200 mPa·s) and can be used to reduce the viscosity of other resins. Examples of suitable cycloaliphatic epoxides include diepoxides of cycloaliphatic esters of dicarboxylic acids such as bis(3,4-epoxycyclohexylmethyl)oxalate, bis(3,4-epoxycyclohexylmethyl)adipate, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, vinylyclohexene diepoxides; limonene diepoxide; bis(3,4-epoxycyclohexylmethyl)pimelate; dicyclopentadiene diepoxide; and other suitable cycloaliphatic epoxides. The cycloaliphatic epoxides also display low viscosity at room temperature; however, their room temperature reactivity is rather low, and high temperature curing with suitable accelerators is normally required.
- In another embodiment, epoxy novolac resins, which are the glycidyl ethers of novolac resins, can be used as multifunctional epoxy resins in accordance with the present disclosure. Suitable epoxy novolac resins include polyepoxides (epoxy phenol novolac resin) and epoxy cresol novolac resin. These are typically highly viscous resins having a high epoxide functionality of around 2 to 6, providing high temperature and chemical resistance when cured but low flexibility.
- The viscosity of the epoxy resin composition can be reduced by modifying the epoxy component. The epoxy component can comprise at least one multifunctional epoxy resin and/or one or more monofunctional epoxy resins. Monoepoxides include, but are not limited to, styrene oxide, cyclohexene oxide and the glycidyl ethers of phenol, cresols, tert-butylphenol, other alkyl phenols, butanol, 2-ethylhexanol, C4 to C14 alcohols, and the like, or combinations thereof. The multifunctional epoxy resin can also be present in a solution or emulsion, with the diluent being water, an organic solvent, or a mixture thereof.
- Other epoxy resins suitable for use in the present invention include higher functionality epoxies such as the glycidylamine epoxy resins. Examples of such resins include triglycidyl-p-aminophenol (functionality 3) and N,N,N,N-tetraglycidyl-4,5-methylenebis benzylamine (functionality 4). These resins are low to medium viscosity at room temperature, making them easy to process.
- The resin composition further includes a curing component. In embodiments, the curing component includes a secondary amine or primary amine. The curing component can further include a tertiary amine, an aromatic amine, or an imine. Moreover, the curing component can include a molecular weight in a free-base form of greater than 70 g/mol, such as greater than 75 g/mol, greater than 80 g/mol, greater than 85 g/mol, greater than 90 g/mol, greater than 95 g/mol, greater than 100 g/mol, greater than 105 g/mol, greater than 110 g/mol, greater than 120 g/mol, greater than 130 g/mol, greater than 140 g/mol, greater than 150 g/mol, or greater than 160 g/mol.
- In one embodiment, the curing component can include a primary amine, a secondary amine and an aromatic amine. In another embodiment, the curing component can include two primary amines, one secondary amine, and an aromatic amine. In yet another embodiment, the aromatic amine includes a moiety selected from an imidazole, a pyridine, a pyrimidine, a pyrazine, a benzimidazole, a thiazole, an oxazole, a pyrazole, an isooxazole, an isothiazole, or any mixture thereof
- In another embodiment, the curing component is selected from
- In the foregoing imidazole, R1 and R2 can be not concurrently hydrogen. In one embodiment, R1 and R2 can be selected from the group consisting of amino alkyl, hydroxy alkyl, amino-hydroxy alkyl, or any combination thereof.
- In yet another embodiment, the curing component can be selected from
- or any enantiomers or diastereomers of the foregoing. For structures comprising a group R3, the group R3 can be selected from hydrogen, methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, tert-butyl, or isobutyl. In yet another embodiment, the curing component consists essentially of histamine. In one further embodiment, the curing component consists essentially of 2-(2-aminoethyl)imidazole.
- In addressing
FIG. 1 of the present disclosure, an exemplary curing reaction on epoxy resin is displayed. More specifically, histamine is shown as a curing component. As can be seen in the first step, the primary amine is most reactive and reacts with two epoxy group of an epoxy resin. Thereby, the primary amine becomes a linker in a first chain of an epoxy polymer back bone. In the second step, the secondary amine of the imidazole ring reacts with one epoxy group. Accordingly, the secondary amine becomes the end unit of a second epoxy polymer chain. As can be seen in the third step, as the reaction carries on, the heterocyclic aromatic amine becomes active and reacts with an epoxy group, thereby generating a zwitterion. The zwitterion alkoxide can actually further react with another epoxy group thereby further catalyzing polymerization of epoxy itself. For clarity, chain transfer, i.e., where the activity of a growing polymer chain is transferred to another molecule (P•+XR→PX+R•) is omitted in this polymerization process, but it may also contribute to polymerization of epoxy itself. Since prior to the third step (aromatic amine reaction), the epoxy system is already crosslinked, the polymerization that began with the aromatic amine and comprises alkoxides can actually further grow and link all unreacted epoxy groups, either directly or via a chain transfer process, or even react with another polymer chain by hydrogen bond or nucleophilic substitution of a hydroxyl group, which results macroscopically in a stronger polymer material. Similar hardeners such as 1-(aminopropylene)imidazole (‘API’), do not have a secondary amine that reacts with epoxy, thereby missing a potential to crosslink epoxy prior to epoxy homopolymerization. - Accordingly, the presence of protic amino and non-protic imino or aromatic amines in the curing component have an effect on the tensile and flexural properties of the resulting cured polymer. Moreover, the distance of the protic and non-protic nitrogens can affect the resulting crosslinking reactivity of the curing agent, since the distance determines how close the polymer chains that the protic amines form come to each other. Therefore, in one embodiment, the primary amine of the curing component can be within a radius of less than 100 nm, less than 90 nm, less than 80 nm, less than 70 nm, less than 60 nm, or less than 50 nm from the secondary amine nitrogen. In another embodiment, the aromatic amine or imine can be within a radius of less than 50 nm, less than 40 nm, less than 30 nm, less than 20 nm from the secondary amine nitrogen.
- In another embodiment, the curing component can include a product that is a naturally occurring substance. In one particular embodiment, the curing component can be selected from
- or any enantiomers or diastereomers of the foregoing.
- In addressing the polymer component, in one embodiment, the polymer component can be selected from an epoxy component, a carboxylic acid component, a carboxylic ester component, a carboxylic anhydride component, an isocyanate component, an acrylonitrile component, a urea component, an aldehyde component, a ketone component, or any combination thereof. In another embodiment, the polymer component and the curing component react together at a temperature of about 90° C. to about 140° C. in less than 10 minutes to substantially form a cured polymer. In another embodiment, they react together at a temperature of about 100° C. to about 135° C. in less than 8 minutes, less than 6 minutes, less than 5 minutes, or less than 4 minutes to substantially form a cured polymer.
- Accordingly, a process comprises mixing a curing component and a polymer component to form a resin. The process further includes transferring the resin into a mold. The process can further include curing the resin at a curing temperature Tc of less than 120° for not more than 10 minutes. Moreover, the process can include removing a substantially cured article from the mold. In embodiments, the article includes a tensile strength as determined by ISO 527-1 (2012) of not less than 10,000 psi (68,948 kPa) or a flexural strength as determined by ISO 178 (2010) of not less than 17,000 psi (117,211 kPa). Moreover, the article can have an elongation at break as determined ISO 527-1 (2012) of at least 2% or a flexural strain as determined by ISO 178 (2010) of at least 4%.
- In one embodiment, the curing component can be added at less than the theoretical stoichiometry needed to have all reactive sites of the polymer component reacted with the curing agent. This can be understood in light of
FIG. 1 and the foregoing description. Since the aromatic amine creates a zwitterion, epoxy functions can homo-polymerize. - In one embodiment, the curing component can be added at not greater than 90% of the theoretical stoichiometry, such as at not greater than 80%, at not greater than 70%, at not greater than 60%, at not greater than 55%, at not greater than 50%, at not greater than 45%, at not greater than 40%, at not greater than 35%, at not greater than 30%, or at not greater than 25% of the theoretical stoichiometry.
- In another embodiment, the polymer component includes a number of reactive functionalities nr, e.g., epoxy functions, and the curing component includes a curing functionality nc, e.g., primary amines (factor 2), secondary amine (factor 1), and heterocyclic aromatic-amines (factor 1). For a 100% theoretical stoichiometry, nr=nc. In one embodiment of the present disclosure the resin has a ratio of nc:nr of not greater than 0.98, not greater than 0.95, not greater than 0.9, not greater than 0.85, not greater than 0.8, not greater than 0.75, not greater than 0.7, not greater than 0.65, not greater than 0.6, not greater than 0.55, not greater than 0.5, not greater than 0.45, not greater than 0.4, not greater than 0.38, not greater than 0.36, not greater than 0.34, not greater than 0.32, not greater than 0.30, not greater than 0.28, not greater than 0.26, not greater than 0.24, not greater than 0.22, not greater than 0.2, not greater than 0.18, or not greater than 0.16.
- In another embodiment, the resin can further include reinforcement fibers. In an embodiment, the reinforcing fiber can be selected from glass fiber, fiberglass, silicon carbide fiber, disilicon carbide fiber, carbon fiber, graphite fiber, boron fiber, quartz fiber, aluminum oxide fiber, carbon nanotubes, nano composite fibers, polyaramide fiber, poly(p-phenylene benzobisoxazole) fiber, ultrahigh molecular weight polyethylene fiber, high and low density polyethylene fiber, polypropylene fiber, nylon fiber, cellulose fiber, natural fiber, biodegradable fiber, or combinations thereof.
-
FIG. 2 discloses tensile strength and glass transition temperature results for epoxy polymers (from Epon 828) with histamine at various phr. As can be seen, the Histamine can cure epoxy at parts per hundred (phr's) of 6-16, lower than at theoretical (stoichiometric) phr of 20 with excellent thermo-mechanical properties, which are equal or better than those at theoretical phr (as measured by Tg, tensile and flexural strength and hardness). When used with Epon 828, histamine at phr of 7.88 (40% of theoretical phr) gives epoxy with Tg of ˜150° C., tensile strength of epoxy 87.5 MPa, flexural strength 152.5 MPa and strain (elongation) 5.1% and 6.3% respectively. - For comparison—typical values for Jeffamine D230 at phr 32 (about 4 times more D230 used than histamine) are: 76 MPa tensile and 93 MPa flexural. The explanation of this unusual behavior of histamine lies in balancing mechanism of action of histamine between cross-linking (normal epoxy curing mechanism) and homopolymerization of epoxy. Histamine acts efficiently as a catalyst for pre-preg formulations when used together with 2-cyanoguanidine (DICY) and pre-preg epoxy resins in place of commonly used 2-methylimidazole. Histamine powder may be used for one-component epoxy.
- Histamine because of its melting point of 84° C. can be isolated as solid and milled to a fine powder. Basic experiment was performed that such fine powder can be mixed at room temperature with Epon 828 epoxy resin at histamine phr of 19.7 to produce a paste that remained as a viscous liquid for longer periods of time; much longer than when histamine was used as liquid (either melted histamine or warmed up adduct.) The time that paste remained liquid is temperature dependent and at lower temperatures paste remains viscous longer. Paste, when stored at room temperature, solidified on the next day. There is a need for one-part epoxy adhesives that eliminate need for weighing and mixing of components. Histamine powder has ability to produce such adhesives.
- Experiment 1: Synthesis of Histamine on 500 g Scale
- Histamine dihydrochloride (905 g, 4.92 moles) was dissolved in 825 g of water and 786.7 g of 50% sodium hydroxide (9.84 moles) was added. The pH of the solution was 10. The reaction mixture was concentrated on rotary evaporator and 750 mL of isopropanol (IPA) was added. Sodium chloride was filtered off and another portion of 750 mL of IPA was added. The mixture was concentrated and left under high vacuum overnight. The product crystallized out as solid mass with a yield of 470 g (86%). Similarly, the procedure can be performed using sodium carbonate in iso-propanol or essentially any inorganic base.
- Experiment 2: Histamine-13
- The melting point of histamine is 84° C. When isolated as a free base, it crystallizes in the form of large fused crystals. The crystals can be milled to form powdery solids. Histamine powder is hygroscopic, but the milled histamine can be stored for long periods of time under dry and sealed containment. For liquid formulations, an adduct with Epon 828 (DGEBA) in a 13:1 mol ratio (“Histamine-13”) was developed. This form remains a viscous liquid for long periods of time and can easily be reheated to workable liquid.
- Experiments 3-10: Epoxy Thermoset Samples
- Cured epoxy thermoset plastic discs were prepared with the use of the above-mentioned melted or warmed-up Histamine-13 and additional Epon 828 (DGEBA). The parts of histamine per hundred parts of epoxy resin (PHR) was calculated and the corresponding quantities of histamine were speed-mixed with epoxy resin using a dual asymmetric centrifugal laboratory mixer system for 5 minutes at 2500 rpm in a disposable container. This procedure eliminated air bubbles and/or produced homogenous suspension of components (for pre-preg evaluation). The samples were either cured in epoxy sample discs or aluminum molds (size 10 inch×10 inch×0.25 inch). The samples were poured and left overnight at room temperature (RT). The partially cured samples were then post-cured in an oven at 125° C. for 10 minutes to 1-3 hours, unless stated otherwise.
- Table 1 discloses the relationship of histamine content and its corresponding Tg value after postcuring for 10 minutes
-
TABLE 1 Histamine content versus Tg. Experi- Wt. % of Phr of ment Histamine-13 histamine Tg/° C. 3 1.5 1.52 110 4 4.5 4.71 150 5 5.9 6.27 146 6 7.6 8.23 132 7 10.2 11.36 133 8 11.9 13.51 141 9 15.2 17.92 155 10 21.8 27.88 159 - As can be seen from Table 1, at low histamine concentrations (Ex. 4 and 5), the resulting thermoset yields a Tg that is similar to the Tg at around stoichiometric combinations (Ex. 9 and 10, 19.7 phr being 100% stoichiometric), while in between, the Tg undergoes a minimum with increasing histamine concentration, however the Tg never drops below 132° C. Moreover, the prepared samples were determined with a Shore D hardness tester and all formulations in Table 1 showed a close range of hardness between 88 and 89 D
- Experiments 11-15: Mechanical Properties at Various Phr
- The mechanical performance of histamine cured plates (10 inch×10 inch×0.25 inch) was evaluated at phr levels of 5.91, 7.88, 9.85 and 15.8 (30%, 40%, 50% and 80% of theoretical phr) following ISO 527 tensile testing and ISO 178 flexural testing. Plates were prepared as described above. After curing, they were even in coloring and had not any fractal patterns other than the one at theoretical phr of 19.7.
- Multiple specimens were cut from the plates and the force was applied to determine force required to break specimen and the extent to which the specimen stretches, elongates or bends. The data are presented in Table 2 (nd=not determined).
-
TABLE 2 Tensile and flexural properties of thermosets at various histamine content. % tensile tensile flexural flexural theor. strength strain modulus strength strain modulus Ex. phr phr [MPa] [%] [GPa] [MPa] [%] [GPa] 11 5.91 30% 39.33 1.5 3.052 91.5 3.40% 3.105 12 7.88 40% 87.51 5.06 3.403 152.48 6.34% 3.441 13 9.85 50% 66.95 3.02 3.316 138.13 5.88% 3.476 14 15.8 80% 69.06 3.52 3.098 127.31 5.27% 3.273 15 19.7 100% 26.54 0.9 3.211 nd nd Nd - Unexpectedly, histamine at an amount less than the theoretical phr of 100%, more specifically at a range not less than 30% phr and less than 100% phr, the samples show very high tensile and flexural strengths. The mechanical performance of histamine cured Epon 828 epoxy plates shows high strength over range of phr of 40-80% theoretical phr. At 40% of theoretical phr (phr=7.88) the tensile strength was measured to be the highest: 87.5 MPa (12,692 psi) and 5.1% elongation at break. The flexural strength was measured to be highest at 40% of theoretical phr as well, namely 152.48 MPa (22,118 psi) and 6.3% strain at break. At both ends of tested range of phr, namely: above 80% and below 40% of theoretical phr, the strength of histamine cured epoxy plates drops significantly.
- Experiments 16 and 17: Histamine as Components of Pre-Pregs
- Pre-preg materials are usually composed of three components: 1) high viscosity epoxy resin; 2) a curing agent; and 3) a cure accelerator. Epotec's YDPN 638 (a semi-solid phenol novolac based epoxy) was used as the resin, 7% of Evonik's Dicyanex 1408 (2-cyanoguanidine, DICY) was used as the hardener and 1% of melted histamine (Experiment 16) or 1% of Evonik's Imicure AMI2 (2-methyl imidazole) as the accelerator. Histamine was evaluated as replacement of 2-methyl imidazole in pre-pregs.
- Both studied pre-preg formulations produced white tacky paste after mixed warm using a high sheer dispensing impeller. After cooling the formulation remained tacky and rubbery for more than a week at room temperature. The pre-preg formulations were tested in the oven for curing speed at three different sets of temperatures and times, as shown in Table 3. The selected conditions were based on typically used for pre-pregs. When cured at 110° C. both formulations were under-cured, but cured rapidly at 120° C., as seen from the results below.
- As can be seen in Table 3, histamine has catalytic properties equivalent to 2-methyl imidazole. The presence of a primary amine group as in histamine does not affect the catalytic properties or impacts storage or premature polymerization.
-
TABLE 3 Histamine as a catalyst Experiment 16 Experiment 17 YDPN 638 epoxy YDPN 638 epoxy (EPOTEC) (EPOTEC) 200 g 200 g Histamine 2 g 2-methyl imidazole 2 g DICY—DICYANEX DICY—DICYANEX Curing 1408 (EVONIK) 14 g 1408 (EVONIK) 14 g conditions Tg/° C. Tg/° C. 10 minutes at ~150° C. ~150° C. 110° C. (1st scan) (1st scan) 5 minutes at 186° C. 191° C. 120° C. 196° C. 198° C. (2nd scan) (2nd scan) 20 minutes at 217° C. 219° C. 120° C. (2nd scan) (2nd scan) - Experiments 18-20: Additional Amines with Epoxy Resins
- Mixtures of epoxy with amines similar to histamine were prepared with the use of standalone hardeners as listed in Table 4 with Epon 828. The amount studied corresponded to 8% of theoretical PHR to achieve catalytic effect, namely anionic homopolymerization of Epon 828.
- L-Histidinol, closely related to histamine, was difficult to formulate because of high polarity and low solubility in Epon 828 and Tg obtained was below 60° C. 5,6-Dimethylbenzimidazole showed performance similar to histamine. Despite high melting point (205° C.) it catalyzes homopolymerization of Epon 828 due to its solubility. Homopolymerization in presence of 5,6-dimethylbenzimidazole starts at 120-130° C. and obtained epoxy has Tg of 158° C. as expected based on previous research
-
TABLE 4 Various imidazoles Parts of amine per 100 parts (PHR) of Epon 828 Tmelt/ and Type Tg Ex. Amine ° C. of study Observations (° C.) 18 5,6-Dimethyl- 205 6.2 cures epoxy at 158 benzimidazole Catalyst ~120° C. 19 L-Histidinol liquid 2 Cures epoxy at <60 Catalyst ~125° C. 20 L-Histidine Na 122 70.5 Cures epoxy at 88 salt—crown-5 Cross- ~125° C. linker - Experiments 21-22: Conventional Amine Hardener Versus Histamine in Epoxy Resins
- Cured epoxy thermoset plastic discs were prepared with the use of Jeffamine D230 and histamine and additional Epon 828 (DGEBA). The parts of Jeffamine D230 per hundred parts of epoxy resin (PHR) was 30.5 and the PHR of histamine was 7.5. The mixtures were briefly mixed and poured into molds. The samples were then placed into the rheometer to determine pot life.
-
- Rheometer settings
- Instrument: DHR-1 (TA Instruments)
- Fixture: 25 mm parallel plates w/drip channel
- Normal force control: 0.1 N with 0.5 N sensitivity
- Test mode: Oscillation time sweep
- Sampling interval: 25 s/pt
- Strain: 0.1%
- Angular frequency: 1 rad/s
- Gap size: 500 um
- Sample prep: Instrument was preheated to desired temperature before inserting premixed sample. A stopwatch was used to measure the time between sample insertion on preheated instrument and the initiation of data collection (typically 30-40 seconds). Gel time and pot life values were corrected to account for this time.
- Pot life is defined as the amount of time it takes for an initial viscosity measured upon mixing to double. Timing starts from the moment the product is mixed and unless provided otherwise, is measured at room temperature (23° C.). As for the gel time, this is the time it takes until a resin becomes stringy or gel-like. Gel time is measured at an elevated temperature. Finally, cure time is the time it takes for a resin mix to fully cure at a certain temperature. The following table discloses the results of measurements.
-
TABLE 5 Jeffamine and Histamine comparison Cure Gel Experi- temp/ time/ Pot life/ Tg/ ment Hardener ° C. sec sec* ° C.** 20a Jeffamine 70 4427 621 ~90 20b Jeffamine 100 963 375 ~90 20c Jeffamine 130 283 181 ~90 21a Histamine 100 304 104 ~165 21b Histamine 120 128 <40 ~165 21c Histamine 140 <40 <40 ~165 *Pot life/sec was measured at the indicated Cure temp **Tg shown was for optimal Cure conditions - As can be seen in Table 5, Histamine cures faster than conventional hardener Jeffamine D230. More surprisingly, at a cure temperature of 140° C., the cure kinetics are only a fraction of those set by the benchmark hardener. Fast curing times correlate to lower cycle times during production and therefore lower costs and higher throughput. Moreover, Histamine achieves this faster kinetics while also providing a higher Tg. One advantage of a Tg above cure temperature is rapidly demolding without cooling which also contributes more rapid manufacture. Moreover, high Tg materials allows for applications in high temperatures environments. For example, a plastic with a high Tg can be situated closer to a heat source or a combustion engine
Claims (30)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/250,186 US20210261721A1 (en) | 2018-06-15 | 2019-06-14 | Use of heterocyclic amines containing primary or secondary amines as a polymer catalyst or hardener |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862685837P | 2018-06-15 | 2018-06-15 | |
| US17/250,186 US20210261721A1 (en) | 2018-06-15 | 2019-06-14 | Use of heterocyclic amines containing primary or secondary amines as a polymer catalyst or hardener |
| PCT/US2019/037370 WO2019241743A1 (en) | 2018-06-15 | 2019-06-14 | Use of heterocyclic amines containing primary or secondary amines as a polymer catalyst or hardener |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20210261721A1 true US20210261721A1 (en) | 2021-08-26 |
Family
ID=68842371
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/250,186 Abandoned US20210261721A1 (en) | 2018-06-15 | 2019-06-14 | Use of heterocyclic amines containing primary or secondary amines as a polymer catalyst or hardener |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20210261721A1 (en) |
| EP (1) | EP3807338A1 (en) |
| JP (1) | JP2021528528A (en) |
| KR (1) | KR20210009429A (en) |
| CN (1) | CN112449644A (en) |
| CA (1) | CA3103803A1 (en) |
| WO (1) | WO2019241743A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114746504B (en) | 2019-12-10 | 2024-08-06 | 亨斯迈先进材料美国有限责任公司 | Curable resin compositions containing aliphatic polyketone toughening agents and composites made therefrom |
| KR102667803B1 (en) | 2022-11-10 | 2024-05-21 | 한국과학기술연구원 | Epoxy vitrimer that can be recycled and reprocessed, manufacturing method thereof, and composite material comprising the same |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040265755A1 (en) * | 2003-02-26 | 2004-12-30 | Samsung Electronics Co., Ltd. | Method of making carbon nanotube patterned film or carbon nanotube composite using carbon nanotubes surface-modified with polymerizable moieties |
| US20080213487A1 (en) * | 2006-10-13 | 2008-09-04 | Samsung Electronics Company, Ltd. | Multicomponent carbon nanotube-polymer complex, composition for forming the same, and preparation method thereof |
| US20190031879A1 (en) * | 2016-03-24 | 2019-01-31 | Ticona Llc | Polyarylene Sulfide Composition with Improved Adhesion to Metal Components |
| US20200307109A1 (en) * | 2017-12-21 | 2020-10-01 | Elantas Europe S.R.L. | New use of isosorbide |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4970936B2 (en) * | 2003-06-16 | 2012-07-11 | ウィリアム・マーシュ・ライス・ユニバーシティ | Functionalization of carbon nanotube sidewalls at hydroxyl-terminated moieties |
| US9840588B2 (en) * | 2009-12-18 | 2017-12-12 | Hexion Inc. | Epoxy resin curing compositions and epoxy resin systems including same |
| US20120328811A1 (en) * | 2011-06-24 | 2012-12-27 | Air Products And Chemicals, Inc. | Epoxy Resin Compositions |
| JP2013018804A (en) * | 2011-07-07 | 2013-01-31 | Nagase Chemtex Corp | Epoxy resin composition |
| KR101646531B1 (en) * | 2016-01-18 | 2016-08-08 | 회명산업 주식회사 | Latent Curing Agent for Epoxy Resin, Method for Preparing the Same, One Pack Type Epoxy Resin Composition Comprising Above Latent Curing Agent |
| CN106117513B (en) * | 2016-07-26 | 2018-07-17 | 泰山体育产业集团有限公司 | A kind of elastic cured epoxy-resin systems and preparation method thereof |
-
2019
- 2019-06-14 WO PCT/US2019/037370 patent/WO2019241743A1/en not_active Ceased
- 2019-06-14 CA CA3103803A patent/CA3103803A1/en not_active Abandoned
- 2019-06-14 KR KR1020217001149A patent/KR20210009429A/en not_active Withdrawn
- 2019-06-14 CN CN201980048665.0A patent/CN112449644A/en active Pending
- 2019-06-14 EP EP19820508.0A patent/EP3807338A1/en not_active Withdrawn
- 2019-06-14 US US17/250,186 patent/US20210261721A1/en not_active Abandoned
- 2019-06-14 JP JP2020569881A patent/JP2021528528A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040265755A1 (en) * | 2003-02-26 | 2004-12-30 | Samsung Electronics Co., Ltd. | Method of making carbon nanotube patterned film or carbon nanotube composite using carbon nanotubes surface-modified with polymerizable moieties |
| US20080213487A1 (en) * | 2006-10-13 | 2008-09-04 | Samsung Electronics Company, Ltd. | Multicomponent carbon nanotube-polymer complex, composition for forming the same, and preparation method thereof |
| US20190031879A1 (en) * | 2016-03-24 | 2019-01-31 | Ticona Llc | Polyarylene Sulfide Composition with Improved Adhesion to Metal Components |
| US20200307109A1 (en) * | 2017-12-21 | 2020-10-01 | Elantas Europe S.R.L. | New use of isosorbide |
Non-Patent Citations (1)
| Title |
|---|
| EPON Resin 828 Technical Data Bulletin, Hexion Specialty Chemicals, Sept. 2005 (Year: 2005) * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2021528528A (en) | 2021-10-21 |
| WO2019241743A1 (en) | 2019-12-19 |
| EP3807338A1 (en) | 2021-04-21 |
| KR20210009429A (en) | 2021-01-26 |
| CA3103803A1 (en) | 2019-12-19 |
| CN112449644A (en) | 2021-03-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2729895C (en) | Blends comprising epoxy resins and mixtures of amines with guanidine derivatives | |
| US9328058B2 (en) | Mixtures of amines with guanidine derivatives | |
| JP6144734B2 (en) | Epoxy resin composition using solvated solid | |
| US7928170B2 (en) | Cyanate ester, epoxy resin and curing agent of phenol resin and epoxy compound-modified polyamine | |
| US10717808B2 (en) | Fast cure epoxy resin compositions | |
| CN103619899A (en) | epoxy resin composition | |
| US12049539B2 (en) | Cycloaliphatic amines for epoxy formulations: a novel curing agent for epoxy systems | |
| JP2014118576A (en) | Epoxy resin composition including solvated solid | |
| CA2730744C (en) | Process for preparing moldings using mixtures of amines with guanidine derivatives | |
| US20210261721A1 (en) | Use of heterocyclic amines containing primary or secondary amines as a polymer catalyst or hardener | |
| CN110945050A (en) | N, N' -dialkylmethylcyclohexanediamines as reactive diluents in epoxy resin systems | |
| HK40047170A (en) | Use of heterocyclic amines containing primary or secondary amines as a polymer catalyst or hardener | |
| US7479527B2 (en) | Polyepoxide and reaction product of aminoalkylimidazole, polyamine, urea and diepoxide as curing component |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| AS | Assignment |
Owner name: ZYMERGEN INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOSINSKI, SZYMON;LO, STEPHEN;MAULDIN, TIMOTHY;AND OTHERS;SIGNING DATES FROM 20200519 TO 20200712;REEL/FRAME:059508/0369 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |