US20210207137A1 - Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor - Google Patents
Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor Download PDFInfo
- Publication number
- US20210207137A1 US20210207137A1 US17/110,640 US202017110640A US2021207137A1 US 20210207137 A1 US20210207137 A1 US 20210207137A1 US 202017110640 A US202017110640 A US 202017110640A US 2021207137 A1 US2021207137 A1 US 2021207137A1
- Authority
- US
- United States
- Prior art keywords
- nucleic acid
- acid molecule
- strand
- lasirna
- antisense
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 149
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 145
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 145
- 230000009368 gene silencing by RNA Effects 0.000 title claims abstract description 42
- 230000001939 inductive effect Effects 0.000 title claims abstract description 31
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 title description 35
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 claims abstract description 65
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 59
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims abstract description 58
- 239000002773 nucleotide Substances 0.000 claims abstract description 54
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 54
- 235000012000 cholesterol Nutrition 0.000 claims abstract description 29
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims abstract description 21
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 claims abstract description 16
- 150000002634 lipophilic molecules Chemical class 0.000 claims abstract description 14
- 108091030071 RNAI Proteins 0.000 claims abstract 7
- 108010039419 Connective Tissue Growth Factor Proteins 0.000 claims description 75
- 102000015225 Connective Tissue Growth Factor Human genes 0.000 claims description 72
- 108020004999 messenger RNA Proteins 0.000 claims description 47
- 230000000295 complement effect Effects 0.000 claims description 38
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 17
- 108091093037 Peptide nucleic acid Proteins 0.000 claims description 6
- 239000004055 small Interfering RNA Substances 0.000 claims description 6
- 150000002632 lipids Chemical class 0.000 claims description 5
- 102000004169 proteins and genes Human genes 0.000 claims description 5
- 108700011259 MicroRNAs Proteins 0.000 claims description 4
- 108091007412 Piwi-interacting RNA Proteins 0.000 claims description 4
- 239000002679 microRNA Substances 0.000 claims description 4
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 3
- 229960001295 tocopherol Drugs 0.000 claims description 3
- 229930003799 tocopherol Natural products 0.000 claims description 3
- 235000010384 tocopherol Nutrition 0.000 claims description 3
- 239000011732 tocopherol Substances 0.000 claims description 3
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 claims description 3
- 108091026890 Coding region Proteins 0.000 claims description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 claims description 2
- 108091092724 Noncoding DNA Proteins 0.000 claims description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 claims description 2
- 125000005600 alkyl phosphonate group Chemical group 0.000 claims description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 claims description 2
- 125000003277 amino group Chemical group 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 125000001153 fluoro group Chemical group F* 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 150000004668 long chain fatty acids Chemical class 0.000 claims description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 claims description 2
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical group NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical group [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 4
- 239000010452 phosphate Substances 0.000 claims 4
- 108020004459 Small interfering RNA Proteins 0.000 abstract description 99
- 230000004048 modification Effects 0.000 abstract description 80
- 238000012986 modification Methods 0.000 abstract description 80
- 230000030279 gene silencing Effects 0.000 abstract description 62
- 238000012226 gene silencing method Methods 0.000 abstract description 52
- 238000001727 in vivo Methods 0.000 abstract description 20
- 238000000034 method Methods 0.000 abstract description 16
- 230000003834 intracellular effect Effects 0.000 abstract description 14
- 230000000149 penetrating effect Effects 0.000 abstract description 6
- 206010028980 Neoplasm Diseases 0.000 abstract description 4
- 201000011510 cancer Diseases 0.000 abstract description 4
- 208000036142 Viral infection Diseases 0.000 abstract description 3
- 230000009385 viral infection Effects 0.000 abstract description 3
- 230000006698 induction Effects 0.000 abstract description 2
- 230000000692 anti-sense effect Effects 0.000 description 122
- 210000004027 cell Anatomy 0.000 description 65
- 230000014509 gene expression Effects 0.000 description 36
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 20
- 108010002687 Survivin Proteins 0.000 description 20
- 102000000763 Survivin Human genes 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 15
- 230000001965 increasing effect Effects 0.000 description 12
- 108091081021 Sense strand Proteins 0.000 description 11
- 230000002401 inhibitory effect Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 238000003753 real-time PCR Methods 0.000 description 10
- 230000008685 targeting Effects 0.000 description 10
- 239000003981 vehicle Substances 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 9
- 241000700159 Rattus Species 0.000 description 8
- 238000007385 chemical modification Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 208000035475 disorder Diseases 0.000 description 8
- 230000037440 gene silencing effect Effects 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 201000010099 disease Diseases 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 230000001743 silencing effect Effects 0.000 description 6
- 229940124597 therapeutic agent Drugs 0.000 description 6
- 206010016654 Fibrosis Diseases 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 230000004761 fibrosis Effects 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 108090000994 Catalytic RNA Proteins 0.000 description 4
- 102000053642 Catalytic RNA Human genes 0.000 description 4
- 108091027757 Deoxyribozyme Proteins 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 125000005647 linker group Chemical group 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 230000009437 off-target effect Effects 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 108091092562 ribozyme Proteins 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 230000029663 wound healing Effects 0.000 description 4
- OZFAFGSSMRRTDW-UHFFFAOYSA-N (2,4-dichlorophenyl) benzenesulfonate Chemical compound ClC1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=CC=C1 OZFAFGSSMRRTDW-UHFFFAOYSA-N 0.000 description 3
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 3
- 208000002260 Keloid Diseases 0.000 description 3
- 206010023330 Keloid scar Diseases 0.000 description 3
- 102000010168 Myeloid Differentiation Factor 88 Human genes 0.000 description 3
- 108010077432 Myeloid Differentiation Factor 88 Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- 238000010818 SYBR green PCR Master Mix Methods 0.000 description 3
- 238000010804 cDNA synthesis Methods 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010842 high-capacity cDNA reverse transcription kit Methods 0.000 description 3
- 230000001969 hypertrophic effect Effects 0.000 description 3
- 210000001117 keloid Anatomy 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 108020004491 Antisense DNA Proteins 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 108091023037 Aptamer Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 239000012097 Lipofectamine 2000 Substances 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 239000012124 Opti-MEM Substances 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000003816 antisense DNA Substances 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 229920006317 cationic polymer Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 208000037765 diseases and disorders Diseases 0.000 description 2
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 230000003176 fibrotic effect Effects 0.000 description 2
- 238000002073 fluorescence micrograph Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 102000034356 gene-regulatory proteins Human genes 0.000 description 2
- 108091006104 gene-regulatory proteins Proteins 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- -1 piwiRNA Proteins 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000037390 scarring Effects 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000037314 wound repair Effects 0.000 description 2
- LVXLCZPTUBQNHH-UHFFFAOYSA-N 2-amino-5-[[1-(carboxymethylamino)-3-(2-chloro-1,1,2-trifluoroethyl)sulfanyl-1-oxopropan-2-yl]amino]-5-oxopentanoic acid Chemical compound OC(=O)C(N)CCC(=O)NC(CSC(F)(F)C(F)Cl)C(=O)NCC(O)=O LVXLCZPTUBQNHH-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 241000220479 Acacia Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 102100031168 CCN family member 2 Human genes 0.000 description 1
- 102000020313 Cell-Penetrating Peptides Human genes 0.000 description 1
- 108010051109 Cell-Penetrating Peptides Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 208000012895 Gastric disease Diseases 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 101000777550 Homo sapiens CCN family member 2 Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000002804 Osteochondritis Diseases 0.000 description 1
- 201000009859 Osteochondrosis Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108700008242 S-(2-chloro-1,1,2-trifluoroethyl)glutathione Proteins 0.000 description 1
- 208000034189 Sclerosis Diseases 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 201000009594 Systemic Scleroderma Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 208000012886 Vertigo Diseases 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical class C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 230000002744 anti-aggregatory effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000022159 cartilage development Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 210000001608 connective tissue cell Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 208000033679 diabetic kidney disease Diseases 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 208000010643 digestive system disease Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 208000018685 gastrointestinal system disease Diseases 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 206010038464 renal hypertension Diseases 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 229940069575 rompun Drugs 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 231100000889 vertigo Toxicity 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- QYEFBJRXKKSABU-UHFFFAOYSA-N xylazine hydrochloride Chemical compound Cl.CC1=CC=CC(C)=C1NC1=NCCCS1 QYEFBJRXKKSABU-UHFFFAOYSA-N 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering nucleic acids [NA]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/313—Phosphorodithioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
- C12N2310/3515—Lipophilic moiety, e.g. cholesterol
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/32—Special delivery means, e.g. tissue-specific
Definitions
- the present invention relates to a novel, RNA interference (RNAi)-inducing nucleic acid molecule having cell penetrating ability and the use thereof, and more particularly, to a novel, RNAi-inducing double-stranded nucleic acid molecule, which has a replacement of the phosphate backbone of at least one nucleotide with phosphorothioate or phosphorodithioate, and has a lipophilic compound conjugated thereto, and thus has high target gene-silencing efficiency while having the ability to penetrate cells without needing a separate intracellular delivery vehicle, and to a method of silencing a target gene using the nucleic acid molecule.
- RNAi RNA interference
- RNA interference is a mechanism capable of inhibiting the expression of a gene in a highly specific and efficient manner, in which degradation of the mRNA of a target gene is induced by introducing a double-stranded RNA, which comprises a sense strand having a sequence homologous to the mRNA of the target gene and an antisense strand having a sequence complementary to the mRNA of the target gene, into cells or the like, thereby inhibiting the expression of the target gene.
- a double-stranded RNA which comprises a sense strand having a sequence homologous to the mRNA of the target gene and an antisense strand having a sequence complementary to the mRNA of the target gene, into cells or the like, thereby inhibiting the expression of the target gene.
- siRNA that induces this RNA interference is a short (19-21 bp) double-stranded RNA capable of inhibiting the expression of a target gene in a sequence-specific manner, and is currently receiving attention as a therapeutic agent against various diseases, including cancer difficult to treat, viral infections, and hereditary diseases, thanks to its high efficiency and target specificity.
- various problems associated with stability, silencing efficiency, immune responses, off-target effects and the like are required to be solved, and among them, effective in vivo delivery is considered most difficult to achieve.
- An siRNA cannot pass through the cell membrane, because it is highly negatively charged due to its phosphate backbone structure. In addition, because of its small size, the siRNA is quickly removed from blood, and thus it is difficult to deliver the siRNA in an amount sufficient for inducing RNAi to a target area.
- siRNAs In the case of in vitro delivery, many high-efficiency delivery methods that use cationic lipids and cationic polymers have been developed (Sioud M, Sorensen D R Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 2003; 312: 1220-1225). However, in most cases, in vivo delivery of siRNAs is difficult to achieve with high efficiency, unlike in vitro delivery, and the efficiency of delivery of siRNAs decreases due to their interactions with various proteins in vivo (Bolcato-Bellemin A L, Bonnet M E, Creusat G, et al. Sticky overhangs enhance siRNA-mediated gene silencing.
- siRNAs are highly accumulated in a specific organ such as liver or lung, which is not a diseased area, depending on the composition of delivery vehicles, thus inducing toxicity.
- CTGF/CCN2 connective tissue growth factor
- CTGF connective tissue growth factor
- CTGF pathologically, it is known that a full-length CTGF molecule is involved in a condition in which the hyperproliferation of connective tissue cells and the excessive deposition of extracellular matrix are present.
- CTGF is also involved in conditions associated with the migration and proliferation of endothelial cells and angiogenesis. Examples of diseases and disorders associated with such conditions include the fibrosis, cancer and related diseases and disorders of the skin and major organs, for example, systemic sclerosis, angiogenesis, atherosclerosis, diabetic nephropathy, and renal hypertension.
- CTGF is known to be useful for wound healing, connective tissue repair, and bone and cartilage repair.
- CTGF was disclosed as an inducer of bone, tissue or cartilage formation disorders such as osteoporosis, osteoarthritis or osteochondritis, arthritis, skeletal disorder, hypertrophic scar, a burn, hemagiectatic hypertrophy, or sound healing (see, for example, U.S. Pat. No. 5,837,258).
- the present inventors have made extensive efforts to provide a novel, RNAi-inducing nucleic acid molecule that can be effectively delivered in vitro and in vivo and has cell-penetrating ability, and as a result, have found that, when the phosphate backbone of at least one nucleotide in an RNAi-inducing double-stranded nucleic acid molecule is substituted with phosphorothioate and a lipophilic compound is conjugated to the nucleic acid molecule, the nucleic acid molecule exhibits high target gene silencing efficiency even in vivo without needing a separate intracellular delivery vehicle and, at the same time, has high cell-penetrating ability, thereby completing the present invention.
- the present invention provides an RNAi-inducing double-stranded nucleic acid molecule having cell-penetrating ability, wherein the nucleic acid molecule comprising a first strand comprising a region complementary to a target nucleic acid and a second strand that forms a complementary bond with the first strand; and wherein the phosphate backbone of at least one nucleotide in the nucleic acid molecule was substituted with phosphorothioate or phosphorodithioate, and the nucleic acid molecule has a lipophilic compound conjugated thereto.
- the present invention also provides a gene-silencing composition containing the above nucleic acid molecule.
- the present invention also provides a method for silencing a target gene in a cell, the method comprising introducing the above nucleic acid molecule into the cell.
- the present invention also provides a pharmaceutical composition for treating or preventing a connective tissue growth factor (CTGF)-associated disease or disorder, the composition containing the above nucleic acid molecule that targets a CTGF-encoding mRNA.
- CTGF connective tissue growth factor
- the present invention also provides a meth of treating or preventing a connective tissue growth factor (CTGF)-associated disease or disorder comprising administering a pharmaceutical composition containing the above nucleic acid molecule targeting a CTGF-encoding mRNA.
- CTGF connective tissue growth factor
- the present invention also provides an RNAi-inducing double-stranded nucleic acid molecule having cell-penetrating ability, the nucleic acid molecule comprising: a first strand comprising a region complementary to a connective tissue growth factor (CTGF)-encoding mRNA; and a second strand that forms a complementary bond with the first strand, wherein the phosphate backbone of 1 to 31 nucleotides in the nucleic acid molecule was substituted with phosphorothioate or phosphorodithioate, and the nucleic acid molecule has a lipophilic compound conjugated thereto and has a pair of nucleic sequences selected from the group consisting of a pair of nucleotide sequences of SEQ ID NOS: 149 and 150, a pair of nucleotide sequences of SEQ ID NOS: 151 and 152, and a pair of nucleotide sequences of SEQ ID NOS: 153 and 154.
- CTGF connective tissue growth factor
- FIG. 1 is a graph showing the gene silencing efficiencies of siRNA, asiRNA and lasiRNA structures for 24 sequences that target the CTGFs shown in Tables 1 to 3.
- FIG. 2 depicts fluorescence micrographs showing the increase in intracellular uptake efficiency of lasiRNA by cholesterol modification.
- FIG. 3 shows the structures of cholesterol- and PS-modified lasiRNAs according to the present invention. Underline: OMe modification; *: PS modification, Chol: cholesterol; Cy3: Cy3.
- FIG. 4 depicts fluorescence micrographs showing the increase in intracellular uptake efficiency of chol-lasiRNA by phosphorothioate (PS) modification.
- FIG. 5 is a graphic diagram showing a comparison between the gene silencing effects of chol-lasiRNAs according to variation of numbers in phosphorothioate (PS) modifications. Each graph represents the mean ⁇ SD of three repeated experiments.
- FIG. 6 shows the structure of a chol-lasiRNA-PS7 that targets MyD88. Underline: OMe modification, *: PS modification, and Chol: cholesterol.
- FIG. 7 is a graphic diagram showing a comparison between the gene silencing efficiencies of a variety of cell-penetrating lasiRNAs (cp-lasiRNAs).
- the parenthesized CTGF or MyD88 represents a gene that is targeted by cp-lasiRNAs.
- FIG. 8 is a graphic diagram showing the gene silencing efficiencies of the inventive nucleic acid molecules having various lipophilic compound modifications, that is, hydrophobic modifications.
- FIG. 9 is a graphic diagram showing the gene silencing efficiency of the inventive nucleic acid molecule according to the lengths of the antisense strand.
- FIG. 10 shows the structure of a PS2 modification.
- FIG. 11 is a graphic diagram showing the gene silencing efficiencies of the inventive nucleic acid molecules having phosphate backbone modifications.
- FIG. 12 is a graphic diagram showing the in vivo target gene silencing efficiencies of the nucleic acid molecules according to the present invention.
- FIG. 13 is a graphic diagram showing the in vivo target gene silencing efficiency of the inventive nucleic acid molecule as a function of the concentration thereof.
- FIG. 14 is a graphic diagram showing the target gene silencing efficiency of the inventive nucleic acid molecule as a function of duration.
- RNAi RNA interference
- dsRNA double-stranded RNA
- RNA small interfering RNA
- dsRNA short double-stranded RNA
- an antisense strand refers to a polynucleotide that is substantially or 100% complementary to a target nucleic acid of interest.
- an antisense strand may be complementary, in whole or in part, to a molecule of mRNA (messenger RNA), an RNA sequence that is not mRNA (e.g., microRNA, piwiRNA, tRNA, rRNA and hnRNA) or a sequence of DNA that is either coding or non-coding.
- mRNA messenger RNA
- RNA sequence that is not mRNA e.g., microRNA, piwiRNA, tRNA, rRNA and hnRNA
- the terms “antisense strand” and “guide strand” are used interchangeably herein.
- ense strand refers to a polynucleotide that has the same nucleotide sequence, in whole or in part, as a target nucleic acid, in which the polynucleotide is identical, in whole or in part, a molecule of mRNA (messenger RNA), an RNA sequence that is not mRNA (e.g., microRNA, piwiRNA, tRNA, rRNA and hnRNA) or a sequence of DNA that is either coding or non-coding.
- mRNA messenger RNA
- RNA sequence that is not mRNA e.g., microRNA, piwiRNA, tRNA, rRNA and hnRNA
- sequence of DNA that is either coding or non-coding.
- the term “gene” is intended to have the broadest meaning, and the gene can encode a structural protein or a regulatory protein.
- the regulatory protein includes a transcriptional factor, a heat shock proteins, or a protein that is involved in DNA/RNA replication, transcription and/or translation.
- the target gene whose expression is to be inhibited is resident in a viral genome which has integrated into the animal gene or may be present as an extrachromosomal element.
- the target gene may be a gene on an HIV genome.
- the genetic construct is useful in inactivating translation of the HIV gene in a mammalian cell.
- the present invention is directed to an RNAi-inducing double-stranded nucleic acid molecule having cell-penetrating ability, the nucleic acid molecule comprising a first strand comprising a region complementary to a target nucleic acid; and a second strand that forms a complementary bond with the first strand, wherein the phosphate backbone of at least one nucleotide in the nucleic acid molecule was substituted with phosphorothioate or phosphorodithioate, and the nucleic acid molecule has a lipophilic compound conjugated thereto.
- the first strand corresponds to an antisense strand of siRNA
- the second strand corresponds to a sense strand of siRNA
- the first strand in the RNAi-inducing double-stranded nucleic acid molecule may have a length of 16 to 121 nt, and preferably 24-121 nt.
- the first strand comprises a region complementary to the target nucleic acid, and the region complementary to the target nucleic acid may have a length of 16 to 31 nt, 19 to 31 nt, or 19 to 21 nt.
- the second strand may have a length of 13 to 25 nt, 13 to 21 nt, or 16 to 21 nt.
- the RNAi-inducing double-stranded nucleic acid molecule may comprise a first strand, which is 24-121 nt in length and comprises a region complementary to a target nucleic acid, and a second strand which is 13-21 nt in length and comprises a region that binds complementarily to the region of the first strand, which is complementary to the target nucleic acid.
- the nucleic acid molecule having the above-described structure was constructed to have each of 24 sequences targeting CTGF, and as a result, it was found that the constructed nucleic acid molecules generally had high gene silencing efficiencies compared to conventional siRNAs.
- an RNAi-inducing double-stranded nucleic acid molecule having a long single-stranded region that does not form a complementary bond with the second strand, that is, an siRNA having a long antisense strand has been named as “lasiRNA”.
- the lasiRNA is a novel, asymmetrical RNAi-inducing structure that has a short double-strand length and high gene silencing efficiency, compared to conventional siRNA.
- the lasiRNA due to the function of the antisense strand having a long overhang structure, the lasiRNA has increased gene silencing efficiency compared to siRNA or asiRNA, and thus will substitute for conventional structures to develop therapeutic agents.
- it is characterized in that in that it has a long overhang length compared to other structures, and maintains high activity even when the overhang is modified in various ways.
- the region of the first strand, which is complementary to the target nucleic acid is preferably 19-21 nt in length.
- the first strand comprises a single-stranded region which does not bind to the second strand.
- the first strand may further comprise, in the single-stranded region, a nucleic acid oligonucleotide selected from the group consisting of antisense DNA, antisense RNA, ribozyme and DNAzyme.
- the single-stranded region of the first strand which does not bind complementarily to the second strand, can be linked directly or by a linker to the region that binds complementarily to the second strand.
- the linker may be a chemical linker.
- the chemical linker include, but are not limited to, a nucleic acid moiety, PNA (a PNA moiety), a peptide moiety, a disulfide bond or a polyethylene glycol moiety.
- the first strand may further comprise, in the single-stranded region, a sequence that is complementary or non-complementary to the target nucleic acid.
- the complementary sequence may be located consecutively from the double-stranded region of the nucleic acid molecule of the present invention, that is, the region of siRNA, which is complementary to the target nucleic acid.
- the complementary sequence may also be located apart from the double-stranded region.
- the sequence that is targeted by siRNA, and the sequence that is targeted by the ribozyme or DNAzyme of the single-stranded region may be located consecutively or located apart from each other.
- the sequence contained in the single-stranded region when the sequence contained in the single-stranded region is antisense DNA or antisense RNA, the sequence may be at least about 70-80%, more preferably at least about 80-90%, and even more preferably at least 95-99% complementary to the sequence of the target gene targeted by the siRNA, and when the single-stranded region is ribozyme or DNAzyme, the sequence of the single-stranded region may be at least about 50-60% complementary to the sequence of the target gene targeted by the siRNA.
- the single-stranded region may be 5-100 nt in length. If the length of the single-stranded region is less than 5 nt, the effect of increasing the efficiency with which gene expression is inhibited will be insignificant, and if the length is more than 100 nt, the efficiency with which an RNA molecule is synthesized will be reduced.
- the single-stranded region may be 9-100 nt in length or 50 nt or less in length. More preferably, the single-stranded region may be 10-15 nt in length.
- At least one of the nucleotides of the single-stranded region in the first strand may comprise a bulky base analog.
- an extended sequence comprises a bulky base analog such as a deoxyadenosine derivative having a phenyl group
- an mRNA strand that binds complementarily to the extended sequence is cleaved at the location of the bulky base analog. Any bulky base analog that induces this cleavage may be used without limitation in the present invention.
- nucleic structure obtained by extending the antisense strand of siRNA in a manner complementary to a target mRNA sequence it was predicted that the 5′ end of the nucleic structure will function as the RNAi mechanism while the 3′ end of the nucleic structure will function as an antisense mechanism or guide the 5′ end siRNA to the target mRNA.
- sequence of the antisense 3′-end, which is complementary to mRNA is DNA, it can induce RNase H-dependent mRNA cleavage.
- nucleotides of the single-stranded region of the antisense 3′-end comprises a bulky base analog or the single-stranded region binds to mRNA to form a bulge structure
- cleavage could be induced.
- a nucleic acid molecule comprising the ribozyme or DNAzyme introduced into the single-stranded region of the first strand can induce synergistic cleavage.
- Korean Patent Laid-Open Publication No. 10-2009-0065880 discloses an siRNA structure which is an siRNA molecule consisting of a 19-21 nt antisense strand and a 13-16 nt sense strand, in which the 5′ end of the antisense strand is a blunt end.
- This siRNA structure inhibits gene expression at high efficiency without causing off-target effects by the sense strand of siRNA or inhibiting other RNAi mechanisms.
- off-target effects can be minimized while the above-described effect of the nucleic acid oligonucleotide contained in the single-stranded region of the first strand can be obtained.
- off-target effects refers to any instance in which the sense strand of siRNA causes the unexpected degradation of other mRNAs or the silencing of the corresponding genes, and the antisense strand of siRNA is paired with undesired targets to cause the degradation of other mRNAs or the silencing of the corresponding genes, even though siRNA is originally used to induce the degradation of mRNA having a sequence complementary to the antisense strand so as to obtain the effect of inhibiting the gene expression of the mRNA.
- the nucleic acid molecule according to the present invention may characterized in that the phosphate backbone of 1 to 48 nucleotides, preferably 1 to 31 nucleotides, more preferably 2 to 17 nucleotides, and even more preferably 4 to 17 or 12 to 17 nucleotides, is substituted with phosphorothioate.
- the phosphate backbone of nucleotides in the first strand of the nucleic acid molecule may be substituted with phosphorothioate, and the phosphate backbones of nucleotides in a region of the first strand, which excludes a region complementary to a target nucleic acid, may be substituted with phosphorothioate.
- the phosphate backbone of 1 to 31 nucleotides, preferably 1 to 17 nucleotides, more preferably 2 to 17 nucleotides, and even more preferably 4 to 17 nucleotides or 12 to 17 nucleotides, in the first strand may be substituted with phosphorothioate.
- the phosphate backbone of 1 to 21 nucleotides preferably 1 to 17 nucleotides, more preferably 2 to 17 nucleotides, and even more preferably 4 to 17 nucleotides or to 17 nucleotides, in the second strand, may be substituted with phosphorothioate.
- the nucleic acid molecule according to the present invention may be characterized in that the phosphate backbone of at least one nucleotide is substituted with phosphorodithioate.
- the phosphate backbone of 1 to 48 nucleotides preferably 1 to 31 nucleotides, more preferably 2 to 17 nucleotides, and even more preferably 4 to 17 or 12 to 17 nucleotides, in the nucleic acid molecule, may be substituted with phosphorodithioate.
- the phosphate backbone of 1 to 31 nucleotides, preferably 1 to 17 nucleotides, more preferably 2 to 17 nucleotides, and even more preferably 4 to or 12 to 17 nucleotides, in the first strand may be substituted with phosphorodithioate.
- the phosphate backbone of 1 to 17 nucleotides, preferably 2 to 17 nucleotides, and even more preferably 4 to 17 or 12 to 17 nucleotides, in the second strand may be substituted with phosphorodithioate.
- the lipophilic compound that is used in the present invention results in hydrophobic modification, and may be, for example, a lipid, a lipophilic peptide or a lipophilic protein.
- lipid a lipid, a lipophilic peptide or a lipophilic protein.
- cholesterol tocopherol, or a long-chain fatty acid having 10 or more carbon atoms such as stearic acid or palmitic acid, may be used, but is not limited thereto.
- the lipophilic compound such as cholesterol may be conjugated to the 5′ or 3′ end of the first or second strand of the nucleic acid molecule, but is not limited thereto.
- the target nucleic acid not limited thereto, but might be mRNA (messenger RNA), microRNA, piRNA (piwi-interacting RNA), coding DNA sequence or non-coding DNA sequence or the like.
- the nucleic acid molecule of the present invention may be a molecule synthesized according to a general method, but is not limited thereto.
- the siRNA molecule may be chemically or enzymatically synthesized.
- the siRNA molecule of the present invention may be derived from naturally occurring genes by standard recombinant techniques.
- the siRNA molecule may be substantially complementary at the nucleotide sequence level to at least a portion of mRNA of the target gene, the expression of which is to be modified.
- the nucleic acid molecule of the present invention may comprise a chemical modification.
- the chemical modification may be obtained by replacing the hydroxyl group at position 2′ of ribose of at least one nucleotide, included in the nucleic acid molecule, by any one of a hydrogen atom, a fluorine atom, an —O-alkyl group, an —O-acyl group and an amino group, but is not limited thereto.
- the chemical modification may be obtained by replacing the phosphate backbone of at least one nucleotide, included in the nucleic acid molecule, by any one of alkylphosphonate form, phosphoroamidate form and boranophosphate form.
- the chemical modification may be obtained by replacing at least one nucleotide included in the nucleic acid molecule by any one of LNA (locked nucleic acid), UNA (unlocked nucleic acid), morpholino and PNA (peptide nucleic acid).
- the chemical modification may be obtained by binding the nucleic acid molecule to one or more selected from the group consisting of lipids, cell penetrating peptides and cell targeting ligands.
- nucleic acid molecule according to the present invention may be efficiently used for in vitro and in vivo delivery together with various delivery vehicles, such as liposomes, cationic polymers, antibodies, aptamers or nanoparticles, and delivery methods, known to effectively deliver oligonucleotides into cells.
- various delivery vehicles such as liposomes, cationic polymers, antibodies, aptamers or nanoparticles, and delivery methods, known to effectively deliver oligonucleotides into cells.
- nucleic acid molecule of the present invention dissolved in a solution such as PBS, was injected without using a separate delivery vehicle, it exhibited a high gene silencing efficiency of 90% or higher in a target area in vivo, suggesting that the nucleic acid molecule of the present invention can be developed directly into an injectable drug without needing a separate formulation process.
- the present invention proposes that the RNAi-inducing nucleic acid molecule according to the present invention exhibits a target gene silencing effect.
- the present invention is directed to a gene-silencing composition containing an RNAi-inducing nucleic acid molecule.
- the nucleic acid molecule may be contained in the form of a nucleic acid complex comprising a cell delivery vehicle bound thereto.
- the composition for inhibiting gene expression according to the present invention may be provided in the form of a kit for inhibiting gene expression.
- the kit for inhibiting gene expression may take the form of bottles, tubs, sachets, envelops, tubes, ampoules, and the like, which may be formed in part or in whole from plastic, glass, paper, foil, wax, and the like.
- the container may be equipped with a fully or partially detachable lid that may initially be part of the container or may be affixed to the container by mechanical, adhesive, or other means.
- the container may also be equipped with a stopper, allowing access to the contents by a syringe needle.
- the kit may comprise an exterior package which may include instructions regarding the use of the components.
- the present invention is directed to a method of inhibiting expression of a target gene in a cell using the above RNAi-inducing nucleic acid molecule. That is, the present invention is directed to a method for inhibiting expression of a target gene in a cell, which comprises a step of introducing the above RNAi-inducing nucleic acid molecule into a cell.
- the first strand of the RNAi-inducing nucleic acid may be complementary to the mRNA sequence of a target gene.
- the target gene may be an endogeneous gene or a transgene.
- the nucleic acid molecule according to the present invention is not necessarily limited to a synthetic siRNA and can also advantageously be applied to siRNA or shRNA, which is expressed in cells using an expression vector or the like.
- the nucleic acid molecule of the present invention can be expressed in cells to inhibit the expression of the target gene.
- the present invention is directed to a method for inhibiting expression of a target gene in a cell, the method comprising a step of expressing the above RNAi-inducing nucleic acid molecule in the cell.
- the nucleic acid molecule according the present invention can target an mRNA encoding a connective tissue growth factor (CTGF).
- CTGF connective tissue growth factor
- the present invention is directed to a pharmaceutical composition for treating or preventing a connective tissue growth factor (CTGF)-associated disease or disorder, the composition containing the above nucleic acid molecule that targets a CTGF-encoding mRNA.
- CTGF connective issue growth factor
- the present invention also is directed to a method of treating or prevent nq a connective issue growth factor (CTGF)-associated disease or disorder comprising administering a pharmaceutical composition containing the above nucleic acid molecule targeting a CTGF-encoding mRNA.
- nucleic acid molecule of the present invention can be developed into therapeutic agents against localized diseases, and may be used together with various known cell-specific antibodies, aptamers, ligands or the like, and thus can be developed into therapeutic agents for gene regulation, which exhibit gene silencing effects only in a desired area.
- the anticancer composition of the present invention may be provided as a pharmaceutical composition comprising the RNAi-inducing nucleic acid molecule alone or in combination with at least one pharmaceutically acceptable carrier, excipient or diluent.
- the nucleic acid molecule may be contained in the pharmaceutical composition in a pharmaceutically effective amount according to a disease and the severity thereof, the patient's age, weight, health condition and sex, the route of administration and the period of treatment.
- the term “pharmaceutically acceptable composition” refers to a composition that is physiologically acceptable and does not cause gastric disorder, allergic reactions such as gastrointestinal disorder or vertigo, or similar reactions, when administered to humans.
- said carrier, excipient or diluent may include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, magnesium stearate and mineral oils.
- the pharmaceutical composition may additionally contain fillers, anti-aggregating agents, lubricants, wetting agents, perfumes, emulsifiers and preservatives.
- the pharmaceutical composition of the present invention may be formulated using a method well known in the art, such that it can provide the rapid, sustained or delayed release of the active ingredient after administration to mammals.
- the formulation may be in the form of sterile injection solutions, etc.
- RNAi-inducing double-stranded nucleic acid molecules targeting CTGF 50 sequences targeting CTGF were designed, followed by screening.
- each of the structures was transfected into HaCaT (ATCC) cells at a concentration of 10 nM, and then the expression levels of CTGF mRNA in the cells were measured by real-time PCR.
- ATCC HaCaT
- HaCat cells were cultured in Dulbecco's modified Eagle's medium (Gibco) (supplemented with 10% fetal bovine serum (Gibco) and 100 ⁇ g/ml penicillin/streptomycin) in a 100 mm Petri dish. Immediately before transfection, 8 ⁇ 10 4 Hacat cells were seeded into a 12-well plate. Meanwhile, each of the siRNA, asiRNA and lasiRNA was diluted in 1 ⁇ siRNA duplex buffer (Biosesang Co., Ltd.) at a suitable concentration, and incubated at 90° C. for 2 min and at 37° C. for hour.
- siRNA duplex buffer Biosesang Co., Ltd.
- siRNAs were electrophoresed on 10% polyacrylamide gel, and then stained with EtBr for 5 min, and the bands were visualized by a UV transilluminator.
- the siRNAs were transfected into the cells according to the manual provided in Lipofectamine 2000 (Invitrogen), and after 24 hours, the mRNA levels in the cells were measured.
- the synthesized cDNA was diluted, and then subjected to quantitative real-time PCR using a step one real-time PCR system (Applied Biosystems) according to the protocol provided in the system.
- the target gene was analyzed using a power SYBR green PCR master mix (Applied Biosystems) with gene-specific primers.
- the nucleotide sequences of the primers used in the experiment are as follows:
- FIG. 1 shows the results of screening of 24 nucleotide sequences.
- lasiRNAs showed increased activity compared to siRNAs (lasiRNAs showed an increase in gene silencing efficiency of 20% or higher compared to siRNA), and in 5 sequences, siRNAs showed high gene silencing efficiency compared to lasiRNAs, suggesting that lasiRNAs generally show high gene silencing efficiency compared to conventional siRNAs.
- the IC50 of the siRNAs and lasiRNA showing a gene silencing efficiency of 90% or higher was measured, and as a result, it was shown that lasiRNAs having nucleotide sequences of Nos. 9 and 16 had the lowest IC50.
- the nucleotide sequence of No. 9 was selected as a final candidate for modification and self-delivery experiments. Information about the nucleotide sequence of No. 9 is shown in Table 4 below.
- RNAi-inducing double-stranded nucleic acid molecule SiRNA Sequence No name Sequence (5′-> 3′) listing No9 siRNA sense CGGCUUACCGA 149 CUGGAAGAtt antisense UCUUCCAGUCG 150 GUAAGCCGtt asiRNA sense CUUACCGACUG 151 GAAGA antisense UCUUCCAGUCG 152 GUAAGCCGtt lasiRNA sense CUUACCGACUG 153 GAAGA antisens UCUUCCAGUCG 154 GUAAGCCGCGA GGGCAGGCC (Capital letters: RNA; small letters: DNA)
- the 5′ end of the lasiRNA sense strand was labeled with cy3, and then the difference in uptake of lasiRNA between the presence and absence of cholesterol was observed by a fluorescence microscope.
- the cy3-labeled lasiRNA or chol-lasiRNA structure was incubated in HeLa cells at a concentration of 1 ⁇ M for 3 hours, and then the degree of intracellular delivery thereof was measured by observation with a fluorescence microscope.
- HeLa cells were cultured in Dulbecco's modified Eagle's medium (Gibco) (supplemented with 10% fetal bovine serum (Gibco) and 100 ⁇ g/ml penicillin/streptomycin) in a 100 mm Petri dish.
- Dibecco's modified Eagle's medium Gibco
- Gibco Dulbecco's modified Eagle's medium
- penicillin/streptomycin 100 ⁇ g/ml penicillin/streptomycin
- Each of cholesterol-modified lasiRNAs was diluted in single-strand Accell siRNA delivery medium (Thermo scientific) at a suitable concentration, and the cholesterol-modified single strand was incubated at 90° C. for 20-30 sec before annealing.
- the sense strand and the antisense strand were mixed with each other, and then incubated at 90 for 30 sec and at 37° C. for 1 hour, followed by annealing.
- the resulting siRNAs were electrophoresed on 10% polyacrylamide gel, and then stained with EtBr for 5 min, and the bands were visualized by a UV transilluminator.
- PS modification was introduced into the 3′ overhang of the antisense strand (i.e., first strand) of chol-lasiRNA, and the change in uptake efficiency of the chol-lasiRNA by PS modification was tested.
- Each of cy3-labelled chol-lasiRNA-PS(N) structures was incubated in HeLa cells at a concentration of 1 ⁇ M for 3 hours, and then the degrees of intracellular delivery of the structures was compared by observation with a fluorescence microscope. For an accurate comparison between cell penetrating abilities between the structures, the condition in which chol-lasiRNA-PS0 shows the lowest fluorescence was set, after which the fluorescence intensities of other structures were compared.
- PS modification(s) were introduced into the 3′ end of the antisense strand of the Chol-lasiRNA structure, which was then incubated in or transfected into HeLa cells. Then, as described in Example 2-1, the difference in delivery efficiency by the number of PS modifications was observed with a fluorescence microscope.
- the underline and the red color represent OMe modification, represents PS modification, Chol represents cholesterol, and Cy3 represents Cy3 fluorescent dye.
- chol-lasiRNA-PS(N) PS-modified lasiRNA
- chol-lasiRNA-PS(N) PS-modified lasiRNA
- each of chol-lasiRNA-PS(N) structures was transfected into HeLa cells at a concentration of 10 nM, and after 48 hours, the expression levels of CTGF mRNA in the cells were measured by real-time PCR.
- the gene silencing efficiency of the lasiRNAs showed a tendency to decrease as the number of PS modifications in the antisense strand increased, and when 12 or more PS modifications were introduced into the antisense strand, a slight decrease in the silencing activity was observed. Also, it was shown that chol-lasiRNA-PS17 having 17 PS modifications introduced into the antisense strand showed significantly low gene silencing efficiency, and thus showed little or no silencing effect on CTGF, suggesting that the number of PS modifications in the antisense strand is preferably 17 or less, and that 17 or more PS modifications are not suitable for self-delivery of the lasiRNA.
- Each graph in FIG. 5 represents the mean ⁇ SD of three repeated experiments.
- chol-lasiRNA-PS(N) structures having varying numbers of PS modifications were incubated with HeLa cells, and then the CTGF mRNA levels of the cells were measured to compare the gene silencing efficiencies of the structures.
- the cells were treated with 0.1 ⁇ M, 0.3 ⁇ M and 1 ⁇ M of each of the lasiRNAs, and chol-lasiRNA-PS7 ( FIG.
- chol-lasiRNA-PS4 showed a gene silencing effect of only about 55% even at the highest concentration (1 ⁇ M), and chol-lasiRNA-PS7 and chol-lasiRNA-PS12 showed a CTGF silencing effect of about 95% or higher at 1 ⁇ M.
- chol-lasiRNA-PS17 had a gene silencing effect of about 50% even when it was incubated at a high concentration (1 ⁇ M), like when it was transfected, suggesting that it is required to optimize the number of PS modifications suitable for increasing the delivery and silencing activity, rather than to introduce a too large number of PS modifications.
- MyD88-targeting chol-lasiRNA-PS7 showed no CTGF silencing efficiency, indicating that gene silencing by the cp-lasiRNA structures occurs in a sequence-specific manner.
- cp-lasiRNA cell penetrating lasiRNA
- cp-lasiRNA-1 has cholesterol conjugated thereto
- cp-lasiRNA-2 has conjugated thereto tocopherol in place of cholesterol
- cp-lasiRNA-3 has stearic acid conjugated to the 5′ end of the sense strand in place of cholesterol.
- FIG. 8 shows the mean ⁇ DS of two repeated experiments for each of the cp-lasiRNA structures.
- the synthesized cDNA was diluted, and then subjected to quantitative real-time PCR using a step one real-time PCR system (Applied Biosystems) according to the protocol provided therein.
- the target gene was analyzed using a power SYBR green PCR master mix (Applied Biosystems) together with gene-specific primers.
- the nucleotide sequences of the primers used in the experiment are as follows:
- hydrophobic modifications other than cholesterol modification enabled the target gene to be silenced with high efficiency.
- stearyl showed high gene silencing efficiency, even though it was conjugated to the 5′ end of the sense strand, suggesting that the nucleic acid molecule according to the present invention can achieve the desired effect even when a lipophilic compound (hydrophobic modification) is conjugated to various positions of the nucleic acid molecule.
- each of 31-nt antisense and 21-nt antisense strands was combined with a 16-nt second strand (sense strand) to make cp-lasiRNAs, and then A549 cells were treated with each of the cp-lasiRNAs.
- CTGF 3′ ⁇ cp-lasiRNA
- CTGF cp-lasiRNA
- Antisense 21nt (SEQ ID NO: 176) 5′ UCUUCCAGUCGGUAAGC*C*G*C*G 3′ cp-lasiRNA (CTGF) Sense: (SEQ ID NO: 175) 5′ C T T A C C G A C T G G A A* G *A*chol.
- each of the nucleic acid molecules was transfected into A549 cells (ATCC) according to the method of Example 1 or incubated in A549 cells for 24 hours according to the method of Example 2. Then, the expression levels of target gene mRNA in the cells were measured by real-time PCR.
- FIG. 9 shows the mean ⁇ SD of two repeated experiments for each of the nucleic acid molecules. Specifically, FIG. 9A shows the gene silencing efficiency of a CTGF-targeting cp-lasiRNA having a 21 mer antisense strand; FIG. 9B shows the gene silencing efficiency of a CTGF-targeting cp-lasiRNA having a 31 mer antisense strand; FIG.
- FIG. 9C shows the gene silencing efficiency of a survivin-targeting cp-lasiRNA having a 21 mer antisense strand
- FIG. 9D shows the gene silencing efficiency of a survivin-targeting cp-lasiRNA having a 31 mer antisense strand.
- the CTGF silencing efficiency was measured using the primers described in Example 1, and the surviving silencing efficiency was measured using the primers described in Example 4.
- the target gene silencing efficiency thereof was higher in the case of the 31-nt antisense stand than in the case of the 21-nt antisense strand ( FIGS. 9A and 9B ).
- the target gene silencing efficiency thereof was higher in the case of the 31-nt antisense strand.
- the nucleic acid molecule according to the present invention can be designed to have an antisense strand (i.e., first strand) having varying lengths of 19 nt to 31 nt, and can be used to effectively silence a target gene, but it can more efficiently silence a target gene when it has a 31-nt antisense strand, compared to when it has a 21-nt antisense strand.
- an antisense strand i.e., first strand
- siRNA siRNA
- CGF cp-lasiRNA
- Sccrambled cp-lasiRNA
- a circle having a radius of 5 mm was drawn on the shaved skin portion, and then 100 ⁇ l of PBS, siRNA or cp-lasiRNA was injected intradermally into the central portion of the circle by an insulin syringe (BD, 31G). After injection, the skin tissue was taken using 8 mm biopsy punch at the indicated date, and the expression of gene therein was analyzed.
- the nucleic acids used are as follows.
- CTGF cp-lasiRNA
- Antisense Rat (SEQ ID NO: 177) 5′-UCUUCCAGUCGGUA GGCAGCUAGGGCA*G*G*G*C -3′ cp-lasiRNA (CTGF) Sense Rat: (SEQ ID NO: 178) 5′- C C T A C C G A C T G G A A* G *A*choleterol. 3′ Underline: OMe modification, *: PS (phosphorothioate bond)
- siRNA The followings were used as siRNA:
- siRNA (CTGF) antisense (SEQ ID NO: 179) 5′- C U G C C U A C C G A C U G G A A G A TT-3′ siRNA (CTGF) sense: (SEQ ID NO: 180) 5′- C U G C C U A C C G A C U G G A A G A TT-3′ Underline: OMe modification
- RNA was extracted using an RNeasy fibrous tissue mini kit (Qiagen), and 1 ⁇ g of the RNA was used for cDNA synthesis.
- cDNA was synthesized using a high-capacity cDNA reverse transcription kit (Applied Biosystems) according to the protocol provided therein.
- the synthesized cDNA was diluted, and then subjected to quantitative real-time PCR using a step one real-time PCR system (Applied Biosystems) according to the protocol provided therein.
- the target gene was analyzed using a power SYBR green PCR master mix (Applied Biosystems) together with gene-specific primers.
- the nucleotide sequences of the primers used in the experiment are as follows. Each graph in FIG. 12 represents the mean ⁇ SD of five repeated experiments.
- CTGF-Rat Forward (SEQ ID NO: 181) 5′-GGC TCG CAT CAT AGT TG-3′ Reverse (SEQ ID NO: 182) 5′-CGG GAA ATG CTG TGA GGA GT-3′
- siRNA (CTGF), cp-lasiRNA (CTGF) or cp-lasiRNA (Scrambled) was dissolved in 100 of PBS at the indicated concentrations, and each of PBS and the solutions was injected intradermally into the rat skin, and after 24 hours, the skin tissue was collected, and the expression of the target gene therein was measured.
- Each graph in FIG. 12 represents the mean ⁇ SD of five repeated experiments.
- CTGF cp-lasiRNA
- cp-lasiRNA was injected into rats at a concentration ranging from 100 ⁇ g/injection to 0.1 ⁇ g/injection in the same manner as described above, and then the expression of the target gene was measured.
- cp-lasiRNA showed a target gene silencing efficiency of 70% or higher even at a low concentration of about 0.3 ⁇ g/injection, and had an IC50 value of about 0.21 ⁇ g/injection.
- CTGF cp-lasiRNA
- CTGF cp-lasiRNA
- cp-lasiRNA silenced the target gene for at least 5 days.
- Each graph in FIG. 14 represents the mean ⁇ SD of two repeated experiments.
- the nucleic acid structure according to the present invention has both cholesterol modification and phosphorothioate modification introduced therein, and thus has high gene silencing efficiency while having the ability to penetrate cells without needing a separate intracellular delivery vehicle.
- it can be delivered into an actual target area in an amount sufficient for induction of RNAi, and thus can overcome the in vivo delivery problem occurring in the prior art. Therefore, the nucleic acid molecule according to the present invention can effectively substitute for conventional siRNA molecules to treat cancer or viral infections.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Diabetes (AREA)
- Cardiology (AREA)
- Rheumatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Dermatology (AREA)
- Urology & Nephrology (AREA)
- Epidemiology (AREA)
- Neurology (AREA)
- Obesity (AREA)
- Emergency Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
Abstract
Description
- The present invention relates to a novel, RNA interference (RNAi)-inducing nucleic acid molecule having cell penetrating ability and the use thereof, and more particularly, to a novel, RNAi-inducing double-stranded nucleic acid molecule, which has a replacement of the phosphate backbone of at least one nucleotide with phosphorothioate or phosphorodithioate, and has a lipophilic compound conjugated thereto, and thus has high target gene-silencing efficiency while having the ability to penetrate cells without needing a separate intracellular delivery vehicle, and to a method of silencing a target gene using the nucleic acid molecule.
- RNA interference (RNAi) is a mechanism capable of inhibiting the expression of a gene in a highly specific and efficient manner, in which degradation of the mRNA of a target gene is induced by introducing a double-stranded RNA, which comprises a sense strand having a sequence homologous to the mRNA of the target gene and an antisense strand having a sequence complementary to the mRNA of the target gene, into cells or the like, thereby inhibiting the expression of the target gene.
- An siRNA that induces this RNA interference is a short (19-21 bp) double-stranded RNA capable of inhibiting the expression of a target gene in a sequence-specific manner, and is currently receiving attention as a therapeutic agent against various diseases, including cancer difficult to treat, viral infections, and hereditary diseases, thanks to its high efficiency and target specificity. For the development of effective therapeutic agents based on an siRNA, various problems associated with stability, silencing efficiency, immune responses, off-target effects and the like, are required to be solved, and among them, effective in vivo delivery is considered most difficult to achieve. An siRNA cannot pass through the cell membrane, because it is highly negatively charged due to its phosphate backbone structure. In addition, because of its small size, the siRNA is quickly removed from blood, and thus it is difficult to deliver the siRNA in an amount sufficient for inducing RNAi to a target area.
- In the case of in vitro delivery, many high-efficiency delivery methods that use cationic lipids and cationic polymers have been developed (Sioud M, Sorensen D R Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 2003; 312: 1220-1225). However, in most cases, in vivo delivery of siRNAs is difficult to achieve with high efficiency, unlike in vitro delivery, and the efficiency of delivery of siRNAs decreases due to their interactions with various proteins in vivo (Bolcato-Bellemin A L, Bonnet M E, Creusat G, et al. Sticky overhangs enhance siRNA-mediated gene silencing. Proceedings of the National Academy of Sciences of the United States of America 2007; 104: 16050-16055). In addition, siRNAs are highly accumulated in a specific organ such as liver or lung, which is not a diseased area, depending on the composition of delivery vehicles, thus inducing toxicity.
- Meanwhile, connective tissue growth factor (CTGF/CCN2) is known as a matricellular protein that plays an important role in the differentiation, growth, migration, ECM production, adhesion and the like of cells. In the case of chronic fibrotic disorders that induce fibrosis in various organs to cause damage to the organs, it was found that CTGF is overexpressed in tissues in which fibrotic disorders occur. Also, the relationship between CTGF and fibrosis in the skin has been relatively well studied. In addition, it was observed that the expression of CTGF in a normal skin was inhibited to the basal level, but temporarily increased when the skin was wounded. On the contrary, in the case of keloid or localized sclerosis, it was observed that the overexpression of CTFG was maintained even after wound healing, and when the expression of CTGF was inhibited using an antisense strand or the like, fibrosis and keloid production were inhibited, suggesting that CTGF plays an important role in fibrosis and keloid production (Sisco M, Kryger Z B, O'Shaughnessy K D, et al. Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair Regen 2008; 16: 661-673. DOI: WRR416 [pii]). Pathologically, it is known that a full-length CTGF molecule is involved in a condition in which the hyperproliferation of connective tissue cells and the excessive deposition of extracellular matrix are present. In addition, it is known that CTGF is also involved in conditions associated with the migration and proliferation of endothelial cells and angiogenesis. Examples of diseases and disorders associated with such conditions include the fibrosis, cancer and related diseases and disorders of the skin and major organs, for example, systemic sclerosis, angiogenesis, atherosclerosis, diabetic nephropathy, and renal hypertension. Also, CTGF is known to be useful for wound healing, connective tissue repair, and bone and cartilage repair. In such terms, CTGF was disclosed as an inducer of bone, tissue or cartilage formation disorders such as osteoporosis, osteoarthritis or osteochondritis, arthritis, skeletal disorder, hypertrophic scar, a burn, hemagiectatic hypertrophy, or sound healing (see, for example, U.S. Pat. No. 5,837,258).
- Accordingly, the present inventors have made extensive efforts to provide a novel, RNAi-inducing nucleic acid molecule that can be effectively delivered in vitro and in vivo and has cell-penetrating ability, and as a result, have found that, when the phosphate backbone of at least one nucleotide in an RNAi-inducing double-stranded nucleic acid molecule is substituted with phosphorothioate and a lipophilic compound is conjugated to the nucleic acid molecule, the nucleic acid molecule exhibits high target gene silencing efficiency even in vivo without needing a separate intracellular delivery vehicle and, at the same time, has high cell-penetrating ability, thereby completing the present invention.
- The above information disclosed in this Background section is only for enhancement of understanding of the background of the present invention, and therefore it may contain information that does not form the prior art that is already known to a person of ordinary skill in the art.
-
- Patent Document 1: U.S. Pat. No. 5,837,258
-
- Non-Patent Document 1: Sioud M, Sorensen D R Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 2003; 312: 1220-1225
- Non-Patent Document 2: Bolcato-Bellemin A L, Bonnet M E, Creusat G, et al. Sticky overhangs enhance siRNA-mediated gene silencing. Proceedings of the National Academy of Sciences of the United States of America 2007; 104: 16050-16055
- Non-Patent Document 3: Sisco M, Kryger Z B, O'Shaughnessy K D, et al. Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair Regen 2008; 16: 661-673. DOI: WRR416 [pii]
- It is an object of the present invention to provide a novel, RNAi-inducing nucleic acid molecule having cell-penetrating ability, which can be effectively delivered in vitro and in vivo, and the use thereof.
- To achieve the above object, the present invention provides an RNAi-inducing double-stranded nucleic acid molecule having cell-penetrating ability, wherein the nucleic acid molecule comprising a first strand comprising a region complementary to a target nucleic acid and a second strand that forms a complementary bond with the first strand; and wherein the phosphate backbone of at least one nucleotide in the nucleic acid molecule was substituted with phosphorothioate or phosphorodithioate, and the nucleic acid molecule has a lipophilic compound conjugated thereto.
- The present invention also provides a gene-silencing composition containing the above nucleic acid molecule.
- The present invention also provides a method for silencing a target gene in a cell, the method comprising introducing the above nucleic acid molecule into the cell.
- The present invention also provides a pharmaceutical composition for treating or preventing a connective tissue growth factor (CTGF)-associated disease or disorder, the composition containing the above nucleic acid molecule that targets a CTGF-encoding mRNA.
- The present invention also provides a meth of treating or preventing a connective tissue growth factor (CTGF)-associated disease or disorder comprising administering a pharmaceutical composition containing the above nucleic acid molecule targeting a CTGF-encoding mRNA.
- The present invention also provides an RNAi-inducing double-stranded nucleic acid molecule having cell-penetrating ability, the nucleic acid molecule comprising: a first strand comprising a region complementary to a connective tissue growth factor (CTGF)-encoding mRNA; and a second strand that forms a complementary bond with the first strand, wherein the phosphate backbone of 1 to 31 nucleotides in the nucleic acid molecule was substituted with phosphorothioate or phosphorodithioate, and the nucleic acid molecule has a lipophilic compound conjugated thereto and has a pair of nucleic sequences selected from the group consisting of a pair of nucleotide sequences of SEQ ID NOS: 149 and 150, a pair of nucleotide sequences of SEQ ID NOS: 151 and 152, and a pair of nucleotide sequences of SEQ ID NOS: 153 and 154.
- Other features and embodiments of the present invention will be more apparent from the following detailed descriptions and the appended claims.
-
FIG. 1 is a graph showing the gene silencing efficiencies of siRNA, asiRNA and lasiRNA structures for 24 sequences that target the CTGFs shown in Tables 1 to 3. -
FIG. 2 depicts fluorescence micrographs showing the increase in intracellular uptake efficiency of lasiRNA by cholesterol modification. -
FIG. 3 shows the structures of cholesterol- and PS-modified lasiRNAs according to the present invention. Underline: OMe modification; *: PS modification, Chol: cholesterol; Cy3: Cy3. -
FIG. 4 depicts fluorescence micrographs showing the increase in intracellular uptake efficiency of chol-lasiRNA by phosphorothioate (PS) modification. -
FIG. 5 is a graphic diagram showing a comparison between the gene silencing effects of chol-lasiRNAs according to variation of numbers in phosphorothioate (PS) modifications. Each graph represents the mean±SD of three repeated experiments. -
FIG. 6 shows the structure of a chol-lasiRNA-PS7 that targets MyD88. Underline: OMe modification, *: PS modification, and Chol: cholesterol. -
FIG. 7 is a graphic diagram showing a comparison between the gene silencing efficiencies of a variety of cell-penetrating lasiRNAs (cp-lasiRNAs). The parenthesized CTGF or MyD88 represents a gene that is targeted by cp-lasiRNAs. -
FIG. 8 is a graphic diagram showing the gene silencing efficiencies of the inventive nucleic acid molecules having various lipophilic compound modifications, that is, hydrophobic modifications. -
FIG. 9 is a graphic diagram showing the gene silencing efficiency of the inventive nucleic acid molecule according to the lengths of the antisense strand. -
FIG. 10 shows the structure of a PS2 modification. -
FIG. 11 is a graphic diagram showing the gene silencing efficiencies of the inventive nucleic acid molecules having phosphate backbone modifications. -
FIG. 12 is a graphic diagram showing the in vivo target gene silencing efficiencies of the nucleic acid molecules according to the present invention. -
FIG. 13 is a graphic diagram showing the in vivo target gene silencing efficiency of the inventive nucleic acid molecule as a function of the concentration thereof. -
FIG. 14 is a graphic diagram showing the target gene silencing efficiency of the inventive nucleic acid molecule as a function of duration. - Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Generally, the nomenclature used herein are well known and commonly used in the art.
- The definition of main terms used in the detailed description of the invention is as follows.
- As used herein, the term “RNAi” (RNA interference) refers to a mechanism by which a double-stranded RNA (dsRNA) consisting of a strand having a sequence complementary to the mRNA of a target gene and a strand having a sequence complementary thereto is introduced into cells or the like to induce the degradation of the mRNA of the target gene to thereby inhibit the expression of the target gene.
- As used herein, the term “siRNA” (small interfering RNA) refers to a short double-stranded RNA (dsRNA) that mediates efficient gene silencing in a sequence-specific manner.
- As used herein, the term “antisense strand” refers to a polynucleotide that is substantially or 100% complementary to a target nucleic acid of interest. For example, an antisense strand may be complementary, in whole or in part, to a molecule of mRNA (messenger RNA), an RNA sequence that is not mRNA (e.g., microRNA, piwiRNA, tRNA, rRNA and hnRNA) or a sequence of DNA that is either coding or non-coding. The terms “antisense strand” and “guide strand” are used interchangeably herein.
- The term “sense strand” refers to a polynucleotide that has the same nucleotide sequence, in whole or in part, as a target nucleic acid, in which the polynucleotide is identical, in whole or in part, a molecule of mRNA (messenger RNA), an RNA sequence that is not mRNA (e.g., microRNA, piwiRNA, tRNA, rRNA and hnRNA) or a sequence of DNA that is either coding or non-coding.
- As used herein, the term “gene” is intended to have the broadest meaning, and the gene can encode a structural protein or a regulatory protein. Herein, the regulatory protein includes a transcriptional factor, a heat shock proteins, or a protein that is involved in DNA/RNA replication, transcription and/or translation. Also, the target gene whose expression is to be inhibited is resident in a viral genome which has integrated into the animal gene or may be present as an extrachromosomal element. For example, the target gene may be a gene on an HIV genome. In this case, the genetic construct is useful in inactivating translation of the HIV gene in a mammalian cell.
- In one aspect, the present invention is directed to an RNAi-inducing double-stranded nucleic acid molecule having cell-penetrating ability, the nucleic acid molecule comprising a first strand comprising a region complementary to a target nucleic acid; and a second strand that forms a complementary bond with the first strand, wherein the phosphate backbone of at least one nucleotide in the nucleic acid molecule was substituted with phosphorothioate or phosphorodithioate, and the nucleic acid molecule has a lipophilic compound conjugated thereto.
- Herein, the first strand corresponds to an antisense strand of siRNA, and the second strand corresponds to a sense strand of siRNA.
- In the present invention, the first strand in the RNAi-inducing double-stranded nucleic acid molecule may have a length of 16 to 121 nt, and preferably 24-121 nt. The first strand comprises a region complementary to the target nucleic acid, and the region complementary to the target nucleic acid may have a length of 16 to 31 nt, 19 to 31 nt, or 19 to 21 nt. In addition, the second strand may have a length of 13 to 25 nt, 13 to 21 nt, or 16 to 21 nt.
- In the present invention, preferably, the RNAi-inducing double-stranded nucleic acid molecule may comprise a first strand, which is 24-121 nt in length and comprises a region complementary to a target nucleic acid, and a second strand which is 13-21 nt in length and comprises a region that binds complementarily to the region of the first strand, which is complementary to the target nucleic acid.
- In an example of the present invention, the nucleic acid molecule having the above-described structure was constructed to have each of 24 sequences targeting CTGF, and as a result, it was found that the constructed nucleic acid molecules generally had high gene silencing efficiencies compared to conventional siRNAs. In the present invention, an RNAi-inducing double-stranded nucleic acid molecule having a long single-stranded region that does not form a complementary bond with the second strand, that is, an siRNA having a long antisense strand, has been named as “lasiRNA”.
- The lasiRNA is a novel, asymmetrical RNAi-inducing structure that has a short double-strand length and high gene silencing efficiency, compared to conventional siRNA. In addition, due to the function of the antisense strand having a long overhang structure, the lasiRNA has increased gene silencing efficiency compared to siRNA or asiRNA, and thus will substitute for conventional structures to develop therapeutic agents. In addition, it is characterized in that in that it has a long overhang length compared to other structures, and maintains high activity even when the overhang is modified in various ways. By virtue of these characteristics, relatively many chemical modifications can be freely introduced into the lasiRNA, and thus various functions can be added to the lasiRNA.
- In the present invention, the region of the first strand, which is complementary to the target nucleic acid, is preferably 19-21 nt in length. Thus, the first strand comprises a single-stranded region which does not bind to the second strand. Preferably, the first strand may further comprise, in the single-stranded region, a nucleic acid oligonucleotide selected from the group consisting of antisense DNA, antisense RNA, ribozyme and DNAzyme.
- In the present invention, the single-stranded region of the first strand, which does not bind complementarily to the second strand, can be linked directly or by a linker to the region that binds complementarily to the second strand. Herein, the linker may be a chemical linker. Examples of the chemical linker include, but are not limited to, a nucleic acid moiety, PNA (a PNA moiety), a peptide moiety, a disulfide bond or a polyethylene glycol moiety.
- Moreover, in the present invention, the first strand may further comprise, in the single-stranded region, a sequence that is complementary or non-complementary to the target nucleic acid. When the first strand comprises the complementary sequence, the complementary sequence may be located consecutively from the double-stranded region of the nucleic acid molecule of the present invention, that is, the region of siRNA, which is complementary to the target nucleic acid. Alternatively, the complementary sequence may also be located apart from the double-stranded region. Likewise, the sequence that is targeted by siRNA, and the sequence that is targeted by the ribozyme or DNAzyme of the single-stranded region may be located consecutively or located apart from each other. In addition, in the case in which the single-stranded region of the first strand has the sequence of siRNA, which is complementary to the target gene, when the sequence contained in the single-stranded region is antisense DNA or antisense RNA, the sequence may be at least about 70-80%, more preferably at least about 80-90%, and even more preferably at least 95-99% complementary to the sequence of the target gene targeted by the siRNA, and when the single-stranded region is ribozyme or DNAzyme, the sequence of the single-stranded region may be at least about 50-60% complementary to the sequence of the target gene targeted by the siRNA.
- In addition, the single-stranded region may be 5-100 nt in length. If the length of the single-stranded region is less than 5 nt, the effect of increasing the efficiency with which gene expression is inhibited will be insignificant, and if the length is more than 100 nt, the efficiency with which an RNA molecule is synthesized will be reduced. Preferably, the single-stranded region may be 9-100 nt in length or 50 nt or less in length. More preferably, the single-stranded region may be 10-15 nt in length.
- In the present invention, at least one of the nucleotides of the single-stranded region in the first strand may comprise a bulky base analog. When an extended sequence comprises a bulky base analog such as a deoxyadenosine derivative having a phenyl group, an mRNA strand that binds complementarily to the extended sequence is cleaved at the location of the bulky base analog. Any bulky base analog that induces this cleavage may be used without limitation in the present invention.
- In the present invention, in case of a nucleic structure obtained by extending the antisense strand of siRNA in a manner complementary to a target mRNA sequence, it was predicted that the 5′ end of the nucleic structure will function as the RNAi mechanism while the 3′ end of the nucleic structure will function as an antisense mechanism or guide the 5′ end siRNA to the target mRNA. When the sequence of the antisense 3′-end, which is complementary to mRNA, is DNA, it can induce RNase H-dependent mRNA cleavage. In addition, it was predicted that when at least one of the nucleotides of the single-stranded region of the antisense 3′-end comprises a bulky base analog or the single-stranded region binds to mRNA to form a bulge structure, cleavage could be induced. Further, when a nucleic acid molecule comprising the ribozyme or DNAzyme introduced into the single-stranded region of the first strand can induce synergistic cleavage.
- Korean Patent Laid-Open Publication No. 10-2009-0065880 discloses an siRNA structure which is an siRNA molecule consisting of a 19-21 nt antisense strand and a 13-16 nt sense strand, in which the 5′ end of the antisense strand is a blunt end. This siRNA structure inhibits gene expression at high efficiency without causing off-target effects by the sense strand of siRNA or inhibiting other RNAi mechanisms. When the structure of the present invention is applied to this siRNA, off-target effects can be minimized while the above-described effect of the nucleic acid oligonucleotide contained in the single-stranded region of the first strand can be obtained. As used herein, the term “off-target effects” refers to any instance in which the sense strand of siRNA causes the unexpected degradation of other mRNAs or the silencing of the corresponding genes, and the antisense strand of siRNA is paired with undesired targets to cause the degradation of other mRNAs or the silencing of the corresponding genes, even though siRNA is originally used to induce the degradation of mRNA having a sequence complementary to the antisense strand so as to obtain the effect of inhibiting the gene expression of the mRNA.
- In an example of the present invention, it was shown that, when cholesterol modifications and PS modifications were performed, the cholesterol modifications increased the cell penetrating ability of the lasiRNA, but when a sufficient number of phosphorothioate (PS) modifications were not introduced, the use of cholesterol alone was not sufficient to effectively induce target gene silencing without a separate intracellular delivery system. Herein, it was shown that the introduction of PS modifications increased the cell penetrating ability in proportion to the number of PS modifications introduced, and when the number of PS modifications was too large, the lasiRNA did not induce RNAi-mediated gene silencing. For this reason, the optimum number of PS modifications was established by comparing gene silencing efficiency after incubation with cells. Specifically, the nucleic acid molecule according to the present invention may characterized in that the phosphate backbone of 1 to 48 nucleotides, preferably 1 to 31 nucleotides, more preferably 2 to 17 nucleotides, and even more preferably 4 to 17 or 12 to 17 nucleotides, is substituted with phosphorothioate.
- Herein, the phosphate backbone of nucleotides in the first strand of the nucleic acid molecule may be substituted with phosphorothioate, and the phosphate backbones of nucleotides in a region of the first strand, which excludes a region complementary to a target nucleic acid, may be substituted with phosphorothioate. Herein, the phosphate backbone of 1 to 31 nucleotides, preferably 1 to 17 nucleotides, more preferably 2 to 17 nucleotides, and even more preferably 4 to 17 nucleotides or 12 to 17 nucleotides, in the first strand, may be substituted with phosphorothioate. In addition, the phosphate backbone of 1 to 21 nucleotides, preferably 1 to 17 nucleotides, more preferably 2 to 17 nucleotides, and even more preferably 4 to 17 nucleotides or to 17 nucleotides, in the second strand, may be substituted with phosphorothioate.
- In another example of the present invention, it could be seen that the use of PS2 (phosphorodithioate) modification as shown in
FIG. 10 in place of PS modification resulted in an increase in the gene silencing efficiency of the inventive nucleic acid molecule compared to conventional siRNA structures, even though it showed reduced gene silencing efficiency compared to PS modification. Thus, the nucleic acid molecule according to the present invention may be characterized in that the phosphate backbone of at least one nucleotide is substituted with phosphorodithioate. Preferably, the phosphate backbone of 1 to 48 nucleotides, preferably 1 to 31 nucleotides, more preferably 2 to 17 nucleotides, and even more preferably 4 to 17 or 12 to 17 nucleotides, in the nucleic acid molecule, may be substituted with phosphorodithioate. Herein, the phosphate backbone of 1 to 31 nucleotides, preferably 1 to 17 nucleotides, more preferably 2 to 17 nucleotides, and even more preferably 4 to or 12 to 17 nucleotides, in the first strand, may be substituted with phosphorodithioate. Alternatively, the phosphate backbone of 1 to 17 nucleotides, preferably 2 to 17 nucleotides, and even more preferably 4 to 17 or 12 to 17 nucleotides, in the second strand, may be substituted with phosphorodithioate. - The lipophilic compound that is used in the present invention results in hydrophobic modification, and may be, for example, a lipid, a lipophilic peptide or a lipophilic protein. As the lipid, cholesterol, tocopherol, or a long-chain fatty acid having 10 or more carbon atoms such as stearic acid or palmitic acid, may be used, but is not limited thereto. In addition, the lipophilic compound such as cholesterol may be conjugated to the 5′ or 3′ end of the first or second strand of the nucleic acid molecule, but is not limited thereto.
- The target nucleic acid, not limited thereto, but might be mRNA (messenger RNA), microRNA, piRNA (piwi-interacting RNA), coding DNA sequence or non-coding DNA sequence or the like.
- The nucleic acid molecule of the present invention may be a molecule synthesized according to a general method, but is not limited thereto. In other words, in the present invention, the siRNA molecule may be chemically or enzymatically synthesized. The siRNA molecule of the present invention may be derived from naturally occurring genes by standard recombinant techniques. In this case, the siRNA molecule may be substantially complementary at the nucleotide sequence level to at least a portion of mRNA of the target gene, the expression of which is to be modified.
- Accordingly, the nucleic acid molecule of the present invention may comprise a chemical modification. The chemical modification may be obtained by replacing the hydroxyl group at
position 2′ of ribose of at least one nucleotide, included in the nucleic acid molecule, by any one of a hydrogen atom, a fluorine atom, an —O-alkyl group, an —O-acyl group and an amino group, but is not limited thereto. In order to increase the ability to deliver the nucleic acid molecule, the hydroxyl group may be substituted by any one of —Br, —Cl, —R, —R′OR, —SH, —SR, —N3 and —CN (R=alkyl, aryl, or alkylene). In addition, the chemical modification may be obtained by replacing the phosphate backbone of at least one nucleotide, included in the nucleic acid molecule, by any one of alkylphosphonate form, phosphoroamidate form and boranophosphate form. Further, the chemical modification may be obtained by replacing at least one nucleotide included in the nucleic acid molecule by any one of LNA (locked nucleic acid), UNA (unlocked nucleic acid), morpholino and PNA (peptide nucleic acid). In addition, the chemical modification may be obtained by binding the nucleic acid molecule to one or more selected from the group consisting of lipids, cell penetrating peptides and cell targeting ligands. - In addition, the nucleic acid molecule according to the present invention may be efficiently used for in vitro and in vivo delivery together with various delivery vehicles, such as liposomes, cationic polymers, antibodies, aptamers or nanoparticles, and delivery methods, known to effectively deliver oligonucleotides into cells.
- Meanwhile, in an example of the present invention, it was shown that, when the nucleic acid molecule of the present invention, dissolved in a solution such as PBS, was injected without using a separate delivery vehicle, it exhibited a high gene silencing efficiency of 90% or higher in a target area in vivo, suggesting that the nucleic acid molecule of the present invention can be developed directly into an injectable drug without needing a separate formulation process.
- Examples of the present invention propose that the RNAi-inducing nucleic acid molecule according to the present invention exhibits a target gene silencing effect. Thus, in another aspect, the present invention is directed to a gene-silencing composition containing an RNAi-inducing nucleic acid molecule. Herein, the nucleic acid molecule may be contained in the form of a nucleic acid complex comprising a cell delivery vehicle bound thereto.
- In an example of the present invention, it was found that, when the nucleic acid structure of the present invention was applied to an siRNA targeting the target gene CTGF, the efficiency with which the expression of the target gene is inhibited could be significantly increased, and the cell-penetrating ability thereof could also be maintained for a long period of time. Thus, it will be obvious to those skilled in the art that, even when nucleic acid molecules targeting other target genes are provided according to the present invention, the same results can be obtained.
- Meanwhile, the composition for inhibiting gene expression according to the present invention may be provided in the form of a kit for inhibiting gene expression. The kit for inhibiting gene expression may take the form of bottles, tubs, sachets, envelops, tubes, ampoules, and the like, which may be formed in part or in whole from plastic, glass, paper, foil, wax, and the like. The container may be equipped with a fully or partially detachable lid that may initially be part of the container or may be affixed to the container by mechanical, adhesive, or other means. The container may also be equipped with a stopper, allowing access to the contents by a syringe needle. The kit may comprise an exterior package which may include instructions regarding the use of the components.
- In still another aspect, the present invention is directed to a method of inhibiting expression of a target gene in a cell using the above RNAi-inducing nucleic acid molecule. That is, the present invention is directed to a method for inhibiting expression of a target gene in a cell, which comprises a step of introducing the above RNAi-inducing nucleic acid molecule into a cell.
- In the present invention, the first strand of the RNAi-inducing nucleic acid may be complementary to the mRNA sequence of a target gene.
- In the present invention, the target gene may be an endogeneous gene or a transgene.
- The nucleic acid molecule according to the present invention is not necessarily limited to a synthetic siRNA and can also advantageously be applied to siRNA or shRNA, which is expressed in cells using an expression vector or the like. In other words, the nucleic acid molecule of the present invention can be expressed in cells to inhibit the expression of the target gene. Thus, in still another aspect, the present invention is directed to a method for inhibiting expression of a target gene in a cell, the method comprising a step of expressing the above RNAi-inducing nucleic acid molecule in the cell.
- Meanwhile, the nucleic acid molecule according the present invention can target an mRNA encoding a connective tissue growth factor (CTGF). In an example of the present invention, it was found that the expression of CTGF was inhibited through the introduction of the nucleic acid molecule having the structure according to the present invention into the cell. Thus, in yet another aspect, the present invention is directed to a pharmaceutical composition for treating or preventing a connective tissue growth factor (CTGF)-associated disease or disorder, the composition containing the above nucleic acid molecule that targets a CTGF-encoding mRNA. The present invention also is directed to a method of treating or prevent nq a connective issue growth factor (CTGF)-associated disease or disorder comprising administering a pharmaceutical composition containing the above nucleic acid molecule targeting a CTGF-encoding mRNA.
- In addition, the nucleic acid molecule of the present invention can be developed into therapeutic agents against localized diseases, and may be used together with various known cell-specific antibodies, aptamers, ligands or the like, and thus can be developed into therapeutic agents for gene regulation, which exhibit gene silencing effects only in a desired area.
- The anticancer composition of the present invention may be provided as a pharmaceutical composition comprising the RNAi-inducing nucleic acid molecule alone or in combination with at least one pharmaceutically acceptable carrier, excipient or diluent. The nucleic acid molecule may be contained in the pharmaceutical composition in a pharmaceutically effective amount according to a disease and the severity thereof, the patient's age, weight, health condition and sex, the route of administration and the period of treatment.
- As used herein, the term “pharmaceutically acceptable composition” refers to a composition that is physiologically acceptable and does not cause gastric disorder, allergic reactions such as gastrointestinal disorder or vertigo, or similar reactions, when administered to humans. Examples of said carrier, excipient or diluent may include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, magnesium stearate and mineral oils.
- The pharmaceutical composition may additionally contain fillers, anti-aggregating agents, lubricants, wetting agents, perfumes, emulsifiers and preservatives. Also, the pharmaceutical composition of the present invention may be formulated using a method well known in the art, such that it can provide the rapid, sustained or delayed release of the active ingredient after administration to mammals. The formulation may be in the form of sterile injection solutions, etc.
- Hereinafter, the present invention will be described in further detail with reference to examples. It will be obvious to a person having ordinary skill in the art that these examples are illustrative purposes only and are not to be construed to limit the scope of the present invention. In addition, it will be apparent to those skilled in that art that various modifications and variations can be made without departing from the technical scope of the present invention based on this illustration.
- Before introduction of various chemical modifications for effective self-delivery structures, in order to secure highly efficient, RNAi-inducing double-stranded nucleic acid molecules targeting CTGF, 50 sequences targeting CTGF were designed, followed by screening.
- To compare CTGF gene-silencing efficiency between lasiRNA and conventional RNAi-inducing structures, the siRNA, asiRNA and lasiRNA structures having the nucleotide sequences shown in Tables 1 to 3 below were synthesized. Tables 1 to 3
show 24 nucleotide sequences for each of the siRNA, asiRNA and lasiRNA structures that target CTGF (Capital letters: RNA; small letters: DNA). To test the CTGF mRNA silencing effect of each of the structures having the nucleotide sequences, each of the structures was transfected into HaCaT (ATCC) cells at a concentration of 10 nM, and then the expression levels of CTGF mRNA in the cells were measured by real-time PCR. -
TABLE 1 SiRNA No NAME SEQ Sequence (5′→3′) No1 SiRNA 1 sense GCGAGGAGUGGGUGUGUGAtt 2 antisense UCCUCGCAGCAUUUCCCGGtt asiRNA 3 sense AGGAGUGGGUGUGUGA 4 antisense UCCUCGCAGCAUUUCCCGGtt lasiRNA 5 sense AGGAGUGGGUGUGUGA 6 antisense UCACACACCCACUCCUCGCAG CAUUUCCCGG No2 siRNA 7 sense AGACCUGUGGGAUGGGCAUtt 8 antisense CAGGUCUUGGAACAGGCGCtt asiRNA 9 sense CCUGUGGGAUGGGCAU 10 antisense CAGGUCUUGGAACAGGCGCtt lasiRNA 11 sense CCUGUGGGAUGGGCAU 12 antisense AUGCCCAUCCCACAGGUCUUG GAACAGGCGC No3 siRNA 13 sense ACAGGAAGAUGUACGGAGAtt 14 antisense UUCCUGUAGUACAGCGAUUtt asiRNA 15 sense GGAAGAUGUACGGAGA 16 antisense UUCCUGUAGUACAGCGAUUtt lasiRNA 17 sense GGAAGAUGUACGGAGA 18 antisense UCUCCGUACAUCUUCCUGUAG UACAGCGAUU No4 siRNA 19 sense GCACCAGCAUGAAGACAUAtt 20 antisense UAUGUCUUCAUGCUGGUGCtt asiRNA 21 sense CCAGCAUGAAGACAUA 22 antisense UAUGUCUUCAUGCUGGUGCtt lasiRNA 23 sense CCAGCAUGAAGACAUA 24 antisense UAUGUCUUCAUGCUGGUCCAG CCAGAAAGCU No5 siRNA 25 sense GAAGACAUACCGAGCUAAAtt 26 antisense UUUAGCUCGGUAUGUCUUCtt asiRNA 27 sense GACAUACCGAGCUAAA 28 antisense UUUAGCUCGGUAUGUCUUCtt lasiRNA 29 sense GACAUACCGAGCUAAA 30 antisense UUUAGCUCGGUAUGUCUUCAU GCUGGUGCAG No6 siRNA 31 sense GCUAAAUUCUGUGGAGUAUtt 32 antisense AUACUCCACAGAAUUUAGCtt asiRNA 33 sense AAAUUCUGUGGAGUAU 34 antisense AUACUCCACAGAAUUUAGCtt lasiRNA 35 sense AAAUUCUGUGGAGUAU 36 antisense AUACUCCACAGAAUUUAGCUC GGUAUGUCUU No7 SiRNA 37 sense GCGAGGUCAUGAAGAAGAAtt 38 antisense UUGUUCUUCAUGACCUCGCtt asiRNA 39 sense AGGUCAUGAAGAAGAA 40 antisense UUGUUCUUCAUGACCUCGCtt lasiRNA 41 sense AGGUCAUGAAGAAGAA 42 antisense UUGUUCUUCAUGACCUCGCCGU CAGGGCACU No8 siRNA 43 sense UGGAAGAGAACAUUAAGAAtt 44 antisense UUCUUAAUGUUCUCUUCCAtt asiRNA 45 sense AAGAGAACAUUAAGAA 46 antisense UUCUUAAUGUUCUCUUCCAtt lasiRNA 47 sense AAGAGAACAUUAAGAA 48 antisense UUCUUAAUGUUCUCUUCCAGG UCAGCUUCGC (Capital letters: RNA; small letters: DNA) -
TABLE 2 SiRNA No NAME Sequence (5′→3′) No9 SiRNA (49) sense CGGCUUACCGACUGGAAGAtt (50) antisense UCUUCCAGUCGGUAAGCCGtt asiRNA (51) sense CUUACCGACUGGAAGA (52) antisense UCUUCCAGUCGGUAAGCCGtt lasiRNA (53) sense CUUACCGACUGGAAGA (54) antisense UCUUCCAGUCGGUAAGCCGCG AGGGCAGGCC No10 siRNA (55) sense GCAUGAAGCCAGAGAGUGAtt (56) antisense UCACUCUCUGGCUUCAUGCtt asiRNA (57) sense UGAAGCCAGAGAGUGA (58) antisense UCACUCUCUGGCUUCAUGCtt lasiRNA (59) sense UGAAGCCAGAGAGUGA (60) antisense UCACUCUCUGGCUUCAUGCCC AUGUCUCCGU No11 siRNA (61) sense CACCAUAGGUAGAAUGUAA11 (62) antisense UUACAUUCUACCUAUGGUGtt asiRNA (63) sense CAUAGGUAGAAUGUAA (64) antisense UUACAUUCUACCUAUGGUGtt lasiRNA (65) sense CAUAGGUAGAAUGUAA (66) antisense UUACAUUCUACCUAUGGUGUU CAGAAAUUGA No12 siRNA (67) sense CCUGCAGGCUAGAGAAGCAtt (68) antisense UGCUUCUCUAGCCUGCAGGtt asiRNA (69) sense GCAGGCUAGAGAAGCA (70) antisense UGCUUCUCUAGCCUGCAGGtt lasiRNA (71) sense GCAGGCUAGAGAAGCA (72) antisense UGCUUCUCUAGCCUGCAGGAG GCGUUGUCAU No13 SiRNA (73) sense CCAGAGAGUGAGAGACAUUtt (74) antisense AAUGUCUCUCACUCUCUGGtt asiRNA (75) sense GAGAGUGAGAGACAUU (76) antisense AAUGUCUCUCACUCUCUGGtt lasiRNA (77) sense GAGAGUGAGAGACAUU (78) antisense AAUGUCUCUCACUCUCUGGC UUCAUGCCAUG No14 siRNA (79) sense GCGAAGCUGACCUGGAAGAtt (80) antisense UCUUCCAGGUCAGCUUCGCtt asiRNA (81) sense AAGCUGACCUGGAAGA (82) antisense UCUUCCAGGUCAGCUUCGCtt lasiRNA (83) sense AAGCUGACCUGGAAGA (84) antisense UCUUCCAGGUCAGCUUCGCA AGGCCUGACCA No15 siRNA (85) sense CCGGAGACAAUGACAUCUUtt (86) antisense AAGAUGUCAUUGUCUCCGGtt asiRNA (87) sense GAGACAAUGACAUCUU (88) antisense AAGAUGUCAUUGUCUCCGGtt lasiRNA (89) sense GAGACAAUGACAUCUU (90) antisense AAGAUGUCAUUGUCUCCGGGA CAGUUGUAAU No16 siRNA (91) sense UCUUUGAAUCGCUGUACUAtt (92) antisense UAGUACAGCGAUUCAAAGAtt asiRNA (93) sense UUGAAUCGCUGUACUA (94) antisense UAGUACAGCGAUUCAAAGAtt lasiRNA (95) sense UUGAAUCGCUGUACUA (96) antisense UAGUACAGCGAUUCAAAGAUG UCAUUGUCUC (Capital letters: RNA; small letters: DNA) -
TABLE 3 SEQ SiRNA ID No NAME NO Sequence (5′→3′) No17 SiRNA 97 sense UUGCGAAGCUGACCUGGAAtt 98 antisense UUCCAGGUCAGCUUCGCAAtt asiRNA 99 sense CGAAGCUGACCUGGAA 100 antisense UUCCAGGUCAGCUUCGCAAtt lasiRNA 101 sense CGAAGCUGACCUGGAA 102 antisense UUCCAGGUCAGCUUCGCAAGG CCUGACCAUG No18 SiRNA 103 sense CAACUAUGAUUAGAGCCAAtt 104 antisense UUGGCUCUAAUCAUAGUUGtt asiRNA 105 sense CUAUGAUUAGAGCCAA 106 antisense UUGGCUCUAAUCAUAGUUGtt lasiRNA 107 sense CUAUGAUUAGAGCCAA 108 antisense UUGGCUCUAAUCAUAGUUGG GUCUGGGCCAA No19 siRNA 109 sense GUACCAGUGCACGUGCCUGtt 110 antisense CAGGCACGUGCACUGGUACtt asiRNA 111 sense CCAGUGCACGUGCCUG 112 antisense CAGGCACGUGCACUGGUACtt lasiRNA 113 sense CCAGUGCACGUGCCUG 114 antisense CAGGCACGUGCACUGGUACUU GCAGCUGCUC No20 siRNA 115 sense AGUGCAUCCGUACUCCCAAtt 116 antisense UUGGGAGUACGGAUGCACUtt asiRNA 117 sense GCAUCCGUACUCCCAA 118 antisense UUGGGAGUACGGAUGCACUtt lasiRNA 119 sense GCAUCCGUACUCCCAA 120 antisense UUGGGAGUACGGAUGCACUUU UUGCCCUUCU No21 siRNA 121 sense CAUGAUGUUCAUCAAGACCtt 122 antisense GGUCUUGAUGAACAUCAUGtt asiRNA 123 sense GAUGUUCAUCAAGACC 124 antisense GGUCUUGAUGAACAUCAUGtt lasiRNA 125 sense GAUGUUCAUCAAGACC 126 antisense GGUCUUGAUGAACAUCAUGUU CUUCUUCAUG No22 siRNA 127 sense CCAUGACCGCCGCCAGUAUtt 128 antisense AUACUGGCGGCGGUCAUGGtt asiRNA 129 sense UGACCGCCGCCAGUAU 130 antisense AUACUGGCGGCGGUCAUGGtt lasiRNA 131 sense UGACCGCCGCCAGUAU 132 antisense AUACUGGCGGCGGUCAUGGUU GGCACUGCGG No23 siRNA 133 sense GAACAUUAAGAAGGGCAAAtt 134 antisense UUUGCCCUUCUUAAUGUUCtt asiRNA 135 sense CAUUAAGAAGGGCAAA 136 antisense UUUGCCCUUCUUAAUGUUCtt lasiRNA 137 sense CAUUAAGAAGGGCAAA 138 antisense UUUGCCCUUCUUAAUGUUCUC UUCCAGGUCA No24 siRNA 139 sense GGAAGACACGUUUGGCCCAtt 140 antisense UGGGCCAAACGUGUCUUCCtt asiRNA 141 sense AGACACGUUUGGCCCA 142 antisense UGGGCCAAACGUGUCUUCCtt lasiRNA 143 sense AGACACGUUUGGCCCA 144 antisense UGGGCCAAACGUGUCUUCCAG UCGGUAAGCC (Capital letters: RNA; small letters: DNA) - Specifically, HaCat cells were cultured in Dulbecco's modified Eagle's medium (Gibco) (supplemented with 10% fetal bovine serum (Gibco) and 100 μg/ml penicillin/streptomycin) in a 100 mm Petri dish. Immediately before transfection, 8×104 Hacat cells were seeded into a 12-well plate. Meanwhile, each of the siRNA, asiRNA and lasiRNA was diluted in 1×siRNA duplex buffer (Biosesang Co., Ltd.) at a suitable concentration, and incubated at 90° C. for 2 min and at 37° C. for hour. The annealed siRNAs were electrophoresed on 10% polyacrylamide gel, and then stained with EtBr for 5 min, and the bands were visualized by a UV transilluminator. The siRNAs were transfected into the cells according to the manual provided in Lipofectamine 2000 (Invitrogen), and after 24 hours, the mRNA levels in the cells were measured.
- Specifically, after transfection, total RNA was extracted using Isol-RNA lysis reagent (SPRIME), and 500 ng of the RNA was used for cDNA synthesis. cDNA was synthesized using a high-capacity cDNA reverse transcription kit (Applied Biosystems) according to the protocol provided in the kit. The synthesized cDNA was diluted, and then subjected to quantitative real-time PCR using a step one real-time PCR system (Applied Biosystems) according to the protocol provided in the system. The target gene was analyzed using a power SYBR green PCR master mix (Applied Biosystems) with gene-specific primers. The nucleotide sequences of the primers used in the experiment are as follows:
- GAPDH-
forward 5′-GAG TCA ACG GAT TTG GTC GT-3′(SEQ ID NO: 145) - GAPDH-
reverse 5′-GAC AAG CTT CCC GTT CTC AG-3′(SEQ ID NO: 146) - CTGF-
forward 5′-CAA GGG CCT CTT CTG TGA CT-3′(SEQ ID NO: 147) - CTGF-
reverse 5′-ACG TGC ACT GGT ACT TGC AG-3′(SEQ ID NO: 148) -
FIG. 1 shows the results of screening of 24 nucleotide sequences. As shown therein, in 14 sequences among a total of 24 nucleotide sequences, lasiRNAs showed increased activity compared to siRNAs (lasiRNAs showed an increase in gene silencing efficiency of 20% or higher compared to siRNA), and in 5 sequences, siRNAs showed high gene silencing efficiency compared to lasiRNAs, suggesting that lasiRNAs generally show high gene silencing efficiency compared to conventional siRNAs. - Particularly, the IC50 of the siRNAs and lasiRNA showing a gene silencing efficiency of 90% or higher was measured, and as a result, it was shown that lasiRNAs having nucleotide sequences of Nos. 9 and 16 had the lowest IC50. Among them, the nucleotide sequence of No. 9 was selected as a final candidate for modification and self-delivery experiments. Information about the nucleotide sequence of No. 9 is shown in Table 4 below.
-
TABLE 4 RNAi-inducing double-stranded nucleic acid molecule SiRNA Sequence No name Sequence (5′-> 3′) listing No9 siRNA sense CGGCUUACCGA 149 CUGGAAGAtt antisense UCUUCCAGUCG 150 GUAAGCCGtt asiRNA sense CUUACCGACUG 151 GAAGA antisense UCUUCCAGUCG 152 GUAAGCCGtt lasiRNA sense CUUACCGACUG 153 GAAGA antisens UCUUCCAGUCG 154 GUAAGCCGCGA GGGCAGGCC (Capital letters: RNA; small letters: DNA) - 2-1: Effect of Cholesterol Modification
- In order to examine the effect of cholesterol modification on the delivery of lasiRNA, the 5′ end of the lasiRNA sense strand, that is, the second strand, was labeled with cy3, and then the difference in uptake of lasiRNA between the presence and absence of cholesterol was observed by a fluorescence microscope. Specifically, the cy3-labeled lasiRNA or chol-lasiRNA structure was incubated in HeLa cells at a concentration of 1 μM for 3 hours, and then the degree of intracellular delivery thereof was measured by observation with a fluorescence microscope.
- Specifically, HeLa cells (ATCC) were cultured in Dulbecco's modified Eagle's medium (Gibco) (supplemented with 10% fetal bovine serum (Gibco) and 100 μg/ml penicillin/streptomycin) in a 100 mm Petri dish.
- Each of cholesterol-modified lasiRNAs was diluted in single-strand Accell siRNA delivery medium (Thermo scientific) at a suitable concentration, and the cholesterol-modified single strand was incubated at 90° C. for 20-30 sec before annealing. The sense strand and the antisense strand were mixed with each other, and then incubated at 90 for 30 sec and at 37° C. for 1 hour, followed by annealing. The resulting siRNAs were electrophoresed on 10% polyacrylamide gel, and then stained with EtBr for 5 min, and the bands were visualized by a UV transilluminator.
- For an incubation test, 2×105 HeLa cells were seeded into a cover glass-bottom dish (SPL) at 24 hours before treatment with lasiRNA. After removal of culture media from the prepared dish, the cells were washed twice with 2 ml of 1×DPBS. siRNA, diluted in 100 μL of Accell siRNA delivery medium (Thermo scientific) pre-warmed in a water bath at 37° C., was added to and incubated in the cells. After 3 hours, the Accell medium was removed, and the cells were washed twice with 1×DPBS, and then incubated with 1 ug/ml of Hoechst 33343 (Sigma) in Opti-MEM (gibco) at 37° C. for 10 min to stain the nucleus. After removal of the Hoechst, the cells were washed twice with 1×DPBS, and then added to Opti-MEM medium and observed with a fluorescence microscope (Microscope—Olympus IX81, software—MetaMorph).
- As can be seen in
FIG. 2 , when the intracellular uptake efficiency of cholesterol-modified lasiRNA was examined, and as a result, it could be seen that little or no cy3 fluorescence was observed in the cells in the absence of cholesterol, but lasiRNA-chol obtained by conjugating cholesterol to lasiRNA showed very strong fluorescence. - This suggests that the intracellular delivery of the lasiRNA structure was increased by cholesterol modification.
- 2-2: Effect of PS Modification
- Additionally, in order to examine whether the direct introduction of phosphorothioate (PS) modification into lasiRNA increases the uptake efficiency of the lasiRNA, PS modification was introduced into the 3′ overhang of the antisense strand (i.e., first strand) of chol-lasiRNA, and the change in uptake efficiency of the chol-lasiRNA by PS modification was tested. Each of cy3-labelled chol-lasiRNA-PS(N) structures was incubated in HeLa cells at a concentration of 1 μM for 3 hours, and then the degrees of intracellular delivery of the structures was compared by observation with a fluorescence microscope. For an accurate comparison between cell penetrating abilities between the structures, the condition in which chol-lasiRNA-PS0 shows the lowest fluorescence was set, after which the fluorescence intensities of other structures were compared.
- Specifically, as shown in
FIG. 3, 0, 4, 7, 12 or 17 PS modification(s) were introduced into the 3′ end of the antisense strand of the Chol-lasiRNA structure, which was then incubated in or transfected into HeLa cells. Then, as described in Example 2-1, the difference in delivery efficiency by the number of PS modifications was observed with a fluorescence microscope. InFIG. 3 , the underline and the red color represent OMe modification, represents PS modification, Chol represents cholesterol, and Cy3 represents Cy3 fluorescent dye. - As a result, as shown in
FIG. 4 , in the case of chol-lasiRNA-PS0 having no PS modification, little or no fluorescence was observed in the HeLa cells, and chol-lasiRNA-PS0 showed low uptake efficiency compared to other samples. - In addition, it was observed that fluorescence became brighter as the number of PS modifications in the antisense strand (i.e., first strand) of lasiRNA increased, and among all the samples, chol-lasiRNA-PS12 and chol-lasiRNA-PS17 having 12 and 17 PS modifications, respectively, showed the brightest fluorescence, indicating that the amount of internalized lasiRNA increased with an increase in the number of PS modifications in chol-lasiRNA.
- The results of the internalization experiment carried out using Cy3-labeled lasiRNA in Example 2 indicated that the direct introduction of cholesterol and PS modifications into the lasiRNA structure enables the lasiRNA to be effectively delivered into cells without needing a delivery vehicle or an additional reagent. However, it is known that when various chemical modifications are introduced into siRNA, the activity of the siRNA somewhat decreases, or the activity of siRNA decreases rapidly depending on the kind of modification. Thus, in order to examine the effect of each modification on the activity of lasiRNA, various lasiRNA structures were transfected into HeLa cells, and then a change in the expression of CTGF mRNA in the cells was measured to determine the effect of each of the modifications on the gene silencing efficiency of the lasiRNA.
- In order to examine the effect of PS modification on the gene silencing efficiency of lasiRNA, various PS-modified lasiRNA [chol-lasiRNA-PS(N)] structures were transfected into HeLa cells, and then the expression levels of the CTGF gene in the cells were measured. Specifically, each of chol-lasiRNA-PS(N) structures was transfected into HeLa cells at a concentration of 10 nM, and after 48 hours, the expression levels of CTGF mRNA in the cells were measured by real-time PCR.
- Subsequently, at 24 hours before the experiment, 2.5×104 HeLa cells were seeded into a 24-well plate. Then, each of the lasiRNAs was transfected using Lipofectamine 2000 according to the protocol provided therein. Next, the cells were cultured in a 5% CO2 incubator for 48 hours, and then the expression level of mRNA in the cells was measured according to the method described in Example 1.
- As a result, as shown in
FIG. 5 , the gene silencing efficiency of the lasiRNAs showed a tendency to decrease as the number of PS modifications in the antisense strand increased, and when 12 or more PS modifications were introduced into the antisense strand, a slight decrease in the silencing activity was observed. Also, it was shown that chol-lasiRNA-PS17 having 17 PS modifications introduced into the antisense strand showed significantly low gene silencing efficiency, and thus showed little or no silencing effect on CTGF, suggesting that the number of PS modifications in the antisense strand is preferably 17 or less, and that 17 or more PS modifications are not suitable for self-delivery of the lasiRNA. Each graph inFIG. 5 represents the mean±SD of three repeated experiments. - Additionally, an increase in the number of PS modifications leads to an increase in the self-delivery efficiency of chol-lasiRNA, but has the disadvantage of reducing the silencing activity of the lasiRNA. In order to establish the optimum modification structure enabling silencing to be induced without needing a vehicle, chol-lasiRNA-PS(N) structures having varying numbers of PS modifications were incubated with HeLa cells, and then the CTGF mRNA levels of the cells were measured to compare the gene silencing efficiencies of the structures. Herein, the cells were treated with 0.1 μM, 0.3 μM and 1 μM of each of the lasiRNAs, and chol-lasiRNA-PS7 (
FIG. 6 ; red: OMe modification; *: PS modification; Chol: cholesterol) targeting MyD88 was also used as a control. Specifically, HeLa cells were incubated with CTGF- or MyD88-targeting chol-lasiRNA-PS(N) structures for 48 hours, and then the expression levels of CTGF mRNA in the cells were measured by real-time PCR. - As a result, as can be seen in
FIG. 7 , chol-lasiRNA-PS4 showed a gene silencing effect of only about 55% even at the highest concentration (1 μM), and chol-lasiRNA-PS7 and chol-lasiRNA-PS12 showed a CTGF silencing effect of about 95% or higher at 1 μM. For a more accurate comparison of gene silencing efficiency, each of the structures was incubated at lower concentrations, and then the CTGF mRNA level was measured, and the results of the measurement indicated that PS12 most efficiently silenced the CTGF gene even at low concentrations. In addition, it was observed that chol-lasiRNA-PS17 had a gene silencing effect of about 50% even when it was incubated at a high concentration (1 μM), like when it was transfected, suggesting that it is required to optimize the number of PS modifications suitable for increasing the delivery and silencing activity, rather than to introduce a too large number of PS modifications. In addition, MyD88-targeting chol-lasiRNA-PS7 showed no CTGF silencing efficiency, indicating that gene silencing by the cp-lasiRNA structures occurs in a sequence-specific manner. - In order to examine the effects of lipophilic modifications (hydrophobic modifications) other than cholesterol modification, cp-lasiRNA (cell penetrating lasiRNA) structures according to the present invention, which target survivin gene, were prepared using the following sequences. Herein, cp-lasiRNA-1 has cholesterol conjugated thereto, cp-lasiRNA-2 has conjugated thereto tocopherol in place of cholesterol, and cp-lasiRNA-3 has stearic acid conjugated to the 5′ end of the sense strand in place of cholesterol.
-
<cp-lasiRNA (survivin) 31mer> cp-lasiRNA (survivin) Antisense 31nt: (SEQ ID NO: 169) 5′ UGAAAAUGUUGAUCUCCUUUCCUAAGA*C*A*T* T 3′cp-lasiRNA (survivin) Sense: (SEQ ID NO: 170) 5′ GAGAUCAACAUUUU*C*A*cholesterol. 3′ Underline: OMe modification; *: PS: phosphorothioate bond. - Each of cp-lasiRNA-1, cp-lasiRNA-2 and cp-lasiRNA-3 was incubated in A549 cells (ATCC) at a concentration of 300 mM for 24 hours according to the method described in Example 2, and then the expression levels of survivin mRNA in the cells were measured by real-time PCR.
FIG. 8 shows the mean±DS of two repeated experiments for each of the cp-lasiRNA structures. - After transfection, total RNA was extracted using Isol-RNA lysis reagent (SPRIME), and 500 ng of the RNA was used for cDNA synthesis. cDNA was synthesized using a high-capacity cDNA reverse transcription kit (Applied Biosystems) according to the protocol provided therein. The synthesized cDNA was diluted, and then subjected to quantitative real-time PCR using a step one real-time PCR system (Applied Biosystems) according to the protocol provided therein. The target gene was analyzed using a power SYBR green PCR master mix (Applied Biosystems) together with gene-specific primers. The nucleotide sequences of the primers used in the experiment are as follows:
-
Survivin Forward (SEQ ID NO: 172) 5′-GCA CCA CTT CCA GGG TTT AT-3′ Reverse (SEQ ID NO: 173) 5′-CTC TGG TGC CAC TTT CAA GA-3′ - As a result, as can be seen in
FIG. 8 , hydrophobic modifications other than cholesterol modification enabled the target gene to be silenced with high efficiency. In addition, stearyl showed high gene silencing efficiency, even though it was conjugated to the 5′ end of the sense strand, suggesting that the nucleic acid molecule according to the present invention can achieve the desired effect even when a lipophilic compound (hydrophobic modification) is conjugated to various positions of the nucleic acid molecule. - In order to examine the target gene silencing efficiency of the inventive nucleic acid molecule according to the length of the first strand thereof, each of 31-nt antisense and 21-nt antisense strands was combined with a 16-nt second strand (sense strand) to make cp-lasiRNAs, and then A549 cells were treated with each of the cp-lasiRNAs.
-
<cp-lasiRNA (survivin) 31mer> cp-lasiRNA (survivin) Antisense 31nt: (SEQ ID NO: 169) 5′ UGAAAAUGUUGAUCUCCUUUCCUAAGA*C*A*T* T 3′cp-lasiRNA (survivin) Sense: (SEQ ID NO: 170) 5′ GAGAUCAACAUUUU*C*A*cholesterol. 3′ <cp-lasiRNA (survivin) 21mer> cp-lasiRNA (survivin) Antisense 21nt: (SEQ ID NO: 171) 5′ UGAAAAUGUUGAUCUCCU*U*U*C* C 3′cp-lasiRNA (survivin) Sense: (SEQ ID NO: 170) 5′ GAGAUCAACAUUUU*C*A*cholesterol. 3′ Underline: OMe modification, *: PS (phosphorothioate bond) <cp-lasiRNA (CTGF) 31mer> cp-lasiRNA (CTGF) Antisense 31nt: (SEQ ID NO: 174) 5′ UCUUCCAGUCGGUAAGCCGCGAGGGCA*G*G*C* C 3′cp-lasiRNA (CTGF) Sense: (SEQ ID NO: 175) 5′ CTTACCGACTGGAA*G*A*chol. 3′ <cp-lasiRNA (CTGF) 21mer> cp-lasiRNA (CTGF) Antisense 21nt: (SEQ ID NO: 176) 5′ UCUUCCAGUCGGUAAGC*C*G*C* G 3′cp-lasiRNA (CTGF) Sense: (SEQ ID NO: 175) 5′ CTTACCGACTGGAA*G*A*chol. 3′ Underline: OMe modification, *: PS (phosphorothioate bond) - Specifically, each of the nucleic acid molecules was transfected into A549 cells (ATCC) according to the method of Example 1 or incubated in A549 cells for 24 hours according to the method of Example 2. Then, the expression levels of target gene mRNA in the cells were measured by real-time PCR.
FIG. 9 shows the mean±SD of two repeated experiments for each of the nucleic acid molecules. Specifically,FIG. 9A shows the gene silencing efficiency of a CTGF-targeting cp-lasiRNA having a 21 mer antisense strand;FIG. 9B shows the gene silencing efficiency of a CTGF-targeting cp-lasiRNA having a 31 mer antisense strand;FIG. 9C shows the gene silencing efficiency of a survivin-targeting cp-lasiRNA having a 21 mer antisense strand; andFIG. 9D shows the gene silencing efficiency of a survivin-targeting cp-lasiRNA having a 31 mer antisense strand. The CTGF silencing efficiency was measured using the primers described in Example 1, and the surviving silencing efficiency was measured using the primers described in Example 4. - As shown in
FIG. 9 , when the CTGF-targeting cp-lasiRNA was transfected or incubated, the target gene silencing efficiency thereof was higher in the case of the 31-nt antisense stand than in the case of the 21-nt antisense strand (FIGS. 9A and 9B ). Likewise, when the surviving-targeting cp-lasiRNA was incubated, the target gene silencing efficiency thereof was higher in the case of the 31-nt antisense strand. Thus, it can be seen that the nucleic acid molecule according to the present invention can be designed to have an antisense strand (i.e., first strand) having varying lengths of 19 nt to 31 nt, and can be used to effectively silence a target gene, but it can more efficiently silence a target gene when it has a 31-nt antisense strand, compared to when it has a 21-nt antisense strand. - The effect of the modification of the phosphate backbone of at least one nucleotide in the nucleic acid molecule with phosphorodithioate (PS2; having a structure shown in
FIG. 10 ) in place of phosphorothioate was examined as follows. - Specifically, each of the following cp-lasiRNA (Survivin) and the following cp-lasiRNA (Survivin)-PS2, obtained by introducing PS2 modification in place of PS modification into the cp-lasiRNA (Survivin), was transfected into or incubated with A549 cells for 24 hours according to the method described in Example 1 or 2. Then, the expression levels of the survivin genes in the cells were measured by real-time PCR in the same manner as described in Example 4. Each graph in
FIG. 11 represents the mean±SD of two repeated experiments for each of the cp-lasiRNA (Survivin) structures. -
<cp-lasiRNA (survivin)> cp-lasiRNA (survivin) Antisense 31nt: (SEQ ID NO: 169) 5′ UGAAAAUGUUGAUCUCCUUUCCUAAGA*C*A*T* T 3′cp-lasiRNA (survivin) Sense: (SEQ ID NO: 170) 5′ GAGAUCAACAUUUU*C*A*cholesterol. 3′ Underline: OMe modification, *: PS (phosphorothioate bond or phosphorodithioate bond) - As a result, as can be seen in
FIG. 11 , an increase in the gene silencing effect by additional sulfur modification (PS2) was not observed, and the cp-lasiRNA structure having PS2 modification showed reduced gene silencing efficiency compared to the conventional cp-lasiRNA. - In the current development of therapeutic agents based on RNAi technology, the development of effective in vivo RNA delivery technology is most difficult. Many delivery technologies developed to date show high in vitro delivery efficiency, but have a problem in that, when these are applied in vivo, the efficiency thereof significantly decreases. Thus, in order to examine whether the nucleic acid molecule according to the present invention has a high gene silencing effect even in vivo, cp-lasiRNA alone was injected into the skin of rats without using a separate delivery vehicle, and the target gene silencing effect thereof was measured.
- Specifically, siRNA (CTGF), cp-lasiRNA (CTGF) or cp-lasiRNA (Scrambled) was dissolved in 100 μl of PBS at concentrations shown in
FIG. 12 , and each of the solutions was injected intradermally into the rat skin, and after 24 hours, the skin tissue was collected, and the expression of the target gene therein was measured. Specifically, SD rats (Orient Bio Inc.) were anesthetized by intraperitoneal injection with Zoletil and Rompun solution, and then the back of the rats was shaved. A circle having a radius of 5 mm was drawn on the shaved skin portion, and then 100 μl of PBS, siRNA or cp-lasiRNA was injected intradermally into the central portion of the circle by an insulin syringe (BD, 31G). After injection, the skin tissue was taken using 8 mm biopsy punch at the indicated date, and the expression of gene therein was analyzed. The nucleic acids used are as follows. -
cp-lasiRNA (CTGF) Antisense Rat: (SEQ ID NO: 177) 5′-UCUUCCAGUCGGUAGGCAGCUAGGGCA*G*G*G*C-3′ cp-lasiRNA (CTGF) Sense Rat: (SEQ ID NO: 178) 5′-CCTACCGACTGGAA*G*A*choleterol. 3′ Underline: OMe modification, *: PS (phosphorothioate bond) - The followings were used as siRNA:
-
siRNA (CTGF) antisense: (SEQ ID NO: 179) 5′-CUGCCUACCGACUGGAAGATT-3′ siRNA (CTGF) sense: (SEQ ID NO: 180) 5′-CUGCCUACCGACUGGAAGATT-3′ Underline: OMe modification - Herein, RNA was extracted using an RNeasy fibrous tissue mini kit (Qiagen), and 1 μg of the RNA was used for cDNA synthesis. cDNA was synthesized using a high-capacity cDNA reverse transcription kit (Applied Biosystems) according to the protocol provided therein. The synthesized cDNA was diluted, and then subjected to quantitative real-time PCR using a step one real-time PCR system (Applied Biosystems) according to the protocol provided therein. The target gene was analyzed using a power SYBR green PCR master mix (Applied Biosystems) together with gene-specific primers. The nucleotide sequences of the primers used in the experiment are as follows. Each graph in
FIG. 12 represents the mean±SD of five repeated experiments. -
CTGF-Rat Forward (SEQ ID NO: 181) 5′-GGC TCG CAT CAT AGT TG-3′ Reverse (SEQ ID NO: 182) 5′-CGG GAA ATG CTG TGA GGA GT-3′ - siRNA (CTGF), cp-lasiRNA (CTGF) or cp-lasiRNA (Scrambled) was dissolved in 100 of PBS at the indicated concentrations, and each of PBS and the solutions was injected intradermally into the rat skin, and after 24 hours, the skin tissue was collected, and the expression of the target gene therein was measured. Each graph in
FIG. 12 represents the mean±SD of five repeated experiments. - As a result, as can be seen in
FIG. 12 , the expression of CTGF in the group treated with cp-lasiRNA (CTGF) decreased by 80-90% or higher compared to that in the group treated with PBS, cp-lasiRNA (scrambled) or siRNA (CTGF), suggesting that cp-lasiRNA can highly efficiently silence the target gene even in vivo. - Additionally, in order to examine the in vivo gene silencing efficiency of Cp-lasiRNA, cp-lasiRNA was injected into rats at a concentration ranging from 100 μg/injection to 0.1 μg/injection in the same manner as described above, and then the expression of the target gene was measured.
- As a result, as shown in
FIG. 13 , cp-lasiRNA (CTGF) showed a target gene silencing efficiency of 70% or higher even at a low concentration of about 0.3 μg/injection, and had an IC50 value of about 0.21 μg/injection. Each graph inFIG. 13 represents the mean±SD of two repeated experiments. - Additionally, cp-lasiRNA (CTGF) was injected in the same manner as described above, and then on
day 1,day 2,day 3 andday 6, the tissue was analyzed to measure the expression of the gene. cp-lasiRNA (CTGF) was injected intradermally, after which the tissue was collected at the indicated date, and the expression of CTGF therein was analyzed by real-time PCR. - As a result, as shown in
FIG. 14 , it was found that cp-lasiRNA (CTGF) silenced the target gene for at least 5 days. Each graph inFIG. 14 represents the mean±SD of two repeated experiments. - As described above, the nucleic acid structure according to the present invention has both cholesterol modification and phosphorothioate modification introduced therein, and thus has high gene silencing efficiency while having the ability to penetrate cells without needing a separate intracellular delivery vehicle. Thus, it can be delivered into an actual target area in an amount sufficient for induction of RNAi, and thus can overcome the in vivo delivery problem occurring in the prior art. Therefore, the nucleic acid molecule according to the present invention can effectively substitute for conventional siRNA molecules to treat cancer or viral infections.
- Although the present invention has been described in detail with reference to the specific features, it will be apparent to those skilled in the art that this description is only for a preferred embodiment and does not limit the scope of the present invention. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
Claims (19)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/110,640 US20210207137A1 (en) | 2012-05-22 | 2020-12-03 | Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2012-0053950 | 2012-05-22 | ||
| KR20120053950 | 2012-05-22 | ||
| PCT/KR2013/004463 WO2013176477A1 (en) | 2012-05-22 | 2013-05-21 | Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
| US201414403121A | 2014-11-21 | 2014-11-21 | |
| US16/135,766 US10883105B2 (en) | 2012-05-22 | 2018-09-19 | RNA-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
| US17/110,640 US20210207137A1 (en) | 2012-05-22 | 2020-12-03 | Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/135,766 Continuation US10883105B2 (en) | 2012-05-22 | 2018-09-19 | RNA-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20210207137A1 true US20210207137A1 (en) | 2021-07-08 |
Family
ID=49624096
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/403,121 Active US10125362B2 (en) | 2012-05-22 | 2013-05-21 | RNA-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
| US16/135,766 Active US10883105B2 (en) | 2012-05-22 | 2018-09-19 | RNA-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
| US17/110,640 Abandoned US20210207137A1 (en) | 2012-05-22 | 2020-12-03 | Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/403,121 Active US10125362B2 (en) | 2012-05-22 | 2013-05-21 | RNA-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
| US16/135,766 Active US10883105B2 (en) | 2012-05-22 | 2018-09-19 | RNA-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
Country Status (8)
| Country | Link |
|---|---|
| US (3) | US10125362B2 (en) |
| EP (2) | EP3514236A1 (en) |
| JP (3) | JP6139671B2 (en) |
| KR (2) | KR101567576B1 (en) |
| CN (2) | CN108148838A (en) |
| DK (1) | DK2853597T3 (en) |
| ES (1) | ES2716818T3 (en) |
| WO (1) | WO2013176477A1 (en) |
Families Citing this family (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2818662C (en) | 2010-10-22 | 2021-07-06 | Sungkyunkwan University Foundation For Corporate Collaboration | Nucleic acid molecule inducing rna interference, and uses thereof |
| EP3514236A1 (en) | 2012-05-22 | 2019-07-24 | Olix Pharmaceuticals, Inc. | Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
| KR102279110B1 (en) * | 2014-04-30 | 2021-07-20 | 올릭스 주식회사 | Composition for Whitening the Skin Comprising the lasiRNA as Active Ingredient |
| WO2016161388A1 (en) | 2015-04-03 | 2016-10-06 | University Of Massachusetts | Fully stabilized asymmetric sirna |
| CN116004624A (en) | 2015-04-03 | 2023-04-25 | 马萨诸塞大学 | Oligonucleotide compounds for targeting huntingtin mRNA |
| CN111875265B (en) | 2015-05-15 | 2023-09-12 | Agc株式会社 | chemically strengthened glass |
| US11661463B2 (en) * | 2015-08-06 | 2023-05-30 | City Of Hope | Cell penetrating protein-antibody conjugates and methods of use |
| WO2017030973A1 (en) | 2015-08-14 | 2017-02-23 | University Of Massachusetts | Bioactive conjugates for oligonucleotide delivery |
| EP3377630A4 (en) * | 2015-11-16 | 2020-01-01 | Olix Pharmaceuticals, Inc. | TREATMENT OF AGE-RELATED MACULAR DEGENERATION USING RNA COMPLEXES THAT TARGET MYD88 OR TLR3 |
| JP7749201B6 (en) | 2016-01-31 | 2025-10-21 | ユニバーシティー オブ マサチューセッツ | Branched Oligonucleotides |
| WO2017134526A1 (en) | 2016-02-02 | 2017-08-10 | Olix Pharmaceuticals, Inc. | Treatment of angiogenesis-associated diseases using rna complexes that target angpt2 and pdgfb |
| CN108779463B (en) | 2016-02-02 | 2022-05-24 | 奥利克斯医药有限公司 | Treatment of atopic dermatitis and asthma using RNA complexes targeting IL4R α, TRPA1, or F2RL1 |
| WO2017178883A2 (en) * | 2016-04-11 | 2017-10-19 | Olix Pharmaceuticals, Inc. | Treatment of idiopathic pulmonary fibrosis using rna complexes that target connective tissue growth factor |
| KR101916652B1 (en) * | 2016-06-29 | 2018-11-08 | 올릭스 주식회사 | Compounds improving RNA interference of small interfering RNA and use thereof |
| CA3033368A1 (en) | 2016-08-12 | 2018-02-15 | University Of Massachusetts | Conjugated oligonucleotides |
| US11591600B2 (en) | 2017-02-10 | 2023-02-28 | OliX Pharmaceuticals. Inc. | Long double-stranded RNA for RNA interference |
| KR102321426B1 (en) * | 2017-02-21 | 2021-11-05 | 올릭스 주식회사 | Asymmetric siRNA Inhibiting Expression of Genes Directed to Male Type Depilation |
| CN110799647A (en) | 2017-06-23 | 2020-02-14 | 马萨诸塞大学 | Two-tailed self-delivery of SIRNA and related methods |
| WO2019066519A1 (en) * | 2017-09-28 | 2019-04-04 | 올릭스 주식회사 | Pharmaceutical composition for prevention or treatment of age-related macular degeneration containing rna complex targeting connective tissue growth factor |
| JP7461886B2 (en) * | 2017-11-13 | 2024-04-04 | サイレンス・セラピューティクス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Nucleic acids containing phosphorodithioate bonds for suppressing expression of target genes |
| HUE061265T2 (en) | 2017-11-13 | 2023-06-28 | Silence Therapeutics Gmbh | Nucleic acids for inhibiting expression of lpa in a cell |
| EP3833763A4 (en) | 2018-08-10 | 2023-07-19 | University of Massachusetts | MODIFIED OLIGONUCLEOTIDES TARGETING SNPs |
| US11279930B2 (en) | 2018-08-23 | 2022-03-22 | University Of Massachusetts | O-methyl rich fully stabilized oligonucleotides |
| CA3114396A1 (en) * | 2018-09-28 | 2020-04-02 | Alnylam Pharmaceuticals, Inc. | Transthyretin (ttr) irna compositions and methods of use thereof for treating or preventing ttr-associated ocular diseases |
| CN109402127B (en) * | 2018-09-29 | 2021-12-10 | 复旦大学附属眼耳鼻喉科医院 | Group of high-affinity nucleic acid aptamers capable of being specifically bound with connective tissue growth factor and application of high-affinity nucleic acid aptamers |
| JP2022523467A (en) | 2019-01-18 | 2022-04-25 | ユニバーシティ・オブ・マサチューセッツ | Anchors that modify dynamic pharmacokinetics |
| WO2020149702A1 (en) * | 2019-01-18 | 2020-07-23 | 올릭스 주식회사 | Asymmetric sirna for inhibiting expression of neural retina leucine zipper (nrl) |
| EP3974531A4 (en) * | 2019-05-20 | 2024-01-10 | Olix Pharmaceuticals, Inc. | ASYMMETRICAL ARNSI TO INHIBIT PD-1 EXPRESSION |
| CN114502730A (en) | 2019-08-09 | 2022-05-13 | 马萨诸塞大学 | Chemically modified SNP-targeting oligonucleotides |
| US12365894B2 (en) | 2019-09-16 | 2025-07-22 | University Of Massachusetts | Branched lipid conjugates of siRNA for specific tissue delivery |
| KR102757180B1 (en) * | 2019-11-22 | 2025-01-21 | (주)바이오니아 | A double-stranded oligonucleotide comprising CTGF specific sequence and a composition for treating and preventing fibrosis related diseases and respiratory related diseases |
| KR102259402B1 (en) * | 2020-06-04 | 2021-06-01 | 주식회사 아임뉴런바이오사이언스 | Nucleic acid molecule with improved stability and use thereof |
| US20240024492A1 (en) * | 2020-12-07 | 2024-01-25 | Olix Pharmaceuticals, Inc. | Nucleic acid molecule for induction of asymmetric rnai for inhibiting expression of ror-beta |
| CN114807127A (en) * | 2021-01-19 | 2022-07-29 | 陈璞 | Small interfering RNA for connective tissue growth factor and its application |
| EP4359539A4 (en) | 2021-06-23 | 2025-05-14 | University Of Massachusetts | Optimized anti-flt1 oligonucleotide compounds for treatment of preeclampsia and other angiogenic disorders |
| CN119074938B (en) * | 2024-08-29 | 2025-05-27 | 上海科若纳生命科技有限公司 | Nucleic acid composition for mRNA delivery and expression and application thereof |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040192626A1 (en) * | 2002-02-20 | 2004-09-30 | Mcswiggen James | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
Family Cites Families (89)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5837258A (en) | 1991-08-30 | 1998-11-17 | University Of South Florida | Induction of tissue, bone or cartilage formation using connective tissue growth factor |
| DE10160151A1 (en) | 2001-01-09 | 2003-06-26 | Ribopharma Ag | Inhibiting expression of target gene, useful e.g. for inhibiting oncogenes, by administering double-stranded RNA complementary to the target and having an overhang |
| RU2322500C2 (en) | 2000-12-01 | 2008-04-20 | Макс-Планк-Гезелльшафт Цур Фердерунг Дер Виссеншафтен Е.Ф. | Small rna molecules mediating rna interference |
| US20050282188A1 (en) | 2001-05-18 | 2005-12-22 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA) |
| US20080188430A1 (en) | 2001-05-18 | 2008-08-07 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA) |
| JP2005506087A (en) * | 2001-10-26 | 2005-03-03 | リボファーマ アーゲー | Use of double-stranded ribonucleic acid to treat infections caused by plus-strand RNA viruses |
| US20040138163A1 (en) | 2002-05-29 | 2004-07-15 | Mcswiggen James | RNA interference mediated inhibition of vascular edothelial growth factor and vascular edothelial growth factor receptor gene expression using short interfering nucleic acid (siNA) |
| ES2280826T5 (en) * | 2002-08-05 | 2017-08-03 | Silence Therapeutics Gmbh | Additional new forms of interfering RNA molecules |
| WO2006006948A2 (en) * | 2002-11-14 | 2006-01-19 | Dharmacon, Inc. | METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY |
| DK2284266T3 (en) | 2002-11-14 | 2014-01-13 | Thermo Fisher Scient Biosciences Inc | SIRNA MOLECULE MOD TP53 |
| EP3450559A1 (en) | 2003-03-07 | 2019-03-06 | Alnylam Pharmaceuticals, Inc. | Therapeutic compositions |
| CA2524255C (en) | 2003-03-21 | 2014-02-11 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure |
| US20040198640A1 (en) * | 2003-04-02 | 2004-10-07 | Dharmacon, Inc. | Stabilized polynucleotides for use in RNA interference |
| US20050136437A1 (en) | 2003-08-25 | 2005-06-23 | Nastech Pharmaceutical Company Inc. | Nanoparticles for delivery of nucleic acids and stable double-stranded RNA |
| CN1845993B (en) * | 2003-08-28 | 2010-06-23 | 诺瓦提斯公司 | Interfering RNA duplexes with blunt ends and 3' modifications |
| US20060134787A1 (en) | 2004-12-22 | 2006-06-22 | University Of Massachusetts | Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended siRNA |
| WO2005062937A2 (en) | 2003-12-22 | 2005-07-14 | University Of Massachusetts | Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended sirna |
| WO2005079533A2 (en) | 2004-02-17 | 2005-09-01 | University Of Massachusetts | Methods and compositions for mediating gene silencing |
| AU2005222902B2 (en) * | 2004-03-12 | 2010-06-10 | Alnylam Pharmaceuticals, Inc. | iRNA agents targeting VEGF |
| KR101147147B1 (en) | 2004-04-01 | 2012-05-25 | 머크 샤프 앤드 돔 코포레이션 | Modified polynucleotides for reducing off-target effects in rna interference |
| JP2008512500A (en) | 2004-09-10 | 2008-04-24 | ソマジェニックス インコーポレーティッド | Small interfering RNA that efficiently inhibits viral gene expression and method of use thereof |
| AU2005289588B2 (en) * | 2004-09-24 | 2011-12-22 | Alnylam Pharmaceuticals, Inc. | RNAi modulation of ApoB and uses thereof |
| TWI386225B (en) * | 2004-12-23 | 2013-02-21 | Alcon Inc | Rnai inhibition of ctgf for treatment of ocular disorders |
| US20060142228A1 (en) | 2004-12-23 | 2006-06-29 | Ambion, Inc. | Methods and compositions concerning siRNA's as mediators of RNA interference |
| KR20070118703A (en) | 2005-04-08 | 2007-12-17 | 나스텍 파마수티컬 컴퍼니 인코포레이티드 | NZ children to treat respiratory viral infections |
| US8067572B2 (en) | 2005-05-25 | 2011-11-29 | The University Of York | Hybrid interfering RNA |
| US8048429B2 (en) | 2005-06-24 | 2011-11-01 | Intervet International B.V. | Inactivated chimeric flavivirus |
| US7772200B2 (en) * | 2005-07-21 | 2010-08-10 | Alnylam Pharmaceuticals, Inc. | iRNA agents targeted to the Rho-A gene |
| EP1937066A4 (en) * | 2005-08-18 | 2008-12-24 | Alnylam Pharmaceuticals Inc | METHODS AND COMPOSITIONS FOR THE TREATMENT OF NEUROLOGICAL DISEASES |
| FR2890859B1 (en) | 2005-09-21 | 2012-12-21 | Oreal | DOUBLE-STRANDED RNA OLIGONUCLEOTIDE INHIBITING TYROSINASE EXPRESSION |
| WO2007041282A2 (en) | 2005-09-29 | 2007-04-12 | The Johns Hopkins University | Methods and compositions for treatment of cystic fibrosis |
| US7825099B2 (en) | 2006-01-20 | 2010-11-02 | Quark Pharmaceuticals, Inc. | Treatment or prevention of oto-pathologies by inhibition of pro-apoptotic genes |
| CA2638906A1 (en) | 2006-01-26 | 2007-08-16 | University Of Massachusetts | Rna interference agents for therapeutic use |
| WO2007089601A2 (en) | 2006-01-27 | 2007-08-09 | Biogen Idec Ma Inc. | Nogo receptor antagonists |
| US20070218495A1 (en) | 2006-03-16 | 2007-09-20 | Dharmacon, Inc. | Methods, libraries and computer program products for gene silencing with reduced off-target effects |
| US7700541B2 (en) | 2006-04-06 | 2010-04-20 | Nitto Denko Corporation | Biodegradable cationic polymers |
| GB0608838D0 (en) * | 2006-05-04 | 2006-06-14 | Novartis Ag | Organic compounds |
| CA2679867A1 (en) | 2007-03-02 | 2008-09-12 | Mdrna, Inc. | Nucleic acid compounds for inhibiting vegf family gene expression and uses thereof |
| US20100105134A1 (en) | 2007-03-02 | 2010-04-29 | Mdrna, Inc. | Nucleic acid compounds for inhibiting gene expression and uses thereof |
| PT2164967E (en) | 2007-05-31 | 2015-10-27 | Univ Iowa Res Found | Reduction of off-target rna interference toxicity |
| US20090004668A1 (en) | 2007-06-22 | 2009-01-01 | The Board Of Trustees Of The Leland Stanford Junior University | Pre-miRNA loop-modulated target regulation |
| WO2009020344A2 (en) | 2007-08-06 | 2009-02-12 | Postech Acad Ind Found | Small interfering rnas (sirnas) controlling multiple target genes and method for preparing the same |
| ES2873350T3 (en) | 2007-08-27 | 2021-11-03 | 1Globe Health Inst Llc | Asymmetric interfering RNA compositions and uses thereof |
| DK2195428T3 (en) | 2007-09-19 | 2014-03-03 | Applied Biosystems Llc | SIRNA SEQUENCE-INDEPENDENT MODIFICATION FORMS TO REDUCE TARGET-FAILING PHENOTYPIC EFFECTS OF RNAI, AND STABILIZED FORMS THEREOF |
| US20090131360A1 (en) * | 2007-10-02 | 2009-05-21 | Rxi Pharmaceuticals, Corp. | Tripartite RNAi constructs |
| CA2701845A1 (en) * | 2007-10-03 | 2009-04-09 | Quark Pharmaceuticals, Inc. | Novel sirna structures |
| US8614311B2 (en) | 2007-12-12 | 2013-12-24 | Quark Pharmaceuticals, Inc. | RTP801L siRNA compounds and methods of use thereof |
| KR100949791B1 (en) | 2007-12-18 | 2010-03-30 | 이동기 | Novel siRNA structure and its use to minimize off-target effect and not saturate the RAN mechanism |
| WO2010011346A1 (en) | 2008-07-24 | 2010-01-28 | Rxi Pharmaceuticals Corporation | Rnai constructs and uses therof |
| US8946172B2 (en) * | 2008-08-25 | 2015-02-03 | Excaliard Pharmaceuticals, Inc. | Method for reducing scarring during wound healing using antisense compounds directed to CTGF |
| JP5294344B2 (en) | 2008-09-08 | 2013-09-18 | 学校法人福岡大学 | Pharmaceutical composition for leukemia treatment |
| CN108165548B (en) * | 2008-09-22 | 2022-10-14 | 菲奥医药公司 | Reduced size self-delivering RNAi compounds |
| US20100227920A1 (en) | 2008-09-29 | 2010-09-09 | The Regents Of The University Of California | Aldehyde dehydrogenase inhibitors as novel depigmenting agents |
| US9745574B2 (en) | 2009-02-04 | 2017-08-29 | Rxi Pharmaceuticals Corporation | RNA duplexes with single stranded phosphorothioate nucleotide regions for additional functionality |
| JP2012517815A (en) | 2009-02-18 | 2012-08-09 | サイレンス・セラピューティクス・アーゲー | Means for inhibiting the expression of ANG2 |
| EP2408916A2 (en) * | 2009-03-19 | 2012-01-25 | Merck Sharp&Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF CONNECTIVE TISSUE GROWTH FACTOR (CTGF) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| KR101791702B1 (en) | 2009-04-03 | 2017-10-30 | 다이서나 파마수이티컬, 인크. | Methods and Compositions for the Specific Inhibition of KRAS by Asymmetric double-stranded RNA |
| US8472766B2 (en) | 2009-08-14 | 2013-06-25 | Massachusetts Institute Of Technology | Waveguide coupler having continuous three-dimensional tapering |
| KR101237036B1 (en) * | 2009-11-04 | 2013-02-25 | 성균관대학교산학협력단 | Novel siRNA Structure for Minimizing Off-target Effects by Antisense Strand and the Use Thereof |
| KR101207561B1 (en) | 2009-12-15 | 2012-12-04 | 주식회사 코리아나화장품 | siRNA oligonucleotide which inhibits Tryrosinase expression and Cosmetic composition comprising the same |
| WO2011084193A1 (en) | 2010-01-07 | 2011-07-14 | Quark Pharmaceuticals, Inc. | Oligonucleotide compounds comprising non-nucleotide overhangs |
| WO2011108682A1 (en) | 2010-03-05 | 2011-09-09 | 国立大学法人 東京大学 | Ribonucleoside phosphorothioate manufacturing method |
| CN103200945B (en) * | 2010-03-24 | 2016-07-06 | 雷克西制药公司 | RNA interference in ocular syndromes |
| WO2011140659A1 (en) | 2010-05-12 | 2011-11-17 | Centre Hospitalier De L'universite De Montreal | Screening assays based on mag and/or abhd6 for selecting insulin secretion promoting agents |
| EP2616543A1 (en) * | 2010-09-15 | 2013-07-24 | Alnylam Pharmaceuticals, Inc. | MODIFIED iRNA AGENTS |
| CA2818662C (en) * | 2010-10-22 | 2021-07-06 | Sungkyunkwan University Foundation For Corporate Collaboration | Nucleic acid molecule inducing rna interference, and uses thereof |
| EP2649181B1 (en) | 2010-12-06 | 2016-04-27 | Quark Pharmaceuticals, Inc. | Double stranded oligonucleotide compounds comprising positional modifications |
| MX365647B (en) * | 2011-02-02 | 2019-06-10 | Excaliard Pharmaceuticals Inc | Method of treating keloids or hypertrophic scars using antisense compounds targeting connective tissue growth factor (ctgf). |
| AU2012223366B2 (en) | 2011-03-03 | 2017-02-23 | Quark Pharmaceuticals, Inc. | Oligonucleotide modulators of the toll-like receptor pathway |
| CN102719432B (en) | 2011-03-29 | 2013-10-23 | 南京大学 | Double-stranded asymmetric small nucleic-acid-interference-molecule asiRNA inhibiting tumour apoptosis suppressor specifically and application thereof |
| KR101590586B1 (en) | 2011-05-30 | 2016-02-01 | 성균관대학교산학협력단 | Long interfering dsRNA with abilities to trigger RNA interference and immunostimulation simultaneously |
| PT3366302T (en) | 2011-07-18 | 2022-03-07 | Univ Kentucky Res Found | Protection of cells from alu-rna-induced degeneration and inhibitors for protecting cells |
| US9707235B1 (en) | 2012-01-13 | 2017-07-18 | University Of Kentucky Research Foundation | Protection of cells from degeneration and treatment of geographic atrophy |
| EP3514236A1 (en) | 2012-05-22 | 2019-07-24 | Olix Pharmaceuticals, Inc. | Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
| US9611473B2 (en) | 2012-09-12 | 2017-04-04 | Quark Pharmaceuticals, Inc. | Double-stranded nucleic acid compounds |
| KR101867414B1 (en) | 2013-07-05 | 2018-06-14 | (주)바이오니아 | Respiratory disease-related gene specific sirna, double-helical oligo rna structure containing sirna, composition containing same for preventing or treating respiratory disease |
| US20160208247A1 (en) | 2013-07-31 | 2016-07-21 | Qbi Enterprises Ltd. | Methods of use of sphingolipid polyalkylamine oligonucleotide compounds |
| US9790506B2 (en) | 2013-10-02 | 2017-10-17 | The Regents Of The University Of California | Diagnostic and screening methods for atopic dermatitis |
| US8980273B1 (en) | 2014-07-15 | 2015-03-17 | Kymab Limited | Method of treating atopic dermatitis or asthma using antibody to IL4RA |
| US20170226507A1 (en) | 2014-05-05 | 2017-08-10 | The Brigham And Women's Hospital, Inc. | Coordinate control of pathogenic signaling by the mir-130/301 family in pulmonary hypertension and fibroproliferative diseases |
| US9139648B1 (en) | 2014-07-15 | 2015-09-22 | Kymab Limited | Precision medicine by targeting human NAV1.9 variants for treatment of pain |
| WO2016161388A1 (en) | 2015-04-03 | 2016-10-06 | University Of Massachusetts | Fully stabilized asymmetric sirna |
| WO2017017523A1 (en) | 2015-07-27 | 2017-02-02 | Olix Pharmaceuticals, Inc. | Rna complexes that inhibit melanin production |
| EP3377630A4 (en) | 2015-11-16 | 2020-01-01 | Olix Pharmaceuticals, Inc. | TREATMENT OF AGE-RELATED MACULAR DEGENERATION USING RNA COMPLEXES THAT TARGET MYD88 OR TLR3 |
| WO2017134526A1 (en) | 2016-02-02 | 2017-08-10 | Olix Pharmaceuticals, Inc. | Treatment of angiogenesis-associated diseases using rna complexes that target angpt2 and pdgfb |
| CN108779463B (en) | 2016-02-02 | 2022-05-24 | 奥利克斯医药有限公司 | Treatment of atopic dermatitis and asthma using RNA complexes targeting IL4R α, TRPA1, or F2RL1 |
| WO2017178883A2 (en) | 2016-04-11 | 2017-10-19 | Olix Pharmaceuticals, Inc. | Treatment of idiopathic pulmonary fibrosis using rna complexes that target connective tissue growth factor |
| KR101916652B1 (en) | 2016-06-29 | 2018-11-08 | 올릭스 주식회사 | Compounds improving RNA interference of small interfering RNA and use thereof |
| US11591600B2 (en) | 2017-02-10 | 2023-02-28 | OliX Pharmaceuticals. Inc. | Long double-stranded RNA for RNA interference |
-
2013
- 2013-05-21 EP EP18215244.7A patent/EP3514236A1/en active Pending
- 2013-05-21 KR KR1020130057412A patent/KR101567576B1/en active Active
- 2013-05-21 DK DK13794539.0T patent/DK2853597T3/en active
- 2013-05-21 EP EP13794539.0A patent/EP2853597B1/en active Active
- 2013-05-21 US US14/403,121 patent/US10125362B2/en active Active
- 2013-05-21 WO PCT/KR2013/004463 patent/WO2013176477A1/en not_active Ceased
- 2013-05-21 CN CN201810089022.8A patent/CN108148838A/en active Pending
- 2013-05-21 ES ES13794539T patent/ES2716818T3/en active Active
- 2013-05-21 JP JP2015513901A patent/JP6139671B2/en active Active
- 2013-05-21 CN CN201380038984.6A patent/CN104755620B/en active Active
-
2015
- 2015-09-25 KR KR1020150136206A patent/KR101581655B1/en active Active
-
2016
- 2016-12-26 JP JP2016250474A patent/JP6629712B2/en active Active
-
2018
- 2018-09-19 US US16/135,766 patent/US10883105B2/en active Active
-
2019
- 2019-02-25 JP JP2019031549A patent/JP6999590B2/en active Active
-
2020
- 2020-12-03 US US17/110,640 patent/US20210207137A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040192626A1 (en) * | 2002-02-20 | 2004-09-30 | Mcswiggen James | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
Also Published As
| Publication number | Publication date |
|---|---|
| US10883105B2 (en) | 2021-01-05 |
| US10125362B2 (en) | 2018-11-13 |
| KR20130130653A (en) | 2013-12-02 |
| JP6139671B2 (en) | 2017-05-31 |
| EP2853597B1 (en) | 2018-12-26 |
| JP2017093448A (en) | 2017-06-01 |
| JP2015518721A (en) | 2015-07-06 |
| CN108148838A (en) | 2018-06-12 |
| KR101581655B9 (en) | 2015-12-31 |
| KR101581655B1 (en) | 2015-12-31 |
| JP6999590B2 (en) | 2022-01-18 |
| KR20150118061A (en) | 2015-10-21 |
| DK2853597T3 (en) | 2019-04-08 |
| JP6629712B2 (en) | 2020-01-15 |
| HK1211319A1 (en) | 2016-05-20 |
| US20150111948A1 (en) | 2015-04-23 |
| EP2853597A4 (en) | 2016-01-27 |
| CN104755620B (en) | 2018-03-02 |
| EP2853597A1 (en) | 2015-04-01 |
| ES2716818T3 (en) | 2019-06-17 |
| WO2013176477A1 (en) | 2013-11-28 |
| EP3514236A1 (en) | 2019-07-24 |
| CN104755620A (en) | 2015-07-01 |
| JP2019122379A (en) | 2019-07-25 |
| US20190002881A1 (en) | 2019-01-03 |
| KR101567576B1 (en) | 2015-11-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20210207137A1 (en) | Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor | |
| RU2577227C1 (en) | Highly effective double-stranded oligo-rna structure such nanoparticles and method of its manufacturing | |
| CA2917320C (en) | Respiratory disease-related gene specific sirna, double-helical oligo rna structure containing sirna, composition containing same for preventing or treating respiratory disease | |
| CN104726458A (en) | Lipid-modified Double-stranded Rna Having Potent Rna Interference Effect | |
| KR102746742B1 (en) | A double-stranded oligonucleotide comprising Amphiregulin specific sequence and a composition for treating and preventing fibrosis related diseases and respiratory related diseases | |
| WO2022051332A1 (en) | Dux4 inhibitors and methods of use thereof | |
| CN105765069A (en) | Liver cancer related genes-specific siRNA, double-stranded oligo RNA molecules comprising the siRNA, and composition for preventing or treating cancer comprising the same | |
| CN105722979A (en) | Liver cancer related genes-specific sirna, double-stranded oligo rna molecules comprising the sirna, and composition for preventing or treating cancer comprising the same | |
| WO2017135397A1 (en) | Antisense oligonucleotide for suppressing expression of complement b factor | |
| JP2014504501A (en) | SiRNA that inhibits expression of Hif1α and anticancer composition containing the same | |
| US20130108686A1 (en) | Method for the delivery of oligonucleotides | |
| Fan et al. | Biological properties of a 3′, 3 ″-bis-peptide-siRNA conjugate in vitro and in vivo | |
| US20230129651A1 (en) | Hairpin structure nucleic acid molecules capable of modulating target gene expression and uses thereof | |
| KR20190037166A (en) | Pharmaceutical Composition for Preventing or Treating Age-related macular degeneration Comprising RNA Complexes That Target Connective tissue growth factor | |
| Yin et al. | Asymmetric siRNA targeting the bcl-2 gene inhibits the proliferation of cancer cells in vitro and in vivo | |
| US20230193262A1 (en) | Nucleic acid molecules capable of modulating target gene expression and uses thereof | |
| EP4446414A1 (en) | Antisense oligonucleotide complex | |
| US20250297251A1 (en) | Certain dux4 inhibitors and methods of use thereof | |
| HK1211319B (en) | Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: OLIX PHARMACEUTICALS, INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HONG, SUN WOO;REEL/FRAME:058184/0090 Effective date: 20141126 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |