US20210251990A1 - Histone Deacetylase 6 Selective Inhibitors for the Treatment of Cisplatin-Induced Peripheral Neuropathy - Google Patents
Histone Deacetylase 6 Selective Inhibitors for the Treatment of Cisplatin-Induced Peripheral Neuropathy Download PDFInfo
- Publication number
- US20210251990A1 US20210251990A1 US17/240,504 US202117240504A US2021251990A1 US 20210251990 A1 US20210251990 A1 US 20210251990A1 US 202117240504 A US202117240504 A US 202117240504A US 2021251990 A1 US2021251990 A1 US 2021251990A1
- Authority
- US
- United States
- Prior art keywords
- cisplatin
- compound
- induced
- subject
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010023925 Histone Deacetylase 6 Proteins 0.000 title claims abstract description 109
- 208000033808 peripheral neuropathy Diseases 0.000 title claims abstract description 69
- 229940124639 Selective inhibitor Drugs 0.000 title claims abstract description 40
- 102000011427 Histone Deacetylase 6 Human genes 0.000 title claims abstract 15
- 238000011282 treatment Methods 0.000 title description 88
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 claims abstract description 170
- 229960004316 cisplatin Drugs 0.000 claims abstract description 170
- 238000000034 method Methods 0.000 claims abstract description 55
- 150000001875 compounds Chemical class 0.000 claims description 181
- 208000002193 Pain Diseases 0.000 claims description 51
- 150000003839 salts Chemical class 0.000 claims description 39
- 231100000862 numbness Toxicity 0.000 claims description 28
- 210000004126 nerve fiber Anatomy 0.000 claims description 15
- 102100022537 Histone deacetylase 6 Human genes 0.000 description 94
- 241000699670 Mus sp. Species 0.000 description 58
- 230000000694 effects Effects 0.000 description 49
- 238000002512 chemotherapy Methods 0.000 description 46
- 230000002438 mitochondrial effect Effects 0.000 description 33
- 208000004454 Hyperalgesia Diseases 0.000 description 31
- 102000003964 Histone deacetylase Human genes 0.000 description 30
- 108090000353 Histone deacetylase Proteins 0.000 description 30
- 230000005764 inhibitory process Effects 0.000 description 29
- 206010028980 Neoplasm Diseases 0.000 description 28
- 208000034783 hypoesthesia Diseases 0.000 description 28
- 238000012360 testing method Methods 0.000 description 26
- 201000011510 cancer Diseases 0.000 description 25
- 239000003112 inhibitor Substances 0.000 description 24
- 230000026326 mitochondrial transport Effects 0.000 description 22
- 239000000203 mixture Substances 0.000 description 20
- 230000002715 bioenergetic effect Effects 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 18
- 208000024891 symptom Diseases 0.000 description 18
- 239000003814 drug Substances 0.000 description 17
- 239000003981 vehicle Substances 0.000 description 17
- 238000006640 acetylation reaction Methods 0.000 description 16
- 230000007423 decrease Effects 0.000 description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 15
- 102000004243 Tubulin Human genes 0.000 description 15
- 108090000704 Tubulin Proteins 0.000 description 15
- 230000021736 acetylation Effects 0.000 description 15
- 230000001965 increasing effect Effects 0.000 description 15
- 238000010172 mouse model Methods 0.000 description 15
- 230000002265 prevention Effects 0.000 description 15
- 241001465754 Metazoa Species 0.000 description 14
- 230000004913 activation Effects 0.000 description 14
- 239000011780 sodium chloride Substances 0.000 description 14
- 210000002972 tibial nerve Anatomy 0.000 description 14
- 230000003750 conditioning effect Effects 0.000 description 13
- PCOBBVZJEWWZFR-UHFFFAOYSA-N ezogabine Chemical compound C1=C(N)C(NC(=O)OCC)=CC=C1NCC1=CC=C(F)C=C1 PCOBBVZJEWWZFR-UHFFFAOYSA-N 0.000 description 13
- 210000002569 neuron Anatomy 0.000 description 13
- 229960003312 retigabine Drugs 0.000 description 13
- 229930012538 Paclitaxel Natural products 0.000 description 12
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 12
- 210000001130 astrocyte Anatomy 0.000 description 12
- 210000002683 foot Anatomy 0.000 description 12
- 229960001592 paclitaxel Drugs 0.000 description 12
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 12
- 230000030113 alpha-tubulin acetylation Effects 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 238000013105 post hoc analysis Methods 0.000 description 11
- 102000053171 Glial Fibrillary Acidic Human genes 0.000 description 10
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 10
- 208000004044 Hypesthesia Diseases 0.000 description 10
- 241000700159 Rattus Species 0.000 description 10
- 229940127003 anti-diabetic drug Drugs 0.000 description 10
- 239000003472 antidiabetic agent Substances 0.000 description 10
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 10
- 229960003105 metformin Drugs 0.000 description 10
- 230000002035 prolonged effect Effects 0.000 description 10
- 238000011160 research Methods 0.000 description 10
- 230000004044 response Effects 0.000 description 10
- 230000002269 spontaneous effect Effects 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 210000003050 axon Anatomy 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 9
- 210000000578 peripheral nerve Anatomy 0.000 description 9
- 230000029058 respiratory gaseous exchange Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- ZZUZYEMRHCMVTB-UHFFFAOYSA-N 2-phenylethynesulfonamide Chemical compound NS(=O)(=O)C#CC1=CC=CC=C1 ZZUZYEMRHCMVTB-UHFFFAOYSA-N 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 210000003470 mitochondria Anatomy 0.000 description 8
- 230000001537 neural effect Effects 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 150000003384 small molecules Chemical class 0.000 description 8
- 102000029749 Microtubule Human genes 0.000 description 7
- 108091022875 Microtubule Proteins 0.000 description 7
- 102000004962 Voltage-dependent anion channels Human genes 0.000 description 7
- 108090001129 Voltage-dependent anion channels Proteins 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 230000003376 axonal effect Effects 0.000 description 7
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 7
- 230000006735 deficit Effects 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 125000005843 halogen group Chemical group 0.000 description 7
- 210000004688 microtubule Anatomy 0.000 description 7
- 210000005036 nerve Anatomy 0.000 description 7
- 201000001119 neuropathy Diseases 0.000 description 7
- 230000007823 neuropathy Effects 0.000 description 7
- 230000002085 persistent effect Effects 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- 206010034620 Peripheral sensory neuropathy Diseases 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 210000004209 hair Anatomy 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 238000010606 normalization Methods 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000007492 two-way ANOVA Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- DZFALHVYUUTPBE-UHFFFAOYSA-N CCC(=O)C1=CN=C(CC2(C3=CC=CC=C3)CCC(F)(F)CC2)N=C1 Chemical compound CCC(=O)C1=CN=C(CC2(C3=CC=CC=C3)CCC(F)(F)CC2)N=C1 DZFALHVYUUTPBE-UHFFFAOYSA-N 0.000 description 5
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 5
- 108010020004 Microtubule-Associated Proteins Proteins 0.000 description 5
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 5
- AQAUAKUKIQVJCD-UHFFFAOYSA-N O=C(CO)C1=CN=C(CC2(C3=CC=CC=C3)CCC(F)(F)CC2)N=C1 Chemical compound O=C(CO)C1=CN=C(CC2(C3=CC=CC=C3)CCC(F)(F)CC2)N=C1 AQAUAKUKIQVJCD-UHFFFAOYSA-N 0.000 description 5
- 230000003110 anti-inflammatory effect Effects 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000001143 conditioned effect Effects 0.000 description 5
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 5
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 5
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000006742 locomotor activity Effects 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 208000004296 neuralgia Diseases 0.000 description 5
- 208000021722 neuropathic pain Diseases 0.000 description 5
- -1 organic acid salts Chemical class 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- 210000000278 spinal cord Anatomy 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- BMZRVOVNUMQTIN-UHFFFAOYSA-N Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone Chemical compound FC(F)(F)OC1=CC=C(NN=C(C#N)C#N)C=C1 BMZRVOVNUMQTIN-UHFFFAOYSA-N 0.000 description 4
- 101710113864 Heat shock protein 90 Proteins 0.000 description 4
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 description 4
- 208000035154 Hyperesthesia Diseases 0.000 description 4
- 208000034578 Multiple myelomas Diseases 0.000 description 4
- 206010029350 Neurotoxicity Diseases 0.000 description 4
- MRWCVKLVSWYIFO-UHFFFAOYSA-N ONC(c1cnc(NC(CC2)(CCC2(F)F)c2ccccc2)nc1)=O Chemical compound ONC(c1cnc(NC(CC2)(CCC2(F)F)c2ccccc2)nc1)=O MRWCVKLVSWYIFO-UHFFFAOYSA-N 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 4
- 206010044221 Toxic encephalopathy Diseases 0.000 description 4
- 238000000540 analysis of variance Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 230000000763 evoking effect Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 210000004295 hippocampal neuron Anatomy 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 230000006676 mitochondrial damage Effects 0.000 description 4
- 230000006540 mitochondrial respiration Effects 0.000 description 4
- 230000007659 motor function Effects 0.000 description 4
- 231100000228 neurotoxicity Toxicity 0.000 description 4
- 230000007135 neurotoxicity Effects 0.000 description 4
- 229960001756 oxaliplatin Drugs 0.000 description 4
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000000241 respiratory effect Effects 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 230000001953 sensory effect Effects 0.000 description 4
- 210000001044 sensory neuron Anatomy 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- MNULEGDCPYONBU-WMBHJXFZSA-N (1r,4s,5e,5'r,6'r,7e,10s,11r,12s,14r,15s,16s,18r,19s,20r,21e,25s,26r,27s,29s)-4-ethyl-11,12,15,19-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',10,12,14,16,18,20,26,29-nonamethylspiro[24,28-dioxabicyclo[23.3.1]nonacosa-5,7,21-triene-27,2'-oxane]-13,17,23-trio Polymers O([C@@H]1CC[C@@H](/C=C/C=C/C[C@H](C)[C@@H](O)[C@](C)(O)C(=O)[C@H](C)[C@@H](O)[C@H](C)C(=O)[C@H](C)[C@@H](O)[C@H](C)/C=C/C(=O)O[C@H]([C@H]2C)[C@H]1C)CC)[C@]12CC[C@@H](C)[C@@H](C[C@H](C)O)O1 MNULEGDCPYONBU-WMBHJXFZSA-N 0.000 description 3
- MNULEGDCPYONBU-DJRUDOHVSA-N (1s,4r,5z,5'r,6'r,7e,10s,11r,12s,14r,15s,18r,19r,20s,21e,26r,27s)-4-ethyl-11,12,15,19-tetrahydroxy-6'-(2-hydroxypropyl)-5',10,12,14,16,18,20,26,29-nonamethylspiro[24,28-dioxabicyclo[23.3.1]nonacosa-5,7,21-triene-27,2'-oxane]-13,17,23-trione Polymers O([C@H]1CC[C@H](\C=C/C=C/C[C@H](C)[C@@H](O)[C@](C)(O)C(=O)[C@H](C)[C@@H](O)C(C)C(=O)[C@H](C)[C@H](O)[C@@H](C)/C=C/C(=O)OC([C@H]2C)C1C)CC)[C@]12CC[C@@H](C)[C@@H](CC(C)O)O1 MNULEGDCPYONBU-DJRUDOHVSA-N 0.000 description 3
- MNULEGDCPYONBU-YNZHUHFTSA-N (4Z,18Z,20Z)-22-ethyl-7,11,14,15-tetrahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,28,29-nonamethylspiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2'-oxane]-3,9,13-trione Polymers CC1C(C2C)OC(=O)\C=C/C(C)C(O)C(C)C(=O)C(C)C(O)C(C)C(=O)C(C)(O)C(O)C(C)C\C=C/C=C\C(CC)CCC2OC21CCC(C)C(CC(C)O)O2 MNULEGDCPYONBU-YNZHUHFTSA-N 0.000 description 3
- MNULEGDCPYONBU-VVXVDZGXSA-N (5e,5'r,7e,10s,11r,12s,14s,15r,16r,18r,19s,20r,21e,26r,29s)-4-ethyl-11,12,15,19-tetrahydroxy-6'-[(2s)-2-hydroxypropyl]-5',10,12,14,16,18,20,26,29-nonamethylspiro[24,28-dioxabicyclo[23.3.1]nonacosa-5,7,21-triene-27,2'-oxane]-13,17,23-trione Polymers C([C@H](C)[C@@H](O)[C@](C)(O)C(=O)[C@@H](C)[C@H](O)[C@@H](C)C(=O)[C@H](C)[C@@H](O)[C@H](C)/C=C/C(=O)OC([C@H]1C)[C@H]2C)\C=C\C=C\C(CC)CCC2OC21CC[C@@H](C)C(C[C@H](C)O)O2 MNULEGDCPYONBU-VVXVDZGXSA-N 0.000 description 3
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 3
- MNULEGDCPYONBU-UHFFFAOYSA-N 4-ethyl-11,12,15,19-tetrahydroxy-6'-(2-hydroxypropyl)-5',10,12,14,16,18,20,26,29-nonamethylspiro[24,28-dioxabicyclo[23.3.1]nonacosa-5,7,21-triene-27,2'-oxane]-13,17,23-trione Polymers CC1C(C2C)OC(=O)C=CC(C)C(O)C(C)C(=O)C(C)C(O)C(C)C(=O)C(C)(O)C(O)C(C)CC=CC=CC(CC)CCC2OC21CCC(C)C(CC(C)O)O2 MNULEGDCPYONBU-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 101150096895 HSPB1 gene Proteins 0.000 description 3
- 102100039165 Heat shock protein beta-1 Human genes 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 108010006519 Molecular Chaperones Proteins 0.000 description 3
- QGZYDVAGYRLSKP-UHFFFAOYSA-N N-[7-(hydroxyamino)-7-oxoheptyl]-2-(N-phenylanilino)-5-pyrimidinecarboxamide Chemical compound N1=CC(C(=O)NCCCCCCC(=O)NO)=CN=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 QGZYDVAGYRLSKP-UHFFFAOYSA-N 0.000 description 3
- 208000012902 Nervous system disease Diseases 0.000 description 3
- 206010033128 Ovarian cancer Diseases 0.000 description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001574 biopsy Methods 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000005754 cellular signaling Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 125000004982 dihaloalkyl group Chemical group 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 125000001072 heteroaryl group Chemical group 0.000 description 3
- 210000000548 hind-foot Anatomy 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 210000005230 lumbar spinal cord Anatomy 0.000 description 3
- 210000000274 microglia Anatomy 0.000 description 3
- 230000004065 mitochondrial dysfunction Effects 0.000 description 3
- 230000004898 mitochondrial function Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004899 motility Effects 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 229930191479 oligomycin Natural products 0.000 description 3
- MNULEGDCPYONBU-AWJDAWNUSA-N oligomycin A Polymers O([C@H]1CC[C@H](/C=C/C=C/C[C@@H](C)[C@H](O)[C@@](C)(O)C(=O)[C@@H](C)[C@H](O)[C@@H](C)C(=O)[C@@H](C)[C@H](O)[C@@H](C)/C=C/C(=O)O[C@@H]([C@@H]2C)[C@@H]1C)CC)[C@@]12CC[C@H](C)[C@H](C[C@@H](C)O)O1 MNULEGDCPYONBU-AWJDAWNUSA-N 0.000 description 3
- 230000008506 pathogenesis Effects 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 230000009038 pharmacological inhibition Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000010898 silica gel chromatography Methods 0.000 description 3
- 208000020431 spinal cord injury Diseases 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000002459 sustained effect Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 125000004385 trihaloalkyl group Chemical group 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 230000002407 ATP formation Effects 0.000 description 2
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- UIFFUZWRFRDZJC-UHFFFAOYSA-N Antimycin A1 Natural products CC1OC(=O)C(CCCCCC)C(OC(=O)CC(C)C)C(C)OC(=O)C1NC(=O)C1=CC=CC(NC=O)=C1O UIFFUZWRFRDZJC-UHFFFAOYSA-N 0.000 description 2
- NQWZLRAORXLWDN-UHFFFAOYSA-N Antimycin-A Natural products CCCCCCC(=O)OC1C(C)OC(=O)C(NC(=O)c2ccc(NC=O)cc2O)C(C)OC(=O)C1CCCC NQWZLRAORXLWDN-UHFFFAOYSA-N 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- 102000000634 Cytochrome c oxidase subunit IV Human genes 0.000 description 2
- 108050008072 Cytochrome c oxidase subunit IV Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 101001139158 Dictyostelium discoideum Kinesin-related protein 3 Proteins 0.000 description 2
- 101001006792 Dictyostelium discoideum Kinesin-related protein 5 Proteins 0.000 description 2
- 101001006786 Dictyostelium discoideum Kinesin-related protein 7 Proteins 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 241000283074 Equus asinus Species 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- UGJMXCAKCUNAIE-UHFFFAOYSA-N Gabapentin Chemical compound OC(=O)CC1(CN)CCCCC1 UGJMXCAKCUNAIE-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102100039869 Histone H2B type F-S Human genes 0.000 description 2
- 102100039996 Histone deacetylase 1 Human genes 0.000 description 2
- 102100039999 Histone deacetylase 2 Human genes 0.000 description 2
- 102100021455 Histone deacetylase 3 Human genes 0.000 description 2
- 102100038720 Histone deacetylase 9 Human genes 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 2
- 101001035024 Homo sapiens Histone deacetylase 1 Proteins 0.000 description 2
- 101001035011 Homo sapiens Histone deacetylase 2 Proteins 0.000 description 2
- 101000899282 Homo sapiens Histone deacetylase 3 Proteins 0.000 description 2
- 102000003814 Interleukin-10 Human genes 0.000 description 2
- 108090000174 Interleukin-10 Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000006404 Mitochondrial Proteins Human genes 0.000 description 2
- 108010058682 Mitochondrial Proteins Proteins 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 206010041067 Small cell lung cancer Diseases 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 102000019259 Succinate Dehydrogenase Human genes 0.000 description 2
- 108010012901 Succinate Dehydrogenase Proteins 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- 206010057644 Testis cancer Diseases 0.000 description 2
- 102100025038 Ubiquitin carboxyl-terminal hydrolase isozyme L1 Human genes 0.000 description 2
- 101710186825 Ubiquitin carboxyl-terminal hydrolase isozyme L1 Proteins 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000000202 analgesic effect Effects 0.000 description 2
- 230000001773 anti-convulsant effect Effects 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 239000001961 anticonvulsive agent Substances 0.000 description 2
- 229960003965 antiepileptics Drugs 0.000 description 2
- UIFFUZWRFRDZJC-SBOOETFBSA-N antimycin A Chemical compound C[C@H]1OC(=O)[C@H](CCCCCC)[C@@H](OC(=O)CC(C)C)[C@H](C)OC(=O)[C@H]1NC(=O)C1=CC=CC(NC=O)=C1O UIFFUZWRFRDZJC-SBOOETFBSA-N 0.000 description 2
- PVEVXUMVNWSNIG-UHFFFAOYSA-N antimycin A3 Natural products CC1OC(=O)C(CCCC)C(OC(=O)CC(C)C)C(C)OC(=O)C1NC(=O)C1=CC=CC(NC=O)=C1O PVEVXUMVNWSNIG-UHFFFAOYSA-N 0.000 description 2
- 210000002469 basement membrane Anatomy 0.000 description 2
- 239000000090 biomarker Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 229940105442 cisplatin injection Drugs 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000006196 deacetylation Effects 0.000 description 2
- 238000003381 deacetylation reaction Methods 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 201000010536 head and neck cancer Diseases 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 2
- 229940121372 histone deacetylase inhibitor Drugs 0.000 description 2
- 239000003276 histone deacetylase inhibitor Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 230000008611 intercellular interaction Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 230000030544 mitochondrion distribution Effects 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 229910052757 nitrogen Chemical group 0.000 description 2
- 230000003040 nociceptive effect Effects 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 208000005877 painful neuropathy Diseases 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 210000001428 peripheral nervous system Anatomy 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000011552 rat model Methods 0.000 description 2
- 230000006697 redox regulation Effects 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 229950006743 ricolinostat Drugs 0.000 description 2
- 238000010825 rotarod performance test Methods 0.000 description 2
- JUVIOZPCNVVQFO-UHFFFAOYSA-N rotenone Natural products O1C2=C3CC(C(C)=C)OC3=CC=C2C(=O)C2C1COC1=C2C=C(OC)C(OC)=C1 JUVIOZPCNVVQFO-UHFFFAOYSA-N 0.000 description 2
- 229940080817 rotenone Drugs 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 201000005572 sensory peripheral neuropathy Diseases 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 201000003120 testicular cancer Diseases 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- 125000006652 (C3-C12) cycloalkyl group Chemical group 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical group C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229940126565 ATP-synthase inhibitor Drugs 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 241001535291 Analges Species 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 102100021738 Beta-adrenergic receptor kinase 1 Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- FQCHSXZCMYOVHO-UHFFFAOYSA-N CC(C)(C)S(=O)CC1(C2=CC=CC=C2)CCC2(CC1)OCCO2.CC(C)(C)S(=O)N=C1CCC2(CC1)OCCO2.CC(C)(C)S(N)=O.CCOC(=O)C1=CN=C(CC2(C3=CC=CC=C3)CCC(=O)CC2)N=C1.CCOC(=O)C1=CN=C(Cl)N=C1.NC1(C2=CC=CC=C2)CCC(=O)CC1.O=C1CCC2(CC1)OCCO2 Chemical compound CC(C)(C)S(=O)CC1(C2=CC=CC=C2)CCC2(CC1)OCCO2.CC(C)(C)S(=O)N=C1CCC2(CC1)OCCO2.CC(C)(C)S(N)=O.CCOC(=O)C1=CN=C(CC2(C3=CC=CC=C3)CCC(=O)CC2)N=C1.CCOC(=O)C1=CN=C(Cl)N=C1.NC1(C2=CC=CC=C2)CCC(=O)CC1.O=C1CCC2(CC1)OCCO2 FQCHSXZCMYOVHO-UHFFFAOYSA-N 0.000 description 1
- ORLUVLXGVQROGF-UHFFFAOYSA-N CC.CC(C)(CC1=NC=C(C(=O)CO)C=N1)C1=CC=CC=C1 Chemical compound CC.CC(C)(CC1=NC=C(C(=O)CO)C=N1)C1=CC=CC=C1 ORLUVLXGVQROGF-UHFFFAOYSA-N 0.000 description 1
- WMKQZQYGXFLYDJ-UHFFFAOYSA-N CCOC(=O)C1=CN=C(CC2(C3=CC=CC=C3)CCC(F)(F)CC2)N=C1.O=C(CO)C1=CN=C(CC2(C3=CC=CC=C3)CCC(F)(F)CC2)N=C1 Chemical compound CCOC(=O)C1=CN=C(CC2(C3=CC=CC=C3)CCC(F)(F)CC2)N=C1.O=C(CO)C1=CN=C(CC2(C3=CC=CC=C3)CCC(F)(F)CC2)N=C1 WMKQZQYGXFLYDJ-UHFFFAOYSA-N 0.000 description 1
- GGZVAJYMMSQDGU-UHFFFAOYSA-N CCOC(c1cnc(NC(CC2)(CCC2(F)F)c2ccccc2)nc1)=O Chemical compound CCOC(c1cnc(NC(CC2)(CCC2(F)F)c2ccccc2)nc1)=O GGZVAJYMMSQDGU-UHFFFAOYSA-N 0.000 description 1
- 101100123577 Caenorhabditis elegans hda-1 gene Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 208000002249 Diabetes Complications Diseases 0.000 description 1
- 206010012655 Diabetic complications Diseases 0.000 description 1
- 102000015782 Electron Transport Complex III Human genes 0.000 description 1
- 108010024882 Electron Transport Complex III Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 108010008165 Etanercept Proteins 0.000 description 1
- 229940124602 FDA-approved drug Drugs 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000021309 Germ cell tumor Diseases 0.000 description 1
- 108090000079 Glucocorticoid Receptors Proteins 0.000 description 1
- 102100033417 Glucocorticoid receptor Human genes 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 108091005772 HDAC11 Proteins 0.000 description 1
- 108010027992 HSP70 Heat-Shock Proteins Proteins 0.000 description 1
- 102000018932 HSP70 Heat-Shock Proteins Human genes 0.000 description 1
- 241001559542 Hippocampus hippocampus Species 0.000 description 1
- 102100039385 Histone deacetylase 11 Human genes 0.000 description 1
- 102100021454 Histone deacetylase 4 Human genes 0.000 description 1
- 102100021453 Histone deacetylase 5 Human genes 0.000 description 1
- 229940122617 Histone deacetylase 6 inhibitor Drugs 0.000 description 1
- 102100038715 Histone deacetylase 8 Human genes 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000751445 Homo sapiens Beta-adrenergic receptor kinase 1 Proteins 0.000 description 1
- 101001016865 Homo sapiens Heat shock protein HSP 90-alpha Proteins 0.000 description 1
- 101000899259 Homo sapiens Histone deacetylase 4 Proteins 0.000 description 1
- 101000899255 Homo sapiens Histone deacetylase 5 Proteins 0.000 description 1
- 101001032113 Homo sapiens Histone deacetylase 7 Proteins 0.000 description 1
- 101001032118 Homo sapiens Histone deacetylase 8 Proteins 0.000 description 1
- 101001032092 Homo sapiens Histone deacetylase 9 Proteins 0.000 description 1
- 101001035694 Homo sapiens Polyamine deacetylase HDAC10 Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 206010065390 Inflammatory pain Diseases 0.000 description 1
- 108010020246 Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 Proteins 0.000 description 1
- 102100032693 Leucine-rich repeat serine/threonine-protein kinase 2 Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 101000654471 Mus musculus NAD-dependent protein deacetylase sirtuin-1 Proteins 0.000 description 1
- VEYYWZRYIYDQJM-ZETCQYMHSA-N N(2)-acetyl-L-lysine Chemical group CC(=O)N[C@H](C([O-])=O)CCCC[NH3+] VEYYWZRYIYDQJM-ZETCQYMHSA-N 0.000 description 1
- 229910017912 NH2OH Inorganic materials 0.000 description 1
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 206010033425 Pain in extremity Diseases 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 102000007456 Peroxiredoxin Human genes 0.000 description 1
- 102100039388 Polyamine deacetylase HDAC10 Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 229940079156 Proteasome inhibitor Drugs 0.000 description 1
- 206010037075 Protozoal infections Diseases 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 101150107360 RPD3 gene Proteins 0.000 description 1
- 206010040026 Sensory disturbance Diseases 0.000 description 1
- 206010040030 Sensory loss Diseases 0.000 description 1
- 108050002485 Sirtuin Proteins 0.000 description 1
- 102000011990 Sirtuin Human genes 0.000 description 1
- 208000007718 Stable Angina Diseases 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 208000002903 Thalassemia Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 108010048999 Transcription Factor 3 Proteins 0.000 description 1
- 102100038313 Transcription factor E2-alpha Human genes 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- DCQLZTSRKLWEAB-UHFFFAOYSA-N ac1ndudu Chemical compound O1C(C(C2OCC(C)O)OCC(C)O)C(COCC(C)O)OC2OC(C(C2OCC(C)O)OCC(C)O)C(COCC(C)O)OC2OC(C(C2OCC(C)O)OCC(C)O)C(COCC(C)O)OC2OC(C(C2OCC(C)O)OCC(C)O)C(COCC(C)O)OC2OC(C(OCC(C)O)C2OCC(C)O)C(COCC(O)C)OC2OC(C(C2OCC(C)O)OCC(C)O)C(COCC(C)O)OC2OC2C(OCC(C)O)C(OCC(C)O)C1OC2COCC(C)O DCQLZTSRKLWEAB-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000013228 adult male C57BL/6J mice Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000000719 anti-leukaemic effect Effects 0.000 description 1
- 230000003356 anti-rheumatic effect Effects 0.000 description 1
- 229940019748 antifibrinolytic proteinase inhibitors Drugs 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000007854 axonal transport deficit Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 201000011263 bladder neck cancer Diseases 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 229960001467 bortezomib Drugs 0.000 description 1
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 230000004611 cancer cell death Effects 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229960002438 carfilzomib Drugs 0.000 description 1
- BLMPQMFVWMYDKT-NZTKNTHTSA-N carfilzomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)[C@]1(C)OC1)NC(=O)CN1CCOCC1)CC1=CC=CC=C1 BLMPQMFVWMYDKT-NZTKNTHTSA-N 0.000 description 1
- 108010021331 carfilzomib Proteins 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000009087 cell motility Effects 0.000 description 1
- 230000004640 cellular pathway Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002038 chemiluminescence detection Methods 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 238000009104 chemotherapy regimen Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000001047 cyclobutenyl group Chemical group C1(=CCC1)* 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000000298 cyclopropenyl group Chemical group [H]C1=C([H])C1([H])* 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- CSJLBAMHHLJAAS-UHFFFAOYSA-N diethylaminosulfur trifluoride Substances CCN(CC)S(F)(F)F CSJLBAMHHLJAAS-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000021824 exploration behavior Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 229960002870 gabapentin Drugs 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000010185 immunofluorescence analysis Methods 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000003960 inflammatory cascade Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229940090044 injection Drugs 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000030214 innervation Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940076144 interleukin-10 Drugs 0.000 description 1
- 230000031261 interleukin-10 production Effects 0.000 description 1
- 230000006525 intracellular process Effects 0.000 description 1
- 230000010189 intracellular transport Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000004628 isothiazolidinyl group Chemical group S1N(CCC1)* 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 125000003965 isoxazolidinyl group Chemical group 0.000 description 1
- OZWKMVRBQXNZKK-UHFFFAOYSA-N ketorolac Chemical compound OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 OZWKMVRBQXNZKK-UHFFFAOYSA-N 0.000 description 1
- 229960004752 ketorolac Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 230000006738 locomotor deficit Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 210000004705 lumbosacral region Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- NIXOIRLDFIPNLJ-UHFFFAOYSA-M magnesium;benzene;bromide Chemical compound [Mg+2].[Br-].C1=CC=[C-]C=C1 NIXOIRLDFIPNLJ-UHFFFAOYSA-M 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 238000010197 meta-analysis Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 230000007625 mitochondrial abnormality Effects 0.000 description 1
- 210000001700 mitochondrial membrane Anatomy 0.000 description 1
- 230000008811 mitochondrial respiratory chain Effects 0.000 description 1
- 230000008965 mitochondrial swelling Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 230000008722 morphological abnormality Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 230000004007 neuromodulation Effects 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- 231100000189 neurotoxic Toxicity 0.000 description 1
- 230000002887 neurotoxic effect Effects 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 239000000668 oral spray Substances 0.000 description 1
- 229940041678 oral spray Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 208000035824 paresthesia Diseases 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 238000013146 percutaneous coronary intervention Methods 0.000 description 1
- 208000027232 peripheral nervous system disease Diseases 0.000 description 1
- 210000005223 peripheral sensory neuron Anatomy 0.000 description 1
- 229940021222 peritoneal dialysis isotonic solution Drugs 0.000 description 1
- 108030002458 peroxiredoxin Proteins 0.000 description 1
- CMFNMSMUKZHDEY-UHFFFAOYSA-M peroxynitrite Chemical compound [O-]ON=O CMFNMSMUKZHDEY-UHFFFAOYSA-M 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000003207 proteasome inhibitor Substances 0.000 description 1
- 230000004845 protein aggregation Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- 125000002755 pyrazolinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035806 respiratory chain Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 235000019615 sensations Nutrition 0.000 description 1
- 230000037152 sensory function Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007390 skin biopsy Methods 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 210000003594 spinal ganglia Anatomy 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Chemical group 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000001738 temporomandibular joint Anatomy 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 125000001984 thiazolidinyl group Chemical group 0.000 description 1
- 239000012443 tonicity enhancing agent Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 108091008023 transcriptional regulators Proteins 0.000 description 1
- 230000007855 transport deficit Effects 0.000 description 1
- 125000006168 tricyclic group Chemical group 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- 230000005909 tumor killing Effects 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 231100000691 up-and-down procedure Toxicity 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/243—Platinum; Compounds thereof
Definitions
- CIPN chemotherapy-induced peripheral neuropathy
- compositions for the treatment of cisplatin-induced peripheral neuropathies in a subject in need thereof are provided herein. Also provided herein are methods for treating a cisplatin-induced peripheral neuropathy in a subject in need thereof.
- a histone deacetylase 6 selective inhibitor can be compound 001:
- the histone deacetylase 6 selective inhibitor can be co-administered with cisplatin, or administered before or after administering cisplatin.
- the cisplatin-induced peripheral neuropathy can exist in the subject prior to administering the histone deacetylase 6 selective inhibitor.
- a method of treating cisplatin-induced peripheral neuropathy in a subject in need thereof comprising administering to the subject a therapeutically effective amount of compound 001:
- Compound 001 can be co-administered with cisplatin, or administered before or after administering cisplatin.
- the cisplatin-induced peripheral neuropathy can exist in the subject prior to administering the histone deacetylase 6 selective inhibitor.
- a third aspect provided herein are methods of inhibiting cisplatin-induced astrocyte activation in a subject, comprising administering to the subject a therapeutically effective amount of a histone deacetylase 6 selective inhibitor to thereby inhibit astrocyte activation.
- a decrease in cisplatin-induced neuronal mitochondrial transport comprising contacting a neuron with an effective amount of a histone deacetylase 6 selective inhibitor to thereby inhibit the decrease of cisplatin-induced neuronal mitochondrial transport.
- cisplatin-induced pain comprising administering to a subject in need thereof an effective amount of a histone deacetylase 6 selective inhibitor to thereby treat the pain in the subject.
- the cisplatin-induced pain can exist in the subject prior to administering the histone deacetylase 6 selective inhibitor.
- cisplatin-induced numbness comprising administering to a subject in need thereof an effective amount of a histone deacetylase 6 selective inhibitor to thereby treat the numbness in the subject.
- the cisplatin-induced numbness can exist in the subject prior to administering the histone deacetylase 6 selective inhibitor.
- the histone deacetylase 6 selective inhibitor can be compound 001:
- IENF intra-epidermal nerve fiber
- the loss of intra-epidermal nerve fiber is the result of administering cisplatin to the subject.
- the administration of the histone deacetylase 6 selective inhibitor to the subject occurs during or after administering cisplatin.
- the histone deacetylase 6 selective inhibitor can be compound 001:
- FIG. 1A shows cisplatin and compound 001 dosing schemes. All reagents were administered intraperitoneally (i.p.). Black X denotes cisplatin treatment (2.3 mg/kg); Gray X denotes compound 001 treatment.
- FIG. 1B shows that compound 001 treats mechanical hyperalgesia induced by cisplatin.
- Mice were administered with two rounds of cisplatin treatment; three days after the last cisplatin dose mice received compound 001 (10 mg/kg or 3 mg/kg) for 7 days (see dosing schedule in FIG. 1A ).
- Two-way repeated measured ANOVA revealed a main effect of time (p ⁇ 0.01), group (p ⁇ 0.01), and a group by time interaction (p ⁇ 0.01).
- FIG. 1C shows the short term time course of the activity of compound 001.
- Mice were administered two rounds of cisplatin treatment as above.
- the effect of compound 001 developed slowly over time and was first detected 24 hours after the first dose of compound.
- Two-way repeated measured ANOVA showed a main effect of time (p ⁇ 0.05) and a group by time interaction (p ⁇ 0.05).
- FIG. 1D shows that compound 001 prevents the development of mechanical hyperalgesia in mice treated with cisplatin.
- Compound 001 was administered one hour prior to each dose of cisplatin for one week. Mechanical hyperalgesia was measured for two weeks following the last cisplatin treatment. Two-way repeated measured ANOVA showed a main effect of time (p ⁇ 0.0001), group (p ⁇ 0.03), and a group by time interaction (p ⁇ 0.03).
- Tukey post-hoc analysis for compound 001 (10 mg/kg)+Cisplatin vs. Vehicle+Cisplatin: ***p ⁇ 0.001. n 6-8/group.
- Mice received cisplatin daily for five days.
- Compound 001 (10 mg/kg or 3 mg/kg) was administered (i.p.) one hour prior to each cisplatin injection and for two days after the last cisplatin injection.
- FIG. 2 shows that prolonged compound 001 treats mechanical hyperalgesia and induces sustained recovery.
- Mice were administered with two rounds of cisplatin treatment; three days after the last cisplatin dose mice received compound 001 (10 mg/kg) for 7 days followed by 7 days rest and then another 7 days following cisplatin treatment. Alternatively, mice received compound 001 (10 mg/kg) for 14 consecutive days (see dosing schedule in FIG. 1A ).
- Mechanical hyperalgesia was measured using von Frey hairs and the 50% paw withdrawal threshold was calculated by the up-down method.
- Two-way repeated measured ANOVA revealed a main effect of time (p ⁇ 0.01), a group effect (p ⁇ 0.01), and a group by time interaction (p ⁇ 0.01).
- FIG. 4A and FIG. 4B show that compound 001 and cisplatin treatments do not change general activity or motor function.
- the bars represent: saline+comp. 001 (10 mg/kg), cisplatin+vehicle, cisplatin+comp. 001 (10 mg/kg), and the far most right bar: cisplatin+comp. 001 (3 mg/kg).
- FIG. 5 shows that compound 001 decreases cisplatin-induced astrocyte activation in the spinal cord dorsal horn in mice.
- Mice were treated with two rounds of cisplatin followed by 3 doses of 10 mg/kg compound 001 treatment starting at day 4 after completion of cisplatin treatment.
- Lumbar spinal cord was stained for the astrocyte activation marker GFAP.
- FIG. 6 shows that compound 001 prevents cisplatin-induced decreases in mitochondrial transport in vitro. Mitochondrial transport was determined with rat DRG neuron cultures in vitro.
- FIG. 7A shows mitochondrial bioenergetics in tibial nerves from mice that had received 2 rounds of cisplatin treatment and 11 injections of compound 001.
- Two-way ANOVA revealed a signification interaction (p ⁇ 0.05) and treatment (compound 001) effect (p ⁇ 0.05) for baseline respiration, ATP-coupled respiration, proton leak and maximal respiratory capacity.
- Tukey post-hoc analysis revealed significant differences between groups: *p ⁇ 0.05.
- Two-way ANOVA revealed a significant treatment (compound 001) effect (p ⁇ 0.05).
- Tukey post-hoc analysis revealed significant differences between groups: *p ⁇ 0.05.
- FIG. 7C shows tibial nerves were used for Western blot analysis of additional mitochondrial marker proteins SDHA and VDAC.
- FIG. 8 shows spontaneous pain measured by the conditioned place preference test after two weeks of compound 001 treatment.
- Neuropathic pain was induced by two rounds of cisplatin treatment.
- mice were allowed to freely explore for 15 min the CPP apparatus.
- the CPP apparatus consists of 2 chambers (18 ⁇ 20 cm, one dark, one white) connected by a 15 cm hallway (Stoelting, Wood Dale, Ill.). The time spent in the light chamber was recorded.
- saline was injected i.p. in the morning and the mice were then kept in the dark chamber for 20 min.
- the analgesic retigabine (#R-100, Alomone laboratory, Jerusalem, Israel) was injected i.p.
- mice were immediately placed in the light chamber for 20 min. Conditioning was repeated for four consecutive days. The following day the mice did not receive any injections but were allowed to freely explore both chambers of the apparatus for 15 min. A mouse experiencing pain relieve by retigabine should show an increase in time spent in the light chamber that was paired with retigabine as compared to the pre-conditioning phase. The Y-axis indicates the change in time spent in light chamber.
- FIG. 9 shows acetylated ⁇ -tubulin levels in tibial nerves from mice that had received 2 cycles of cisplatin and 11 doses of compound 001 as assessed by Western blot analysis.
- Compound 001 treatment induced ⁇ -tubulin acetylation.
- n 4 mice/group.
- Two-way ANOVA revealed a significant treatment (compound 001) effect (p ⁇ 0.05).
- Tukey post-hoc analysis revealed significant differences between groups: *p ⁇ 0.05.
- IENF intraepidermal nerve fiber
- Two-way ANOVA revealed a significant treatment (compound 001) effect (p ⁇ 0.05).
- Tukey post-hoc analysis revealed significant differences between groups: *, p ⁇ 0.05.
- Paw biopsies were obtained from the hind paws of mice that received 2 cycles of cisplatin and 11 doses of compound 001. Tissues were stained with antibodies for IENFs (PGP9.5) and collagen.
- CIPN Chemotherapy-induced peripheral neuropathy
- Chemotherapy-induced peripheral neurotoxicity a critical analysis. CA Cancer J Clin. 2013; 63(6):419-37).
- the symptoms of CIPN include pain, numbness, tingling and temperature sensitivity, and normally present with a symmetric, distal, “stocking and glove” distribution (Dougherty P M, et al. Pain. 2004; 109 (1-2): 132-42; Wolf S, et al. European journal of Cancer. 2008; 44(11):1507-15; Cavaletti G, et al.
- Cisplatin is a platinum-based chemotherapeutic that is commonly used for the treatment of solid tumors such as lung, ovarian, testis, bladder, and head and neck cancer (Barabas K, et al. Cisplatin: a review of toxicities and therapeutic applications. Veterinary and comparative oncology. 2008; 6(1):1-18; Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007; 7(8):573-84). Cisplatin treatment is associated with a high incidence of CIPN (Cavaletti G, and Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Nat Rev Neurol.
- Histone deacetylase 6 is a cytoplasmic class II histone deacetylase (HDAC) that, in contrast to the other HDACs, has a specificity for non-histone proteins, including ⁇ -tubulin and HSP90.
- HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo.
- HDAC6 has been implicated in the regulation of mitochondrial transport (Hubbert C, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002; 417(6887):455-8; Zhang Y, et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J.
- HDAC6 inhibition increased ⁇ -tubulin acetylation and promoted mitochondrial transport in hippocampal neurons (Chen S, et al. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010; 5 (5): e10848).
- HDAC6 inhibitor increased ⁇ -tubulin acetylation in peripheral nerves and improved sensory-motor function in a mouse model of type 2 Charcot-Marie-Tooth (CMT2) disease.
- the HDAC6 inhibitor also enhanced mitochondrial transport as measured in DRG explants (d′Ydewalle C, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nature Medicine. 2011; 17(8):968-74).
- HDAC histone deacetylases
- HDAC1 histone deacetylases
- HDAC2 histone deacetylases
- HDAC3 histone deacetylases
- HDAC4 histone deacetylases
- HDAC5 histone deacetylases
- HDAC6 histone deacetylases
- HDAC9 histone deacetylases
- HDAC10 histone deacetylases
- Class III HDACs which are also known as the sirtuins are related to the Sir2 gene and include SIRT1-7.
- Class IV HDACs which contains only HDAC11, has features of both Class I and II HDACs.
- HDAC refers to any one or more of the 18 known histone deacetylases, unless otherwise specified.
- inhibitor is synonymous with the term antagonist.
- selective inhibitor means an inhibitor that substantially inhibits (5 to 1000-fold or more) the activity of a specific molecule.
- a selective inhibitor of HDAC6 also referred to herein as a histone deacetylase 6 selective inhibitor substantially inhibits the activity of HDAC6 as compared with other HDACs (i.e., inhibits the activity of HDAC6 to a much greater extent, e.g., 5 to 1000-fold or more, than other HDACs).
- pharmaceutically acceptable salt refers to those salts of the compounds formed by the process disclosed herein which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Additionally, “pharmaceutically acceptable salts” refers to derivatives of the disclosed compounds wherein the parent compound is modified by converting an existing acid or base moiety to its salt form. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
- Pharmaceutically acceptable salts include the conventional non-toxic salts of the parent compound formed, for example, from non-toxic inorganic or organic acids.
- Pharmaceutically acceptable salts can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred.
- subject refers to a mammal.
- a subject therefore refers to, for example, dogs, cats, horses, cows, pigs, guinea pigs, and the like.
- the subject is a human.
- the subject can also be referred to herein as a patient.
- treating means obtaining a desired pharmacologic and/or physiologic effect that at least alleviates or abates a disease and/or its attendant symptoms. “Treating” also covers any treatment of a disease in a mammal, and includes inhibiting a disease, i.e., arresting its development; or relieving or ameliorating the disease, e.g., cause regression of the disease. As used herein, to “treat” includes systemic amelioration of the symptoms associated with the pathology and/or a delay in onset of symptoms. Clinical and sub-clinical evidence of “treatment” will vary with the pathology, the individual and the treatment.
- the terms “prevent,” “preventing,” or “prevention” as used herein comprises the prevention of at least one symptom associated with or caused by the state, disease or disorder being prevented.
- the number of carbon atoms in an alkyl substituent can be indicated by the prefix “C x-y ,” where x is the minimum and y is the maximum number of carbon atoms in the substituent.
- a C x chain means an alkyl chain containing x carbon atoms.
- alkyl refers to saturated, straight- or branched-chain hydrocarbon moieties containing, in certain embodiments, between one and six, or one and eight carbon atoms, respectively.
- Examples of C 1-6 -alkyl moieties include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl moieties; and examples of C 1-8 -alkyl moieties include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl, heptyl, and octyl moieties.
- alkoxy refers to an —O-alkyl moiety.
- halo and “halogen” refer to an atom selected from fluorine, chlorine, bromine and iodine.
- haloalkyl refers to an alkyl group with one more instances of halo substitution, e.g., —CF 3 .
- cycloalkyl denotes a monovalent group derived from a monocyclic or polycyclic saturated or partially unsatured carbocyclic ring compound.
- Examples of C 3-8 -cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl; and examples of C 3-12 -cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, bicyclo [2.2.1] heptyl, and bicyclo [2.2.2] octyl.
- monovalent groups derived from a monocyclic or polycyclic carbocyclic ring compound having at least one carbon-carbon double bond by the removal of a single hydrogen atom include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, and the like.
- heterocycloalkyl refers to a non-aromatic 3-, 4-, 5-, 6- or 7-membered ring or a bi- or tri-cyclic group fused of non-fused system, where (i) each ring contains between one and three heteroatoms independently selected from oxygen, sulfur, and nitrogen, (ii) each 5-membered ring has 0 to 1 double bonds and each 6-membered ring has 0 to 2 double bonds, (iii) the nitrogen and sulfur heteroatoms may optionally be oxidized, (iv) the nitrogen heteroatom may optionally be quaternized, and (iv) any of the above rings may be fused to a benzene ring.
- heterocycloalkyl groups include, but are not limited to, [1,3]dioxolane, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, and tetrahydrofuryl.
- aryls, substituted aryls, heteroaryls and substituted heteroaryls described herein can be any aromatic group.
- stable refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject).
- the HDAC6 selective inhibitor is a compound of Formula (I):
- R x and R y together with the carbon to which each is attached, form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, or terahydropyranyl, any of which may be optionally substituted with 1 or 2 R Z ;
- R Z is independently, at each occurrence, selected from the group consisting of C 1-6 -alkyl, C 1-6 -alkoxy, halo, —C 1-6 haloalkyl, —C 1-6 dihaloalkyl, —C 1-6 trihaloalkyl, —OH, —N(R 1 ) 2 , —C(O)R 1 , —CO 2 R 1 , and —C(O)N(R 1 ) 2 ;
- each R A is independently C 1-6 -alkyl, C 1-6 alkoxy, halo, OH or haloalkyl;
- each R 1 is independently, at each occurrence, selected from the group consisting of H, C 1-6 -alkyl, C 3-8 -cycloalkyl, C 3-7 -heterocycloalkyl, aryl, heteroaryl, C 1-6 -alkyl-cycloalkyl, C 1-6 -alkyl-heterocycloalkyl, C 1-6 -alkyl-aryl, and C 1-6 -alkyl-heteroaryl; and
- n 0, 1, or 2.
- R Z is independently, at each occurrence, selected from the group consisting of C 1-6 -alkyl, C 1-6 -alkoxy, halo, —C 1-6 haloalkyl, —C 1-6 dihaloalkyl, —C 1-6 trihaloalkyl, —OH, —N(R 1 ) 2 , —C(O)R 1 , —CO 2 R 1 , and —C(O)N(R 1 ) 2 .
- R Z is independently, at each occurrence, selected from the group consisting of C 1-6 -alkyl, C 1-6 -alkoxy, halo, —C 1-6 haloalkyl, —C 1-6 dihaloalkyl, —C 1-6 trihaloalkyl, and —OH
- R x and R y together with the carbon to which each is attached form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, or terahydropyranyl, wherein the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, or terahydropyranyl is substituted with 1 or 2 R Z .
- the HDAC6 selective inhibitor is a compound 001:
- the compound has a selectivity for HDAC6 that is 5 to 1000 fold greater than for other HDACs. In other embodiments, the compound has a selectivity for HDAC6 when tested in a HDAC enzyme assay, of about 5 to 1000 fold greater than for other HDACs.
- Table 1 shows the IC 50 values for compound 001 on four different HDACs.
- HDAC histone deacetylase
- HDACs participate in cellular pathways that control cell shape and differentiation, and an HDAC inhibitor has been shown effective in treating an otherwise recalcitrant cancer (Warrell et al. J. Natl. Cancer Inst., 1998, 90, 1621-1625). Eleven human HDACs, which use Zn as a cofactor, have been identified (Taunton et al. Science 1996, 272, 408-411; Yang et al. J. Biol. Chem. 1997, 272, 28001-28007; Grozinger et al. Proc. Natl. Acad. Sci . U.S.A. 1999, 96, 4868-4873; Kao et al. Genes Dev.
- Histone deacetylases are known to play an essential role in the transcriptional machinery for regulating gene expression, induce histone hyperacetylation and to affect the gene expression. Therefore, it is useful as a therapeutic or prophylactic agent for diseases caused by abnormal gene expression such as, for example, inflammatory disorders, diabetes, diabetic complications, homozygous thalassemia, fibrosis, cirrhosis, acute promyelocytic leukemia (APL), organ transplant rejections, autoimmune diseases, protozoal infections, tumors, etc.
- HDAC inhibition is a promising therapeutic approach for the treatment of a range of central nervous system disorders (Langley B, et al., 2005, Current Drug Targets, CNS & Neurological Disorders, 4: 41-50).
- HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nature Medicine. 2011; 17(8):968-74; Dompierre J P, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. The Journal of Neuroscience. 2007; 27(13):3571-83; Godena V K, et al. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nature Communications. 2014; 5 (5245); Reynolds U, et al.
- Mitochondrial trafficking in neurons a key variable in neurodegeneration? J Bioenerg Biomembr. 2004; 36(4):283-6; Beal M F. Mitochondria and neurodegeneration. Novartis Found Symp. 2007; 287 (183-92; discussion 92-6).
- the transport of mitochondria along microtubules is increased by acetylation of ⁇ -tubulin, which provides a recognition signal for the anchoring of molecular motors (Reed N A, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 2006; 16(21):2166-72).
- HDAC6 is a well-known ⁇ -tubulin deacetylase and inhibition of HDAC6 increases tubulin acetylation. Indeed, increased acetylation of ⁇ -tubulin by HDAC6 inhibition is associated with improved mitochondrial transport (Hubbert C, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002; 417(6887):455-8; Chen S, et al. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010; 5 (5): e10848; d′Ydewalle C, et al.
- HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nature Medicine. 2011; 17(8):968-74).
- inhibition of HDAC6 with compound 001 promoted ⁇ -tubulin acetylation ( FIG. 9 ).
- compound 001 improved mitochondrial bioenergetics and contents in the distal tibial nerves of cisplatin-treated mice.
- IENF loss has been suggested as the earliest sign of axonal pathology. It is hypothesized that the IENFs represent bioenergetically active regions and therefore are highly susceptible to chemotherapy-induced mitotoxic insults (Bennett G J, et al. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol. 2014; 10(6):326-36). Consistent with previous reports (Qi-Liang Mao-Ying A K, Karen Krukowski, Xiao-Jiao Huo, Theodore J. Price, Charles Cleeland, and Cobi J. Heijnen. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research.
- IENF loss has been regarded as a reliable diagnostic tool for peripheral neuropathy (Lauria G, and Lombardi R. Skin biopsy: a new tool for diagnosing peripheral neuropathy. Bmj. 2007; 334(7604):1159-62) and these data indicate that restoration of IENF density may be used as a biomarker to evaluate drug efficacy and predict long-term recovery in CIPN patients.
- HDAC6 inhibition has been implicated in redox regulation by increasing acetylation of peroxiredoxins-1 and -2, thereby increasing their reducing activity (Parmigiani R B, et al. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proceedings of the National Academy of Sciences. 2008; 105(28):9633-8).
- HDAC6 inhibition An anti-inflammatory effect of selective HDAC6 inhibition has also been implicated in its beneficial effects in models of rheumatoid arthritis (Vishwakarma S, et al. Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory and anti-rheumatic effects. International Immunopharmacology. 2013; 16(1):72-8).
- HDAC6 inhibition amplifies the production of the anti-inflammatory cytokine interleukin-10 that is known to have pain-reducing effects (Wang B, Rao Y H, Inoue M, Hao R, Lai C H, Chen D, McDonald S L, Choi M C, Wang Q, Shinohara M L, et al.
- Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. Nature Communications. 2014; 5 (3479); Milligan E D, Penzkover K R, Soderquist R G, and Mahoney M J. Spinal interleukin-10 therapy to treat peripheral neuropathic pain. Neuromodulation. 2012; 15(6):520-6).
- Compound 001 treatment reversed cisplatin-induced astrocyte activation, implicating a potential contribution of anti-inflammatory effects to the efficacy of compound 001.
- oxidative stress and inflammatory cascade activation have been implicated in the initiation and progression of CIPN (Areti A, et al.
- HDAC6 Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biology. 2014; 2 (289-95); Wang X M, et al. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine. 2012; 59(1):3-9), inhibition of HDAC6 might also promote resolution of CIPN through targeting these pathways. Further studies will be needed to determine the involvement of other pathways in the protective effects of HDAC6 inhibition against CIPN.
- HDAC6 inhibitor ricolinostat has been shown to have synergistic effect with proteasome inhibitors for the treatment of multiple myeloma in both preclinical and clinical settings (Santo L, et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012; 119(11):2579-89; Mishima Y, et al.
- HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular Cell. 2005; 18(5):601-7).
- CIPN represents an important challenge in cancer treatment due to the severity of symptoms and the lack of effective therapeutics for both prevention or treatment. It was shown that HDAC6 inhibition completely reversed multiple symptoms of CIPN. The protective effect of HDAC6 inhibition is associated with improved axonal mitochondrial bioenergetics, increased ⁇ -tubulin acetylation and enhanced IENF density. These findings provide important evidence for using HDAC6 inhibitors as promising therapeutics for prevention and treatment of CIPN. These results also implicate IENF density as a reliable biomarker for clinical evaluation of drug efficacy in the treatment of CIPN.
- kits for treating or preventing a cisplatin-induced peripheral neuropathy in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a histone deacetylase 6 selective inhibitor.
- kits for treating or preventing a cisplatin-induced peripheral neuropathy in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
- a method of treating cisplatin-induced pain in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
- a method of treating cisplatin-induced numbness in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
- provided herein is a method of preventing cisplatin-induced astrocyte activation in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
- a method of preventing cisplatin-induced decrease in neuronal mitochondrial transport in a neuron comprising contacting the neuron with an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
- IENF intra-epidermal nerve fiber
- IENF intra-epidermal nerve fiber
- the loss of intra-epidermal nerve fiber is the result of administering cisplatin to the subject.
- the administration of the compound of Formula (I), or a pharmaceutically acceptable salt thereof, to the subject occurs during or after administering cisplatin.
- kits for treating or preventing a cisplatin-induced peripheral neuropathy in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound 001:
- a method of treating cisplatin-induced pain in a subject in need thereof comprising administering to the subject a therapeutically effective amount of compound 001, or a pharmaceutically acceptable salt thereof.
- provided herein is a method of treating cisplatin-induced numbness in a subject in need thereof comprising administering to the subject a therapeutically effective amount of compound 001, or a pharmaceutically acceptable salt thereof.
- provided herein is a method of preventing cisplatin-induced astrocyte activation in a subject in need thereof comprising administering to the subject a therapeutically effective amount of compound 001, or a pharmaceutically acceptable salt thereof.
- a method of preventing cisplatin-induced decrease in neuronal mitochondrial transport in a neuron comprising contacting the neuron with an effective amount of compound 001, or a pharmaceutically acceptable salt thereof.
- IENF intra-epidermal nerve fiber
- the loss of intra-epidermal nerve fiber is the result of administering cisplatin to the subject.
- the administration of compound 001, or a pharmaceutically acceptable salt thereof, to the subject occurs during or after administering cisplatin.
- provided herein is a method of treating cancer in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of cisplatin and a histone deacetylase 6 selective inhibitor.
- the histone deacetylase 6 selective inhibitor is a compound of Formula (I). In another embodiment, the histone deacetylase 6 selective inhibitor is compound 001.
- the cancer is selected from the group consisting of testicular cancer, ovarian cancer, bladder cancer, head and neck cancer, esophageal cancer, small and non-small cell lung cancer, breast cancer, cervical cancer, stomach cancer and prostate cancer.
- the cancer is selected from the group consisting of Hodgkin's and non-Hodgkin's lymphomas, neuroblastoma, sarcomas, multiple myeloma, melanoma, and mesothelioma.
- the cancer is sarcoma, small cell lung cancer, ovarian cancer, lymphoma, bladder cancer, cervical cancer, or germ cell tumor.
- the present disclosure further provides a method for treating any of the diseases or disorders described above in a subject in need of such treatment, which method comprises administering to said subject a therapeutically effective amount of a compound disclosed herein or a pharmaceutically acceptable salt thereof.
- a therapeutically effective amount of a compound disclosed herein or a pharmaceutically acceptable salt thereof for any of the above uses, the required dosage will vary depending on the mode of administration, the particular condition to be treated and the effect desired.
- disorders are treated or prevented in a subject, such as a human or other animal, by administering to the subject a therapeutically effective amount of a compound disclosed herein, in such amounts and for such time as is necessary to achieve the desired result.
- a therapeutically effective amount of a compound disclosed herein means a sufficient amount of the compound so as to decrease the symptoms of a disorder in a subject.
- a therapeutically effective amount of a compound disclosed herein will be at a reasonable benefit/risk ratio applicable to any medical treatment.
- compounds provided herein will be administered in therapeutically effective amounts via any of the usual and acceptable modes known in the art, either singly or in combination with one or more therapeutic agents.
- a therapeutically effective amount may vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used and other factors. In general, satisfactory results are indicated to be obtained systemically at daily dosages of from about 0.03 to 2.5 mg/kg per body weight (0.05 to 4.5 mg/m 2 ).
- An indicated daily dosage in the larger mammal, e.g. humans is in the range from about 0.5 mg to about 100 mg, conveniently administered, e.g. in divided doses up to four times a day or in retard form.
- Suitable unit dosage forms for oral administration comprise from ca. 1 to 50 mg active ingredient.
- a therapeutic amount or dose of the compounds disclosed herein may range from about 0.1 mg/kg to about 500 mg/kg (about 0.18 mg/m 2 to about 900 mg/m 2 ), alternatively from about 1 to about 50 mg/kg (about 1.8 to about 90 mg/m 2 ).
- treatment regimens comprise administration to a patient in need of such treatment from about 10 mg to about 1000 mg of the compound(s) disclosed herein per day in single or multiple doses.
- Therapeutic amounts or doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents.
- a maintenance dose of a compound, composition or combination may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level, treatment should cease.
- the subject may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.
- the total daily usage of the compounds and compositions disclosed herein will be decided by the attending physician within the scope of sound medical judgment.
- the specific inhibitory dose for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
- the provided herein is a pharmaceutical composition
- a pharmaceutical composition comprising a compound of Formula (I), or a pharmaceutically acceptable salt thereof, for use in treating or preventing a cisplatin-induced neuropathy.
- a pharmaceutical composition comprising compound 001, or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier for use in treating or preventing a cisplatin-induced neuropathy.
- compositions disclosed herein comprise a therapeutically effective amount of a compound disclosed herein formulated together with one or more pharmaceutically acceptable carriers.
- pharmaceutically acceptable carrier means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
- the pharmaceutical compositions disclosed herein can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), buccally, or as an oral or nasal spray.
- Compounds disclosed herein can be administered as pharmaceutical compositions by any conventional route, in particular enterally, for example, orally, e.g., in the form of tablets or capsules, or parenterally, e.g., in the form of injectable solutions or suspensions, topically, e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form.
- compositions comprising a compound disclosed herein in free form or in a pharmaceutically acceptable salt form in association with at least one pharmaceutically acceptable carrier or diluent can be manufactured in a conventional manner by mixing, granulating or coating methods.
- oral compositions can be tablets or gelatin capsules comprising the active ingredient together with a) diluents, e.g., lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and/or glycine; b) lubricants, e.g., silica, talcum, stearic acid, its magnesium or calcium salt and/or polyethyleneglycol; for tablets also c) binders, e.g., magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and or polyvinylpyrrolidone; if desired d) disintegrants, e.g., starches, agar, alginic acid
- compositions can be aqueous isotonic solutions or suspensions, and suppositories can be prepared from fatty emulsions or suspensions.
- the compositions may be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers. In addition, they may also contain other therapeutically valuable substances.
- Suitable formulations for transdermal applications include an effective amount of a compound disclosed herein with a carrier.
- a carrier can include absorbable pharmacologically acceptable solvents to assist passage through the skin of the host.
- transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the compound optionally with carriers, optionally a rate controlling barrier to deliver the compound to the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin.
- Matrix transdermal formulations may also be used.
- Suitable formulations for topical application, e.g., to the skin and eyes, are preferably aqueous solutions, ointments, creams or gels well-known in the art. Such may contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
- the active compounds can also be in micro-encapsulated form with one or more excipients as noted above.
- the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art.
- the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch.
- Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose.
- the dosage forms may also comprise buffering agents.
- HDAC6 Histone deacetylase 6
- compound 001 The specific HDAC6 inhibitor, compound 001, was examined for its capacity to treat cisplatin-induced peripheral neuropathy. Pharmacological inhibition of HDAC6 with compound 001 prevented cisplatin-induced mechanical hyperalgesia.
- Step 3 A mixture of compound 4 (8.3 mg, 2.38 mmol) in HCl (2M in water, 20 mL) and THF (20 mL) was stirred at 50° C. for 16 hrs. A solution of NaOH was added to the mixture to adjust pH 7-8. THF was removed in vacuo and the aqueous phase was extracted with EA. The combined EA layers were concentrated in vacuo and the residue was dissolved in EA. HCl (4 M, 1 mL) was added. The resulting white solid was collected by filtration to afford desired product 5 (395 mg, yield: 57%).
- Step 5 To a solution of compound 7 (168 mg, 0.50 mmol) in DCM (30 mL) was added DAST (302 ⁇ L, 2.47 mmol) at 0° C. It was stirred at rt for 3 hrs and 35° C. for 2 hrs. The reaction mixture was quenched with saturated NaHCO 3 (5 mL), and extracted with EtOAc (2 ⁇ 5 mL). The organic extracts were concentrated in vacuo. The residue was purified by pre-TLC to give 8 (74 mg, yield: 42%).
- Step 6 NH 2 OH (50% in water, 3.9 mL) was added to a flask containing 8 (74 mg, 0.20 mmol) at 0° C. Then saturated NaOH solution in MeOH (3.9 ml) was added at 0° C. DCM (3.9 mL) was added to aid substrate to dissolve. The mixture was heated at 25° C. for 18 hrs. Con. HCl was added to adjust pH to 7. It was concentrated in vacuo and the residue was purified by pre-HPLC to afford compound 001 (27 mg, yield: 38%) as a white solid.
- mice received cisplatin intraperitoneally (i.p.) (2.3 mg/kg) daily for five days, followed by five days rest and a second round of five days of cisplatin treatment. Three days after the last dose of cisplatin, mice received the HDAC6 inhibitor, compound 001, a compound of Formula (I), i.p. for seven to fourteen days at 3 mg/kg or 10 mg/kg.
- the von Frey test was used (see below) which measures the decrease in threshold to induce a withdrawal response to a mechanical stimulus (hyperalgesia, one of the characteristics of CIPN).
- the adhesive removal test (ART) was used. The time it took for the mouse to have a behavioral response to the patch (i.e. shaking or attempted removal) was recorded as a measure of sensory deficit or numbness.
- the locomotor activity (LMA) test and the rotarod test was used. For LMA mice were placed in an open-field testing cage and movement was measured for 5 minutes. For the rotarod, mice were trained for two days and then tested on the rotarod (with increasing speeds) for 5 minutes. Time on the rotarod was recorded.
- the animal is placed in an enclosure and positioned on a metal mesh surface, but allowed to move freely.
- the animals' cabins are covered with red cellophane to diminish environmental disturbances.
- the test begins after a cessation of exploratory behavior.
- the set of Von Frey monofilaments provide an approximate logarithmic scale of actual force and a linear scale of perceived intensity.
- Rodents exhibit a paw withdrawal reflex when the paw is unexpectedly touched.
- the Touch TestTM Sensory Evaluator can be used on the plantar surfaces of the rat's foot. The animal indicates sensation by pulling back its paw. The minimal force needed to elevate the withdrawal reflex is considered/designated as the value of reference. In order to achieve paw withdrawal, the pressure applied is sometimes greater than 60 g, often requiring the researcher to apply enough pressure with the Von Frey filament to actually lift the paw of the naive animal. Decreases in force needed to induce withdrawal are indicative of hyperalgesia, as the force applied is a non-painful stimulus under normal conditions.
- lumbar spinal cords were collected on day 22. This collection day was after completion of cisplatin treatment and 3 injections of compound 001. Mice showed recovery from cisplatin-induced mechanical hyperalgesia at this time. Spinal cords were processed and stained with antibodies specific for GFAP and Iba-1. Images were captured under blinded conditions from the lumbar dorsal horn using a Leica SPE confocal microscope (Leica Microsystems, Buffalo Grove, Ill.).
- mice Male male C57BL/6J mice were housed at the Texas A&M Health Science Center Program for Animal Resources or the University of Texas M.D. Anderson Cancer Center animal facility. Mice were housed on a regular 12 h light/dark cycle with free access to food and water. All procedures were consistent with the National Institute of Health Guidelines for the Care and Use of Laboratory Animals and the Ethical Issues of the International Association for the Study of Pain (Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983; 16(2):109-10) and were approved by the local Institution for Animal Care and Use Committee (IACUC).
- IACUC Institution for Animal Care and Use Committee
- Cisplatin (TEVA Pharmaceuticals, North Wales, Pa.) was diluted in sterile saline and administered intraperitoneally (i.p.) at a dose of 2.3 mg/kg daily for 5 days, followed by 5 days of rest, and a second round of 5 doses for a total cumulative dose of 23 mg/kg cisplatin. It was shown that this dosing schedule induces mechanical hyperalgesia in mice (Qi-Liang Mao-Ying A K, et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014; Krukowski K, et al. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-mu.
- HDAC6 inhibitor compound 001
- 2-hydroxypropyl-B-cyclodextrin+0.5% hydroxypropyl methylcellulose Sigma-Aldrich, St. Louis, Mo.
- the testing consisted of five stimuli after the first change in response occurred, and the pattern of response was converted to a 50% von Frey threshold using the method described previously (Chaplan S R, et al. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994; 53(1):55-63) by an investigator blinded to treatment until the end of the experiment.
- mice were allowed to freely explore for 15 min the CPP apparatus.
- the CPP apparatus consisted of 2 chambers (18 ⁇ 20 cm, one dark, one white) connected by a 15 cm hallway (Stoelting, Wood Dale, Ill.). The time spent in the light chamber was recorded.
- saline was injected intraperitoneally in the morning and the mice were then kept in the dark chamber for 20 min.
- the analgesic retigabine (#R-100, Alomone laboratory, Jerusalem, Israel) was and the mice were immediately placed in the light chamber for 20 min. Conditioning was repeated for four consecutive days. The following day the mice did not receive any injections but were allowed to freely explore both chambers of the apparatus for 15 min.
- a mouse experiencing pain relieve by retigabine should show an increase in time spent in the light chamber that was paired with retigabine as compared to the pre-conditioning phase.
- biopsies from the plantar surface of the hind paws were collected after 3 doses or 11 doses of compound 001 or vehicle and processed as described previously (Qi-Liang Mao-Ying A K, et al.
- the anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014); Krukowski K, et al. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-mu. Pain. 2015; 156(11):2184-92).
- biopsies were fixed in Zamboni's fixative, cryoprotected in 20% sucrose and then frozen in Optimal Cutting Temperature compound (Sakura Finetek USA, Inc., Torrance, Calif.). 25- ⁇ m frozen sections were incubated with antibodies against the pan neuronal marker PGP9.5 (Rabbit; AbD Serotec, Oxford, United Kingdom) and Collagen IV (Goat; Southern Biotech, Birmingham, Ala.) followed by Alexa-594 donkey anti-rabbit (Life Technologies, Carlsbad, Calif.) and Alexa-488 donkey anti-goat (Invitrogen, Grand Island, N.Y.).
- PGP9.5 pan neuronal marker
- PGP9.5 pan neuronal marker
- Collagen IV Goat; Southern Biotech, Birmingham, Ala.
- Alexa-594 donkey anti-rabbit Life Technologies, Carlsbad, Calif.
- Alexa-488 donkey anti-goat Invitrogen, Grand Island, N.Y.
- IENFs/mm The total number of fibers/length of epidermis
- GFAP glial fibrillary acidic protein
- Tibial nerves were collected on experimental day 30, when the mice have received 2 rounds of cisplatin treatment and 11 injections of compound 001. Tissues were placed into islet capture XF24 microplate (Seahorse Bioscience, North Billerica, Mass.) in XF media with the addition of 5.5 mM glucose, 0.5 mM sodium pyruvate and 1 mM glutamine. Oligomycin (12 ⁇ M), FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, 20 ⁇ M), and Rotenone/Antimycin A (20 ⁇ M each) (Sigma-Aldrich, St. Louis, Mo.) were injected sequentially during the assay.
- the initial measurements provide a measure of the basal OCR in the absence of respiratory chain poisons.
- the amount of basal OCR that is coupled to ATP production was determined by addition of the ATP synthase inhibitor oligomycin, which decreased the basal OCR.
- the magnitude of this decrease is representative of the ATP-linked OCR, whereas the residual OCR is attributable to uncoupled respiration (proton leak).
- maximal respiratory capacity MRC was assessed by addition of the protonophore FCCP, which dissipates the mitochondrial membrane potential and promotes maximal OCR.
- non-mitochondrial respiration was determined by the addition of rotenone and antimycin A, which inhibit the activities of mitochondrial respiratory chain complex I and complex III respectively.
- Tibial nerves retrieved from the XF24 assay plate were used for western blot analysis of levels of acetylated ⁇ -tubulin and mitochondrial proteins cytochrome c oxidase subunit IV (Cox IV), succinate dehydrogenase complex subunit A (SDHA) and voltage-dependent anion channel (VDAC).
- Tissues were homogenized in RIPA buffer (50 mM Tris-HCl, pH 7.5, 500 mM NaCl, 2.5 mM MgCl 2 , 1% NP-40, 10% glycerol) containing proteinase inhibitors by sonication and 10 ⁇ g of protein was separated by SDS/PAGE and transferred to PVDF membrane for immunoblot analyses.
- PBST phosphate-buffered saline containing 0.1% Tween 20
- primary antibodies recognizing acetylated lysine (Rabbit monoclonal; Abcam, Cambridge, United Kingdom), ⁇ -tubulin (Rabbit polyclonal; Cell Signaling Technology, Danvers, Mass.), Cox IV (Mouse monoclonal; Life Technologies, Carlsbad, Calif.), SDHA (Rabbit polyclonal; Cell Signaling Technology, Danvers, Mass.) and VDAC (Rabbit polyclonal; Cell Signaling Technology, Danvers, Mass.) followed by HRP-conjugated anti-mouse, anti-rabbit, or anti- ⁇ -actin antibodies (Jackson Laboratory, Bar Harbor, Me.).
- Immunoreactivity for each protein was visualized using a chemiluminescence detection kit (GE Healthcare Life Sciences, Little Chalfont, United Kingdom). The images were acquired using ImageQuant LAS 4000 (GE Healthcare Life Sciences, Little Chalfont, United Kingdom) and densitometrically analyzed using Image J software.
- DRG neurons were cultured for 5-7 days before the mitochondrial transport assay. 24 hrs prior to chemotherapy treatment cells were infected with Bacmam 2.0, which labeled mitochondria with GFP. Cells were treated with cisplatin (20-80 ⁇ M)+/ ⁇ compound 001 (100 nM) for 3 hours. Imaging was performed using Zeiss 3i system. Time lapse images were acquired every 2 seconds over the course of 2 min. Image analysis was performed using Fiji and Multiple Kymograph plugin.
- Example 3 Compound 001 Prevents and Treats Mechanical Hyperalgesia Induced by Cisplatin
- mice received cisplatin (i.p.) (2.3 mg/kg) daily for five days, followed by five days rest and a second round of five days of cisplatin treatment ( FIG. 1B ) (Qi-Liang Mao-Ying A K, et al.
- the anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014); Krukowski K, et al. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-mu. Pain. 2015; 156(11):2184-92).
- mice received 7 daily doses of the HDAC6 inhibitor compound 001 (i.p. 3 mg/kg or 10 mg/kg) or vehicle.
- Treatment with 10 mg/kg compound 001 effectively relieved cisplatin-induced mechanical hyperalgesia while the lower dose of 3 mg/kg did not.
- FIG. 1B The effect of compound 001 on mechanical allodynia developed slowly over time and was first detected at 24 h after the first dose ( FIG. 1C ).
- Treatment with 10 mg/kg compound 001 alone did not alter mechanical sensitivity.
- a separate set of experiments found that compound 001 prevented the development of mechanical hyperalgesia when administered one hour prior to each dose of cisplatin ( FIG. 1D ).
- Example 4 Prolonged Compound 001 Treats Mechanical Hyperalgesia and Induces Sustained Recovery
- Example 5 Compound 001 Attenuates Cisplatin-Induced Numbness
- Cisplatin-induced numbness was measured using adhesive removal task (ART) (Qi-Liang Mao-Ying A K, et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014).
- ART adhesive removal task
- a small sticker was placed on the hind paw and the time until the mouse displays a behavioral response to the sticker was recorded. Consistent with a previous study, cisplatin treatment prolonged the time to respond to the sticker in this test, indicating numbness.
- Example 6 Compound 001 and Cisplatin Treatment do not Change General Activity or Motor Function
- Example 7 Compound 001 Decreases Cisplatin-Induced Activation in the Spinal Cord Dorsal Horn
- CIPN is associated with spinal cord astrocyte activation as evidenced by an increase in GFAP expression
- Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells.
- Exp Neurol. 2007; 203(1):42-54 Consistently, an increase in GFAP expression was detected in the dorsal horn of the spinal cord in cisplatin-treated mice.
- Compound 001 treatment normalized GFAP expression to levels of saline-treated animals ( FIG. 5 ).
- Tubulin acetylation status is a key regulator of neuronal mitochondrial transport (Chen S, et al. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010; 5 (5): e10848).
- the effect of cipslatin and compound 001 on mitochondrial motility was examined in primary cultures of rat DRG neurons in which mitochondria were fluorescently labeled. Cultured DRG neurons were treated with cisplatin and compound 001 for 3 hours and mitochondrial movement in axons was measured using time-lapse imaging. Cisplatin-treatment decreased the percentage of moving mitochondria when compared to vehicle-treated cultures ( FIG. 6 ). Co-administration of compound 001 (100 nM) prevented this cisplatin-induced decrease in mitochondrial transport.
- mice received saline injections paired with exposure to a dark chamber and retigabine injections paired with exposure to a light chamber.
- mice On the test day the mice were allowed to freely explore both chambers and the change in time spent in the light chamber after conditioning is recorded.
- the results in FIG. 8 show that cisplatin-treated mice increased the time spent in the light chamber that was paired with retigabine, indicating ongoing pain.
- the saline-treated mice maintain a preference for the dark chamber.
- Mice that were treated with cisplatin followed by two weeks of daily compound 001 did not develop a preference for the retigabine-paired light chamber, indicating that these mice no longer experience pain. There were no group differences in time spent in the light chamber before conditioning.
- Example 11 HDAC6 Inhibition Induces ⁇ -Tubulin Acetylation In Vivo
- Cisplatin-treatment is known to reduce the intra-epidermal nerve fiber (IENF) density in the plantar surface of the paw (Qi-Liang Mao-Ying A K, et al.
- IENF intra-epidermal nerve fiber
- metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014). It has been hypothesized that this reduction is due to mitochondrial damage as these peripheral nerve fibers represent bioenergetically demanding regions (Bennett G J, et al. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat. Rev. Neurol. 2014; 10(6):326-36). Consistent with a previous report (Qi-Liang Mao-Ying A K, et al.
- the anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model.
- Clinical Cancer Research. 2014 cisplatin-treatment reduced the IENF density.
- the prolonged regimen of compound 001 treatment completely reversed the cisplatin-induced loss of IENFs ( FIG. 10 ).
- short-term treatment with compound 001 did not have any effect on IENF density, indicating that prolonged treatment with compound 001 promoted restoration of IENF density rather than preventing the progression of IENF loss.
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Disclosed are methods for treating cisplatin-induced peripheral neuropathy in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a histone deacetylase 6 selective inhibitor.
Description
- This application is a divisional patent application of U.S. application Ser. No. 16/299,310, filed Mar. 12, 2019, which application is a divisional patent application of U.S. application Ser. No. 15/170,335, filed Jun. 1, 2016, now issued as U.S. Pat. No. 10,272,084, which application claims the benefit of U.S. Provisional Application Ser. No. 62/169,528, filed Jun. 1, 2015, the content of which is incorporated herein in its entirety.
- Neurotoxic side-effects of chemotherapy, including pain and numbness in hands and feet, frequently lead to dose reduction. This chemotherapy-induced peripheral neuropathy (CIPN) often persists long into survivorship and negatively affects quality of life. There are no drugs available to prevent or treat CIPN, and underlying mechanisms are only partially understood. Only a few studies have studied chemotherapy-induced numbness because of lack of relevant animal models.
- The high prevalence and incidence of CIPN along with the lack of effective treatments makes identification of therapeutics and understanding of mechanistic drivers of CIPN vital for improving quality of life in cancer patients and survivors. Accordingly, there remains a need to alleviate the symptoms of chemotherapy-induced peripheral neuropathy
- Provided herein are pharmaceutical compounds for the treatment of cisplatin-induced peripheral neuropathies in a subject in need thereof. Also provided herein are methods for treating a cisplatin-induced peripheral neuropathy in a subject in need thereof.
- In a first aspect, provided herein are methods of treating cisplatin-induced peripheral neuropathy in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a
histone deacetylase 6 selective inhibitor, to thereby treat or prevent the cisplatin-induced peripheral neuropathy. In such an aspect, thehistone deacetylase 6 selective inhibitor can be compound 001: - or a pharmaceutically acceptable salt thereof. The
histone deacetylase 6 selective inhibitor can be co-administered with cisplatin, or administered before or after administering cisplatin. The cisplatin-induced peripheral neuropathy can exist in the subject prior to administering thehistone deacetylase 6 selective inhibitor. - In a second aspect, provided herein is a method of treating cisplatin-induced peripheral neuropathy in a subject in need thereof comprising administering to the subject a therapeutically effective amount of compound 001:
- or a pharmaceutically acceptable salt thereof, to thereby treat the cisplatin-induced peripheral neuropathy.
Compound 001 can be co-administered with cisplatin, or administered before or after administering cisplatin. The cisplatin-induced peripheral neuropathy can exist in the subject prior to administering thehistone deacetylase 6 selective inhibitor. - In yet a third aspect, provided herein are methods of inhibiting cisplatin-induced astrocyte activation in a subject, comprising administering to the subject a therapeutically effective amount of a
histone deacetylase 6 selective inhibitor to thereby inhibit astrocyte activation. - In a fourth aspect, provided herein are methods of inhibiting a decrease in cisplatin-induced neuronal mitochondrial transport comprising contacting a neuron with an effective amount of a
histone deacetylase 6 selective inhibitor to thereby inhibit the decrease of cisplatin-induced neuronal mitochondrial transport. - In a fifth aspect, provided herein are methods of treating cisplatin-induced pain, comprising administering to a subject in need thereof an effective amount of a
histone deacetylase 6 selective inhibitor to thereby treat the pain in the subject. The cisplatin-induced pain can exist in the subject prior to administering thehistone deacetylase 6 selective inhibitor. - In a sixth aspect, provided herein are methods of treating cisplatin-induced numbness, comprising administering to a subject in need thereof an effective amount of a
histone deacetylase 6 selective inhibitor to thereby treat the numbness in the subject. The cisplatin-induced numbness can exist in the subject prior to administering thehistone deacetylase 6 selective inhibitor. - In any of the third through sixth aspects, the
histone deacetylase 6 selective inhibitor can be compound 001: - or a pharmaceutically acceptable salt thereof.
- In a seventh aspect, provided herein is a method for restoring the loss of intra-epidermal nerve fiber (IENF) in a subject, comprising administering to the subject an effective amount of a
histone deacetylase 6 selective inhibitor. - In an embodiment of the seventh aspect, the loss of intra-epidermal nerve fiber is the result of administering cisplatin to the subject.
- In another embodiment of the seventh aspect, the administration of the
histone deacetylase 6 selective inhibitor to the subject occurs during or after administering cisplatin. - In yet another embodiment of the seventh aspect, the
histone deacetylase 6 selective inhibitor can be compound 001: - or a pharmaceutically acceptable salt thereof.
-
FIG. 1A shows cisplatin andcompound 001 dosing schemes. All reagents were administered intraperitoneally (i.p.). Black X denotes cisplatin treatment (2.3 mg/kg); Gray X denotescompound 001 treatment. -
FIG. 1B shows thatcompound 001 treats mechanical hyperalgesia induced by cisplatin. Mice were administered with two rounds of cisplatin treatment; three days after the last cisplatin dose mice received compound 001 (10 mg/kg or 3 mg/kg) for 7 days (see dosing schedule inFIG. 1A ). Two-way repeated measured ANOVA revealed a main effect of time (p<0.01), group (p<0.01), and a group by time interaction (p<0.01). Tukey post-hoc analysis was used to determine differences between groups at specified time points: ***p<0.001 between Cisplatin+Vehicle vs. Saline+Vehicle; ***p<0.001 between Cisplatin+compound 001 (10 mg/kg) vs. Cisplatin+Vehicle. n=10-12/group. -
FIG. 1C shows the short term time course of the activity ofcompound 001. Mice were administered two rounds of cisplatin treatment as above. The effect ofcompound 001 developed slowly over time and was first detected 24 hours after the first dose of compound. Two-way repeated measured ANOVA showed a main effect of time (p<0.05) and a group by time interaction (p<0.05). Tukey post-hoc analysis for Cisplatin+compound 001 (10 mg/kg) vs. Cisplatin+Vehicle: ***p<0.001. n=6-8/group. -
FIG. 1D shows thatcompound 001 prevents the development of mechanical hyperalgesia in mice treated with cisplatin.Compound 001 was administered one hour prior to each dose of cisplatin for one week. Mechanical hyperalgesia was measured for two weeks following the last cisplatin treatment. Two-way repeated measured ANOVA showed a main effect of time (p<0.0001), group (p<0.03), and a group by time interaction (p<0.03). Tukey post-hoc analysis for compound 001 (10 mg/kg)+Cisplatin vs. Vehicle+Cisplatin: ***p<0.001. n=6-8/group. Mice received cisplatin daily for five days. Compound 001 (10 mg/kg or 3 mg/kg) was administered (i.p.) one hour prior to each cisplatin injection and for two days after the last cisplatin injection. -
FIG. 2 shows thatprolonged compound 001 treats mechanical hyperalgesia and induces sustained recovery. Mice were administered with two rounds of cisplatin treatment; three days after the last cisplatin dose mice received compound 001 (10 mg/kg) for 7 days followed by 7 days rest and then another 7 days following cisplatin treatment. Alternatively, mice received compound 001 (10 mg/kg) for 14 consecutive days (see dosing schedule inFIG. 1A ). Mechanical hyperalgesia was measured using von Frey hairs and the 50% paw withdrawal threshold was calculated by the up-down method. Two-way repeated measured ANOVA revealed a main effect of time (p<0.01), a group effect (p<0.01), and a group by time interaction (p<0.01). Tukey post-hoc analysis was used to determine differences between groups at specified time points. ***p<0.001 between Cisplatin+Vehicle vs. Saline+Vehicle; **p<0.01 between Cisplatin+compound 001 vs. Cisplatin+Vehicle. n=6-14/group. -
FIG. 3 shows thatcompound 001 attenuates cisplatin-induced numbness. Cisplatin-induced numbness was measured by the adhesive removal test (ART). Mice were tested inweek 5 for cisplatin-induced numbness. Statistical analysis using one-way ANOVA revealed a significant difference between groups (p<0.05). Tukey post-hoc analysis was used to determine differences between groups. *p<0.05; **p<01. n=5-6/group. -
FIG. 4A andFIG. 4B show thatcompound 001 and cisplatin treatments do not change general activity or motor function. In the graphs, moving from left to right, the bars represent: saline+comp. 001 (10 mg/kg), cisplatin+vehicle, cisplatin+comp. 001 (10 mg/kg), and the far most right bar: cisplatin+comp. 001 (3 mg/kg). -
FIG. 5 shows thatcompound 001 decreases cisplatin-induced astrocyte activation in the spinal cord dorsal horn in mice. Mice were treated with two rounds of cisplatin followed by 3 doses of 10 mg/kg compound 001 treatment starting at day 4 after completion of cisplatin treatment. Lumbar spinal cord was stained for the astrocyte activation marker GFAP. Representative examples of immunofluorescence: (A) saline+vehicle (B) saline+compound 001 (C) cisplatin+vehicle (D) cisplatin+compound 001. (E) GFAP levels (area positive) in the spinal dorsal horn were quantified using Image J Analysis software, n=3-4 mice/group. Two-way ANOVA revealed a signification interaction (p<0.05). Tukey post-hoc analysis revealed significant differences between groups: *p<0.05. Scale bar=20 μm; 40× magnification. -
FIG. 6 shows thatcompound 001 prevents cisplatin-induced decreases in mitochondrial transport in vitro. Mitochondrial transport was determined with rat DRG neuron cultures in vitro. -
FIG. 7A shows mitochondrial bioenergetics in tibial nerves from mice that had received 2 rounds of cisplatin treatment and 11 injections ofcompound 001. Two-way ANOVA revealed a signification interaction (p<0.05) and treatment (compound 001) effect (p<0.05) for baseline respiration, ATP-coupled respiration, proton leak and maximal respiratory capacity. Tukey post-hoc analysis revealed significant differences between groups: *p<0.05. -
FIG. 7B shows tibal nerves retrieved from the XF-analysis were used for Western blot analysis of mitochondrial marker protein Cox IV, n=6-8 mice/group. Two-way ANOVA revealed a significant treatment (compound 001) effect (p<0.05). Tukey post-hoc analysis revealed significant differences between groups: *p<0.05. -
FIG. 7C shows tibial nerves were used for Western blot analysis of additional mitochondrial marker proteins SDHA and VDAC. -
FIG. 8 shows spontaneous pain measured by the conditioned place preference test after two weeks ofcompound 001 treatment. Neuropathic pain was induced by two rounds of cisplatin treatment. During pre-conditioning, mice were allowed to freely explore for 15 min the CPP apparatus. The CPP apparatus consists of 2 chambers (18×20 cm, one dark, one white) connected by a 15 cm hallway (Stoelting, Wood Dale, Ill.). The time spent in the light chamber was recorded. During the conditioning phase, saline was injected i.p. in the morning and the mice were then kept in the dark chamber for 20 min. Three hours later, the analgesic retigabine (#R-100, Alomone laboratory, Jerusalem, Israel) was injected i.p. and the mice were immediately placed in the light chamber for 20 min. Conditioning was repeated for four consecutive days. The following day the mice did not receive any injections but were allowed to freely explore both chambers of the apparatus for 15 min. A mouse experiencing pain relieve by retigabine should show an increase in time spent in the light chamber that was paired with retigabine as compared to the pre-conditioning phase. The Y-axis indicates the change in time spent in light chamber. Two-way ANOVA revealed an effect of a group effect (p<0.01), and treatment (compound 001 vs. vehicle) effect (p<0.01). Tukey post-hoc analysis was used to determine differences between groups at specified time points. *p<0.05 between Cisplatin+Vehicle vs. all three other groups. n=6-8 mice/group. -
FIG. 9 shows acetylated α-tubulin levels in tibial nerves from mice that had received 2 cycles of cisplatin and 11 doses ofcompound 001 as assessed by Western blot analysis.Compound 001 treatment induced α-tubulin acetylation. n=4 mice/group. Two-way ANOVA revealed a significant treatment (compound 001) effect (p<0.05). Tukey post-hoc analysis revealed significant differences between groups: *p<0.05. -
FIG. 10 shows quantification of intraepidermal nerve fiber (IENF) density expressed as the number of nerve fibers crossing the basement membrane/length of the basement membrane (mm) (n=4 mice per group), magnification ×40. Two-way ANOVA revealed a significant treatment (compound 001) effect (p<0.05). Tukey post-hoc analysis revealed significant differences between groups: *, p<0.05. Paw biopsies were obtained from the hind paws of mice that received 2 cycles of cisplatin and 11 doses ofcompound 001. Tissues were stained with antibodies for IENFs (PGP9.5) and collagen. - Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most commonly and widely reported adverse side effects of cancer treatment (Dougherty P M, et al., Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain. 2004; 109 (1-2): 132-42; Wolf S, et al. Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. European journal of Cancer. 2008; 44(11):1507-15). The overall incidence of CIPN ranges from 30-80% in patients treated for cancer depending on the chemotherapy regimens used and the duration of treatment, with the highest incidence reported for taxanes, platinum derivatives and vinca alkaloids (Wolf S, et al. European journal of Cancer. 2008; 44(11):1507-15; Cavaletti G, and Zanna C, Current status and future prospects for the treatment of chemotherapy-induced peripheral neurotoxicity. European journal of cancer. 2002; 38(14):1832-7; Cavaletti G, et al. Chemotherapy-induced neuropathy. Curr Treat Options Neurol. 2011; 13(2):180-90; Windebank A J and Grisold W, Chemotherapy-induced neuropathy. Journal of the peripheral nervous system: JPNS. 2008; 13(1):27-46; Seretny M, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain. 2014; 155(12):2461-70; Park S B, et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin. 2013; 63(6):419-37). The symptoms of CIPN include pain, numbness, tingling and temperature sensitivity, and normally present with a symmetric, distal, “stocking and glove” distribution (Dougherty P M, et al. Pain. 2004; 109 (1-2): 132-42; Wolf S, et al. European journal of Cancer. 2008; 44(11):1507-15; Cavaletti G, et al. The chemotherapy-induced peripheral neuropathy outcome measures standardization study: from consensus to the first validity and reliability findings. Ann Oncol. 2013; 24(2):454-62; Kim J H, et al. Basic science and clinical management of painful and non-painful chemotherapy-related neuropathy. Gynecol Oncol. 2015; 136(3):453-9). The occurrence of CIPN can limit the dosage, delay further treatment cycles, and in the worst scenarios lead to early termination of treatment (Pachman D R, et al. Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clin Pharmacol Ther. 2011; 90(3):377-87; Cavaletti G, et al. Cisplatin-induced peripheral neurotoxicity is dependent on total-dose intensity and single-dose intensity. Cancer. 1992; 69(1):203-7; Uhm J H, and Yung W K. Neurologic Complications of Cancer Therapy. Curr Treat Options Neurol. 1999; 1(5):428-37; Polomano R C, and Bennett G J. Chemotherapy-evoked painful peripheral neuropathy. Pain Med. 2001; 2(1):8-14; Mielke S, Sparreboom A, and Mross K. Peripheral neuropathy: a persisting challenge in paclitaxel-based regimes. European journal of cancer. 2006; 42(1):24-30). Moreover, CIPN frequently persists for a prolonged period of time and sometimes even worsens after completion of chemotherapy (Quasthoff S, and Hartung HP. Chemotherapy-induced peripheral neuropathy. J Neurol. 2002; 249(1):9-17; Schneider B P, et al. Symptoms: Chemotherapy-Induced Peripheral Neuropathy. Advances in experimental medicine and biology. 2015; 862 (77-87); Hershman D L, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. Journal of clinical oncology. 2014: 32(18):1941-67), thereby greatly reducing the quality of life for cancer survivors. Despite the high prevalence and severity of CIPN, currently there are no effective FDA-approved drugs to prevent or reverse CIPN.
- Cisplatin is a platinum-based chemotherapeutic that is commonly used for the treatment of solid tumors such as lung, ovarian, testis, bladder, and head and neck cancer (Barabas K, et al. Cisplatin: a review of toxicities and therapeutic applications. Veterinary and comparative oncology. 2008; 6(1):1-18; Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007; 7(8):573-84). Cisplatin treatment is associated with a high incidence of CIPN (Cavaletti G, and Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Nat Rev Neurol. 2010; 6(12):657-66), and in rodents induces mechanical hyperalgesia, spontaneous pain and numbness (Authier N, et al. An animal model of nociceptive peripheral neuropathy following repeated cisplatin injections. Exp Neurol. 2003; 182(1):12-20; Qi-Liang Mao-Ying A K, et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014; Krukowski K, et al. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-mu. Pain. 2015; 156(11):2184-92; Park H J, et al. Persistent hyperalgesia in the cisplatin-treated mouse as defined by threshold measures, the conditioned place preference paradigm, and changes in dorsal root ganglia activated transcription factor 3: the effects of gabapentin, ketorolac, and etanercept. Anesth Analg. 2013; 116(1):224-31). Mechanisms that underlie development and maintenance of cisplatin-induced peripheral neuropathy are under active investigation. Chemotherapy-induced mitochondrial damage in peripheral sensory neurons is thought to play a major role in CIPN. Paclitaxel and oxaliplatin have been shown to cause mitochondrial swelling or vacuolization in cell bodies and axons of sensory neurons (Krukowski K, et al. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-mu. Pain. 2015; 156(11):2184-92, 25-30; Flatters S J, and Bennett G J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain. 2006; 122(3):245-57; Zheng H, et al. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol. 2011; 232(2):154-61; Xiao W H, et al. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neuroscience. 2011; 199 (461-9); Janes K, et al. Bioenergetic deficits in peripheral nerve sensory axons during chemotherapy-induced neuropathic pain resulting from peroxynitrite-mediated post-translational nitration of mitochondrial superoxide dismutase. Pain. 2013; 154(11):2432-40; Abbott B, et al. Limits on gravitational-wave emission from selected pulsars using LIGO data. Phys Rev Lett. 2005; 94(18):181103; Bennett G J, et al. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol. 2014; 10(6):326-36). In the peripheral nerves of paclitaxel and oxaliplatin-treated rats these mitochondrial morphological changes are associated with impaired Complex I-mediated and Complex II-mediated respiration and ATP production (Zheng H, et al. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol. 2011; 232(2):154-61). It has recently been shown that prevention of paclitaxel-induced mitochondrial morphological abnormalities by the compound pifithrin-μ also prevented mechanical hyperalgesia induced by paclitaxel (Krukowski K, et al. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-mu. Pain. 2015; 156(11):2184-92). These findings further support the role of mitochondrial damage in the pathogenesis of CIPN.
- Histone deacetylase 6 (HDAC6) is a cytoplasmic class II histone deacetylase (HDAC) that, in contrast to the other HDACs, has a specificity for non-histone proteins, including α-tubulin and HSP90. HDAC6-activity regulates multiple intracellular processes such as protein degradation, cell motility, and cell-cell interaction (31-33 Valenzuela-Fernandez A, et al. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends in cell biology. 2008; 18(6):291-7; Hubbert C, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002; 417(6887):455-8; Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, and Matthias P. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 2003; 22(5):1168-79). Importantly, HDAC6 has been implicated in the regulation of mitochondrial transport (Hubbert C, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002; 417(6887):455-8; Zhang Y, et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 2003; 22(5):1168-79; Reed N A, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 2006; 16(21):2166-72). In vitro, HDAC6 inhibition increased α-tubulin acetylation and promoted mitochondrial transport in hippocampal neurons (Chen S, et al. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010; 5 (5): e10848). In vivo, it has been shown that an HDAC6 inhibitor increased α-tubulin acetylation in peripheral nerves and improved sensory-motor function in a mouse model of
type 2 Charcot-Marie-Tooth (CMT2) disease. In this model, the HDAC6 inhibitor also enhanced mitochondrial transport as measured in DRG explants (d′Ydewalle C, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nature Medicine. 2011; 17(8):968-74). - Listed below are definitions of various terms used in this disclosure. These definitions apply to the terms as they are used throughout this specification and claims, unless otherwise limited in specific instances, either individually or as part of a larger group.
- The term “about” generally indicates a possible variation of no more than 10%, 5%, or 1% of a value. For example, “about 25 mg/kg” will generally indicate, in its broadest sense, a value of 22.5-27.5 mg/kg, i.e., 25±2.5 mg/kg.
- The term “HDAC” refers to histone deacetylases, which are enzymes that remove the acetyl groups from the lysine residues in core histones, thus leading to the formation of a condensed and transcriptionally silenced chromatin. There are currently 18 known histone deacetylases, which are classified into four groups. Class I HDACs, which include HDAC1, HDAC2, HDAC3, and HDAC8, are related to the yeast RPD3 gene. Class II HDACs, which include HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10, are related to the yeast Hda1 gene. Class III HDACs, which are also known as the sirtuins are related to the Sir2 gene and include SIRT1-7. Class IV HDACs, which contains only HDAC11, has features of both Class I and II HDACs. The term “HDAC” refers to any one or more of the 18 known histone deacetylases, unless otherwise specified.
- The term “inhibitor” is synonymous with the term antagonist.
- The term “selective inhibitor” means an inhibitor that substantially inhibits (5 to 1000-fold or more) the activity of a specific molecule. For example, a selective inhibitor of HDAC6 (also referred to herein as a
histone deacetylase 6 selective inhibitor) substantially inhibits the activity of HDAC6 as compared with other HDACs (i.e., inhibits the activity of HDAC6 to a much greater extent, e.g., 5 to 1000-fold or more, than other HDACs). - The term “pharmaceutically acceptable salt” refers to those salts of the compounds formed by the process disclosed herein which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Additionally, “pharmaceutically acceptable salts” refers to derivatives of the disclosed compounds wherein the parent compound is modified by converting an existing acid or base moiety to its salt form. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. Pharmaceutically acceptable salts include the conventional non-toxic salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. Pharmaceutically acceptable salts can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418 and Journal of Pharmaceutical Science, 66, 2 (1977), each of which is incorporated herein by reference in its entirety.
- The term “subject” refers to a mammal. A subject therefore refers to, for example, dogs, cats, horses, cows, pigs, guinea pigs, and the like. Preferably the subject is a human. When the subject is a human, the subject can also be referred to herein as a patient.
- The terms “treating,” “treatment” and the like are used herein to mean obtaining a desired pharmacologic and/or physiologic effect that at least alleviates or abates a disease and/or its attendant symptoms. “Treating” also covers any treatment of a disease in a mammal, and includes inhibiting a disease, i.e., arresting its development; or relieving or ameliorating the disease, e.g., cause regression of the disease. As used herein, to “treat” includes systemic amelioration of the symptoms associated with the pathology and/or a delay in onset of symptoms. Clinical and sub-clinical evidence of “treatment” will vary with the pathology, the individual and the treatment. The terms “prevent,” “preventing,” or “prevention” as used herein comprises the prevention of at least one symptom associated with or caused by the state, disease or disorder being prevented.
- The number of carbon atoms in an alkyl substituent can be indicated by the prefix “Cx-y,” where x is the minimum and y is the maximum number of carbon atoms in the substituent. Likewise, a Cx chain means an alkyl chain containing x carbon atoms.
- The term “alkyl” refers to saturated, straight- or branched-chain hydrocarbon moieties containing, in certain embodiments, between one and six, or one and eight carbon atoms, respectively. Examples of C1-6-alkyl moieties include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl moieties; and examples of C1-8-alkyl moieties include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl, heptyl, and octyl moieties.
- The term “alkoxy” refers to an —O-alkyl moiety.
- The terms “halo” and “halogen” refer to an atom selected from fluorine, chlorine, bromine and iodine. The term “haloalkyl” refers to an alkyl group with one more instances of halo substitution, e.g., —CF3.
- The term “cycloalkyl” denotes a monovalent group derived from a monocyclic or polycyclic saturated or partially unsatured carbocyclic ring compound. Examples of C3-8-cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl; and examples of C3-12-cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, bicyclo [2.2.1] heptyl, and bicyclo [2.2.2] octyl. Also contemplated are monovalent groups derived from a monocyclic or polycyclic carbocyclic ring compound having at least one carbon-carbon double bond by the removal of a single hydrogen atom. Examples of such groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, and the like.
- The term “heterocycloalkyl” refers to a non-aromatic 3-, 4-, 5-, 6- or 7-membered ring or a bi- or tri-cyclic group fused of non-fused system, where (i) each ring contains between one and three heteroatoms independently selected from oxygen, sulfur, and nitrogen, (ii) each 5-membered ring has 0 to 1 double bonds and each 6-membered ring has 0 to 2 double bonds, (iii) the nitrogen and sulfur heteroatoms may optionally be oxidized, (iv) the nitrogen heteroatom may optionally be quaternized, and (iv) any of the above rings may be fused to a benzene ring. Representative heterocycloalkyl groups include, but are not limited to, [1,3]dioxolane, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, and tetrahydrofuryl.
- Any of the aryls, substituted aryls, heteroaryls and substituted heteroaryls described herein, can be any aromatic group.
- Combinations of substituents and variables disclosed herein are only those that result in the formation of stable compounds. The term “stable” refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject).
- Small molecules that specifically inhibit HDAC6 and can alleviate pain and numbness associated with administration of cisplatin are disclosed herein. In one embodiment, the HDAC6 selective inhibitor is a compound of Formula (I):
- or a pharmaceutically acceptable salt thereof,
- wherein,
- Rx and Ry together with the carbon to which each is attached, form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, or terahydropyranyl, any of which may be optionally substituted with 1 or 2 RZ;
- RZ is independently, at each occurrence, selected from the group consisting of C1-6-alkyl, C1-6-alkoxy, halo, —C1-6 haloalkyl, —C1-6 dihaloalkyl, —C1-6 trihaloalkyl, —OH, —N(R1)2, —C(O)R1, —CO2R1, and —C(O)N(R1)2;
- or:
- two RZ groups on the same or adjacent carbon atoms are taken together to form a C3-8-cycloalkyl or C3-7-heterocycloalkyl ring, each of which may be fused or isolated;
- each RA is independently C1-6-alkyl, C1-6alkoxy, halo, OH or haloalkyl;
- each R1 is independently, at each occurrence, selected from the group consisting of H, C1-6-alkyl, C3-8-cycloalkyl, C3-7-heterocycloalkyl, aryl, heteroaryl, C1-6-alkyl-cycloalkyl, C1-6-alkyl-heterocycloalkyl, C1-6-alkyl-aryl, and C1-6-alkyl-heteroaryl; and
- m is 0, 1, or 2.
- In an embodiment, RZ is independently, at each occurrence, selected from the group consisting of C1-6-alkyl, C1-6-alkoxy, halo, —C1-6 haloalkyl, —C1-6 dihaloalkyl, —C1-6 trihaloalkyl, —OH, —N(R1)2, —C(O)R1, —CO2R1, and —C(O)N(R1)2. In a further embodiment, RZ is independently, at each occurrence, selected from the group consisting of C1-6-alkyl, C1-6-alkoxy, halo, —C1-6 haloalkyl, —C1-6 dihaloalkyl, —C1-6 trihaloalkyl, and —OH
- In an embodiment, Rx and Ry together with the carbon to which each is attached, form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, or terahydropyranyl, wherein the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, or terahydropyranyl is substituted with 1 or 2 RZ.
- In an embodiment, Rx and Ry together with the carbon to which each is attached, form a cyclohexyl, wherein the cyclohexyl is substituted with 1 or 2 halo.
- In another embodiment, the HDAC6 selective inhibitor is a compound 001:
- or a pharmaceutically acceptable salt thereof.
- In some embodiments, the compound has a selectivity for HDAC6 that is 5 to 1000 fold greater than for other HDACs. In other embodiments, the compound has a selectivity for HDAC6 when tested in a HDAC enzyme assay, of about 5 to 1000 fold greater than for other HDACs. This is seen in Table 1, which shows the IC50 values for
compound 001 on four different HDACs. These IC50 values and the HDAC assay used to obtain said values are disclosed in U.S. patent application Ser. No. 14/631,971, now published as U.S. Publication No. 2015/0239869, which is hereby incorporated by reference in its entirety. - One biological target of recent interest is histone deacetylase (HDAC) (see, for example, a discussion of the use of inhibitors of histone deacetylases for the treatment of cancer: Marks et al. Nature Reviews Cancer, 2001, 7, 194; Johnstone et al. Nature Reviews Drug Discovery, 2002, 287). Post-translational modification of proteins through acetylation and deacetylation of lysine residues plays a critical role in regulating their cellular functions. HDACs are zinc hydrolases that modulate gene expression through deacetylation of the N-acetyl-lysine residues of histone proteins and other transcriptional regulators (Hassig et al. Curr. Opin. Chem. Biol. 1997, 1, 300-308). HDACs participate in cellular pathways that control cell shape and differentiation, and an HDAC inhibitor has been shown effective in treating an otherwise recalcitrant cancer (Warrell et al. J. Natl. Cancer Inst., 1998, 90, 1621-1625). Eleven human HDACs, which use Zn as a cofactor, have been identified (Taunton et al. Science 1996, 272, 408-411; Yang et al. J. Biol. Chem. 1997, 272, 28001-28007; Grozinger et al. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 4868-4873; Kao et al. Genes Dev. 2000, 14, 55-66; Hu et al. J. Biol. Chem. 2000, 275, 15254-15264; Zhou et al. Proc. Natl. Acad. Sci., 2001, 98, 10572-10577; Venter et al. Science, 2001, 291, 1304-1351), and these members fall into three classes (class I, II, and IV). An additional seven HDACs have been identified which use NAD as a cofactor.
- Histone deacetylases are known to play an essential role in the transcriptional machinery for regulating gene expression, induce histone hyperacetylation and to affect the gene expression. Therefore, it is useful as a therapeutic or prophylactic agent for diseases caused by abnormal gene expression such as, for example, inflammatory disorders, diabetes, diabetic complications, homozygous thalassemia, fibrosis, cirrhosis, acute promyelocytic leukemia (APL), organ transplant rejections, autoimmune diseases, protozoal infections, tumors, etc. HDAC inhibition is a promising therapeutic approach for the treatment of a range of central nervous system disorders (Langley B, et al., 2005, Current Drug Targets, CNS & Neurological Disorders, 4: 41-50).
- Herein, it is demonstrated that pharmacological inhibition of HDAC6 with
Compound 001 effectively prevents and reverses cisplatin-induced mechanical hyperalgesia; moreover, it was shown that prolonged treatment ofcompound 001 also reverses cisplatin-induced spontaneous pain and numbness.Compound 001 has been identified as a single agent capable of causing full recovery from multiple symptoms of CIPN. The reversal of cisplatin-induced neuropathy by inhibition of HDAC6 was associated with normalization of cisplatin-induced mitochondrial bioenergetic deficits and mitochondrial content in the distal axons in the tibial nerve. Normalization of mitochondrial bioenergetics occurred together with restoration of IENF density. These results identify HDAC6 as a novel therapeutic target for treatment of existing cisplatin-induced peripheral neuropathy. The ability ofcompound 001 to reverse existing symptoms of CIPN is an important finding as there are no FDA-approved therapeutics for treatment of established CIPN. - Bioenergetic deficits associated with neuronal mitochondrial dysfunction have been proposed as a driver for CIPN (Bennett G J, et al. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat. Rev. Neurol. 2014; 10(6):326-36). The symptoms of CIPN present in a distal to proximal “stocking and glove” distribution, with the longest peripheral axons having the highest susceptibility. This pattern of symptoms suggests that insufficient distribution of mitochondria to the peripheral axons might well contribute to CIPN. Indeed, the results implicate impaired mitochondrial transport as a contributing factor to cisplatin-induced peripheral neuropathy. In the ex vivo model of DRG neuron cultures, cisplatin-treatment reduced mitochondrial movement in the axons, which was reversed by the HDAC6 inhibitor compound 001 (
FIG. 6 ). The mitochondrial transport in vivo was not directly measured. However, it was shown thatcompound 001 improved mitochondrial bioenergetics and mitochondrial content in the distal tibial nerves of cisplatin treated mice (FIGS. 7A-C ). These findings provide indirect evidence implicating improved axonal mitochondrial transport in the beneficial effects of HDAC6 inhibition. Others have also proposed that inhibition of HDAC6 protects against neurological disorders by facilitating distribution of mitochondria throughout the neuronal network (d′Ydewalle C, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nature Medicine. 2011; 17(8):968-74; Dompierre J P, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. The Journal of Neuroscience. 2007; 27(13):3571-83; Godena V K, et al. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nature Communications. 2014; 5 (5245); Reynolds U, et al. Mitochondrial trafficking in neurons: a key variable in neurodegeneration? J Bioenerg Biomembr. 2004; 36(4):283-6; Beal M F. Mitochondria and neurodegeneration. Novartis Found Symp. 2007; 287 (183-92; discussion 92-6). The transport of mitochondria along microtubules is increased by acetylation of α-tubulin, which provides a recognition signal for the anchoring of molecular motors (Reed N A, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 2006; 16(21):2166-72). HDAC6 is a well-known α-tubulin deacetylase and inhibition of HDAC6 increases tubulin acetylation. Indeed, increased acetylation of α-tubulin by HDAC6 inhibition is associated with improved mitochondrial transport (Hubbert C, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002; 417(6887):455-8; Chen S, et al. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010; 5 (5): e10848; d′Ydewalle C, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nature Medicine. 2011; 17(8):968-74). In the model of cisplatin-induced peripheral neuropathy, it was shown that inhibition of HDAC6 withcompound 001 promoted α-tubulin acetylation (FIG. 9 ). Corresponding with increased α-tubulin acetylation, it was shown thatcompound 001 improved mitochondrial bioenergetics and contents in the distal tibial nerves of cisplatin-treated mice. Taken together, these data support a protective role for HDAC6 inhibition in CIPN through increasing α-tubulin acetylation and improving axonal mitochondrial transport. - IENF loss has been suggested as the earliest sign of axonal pathology. It is hypothesized that the IENFs represent bioenergetically active regions and therefore are highly susceptible to chemotherapy-induced mitotoxic insults (Bennett G J, et al. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol. 2014; 10(6):326-36). Consistent with previous reports (Qi-Liang Mao-Ying A K, Karen Krukowski, Xiao-Jiao Huo, Theodore J. Price, Charles Cleeland, and Cobi J. Heijnen. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014; Lauria G, Lombardi R, Borgna M, Penza P, Bianchi R, Savino C, Canta A, Nicolini G, Marmiroli P, and Cavaletti G. Intraepidermal nerve fiber density in rat foot pad: neuropathologic-neurophysiologic correlation. Journal of the peripheral nervous system: JPNS. 2005; 10(2):202-8), it was shown that cisplatin-treatment decreased IENF density in the hind paws. Importantly, two weeks of
compound 001 treatment fully reversed cisplatin-induced IENF loss (FIG. 10 ) and restored distal nerve mitochondrial bioenergetics (FIGS. 7A-C ). As nerve fiber regrowth and extension is a highly energetically demanding process (Bennett G J, et al. Terminal arbor degeneration—a novel lesion produced by the antineoplastic agent paclitaxel. The European journal of neuroscience. 2011; 33(9):1667-76), the effect ofcompound 001 on IENF is likely attributable to the normalization of mitochondrial bioenergetics in the peripheral axons. Therefore, these data provide important evidence for the mitotoxic hypothesis of IENF loss in CIPN. Importantly, it was shown that prolonged inhibition of HDAC6 withcompound 001 reversed IENF loss and at the same time led to persistent recovery from multiple symptoms of CIPN. Clinically IENF loss has been regarded as a reliable diagnostic tool for peripheral neuropathy (Lauria G, and Lombardi R. Skin biopsy: a new tool for diagnosing peripheral neuropathy. Bmj. 2007; 334(7604):1159-62) and these data indicate that restoration of IENF density may be used as a biomarker to evaluate drug efficacy and predict long-term recovery in CIPN patients. - These findings strongly implicate changes in α-tubulin acetylation and improved mitochondrial transport in the reversal of CIPN by HDAC6 inhibition. However, it is possible that
compound 001 also impacts other cellular processes. For example, HDAC6 inhibition has been implicated in redox regulation by increasing acetylation of peroxiredoxins-1 and -2, thereby increasing their reducing activity (Parmigiani R B, et al. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proceedings of the National Academy of Sciences. 2008; 105(28):9633-8). An anti-inflammatory effect of selective HDAC6 inhibition has also been implicated in its beneficial effects in models of rheumatoid arthritis (Vishwakarma S, et al. Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory and anti-rheumatic effects. International Immunopharmacology. 2013; 16(1):72-8). In addition, there is evidence that HDAC6 inhibition amplifies the production of the anti-inflammatory cytokine interleukin-10 that is known to have pain-reducing effects (Wang B, Rao Y H, Inoue M, Hao R, Lai C H, Chen D, McDonald S L, Choi M C, Wang Q, Shinohara M L, et al. Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. Nature Communications. 2014; 5 (3479); Milligan E D, Penzkover K R, Soderquist R G, and Mahoney M J. Spinal interleukin-10 therapy to treat peripheral neuropathic pain. Neuromodulation. 2012; 15(6):520-6).Compound 001 treatment reversed cisplatin-induced astrocyte activation, implicating a potential contribution of anti-inflammatory effects to the efficacy ofcompound 001. As both oxidative stress and inflammatory cascade activation have been implicated in the initiation and progression of CIPN (Areti A, et al. Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biology. 2014; 2 (289-95); Wang X M, et al. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine. 2012; 59(1):3-9), inhibition of HDAC6 might also promote resolution of CIPN through targeting these pathways. Further studies will be needed to determine the involvement of other pathways in the protective effects of HDAC6 inhibition against CIPN. - When investigating potential therapeutics for CIPN, it is critical that such treatments do not interfere with the anti-tumor effects of chemotherapy. The HDAC6 inhibitor ricolinostat has been shown to have synergistic effect with proteasome inhibitors for the treatment of multiple myeloma in both preclinical and clinical settings (Santo L, et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012; 119(11):2579-89; Mishima Y, et al. Ricolinostat induced inhibition of aggresome formation accelerates carfilzomib-induced multiple myeloma cell death. British Journal of Haematology. 2015; 169(3):423-34). The anti-tumor effects of HDAC6 inhibition are thought to be mediated by increases in acetylation of HSP90, which disrupts the chaperone function of HSP90, leading to misfolded protein aggregation in cancer cells and subsequent cancer cell death (Bali P, et al. Inhibition of
histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. The Journal of Biological Chemistry. 2005; 280(29):26729-34; Kovacs J J, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular Cell. 2005; 18(5):601-7). These studies in combination with the present findings indicate that HDAC6 inhibition could enhance tumor-killing effects of chemotherapeutics and at the same time inhibit CIPN. - CIPN represents an important challenge in cancer treatment due to the severity of symptoms and the lack of effective therapeutics for both prevention or treatment. It was shown that HDAC6 inhibition completely reversed multiple symptoms of CIPN. The protective effect of HDAC6 inhibition is associated with improved axonal mitochondrial bioenergetics, increased α-tubulin acetylation and enhanced IENF density. These findings provide important evidence for using HDAC6 inhibitors as promising therapeutics for prevention and treatment of CIPN. These results also implicate IENF density as a reliable biomarker for clinical evaluation of drug efficacy in the treatment of CIPN.
- Thus, in an aspect, provided herein are methods of treating or preventing a cisplatin-induced peripheral neuropathy in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a
histone deacetylase 6 selective inhibitor. - In another aspect, provided herein are methods of treating or preventing a cisplatin-induced peripheral neuropathy in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
- In an aspect, provided herein is a method of treating cisplatin-induced pain in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
- In another aspect, provided herein is a method of treating cisplatin-induced numbness in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
- In another aspect, provided herein is a method of preventing cisplatin-induced astrocyte activation in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
- In another aspect, provided herein is a method of preventing cisplatin-induced decrease in neuronal mitochondrial transport in a neuron comprising contacting the neuron with an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
- In another aspect, provided herein is a method for restoring the loss of intra-epidermal nerve fiber (IENF) in a subject, comprising administering to the subject an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof. In an embodiment, the loss of intra-epidermal nerve fiber is the result of administering cisplatin to the subject. In another embodiment, the administration of the compound of Formula (I), or a pharmaceutically acceptable salt thereof, to the subject occurs during or after administering cisplatin.
- Methods of making the compounds of Formula (I) can be found in PCT application publication WO/2012068109A2.
- In another aspect, provided herein are methods of treating or preventing a cisplatin-induced peripheral neuropathy in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound 001:
- or a pharmaceutical
composition comprising compound 001, or a pharmaceutically acceptable salt thereof. - In an aspect, provided herein is a method of treating cisplatin-induced pain in a subject in need thereof comprising administering to the subject a therapeutically effective amount of
compound 001, or a pharmaceutically acceptable salt thereof. - In another aspect, provided herein is a method of treating cisplatin-induced numbness in a subject in need thereof comprising administering to the subject a therapeutically effective amount of
compound 001, or a pharmaceutically acceptable salt thereof. - In another aspect, provided herein is a method of preventing cisplatin-induced astrocyte activation in a subject in need thereof comprising administering to the subject a therapeutically effective amount of
compound 001, or a pharmaceutically acceptable salt thereof. - In another aspect, provided herein is a method of preventing cisplatin-induced decrease in neuronal mitochondrial transport in a neuron comprising contacting the neuron with an effective amount of
compound 001, or a pharmaceutically acceptable salt thereof. - In another aspect, provided herein is a method for restoring the loss of intra-epidermal nerve fiber (IENF) in a subject, comprising administering to the subject an effective amount of a compound of
compound 001, or a pharmaceutically acceptable salt thereof. In an embodiment, the loss of intra-epidermal nerve fiber is the result of administering cisplatin to the subject. In another embodiment, the administration ofcompound 001, or a pharmaceutically acceptable salt thereof, to the subject occurs during or after administering cisplatin. - Methods of making
compound 001 can be found in U.S. publication no. 2015/0239869. In certain embodiments, provided herein is a method of treatment of any of the disorders described herein, wherein the subject is a human. - In another aspect, provided herein is a method of treating cancer in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of cisplatin and a
histone deacetylase 6 selective inhibitor. - In an embodiment, the
histone deacetylase 6 selective inhibitor is a compound of Formula (I). In another embodiment, thehistone deacetylase 6 selective inhibitor iscompound 001. - In an embodiment, the cancer is selected from the group consisting of testicular cancer, ovarian cancer, bladder cancer, head and neck cancer, esophageal cancer, small and non-small cell lung cancer, breast cancer, cervical cancer, stomach cancer and prostate cancer. In another embodiment, the cancer is selected from the group consisting of Hodgkin's and non-Hodgkin's lymphomas, neuroblastoma, sarcomas, multiple myeloma, melanoma, and mesothelioma.
- In another embodiment, the cancer is sarcoma, small cell lung cancer, ovarian cancer, lymphoma, bladder cancer, cervical cancer, or germ cell tumor.
- In accordance with the foregoing, the present disclosure further provides a method for treating any of the diseases or disorders described above in a subject in need of such treatment, which method comprises administering to said subject a therapeutically effective amount of a compound disclosed herein or a pharmaceutically acceptable salt thereof. For any of the above uses, the required dosage will vary depending on the mode of administration, the particular condition to be treated and the effect desired.
- According to the methods of treatment of the present disclosure, disorders are treated or prevented in a subject, such as a human or other animal, by administering to the subject a therapeutically effective amount of a compound disclosed herein, in such amounts and for such time as is necessary to achieve the desired result. The term “therapeutically effective amount” of a compound disclosed herein means a sufficient amount of the compound so as to decrease the symptoms of a disorder in a subject. As is well understood in the medical arts a therapeutically effective amount of a compound disclosed herein will be at a reasonable benefit/risk ratio applicable to any medical treatment.
- In general, compounds provided herein will be administered in therapeutically effective amounts via any of the usual and acceptable modes known in the art, either singly or in combination with one or more therapeutic agents. A therapeutically effective amount may vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used and other factors. In general, satisfactory results are indicated to be obtained systemically at daily dosages of from about 0.03 to 2.5 mg/kg per body weight (0.05 to 4.5 mg/m2). An indicated daily dosage in the larger mammal, e.g. humans, is in the range from about 0.5 mg to about 100 mg, conveniently administered, e.g. in divided doses up to four times a day or in retard form. Suitable unit dosage forms for oral administration comprise from ca. 1 to 50 mg active ingredient.
- In certain embodiments, a therapeutic amount or dose of the compounds disclosed herein may range from about 0.1 mg/kg to about 500 mg/kg (about 0.18 mg/m2 to about 900 mg/m2), alternatively from about 1 to about 50 mg/kg (about 1.8 to about 90 mg/m2). In eneral, treatment regimens comprise administration to a patient in need of such treatment from about 10 mg to about 1000 mg of the compound(s) disclosed herein per day in single or multiple doses. Therapeutic amounts or doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents.
- Upon improvement of a subject's condition, a maintenance dose of a compound, composition or combination may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level, treatment should cease. The subject may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.
- It will be understood, however, that the total daily usage of the compounds and compositions disclosed herein will be decided by the attending physician within the scope of sound medical judgment. The specific inhibitory dose for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
- In another aspect, the provided herein is a pharmaceutical composition comprising a compound of Formula (I), or a pharmaceutically acceptable salt thereof, for use in treating or preventing a cisplatin-induced neuropathy.
- In another aspect, disclosed herein is a pharmaceutical
composition comprising compound 001, or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier for use in treating or preventing a cisplatin-induced neuropathy. - The pharmaceutical compositions disclosed herein comprise a therapeutically effective amount of a compound disclosed herein formulated together with one or more pharmaceutically acceptable carriers. The term “pharmaceutically acceptable carrier” means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The pharmaceutical compositions disclosed herein can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), buccally, or as an oral or nasal spray.
- Compounds disclosed herein can be administered as pharmaceutical compositions by any conventional route, in particular enterally, for example, orally, e.g., in the form of tablets or capsules, or parenterally, e.g., in the form of injectable solutions or suspensions, topically, e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form.
- Pharmaceutical compositions comprising a compound disclosed herein in free form or in a pharmaceutically acceptable salt form in association with at least one pharmaceutically acceptable carrier or diluent can be manufactured in a conventional manner by mixing, granulating or coating methods. For example, oral compositions can be tablets or gelatin capsules comprising the active ingredient together with a) diluents, e.g., lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and/or glycine; b) lubricants, e.g., silica, talcum, stearic acid, its magnesium or calcium salt and/or polyethyleneglycol; for tablets also c) binders, e.g., magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and or polyvinylpyrrolidone; if desired d) disintegrants, e.g., starches, agar, alginic acid or its sodium salt, or effervescent mixtures; and/or e) absorbents, colorants, flavors and sweeteners. Injectable compositions can be aqueous isotonic solutions or suspensions, and suppositories can be prepared from fatty emulsions or suspensions. The compositions may be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers. In addition, they may also contain other therapeutically valuable substances. Suitable formulations for transdermal applications include an effective amount of a compound disclosed herein with a carrier. A carrier can include absorbable pharmacologically acceptable solvents to assist passage through the skin of the host. For example, transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the compound optionally with carriers, optionally a rate controlling barrier to deliver the compound to the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin. Matrix transdermal formulations may also be used. Suitable formulations for topical application, e.g., to the skin and eyes, are preferably aqueous solutions, ointments, creams or gels well-known in the art. Such may contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
- The active compounds can also be in micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents.
- Examples have been set forth below for the purpose of illustration and to describe certain specific embodiments of the invention. However, the scope of the claims is not to be in any way limited by the examples set forth herein. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, substituents, derivatives, formulations and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims.
- Chemotherapy-induced peripheral neuropathy (CIPN) characterized by pain and numbness is one of the most commonly reported dose-limiting side-effects of cancer treatment. There is growing evidence for chemotherapy-induced mitochondrial damage in peripheral nerves as a cause of CIPN. Histone deacetylase 6 (HDAC6) is a microtubule-associated deacetylase that regulates α-tubulin-dependent intracellular transport of mitochondria. The specific HDAC6 inhibitor,
compound 001, was examined for its capacity to treat cisplatin-induced peripheral neuropathy. Pharmacological inhibition of HDAC6 withcompound 001 prevented cisplatin-induced mechanical hyperalgesia. More importantly, treatment withcompound 001 after neuropathy had been established completely reversed cisplatin-induced mechanical hyperalgesia, spontaneous pain, and numbness. Mechanistically,compound 001 treatment increased α-tubulin acetylation in the peripheral nerve.Compound 001 also restored the impaired mitochondrial motility in cisplatin-treated primary cultures of DRG neurons. Moreover, in vivo treatment withcompound 001 rescued the cisplatin-induced reduction in mitochondrial function and content in the distal tibial nerves. Treatment withcompound 001 also restored the loss of intra-epidermal nerve fiber (IENF) density in cisplatin-treated mice. These results demonstrate that pharmacological inhibition of HDAC6 completely reverses established cisplatin-induced peripheral neuropathy. The beneficial effects of HDAC6 inhibition on sensory function are associated with normalization of mitochondrial content and mitochondrial bioenergetics in the distal nerve, and restoration of intra-epidermal innervation. -
- Methods of synthesizing
compound 001 are also disclosed in U.S. patent application Ser. No. 14/631,971; filed Feb. 26, 2015; Mazitschek and van Duzer, inventors. - Step 1: To a solution of 1 (2.00 g, 12.81 mmol) and 2 (1.552 g, 12.81 mmol) in THF (20 mL) was added Ti(OEt)4 (5.4 mL, 25.56 mmol). The mixture was stirred at r.t. for 16 hrs and then poured into saturated NaHCO3 solution at 0° C. The resulting precipitate was filtered off. The resulting filtrate was extracted with EA. The combined EA layers were concentrated in vacuo and the residue was purified by silica gel chromatography (PE/EA=4/1, 2/1) to afford 3 as a white solid (2.61 g, yield: 75%).
- Step 2: To a flask containing 3 (1.00 g, 3.86 mmol) was added a solution of PhMgBr (1M in THF, 10 mL) at 0° C. It was stirred at 0° C. to rt until a complete reaction. Saturated NH4Cl solution was added to adjust pH 6-7. The resulting mixture was extracted with EA. The combined EA layers were concentrated in vacuo and the residue was purified by silica gel chromatography (PE/EA=5/1, 2/1, 1.5/1) to afford 4 as a white solid (823 mg, yield: 60%).
- Step 3: A mixture of compound 4 (8.3 mg, 2.38 mmol) in HCl (2M in water, 20 mL) and THF (20 mL) was stirred at 50° C. for 16 hrs. A solution of NaOH was added to the mixture to adjust pH 7-8. THF was removed in vacuo and the aqueous phase was extracted with EA. The combined EA layers were concentrated in vacuo and the residue was dissolved in EA. HCl (4 M, 1 mL) was added. The resulting white solid was collected by filtration to afford desired product 5 (395 mg, yield: 57%).
- Step 4: A mixture of compound 5 (350 mg, 1.55 mmol), 6 (376 mg, 2.02 mol), and DIPEA (1.07 mL, 6.47 mmol) in NMP (4 mL) was stirred at 130° C. for 5 hrs. The mixture was added water (20 mL), extracted with EA (25 mL×2). The organic layer was concentrated to get a residue, which was purified by silica gel chromatography (PE/EA=4/1) to afford 7 (178 mg, yield: 34%).
- Step 5: To a solution of compound 7 (168 mg, 0.50 mmol) in DCM (30 mL) was added DAST (302 μL, 2.47 mmol) at 0° C. It was stirred at rt for 3 hrs and 35° C. for 2 hrs. The reaction mixture was quenched with saturated NaHCO3 (5 mL), and extracted with EtOAc (2×5 mL). The organic extracts were concentrated in vacuo. The residue was purified by pre-TLC to give 8 (74 mg, yield: 42%).
- Step 6: NH2OH (50% in water, 3.9 mL) was added to a flask containing 8 (74 mg, 0.20 mmol) at 0° C. Then saturated NaOH solution in MeOH (3.9 ml) was added at 0° C. DCM (3.9 mL) was added to aid substrate to dissolve. The mixture was heated at 25° C. for 18 hrs. Con. HCl was added to adjust pH to 7. It was concentrated in vacuo and the residue was purified by pre-HPLC to afford compound 001 (27 mg, yield: 38%) as a white solid. 1HNMR (500 MHz, DMSO) δ 10.96 (s, 1H), 9.00 (s, 1H), 8.63 (s, 1H), 8.35 (s, 1H), 8.29 (s, 1H), 7.39 (d, J=7.6 Hz, 2H), 7.28 (t, J=7.7 Hz, 2H), 7.17 (t, J=7.3 Hz, 1H), 2.73 (s, 2H), 2.23-1.88 (m, 6H). LCMS: m/z=349 (M+H)+.
- Adult male C57/B16J mice received cisplatin intraperitoneally (i.p.) (2.3 mg/kg) daily for five days, followed by five days rest and a second round of five days of cisplatin treatment. Three days after the last dose of cisplatin, mice received the HDAC6 inhibitor,
compound 001, a compound of Formula (I), i.p. for seven to fourteen days at 3 mg/kg or 10 mg/kg. - To quantify signs of cisplatin-induced pain, the von Frey test was used (see below) which measures the decrease in threshold to induce a withdrawal response to a mechanical stimulus (hyperalgesia, one of the characteristics of CIPN). To assess cisplatin-induced numbness, the adhesive removal test (ART) was used. The time it took for the mouse to have a behavioral response to the patch (i.e. shaking or attempted removal) was recorded as a measure of sensory deficit or numbness. To determine if behavioral changes were due to altered general activity or motor function, the locomotor activity (LMA) test and the rotarod test was used. For LMA mice were placed in an open-field testing cage and movement was measured for 5 minutes. For the rotarod, mice were trained for two days and then tested on the rotarod (with increasing speeds) for 5 minutes. Time on the rotarod was recorded.
- Von Frey testing: Allodynic response to tactile stimulation is assessed using the Von Frey apparatus (Touch Test®).
- The animal is placed in an enclosure and positioned on a metal mesh surface, but allowed to move freely. The animals' cabins are covered with red cellophane to diminish environmental disturbances. The test begins after a cessation of exploratory behavior. The set of Von Frey monofilaments provide an approximate logarithmic scale of actual force and a linear scale of perceived intensity.
- The operating principle: when the tip of a fiber of given length and diameter is pressed against the skin at right angles, the force of application increases as long as the researcher continues to advance the probe until the fiber bends. After the fiber bends, the probe continues to advance, causing the fiber to bend more, but without additional force being applied.
- Rodents exhibit a paw withdrawal reflex when the paw is unexpectedly touched. The Touch Test™ Sensory Evaluator can be used on the plantar surfaces of the rat's foot. The animal indicates sensation by pulling back its paw. The minimal force needed to elevate the withdrawal reflex is considered/designated as the value of reference. In order to achieve paw withdrawal, the pressure applied is sometimes greater than 60 g, often requiring the researcher to apply enough pressure with the Von Frey filament to actually lift the paw of the naive animal. Decreases in force needed to induce withdrawal are indicative of hyperalgesia, as the force applied is a non-painful stimulus under normal conditions.
- For quantification of astrocyte and microglia activation, lumbar spinal cords were collected on day 22. This collection day was after completion of cisplatin treatment and 3 injections of
compound 001. Mice showed recovery from cisplatin-induced mechanical hyperalgesia at this time. Spinal cords were processed and stained with antibodies specific for GFAP and Iba-1. Images were captured under blinded conditions from the lumbar dorsal horn using a Leica SPE confocal microscope (Leica Microsystems, Buffalo Grove, Ill.). - Adult male C57BL/6J mice were housed at the Texas A&M Health Science Center Program for Animal Resources or the University of Texas M.D. Anderson Cancer Center animal facility. Mice were housed on a regular 12 h light/dark cycle with free access to food and water. All procedures were consistent with the National Institute of Health Guidelines for the Care and Use of Laboratory Animals and the Ethical Issues of the International Association for the Study of Pain (Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983; 16(2):109-10) and were approved by the local Institution for Animal Care and Use Committee (IACUC).
- Cisplatin (TEVA Pharmaceuticals, North Wales, Pa.) was diluted in sterile saline and administered intraperitoneally (i.p.) at a dose of 2.3 mg/kg daily for 5 days, followed by 5 days of rest, and a second round of 5 doses for a total cumulative dose of 23 mg/kg cisplatin. It was shown that this dosing schedule induces mechanical hyperalgesia in mice (Qi-Liang Mao-Ying A K, et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014; Krukowski K, et al. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-mu. Pain. 2015; 156(11):2184-92). HDAC6 inhibitor,
compound 001, (Acetylon Pharmaceuticals, Boston, Mass.) was dissolved in 20% 2-hydroxypropyl-B-cyclodextrin+0.5% hydroxypropyl methylcellulose (Sigma-Aldrich, St. Louis, Mo.) in water and administered i.p. at a dose of 10 mg/kg or 3 mg/kg. - Mechanical hyperalgesia was measured as the hind paw withdrawal response to von Frey hair stimulation using the up-and-down method as described previously (Qi-Liang Mao-Ying A K, et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014; Krukowski K, et al. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-mu. Pain. 2015; 156(11):2184-92; Wang H, et al. GRK2 in sensory neurons regulates epinephrine-induced signalling and duration of mechanical hyperalgesia. Pain. 2011; 152(7):1649-58). Mice were placed in a plastic cage (10×10×13 cm3) with a mesh floor for 30 min prior to testing. Subsequently, a series of von Frey hairs (0.02, 0.07, 0.16, 0.4, 0.6, 1.0 and 1.4 g) (Stoelting, Wood Dale, Ill., USA) were applied perpendicular to the mid-plantar surface of the hind paw. A trial began with the application of the 0.16 g hair. A positive response was defined as a clear paw withdrawal or shaking. Whenever a positive response occurred, the next lower hair was applied, and whenever a negative response occurred, the next higher hair was applied. The testing consisted of five stimuli after the first change in response occurred, and the pattern of response was converted to a 50% von Frey threshold using the method described previously (Chaplan S R, et al. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994; 53(1):55-63) by an investigator blinded to treatment until the end of the experiment.
- To examine numbness, a modification of the adhesive removal test (Bouet V, et al. The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat. Protoc. 2009; 4(10):1560-4) as described was used (Qi-Liang Mao-Ying A K, et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014). Mice were habituated to a testing cage (20×20×13 cm3) for 5 minutes prior to testing. A round adhesive patch ( 3/16″ Teeny Touch-Spots, USA Scientific INC.) was placed on the plantar surface of the hind paws and the mouse was placed back in the testing cage. The time it took for the mouse to display a behavioral response to the patch (i.e. shaking or attempted removal) was recorded. A maximal testing time of 15 minutes was used.
- Spontaneous pain was tested using a conditioning paradigm with retigabine as the conditioned stimulus that was originally described in a rat model (Yang Q, et al. Persistent pain after spinal cord injury is maintained by primary afferent activity. The Journal of Neuroscience. 2014; 34(32):10765-9; Ahmed B, et al. Recent changes in practice of elective percutaneous coronary intervention for stable angina. Circ. Cardiovasc. Qual. Outcomes. 2011; 4(3):300-5). Retigabine is a common local anesthetic with a rapid onset of action but only brief duration (45-60 min). The dosage used in this study has been previously demonstrated to be effective in briefly relieving pain in models of neuropathic and inflammatory pain (Yang Q, et al. Persistent pain after spinal cord injury is maintained by primary afferent activity. The Journal of Neuroscience. 2014; 34(32):10765-9; Blackburn-Munro G, and Jensen B S. The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur. J. Pharmacol. 2003; 460 (2-3): 109-16; Xu W, et al. Activation of voltage-gated KCNQ/Kv7 channels by anticonvulsant retigabine attenuates mechanical allodynia of inflammatory temporomandibular joint in rats. Mol. Pain. 2010; 6 (49); Passmore G M, et al. KCNQ/M currents in sensory neurons: significance for pain therapy. The Journal of Neuroscience, 2003; 23(18):7227-36).
- Briefly, during pre-conditioning, mice were allowed to freely explore for 15 min the CPP apparatus. The CPP apparatus consisted of 2 chambers (18×20 cm, one dark, one white) connected by a 15 cm hallway (Stoelting, Wood Dale, Ill.). The time spent in the light chamber was recorded. During the conditioning phase, saline was injected intraperitoneally in the morning and the mice were then kept in the dark chamber for 20 min. Three hours later, the analgesic retigabine (#R-100, Alomone laboratory, Jerusalem, Israel) was and the mice were immediately placed in the light chamber for 20 min. Conditioning was repeated for four consecutive days. The following day the mice did not receive any injections but were allowed to freely explore both chambers of the apparatus for 15 min. A mouse experiencing pain relieve by retigabine should show an increase in time spent in the light chamber that was paired with retigabine as compared to the pre-conditioning phase.
- For quantification of IENFs, biopsies from the plantar surface of the hind paws were collected after 3 doses or 11 doses of
compound 001 or vehicle and processed as described previously (Qi-Liang Mao-Ying A K, et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014); Krukowski K, et al. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-mu. Pain. 2015; 156(11):2184-92). In brief, biopsies were fixed in Zamboni's fixative, cryoprotected in 20% sucrose and then frozen in Optimal Cutting Temperature compound (Sakura Finetek USA, Inc., Torrance, Calif.). 25-μm frozen sections were incubated with antibodies against the pan neuronal marker PGP9.5 (Rabbit; AbD Serotec, Oxford, United Kingdom) and Collagen IV (Goat; Southern Biotech, Birmingham, Ala.) followed by Alexa-594 donkey anti-rabbit (Life Technologies, Carlsbad, Calif.) and Alexa-488 donkey anti-goat (Invitrogen, Grand Island, N.Y.). Three randomly chosen sections from each mouse were imaged and quantified under a Leica SPE confocal microscope (Leica Microsystems, Buffalo Grove, Ill.). Nerve fibers that crossed the collagen-stained dermal/epidermal junction into the epidermis were counted and IENF density was determined as the total number of fibers/length of epidermis (IENFs/mm). - For assessing astrocyte activation, paraformaldehyde fixed frozen 6 μm sections of lumbar spinal cord (L1-L6) were incubated with an antibody against glial fibrillary acidic protein (GFAP) (Rabbit; Abcam, Cambridge, Mass.) followed by Alexa-594-goat anti-rabbit IgG (Life Technologies, Carlsbad, Calif.) as described (Zhang H, et al. Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of Paclitaxel-induced painful neuropathy. J. Pain, 2012; 13(3):293-303). Images were captured using a Leica SPE confocal microscope (Leica Microsystems, Buffalo Grove, Ill.). GFAP staining intensity was quantified using Image J software for percent positive GFAP staining in which intensity thresholds were maintained between samples. All immunofluorescence analysis were done by an experimenter blinded to the treatment groups.
- Tibial nerves were collected on
experimental day 30, when the mice have received 2 rounds of cisplatin treatment and 11 injections ofcompound 001. Tissues were placed into islet capture XF24 microplate (Seahorse Bioscience, North Billerica, Mass.) in XF media with the addition of 5.5 mM glucose, 0.5 mM sodium pyruvate and 1 mM glutamine. Oligomycin (12 μM), FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, 20 μM), and Rotenone/Antimycin A (20 μM each) (Sigma-Aldrich, St. Louis, Mo.) were injected sequentially during the assay. An assay cycle with a combination of 3-min mix, 3-min wait, and 4-min measure was repeated 4 times for baseline rates and after each port injection. After the respiratory measures, tissues were harvested and the oxygen consumption rate (OCR) values were normalized to the total protein content of each well. Basal respiration, ATP-linked respiration, proton leak, and maximal respiratory capacity were determined as described previously (Brand M D, and Nicholls D G. Assessing mitochondrial dysfunction in cells. The Biochemical journal. 2011; 435(2):297-312; Ma J, et al.Heat shock protein 70 is necessary to improve mitochondrial bioenergetics and reverse diabetic sensory neuropathy following KU-32 therapy. The Journal of pharmacology and experimental therapeutics. 2014; 348(2):281-92). Briefly, the initial measurements provide a measure of the basal OCR in the absence of respiratory chain poisons. The amount of basal OCR that is coupled to ATP production was determined by addition of the ATP synthase inhibitor oligomycin, which decreased the basal OCR. The magnitude of this decrease is representative of the ATP-linked OCR, whereas the residual OCR is attributable to uncoupled respiration (proton leak). Next, maximal respiratory capacity (MRC) was assessed by addition of the protonophore FCCP, which dissipates the mitochondrial membrane potential and promotes maximal OCR. Lastly, non-mitochondrial respiration was determined by the addition of rotenone and antimycin A, which inhibit the activities of mitochondrial respiratory chain complex I and complex III respectively. - Tibial nerves retrieved from the XF24 assay plate were used for western blot analysis of levels of acetylated α-tubulin and mitochondrial proteins cytochrome c oxidase subunit IV (Cox IV), succinate dehydrogenase complex subunit A (SDHA) and voltage-dependent anion channel (VDAC). Tissues were homogenized in RIPA buffer (50 mM Tris-HCl, pH 7.5, 500 mM NaCl, 2.5 mM MgCl2, 1% NP-40, 10% glycerol) containing proteinase inhibitors by sonication and 10 μg of protein was separated by SDS/PAGE and transferred to PVDF membrane for immunoblot analyses. The membranes were blocked with 5% non-fat dry milk in PBST (phosphate-buffered saline containing 0.1% Tween 20) and probed with primary antibodies recognizing acetylated lysine (Rabbit monoclonal; Abcam, Cambridge, United Kingdom), α-tubulin (Rabbit polyclonal; Cell Signaling Technology, Danvers, Mass.), Cox IV (Mouse monoclonal; Life Technologies, Carlsbad, Calif.), SDHA (Rabbit polyclonal; Cell Signaling Technology, Danvers, Mass.) and VDAC (Rabbit polyclonal; Cell Signaling Technology, Danvers, Mass.) followed by HRP-conjugated anti-mouse, anti-rabbit, or anti-β-actin antibodies (Jackson Laboratory, Bar Harbor, Me.). Immunoreactivity for each protein was visualized using a chemiluminescence detection kit (GE Healthcare Life Sciences, Little Chalfont, United Kingdom). The images were acquired using ImageQuant LAS 4000 (GE Healthcare Life Sciences, Little Chalfont, United Kingdom) and densitometrically analyzed using Image J software.
- DRG neurons (Lonza) were cultured for 5-7 days before the mitochondrial transport assay. 24 hrs prior to chemotherapy treatment cells were infected with Bacmam 2.0, which labeled mitochondria with GFP. Cells were treated with cisplatin (20-80 μM)+/−compound 001 (100 nM) for 3 hours. Imaging was performed using Zeiss 3i system. Time lapse images were acquired every 2 seconds over the course of 2 min. Image analysis was performed using Fiji and Multiple Kymograph plugin.
- To investigate whether the
HDAC6 inhibitor compound 001 treats existing CIPN, mice received cisplatin (i.p.) (2.3 mg/kg) daily for five days, followed by five days rest and a second round of five days of cisplatin treatment (FIG. 1B ) (Qi-Liang Mao-Ying A K, et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014); Krukowski K, et al. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-mu. Pain. 2015; 156(11):2184-92). Starting 3 days after the last dose of cisplatin, when mechanical hyperalgesia had already developed, mice received 7 daily doses of the HDAC6 inhibitor compound 001 (i.p. 3 mg/kg or 10 mg/kg) or vehicle. Treatment with 10 mg/kg compound 001 effectively relieved cisplatin-induced mechanical hyperalgesia while the lower dose of 3 mg/kg did not. (FIG. 1B ). The effect ofcompound 001 on mechanical allodynia developed slowly over time and was first detected at 24 h after the first dose (FIG. 1C ). Treatment with 10 mg/kg compound 001 alone did not alter mechanical sensitivity. A separate set of experiments found thatcompound 001 prevented the development of mechanical hyperalgesia when administered one hour prior to each dose of cisplatin (FIG. 1D ). - The beneficial effect of 7 daily doses (corresponding to the third line of
FIG. 1A ) of 10 mg/kg compound 001 on mechanical hyperalgesia was maintained until 4 days after the last dose (FIG. 2 ). Administration of a second round of 7 daily injections (corresponding to the fifth line ofFIG. 1A ) ofcompound 001 again transiently reversed cisplatin-induced mechanical hyperalgesia (FIG. 2 ). Notably, whenCompound 001 was administered for two consecutive weeks (corresponding to the fourth line ofFIG. 1A ) starting 3 days after the last dose of cisplatin the complete and sustained recovery from mechanical hyperalgesia was observed (FIG. 2 ). The beneficial effect of the prolonged regimen ofcompound 001 was maintained until at least one month after the last dose of compound 001 (experiment termination). It is of note that at this time point mice treated with cisplatin alone still displayed marked mechanical hyperalgesia. - Cisplatin-induced numbness was measured using adhesive removal task (ART) (Qi-Liang Mao-Ying A K, et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014). In this test, a small sticker was placed on the hind paw and the time until the mouse displays a behavioral response to the sticker was recorded. Consistent with a previous study, cisplatin treatment prolonged the time to respond to the sticker in this test, indicating numbness.
- Treatment with
compound 001 starting after completion of the two rounds of cisplatin normalized the response time in this test, indicating reversal of the numbness. Stated alternatively,compound 001 treats cisplatin-induced numbness (FIG. 3 ). - For the results shown in
FIG. 4 , general activity was measured using locomotor activity (LMA) (FIG. 4A ) and motor function was measured using rotarod test (FIG. 4B ). Cisplatin treatment alone or in combination withcompound 001 had no effect on general activity or rotarod function n=5-6/group. - CIPN is associated with spinal cord astrocyte activation as evidenced by an increase in GFAP expression (Zhang H, et al. Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of Paclitaxel-induced painful neuropathy. J Pain. 2012; 13(3):293-303; Peters C M, et al. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol. 2007; 203(1):42-54). Consistently, an increase in GFAP expression was detected in the dorsal horn of the spinal cord in cisplatin-treated mice.
Compound 001 treatment normalized GFAP expression to levels of saline-treated animals (FIG. 5 ). - Tubulin acetylation status is a key regulator of neuronal mitochondrial transport (Chen S, et al. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010; 5 (5): e10848). The effect of cipslatin and compound 001 on mitochondrial motility was examined in primary cultures of rat DRG neurons in which mitochondria were fluorescently labeled. Cultured DRG neurons were treated with cisplatin and
compound 001 for 3 hours and mitochondrial movement in axons was measured using time-lapse imaging. Cisplatin-treatment decreased the percentage of moving mitochondria when compared to vehicle-treated cultures (FIG. 6 ). Co-administration of compound 001 (100 nM) prevented this cisplatin-induced decrease in mitochondrial transport. - To test whether
compound 001 impacts mitochondrial function in vivo, the mitochondrial bioenergetics were assessed in tibial nerves of mice treated with two cycles of cisplatin followed bycompound 001. Cisplatin-treatment significantly decreased mitochondrial respiration in tibial nerves (FIG. 7A ); specifically, decreases were detected in basal respiration, ATP-linked respiration and proton leak as assessed after addition of oligomycin, and maximal respiration as assessed after addition of FCCP. Notably, treatment withcompound 001 normalized all aspects of the cisplatin-induced decrease in mitochondrial respiration, indicating normalization of mitochondrial bioenergetics. The non-mitochondrial respiration was not altered in either cisplatin-treated or compound 001-treated mice.Compound 001 treatment alone did not have any effect on mitochondrial bioenergetics. - To determine whether the overall decrease in mitochondrial bioenergetics in response to cisplatin and the normalization by
compound 001 was associated with changes in mitochondrial content in the distal nerves, Western blot analysis was performed for the mitochondrial proteins cytochrome c oxidase subunit IV (Cox IV), succinate dehydrogenase complex subunit A (SDHA) and voltage-dependent anion channel (VDAC). The level of Cox IV in the tibial nerves of cisplatin-treated mice was significantly reduced when compared to saline-treated mice. Moreover, treatment withcompound 001 normalized Cox IV levels in the tibial nerve (FIG. 7B ). Similar effects were observed when SDHA and VDAC were assessed (FIG. 7C ). These findings indicate that inhibition of HDAC6 reversed cisplatin-induced reductions in mitochondrial bioenergetics, which is likely due to enhanced mitochondrial content in the distal nerve. - Patients with CIPN do not only report hyperalgesia, but also spontaneous pain as well as numbness. Therefore, it was determined whether inhibition of HDAC6 also reverses spontaneous pain and numbness in the utilized mouse model. To measure spontaneous pain, a conditioned place preference (CPP) test with the nerve blocker retigabine as the conditioning stimulus was utilized (Yang Q, et al. Persistent pain after spinal cord injury is maintained by primary afferent activity. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2014; 34(32):10765-9). During the conditioning phase, mice received saline injections paired with exposure to a dark chamber and retigabine injections paired with exposure to a light chamber. On the test day the mice were allowed to freely explore both chambers and the change in time spent in the light chamber after conditioning is recorded. The results in
FIG. 8 show that cisplatin-treated mice increased the time spent in the light chamber that was paired with retigabine, indicating ongoing pain. The saline-treated mice maintain a preference for the dark chamber. Mice that were treated with cisplatin followed by two weeks ofdaily compound 001 did not develop a preference for the retigabine-paired light chamber, indicating that these mice no longer experience pain. There were no group differences in time spent in the light chamber before conditioning. - To determine whether
compound 001 inhibits HDAC6-mediated protein de-acetylation in vivo, the effect ofcompound 001 on acetylation of α-tubulin was examined (Hubbert C, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002; 417(6887):455-8). Tibial nerves were collected from mice treated with cisplatin followed bycompound 001 or vehicle treatment.FIG. 9 shows thatcompound 001 treatment increased α-tubulin acetylation in both saline+compound 001 and cisplatin+compound 001 treated mice. Changes in tubulin acetylation in mice treated with cisplatin alone were not detected (FIG. 9 ). - Cisplatin-treatment is known to reduce the intra-epidermal nerve fiber (IENF) density in the plantar surface of the paw (Qi-Liang Mao-Ying A K, et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014). It has been hypothesized that this reduction is due to mitochondrial damage as these peripheral nerve fibers represent bioenergetically demanding regions (Bennett G J, et al. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat. Rev. Neurol. 2014; 10(6):326-36). Consistent with a previous report (Qi-Liang Mao-Ying A K, et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. Clinical Cancer Research. 2014), cisplatin-treatment reduced the IENF density. Remarkably, the prolonged regimen of
compound 001 treatment completely reversed the cisplatin-induced loss of IENFs (FIG. 10 ). In contrast, short-term treatment withcompound 001 did not have any effect on IENF density, indicating that prolonged treatment withcompound 001 promoted restoration of IENF density rather than preventing the progression of IENF loss. - The contents of all references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated herein in their entireties. Unless otherwise defined, all technical and scientific terms used herein are accorded the meaning commonly known to one with ordinary skill in the art.
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
Claims (14)
1. A method of treating cisplatin-induced peripheral neuropathy in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a histone deacetylase 6 selective inhibitor, to thereby treat the cisplatin-induced peripheral neuropathy.
3. The method of claim 1 , wherein the histone deacetylase 6 selective inhibitor is co-administered with cisplatin.
4. The method of claim 1 , wherein the histone deacetylase 6 selective inhibitor is administered before or after administering cisplatin.
5. The method of claim 1 , wherein the cisplatin-induced peripheral neuropathy exists in the subject prior to administering the histone deacetylase 6 selective inhibitor.
6. A method of treating cisplatin-induced pain or cisplatin-induced numbness, comprising administering to a subject in need thereof an effective amount of a histone deacetylase 6 selective inhibitor to thereby treat the cisplatin-induced pain in the subject.
8. The method of claim 6 , wherein the histone deacetylase 6 selective inhibitor is co-administered with cisplatin.
9. The method of claim 6 , wherein the histone deacetylase 6 selective inhibitor is administered before or after administering cisplatin.
10. The method of claim 6 , wherein the cisplatin-induced peripheral neuropathy exists in the subject prior to administering the histone deacetylase 6 selective inhibitor.
11. A method for restoring the loss of intra-epidermal nerve fiber (IENF) in a subject, comprising administering to the subject an effective amount of a histone deacetylase 6 selective inhibitor.
12. The method of claim 11 , wherein the loss of intra-epidermal nerve fiber is the result of administering cisplatin to the subject.
13. The method of claim 12 , wherein the administration of the histone deacetylase 6 selective inhibitor to the subject occurs during or after administering cisplatin.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/240,504 US20210251990A1 (en) | 2015-06-01 | 2021-04-26 | Histone Deacetylase 6 Selective Inhibitors for the Treatment of Cisplatin-Induced Peripheral Neuropathy |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562169528P | 2015-06-01 | 2015-06-01 | |
| US15/170,335 US10272084B2 (en) | 2015-06-01 | 2016-06-01 | Histone deacetylase 6 selective inhibitors for the treatment of cisplatin-induced peripheral neuropathy |
| US16/299,310 US11013740B2 (en) | 2015-06-01 | 2019-03-12 | Histone deacetylase 6 selective inhibitors for the treatment of cisplatin-induced peripheral neuropathy |
| US17/240,504 US20210251990A1 (en) | 2015-06-01 | 2021-04-26 | Histone Deacetylase 6 Selective Inhibitors for the Treatment of Cisplatin-Induced Peripheral Neuropathy |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/299,310 Division US11013740B2 (en) | 2015-06-01 | 2019-03-12 | Histone deacetylase 6 selective inhibitors for the treatment of cisplatin-induced peripheral neuropathy |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20210251990A1 true US20210251990A1 (en) | 2021-08-19 |
Family
ID=57396987
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/170,335 Active US10272084B2 (en) | 2015-06-01 | 2016-06-01 | Histone deacetylase 6 selective inhibitors for the treatment of cisplatin-induced peripheral neuropathy |
| US16/299,310 Expired - Fee Related US11013740B2 (en) | 2015-06-01 | 2019-03-12 | Histone deacetylase 6 selective inhibitors for the treatment of cisplatin-induced peripheral neuropathy |
| US17/240,504 Abandoned US20210251990A1 (en) | 2015-06-01 | 2021-04-26 | Histone Deacetylase 6 Selective Inhibitors for the Treatment of Cisplatin-Induced Peripheral Neuropathy |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/170,335 Active US10272084B2 (en) | 2015-06-01 | 2016-06-01 | Histone deacetylase 6 selective inhibitors for the treatment of cisplatin-induced peripheral neuropathy |
| US16/299,310 Expired - Fee Related US11013740B2 (en) | 2015-06-01 | 2019-03-12 | Histone deacetylase 6 selective inhibitors for the treatment of cisplatin-induced peripheral neuropathy |
Country Status (1)
| Country | Link |
|---|---|
| US (3) | US10272084B2 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013158984A1 (en) | 2012-04-19 | 2013-10-24 | Acetylon Pharmaceuticals, Inc. | Biomarkers to identify patients that will respond to treatment and treating such patients |
| US9145412B2 (en) | 2012-11-02 | 2015-09-29 | Acetylon Pharmaceuticals, Inc. | Selective HDAC1 and HDAC2 inhibitors |
| EP3303306B1 (en) | 2015-06-08 | 2020-02-12 | Acetylon Pharmaceuticals, Inc. | Crystalline forms of a histone deacetylase inhibitor |
| CA2988594C (en) | 2015-06-08 | 2023-08-15 | Acetylon Pharmaceuticals, Inc. | Methods of making protein deacetylase inhibitors |
| JP7100018B2 (en) | 2016-08-08 | 2022-07-12 | アセチロン ファーマシューティカルズ インコーポレイテッド | Pharmaceutical combination of histone deacetylase 6 inhibitor and CD20 inhibitor antibody and its use |
Family Cites Families (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3549633A (en) | 1968-11-20 | 1970-12-22 | Merck & Co Inc | Process for preparation of 1-h-imidazo (4,5-b)pyrazin-2-ones |
| US6777217B1 (en) | 1996-03-26 | 2004-08-17 | President And Fellows Of Harvard College | Histone deacetylases, and uses related thereto |
| US20030129724A1 (en) | 2000-03-03 | 2003-07-10 | Grozinger Christina M. | Class II human histone deacetylases, and uses related thereto |
| US7244853B2 (en) | 2001-05-09 | 2007-07-17 | President And Fellows Of Harvard College | Dioxanes and uses thereof |
| BR0213791A (en) | 2001-11-01 | 2004-12-07 | Janssen Pharmaceutica Nv | Amide derivatives as glycogen synthase kinase 3-beta inhibitors |
| KR20040094672A (en) | 2002-03-13 | 2004-11-10 | 얀센 파마슈티카 엔.브이. | Sulfonylamino-derivatives as novel inhibitors of histone deacetylase |
| ES2347544T3 (en) | 2002-03-13 | 2010-11-02 | Janssen Pharmaceutica Nv | INHIBITORS OF HISTONA-DESACETILASAS. |
| US7154002B1 (en) | 2002-10-08 | 2006-12-26 | Takeda San Diego, Inc. | Histone deacetylase inhibitors |
| US7132425B2 (en) | 2002-12-12 | 2006-11-07 | Hoffmann-La Roche Inc. | 5-substituted-six-membered heteroaromatic glucokinase activators |
| US7381825B2 (en) | 2003-03-17 | 2008-06-03 | Takeda San Diego, Inc. | Histone deacetylase inhibitors |
| WO2005012261A1 (en) | 2003-07-24 | 2005-02-10 | Basf Aktiengesellschaft | 2-substituted pyrimidines |
| AR046411A1 (en) | 2003-09-22 | 2005-12-07 | S Bio Pte Ltd | DERIVATIVES OF BENCIMIDAZOL. PHARMACEUTICAL APPLICATIONS |
| CA2539117A1 (en) | 2003-09-24 | 2005-04-07 | Methylgene Inc. | Inhibitors of histone deacetylase |
| US8227636B2 (en) | 2004-04-05 | 2012-07-24 | Merck Hdac Research, Llc | Histone deacetylase inhibitor prodrugs |
| CN101495116A (en) | 2005-03-22 | 2009-07-29 | 哈佛大学校长及研究员协会 | Treatment of protein degradation disorders |
| GB0510204D0 (en) | 2005-05-19 | 2005-06-22 | Chroma Therapeutics Ltd | Enzyme inhibitors |
| EP1940805A4 (en) | 2005-08-26 | 2009-11-11 | Methylgene Inc | Benzodiazepine and benzopiperazine analog inhibitors of histone deacetylase |
| WO2007052383A1 (en) | 2005-11-01 | 2007-05-10 | Sumitomo Chemical Company, Limited | Process for producing 6,6-dimethyl-3-oxabicyclo[3.1.0]hexan-2-one |
| ATE554084T1 (en) | 2006-02-07 | 2012-05-15 | Astellas Pharma Inc | N-HYDROXYACRYLAMIDE COMPOUNDS |
| JP5441416B2 (en) | 2006-02-14 | 2014-03-12 | プレジデント アンド フェロウズ オブ ハーバード カレッジ | Bifunctional histone deacetylase inhibitor |
| CN101484156B (en) | 2006-05-03 | 2015-11-25 | 哈佛大学校长及研究员协会 | Histone deacetylase and tubulin deacetylase inhibitors |
| CN103275067B (en) | 2006-10-28 | 2015-09-02 | 梅特希尔基因公司 | Histone deacetylase inhibitor |
| WO2008102348A1 (en) | 2007-02-21 | 2008-08-28 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Alpha-halo- and alpha-alkyl-cyclopropylcarboxy compounds and uses thereof |
| WO2009137462A2 (en) | 2008-05-05 | 2009-11-12 | Envivo Pharmaceuticals, Inc. | Methods for treating cognitive disorders using inhibitors of histone deacetylase |
| WO2009137503A1 (en) | 2008-05-05 | 2009-11-12 | Envivo Pharmaceuticals, Inc. | Hdac inhibitors and uses thereof |
| NZ590320A (en) | 2008-07-14 | 2012-12-21 | Gilead Sciences Inc | Fused heterocyclyc inhibitors of histone deacetylase and/or cyclin-dependent kinases |
| RU2515611C2 (en) | 2008-07-23 | 2014-05-20 | Президент Энд Феллоуз Оф Гарвард Колледж | Deacetylase inhibitors and their application |
| EA024252B1 (en) | 2009-01-08 | 2016-08-31 | Кьюрис, Инк. | Phosphoinositide 3-kinase inhibitors with a zinc binding moiety |
| WO2011011186A2 (en) | 2009-07-22 | 2011-01-27 | The Board Of Trustees Of The University Of Illinois | Hdac inhibitors and therapeutic methods using the same |
| US8716344B2 (en) | 2009-08-11 | 2014-05-06 | President And Fellows Of Harvard College | Class- and isoform-specific HDAC inhibitors and uses thereof |
| US20130040998A1 (en) | 2010-01-08 | 2013-02-14 | Dana-Farber Cancer Institute, Inc. | Fluorinated hdac inhibitors and uses thereof |
| CN102933558B (en) | 2010-01-22 | 2016-03-16 | 埃斯泰隆制药公司 | Reverse amide compounds as protein sirtuin inhibitors and methods of use thereof |
| WO2012018499A2 (en) | 2010-08-05 | 2012-02-09 | Acetylon Pharmaceuticals | Specific regulation of cytokine levels by hdac6 inhibitors |
| AU2011311531B2 (en) | 2010-10-08 | 2014-11-20 | Life Sciences Research Partners Vzw | HDAC inhibitors to treat Charcot-Marie-Tooth disease |
| NZ710405A (en) | 2010-11-16 | 2017-04-28 | Acetylon Pharmaceuticals Inc | Pyrimidine hydroxy amide compounds as protein deacetylase inhibitors and methods of use thereof |
| EP2524918A1 (en) | 2011-05-19 | 2012-11-21 | Centro Nacional de Investigaciones Oncológicas (CNIO) | Imidazopyrazines derivates as kinase inhibitors |
| HK1213471A1 (en) | 2012-10-12 | 2016-07-08 | The Trustees Of The University Of Pennsylvania | Pyrimidine hydroxy amide compounds as protein deacetylase inhibitors and methods of use thereof |
| WO2014197471A1 (en) | 2013-06-03 | 2014-12-11 | Acetylon Pharmaceuticals, Inc. | Histone deacetylase ( hdac) biomarkers in multiple myeloma |
| US9464073B2 (en) * | 2014-02-26 | 2016-10-11 | Acetylon Pharmaceuticals, Inc. | Pyrimidine hydroxy amide compounds as HDAC6 selective inhibitors |
| WO2016090230A1 (en) | 2014-12-05 | 2016-06-09 | Acetylon Pharmaceuticals, Inc. | Pyrimidine hydroxy amide compounds for treating peripheral neuropathy |
-
2016
- 2016-06-01 US US15/170,335 patent/US10272084B2/en active Active
-
2019
- 2019-03-12 US US16/299,310 patent/US11013740B2/en not_active Expired - Fee Related
-
2021
- 2021-04-26 US US17/240,504 patent/US20210251990A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| US10272084B2 (en) | 2019-04-30 |
| US11013740B2 (en) | 2021-05-25 |
| US20160346279A1 (en) | 2016-12-01 |
| US20190343834A1 (en) | 2019-11-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20210251990A1 (en) | Histone Deacetylase 6 Selective Inhibitors for the Treatment of Cisplatin-Induced Peripheral Neuropathy | |
| ES2733954T3 (en) | Composition comprising torasemide and baclofen to treat neurological disorders | |
| US9278963B2 (en) | Pyrimidine hydroxy amide compounds as histone deacetylase inhibitors | |
| Pertovaara et al. | Pharmacological properties, central nervous system effects, and potential therapeutic applications of atipamezole, a selective α2‐adrenoceptor antagonist | |
| Filser et al. | Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions | |
| US20160158231A1 (en) | Pyrimidine hydroxy amide compounds for treating peripheral neuropathy | |
| JP6175054B2 (en) | Use of histone acetyltransferase activators | |
| Saraf et al. | FPT, a 2-Aminotetralin, Is a Potent Serotonin 5-HT1A, 5-HT1B, and 5-HT1D Receptor Agonist That Modulates Cortical Electroencephalogram Activity in Adult Fmr1 Knockout Mice | |
| CA3173679A1 (en) | Inhibitors of the peptidyl-prolyl cis/trans isomerase (pin1) and uses thereof | |
| US20080058284A1 (en) | Pharmaceutical compositions of semicarbazones and/or thiosemicarbazones and/or their derivatives and products of these compositions and their uses as anticonvulsant, anti-nociceptive and anti-inflammatory agents, and in the angiogenic therapy | |
| WO2022105665A1 (en) | Compound for prevention and treatment of pain and inflammation and application thereof | |
| Nagy et al. | Synthesis and biological effects of some kynurenic acid analogs | |
| US20210206714A1 (en) | Compositions and methods for reducing tactile dysfunction, anxiety, and social impairment | |
| CA3197595A1 (en) | Use of pridopidine and analogs for treating rett syndrome | |
| US20250099436A1 (en) | Drug for treating tinnitus | |
| JP2005314347A (en) | Sharp pain inhibitor | |
| Chanjuan et al. | Analysis of the influencing factors of mild cognitive impairment in patients before esophageal cancer radical surgery | |
| US20100249238A1 (en) | Pharmaceutical compositions comprising semicarbazones and thiosemicarbazones and method for treating inflammatory, painful and febrile conditions and preventing signs and symptoms of inflammation | |
| EP3087984B1 (en) | Prophylactic and therapeutic agent for attention-deficit/hyperactivity disorder | |
| KR20170082499A (en) | Blt2 agonists for the treatment of pain | |
| KR20200041006A (en) | Novel derivatives of thyroid hormone and use of thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |