US20210230297A1 - Antibodies Useful for Detection of Human Carcinoma Antigen - Google Patents
Antibodies Useful for Detection of Human Carcinoma Antigen Download PDFInfo
- Publication number
- US20210230297A1 US20210230297A1 US17/208,977 US202117208977A US2021230297A1 US 20210230297 A1 US20210230297 A1 US 20210230297A1 US 202117208977 A US202117208977 A US 202117208977A US 2021230297 A1 US2021230297 A1 US 2021230297A1
- Authority
- US
- United States
- Prior art keywords
- seq
- antibody
- hca
- antibodies
- antigen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 201000009030 Carcinoma Diseases 0.000 title abstract description 30
- 239000000427 antigen Substances 0.000 title description 128
- 108091007433 antigens Proteins 0.000 title description 125
- 102000036639 antigens Human genes 0.000 title description 125
- 238000001514 detection method Methods 0.000 title description 15
- 230000027455 binding Effects 0.000 claims abstract description 88
- 238000009739 binding Methods 0.000 claims abstract description 88
- 238000000034 method Methods 0.000 claims description 50
- 150000007523 nucleic acids Chemical group 0.000 claims description 21
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 20
- 239000013598 vector Substances 0.000 claims description 18
- 229920001184 polypeptide Polymers 0.000 claims description 12
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 12
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- 239000003550 marker Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- 102000004190 Enzymes Human genes 0.000 claims description 7
- 108090000790 Enzymes Proteins 0.000 claims description 7
- 238000002372 labelling Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 3
- 239000007850 fluorescent dye Substances 0.000 claims description 2
- 239000002105 nanoparticle Substances 0.000 claims description 2
- 239000002096 quantum dot Substances 0.000 claims description 2
- 239000012634 fragment Substances 0.000 abstract description 77
- 238000003556 assay Methods 0.000 abstract description 34
- 101001133088 Homo sapiens Mucin-21 Proteins 0.000 abstract description 25
- 102100034260 Mucin-21 Human genes 0.000 abstract description 24
- 238000002405 diagnostic procedure Methods 0.000 abstract description 3
- 239000000523 sample Substances 0.000 description 53
- 108090000623 proteins and genes Proteins 0.000 description 36
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 29
- 210000002966 serum Anatomy 0.000 description 26
- 239000000203 mixture Substances 0.000 description 25
- 238000006467 substitution reaction Methods 0.000 description 25
- 108060003951 Immunoglobulin Proteins 0.000 description 24
- 125000000539 amino acid group Chemical group 0.000 description 24
- 102000018358 immunoglobulin Human genes 0.000 description 24
- 206010028980 Neoplasm Diseases 0.000 description 22
- 235000001014 amino acid Nutrition 0.000 description 20
- 241000699666 Mus <mouse, genus> Species 0.000 description 18
- 102000004169 proteins and genes Human genes 0.000 description 18
- 125000003275 alpha amino acid group Chemical group 0.000 description 17
- 210000004408 hybridoma Anatomy 0.000 description 17
- 229940024606 amino acid Drugs 0.000 description 16
- 150000001413 amino acids Chemical class 0.000 description 16
- 201000011510 cancer Diseases 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 235000018102 proteins Nutrition 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 14
- 238000012360 testing method Methods 0.000 description 13
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 12
- 108700026244 Open Reading Frames Proteins 0.000 description 10
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 239000003112 inhibitor Substances 0.000 description 10
- 239000007790 solid phase Substances 0.000 description 10
- 108020004707 nucleic acids Proteins 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- 238000011534 incubation Methods 0.000 description 8
- 230000005764 inhibitory process Effects 0.000 description 8
- 101710117290 Aldo-keto reductase family 1 member C4 Proteins 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 230000002255 enzymatic effect Effects 0.000 description 7
- 238000003018 immunoassay Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 102100027474 Anion exchange protein 3 Human genes 0.000 description 6
- 108090000288 Glycoproteins Proteins 0.000 description 6
- 102000003886 Glycoproteins Human genes 0.000 description 6
- 206010039491 Sarcoma Diseases 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 206010035226 Plasma cell myeloma Diseases 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 201000000050 myeloid neoplasm Diseases 0.000 description 5
- 102100021267 Anion exchange protein 4 Human genes 0.000 description 4
- 101710160272 Anion exchange protein 4 Proteins 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 4
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 241000699660 Mus musculus Species 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 210000000628 antibody-producing cell Anatomy 0.000 description 4
- 229960002685 biotin Drugs 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 239000011616 biotin Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000002860 competitive effect Effects 0.000 description 4
- 210000000981 epithelium Anatomy 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000010324 immunological assay Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000011830 transgenic mouse model Methods 0.000 description 4
- 241000283707 Capra Species 0.000 description 3
- 101100246753 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) pyrF gene Proteins 0.000 description 3
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 3
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- 101150050575 URA3 gene Proteins 0.000 description 3
- 230000009118 appropriate response Effects 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002981 blocking agent Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000013068 control sample Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000001671 embryonic stem cell Anatomy 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 230000009871 nonspecific binding Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000013610 patient sample Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000003127 radioimmunoassay Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 102000004674 D-amino-acid oxidase Human genes 0.000 description 2
- 108010003989 D-amino-acid oxidase Proteins 0.000 description 2
- 108090000204 Dipeptidase 1 Proteins 0.000 description 2
- 108010057891 Glutamate-1-semialdehyde 2,1-aminomutase Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 108010063954 Mucins Proteins 0.000 description 2
- 102000015728 Mucins Human genes 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 102000006635 beta-lactamase Human genes 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 125000004057 biotinyl group Chemical group [H]N1C(=O)N([H])[C@]2([H])[C@@]([H])(SC([H])([H])[C@]12[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 150000001720 carbohydrates Chemical group 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 210000004671 cell-free system Anatomy 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006957 competitive inhibition Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 108010002685 hygromycin-B kinase Proteins 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 210000000582 semen Anatomy 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- VRYALKFFQXWPIH-PBXRRBTRSA-N (3r,4s,5r)-3,4,5,6-tetrahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)CC=O VRYALKFFQXWPIH-PBXRRBTRSA-N 0.000 description 1
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 1
- 108091000044 4-hydroxy-tetrahydrodipicolinate synthase Proteins 0.000 description 1
- SEHFUALWMUWDKS-UHFFFAOYSA-N 5-fluoroorotic acid Chemical compound OC(=O)C=1NC(=O)NC(=O)C=1F SEHFUALWMUWDKS-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 108010037870 Anthranilate Synthase Proteins 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 101000647892 Arabidopsis thaliana Alpha,alpha-trehalose-phosphate synthase [UDP-forming] 1 Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 108090000363 Bacterial Luciferases Proteins 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 108010051219 Cre recombinase Proteins 0.000 description 1
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 101100465553 Dictyostelium discoideum psmB6 gene Proteins 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 101100041132 Escherichia coli (strain K12) rstB gene Proteins 0.000 description 1
- 208000034454 F12-related hereditary angioedema with normal C1Inh Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 101710186416 Ferredoxin-like protein Proteins 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 206010019860 Hereditary angioedema Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000690301 Homo sapiens Aldo-keto reductase family 1 member C4 Proteins 0.000 description 1
- 101001116548 Homo sapiens Protein CBFA2T1 Proteins 0.000 description 1
- 101150062179 II gene Proteins 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 108091022912 Mannose-6-Phosphate Isomerase Proteins 0.000 description 1
- 102000048193 Mannose-6-phosphate isomerases Human genes 0.000 description 1
- 241000283923 Marmota monax Species 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 102100037214 Orotidine 5'-phosphate decarboxylase Human genes 0.000 description 1
- 108010055012 Orotidine-5'-phosphate decarboxylase Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 101100084022 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) lapA gene Proteins 0.000 description 1
- 101100169519 Pyrococcus abyssi (strain GE5 / Orsay) dapAL gene Proteins 0.000 description 1
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 102100035717 Serine racemase Human genes 0.000 description 1
- 108010006152 Serine racemase Proteins 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 108010076818 TEV protease Proteins 0.000 description 1
- 108010006873 Threonine Dehydratase Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108010075344 Tryptophan synthase Proteins 0.000 description 1
- HSCJRCZFDFQWRP-JZMIEXBBSA-N UDP-alpha-D-glucose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-JZMIEXBBSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 108700040099 Xylose isomerases Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- PMMURAAUARKVCB-UHFFFAOYSA-N alpha-D-ara-dHexp Natural products OCC1OC(O)CC(O)C1O PMMURAAUARKVCB-UHFFFAOYSA-N 0.000 description 1
- HXXFSFRBOHSIMQ-FPRJBGLDSA-N alpha-D-galactose 1-phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(O)=O)[C@H](O)[C@@H](O)[C@H]1O HXXFSFRBOHSIMQ-FPRJBGLDSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000021120 animal protein Nutrition 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- JCXGWMGPZLAOME-OUBTZVSYSA-N bismuth-210 Chemical compound [210Bi] JCXGWMGPZLAOME-OUBTZVSYSA-N 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 238000002967 competitive immunoassay Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 101150011371 dapA gene Proteins 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 101150028096 dhlA gene Proteins 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 101150059880 dsdA gene Proteins 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 102000054766 genetic haplotypes Human genes 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000002337 glycosamines Chemical group 0.000 description 1
- 102000035122 glycosylated proteins Human genes 0.000 description 1
- 108091005608 glycosylated proteins Proteins 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 231100000640 hair analysis Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000012770 hereditary angioedema type 1 Diseases 0.000 description 1
- 102000054751 human RUNX1T1 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000015784 hyperosmotic salinity response Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229940055742 indium-111 Drugs 0.000 description 1
- APFVFJFRJDLVQX-AHCXROLUSA-N indium-111 Chemical compound [111In] APFVFJFRJDLVQX-AHCXROLUSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- XMBWDFGMSWQBCA-YPZZEJLDSA-N iodane Chemical compound [125IH] XMBWDFGMSWQBCA-YPZZEJLDSA-N 0.000 description 1
- 229940044173 iodine-125 Drugs 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 108010086351 lysine racemase Proteins 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 108010040309 mannose-6-phosphate reductase Proteins 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical compound Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229940051875 mucins Drugs 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 125000006501 nitrophenyl group Chemical group 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 101150009573 phoA gene Proteins 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000030788 protein refolding Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000012088 reference solution Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000009394 selective breeding Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 108010018381 streptavidin-binding peptide Proteins 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005844 sulfoglycolipids Chemical class 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3076—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
- C07K16/3092—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated mucins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/42—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
- C07K16/4208—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an idiotypic determinant on Ig
- C07K16/4241—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an idiotypic determinant on Ig against anti-human or anti-animal Ig
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
- C12N2015/8518—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic expressing industrially exogenous proteins, e.g. for pharmaceutical use, human insulin, blood factors, immunoglobulins, pseudoparticles
Definitions
- HCA Human Carcinoma Antigen
- Codington et al. report anti-idiotypic antibodies that bind to the hypervariable region of the AE3 antibody, an anti-idiotypic epiglycanin monoclonal antibody. Cancer, 2002, 94(3):803-13. Also described are anti, anti-idiotypic antibodies that bind to the hypervariable region of the anti-idiotypic antibodies.
- U.S. Published Patent Application No. 2005/0272102 reports methods for the diagnosis of prostate cancer by using an antibody or antigen-binding fragment thereof, which is specific for HCA in immunoassays. However, improved methods are needed.
- This disclosure relates to diagnostic assays useful to detect a carcinoma from a sample and antibodies or binding fragments thereof useful in the diagnostic tests.
- this disclosure relates to antibodies or fragments that bind HCA, epiglycanin, and/or fragments thereof.
- this disclosure relates to anti-idiotypic antibodies or fragments that bind the variable regions of antibodies that bind HCA and/or epiglycanin.
- this disclosure relates to antibodies or antigen binding fragments comprising complementarity determining regions (CDRs) or consensus sequences thereof, wherein the CDRs comprise the heavy and light chain CDRs of the antibodies of or derived from the XII-24 or AX2 hybridoma.
- CDRs complementarity determining regions
- antibodies or antigen binding fragments bind the variable regions of antibodies derived from the XII-24 or AX2 hybridoma.
- the CDRs comprise the light chain XII-24 variable region CDRs within
- CDR1 is QGISGN (SEQ ID NO: 3),
- CDR2 is HGTN (SEQ ID NO: 4), and
- CDR3 is VQYIQFPFT (SEQ ID NO: 5);
- CDR1 is GYIFTDYY (SEQ ID NO: 6),
- CDR2 is IYPGSGNT (SEQ ID NO: 7), and
- CDR3 is ASSLYYPLDH (SEQ ID NO: 8).
- the CDRs comprise the light chain AX2 variable region CDRs within
- CDR 1 is QDVGTA (SEQ ID NO: 11),
- CDR2 is WAST (SEQ ID NO: 12), and
- CDR3 is QHYINYPLT (SEQ ID NO: 13);
- CDR1 is GYTFTEYT (SEQ ID NO: 14),
- CDR2 is FYPGSGSI (SEQ ID NO: 15), and
- CDR3 is ARGGYYDSFDN (SEQ ID NO: 16).
- this disclosure contemplates antibodies or antigen binding fragments comprising the heavy chain CDR3 and light chain CDR3 of AX2 antibodies. In certain embodiments, this disclosure contemplates antibodies or antigen binding fragments comprising the heavy chain CDR3 and light chain CDR3 of XII-24 antibodies.
- this disclosure contemplates antibodies or fragments that comprise the light and/or heavy chain sequences or CDRs disclosed herein or variants thereof.
- the variants have greater than 50%, 60%, 70%, 80%, 90%, or 95% sequence identity or similarity to sequences disclosed herein which are still capable of specifically binding a the binding partner of interest.
- the variant sequences or CDRs have less than 10 or 15 amino acid substitutions.
- the variants have less than 2 or 3 substitutions, or have less than 4 or 5 substitutions, or have less than 6 or 7 substitutions.
- the variants have less than 2 or 3 conserved substitutions, or have less than 4 or 5 conserved substitutions, or have less than 6 or 7 conserved substitutions.
- the amino acid substitutions are not in the CDRs.
- the CDR1 of the light chain has 1 or 2 substitutions. In certain embodiments, the CDR1 of the light chain has 3 or 4 substitutions. In certain embodiments, the CDR2 of the light chain has 1 or 2 substitutions. In certain embodiments, the CDR2 of the light chain has 3 or 4 substitutions. In certain embodiments, the CDR3 of the light chain has 1 or 2 substitutions. In certain embodiments, the CDR3 of the light chain has 3 or 4 substitutions.
- the CDR1 of the heavy chain has 1 or 2 substitutions. In certain embodiments, the CDR1 of the heavy chain has 3 or 4 substitutions. In certain embodiments, the CDR2 of the heavy chain has 1 or 2 substitutions. In certain embodiments, the CDR2 of the heavy chain has 3 or 4 substitutions. In certain embodiments, the CDR3 of the heavy chain has 1 or 2 substitutions. In certain embodiments, the CDR3 of the heavy chain has 3 or 4 substitutions.
- this disclosure contemplates using antibodies disclosed herein, e.g., XII-24 and AX2 antibodies, in immunological assays for detecting HCA in a sample.
- the disclosure relates to methods comprising: mixing a sample with an anti-idiotypic antibody that binds to anti-HCA antibodies providing a mixed sample; mixing the mixed sample with anti-HCA antibodies bound to a solid substrate providing immobilized anti-idiotypic antibodies and optionally immobilized HCA on the surface; labeling the anti-idiotypic antibodies; and quantitating the label on the surface.
- the anti-idiotypic antibodies are XII-24 antibodies
- the anti-HCA antibodies are AX2 antibodies.
- this disclosure relates to methods of determining the presence of HCA in a sample comprising, providing a solid surface immobilized with an antibody that binds HCA, mixing a sample to be tested for the presence of HCA with an anti-idiotypic antibody that binds the variable regions on the surface immobilized antibody providing a test mixture; exposing the test mixture to the surface immobilized antibody under conditions such that an anti-idiotypic antibody in the sample is capable of binding surface immobilized antibody; and detecting a decrease of antibody and anti-idiotypic antibody binding indicting the presence of HCA in the sample.
- the kit comprises one or more of the following components: an anti-idiotypic antibody (XII-24) to the detecting antibody, anti-HCA antibody, (AX2); a suitable immobilized phase (e.g., micro titer plates, insoluble polymeric beads or particles) that can be washed and separated from a reaction mixture and are suitable for the immobilization of an antibody disclosed herein; a specific antibody (AX2 or AE3) with high affinity to HCA that can be detected using a detection method (e.g., radiation, colorimeteric, enzymatic, chemiluminecence, etc.), either directly or indirectly; a series of calibration material (calibrators) comprised of materials that emulate HCA in patient samples that can be used to establish an appropriate response curve to map detection signal into concentration of HCA; and any required blocking agents and buffers that inhibit nonspecific binding or any other signal generating reactions that are unrelated to HCA concentration.
- a detection method e.g., radiation, colorimeteric, enzymatic,
- FIG. 1 illustrates the production and the binding properties of antibody AX2 and anti-idiotypic antibody XII-24.
- epiglycanin was found to be a mixture of highly glycosylated proteins (2-% protein by weight) of the mucin type, with a long extended protein chain to which are attached many short (2 to 7 carbohydrate residues) (carbohydrate 80% by weight).
- An epiglycanin type of strongly acidic properties (Emorin) was isolated both by size exclusion and affinity chromatography. Emorin was used for the immunization of C57BL mice to produce anti-Emorin lymphocytes.
- FIG. 2 illustrates the proposed HCA complex in a sample bound with potential autoantibodies (anti-HCA antibodies) that can interfere with detection methods.
- anti-HCA antibodies potential autoantibodies
- FIG. 2 illustrates the proposed HCA complex in a sample bound with potential autoantibodies (anti-HCA antibodies) that can interfere with detection methods.
- anti-HCA antibodies potential autoantibodies
- FIG. 2 illustrates the proposed HCA complex in a sample bound with potential autoantibodies (anti-HCA antibodies) that can interfere with detection methods.
- FIG. 3A shows the amino acid sequence of the light (K) chain (SEQ ID NO: 17) and nucleic acid sequence encoding the light (K) chain (SEQ ID NO: 18) for AX2.
- FIG. 3B shows the amino acid sequence of the heavy chain (SEQ ID NO: 19) and the nucleic acid sequence encoding the heavy (SEQ ID NO: 20) chain for AX2.
- FIG. 4A shows the amino acid sequence of the light (K) chain (SEQ ID NO: 21) and nucleic acid sequence encoding the light (K) chain (SEQ ID NO: 22) for XII-24.
- FIG. 4B shows the amino acid sequence of the heavy chain (SEQ ID NO: 23) and the nucleic acid sequence encoding the heavy (SEQ ID NO: 24) chain for XII-24.
- Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
- the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) have the meaning ascribed to them in U.S. patent law in that they are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
- peptide having an amino acid sequence refers to a peptide that may contain additional N-terminal (amine end) or C-terminal (carboxylic acid end) amino acids, i.e., the term is intended to include the amino acid sequence within a larger peptide.
- Consisting essentially of or “consists of” or the like when applied to methods and compositions encompassed by the present disclosure refers to compositions like those disclosed herein that exclude certain prior art elements to provide an inventive feature of a claim, but which may contain additional composition components or method steps composition components or method steps, etc., that do not materially affect the basic and novel characteristic(s) of the compositions or methods, compared to those of the corresponding compositions or methods disclosed herein.
- the term “consisting of” in reference to a peptide having an amino acid sequence refers a peptide having the exact number of amino acids in the sequence and not more or having not more than a range of amino acids expressly specified in the claim.
- subject refers to any animal, preferably a human patient, livestock, or domestic pet.
- sample refers to a composition taken from or originating from a subject.
- samples include cell samples, blood samples, serum or plasma samples, tissue samples, hair samples, semen, and urine or excrement samples.
- heterologous nucleic acid or amino acid sequences refer to sequences that do not naturally occur together in a natural setting depending on the context, such as, in sequence identity or the relative location of the sequences in reference to each other. For example, when a heterologous peptide is conjugated or fused to an antibody, the peptide sequence does not occur in naturally occurring antibodies or, if the sequence does occur in antibodies, the sequence does not occur naturally in the specific location when produced in the living organism. In another example, animals have different nucleic acid sequences that are distinct in sequence from other plants, bacteria, viruses, or other organisms.
- Inserting a gene that expresses an animal protein into a viral based vector or plasmid is heterologous because the combination of animal and viral or plasmid sequences do not exist naturally.
- a nucleic acid encodes the same polypeptide sequence expressed in both organisms, the nucleic acid sequences are still not naturally occurring, as codons usage in different organisms are unique.
- vector refers to a recombinant nucleic acid containing a desired coding sequence and appropriate nucleic acid sequences necessary for the expression of the operably linked coding sequence in a particular host organism or expression system, e.g., cellular or cell-free.
- Nucleic acid sequences necessary for expression in prokaryotes usually include a promoter, an operator (optional), and a ribosome binding site, often along with other sequences.
- Eukaryotic cells are known to utilize promoters, enhancers, and termination and polyadenylation signals.
- Protein “expression systems” refer to in vivo and in vitro (cell free) systems. Systems for recombinant protein expression typically utilize cells transfecting with a DNA expression vector that contains the template. The cells are cultured under conditions such that they translate the desired protein. Expressed proteins are extracted for subsequent purification. In vivo protein expression systems using prokaryotic and eukaryotic cells are well known. Also, some proteins are recovered using denaturants and protein-refolding procedures. In vitro (cell-free) protein expression systems typically use translation-compatible extracts of whole cells or compositions that contain components sufficient for transcription, translation and optionally post-translational modifications such as RNA polymerase, regulatory protein factors, transcription factors, ribosomes, tRNA cofactors, amino acids and nucleotides.
- a “selectable marker” is a nucleic acid introduced into a recombinant vector that encodes a polypeptide that confers a trait suitable for artificial selection or identification (report gene), e.g., beta-lactamase confers antibiotic resistance, which allows an organism expressing beta-lactamase to survive in the presence antibiotic in a growth medium.
- a trait suitable for artificial selection or identification e.g., beta-lactamase confers antibiotic resistance, which allows an organism expressing beta-lactamase to survive in the presence antibiotic in a growth medium.
- Another example is thymidine kinase, which makes the host sensitive to ganciclovir selection. It may be a screenable marker that allows one to distinguish between wanted and unwanted cells based on the presence or absence of an expected color.
- the lac-z-gene produces a beta-galactosidase enzyme which confers a blue color in the presence of X-gal (5-bromo-4-chloro-3-indolyl- ⁇ -D-galactoside). If recombinant insertion inactivates the lac-z-gene, then the resulting colonies are colorless.
- selectable markers e.g., an enzyme that can complement to the inability of an expression organism to synthesize a particular compound required for its growth (auxotrophic) and one able to convert a compound to another that is toxic for growth.
- URA3 an orotidine-5′ phosphate decarboxylase, is necessary for uracil biosynthesis and can complement ura3 mutants that are auxotrophic for uracil. URA3 also converts 5-fluoroorotic acid into the toxic compound 5-fluorouracil. Additional contemplated selectable markers include any genes that impart antibacterial resistance or express a fluorescent protein.
- Examples include, but are not limited to, the following genes: ampr, camr, tetr, blasticidinr, neor, hygr, abxr, neomycin phosphotransferase type II gene (nptII), p-glucuronidase (gus), green fluorescent protein (gfp), egfp, yfp, mCherry, p-galactosidase (lacZ), lacZa, lacZAM15, chloramphenicol acetyltransferase (cat), alkaline phosphatase (phoA), bacterial luciferase (luxAB), bialaphos resistance gene (bar), phosphomannose isomerase (pmi), xylose isomerase (xylA), arabitol dehydrogenase (atlD), UDP-glucose:galactose-1-phosphate uridyltransferasel (galT), feedback-insensitive
- GSA-AT glutamate 1-semialdehyde aminotransferase
- DAAO D-amino acidoxidase
- rstB D-amino acidoxidase
- pflp ferredoxin-like protein
- AtTPS1 trehalose-6-P synthase gene
- lyr lysine racemase
- dapA dihydrodipicolinate synthase
- AtTSB1 tryptophan synthase beta 1
- dhlA mannose-6-phosphate reductase gene
- HPT hygromycin phosphotransferase
- dsdA D-serine ammonialyase
- label refers to a detectable compound or composition that is conjugated directly or indirectly to another molecule, such as an antibody or a protein, to facilitate detection of that molecule.
- labels include fluorescent tags, enzymatic linkages, and radioactive isotopes.
- a “label receptor” refers to incorporation of a heterologous polypeptide in the receptor.
- a label includes the incorporation of a radiolabeled amino acid or the covalent attachment of biotinyl moieties to a polypeptide that can be detected by marked avidin (for example, streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods).
- labels for polypeptides include, but are not limited to, the following: radioisotopes or radionucleotides (such as 35 S or 131 I) fluorescent labels (such as fluorescein isothiocyanate (FITC), rhodamine, lanthanide phosphors), enzymatic labels (such as horseradish peroxidase, beta-galactosidase, luciferase, alkaline phosphatase), chemiluminescent markers, biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (such as a leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags), or magnetic agents, such as gadolinium chelates.
- labels are attached by spacer arms of various lengths to reduce potential steric hindrance.
- the disclosure relates to antibodies and antigen binding fragments comprising sequences disclosed herein or variants or fusions thereof wherein the amino terminal end or the carbon terminal end of the amino acid sequence are optionally attached to a heterologous amino acid sequence, label, or reporter molecule.
- the disclosure relates to vectors comprising a nucleic acid encoding an antibody or antigen binding fragment disclosed herein or chimeric protein thereof.
- the vector optionally comprises a mammalian, human, insect, viral, bacterial, bacterial plasmid, yeast associated origin of replication or gene such as a gene or retroviral gene or lentiviral LTR, TAR, RRE, PE, SLIP, CRS, and INS nucleotide segment or gene selected from tat, rev, nef, vif, vpr, vpu, and vpx or structural genes selected from gag, pol, and env.
- a mammalian, human, insect, viral, bacterial, bacterial plasmid, yeast associated origin of replication or gene such as a gene or retroviral gene or lentiviral LTR, TAR, RRE, PE, SLIP, CRS, and INS nucleotide segment or gene selected from tat, rev, nef, vif, vpr, vpu, and vpx or structural genes selected from gag, pol, and env.
- the vector optionally comprises a gene vector element (nucleic acid) such as a selectable marker region, lac operon, a CMV promoter, a hybrid chicken B-actin/CMV enhancer (CAG) promoter, tac promoter, T7 RNA polymerase promoter, SP6 RNA polymerase promoter, SV40 promoter, internal ribosome entry site (IRES) sequence, cis-acting woodchuck post regulatory regulatory element (WPRE), scaffold-attachment region (SAR), inverted terminal repeats (ITR), FLAG tag coding region, c-myc tag coding region, metal affinity tag coding region, streptavidin binding peptide tag coding region, polyHis tag coding region, HA tag coding region, MBP tag coding region, GST tag coding region, polyadenylation coding region, SV40 polyadenylation signal, SV40 origin of replication, Col E1 origin of replication, f1 origin, pBR322 origin, or pUC origin
- term “percentage of sequence identity” is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.
- the identical nucleic acid base e.g., A, T, C, G, U, or I
- sequence “identity” refers to the number of exactly matching amino acids (expressed as a percentage) in a sequence alignment between two sequences of the alignment calculated using the number of identical positions divided by the greater of the shortest sequence or the number of equivalent positions excluding overhangs wherein internal gaps are counted as an equivalent position.
- any recitation of sequence identity expressed herein may be substituted for sequence similarity.
- Percent “similarity” is used to quantify the similarity between two sequences of the alignment. This method is identical to determining the identity except that certain amino acids do not have to be identical to have a match.
- Amino acids are classified as matches if they are among a group with similar properties according to the following amino acid groups: Aromatic—F Y W; hydrophobic—A V I L; Charged positive: R K H; Charged negative—D E; Polar—S T N Q.
- nucleotide and amino acid sequence modifications which do not significantly affect or alter the binding characteristics of the antibody encoded by the nucleotide sequence or containing the amino acid sequence.
- conservative sequence modifications include nucleotide and amino acid substitutions, additions and deletions. Modifications can be introduced into the sequences disclosed herein by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
- amino acids with basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g., aspartic acid, glutamic acid
- uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan
- nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine
- beta-branched side chains e.g., threonine, valine, isoleucine
- aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
- this disclosure relates to antibodies that bind human carcinoma antigen (HCA). In certain embodiments, this disclosure relates to anti-idiotypic antibodies or fragments that bind the variable regions of antibodies that bind HCA. In certain embodiments, the antibodies that bind HCA are derived from the AX2 antibody or fragments. In certain embodiments the anti-idiotypic antibodies are derived from the XII-24 antibody or fragments.
- the CDRs comprise the light chain XII-24 variable region CDRs within
- CDR1 is QGISGN (SEQ ID NO: 3),
- CDR2 is HGTN (SEQ ID NO: 4), and
- CDR3 is VQYIQFPFT (SEQ ID NO: 5);
- CDR1 is GYIFTDYY (SEQ ID NO: 6),
- CDR2 is IYPGSGNT (SEQ ID NO: 7), and
- CDR3 is ASSLYYPLDH (SEQ ID NO: 8).
- the CDRs comprise the light chain AX2 variable region CDRs within
- CDR1 is QDVGTA (SEQ ID NO: 11),
- CDR2 is WAST (SEQ ID NO: 12), and
- CDR3 is QHYINYPLT (SEQ ID NO: 13);
- CDR1 is GYTFTEYT (SEQ ID NO: 14),
- CDR2 is FYPGSGSI (SEQ ID NO: 15), and
- CDR3 is ARGGYYDSFDN (SEQ ID NO: 16).
- the antibodies disclosed herein are conjugated to a label, fluorescent dye, quantum dot, nanoparticle, heterologous polypeptide, an enzyme, or solid surface.
- the antibody is a chimeric antibody or humanized antibody.
- this disclosure relates to hybridoma that produces the antibodies disclosed herein.
- the disclosure relates to vectors comprising a nucleic acid sequence encoding the light chain and/or the heavy chain of an antibody disclosed herein.
- the vector comprises a heterologous nucleic acid sequence or heterologous promoter or encodes a selectable marker.
- this disclosure relates to expression system comprising a vector disclosed herein.
- the expression system is a cell.
- antibody is intended to denote an immunoglobulin molecule that possesses a “variable region” antigen recognition site.
- the term “variable region” is intended to distinguish such domain of the immunoglobulin from domains that are broadly shared by antibodies (such as an antibody Fc domain).
- the variable region comprises a “hypervariable region” whose residues are responsible for antigen binding.
- the hypervariable region comprises amino acid residues from a “Complementarity Determining Region” or “CDR” (i.e., typically at approximately residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and at approximately residues 27-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md.
- CDR Constantarity Determining Region
- “hypervariable loop” i.e., residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk, 1987, J. Mol. Biol. 196:901-917).
- “Framework Region” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined.
- antibody includes monoclonal antibodies, multi-specific antibodies, human antibodies, humanized antibodies, synthetic antibodies, chimeric antibodies, camelized antibodies (See e.g., Muyldermans et al., 2001, Trends Biochem. Sci. 26:230; Nuttall et al., 2000, Cur. Pharm. Biotech. 1:253; Reichmann and Muyldermans, 1999, J. Immunol. Meth. 231:25; International Publication Nos. WO 94/04678 and WO 94/25591; U.S. Pat. No.
- scFv single-chain Fvs
- sdFv single-chain Fvs
- intrabodies single chain antibodies
- anti-Id antibodies including, e.g., anti-Id and anti-anti-Id antibodies to the disclosed B7-H5 antibodies.
- antibodies include immunoglobulin molecules of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass.
- immunoglobulin molecules of any type e.g., IgG, IgE, IgM, IgD, IgA and IgY
- class e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2 or subclass.
- antibodies disclosed herein, fragment, or heavy chain comprise a variant Fc domain.
- a variant Fc domain refers to an Fc domain engineered to comprise at least one amino acid modification relative to a wild-type Fc domain.
- a molecule is said to be able to “immunospecifically bind” a second molecule if such binding exhibits the specificity and affinity of an antibody to its cognate antigen.
- Antibodies are said to be capable of “immunospecifically binding” to a target region or conformation (“epitope”) of an antigen if such binding involves the antigen recognition site of the immunoglobulin molecule.
- An antibody that immunospecifically binds to a particular antigen may bind to other antigens with lower affinity if the other antigen has some sequence or conformational similarity that is recognized by the antigen recognition site as determined by, e.g., immunoassays, but would not bind to a totally unrelated antigen.
- antibodies will not cross-react with other antigens.
- Antibodies may also bind to other molecules in a way that is not immunospecific, such as to FcR receptors, by virtue of binding domains in other regions/domains of the molecule that do not involve the antigen recognition site, such as the Fc region.
- the term “antigen binding fragment” of an antibody refers to one or more portions of an antibody that contain the antibody's Complementarity Determining Regions (“CDRs”) and optionally the framework residues that comprise the antibody's “variable region” antigen recognition site, and exhibit an ability to immunospecifically bind an antigen.
- CDRs Complementarity Determining Regions
- Such fragments include Fab′, F(ab′)2, Fv, single chain (ScFv), and mutants thereof, naturally occurring variants, and fusion proteins comprising the antibody's “variable region” antigen recognition site and a heterologous protein (e.g., a toxin, an antigen recognition site for a different antigen, an enzyme, a receptor or receptor ligand, etc.).
- fragment refers to a peptide or polypeptide comprising an amino acid sequence of at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 40 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino residues, at least 70 contiguous amino acid residues, at least 80 contiguous amino acid residues, at least 90 contiguous amino acid residues, at least 100 contiguous amino acid residues, at least 125 contiguous amino acid residues, at least 150 contiguous amino acid residues, at least 175 contiguous amino acid residues, at least 200 contiguous amino acid residues, or at least 250 contiguous amino acid residues.
- Human, non-naturally occurring chimeric or humanized derivatives of antibodies are particularly preferred for in vivo use in humans, however, murine antibodies or antibodies of other species may be advantageously employed for many uses (for example, in vitro or in situ detection assays, acute in vivo use, etc.).
- a humanized antibody may comprise amino acid residue substitutions, deletions or additions in one or more non-human CDRs.
- the humanized antibody derivative may have substantially the same binding, stronger binding or weaker binding when compared to a non-derivative humanized antibody. In specific embodiments, one, two, three, four, or five amino acid residues of the CDR have been substituted, deleted or added (i.e., mutated).
- Completely human antibodies are particularly desirable for therapeutic treatment of human subjects.
- Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences (see U.S. Pat. Nos. 4,444,887 and 4,716,111; and International Publication Nos. WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741). Human antibodies can be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes.
- the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells.
- the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes.
- the mouse heavy and light chain immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination.
- homozygous deletion of the JH region prevents endogenous antibody production.
- the modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice.
- the chimeric mice are then bred to produce homozygous offspring which express human antibodies.
- the transgenic mice are immunized using conventional methodologies with a selected antigen, e.g., all or a portion of a polypeptide.
- Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology (see, e.g., U.S. Pat. No. 5,916,771).
- the human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation.
- it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995, Int. Rev. Immunol. 13:65-93, which is incorporated herein by reference in its entirety).
- a “chimeric antibody” is a molecule in which different portions of the antibody are derived from different immunoglobulin molecules such that the entire molecule is not naturally occurring.
- Examples of chimeric antibodies include those having a variable region derived from a non-human antibody and a human immunoglobulin constant region such as antibodies that have murine variable domains and human constant domains.
- Chimeric antibodies include humanized antibodies, i.e., antibodies having murine CDRs but are otherwise human.
- the term is also intended to include antibodies having a variable region derived from one human antibody grafted to an immunoglobulin constant region of a predetermined sequences or the constant region from another human for which there are allotypic differences residing in the constant regions of any naturally occurring antibody having the variable regions, e.g., CDRs 1, 2, and 3 of the light and heavy chain.
- Human heavy chain genes exhibit structural polymorphism (allotypes) that are inherited as a haplotype. The serologically defined allotypes differ within and between population groups. See Jefferis et al. mAb, 1 (2009), pp. 332-338.
- hmAbs antigen-specific chimeric human monoclonal antibodies
- ASCs antibody-secreting cells
- the antibody genes of the ASCs are then amplified by RT-PCR and nested PCR, cloned into expression vectors and transfected into a human cell line.
- Meijer et al. report methods for isolation of human antibody repertoires with preservation of the natural heavy and light chain pairing. J Mol Biol. 2006, 358(3):764-72.
- Wrammert et al. report using immunoglobulin variable regions isolated from sorted single ASCs to produce human monoclonal antibodies (mAbs) that bound with high affinity. Nature. 2008, 453(7195): 667-671.
- Chimeric antibodies comprising one or more CDRs from a non-human species and framework regions from a human immunoglobulin molecule can be produced using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; International Publication No. WO 91/09967; and U.S.
- humanized antibody refers to an immunoglobulin comprising a human framework region and one or more CDR's from a non-human (usually a mouse or rat) immunoglobulin.
- the non-human immunoglobulin providing the CDR's is called the “donor” and the human immunoglobulin providing the framework is called the “acceptor.”
- Constant regions need not be present, but if they are, they must be substantially identical to human immunoglobulin constant regions, i.e., at least about 85-90%, preferably about 95% or more identical.
- all parts of a humanized immunoglobulin, except possibly the CDR's are substantially identical to corresponding parts of natural human immunoglobulin sequences.
- a humanized antibody is an antibody comprising a humanized light chain and a humanized heavy chain immunoglobulin.
- a humanized antibody would not encompass a typical chimeric antibody, because, e.g., the entire variable region of a chimeric antibody is non-human.
- the donor antibody has been “humanized,” by the process of “humanization,” because the resultant humanized antibody is expected to bind to the same antigen as the donor antibody that provides the CDR's.
- humanized antibodies are human immunoglobulins (recipient antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-human species (donor antibody) such as mouse, rat, rabbit or a non-human primate having the desired specificity, affinity, and capacity.
- donor antibody such as mouse, rat, rabbit or a non-human primate having the desired specificity, affinity, and capacity.
- Framework Region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
- humanized antibodies may comprise residues which are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance.
- the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable regions correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence.
- the humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin that immunospecifically binds to an Fc RIIB polypeptide, that has been altered by the introduction of amino acid residue substitutions, deletions or additions (i.e., mutations).
- Fc immunoglobulin constant region
- DNA sequences coding for preferred human acceptor framework sequences include but are not limited to FR segments from the human germline VH segment VH1-18 and JH6 and the human germline VL segment VK-A26 and JK4.
- one or more of the CDRs are inserted within framework regions using routine recombinant DNA techniques.
- the framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia et al., 1998, “Structural Determinants In the Sequences of Immunoglobulin Variable Domain,” J. Mol. Biol. 278: 457-479 for a listing of human framework regions).
- this disclosure relates to antibodies or antigen binding fragments comprising six complementary determining regions (CDRs) or consensus sequences thereof, wherein the CDRs comprise the three heavy and/or light chain CDRs of the antibody derived from the XII-24 or AX2.
- CDRs complementary determining regions
- antibodies or antigen binding fragments bind the variable regions of antibodies derived from the AX2 hybridoma.
- the disclosure contemplates that any of the antibody sequences disclosed herein may be changed or contain at least one non-naturally occurring substitution modification relative to wild-type sequences or the sequence reported.
- Antibodies to HCA and methods for their production have been described in U.S. Pat. Nos. 5,808,005; 5,693,763; 5,545,532.
- Antibodies to epiglycanin and methods for their production have also been described in the art.
- monoclonal antibodies to epiglycanin and methods for their production are described, for example, in U.S. Pat. Nos. 4,837,171, 5,545,532, and Haavik et al., Glycobiology, 2:217-224 (1992).
- Hybridomas producing anti-murine epiglycanin antibodies, AE-1, AE-3 and AE-4 have been deposited with the American Type Culture Collection (ATCC), P.O.
- ATCC American Type Culture Collection
- the hybridoma HAE-1 (producing monoclonal antibody AE-1) was deposited at the ATCC under accession no. HB-9466.
- the hybridoma HAE-3 (producing monoclonal antibody AE-3) was deposited at the ATCC under accession no. HB-9467.
- the hybridoma HAE-4 (producing monoclonal antibody AE-4) was deposited at the ATCC under accession no. HB-9468.
- Monoclonal antibody AE-3 cross-reacts and binds with HCA.
- a monoclonal antibody is an antibody derived from a single hybridoma cell, after cloning.
- all hybridoma cells from a particular hybridoma cell inherit the same specificity. They are monoclonal.
- a good example is the experiment that produced that produced the AE-1, AE-3, and AE-4 monoclonal antibodies. These were all produced after immunization with the heterogeneous, but structurally-related, mixture of glycoproteins, which is epiglycanin.
- Epiglycanin contains many epitopes, each capable of producing a lymphocyte of a specific activity.
- hybridoma cells After fusion of the lymphocytes with mouse myeloma (cancer) cells, to form hybridoma cells, each now having a single specificity (from a single myeloma cell), the mixture was cloned, and a new culture, each with a single specificity was established from each successful hybridoma cell (each culture produces a new monoclonal antibody).
- Each of the three monoclonal antibodies resulting from that experiment (AE-1, AE-3, and AE-4) possesses a different specificity.
- the AX2 antibody which was recently produced in a separate experiment, resulted from the immunization of a C57BL mouse with a purified epiglycanin, Emorin, a glycoprotein component of the epiglycanin mixture.
- the resulting antibody, AX2 has good stability and strong binding activity for HCA.
- Antibodies can be polyclonal or monoclonal, and the term “antibody” is intended to encompass both polyclonal and monoclonal antibodies.
- the terms polyclonal and monoclonal refer to the degree of homogeneity of an antibody preparation, and are not intended to be limited to particular methods of production.
- the term “antibody”, as used herein, also encompasses functional fragments of antibodies, including fragments of human, chimeric, humanized, primatized, veneered or single chain antibodies. Functional fragments include antigen-binding fragments specific for HCA.
- Antigen-binding fragments specific for HCA include, but are not limited to, Fab, Fab′, F(ab′) 2 and Fv fragments.
- Such fragments can be produced by enzymatic cleavage or recombinant techniques. For example, papain or pepsin cleavage can generate Fab or F(ab′) 2 fragments, respectively. Other proteases with the requisite substrate specificity can also be used to generate Fab or F(ab′) 2 fragments.
- Antibodies can also be produced in a variety of truncated forms using antibody genes in which one or more stop codons has been introduced upstream of the natural stop site. For example, a chimeric gene encoding a F(ab′) 2 heavy chain portion can be designed to include DNA sequences encoding the CH 1 domain and hinge region of the heavy chain.
- Single chain antibodies and chimeric, humanized or primatized (CDR-grafted), or veneered antibodies, as well as chimeric, CDR-grafted or veneered single chain antibodies, comprising portions derived from different species, and the like are also contemplated by the present disclosure.
- the various portions of antibodies can be joined together chemically by conventional techniques, or can be prepared as a contiguous protein using genetic engineering techniques.
- nucleic acids encoding a chimeric or humanized chain can be expressed to produce a contiguous protein. See, e.g., Cabilly et al., U.S. Pat. No. 4,816,567; Cabilly et al., European Patent No.
- Boss et al. U.S. Pat. No. 4,816,397; Boss et al., European Patent No. 0 120 694 B1; Neuberger et al., International Publication No. WO86/01533; Neuberger et al., European Patent No. 0 194 276 B1; issued to Winter et al., U.S. Pat. No. 5,225,539; issued to Winter et al., European Patent No. 0 239 400 B1; Queen et al., European Patent No. 0 451 216 B1; and Padlan et al., EP 0 519 596 A1.
- an “antigen” is a molecule or a portion of a molecule capable of being bound by an antibody which is additionally capable of inducing an animal to produce antibody capable of binding to an epitope of that antigen.
- An antigen can have one or more than one epitope.
- epitope is meant to refer to that portion of the antigen capable of being recognized by and bound by an antibody at one or more of the antibody's antigen binding region.
- Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and have specific three dimensional structural characteristics as well as specific charge characteristics.
- HCA Human Carcinoma Antigen
- Emorin the active component of the epiglycanin mixture of mucin-type glycoproteins reported herein as Emorin
- This disclosure relates to antibodies (AX2 and XII-24) used in the detection of the Human Carcinoma Antigen (HCA) (in humans) and Emorin (in the mouse), both found as antibody complexes in body fluids.
- HCA Human Carcinoma Antigen
- Emorin in the mouse
- carcinomas epithelial tissue
- HCA Human Carcinoma Antigen
- HAA-anti-HCA complex Human Carcinoma Antigen
- the test involves a competition for the HCA between one of the monoclonal antibodies coating the plate (AX2) and the other monoclonal antibody (XII-24) in solution with the sample, e.g., serum, being tested.
- the results are recorded as the percent of the amount of HCA in the serum relative to the amount in a positive or negative control.
- the assay is capable of distinguishing between carcinoma patients and normal persons with high accuracy.
- sample materials may include bodily fluids including plasma, serum, whole blood, spinal fluid, semen, vaginal fluids, sputum and saliva, cerebrospinal fluid, lymphatic fluid and digestive fluids.
- Other sample materials may include isolated or enriched cell populations and tissues. Samples may be fresh or fixed (preserved). Fixed samples may be embedded (for example, paraffin embedded).
- this disclosure contemplates using antibodies disclosed herein, e.g., XII-24 and AX2 antibodies, in immunological assays for detecting HCA in a sample.
- this disclosure relates to methods of determining the presence of HCA in a sample comprising, providing a solid surface immobilized with an antibody that binds HCA, mixing a sample to be tested for the presence of HCA with an anti-idiotypic antibody that binds the variable regions on the surface immobilized antibody providing a test mixture; exposing the test mixture to the surface immobilized antibody under conditions such that anti-idiotypic antibody in the sample is capable of binding surface immobilized antibody; and detecting a decrease of antibody and anti-idiotypic antibody binding, indicting the presence of HCA in the sample.
- this disclosure relates to methods of determining the presence of antigen in a sample, wherein the antigen is suspected to contain autoantibodies comprising, mixing a sample to be tested for the presence of antigen having autoantibodies with an anti-idiotypic antibody that binds the variable regions on the autoantibodies providing a test mixture that liberates the antigen; exposing the test mixture anti-antigen antibodies; and detecting the binding of anti-antigen antibodies to the antigen.
- this disclosure relates to uses of antibodies disclosed herein in an immunological assays to detect HCA.
- this disclosure relates to methods comprising mixing an anti-idiotypic antibody disclosed herein with antibody that binds HCA or epiglycanin under conditions such that the anti-idiotypic antibody binds to the variable region of the antibody that binds HCA or epiglycanin.
- this disclosure relates to methods for diagnosis of cancer in a human subject comprising determining the level of HCA in a sample from the subject; and comparing the level determined to the level of HCA in a control sample.
- a control sample is one supplied with the kit, such as a serum sample selected from a panel of sera from healthy persons who consistently give 0.0 percent inhibition in the DOC Assay.
- the level of HCA in a subject's serum is defined as Percent Inhibition.
- this disclosure relates to methods for the diagnosis of cancer (carcinomas) in a human subject comprising contacting a sample (serum) from the subject with an antibody, (see FIG. 2 ), which will also cleave the HCA-anti-HCA complex.
- the DOC Assay determines the level of HCA in the HCA-anti-HCA antibody (HCA-anti-HCA) complex in carcinoma patients.
- HCA-anti-HCA HCA-anti-HCA antibody
- the presence of the HCA-anti-HCA in the serum of a subject may be detected for the HCA by incubating the sample with the anti-idiotypic antibody (XII-24), (or under different circumstances, with the anti-Emorin antibody AX2) (see FIG. 2 ) by cleaving the HCA-anti-HCA complex.
- the liberated HCA is then contacted by the XII-24 antibody to bind at the Fc region of the XII-24 antibody, leaving its hypervariable region free to bind to the hypervariable region of the AX2 antibody coating the surface of the plate.
- the percent inhibition would be 0%.
- the difference in absorbance at 405 nm between the subject serum and the control serum, as expressed in percent terms, is a measure of the HCA present, any value above 0% inhibition is indicative of a carcinoma.
- Immunoassays are any assays that can detect the binding (or absence of binding) of an antigen to an antibody or antigen-binding fragment and quantitate the presence of the antigen in the sample.
- suitable immunoassays include sandwich assays, radioimmunoassays and, preferably, competitive inhibition assays.
- the use of the term “antigen” or “inhibitor” in the context of a reagent in the assay is intended to include HCA, as well as functional variants and portions of HCA.
- An inhibitor refers to an antigen that is immunologically cross-reactive with HCA.
- fragments or portions of HCA include those having a deletion (i.e., one or more deletions) of an amino acid (i.e., one or more amino acids) relative to the native (wildtype) HCA, respectively (such as N-terminal, C-terminal or internal deletions). Fragments or portions in which only contiguous amino acids have been deleted or in which non-contiguous amino acids have been deleted relative to native (wildtype) HCA are also envisioned.
- a radioimmunoassay the amount of antigen present in a sample is measured indirectly employing a limited amount of antibody (or antigen-binding fragment) to compete for labeled antigen.
- IRMA immunoradiometric assay
- antigen is assayed directly by reacting the antigen with excess labeled antibody (or antigen-binding fragment).
- IRMA assays In one class of IRMA assays, the unknown antigen is insolubilized and reacted with labeled antibody (or antigen-binding fragment). When the antigen is insolubilized by reaction with solid-phase antibody (or antigen-binding fragment), the assay is termed a “two-site IRMA”, “junction test”, or “sandwich assay”. Sandwich assays are further classified according to their methodology as forward, reverse or simultaneous sandwich assays.
- a sample containing the antigen can be first incubated with a solid-phase immunoadsorbent containing immobilized antibody (or antigen-binding fragment). Incubation is continued for a sufficient period of time to allow antigen in the sample to bind to immobilized antibody (or antigen-binding fragment) on the solid-phase immunoadsorbent. The solid-phase immunoadsorbent can then be separated from the incubation mixture and washed to remove excess antigen and other substances which also may be present in the sample.
- the solid-phase immunoadsorbent containing antigen (if any) bound to immobilized antibody (or antigen-binding fragment) can be subsequently incubated with labeled antibody (or antigen-binding fragment) capable of binding to the antigen. After the second incubation, another wash is performed to remove unbound labeled antibody (or antigen-binding fragment) from the solid-phase immunoadsorbent thereby removing non-specifically bound labeled antibody (or antigen-binding fragment). Labeled antibody (or antigen-binding fragment) bound to the solid-phase immunoadsorbent is then detected and the amount of labeled antibody (or antigen-binding fragment) detected can serve as a direct measure of the amount of antigen present in the sample.
- Such forward sandwich assays are described in the patent literature, and in particular, in U.S. Pat. Nos. 3,867,517 and 4,012,294, issued to Chung-Mei Ling, which are incorporated herein by reference.
- a sample can be incubated with labeled antibody (or antigen-binding fragment) after which the solid-phase immunoadsorbent containing immobilized antibody (or antigen-binding fragment) is added and incubated.
- a washing step can be performed after the second incubation period.
- a sample can be incubated simultaneously in one-step with both an immunoadsorbent containing immobilized antibody (or antigen-binding fragment) for the antigen and labeled antibody (or antigen-binding fragment) for the antigen. Thereafter, labeled antibody (or antigen-binding fragment) bound to the immunoadsorbent can be detected as an indication of the amount of antigen present in the sample.
- a simultaneous sandwich assay has been described in the patent literature in U.S. Pat. No. 4,837,167, issued to Hubert J. P. Schoemaker et al.
- Solid-phase immunoadsorbents can be employed.
- Well-known immunoadsorbents include beads formed from glass polystyrene, polypropylene, dextran, and other materials.
- the solid support is a plate, stick, tube or foam or coated with such materials; etc.
- the antibody (or antigen-binding fragment) can be either covalently or physically bound to the solid-phase immunoadsorbent by techniques such as covalent bonding via an amide or ester linkage or adsorption.
- a competitive inhibition immunoassay can be employed to determine the presence of an antigen in a sample by measuring the inhibition of formation of a competitive inhibitor-antibody (or competitive inhibitor-antigen-binding fragment) complex, one of which is typically bound and the other of which is typically labeled, by free antigen in the sample.
- a typical quantitative immunoassay kit can include a standardized sample of pure inhibitor, such as an antigen, so that a reference solution can be run together with the sample to minimize sampling errors and to assure precision.
- Labels include, e.g., radionuclides (e.g., Florine-18, Tc-99m, Iodine-125, Iodine-131, Indium-111, Bismuth-210), enzymes which produce an absorptive or fluorescent detector group when reacted with a specific substrate (e.g., horseradish peroxidase, N-methylumbelliferone-o-D-galactosidase), dyes (chromophores), fluorescent compounds (e.g., fluorescein, rhodamine, phycoerythrin, cyamine dyes, other compound emitting fluorescence energy), electron dense compounds (e.g., gold and ferric chloride compounds).
- Biotin/avidin labeling systems can also be used. Coupled assays can also be used for detecting labels.
- the label may be directly linked to the component (the inhibitor or antibody) or may be bound to it indirectly, e.g., by attaching the label to another molecule capable of recognizing a component of the antigen/antibody pair.
- an antibody or antigen-binding fragment
- an antibody can be indirectly labeled by attaching an enzyme, fluorescent marker or radionuclide to an isotype-specific antibody which recognizes the non-variable region of the antigen-specific antibody (or antigen-binding fragment).
- the label can be attached to an antibody (or antigen-binding fragment) which recognizes an available epitope of the antigen after it has been bound to the specific antibody (or antigen-binding fragment).
- the label is a dye (such as, nitrophenyl) attached to the unbound component or reagent (unbound inhibitor or antibody) via a phosphate linker.
- a dye such as, nitrophenyl
- the presence of binding can then be determined by subjecting the solid support to a phosphatase enzyme, causing hydrolysis of the dye.
- the presence (and amount) of the dye can then be measured by absorbance, indicating the amount of binding of the two components.
- the sample, antibody (or antigen-binding fragment) and, optionally, the inhibitor is incubated under conditions and for a period of time sufficient to allow antigen to bind to the antibody (or antigen-binding fragment), i.e., under conditions suitable for the formation of a complex between the antigen and antibody (or antigen-binding fragment).
- Suitable temperatures are generally below the temperature at which denaturation can occur.
- HCA reactivity found as complex with its antibody
- Measurement of HCA in a sample can provide early diagnosis of prostate cancer and the opportunity for early treatment.
- Suitable antibodies, and antigen-binding fragments thereof, for use in determining the presence of HCA bind to the antigen HCA.
- Such antibodies include antibodies to HCA, as well as antibodies to epiglycanin that cross-react and bind HCA.
- Kits for use in detecting the presence of HCA in a sample can also be prepared.
- kits can include an antibody, anti-idiotypic antibody, or antigen-binding fragment disclosed herein, as well as one or more ancillary reagents.
- the antibody or antigen binding fragment compositions can be provided in lyophilized form, either alone or in combination with additional antibodies specific for other epitopes.
- the antibodies or antigen-binding fragments, which can be labeled or unlabeled can be included in the kits with adjunct ingredients (e.g., buffers, such as Tris, phosphate and carbonate, stabilizers, excipients, biocides and/or inert proteins, e.g., bovine serum albumin).
- buffers such as Tris, phosphate and carbonate, stabilizers, excipients, biocides and/or inert proteins, e.g., bovine serum albumin.
- the antibodies or antigen-binding fragments can be provided as a lyophilized mixture with adjunct ingredients, or adjunct ingredients can be separately provided for combination by the user.
- a second antibody or antigen-binding fragment which binds HCA is employed, such antibody or fragment can be provided in the kit, for instance in a separate vial or container.
- the second antibody or fragment, if present, is typically labeled, and can be formulated in an analogous manner with the antibody or fragment formulations described above.
- the components (e.g., antibody, ancillary reagent) of the kit can be packaged separately or together within suitable containment means (e.g., bottle, box, envelope, tube).
- the individual packages can be contained within a single larger containment means (e.g., bottle, box, envelope, tube). Since the HCA and anti-HCA antibody complex are heat sensitive, materials containing the HCA complex, all control sera, and all antibodies should be conveniently shipped in dry ice filled insulated containers, e.g., styrofoam containers.
- a single larger containment means e.g., bottle, box, envelope, tube.
- the kit comprises: (a) an immobilized antigen that is comprised of either HCA, epiglycanin, an idiotypic antibody (XII-24) to the detecting antibody (AE3 or AX2) or a surrogate antigen that has a similar affinity as HCA; (b) a suitable immobilized phase (e.g., micro titer plates, insoluble polymeric beads or particles) that can be washed and separated from a reaction mixture and are suitable for the immobilization of the an antibody or antigen; (c) a specific antibody (AX2 or AE3) with high affinity to HCA that can be detected using a detection method (e.g., radiation, colorimeteric, enzymatic, chemiluminecence, etc.), either directly or indirectly; (d) a series of calibration material (calibrators) comprised of materials that emulate HCA in patient samples that can be used to establish an appropriate response curve to map detection signal into concentration of HCA; and (e) any required blocking agents and buffer
- kits for diagnosis of cancer comprises an anti-idiotypic antibody or antigen-binding fragment thereof which binds to the variable region of an antibody that binds to HCA and suitable ancillary reagents.
- the kit further comprises an antibody that binds to HCA.
- the kit comprises one or more of the following components: an anti-idiotypic antibody (XII-24) to the detecting antibody (AX2); a suitable immobilized phase (e.g., micro titer plates, insoluble polymeric beads or particles) that can be washed and separated from a reaction mixture and are suitable for the immobilization of an antibody disclosed herein; a specific antibody (AX2 or AE3) with high affinity to HCA that can be detected using a detection method (e.g., radiation, colorimeteric, enzymatic, chemiluminecence, etc.), either directly or indirectly; a series of calibration material (calibrators) comprised of materials that emulate HCA in patient samples that can be used to establish an appropriate response curve to map detection signal into concentration of HCA; and any required blocking agents and buffers that inhibit nonspecific binding or any other signal generating reactions that are unrelated to HCA concentration.
- a detection method e.g., radiation, colorimeteric, enzymatic, chemiluminecence,
- a test sample having HCA typically contains autoantibody complexes that interferes with direct antibody measurements to HCA with an anti-HCA antibody such as AX2.
- the HCA is present in the serum of cancer patients not as the free serum, but as the HCA-anti-HCA complex.
- a preferred assay method disclosed herein is to use an anti-idiotypic antibody such as XII-24 to break up these complexes and exposure to antibodies that directly bind HCA. Cleavage and binding reactions is likely a one step process.
- FIG. 2 Cleavage made by the XII-24 antibody is illustrated in FIG. 2 .
- a major reduction in the amount of interfering material occurs when the XII-24 antibody is used instead of direct exposure to AX2, as in the protocol below.
- a robust and accurate assay for use in the clinic, to detect, from 60 micro liters of blood, the presence of cancers of epithelial tissue (carcinomas) at either their early or late stages.
- Described herein is a competitive binding assay, which involves the use of two monoclonal antibodies derived from a cancer specific component, Emorin, of the epiglycanin glycoproteins.
- Emorin can be isolated from the epiglycanin mixture in two ways: size-exclusion chromatography and affinity chromatography.
- the first monoclonal antibody, AX2 is produced by fusion of antibody-producing B cells from a C57BL mouse immunized with an epiglycanin carcinoma specific fraction (Emorin) and mouse myeloma (tumor) cells.
- This antibody is specific for the carcinoma-specific epitope in epiglycanin. It is an IgM.
- the second monoclonal antibody was produced by the same general methodology. Immunization of a C57BL mouse was followed by fusion of the B cells from the spleen with mouse myeloma cells. The clone was selected for its specificity for the antibody-binding site (hypervariable region) in AX2. This antibody, XII-24, is an anti-idiotypic antibody. Immunologically it is similar in cancer specificity to Emorin. It is an IgG (2a) type antibody.
- FIG. 1 illustrates the relationship between the two antibodies and epiglycanin.
- the assay is performed in a 96-well immune plate (Immulon 2 B which is a high binding surface to provide increased binding of hydrophilic proteins and complexes). It consists of seven steps. Each step is performed on a rotary shaker at about 4° C. Each step is performed in the order as described below. Serum samples to be tested are kept frozen until thawed for use (then kept at 4° C.
- Step 1 The wells are coated with a PBS solution (pH 7.75) containing AX2 antibody (125 ng per 100 ⁇ l per well) and the plate is incubated for 18-24 hours. The plate is washed 3 times (W3X). The procedure can be adapted for beads. In addition to the wells to be tested, each plate has wells reserved for control sera. Two wells: from a person without evidence of disease, zero present inhibition in the DOC assay and from a control patient with a documented carcinoma.
- Step 2 To prevent additional non-specific absorption of the test sample, the wells in the plate with are further blocked by the addition of 250 ⁇ l of a solution of Aqua Block at 100% concentration (East Coast Bio, New Brunswick, Me.), and the plate is allowed to incubate for 2.0 hours. (W3X).
- Step 3 In separate tubes the sera to be tested are incubated with the XII-24 antibody and neutralizing antibodies to remove interfering antibodies for 14-18 hours.
- the neutralizing antibodies are goat anti-mouse IgG(Fc) and goat anti-human IgG and lgM. During this period two events occur. One, the XII-24 in the wells cleaves the HCA-anti-HCA complex forming the XII-24-anti-HCA antibody complex and reducing the concentration of XII-24 available for binding to the AX2 on the plate. Two, the neutralizing antibodies eliminate the activity of the interfering antibodies from the serum.
- Step 4 Each solution, which contained (if cancer the HCA-anti-HCA complex and the XII-24 antibody, and which now contains less of that antibody due to the XII-24's reaction with the complex) is added to its appropriate well (100 ⁇ l per well). Incubation is continued on the plate for 3-5 hours. (W3X). If no complex is present for the XII-24, which is an IgG(2a) antibody, to cleave (the control sample), all of the original XII-24 is now free to bind (by their hypervariable regions) to AX2 immobilized on the plate.
- Step 5 A solution of biotin-labeled goat anti-mouse immunoglobulin IgG(2a) is added to each well (100 ⁇ l per well). The plate is incubated for 1.5 hours. (W3X). The biotin labeled antibody now binds to the XII-24 part of the XII-24-AX2 complex on the plate. This is the portion of the original XII-24 remaining after its reaction with the HCA-anti-HCA in the sample. However, if no HCA is in the sample (as in a normal sample), all of the original XII-24 will bind to AX2.
- Step 6 A solution of 100 ⁇ l of horseradish peroxidase-labeled Streptavidin is added to each well. After an incubation of 60 minutes, the plate is washed 4 times. The streptavidin binds biotin. The plate is allowed to warm to ambient temperature
- Step 7 Following the addition of a solution of ABTS to each well, color develops in about 30 minutes. This is read in an automatic plate reader at 405 nm. If HCA is in the sera sample then the intensity of the signal will be reduced.
- carcinoma patients with prostate cancer
- SC sarcoma
- kits may be supplied with one serum from a known carcinoma patient in order to affirm that the assay is performing well.
- a kit may also include serum from an individual with no cancer or other pathological problems.
- Protocol may be used to monitor HCA during chemotherapy.
- the HCA-anti-HCA complex may remain in the blood after the cancer is treated. Protocol
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Hospice & Palliative Care (AREA)
- Plant Pathology (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
- This application is a division of U.S. application Ser. No. 16/285,805 filed Feb. 26, 2019, which claims the benefit of U.S. Provisional Application No. 62/635,206 filed Feb. 26, 2018. The entirety of each of these applications is hereby incorporated by reference for all purposes.
- The Sequence Listing associated with this application is provided in text format in lieu of a paper copy and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is 15158US_ST25.txt. The text file is 24 KB, was created on Feb. 26, 2019, and is being submitted electronically via EFS-Web.
- The Human Carcinoma Antigen (HCA) was reported to be a large mucin-type antigen consistently present in the blood of humans with carcinomas, cancers that originate in epithelial tissue. Epiglycanin is the mouse counterpart of HCA. See Codington, Epiglycanin—a carcinoma-specific mucin-type glycoprotein of the mouse TA3 tumour. Glycobiology, 1992, 2(3):173-80. See also U.S. Pat. Nos. 5,808,005, 5,693,763, 5,545,532.
- Codington et al. report anti-idiotypic antibodies that bind to the hypervariable region of the AE3 antibody, an anti-idiotypic epiglycanin monoclonal antibody. Cancer, 2002, 94(3):803-13. Also described are anti, anti-idiotypic antibodies that bind to the hypervariable region of the anti-idiotypic antibodies. U.S. Published Patent Application No. 2005/0272102 reports methods for the diagnosis of prostate cancer by using an antibody or antigen-binding fragment thereof, which is specific for HCA in immunoassays. However, improved methods are needed.
- Palma et al. report the human epithelial carcinoma antigen recognized by monoclonal antibody AE3 is expressed on a sulfoglycolipid in addition to neoplastic mucins. Biochem Biophys Res Commun. 2011, 408(4):548-52.
- References cited herein are not an admission of prior art.
- This disclosure relates to diagnostic assays useful to detect a carcinoma from a sample and antibodies or binding fragments thereof useful in the diagnostic tests. In certain embodiments, this disclosure relates to antibodies or fragments that bind HCA, epiglycanin, and/or fragments thereof. In certain embodiments, this disclosure relates to anti-idiotypic antibodies or fragments that bind the variable regions of antibodies that bind HCA and/or epiglycanin.
- In certain embodiments, this disclosure relates to antibodies or antigen binding fragments comprising complementarity determining regions (CDRs) or consensus sequences thereof, wherein the CDRs comprise the heavy and light chain CDRs of the antibodies of or derived from the XII-24 or AX2 hybridoma. In certain embodiments, antibodies or antigen binding fragments bind the variable regions of antibodies derived from the XII-24 or AX2 hybridoma.
- In certain embodiments, the CDRs comprise the light chain XII-24 variable region CDRs within
-
(SEQ ID NO: 1) DILMTQSPSSMSVSLGDTVSITCHASQGISGNIGWLQQKPGKSFKGLIYH GTNLEDGVPSRFSGSGSGADYSLTISSLESEDFADYYCVQYIQFPFTFGG GTKLEIKR,
wherein, - CDR1 is QGISGN (SEQ ID NO: 3),
- CDR2 is HGTN (SEQ ID NO: 4), and
- CDR3 is VQYIQFPFT (SEQ ID NO: 5); and
- the three heavy chain XII-24 variable region CDRs within QVHLKQSGAEVVRPGASLKLSCKASGYIFTDYYVHWAKQRPGQGLEWIARIYPGSGNT YYNEKFMVKATLTAESSSSTAYMELSRLTSEDSAVYFCASSLYYPLDHWGQGTSVIVSS (SEQ ID NO: 2), wherein,
- CDR1 is GYIFTDYY (SEQ ID NO: 6),
- CDR2 is IYPGSGNT (SEQ ID NO: 7), and
- CDR3 is ASSLYYPLDH (SEQ ID NO: 8).
- In certain embodiments, the CDRs comprise the light chain AX2 variable region CDRs within
-
(SEQ ID NO: 9) GIVMTQSHKFMSTSIGDRVSITCKASQDVGTAVAWYQQKPGQSPKLLIFW ASTRHTGVPDRFTGSGSGTDFTLTISNVQSEDLADYFCQHYINYPLTFGA GTKLELK,
wherein, -
CDR 1 is QDVGTA (SEQ ID NO: 11), - CDR2 is WAST (SEQ ID NO: 12), and
- CDR3 is QHYINYPLT (SEQ ID NO: 13); and
- the three heavy chain AX2 variable region CDRs within QVQLQQSGAELVKPGASVKLSCKASGYTFTEYTIHWVKQRSGQGLEWIGWFYPGSGSI KYNEKFKDKATLTADKYSSTVYMELSSLTSEDSAVYFCARGGYYDSFDNWGQGTTLTV SS (SEQ ID NO: 10), wherein,
- CDR1 is GYTFTEYT (SEQ ID NO: 14),
- CDR2 is FYPGSGSI (SEQ ID NO: 15), and
- CDR3 is ARGGYYDSFDN (SEQ ID NO: 16).
- In certain embodiments, this disclosure contemplates antibodies or antigen binding fragments comprising the heavy chain CDR3 and light chain CDR3 of AX2 antibodies. In certain embodiments, this disclosure contemplates antibodies or antigen binding fragments comprising the heavy chain CDR3 and light chain CDR3 of XII-24 antibodies.
- In certain embodiments, this disclosure contemplates antibodies or fragments that comprise the light and/or heavy chain sequences or CDRs disclosed herein or variants thereof. In certain embodiments, the variants have greater than 50%, 60%, 70%, 80%, 90%, or 95% sequence identity or similarity to sequences disclosed herein which are still capable of specifically binding a the binding partner of interest. In certain embodiments, the variant sequences or CDRs have less than 10 or 15 amino acid substitutions. In certain embodiments, the variants have less than 2 or 3 substitutions, or have less than 4 or 5 substitutions, or have less than 6 or 7 substitutions. In certain embodiments, the variants have less than 2 or 3 conserved substitutions, or have less than 4 or 5 conserved substitutions, or have less than 6 or 7 conserved substitutions. In certain embodiments, the amino acid substitutions are not in the CDRs.
- In certain embodiments, the CDR1 of the light chain has 1 or 2 substitutions. In certain embodiments, the CDR1 of the light chain has 3 or 4 substitutions. In certain embodiments, the CDR2 of the light chain has 1 or 2 substitutions. In certain embodiments, the CDR2 of the light chain has 3 or 4 substitutions. In certain embodiments, the CDR3 of the light chain has 1 or 2 substitutions. In certain embodiments, the CDR3 of the light chain has 3 or 4 substitutions.
- In certain embodiments, the CDR1 of the heavy chain has 1 or 2 substitutions. In certain embodiments, the CDR1 of the heavy chain has 3 or 4 substitutions. In certain embodiments, the CDR2 of the heavy chain has 1 or 2 substitutions. In certain embodiments, the CDR2 of the heavy chain has 3 or 4 substitutions. In certain embodiments, the CDR3 of the heavy chain has 1 or 2 substitutions. In certain embodiments, the CDR3 of the heavy chain has 3 or 4 substitutions.
- In certain embodiments, this disclosure contemplates using antibodies disclosed herein, e.g., XII-24 and AX2 antibodies, in immunological assays for detecting HCA in a sample. In certain embodiments, the disclosure relates to methods comprising: mixing a sample with an anti-idiotypic antibody that binds to anti-HCA antibodies providing a mixed sample; mixing the mixed sample with anti-HCA antibodies bound to a solid substrate providing immobilized anti-idiotypic antibodies and optionally immobilized HCA on the surface; labeling the anti-idiotypic antibodies; and quantitating the label on the surface. In certain embodiments, the anti-idiotypic antibodies are XII-24 antibodies, and the anti-HCA antibodies are AX2 antibodies.
- In certain embodiments, this disclosure relates to methods of determining the presence of HCA in a sample comprising, providing a solid surface immobilized with an antibody that binds HCA, mixing a sample to be tested for the presence of HCA with an anti-idiotypic antibody that binds the variable regions on the surface immobilized antibody providing a test mixture; exposing the test mixture to the surface immobilized antibody under conditions such that an anti-idiotypic antibody in the sample is capable of binding surface immobilized antibody; and detecting a decrease of antibody and anti-idiotypic antibody binding indicting the presence of HCA in the sample.
- In certain embodiments, this disclosure relates to kits for diagnosis of cancer. In one embodiment, the kit comprises an anti-idiotypic antibody or antigen-binding fragment thereof which binds to the variable region of an antibody that binds to HCA and suitable ancillary reagents. In certain embodiments, the kit further comprises an antibody that binds to HCA.
- In certain embodiments, the kit comprises one or more of the following components: an anti-idiotypic antibody (XII-24) to the detecting antibody, anti-HCA antibody, (AX2); a suitable immobilized phase (e.g., micro titer plates, insoluble polymeric beads or particles) that can be washed and separated from a reaction mixture and are suitable for the immobilization of an antibody disclosed herein; a specific antibody (AX2 or AE3) with high affinity to HCA that can be detected using a detection method (e.g., radiation, colorimeteric, enzymatic, chemiluminecence, etc.), either directly or indirectly; a series of calibration material (calibrators) comprised of materials that emulate HCA in patient samples that can be used to establish an appropriate response curve to map detection signal into concentration of HCA; and any required blocking agents and buffers that inhibit nonspecific binding or any other signal generating reactions that are unrelated to HCA concentration.
-
FIG. 1 illustrates the production and the binding properties of antibody AX2 and anti-idiotypic antibody XII-24. In the mouse, epiglycanin was found to be a mixture of highly glycosylated proteins (2-% protein by weight) of the mucin type, with a long extended protein chain to which are attached many short (2 to 7 carbohydrate residues) (carbohydrate 80% by weight). An epiglycanin type of strongly acidic properties (Emorin) was isolated both by size exclusion and affinity chromatography. Emorin was used for the immunization of C57BL mice to produce anti-Emorin lymphocytes. Using procedures for the production of monoclonal antibodies (i.e., immunization, fusion of lymphocytes with mouse myeloma cells to produce hybridoma cells, selection of the hybridoma cells that secreted antibodies with the desired specificity, growth of that hybridoma cell in culture), an anti-Emorin antibody with the desired properties, AX2, was produced. -
FIG. 2 illustrates the proposed HCA complex in a sample bound with potential autoantibodies (anti-HCA antibodies) that can interfere with detection methods. Although it is not intended that embodiments of this disclosure be limited by any particular mechanism, it is possible that exposure of a sample for testing the presence of HCA or Emorin with anti-idiotypic antibodies (XII-24) releases HCA to be further detected by anti-HCA/Emorin antibodies (AX2). -
FIG. 3A shows the amino acid sequence of the light (K) chain (SEQ ID NO: 17) and nucleic acid sequence encoding the light (K) chain (SEQ ID NO: 18) for AX2. -
FIG. 3B shows the amino acid sequence of the heavy chain (SEQ ID NO: 19) and the nucleic acid sequence encoding the heavy (SEQ ID NO: 20) chain for AX2. -
FIG. 4A shows the amino acid sequence of the light (K) chain (SEQ ID NO: 21) and nucleic acid sequence encoding the light (K) chain (SEQ ID NO: 22) for XII-24. -
FIG. 4B shows the amino acid sequence of the heavy chain (SEQ ID NO: 23) and the nucleic acid sequence encoding the heavy (SEQ ID NO: 24) chain for XII-24. - Before the present disclosure is described in greater detail, it is to be understood that this disclosure is not limited to particular embodiments described, and as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described.
- All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided could be different from the actual publication dates that may need to be independently confirmed.
- As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order that is logically possible.
- Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
- It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings unless a contrary intention is apparent.
- As used in this disclosure and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) have the meaning ascribed to them in U.S. patent law in that they are inclusive or open-ended and do not exclude additional, unrecited elements or method steps. The term “comprising” in reference to a peptide having an amino acid sequence refers to a peptide that may contain additional N-terminal (amine end) or C-terminal (carboxylic acid end) amino acids, i.e., the term is intended to include the amino acid sequence within a larger peptide. “Consisting essentially of” or “consists of” or the like, when applied to methods and compositions encompassed by the present disclosure refers to compositions like those disclosed herein that exclude certain prior art elements to provide an inventive feature of a claim, but which may contain additional composition components or method steps composition components or method steps, etc., that do not materially affect the basic and novel characteristic(s) of the compositions or methods, compared to those of the corresponding compositions or methods disclosed herein. The term “consisting of” in reference to a peptide having an amino acid sequence refers a peptide having the exact number of amino acids in the sequence and not more or having not more than a range of amino acids expressly specified in the claim.
- As used herein, “subject” refers to any animal, preferably a human patient, livestock, or domestic pet.
- As used herein a “sample” refers to a composition taken from or originating from a subject. Examples of samples include cell samples, blood samples, serum or plasma samples, tissue samples, hair samples, semen, and urine or excrement samples.
- A “heterologous” nucleic acid or amino acid sequences refer to sequences that do not naturally occur together in a natural setting depending on the context, such as, in sequence identity or the relative location of the sequences in reference to each other. For example, when a heterologous peptide is conjugated or fused to an antibody, the peptide sequence does not occur in naturally occurring antibodies or, if the sequence does occur in antibodies, the sequence does not occur naturally in the specific location when produced in the living organism. In another example, animals have different nucleic acid sequences that are distinct in sequence from other plants, bacteria, viruses, or other organisms. Inserting a gene that expresses an animal protein into a viral based vector or plasmid is heterologous because the combination of animal and viral or plasmid sequences do not exist naturally. In the case where a nucleic acid encodes the same polypeptide sequence expressed in both organisms, the nucleic acid sequences are still not naturally occurring, as codons usage in different organisms are unique.
- The terms “vector” or “expression vector” refer to a recombinant nucleic acid containing a desired coding sequence and appropriate nucleic acid sequences necessary for the expression of the operably linked coding sequence in a particular host organism or expression system, e.g., cellular or cell-free. Nucleic acid sequences necessary for expression in prokaryotes usually include a promoter, an operator (optional), and a ribosome binding site, often along with other sequences. Eukaryotic cells are known to utilize promoters, enhancers, and termination and polyadenylation signals.
- Protein “expression systems” refer to in vivo and in vitro (cell free) systems. Systems for recombinant protein expression typically utilize cells transfecting with a DNA expression vector that contains the template. The cells are cultured under conditions such that they translate the desired protein. Expressed proteins are extracted for subsequent purification. In vivo protein expression systems using prokaryotic and eukaryotic cells are well known. Also, some proteins are recovered using denaturants and protein-refolding procedures. In vitro (cell-free) protein expression systems typically use translation-compatible extracts of whole cells or compositions that contain components sufficient for transcription, translation and optionally post-translational modifications such as RNA polymerase, regulatory protein factors, transcription factors, ribosomes, tRNA cofactors, amino acids and nucleotides. In the presence of an expression vectors, these extracts and components can synthesize proteins of interest. Cell-free systems typically do not contain proteases and enable labeling of the protein with modified amino acids. Some cell free systems incorporated encoded components for translation into the expression vector. See, e.g., Shimizu et al., Cell-free translation reconstituted with purified components, 2001, Nat. Biotechnol., 19, 751-755 and Asahara & Chong, Nucleic Acids Research, 2010, 38(13): e141, both hereby incorporated by reference in their entirety.
- A “selectable marker” is a nucleic acid introduced into a recombinant vector that encodes a polypeptide that confers a trait suitable for artificial selection or identification (report gene), e.g., beta-lactamase confers antibiotic resistance, which allows an organism expressing beta-lactamase to survive in the presence antibiotic in a growth medium. Another example is thymidine kinase, which makes the host sensitive to ganciclovir selection. It may be a screenable marker that allows one to distinguish between wanted and unwanted cells based on the presence or absence of an expected color. For example, the lac-z-gene produces a beta-galactosidase enzyme which confers a blue color in the presence of X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside). If recombinant insertion inactivates the lac-z-gene, then the resulting colonies are colorless. There may be one or more selectable markers, e.g., an enzyme that can complement to the inability of an expression organism to synthesize a particular compound required for its growth (auxotrophic) and one able to convert a compound to another that is toxic for growth. URA3, an orotidine-5′ phosphate decarboxylase, is necessary for uracil biosynthesis and can complement ura3 mutants that are auxotrophic for uracil. URA3 also converts 5-fluoroorotic acid into the toxic compound 5-fluorouracil. Additional contemplated selectable markers include any genes that impart antibacterial resistance or express a fluorescent protein. Examples include, but are not limited to, the following genes: ampr, camr, tetr, blasticidinr, neor, hygr, abxr, neomycin phosphotransferase type II gene (nptII), p-glucuronidase (gus), green fluorescent protein (gfp), egfp, yfp, mCherry, p-galactosidase (lacZ), lacZa, lacZAM15, chloramphenicol acetyltransferase (cat), alkaline phosphatase (phoA), bacterial luciferase (luxAB), bialaphos resistance gene (bar), phosphomannose isomerase (pmi), xylose isomerase (xylA), arabitol dehydrogenase (atlD), UDP-glucose:galactose-1-phosphate uridyltransferasel (galT), feedback-insensitive α subunit of anthranilate synthase (OASA1D), 2-deoxyglucose (2-DOGR), benzyladenine-N-3-glucuronide, E. coli threonine deaminase, glutamate 1-semialdehyde aminotransferase (GSA-AT), D-amino acidoxidase (DAAO), salt-tolerance gene (rstB), ferredoxin-like protein (pflp), trehalose-6-P synthase gene (AtTPS1), lysine racemase (lyr), dihydrodipicolinate synthase (dapA), tryptophan synthase beta 1 (AtTSB1), dehalogenase (dhlA), mannose-6-phosphate reductase gene (M6PR), hygromycin phosphotransferase (HPT), and D-serine ammonialyase (dsdA).
- A “label” refers to a detectable compound or composition that is conjugated directly or indirectly to another molecule, such as an antibody or a protein, to facilitate detection of that molecule. Specific, non-limiting examples of labels include fluorescent tags, enzymatic linkages, and radioactive isotopes. In one example, a “label receptor” refers to incorporation of a heterologous polypeptide in the receptor. A label includes the incorporation of a radiolabeled amino acid or the covalent attachment of biotinyl moieties to a polypeptide that can be detected by marked avidin (for example, streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods). Various methods of labeling polypeptides and glycoproteins are known in the art and may be used. Examples of labels for polypeptides include, but are not limited to, the following: radioisotopes or radionucleotides (such as 35S or 131I) fluorescent labels (such as fluorescein isothiocyanate (FITC), rhodamine, lanthanide phosphors), enzymatic labels (such as horseradish peroxidase, beta-galactosidase, luciferase, alkaline phosphatase), chemiluminescent markers, biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (such as a leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags), or magnetic agents, such as gadolinium chelates. In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance.
- In certain embodiments, the disclosure relates to antibodies and antigen binding fragments comprising sequences disclosed herein or variants or fusions thereof wherein the amino terminal end or the carbon terminal end of the amino acid sequence are optionally attached to a heterologous amino acid sequence, label, or reporter molecule.
- In certain embodiments, the disclosure relates to vectors comprising a nucleic acid encoding an antibody or antigen binding fragment disclosed herein or chimeric protein thereof.
- In certain embodiments, the vector optionally comprises a mammalian, human, insect, viral, bacterial, bacterial plasmid, yeast associated origin of replication or gene such as a gene or retroviral gene or lentiviral LTR, TAR, RRE, PE, SLIP, CRS, and INS nucleotide segment or gene selected from tat, rev, nef, vif, vpr, vpu, and vpx or structural genes selected from gag, pol, and env.
- In certain embodiments, the vector optionally comprises a gene vector element (nucleic acid) such as a selectable marker region, lac operon, a CMV promoter, a hybrid chicken B-actin/CMV enhancer (CAG) promoter, tac promoter, T7 RNA polymerase promoter, SP6 RNA polymerase promoter, SV40 promoter, internal ribosome entry site (IRES) sequence, cis-acting woodchuck post regulatory regulatory element (WPRE), scaffold-attachment region (SAR), inverted terminal repeats (ITR), FLAG tag coding region, c-myc tag coding region, metal affinity tag coding region, streptavidin binding peptide tag coding region, polyHis tag coding region, HA tag coding region, MBP tag coding region, GST tag coding region, polyadenylation coding region, SV40 polyadenylation signal, SV40 origin of replication, Col E1 origin of replication, f1 origin, pBR322 origin, or pUC origin, TEV protease recognition site, loxP site, Cre recombinase coding region, or a multiple cloning site such as having 5, 6, or 7 or more restriction sites within a continuous segment of less than 50 or 60 nucleotides or having 3 or 4 or more restriction sites with a continuous segment of less than 20 or 30 nucleotides.
- In certain embodiments, term “percentage of sequence identity” is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.
- In certain embodiments, sequence “identity” refers to the number of exactly matching amino acids (expressed as a percentage) in a sequence alignment between two sequences of the alignment calculated using the number of identical positions divided by the greater of the shortest sequence or the number of equivalent positions excluding overhangs wherein internal gaps are counted as an equivalent position. In certain embodiments, any recitation of sequence identity expressed herein may be substituted for sequence similarity. Percent “similarity” is used to quantify the similarity between two sequences of the alignment. This method is identical to determining the identity except that certain amino acids do not have to be identical to have a match. Amino acids are classified as matches if they are among a group with similar properties according to the following amino acid groups: Aromatic—F Y W; hydrophobic—A V I L; Charged positive: R K H; Charged negative—D E; Polar—S T N Q.
- This disclosure contemplates “conservative sequence modifications” of the sequences disclosed herein, including nucleotide and amino acid sequence modifications which do not significantly affect or alter the binding characteristics of the antibody encoded by the nucleotide sequence or containing the amino acid sequence. Such conservative sequence modifications include nucleotide and amino acid substitutions, additions and deletions. Modifications can be introduced into the sequences disclosed herein by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
- In certain embodiments, this disclosure relates to antibodies that bind human carcinoma antigen (HCA). In certain embodiments, this disclosure relates to anti-idiotypic antibodies or fragments that bind the variable regions of antibodies that bind HCA. In certain embodiments, the antibodies that bind HCA are derived from the AX2 antibody or fragments. In certain embodiments the anti-idiotypic antibodies are derived from the XII-24 antibody or fragments.
- In certain embodiments, the CDRs comprise the light chain XII-24 variable region CDRs within
-
(SEQ ID NO: 1) DILMTQSPSSMSVSLGDTVSITCHASQGISGNIGWLQQKPGKSFKGLIYH GTNLEDGVPSRFSGSGSGADYSLTISSLESEDFADYYCVQYIQFPFTFGG GTKLEIKR,
wherein, - CDR1 is QGISGN (SEQ ID NO: 3),
- CDR2 is HGTN (SEQ ID NO: 4), and
- CDR3 is VQYIQFPFT (SEQ ID NO: 5); and
- the three heavy chain XII-24 variable region CDRs within QVHLKQSGAEVVRPGASLKLSCKASGYIFTDYYVHWAKQRPGQGLEWIARIYPGSGNT YYNEKFMVKATLTAESSSSTAYMELSRLTSEDSAVYFCASSLYYPLDHWGQGTSVIVSS (SEQ ID NO: 2), wherein,
- CDR1 is GYIFTDYY (SEQ ID NO: 6),
- CDR2 is IYPGSGNT (SEQ ID NO: 7), and
- CDR3 is ASSLYYPLDH (SEQ ID NO: 8).
- In certain embodiments, the CDRs comprise the light chain AX2 variable region CDRs within
-
(SEQ ID NO: 9) GIVMTQSHKFMSTSIGDRVSITCKASQDVGTAVAWYQQKPGQSPKLLIFW ASTRHTGVPDRFTGSGSGTDFTLTISNVQSEDLADYFCQHYINYPLTFGA GTKLELK, - wherein,
- CDR1 is QDVGTA (SEQ ID NO: 11),
- CDR2 is WAST (SEQ ID NO: 12), and
- CDR3 is QHYINYPLT (SEQ ID NO: 13); and
- the three heavy chain AX2 variable region CDRs within QVQLQQSGAELVKPGASVKLSCKASGYTFTEYTIHWVKQRSGQGLEWIGWFYPGSGSI KYNEKFKDKATLTADKYSSTVYMELSSLTSEDSAVYFCARGGYYDSFDNWGQGTTLTV SS (SEQ ID NO: 10), wherein,
- CDR1 is GYTFTEYT (SEQ ID NO: 14),
- CDR2 is FYPGSGSI (SEQ ID NO: 15), and
- CDR3 is ARGGYYDSFDN (SEQ ID NO: 16).
- In certain embodiments, the antibodies disclosed herein are conjugated to a label, fluorescent dye, quantum dot, nanoparticle, heterologous polypeptide, an enzyme, or solid surface. In certain embodiments, the antibody is a chimeric antibody or humanized antibody.
- In certain embodiments, this disclosure relates to hybridoma that produces the antibodies disclosed herein.
- In certain embodiments, the disclosure relates to vectors comprising a nucleic acid sequence encoding the light chain and/or the heavy chain of an antibody disclosed herein.
- In certain embodiments, the vector comprises a heterologous nucleic acid sequence or heterologous promoter or encodes a selectable marker.
- In certain embodiments, this disclosure relates to expression system comprising a vector disclosed herein. In certain embodiments, the expression system is a cell.
- As used herein, the term “antibody” is intended to denote an immunoglobulin molecule that possesses a “variable region” antigen recognition site. The term “variable region” is intended to distinguish such domain of the immunoglobulin from domains that are broadly shared by antibodies (such as an antibody Fc domain). The variable region comprises a “hypervariable region” whose residues are responsible for antigen binding. The hypervariable region comprises amino acid residues from a “Complementarity Determining Region” or “CDR” (i.e., typically at approximately residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and at approximately residues 27-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)) and/or those residues from a “hypervariable loop” (i.e., residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk, 1987, J. Mol. Biol. 196:901-917). “Framework Region” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined. The term antibody includes monoclonal antibodies, multi-specific antibodies, human antibodies, humanized antibodies, synthetic antibodies, chimeric antibodies, camelized antibodies (See e.g., Muyldermans et al., 2001, Trends Biochem. Sci. 26:230; Nuttall et al., 2000, Cur. Pharm. Biotech. 1:253; Reichmann and Muyldermans, 1999, J. Immunol. Meth. 231:25; International Publication Nos. WO 94/04678 and WO 94/25591; U.S. Pat. No. 6,005,079), single-chain Fvs (scFv) (see, e.g., see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds. Springer-Verlag, New York, pp. 269-315 (1994)), single chain antibodies, disulfide-linked Fvs (sdFv), intrabodies, and anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id and anti-anti-Id antibodies to the disclosed B7-H5 antibodies). In particular, such antibodies include immunoglobulin molecules of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass.
- In certain embodiments, antibodies disclosed herein, fragment, or heavy chain comprise a variant Fc domain. As used herein a “variant Fc domain” refers to an Fc domain engineered to comprise at least one amino acid modification relative to a wild-type Fc domain.
- As used herein, a molecule is said to be able to “immunospecifically bind” a second molecule if such binding exhibits the specificity and affinity of an antibody to its cognate antigen. Antibodies are said to be capable of “immunospecifically binding” to a target region or conformation (“epitope”) of an antigen if such binding involves the antigen recognition site of the immunoglobulin molecule. An antibody that immunospecifically binds to a particular antigen may bind to other antigens with lower affinity if the other antigen has some sequence or conformational similarity that is recognized by the antigen recognition site as determined by, e.g., immunoassays, but would not bind to a totally unrelated antigen. Preferably, however, antibodies (and their antigen binding fragments) will not cross-react with other antigens. Antibodies may also bind to other molecules in a way that is not immunospecific, such as to FcR receptors, by virtue of binding domains in other regions/domains of the molecule that do not involve the antigen recognition site, such as the Fc region.
- As used herein, the term “antigen binding fragment” of an antibody refers to one or more portions of an antibody that contain the antibody's Complementarity Determining Regions (“CDRs”) and optionally the framework residues that comprise the antibody's “variable region” antigen recognition site, and exhibit an ability to immunospecifically bind an antigen. Such fragments include Fab′, F(ab′)2, Fv, single chain (ScFv), and mutants thereof, naturally occurring variants, and fusion proteins comprising the antibody's “variable region” antigen recognition site and a heterologous protein (e.g., a toxin, an antigen recognition site for a different antigen, an enzyme, a receptor or receptor ligand, etc.). As used herein, the term “fragment” refers to a peptide or polypeptide comprising an amino acid sequence of at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 40 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino residues, at least 70 contiguous amino acid residues, at least 80 contiguous amino acid residues, at least 90 contiguous amino acid residues, at least 100 contiguous amino acid residues, at least 125 contiguous amino acid residues, at least 150 contiguous amino acid residues, at least 175 contiguous amino acid residues, at least 200 contiguous amino acid residues, or at least 250 contiguous amino acid residues.
- Human, non-naturally occurring chimeric or humanized derivatives of antibodies are particularly preferred for in vivo use in humans, however, murine antibodies or antibodies of other species may be advantageously employed for many uses (for example, in vitro or in situ detection assays, acute in vivo use, etc.). A humanized antibody may comprise amino acid residue substitutions, deletions or additions in one or more non-human CDRs. The humanized antibody derivative may have substantially the same binding, stronger binding or weaker binding when compared to a non-derivative humanized antibody. In specific embodiments, one, two, three, four, or five amino acid residues of the CDR have been substituted, deleted or added (i.e., mutated). Completely human antibodies are particularly desirable for therapeutic treatment of human subjects.
- Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences (see U.S. Pat. Nos. 4,444,887 and 4,716,111; and International Publication Nos. WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741). Human antibodies can be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. For example, the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells. Alternatively, the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes. The mouse heavy and light chain immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion of the JH region prevents endogenous antibody production. The modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice. The chimeric mice are then bred to produce homozygous offspring which express human antibodies. The transgenic mice are immunized using conventional methodologies with a selected antigen, e.g., all or a portion of a polypeptide.
- Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology (see, e.g., U.S. Pat. No. 5,916,771). The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995, Int. Rev. Immunol. 13:65-93, which is incorporated herein by reference in its entirety). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., International Publication Nos. WO 98/24893, WO 96/34096, and WO 96/33735; and U.S. Pat. Nos. 5,413,923, 5,625,126, 5,633,425, 5,569,825, 5,661,016, 5,545,806, 5,814,318, and 5,939,598, which are incorporated by reference herein in their entirety. In addition, companies such as Abgenix, Inc. (Freemont, Calif.) and Medarex (Princeton, N.J.) can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.
- A “chimeric antibody” is a molecule in which different portions of the antibody are derived from different immunoglobulin molecules such that the entire molecule is not naturally occurring. Examples of chimeric antibodies include those having a variable region derived from a non-human antibody and a human immunoglobulin constant region such as antibodies that have murine variable domains and human constant domains. Chimeric antibodies include humanized antibodies, i.e., antibodies having murine CDRs but are otherwise human. The term is also intended to include antibodies having a variable region derived from one human antibody grafted to an immunoglobulin constant region of a predetermined sequences or the constant region from another human for which there are allotypic differences residing in the constant regions of any naturally occurring antibody having the variable regions, e.g.,
1, 2, and 3 of the light and heavy chain. Human heavy chain genes exhibit structural polymorphism (allotypes) that are inherited as a haplotype. The serologically defined allotypes differ within and between population groups. See Jefferis et al. mAb, 1 (2009), pp. 332-338.CDRs - Smith et al. report a protocol for the production of antigen-specific chimeric human monoclonal antibodies (hmAbs) wherein antibody-secreting cells (ASCs) are isolated from whole blood collected after vaccination and sorted by flow cytometry into single cell plates. Nat Protoc. 2009, 4(3):372-84. The antibody genes of the ASCs are then amplified by RT-PCR and nested PCR, cloned into expression vectors and transfected into a human cell line. Meijer et al. report methods for isolation of human antibody repertoires with preservation of the natural heavy and light chain pairing. J Mol Biol. 2006, 358(3):764-72. Wrammert et al. report using immunoglobulin variable regions isolated from sorted single ASCs to produce human monoclonal antibodies (mAbs) that bound with high affinity. Nature. 2008, 453(7195): 667-671.
- Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, 1985, Science 229:1202; Oi et al., 1986, BioTechniques 4:214; Gillies et al., 1989, J. Immunol. Methods 125:191-202; and U.S. Pat. Nos. 6,311,415, 5,807,715, 4,816,567, and 4,816,397. Chimeric antibodies comprising one or more CDRs from a non-human species and framework regions from a human immunoglobulin molecule can be produced using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; International Publication No. WO 91/09967; and U.S. Pat. Nos. 5,225,539, 5,530,101, and 5,585,089), veneering or resurfacing (EP 592,106; EP 519,596; Padlan, 1991, Molecular Immunology 28(4/5):489-498; Studnicka et al., 1994, Protein Engineering 7:805; and Roguska et al., 1994, Proc. Natl. Acad. Sci. USA 91:969), and chain shuffling (U.S. Pat. No. 5,565,332).
- As used herein, the term “humanized antibody” refers to an immunoglobulin comprising a human framework region and one or more CDR's from a non-human (usually a mouse or rat) immunoglobulin. The non-human immunoglobulin providing the CDR's is called the “donor” and the human immunoglobulin providing the framework is called the “acceptor.” Constant regions need not be present, but if they are, they must be substantially identical to human immunoglobulin constant regions, i.e., at least about 85-90%, preferably about 95% or more identical. Hence, all parts of a humanized immunoglobulin, except possibly the CDR's, are substantially identical to corresponding parts of natural human immunoglobulin sequences. A humanized antibody is an antibody comprising a humanized light chain and a humanized heavy chain immunoglobulin. For example, a humanized antibody would not encompass a typical chimeric antibody, because, e.g., the entire variable region of a chimeric antibody is non-human. One says that the donor antibody has been “humanized,” by the process of “humanization,” because the resultant humanized antibody is expected to bind to the same antigen as the donor antibody that provides the CDR's. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-human species (donor antibody) such as mouse, rat, rabbit or a non-human primate having the desired specificity, affinity, and capacity. In some instances, Framework Region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues which are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable regions correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin that immunospecifically binds to an Fc RIIB polypeptide, that has been altered by the introduction of amino acid residue substitutions, deletions or additions (i.e., mutations).
- DNA sequences coding for preferred human acceptor framework sequences include but are not limited to FR segments from the human germline VH segment VH1-18 and JH6 and the human germline VL segment VK-A26 and JK4. In a specific embodiment, one or more of the CDRs are inserted within framework regions using routine recombinant DNA techniques. The framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia et al., 1998, “Structural Determinants In the Sequences of Immunoglobulin Variable Domain,” J. Mol. Biol. 278: 457-479 for a listing of human framework regions).
- In certain embodiments, this disclosure relates to antibodies or antigen binding fragments comprising six complementary determining regions (CDRs) or consensus sequences thereof, wherein the CDRs comprise the three heavy and/or light chain CDRs of the antibody derived from the XII-24 or AX2. In certain embodiments, antibodies or antigen binding fragments bind the variable regions of antibodies derived from the AX2 hybridoma. In certain embodiments, the disclosure contemplates that any of the antibody sequences disclosed herein may be changed or contain at least one non-naturally occurring substitution modification relative to wild-type sequences or the sequence reported.
- Antibodies to HCA and methods for their production have been described in U.S. Pat. Nos. 5,808,005; 5,693,763; 5,545,532. Antibodies to epiglycanin and methods for their production have also been described in the art. For example, monoclonal antibodies to epiglycanin and methods for their production are described, for example, in U.S. Pat. Nos. 4,837,171, 5,545,532, and Haavik et al., Glycobiology, 2:217-224 (1992). Hybridomas producing anti-murine epiglycanin antibodies, AE-1, AE-3 and AE-4, have been deposited with the American Type Culture Collection (ATCC), P.O. Box 1549, Manassas, Va. 20108 USA. For example, the hybridoma HAE-1 (producing monoclonal antibody AE-1) was deposited at the ATCC under accession no. HB-9466. The hybridoma HAE-3 (producing monoclonal antibody AE-3) was deposited at the ATCC under accession no. HB-9467. The hybridoma HAE-4 (producing monoclonal antibody AE-4) was deposited at the ATCC under accession no. HB-9468. Monoclonal antibody AE-3 cross-reacts and binds with HCA.
- In practice, a monoclonal antibody is an antibody derived from a single hybridoma cell, after cloning. Thus, all hybridoma cells from a particular hybridoma cell inherit the same specificity. They are monoclonal. A good example is the experiment that produced that produced the AE-1, AE-3, and AE-4 monoclonal antibodies. These were all produced after immunization with the heterogeneous, but structurally-related, mixture of glycoproteins, which is epiglycanin. Epiglycanin contains many epitopes, each capable of producing a lymphocyte of a specific activity. After fusion of the lymphocytes with mouse myeloma (cancer) cells, to form hybridoma cells, each now having a single specificity (from a single myeloma cell), the mixture was cloned, and a new culture, each with a single specificity was established from each successful hybridoma cell (each culture produces a new monoclonal antibody). Each of the three monoclonal antibodies resulting from that experiment (AE-1, AE-3, and AE-4) possesses a different specificity. The AX2 antibody, which was recently produced in a separate experiment, resulted from the immunization of a C57BL mouse with a purified epiglycanin, Emorin, a glycoprotein component of the epiglycanin mixture. The resulting antibody, AX2, has good stability and strong binding activity for HCA.
- Antibodies can be polyclonal or monoclonal, and the term “antibody” is intended to encompass both polyclonal and monoclonal antibodies. The terms polyclonal and monoclonal refer to the degree of homogeneity of an antibody preparation, and are not intended to be limited to particular methods of production. The term “antibody”, as used herein, also encompasses functional fragments of antibodies, including fragments of human, chimeric, humanized, primatized, veneered or single chain antibodies. Functional fragments include antigen-binding fragments specific for HCA. Antigen-binding fragments specific for HCA include, but are not limited to, Fab, Fab′, F(ab′)2 and Fv fragments. Such fragments can be produced by enzymatic cleavage or recombinant techniques. For example, papain or pepsin cleavage can generate Fab or F(ab′)2 fragments, respectively. Other proteases with the requisite substrate specificity can also be used to generate Fab or F(ab′)2 fragments. Antibodies can also be produced in a variety of truncated forms using antibody genes in which one or more stop codons has been introduced upstream of the natural stop site. For example, a chimeric gene encoding a F(ab′)2 heavy chain portion can be designed to include DNA sequences encoding the CH1 domain and hinge region of the heavy chain.
- Single chain antibodies, and chimeric, humanized or primatized (CDR-grafted), or veneered antibodies, as well as chimeric, CDR-grafted or veneered single chain antibodies, comprising portions derived from different species, and the like are also contemplated by the present disclosure. The various portions of antibodies can be joined together chemically by conventional techniques, or can be prepared as a contiguous protein using genetic engineering techniques. For example, nucleic acids encoding a chimeric or humanized chain can be expressed to produce a contiguous protein. See, e.g., Cabilly et al., U.S. Pat. No. 4,816,567; Cabilly et al., European Patent No. 0 125 023 B1; Boss et al., U.S. Pat. No. 4,816,397; Boss et al., European Patent No. 0 120 694 B1; Neuberger et al., International Publication No. WO86/01533; Neuberger et al., European Patent No. 0 194 276 B1; issued to Winter et al., U.S. Pat. No. 5,225,539; issued to Winter et al., European Patent No. 0 239 400 B1; Queen et al., European Patent No. 0 451 216 B1; and Padlan et al., EP 0 519 596 A1. See also, Newman et al., BioTechnology, 10: 1455-1460 (1992), regarding primatized antibody, and Ladner et al., U.S. Pat. No. 4,946,778 and Bird et al., Science, 242:423-426 (1988)) regarding single chain antibodies.
- An “antigen” is a molecule or a portion of a molecule capable of being bound by an antibody which is additionally capable of inducing an animal to produce antibody capable of binding to an epitope of that antigen. An antigen can have one or more than one epitope.
- The term “epitope” is meant to refer to that portion of the antigen capable of being recognized by and bound by an antibody at one or more of the antibody's antigen binding region. Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and have specific three dimensional structural characteristics as well as specific charge characteristics.
- It has been discovered that HCA, as well as its counterpart in the mouse, i.e., the active component of the epiglycanin mixture of mucin-type glycoproteins reported herein as Emorin, exists in the blood of subjects not as free glycoproteins but as their antibody complexes. This disclosure relates to antibodies (AX2 and XII-24) used in the detection of the Human Carcinoma Antigen (HCA) (in humans) and Emorin (in the mouse), both found as antibody complexes in body fluids. The detection of the complex, performed by the DOC (Detection of Carcinoma) Assay provides a highly sensitive method for the determination of the presence of a carcinoma in humans.
- Disclosed herein is a clinical test for cancer present in epithelial tissue (i.e., carcinomas). This includes many common cancers, such as breast, prostate, lung, kidney and colon, as well as those more difficult to detect, such as pancreas and ovarian cancer. A carcinoma is indicated by the presence of the Human Carcinoma Antigen (HCA)-anti-HCA in the blood (HCA-anti-HCA complex).
- The test involves a competition for the HCA between one of the monoclonal antibodies coating the plate (AX2) and the other monoclonal antibody (XII-24) in solution with the sample, e.g., serum, being tested. The results are recorded as the percent of the amount of HCA in the serum relative to the amount in a positive or negative control. The assay is capable of distinguishing between carcinoma patients and normal persons with high accuracy.
- Methods disclosed herein for the detection of HCA use a sample. In certain embodiments, sample materials may include bodily fluids including plasma, serum, whole blood, spinal fluid, semen, vaginal fluids, sputum and saliva, cerebrospinal fluid, lymphatic fluid and digestive fluids. Other sample materials may include isolated or enriched cell populations and tissues. Samples may be fresh or fixed (preserved). Fixed samples may be embedded (for example, paraffin embedded).
- In certain embodiments, this disclosure contemplates using antibodies disclosed herein, e.g., XII-24 and AX2 antibodies, in immunological assays for detecting HCA in a sample. In certain embodiments, this disclosure relates to methods of determining the presence of HCA in a sample comprising, providing a solid surface immobilized with an antibody that binds HCA, mixing a sample to be tested for the presence of HCA with an anti-idiotypic antibody that binds the variable regions on the surface immobilized antibody providing a test mixture; exposing the test mixture to the surface immobilized antibody under conditions such that anti-idiotypic antibody in the sample is capable of binding surface immobilized antibody; and detecting a decrease of antibody and anti-idiotypic antibody binding, indicting the presence of HCA in the sample.
- In certain embodiments, this disclosure relates to methods of determining the presence of antigen in a sample, wherein the antigen is suspected to contain autoantibodies comprising, mixing a sample to be tested for the presence of antigen having autoantibodies with an anti-idiotypic antibody that binds the variable regions on the autoantibodies providing a test mixture that liberates the antigen; exposing the test mixture anti-antigen antibodies; and detecting the binding of anti-antigen antibodies to the antigen.
- In certain embodiments, this disclosure relates to uses of antibodies disclosed herein in an immunological assays to detect HCA. In certain embodiments, this disclosure relates to methods comprising mixing an anti-idiotypic antibody disclosed herein with antibody that binds HCA or epiglycanin under conditions such that the anti-idiotypic antibody binds to the variable region of the antibody that binds HCA or epiglycanin.
- In certain embodiments, this disclosure relates to methods for diagnosis of cancer in a human subject comprising determining the level of HCA in a sample from the subject; and comparing the level determined to the level of HCA in a control sample.
- Typically, a control sample is one supplied with the kit, such as a serum sample selected from a panel of sera from healthy persons who consistently give 0.0 percent inhibition in the DOC Assay. The level of HCA in a subject's serum is defined as Percent Inhibition.
- % Inhibition=Absorbance at 405 nm of:
- Control Serum minus Subject Serum
- Divided by: Control Serum×100
-
(Control Serum−Subject Serum)/(Control Serum)×100 - In certain embodiments, this disclosure relates to methods for the diagnosis of cancer (carcinomas) in a human subject comprising contacting a sample (serum) from the subject with an antibody, (see
FIG. 2 ), which will also cleave the HCA-anti-HCA complex. - Serum of free HCA has been found in the human (or a counterpart, such as Emorin, in the mouse). Thus, the DOC Assay, as described herein, determines the level of HCA in the HCA-anti-HCA antibody (HCA-anti-HCA) complex in carcinoma patients. In certain embodiments the presence of the HCA-anti-HCA in the serum of a subject (if the subject is affected with a carcinoma), may be detected for the HCA by incubating the sample with the anti-idiotypic antibody (XII-24), (or under different circumstances, with the anti-Emorin antibody AX2) (see
FIG. 2 ) by cleaving the HCA-anti-HCA complex. The liberated HCA is then contacted by the XII-24 antibody to bind at the Fc region of the XII-24 antibody, leaving its hypervariable region free to bind to the hypervariable region of the AX2 antibody coating the surface of the plate. For the control serum, wherein there is no HCA complex, and, therefore there is no lost XII-24, the percent inhibition would be 0%. The difference in absorbance at 405 nm between the subject serum and the control serum, as expressed in percent terms, is a measure of the HCA present, any value above 0% inhibition is indicative of a carcinoma. - Immunoassays are any assays that can detect the binding (or absence of binding) of an antigen to an antibody or antigen-binding fragment and quantitate the presence of the antigen in the sample. Examples of suitable immunoassays include sandwich assays, radioimmunoassays and, preferably, competitive inhibition assays. The use of the term “antigen” or “inhibitor” in the context of a reagent in the assay is intended to include HCA, as well as functional variants and portions of HCA. An inhibitor, as used herein, refers to an antigen that is immunologically cross-reactive with HCA.
- Generally, fragments or portions of HCA include those having a deletion (i.e., one or more deletions) of an amino acid (i.e., one or more amino acids) relative to the native (wildtype) HCA, respectively (such as N-terminal, C-terminal or internal deletions). Fragments or portions in which only contiguous amino acids have been deleted or in which non-contiguous amino acids have been deleted relative to native (wildtype) HCA are also envisioned.
- In a radioimmunoassay (MA), the amount of antigen present in a sample is measured indirectly employing a limited amount of antibody (or antigen-binding fragment) to compete for labeled antigen. In an IRMA (immunoradiometric assay), antigen is assayed directly by reacting the antigen with excess labeled antibody (or antigen-binding fragment).
- In one class of IRMA assays, the unknown antigen is insolubilized and reacted with labeled antibody (or antigen-binding fragment). When the antigen is insolubilized by reaction with solid-phase antibody (or antigen-binding fragment), the assay is termed a “two-site IRMA”, “junction test”, or “sandwich assay”. Sandwich assays are further classified according to their methodology as forward, reverse or simultaneous sandwich assays.
- In a forward sandwich immunoassay, a sample containing the antigen can be first incubated with a solid-phase immunoadsorbent containing immobilized antibody (or antigen-binding fragment). Incubation is continued for a sufficient period of time to allow antigen in the sample to bind to immobilized antibody (or antigen-binding fragment) on the solid-phase immunoadsorbent. The solid-phase immunoadsorbent can then be separated from the incubation mixture and washed to remove excess antigen and other substances which also may be present in the sample. The solid-phase immunoadsorbent containing antigen (if any) bound to immobilized antibody (or antigen-binding fragment) can be subsequently incubated with labeled antibody (or antigen-binding fragment) capable of binding to the antigen. After the second incubation, another wash is performed to remove unbound labeled antibody (or antigen-binding fragment) from the solid-phase immunoadsorbent thereby removing non-specifically bound labeled antibody (or antigen-binding fragment). Labeled antibody (or antigen-binding fragment) bound to the solid-phase immunoadsorbent is then detected and the amount of labeled antibody (or antigen-binding fragment) detected can serve as a direct measure of the amount of antigen present in the sample. Such forward sandwich assays are described in the patent literature, and in particular, in U.S. Pat. Nos. 3,867,517 and 4,012,294, issued to Chung-Mei Ling, which are incorporated herein by reference.
- In a reverse sandwich assay, a sample can be incubated with labeled antibody (or antigen-binding fragment) after which the solid-phase immunoadsorbent containing immobilized antibody (or antigen-binding fragment) is added and incubated. A washing step can be performed after the second incubation period. A reverse sandwich assay has been described in the patent literature in U.S. Pat. No. 4,098,876, issued to Roger N. Piasio et al.
- In a simultaneous sandwich assay, a sample can be incubated simultaneously in one-step with both an immunoadsorbent containing immobilized antibody (or antigen-binding fragment) for the antigen and labeled antibody (or antigen-binding fragment) for the antigen. Thereafter, labeled antibody (or antigen-binding fragment) bound to the immunoadsorbent can be detected as an indication of the amount of antigen present in the sample. A simultaneous sandwich assay has been described in the patent literature in U.S. Pat. No. 4,837,167, issued to Hubert J. P. Schoemaker et al.
- Many solid-phase immunoadsorbents can be employed. Well-known immunoadsorbents include beads formed from glass polystyrene, polypropylene, dextran, and other materials. Preferably, the solid support is a plate, stick, tube or foam or coated with such materials; etc. The antibody (or antigen-binding fragment) can be either covalently or physically bound to the solid-phase immunoadsorbent by techniques such as covalent bonding via an amide or ester linkage or adsorption.
- A competitive inhibition immunoassay can be employed to determine the presence of an antigen in a sample by measuring the inhibition of formation of a competitive inhibitor-antibody (or competitive inhibitor-antigen-binding fragment) complex, one of which is typically bound and the other of which is typically labeled, by free antigen in the sample. In addition, a typical quantitative immunoassay kit can include a standardized sample of pure inhibitor, such as an antigen, so that a reference solution can be run together with the sample to minimize sampling errors and to assure precision.
- Competitive immunoassays (e.g., radioimmunoassay (MA), enzyme-linked immunoadsorbant assay (ELISA)) are used to detect and quantitate the presence of antigen in a sample by determining the extent of inhibition by the antigen of a competitive inhibitor/antibody (or competitive inhibitor/antigen-binding fragment) reaction. Typically, either the inhibitor or the antibody (or antigen-binding fragment) is bound to a solid support (as described above), while the other component of the pair is labeled in some fashion to render it detectable. Methods that are used to detect and quantitate the presence of antigen in a sample are also referred to as serologic diagnostic methods.
- Labels include, e.g., radionuclides (e.g., Florine-18, Tc-99m, Iodine-125, Iodine-131, Indium-111, Bismuth-210), enzymes which produce an absorptive or fluorescent detector group when reacted with a specific substrate (e.g., horseradish peroxidase, N-methylumbelliferone-o-D-galactosidase), dyes (chromophores), fluorescent compounds (e.g., fluorescein, rhodamine, phycoerythrin, cyamine dyes, other compound emitting fluorescence energy), electron dense compounds (e.g., gold and ferric chloride compounds). Biotin/avidin labeling systems can also be used. Coupled assays can also be used for detecting labels.
- The label may be directly linked to the component (the inhibitor or antibody) or may be bound to it indirectly, e.g., by attaching the label to another molecule capable of recognizing a component of the antigen/antibody pair. For example, an antibody (or antigen-binding fragment) can be indirectly labeled by attaching an enzyme, fluorescent marker or radionuclide to an isotype-specific antibody which recognizes the non-variable region of the antigen-specific antibody (or antigen-binding fragment). In another embodiment, the label can be attached to an antibody (or antigen-binding fragment) which recognizes an available epitope of the antigen after it has been bound to the specific antibody (or antigen-binding fragment).
- In one embodiment, the label is a dye (such as, nitrophenyl) attached to the unbound component or reagent (unbound inhibitor or antibody) via a phosphate linker. After incubation of the labeled component with the immobilized binding partner, the presence of binding can then be determined by subjecting the solid support to a phosphatase enzyme, causing hydrolysis of the dye. The presence (and amount) of the dye can then be measured by absorbance, indicating the amount of binding of the two components.
- In each assay, the sample, antibody (or antigen-binding fragment) and, optionally, the inhibitor is incubated under conditions and for a period of time sufficient to allow antigen to bind to the antibody (or antigen-binding fragment), i.e., under conditions suitable for the formation of a complex between the antigen and antibody (or antigen-binding fragment). In general, it is usually desirable to provide incubation conditions sufficient to bind as much antigen or inhibitor as possible because this maximizes the binding of labeled antibody or antigen-binding fragment) to the antigen thereby increasing the signal. Suitable temperatures are generally below the temperature at which denaturation can occur.
- The presence of an increased (elevated) level of HCA reactivity (found as complex with its antibody) in a sample obtained from a subject can be indicative of malignancy associated with cancer. Measurement of HCA in a sample can provide early diagnosis of prostate cancer and the opportunity for early treatment.
- Suitable antibodies, and antigen-binding fragments thereof, for use in determining the presence of HCA bind to the antigen HCA. Such antibodies include antibodies to HCA, as well as antibodies to epiglycanin that cross-react and bind HCA.
- Kits for use in detecting the presence of HCA in a sample can also be prepared. Such kits can include an antibody, anti-idiotypic antibody, or antigen-binding fragment disclosed herein, as well as one or more ancillary reagents. The antibody or antigen binding fragment compositions can be provided in lyophilized form, either alone or in combination with additional antibodies specific for other epitopes. The antibodies or antigen-binding fragments, which can be labeled or unlabeled, can be included in the kits with adjunct ingredients (e.g., buffers, such as Tris, phosphate and carbonate, stabilizers, excipients, biocides and/or inert proteins, e.g., bovine serum albumin). For example, the antibodies or antigen-binding fragments can be provided as a lyophilized mixture with adjunct ingredients, or adjunct ingredients can be separately provided for combination by the user. Where a second antibody or antigen-binding fragment which binds HCA is employed, such antibody or fragment can be provided in the kit, for instance in a separate vial or container. The second antibody or fragment, if present, is typically labeled, and can be formulated in an analogous manner with the antibody or fragment formulations described above. The components (e.g., antibody, ancillary reagent) of the kit can be packaged separately or together within suitable containment means (e.g., bottle, box, envelope, tube). When the kit comprises a plurality of individually packaged components, the individual packages can be contained within a single larger containment means (e.g., bottle, box, envelope, tube). Since the HCA and anti-HCA antibody complex are heat sensitive, materials containing the HCA complex, all control sera, and all antibodies should be conveniently shipped in dry ice filled insulated containers, e.g., styrofoam containers.
- In a particular embodiment, the kit comprises: (a) an immobilized antigen that is comprised of either HCA, epiglycanin, an idiotypic antibody (XII-24) to the detecting antibody (AE3 or AX2) or a surrogate antigen that has a similar affinity as HCA; (b) a suitable immobilized phase (e.g., micro titer plates, insoluble polymeric beads or particles) that can be washed and separated from a reaction mixture and are suitable for the immobilization of the an antibody or antigen; (c) a specific antibody (AX2 or AE3) with high affinity to HCA that can be detected using a detection method (e.g., radiation, colorimeteric, enzymatic, chemiluminecence, etc.), either directly or indirectly; (d) a series of calibration material (calibrators) comprised of materials that emulate HCA in patient samples that can be used to establish an appropriate response curve to map detection signal into concentration of HCA; and (e) any required blocking agents and buffers that inhibit nonspecific binding or any other signal generating reactions that are unrelated to HCA concentration. The calibrators of step (d) are stable over the useful lifetime of the kit.
- In certain embodiments, this disclosure relates to kits for diagnosis of cancer. In one embodiment, the kit comprises an anti-idiotypic antibody or antigen-binding fragment thereof which binds to the variable region of an antibody that binds to HCA and suitable ancillary reagents. In certain embodiments, the kit further comprises an antibody that binds to HCA.
- In certain embodiments, the kit comprises one or more of the following components: an anti-idiotypic antibody (XII-24) to the detecting antibody (AX2); a suitable immobilized phase (e.g., micro titer plates, insoluble polymeric beads or particles) that can be washed and separated from a reaction mixture and are suitable for the immobilization of an antibody disclosed herein; a specific antibody (AX2 or AE3) with high affinity to HCA that can be detected using a detection method (e.g., radiation, colorimeteric, enzymatic, chemiluminecence, etc.), either directly or indirectly; a series of calibration material (calibrators) comprised of materials that emulate HCA in patient samples that can be used to establish an appropriate response curve to map detection signal into concentration of HCA; and any required blocking agents and buffers that inhibit nonspecific binding or any other signal generating reactions that are unrelated to HCA concentration.
- A test sample having HCA typically contains autoantibody complexes that interferes with direct antibody measurements to HCA with an anti-HCA antibody such as AX2. The HCA is present in the serum of cancer patients not as the free serum, but as the HCA-anti-HCA complex. Thus, a preferred assay method disclosed herein is to use an anti-idiotypic antibody such as XII-24 to break up these complexes and exposure to antibodies that directly bind HCA. Cleavage and binding reactions is likely a one step process.
- Cleavage made by the XII-24 antibody is illustrated in
FIG. 2 . A major reduction in the amount of interfering material occurs when the XII-24 antibody is used instead of direct exposure to AX2, as in the protocol below. - Disclosed is a robust and accurate assay, for use in the clinic, to detect, from 60 micro liters of blood, the presence of cancers of epithelial tissue (carcinomas) at either their early or late stages. Described herein is a competitive binding assay, which involves the use of two monoclonal antibodies derived from a cancer specific component, Emorin, of the epiglycanin glycoproteins. Emorin can be isolated from the epiglycanin mixture in two ways: size-exclusion chromatography and affinity chromatography.
- The first monoclonal antibody, AX2, is produced by fusion of antibody-producing B cells from a C57BL mouse immunized with an epiglycanin carcinoma specific fraction (Emorin) and mouse myeloma (tumor) cells. This antibody is specific for the carcinoma-specific epitope in epiglycanin. It is an IgM.
- The second monoclonal antibody was produced by the same general methodology. Immunization of a C57BL mouse was followed by fusion of the B cells from the spleen with mouse myeloma cells. The clone was selected for its specificity for the antibody-binding site (hypervariable region) in AX2. This antibody, XII-24, is an anti-idiotypic antibody. Immunologically it is similar in cancer specificity to Emorin. It is an IgG (2a) type antibody.
FIG. 1 illustrates the relationship between the two antibodies and epiglycanin. - The rationale for producing an anti-idiotypic antibody resulted from the instability of Emorin. Both AX2 and XII-24 are quite stable, and this contributes to the robust character of the assay. The idiotypic activity of XII-24 enables binding from HCA to AX2, i.e., leaving the hypervariable region of XII-24 free to bind to the hypervariable region of AX2 on the plate.
- The assay is performed in a 96-well immune plate (Immulon 2 B which is a high binding surface to provide increased binding of hydrophilic proteins and complexes). It consists of seven steps. Each step is performed on a rotary shaker at about 4° C. Each step is performed in the order as described below. Serum samples to be tested are kept frozen until thawed for use (then kept at 4° C.
-
Step 1. The wells are coated with a PBS solution (pH 7.75) containing AX2 antibody (125 ng per 100 μl per well) and the plate is incubated for 18-24 hours. The plate is washed 3 times (W3X). The procedure can be adapted for beads. In addition to the wells to be tested, each plate has wells reserved for control sera. Two wells: from a person without evidence of disease, zero present inhibition in the DOC assay and from a control patient with a documented carcinoma. -
Step 2. To prevent additional non-specific absorption of the test sample, the wells in the plate with are further blocked by the addition of 250 μl of a solution of Aqua Block at 100% concentration (East Coast Bio, New Brunswick, Me.), and the plate is allowed to incubate for 2.0 hours. (W3X). - Step 3. In separate tubes the sera to be tested are incubated with the XII-24 antibody and neutralizing antibodies to remove interfering antibodies for 14-18 hours. The neutralizing antibodies are goat anti-mouse IgG(Fc) and goat anti-human IgG and lgM. During this period two events occur. One, the XII-24 in the wells cleaves the HCA-anti-HCA complex forming the XII-24-anti-HCA antibody complex and reducing the concentration of XII-24 available for binding to the AX2 on the plate. Two, the neutralizing antibodies eliminate the activity of the interfering antibodies from the serum.
- Step 4. Each solution, which contained (if cancer the HCA-anti-HCA complex and the XII-24 antibody, and which now contains less of that antibody due to the XII-24's reaction with the complex) is added to its appropriate well (100 μl per well). Incubation is continued on the plate for 3-5 hours. (W3X). If no complex is present for the XII-24, which is an IgG(2a) antibody, to cleave (the control sample), all of the original XII-24 is now free to bind (by their hypervariable regions) to AX2 immobilized on the plate.
- Step 5. A solution of biotin-labeled goat anti-mouse immunoglobulin IgG(2a) is added to each well (100 μl per well). The plate is incubated for 1.5 hours. (W3X). The biotin labeled antibody now binds to the XII-24 part of the XII-24-AX2 complex on the plate. This is the portion of the original XII-24 remaining after its reaction with the HCA-anti-HCA in the sample. However, if no HCA is in the sample (as in a normal sample), all of the original XII-24 will bind to AX2.
- Step 6. A solution of 100 μl of horseradish peroxidase-labeled Streptavidin is added to each well. After an incubation of 60 minutes, the plate is washed 4 times. The streptavidin binds biotin. The plate is allowed to warm to ambient temperature
- Step 7. Following the addition of a solution of ABTS to each well, color develops in about 30 minutes. This is read in an automatic plate reader at 405 nm. If HCA is in the sera sample then the intensity of the signal will be reduced.
- Below is a table wherein first row shows intensity data for samples from carcinoma (CA) (patients with prostate cancer) and sarcoma (SC) patients. The assay cannot differentiate between normal sarcomas, lymphomas, and leukemias, which are not cancers of epithelial tissue; thus, do not produce HCA. The sera from carcinoma patients have consistently lower absorbance values.
-
% INHTB. SERUM O.D. 405 AVG. (SC 20) CA 109 514, 496 (505) 20% CA 110 526, 587 (557) 11 % SC 20 591, 665 (628) SC 21686, 792 (739) DIL 594, 607 (601) - Each kit may be supplied with one serum from a known carcinoma patient in order to affirm that the assay is performing well. A kit may also include serum from an individual with no cancer or other pathological problems.
- Described is a protocol may be used to monitor HCA during chemotherapy. The HCA-anti-HCA complex may remain in the blood after the cancer is treated. Protocol
- 1) Draw blood (serum) from the patient and store frozen.
- 2) Administer excess humanized non-toxic AX2 intravenously. Wait overnight (left in the blood are AX2-HCA and anti-HCA).
- 3) Collect fresh serum. Perform the DOC Assay. The free HCA or HCA-anti-HCA (freshly secreted) binds to the XII-24 antibody.
Claims (15)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/208,977 US11851500B2 (en) | 2018-02-26 | 2021-03-22 | Antibodies useful for detection of human carcinoma antigen |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862635206P | 2018-02-26 | 2018-02-26 | |
| US16/285,805 US10975164B2 (en) | 2018-02-26 | 2019-02-26 | Antibodies useful for detection of human carcinoma antigen |
| US17/208,977 US11851500B2 (en) | 2018-02-26 | 2021-03-22 | Antibodies useful for detection of human carcinoma antigen |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/285,805 Division US10975164B2 (en) | 2018-02-26 | 2019-02-26 | Antibodies useful for detection of human carcinoma antigen |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20210230297A1 true US20210230297A1 (en) | 2021-07-29 |
| US11851500B2 US11851500B2 (en) | 2023-12-26 |
Family
ID=67684322
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/285,805 Active 2039-07-21 US10975164B2 (en) | 2018-02-26 | 2019-02-26 | Antibodies useful for detection of human carcinoma antigen |
| US17/208,977 Active 2039-06-18 US11851500B2 (en) | 2018-02-26 | 2021-03-22 | Antibodies useful for detection of human carcinoma antigen |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/285,805 Active 2039-07-21 US10975164B2 (en) | 2018-02-26 | 2019-02-26 | Antibodies useful for detection of human carcinoma antigen |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US10975164B2 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5693763A (en) * | 1993-02-05 | 1997-12-02 | Epigen, Inc. | Antibodies to human carcinoma antigen |
| US20050272102A1 (en) * | 2004-05-12 | 2005-12-08 | Egenix, Inc. | Method for diagnosis of prostate cancer |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4837171A (en) | 1987-07-02 | 1989-06-06 | The General Hospital Corporation | Anti-epiglycanin monoclonal antibodies |
| AU2007213920B2 (en) | 2006-02-09 | 2013-08-29 | Amgen Research (Munich) Gmbh | Treatment of metastatic breast cancer |
-
2019
- 2019-02-26 US US16/285,805 patent/US10975164B2/en active Active
-
2021
- 2021-03-22 US US17/208,977 patent/US11851500B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5693763A (en) * | 1993-02-05 | 1997-12-02 | Epigen, Inc. | Antibodies to human carcinoma antigen |
| US20050272102A1 (en) * | 2004-05-12 | 2005-12-08 | Egenix, Inc. | Method for diagnosis of prostate cancer |
Non-Patent Citations (1)
| Title |
|---|
| Brodeur BR, Hamel J, Tackaberry E. Anti-idiotype antibodies for the diagnosis of infectious diseases. Can J Infect Dis. 1992 Nov;3(6):319-20. doi: 10.1155/1992/189281. PMID: 22346409; PMCID: PMC3250736. (Year: 1992) * |
Also Published As
| Publication number | Publication date |
|---|---|
| US10975164B2 (en) | 2021-04-13 |
| US20190263929A1 (en) | 2019-08-29 |
| US11851500B2 (en) | 2023-12-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9309312B2 (en) | Immunoassay method for human CXCL1 protein | |
| TW200813428A (en) | Antibody pair screening methods | |
| US20240368257A1 (en) | Filamin a binding proteins and uses thereof | |
| US20140243265A1 (en) | Antibodies to modified human igf-1/e peptides | |
| CN117924490B (en) | Anti-IL-4R antibodies and uses thereof | |
| CN109336973B (en) | Anti-transferrin antibody and its use | |
| US11851500B2 (en) | Antibodies useful for detection of human carcinoma antigen | |
| KR101263913B1 (en) | Bovine tuberculosis diagnosing kit and diagnosing method using the same | |
| CN117924491B (en) | Anti-IL-4R antibodies and uses thereof | |
| US20200024335A1 (en) | Filamin b binding proteins and uses thereof | |
| CN116355094B (en) | Monoclonal antibody against interleukin 12 of mouse and preparation method | |
| CN117304330A (en) | His tag antibody and application thereof | |
| US20230203193A1 (en) | Isolated antibodies and fragments thereof with specificity for osteopontin-c | |
| KR101363682B1 (en) | Marker protein for type 2 diabetes | |
| US20210024644A1 (en) | N-cadherin binding molecules and uses thereof | |
| WO2020264410A1 (en) | Troponin t binding agents and uses thereof | |
| US20250034236A1 (en) | Anti-thyroglobulin Antibody, Kit and Use Thereof | |
| WO2019189882A1 (en) | Monoclonal antibody specifically reacting with ncc-st-439 antigen and method for producing same | |
| US20190194319A1 (en) | Anti-ascl1 antibodies and methods of use | |
| WO2018213680A1 (en) | Diagnostic antibodies and methods of use | |
| CN119119282A (en) | Anti-2C-B antibody or antigen-binding fragment thereof and use thereof | |
| CN119431596A (en) | Etiazem antigen binding molecules and their applications | |
| CN115925924A (en) | Antibody for detecting TSP-1 specific peptide and use thereof | |
| KR20180003156A (en) | Antibodies for specifically detecting KIF5B-RET fusion protein and uses thereof | |
| CN120005021A (en) | Anti-LAG-3 antibodies and uses thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
| FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |