[go: up one dir, main page]

US20210178286A1 - Apparatus and Method for Separating Plant Trichomes Using a Double Vortex Turbulence - Google Patents

Apparatus and Method for Separating Plant Trichomes Using a Double Vortex Turbulence Download PDF

Info

Publication number
US20210178286A1
US20210178286A1 US17/184,780 US202117184780A US2021178286A1 US 20210178286 A1 US20210178286 A1 US 20210178286A1 US 202117184780 A US202117184780 A US 202117184780A US 2021178286 A1 US2021178286 A1 US 2021178286A1
Authority
US
United States
Prior art keywords
basin
rotator plate
mixture
semi
rounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/184,780
Inventor
Didier Camilleri
Benjamin K. Stephens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Separations LLC
Original Assignee
Delta Separations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Separations LLC filed Critical Delta Separations LLC
Priority to US17/184,780 priority Critical patent/US20210178286A1/en
Publication of US20210178286A1 publication Critical patent/US20210178286A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0215Solid material in other stationary receptacles
    • B01D11/0253Fluidised bed of solid materials
    • B01D11/0257Fluidised bed of solid materials using mixing mechanisms, e.g. stirrers, jets

Definitions

  • the present invention relates generally to separating sticky particulate from plant material. More specifically, the present invention relates to separating resin heads from cannabis plants.
  • Hashish is a consumable compress of purified psychoactive resin from the glandular trichomes of the cannabis plant.
  • the trichomes are found on the flowers, and to a lesser extent, in the stems and leaves of the plant.
  • Methods such as flat screening or dry sieving require practice and skill, are inefficient, and often result in a lower quality product that contains broken leaf-matter contaminants.
  • Use of chemical solvents can alter the resin and produce unwanted by-products.
  • Machines such as that disclosed by Raichart in U.S. Pat. No. 9,050,631, which tumble the plant flowers and collect the sticky trichomes on sieving screens, although inexpensive, are also inefficient, and are difficult to clean and reuse.
  • An example of an ice and agitator method is the cold water cleaning process and machine disclosed by Reinhard in U.S. Pat. No. 6,158,591.
  • This machine uses an agitator similar to an electric mixer that macerates the leaves of the plant, damaging them before the resin can be removed.
  • the machine requires the use of ice to keep the water as cold as possible, but the ice also damages the plant material, resulting in inefficiencies in the process.
  • the machine also contains internal screens which are easily blocked by sticky resin and plant biomass, making them ineffective and preventing effective flow of liquid through the machine.
  • the present invention addresses these issues by combining a low temperature process with a double vortex pattern of liquid flow to gently remove the resin heads from the botanical material.
  • the double vortex flow is created through a uniquely shaped basin in combination with a user controlled rotator plate.
  • the double vortex flow results in a gentle, yet powerful, turbulence.
  • the rolling effect of this turbulence gently removes the cold-water hardened trichome heads from their stalks, yielding a much cleaner and desirable end product.
  • a subsequent filtration process is used to separate the resin containing trichome heads from the liquid.
  • the filtration system uses a series of different sized filters to separate elements of the plant's biomass contaminants from the trichome heads. The result is a maximum separation of the resin containing trichome heads from the plant surface with negligent to non-existent contamination.
  • the present invention is a method and apparatus that separates trichome heads from plants using a double vortex liquid flow to separate the trichomes from the leaves, flowers, and stems.
  • the plant parts are placed with very cold liquid in a jacketed basin which contains a rotator plate near the bottom.
  • the shape of the basin is circular on the front half, and a rounded square on the back half.
  • the plant biomass is soaked in this cold liquid bath until fully hydrated, such that all plant components are completely softened and any flowers begin to open.
  • the user starts the rotator plate spinning, creating a central vortex.
  • the outer edge of the liquid flow rolls off the back side of the rounded square portion of the basin and rolls over the mid-section of the liquid flow, creating a powerful, rolling turbulence in a second vortex.
  • the direction of rotation of the rotator plate is reversed, causing more gentle turbulence as the liquid flow reverses direction.
  • the rotator plate is again reversed to repeat the process. Each time the rotator plate direction is reversed, the velocity is increased to increase the power of the turbulence.
  • the liquid and separated plant biomass and trichome head resin material are evacuated from the basin through a Venturi style drain which creates a powerful flow of liquid toward the external filtration system. That powerful flow is necessary to ensure the separated plant biomass and sticky trichome head resin material do not get trapped in the drain.
  • the filtration system employs a series of different sized external filters to separate elements of used plant biomass, trichome head resin material, and contaminants.
  • the first filter is designed to capture plant components that have passed through the drain and are not fully cleaned of resin. The plant components captured in this first filter may be removed and returned to the basin for further resin separation.
  • the second filter catches the smallest botanical particles while allowing the resin components to pass through. Some resin particulate may remain with the plant material on the second filter and it may be removed and rinsed with high pressure water spray to capture more of the resin product.
  • the final filter is designed to capture the resin product which is then removed from the filter for further processing.
  • FIG. 1 is a perspective view of the exterior of the Double Vortex Machine showing the exterior of the Basin on a Cart, the Outflow Pipe and Valve, and the Multi-Tiered Filter Assembly.
  • FIG. 2 is a view of the top of the Double Vortex Machine without a Cover or a Cart and showing the interior shape, the Rotator Plate and the location of the Venturi drain.
  • FIG. 3 is a cross section of the Double Vortex Machine showing the Jacketing, a possible shape of the Rotator Plate, the location of the Motor and the Multi-Tiered Filter Assembly showing three Filters.
  • FIG. 4 is a schematic showing the liquid flows in the First and Second vortexes when the Rotator Plate is spinning in the clockwise direction.
  • the apparatus of the present invention is a Double Vortex Machine 101 and a Multi-Tiered Filter Assembly 102 , used in conjunction with a liquid source.
  • FIG. 1 shows one possible embodiment of the invention as installed conveniently on an optional Cart 107 .
  • the liquid is preferably water, and the source may be a food-grade water hose with a high pressure spray nozzle attached.
  • the Double Vortex Machine 101 may also be hard plumbed to a water or other liquid source.
  • the Double Vortex Machine 101 has a uniquely shaped Basin 104 , a Rotator Plate 201 , a Motor 302 , a Control Unit 103 , a Venturi Drain 202 , and an Outflow Pipe Assembly 105 .
  • the Multi-Tiered Filter Assembly 102 is attached to the Outflow Pipe Assembly 105 and includes a series of removable Filters 305 , 306 , and 307 . The attributes of each element of the assembly are described throughout the following description of the extraction process.
  • the process begins with hydration of the plant product in the Basin 104 of the Double Vortex Machine 101 .
  • the Basin 104 is shaped such that the front half is a semi-circle and the back half is a rounded square.
  • the distance from the center of the semi-circle to the flat portion of the rounded square is preferably equal to, or just slightly larger, than the radius of the semi-circle.
  • the Basin 104 is preferably made of stainless steel to prevent the resin from sticking to the surface and to facilitate cleaning, but it may be made of any other suitable material.
  • the Basin 104 is also preferably jacketed as shown in FIG. 3 , and may have a Cover 106 as shown in FIGS. 1 and 3 , to help maintain the liquid temperature at close to freezing.
  • a Venturi Drain 202 located in the bottom of the Basin 104 , is connected to the Outflow Pipe Assembly 105 which includes a Valve 303 .
  • the Valve 303 is preferably manually operated, but may also be electrically connected to, and controlled by, the Control Unit 103 .
  • the Basin 104 With the Valve 303 in the closed position, the Basin 104 is filled approximately two thirds full with very cold liquid, preferably water. If a cold liquid source is not available, the temperature of the liquid may be reduced to near zero degrees Celsius via the introduction of coolant to the Jacketed Portion 304 of the Basin 104 , if the Basin 104 is jacketed.
  • the plant product is placed in the Basin 104 with the very cold liquid and is soaked in this bath until all elements are fully hydrated and any flowers begin to open.
  • the Rotator Plate 201 located at the geometric center of the Basin 104 , is positioned slightly above the bottom of the Basin 104 such that there is sufficient clearance beneath the Rotator Plate 201 to ensure plant material does not become trapped underneath.
  • the shape of the Rotator Plate 201 is preferably fairly flat with several ribs of sufficient height to move the liquid into a First Vortex 401 when it is rotated, as shown by the arrows in FIG. 4 .
  • the Rotator Plate 201 is preferably made of stainless steel, but may be made of any suitable material.
  • the Rotator Plate 201 is connected mechanically to a Motor 302 which is connected electrically to the Control Unit 103 .
  • the Motor 302 has variable speed capability, preferably from 300 to 1700 rpm, which may be adjusted by the user through the Control Unit 103 .
  • the Control Unit 103 is preferably designed to automatically reverse the Motor 302 direction at intervals based on the adjusted speed, but this reversal may also be done manually by the user.
  • the Motor 302 and Control Unit 103 components are all readily available catalogue items, and no particular model(s) or specifications are indicated.
  • the user After hydration of the plant product is complete, the user starts the Rotator Plate 201 spinning using the Control Unit 103 .
  • the spinning of the Rotator Plate creates a First Vortex 401 in the Basin 104 .
  • the outer edge of the liquid flow rolls off the back side of the rounded square portion of the Basin 104 and rolls over the mid-section of the liquid flow, creating a Second Vortex 402 as shown in FIG. 4 .
  • the direction of rotation of the Rotator Plate 201 is reversed, either automatically through design of the Control Unit 103 , or manually by the user.
  • the reversal action creates more turbulence as the liquid flow reverses direction.
  • double vortexes are created in the opposite direction, and the user, or the Control Unit 103 , reverses the Rotator Plate 201 direction again to repeat the process.
  • the velocity is preferably increased to increase the power of the turbulence.
  • the increase in velocity is preferably manually adjusted by the user, but it may also be automated in the Control Unit 103 .
  • the Valve 303 in the Outflow Pipe Assembly 105 is opened and the liquid, processed plant biomass and separated trichome heads containing the resin flow through the Venturi Drain 202 to the Multi-Tiered Filter Assembly 102 .
  • the Valve 303 is preferably manually operated, but may also be an electronically controlled and operated valve, such as a solenoid. If an electronically controlled valve is used, it would preferably be electrically connected to, and operated by, the Control Unit 103 .
  • the Multi-Tiered Filter Assembly 102 contains at least two, and preferably three, removable Filters 305 , 306 , and 307 .
  • the First Filter 305 preferably with a mesh size of approximately 190 microns, is sized to capture plant components that have passed through the drain and are not fully cleaned of resin. The plant components captured in this First Filter 305 may be removed and returned to the basin for further resin separation.
  • the Multi-Tiered Filter Assembly 102 preferable contains a Middle Filter 306 with a mesh size of approximately 160 microns that will capture both trichome heads containing resin material and plant biomass of a similar size.
  • Some resin particulate may remain with the plant material on the Middle Filter 306 , and it may be removed and rinsed with high pressure water spray to capture more of the resin product.
  • the Final Filter 307 preferably with a mesh size of approximately 45 microns, captures the resin product.
  • the Final Filter 307 is removed and the resin is cleaned from it to be prepared for further processing.
  • the Multi-Tiered Filter Assembly 102 could contain several additional intermediate filters to facilitate the filtering process.
  • the cleaning of the filters could also be automated by including space and controls for high pressure liquid sprays between each of the filters.
  • water is specified herein as preferable, any suitable liquid could be used as the medium for the plant material.
  • the specific embodiments described herein are offered by way of example only. The embodiments were chosen and described in order to best explain the principles of the invention and its practiced applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)

Abstract

A method and apparatus for separating trichome heads containing resin from cannabis plants using a double vortex liquid flow to remove the trichome heads without macerating the plant material and a multi-tiered filtration process to isolate the resin product.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • Not Applicable.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable.
  • REFERENCE TO SEQUENCE LISTING, A TABLE, OR A COMPUTER PROGRAM LISTING COMPACT DISC APPENDIX
  • Not Applicable.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates generally to separating sticky particulate from plant material. More specifically, the present invention relates to separating resin heads from cannabis plants.
  • 2. Description of the Related Art
  • Hashish is a consumable compress of purified psychoactive resin from the glandular trichomes of the cannabis plant. The trichomes are found on the flowers, and to a lesser extent, in the stems and leaves of the plant. Historically, separating the trichomes from the plant has been very difficult as the resin within the trichomes is quite sticky. Methods such as flat screening or dry sieving require practice and skill, are inefficient, and often result in a lower quality product that contains broken leaf-matter contaminants. Use of chemical solvents can alter the resin and produce unwanted by-products. Machines, such as that disclosed by Raichart in U.S. Pat. No. 9,050,631, which tumble the plant flowers and collect the sticky trichomes on sieving screens, although inexpensive, are also inefficient, and are difficult to clean and reuse.
  • Some success has been found with a process using ice, water, and a mechanical agitator. The ice reduces the stickiness of the resin in the trichome heads, and the mechanical agitator forces the trichome heads to break away from their stalks and botanical material. In addition, the use of ice and mechanical agitators on the botanical material creates plant particulate contamination in the final resin product, creating an inferior product and harsh flavors.
  • An example of an ice and agitator method is the cold water cleaning process and machine disclosed by Reinhard in U.S. Pat. No. 6,158,591. This machine uses an agitator similar to an electric mixer that macerates the leaves of the plant, damaging them before the resin can be removed. The machine requires the use of ice to keep the water as cold as possible, but the ice also damages the plant material, resulting in inefficiencies in the process. The machine also contains internal screens which are easily blocked by sticky resin and plant biomass, making them ineffective and preventing effective flow of liquid through the machine.
  • The present invention addresses these issues by combining a low temperature process with a double vortex pattern of liquid flow to gently remove the resin heads from the botanical material. The double vortex flow is created through a uniquely shaped basin in combination with a user controlled rotator plate. The double vortex flow results in a gentle, yet powerful, turbulence. The rolling effect of this turbulence gently removes the cold-water hardened trichome heads from their stalks, yielding a much cleaner and desirable end product. A subsequent filtration process is used to separate the resin containing trichome heads from the liquid. The filtration system uses a series of different sized filters to separate elements of the plant's biomass contaminants from the trichome heads. The result is a maximum separation of the resin containing trichome heads from the plant surface with negligent to non-existent contamination.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is a method and apparatus that separates trichome heads from plants using a double vortex liquid flow to separate the trichomes from the leaves, flowers, and stems. The plant parts are placed with very cold liquid in a jacketed basin which contains a rotator plate near the bottom. The shape of the basin is circular on the front half, and a rounded square on the back half. The plant biomass is soaked in this cold liquid bath until fully hydrated, such that all plant components are completely softened and any flowers begin to open.
  • Following hydration, the user starts the rotator plate spinning, creating a central vortex. As the liquid swirls and picks up speed, the outer edge of the liquid flow rolls off the back side of the rounded square portion of the basin and rolls over the mid-section of the liquid flow, creating a powerful, rolling turbulence in a second vortex. After establishing this second vortex, the direction of rotation of the rotator plate is reversed, causing more gentle turbulence as the liquid flow reverses direction. When the double vortexes are created in the opposite direction, the rotator plate is again reversed to repeat the process. Each time the rotator plate direction is reversed, the velocity is increased to increase the power of the turbulence.
  • The liquid and separated plant biomass and trichome head resin material are evacuated from the basin through a Venturi style drain which creates a powerful flow of liquid toward the external filtration system. That powerful flow is necessary to ensure the separated plant biomass and sticky trichome head resin material do not get trapped in the drain.
  • The filtration system employs a series of different sized external filters to separate elements of used plant biomass, trichome head resin material, and contaminants. The first filter is designed to capture plant components that have passed through the drain and are not fully cleaned of resin. The plant components captured in this first filter may be removed and returned to the basin for further resin separation. The second filter catches the smallest botanical particles while allowing the resin components to pass through. Some resin particulate may remain with the plant material on the second filter and it may be removed and rinsed with high pressure water spray to capture more of the resin product. The final filter is designed to capture the resin product which is then removed from the filter for further processing.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the figures, wherein like reference numbers refer to similar items throughout the figures and:
  • FIG. 1 is a perspective view of the exterior of the Double Vortex Machine showing the exterior of the Basin on a Cart, the Outflow Pipe and Valve, and the Multi-Tiered Filter Assembly.
  • FIG. 2 is a view of the top of the Double Vortex Machine without a Cover or a Cart and showing the interior shape, the Rotator Plate and the location of the Venturi drain.
  • FIG. 3 is a cross section of the Double Vortex Machine showing the Jacketing, a possible shape of the Rotator Plate, the location of the Motor and the Multi-Tiered Filter Assembly showing three Filters.
  • FIG. 4 is a schematic showing the liquid flows in the First and Second vortexes when the Rotator Plate is spinning in the clockwise direction.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In the following detailed description of the invention, reference is made to the accompanying drawings which form a part of the disclosure and, which show by way of illustration, and not of limitation, specific embodiments by which the invention may be practiced. The drawings, the foregoing discussion, and the following description are exemplary and explanatory only, and are not intended to limit the scope of the invention or its application in any manner.
  • The apparatus of the present invention is a Double Vortex Machine 101 and a Multi-Tiered Filter Assembly 102, used in conjunction with a liquid source. FIG. 1 shows one possible embodiment of the invention as installed conveniently on an optional Cart 107. The liquid is preferably water, and the source may be a food-grade water hose with a high pressure spray nozzle attached. In another embodiment, the Double Vortex Machine 101 may also be hard plumbed to a water or other liquid source. The Double Vortex Machine 101 has a uniquely shaped Basin 104, a Rotator Plate 201, a Motor 302, a Control Unit 103, a Venturi Drain 202, and an Outflow Pipe Assembly 105. The Multi-Tiered Filter Assembly 102 is attached to the Outflow Pipe Assembly 105 and includes a series of removable Filters 305, 306, and 307. The attributes of each element of the assembly are described throughout the following description of the extraction process.
  • The process begins with hydration of the plant product in the Basin 104 of the Double Vortex Machine 101. As shown in FIG. 2, the Basin 104 is shaped such that the front half is a semi-circle and the back half is a rounded square. The distance from the center of the semi-circle to the flat portion of the rounded square is preferably equal to, or just slightly larger, than the radius of the semi-circle. The Basin 104 is preferably made of stainless steel to prevent the resin from sticking to the surface and to facilitate cleaning, but it may be made of any other suitable material. The Basin 104 is also preferably jacketed as shown in FIG. 3, and may have a Cover 106 as shown in FIGS. 1 and 3, to help maintain the liquid temperature at close to freezing.
  • A Venturi Drain 202, located in the bottom of the Basin 104, is connected to the Outflow Pipe Assembly 105 which includes a Valve 303. The Valve 303 is preferably manually operated, but may also be electrically connected to, and controlled by, the Control Unit 103. With the Valve 303 in the closed position, the Basin 104 is filled approximately two thirds full with very cold liquid, preferably water. If a cold liquid source is not available, the temperature of the liquid may be reduced to near zero degrees Celsius via the introduction of coolant to the Jacketed Portion 304 of the Basin 104, if the Basin 104 is jacketed. The plant product is placed in the Basin 104 with the very cold liquid and is soaked in this bath until all elements are fully hydrated and any flowers begin to open.
  • The Rotator Plate 201, located at the geometric center of the Basin 104, is positioned slightly above the bottom of the Basin 104 such that there is sufficient clearance beneath the Rotator Plate 201 to ensure plant material does not become trapped underneath. The shape of the Rotator Plate 201 is preferably fairly flat with several ribs of sufficient height to move the liquid into a First Vortex 401 when it is rotated, as shown by the arrows in FIG. 4. The Rotator Plate 201 is preferably made of stainless steel, but may be made of any suitable material. The Rotator Plate 201 is connected mechanically to a Motor 302 which is connected electrically to the Control Unit 103. The Motor 302 has variable speed capability, preferably from 300 to 1700 rpm, which may be adjusted by the user through the Control Unit 103. The Control Unit 103 is preferably designed to automatically reverse the Motor 302 direction at intervals based on the adjusted speed, but this reversal may also be done manually by the user. The Motor 302 and Control Unit 103 components are all readily available catalogue items, and no particular model(s) or specifications are indicated.
  • After hydration of the plant product is complete, the user starts the Rotator Plate 201 spinning using the Control Unit 103. The spinning of the Rotator Plate creates a First Vortex 401 in the Basin 104. As the liquid swirls and picks up speed, the outer edge of the liquid flow rolls off the back side of the rounded square portion of the Basin 104 and rolls over the mid-section of the liquid flow, creating a Second Vortex 402 as shown in FIG. 4. After establishing this Second Vortex 402, the direction of rotation of the Rotator Plate 201 is reversed, either automatically through design of the Control Unit 103, or manually by the user. The reversal action creates more turbulence as the liquid flow reverses direction. Ultimately, double vortexes are created in the opposite direction, and the user, or the Control Unit 103, reverses the Rotator Plate 201 direction again to repeat the process.
  • Each time the Rotator Plate 201 direction is reversed, the velocity is preferably increased to increase the power of the turbulence. The increase in velocity is preferably manually adjusted by the user, but it may also be automated in the Control Unit 103.
  • After a sufficient amount of trichome heads containing resin have been separated from the plant material, the Rotator Plate 201 rotation is stopped and the filtering portion of the process is started. The Valve 303 in the Outflow Pipe Assembly 105 is opened and the liquid, processed plant biomass and separated trichome heads containing the resin flow through the Venturi Drain 202 to the Multi-Tiered Filter Assembly 102. The Valve 303 is preferably manually operated, but may also be an electronically controlled and operated valve, such as a solenoid. If an electronically controlled valve is used, it would preferably be electrically connected to, and operated by, the Control Unit 103.
  • The Multi-Tiered Filter Assembly 102 contains at least two, and preferably three, removable Filters 305, 306, and 307. The First Filter 305, preferably with a mesh size of approximately 190 microns, is sized to capture plant components that have passed through the drain and are not fully cleaned of resin. The plant components captured in this First Filter 305 may be removed and returned to the basin for further resin separation. The Multi-Tiered Filter Assembly 102 preferable contains a Middle Filter 306 with a mesh size of approximately 160 microns that will capture both trichome heads containing resin material and plant biomass of a similar size. Some resin particulate may remain with the plant material on the Middle Filter 306, and it may be removed and rinsed with high pressure water spray to capture more of the resin product. The Final Filter 307, preferably with a mesh size of approximately 45 microns, captures the resin product. The Final Filter 307 is removed and the resin is cleaned from it to be prepared for further processing.
  • Many modifications and variations of this invention may be made without departing from its spirit and scope, as will be appreciated by those skilled in the art. For example, the Multi-Tiered Filter Assembly 102 could contain several additional intermediate filters to facilitate the filtering process. The cleaning of the filters could also be automated by including space and controls for high pressure liquid sprays between each of the filters. Also, although water is specified herein as preferable, any suitable liquid could be used as the medium for the plant material. The specific embodiments described herein are offered by way of example only. The embodiments were chosen and described in order to best explain the principles of the invention and its practiced applications.

Claims (21)

1.-4. (canceled)
5. An apparatus for separating plant material from plants, the apparatus comprising:
a basin comprising a bottom, a semi-cylindrical front portion and a rounded box back portion comprising two rounded corners extending in a vertical direction;
a rotator plate located inside and exclusively adjacent the bottom of the basin, the rotator plate having an axis of rotation that is vertical; and
a reversible motor coupled to the rotator plate, such that when the basin contains a mixture of liquid and plant material and the motor rotates the flat rotator plate, a double agitation is configured to form in the mixture comprising a first vortex of the mixture about the axis, and a second agitation of the mixture adjacent to a first one of the two rounded corners of the basin.
6. The apparatus of claim 5, further comprising a drain in the bottom coupled to a filtering system such that, when a valve is opened and the liquid is drained from the basin, processed plant biomass is captured in the filtering system.
7. The apparatus of claim 6, wherein the filtering system comprises a valve and removable filters in series.
8. The apparatus of claim 6 wherein the basin comprises a cooling jacket and a cover to regulate a temperature of the mixture.
9. The apparatus of claim 6, further comprising a cart that is portable on wheels, the basin is mounted to the cart, the motor is coupled vertically below the basin.
10. The apparatus of claim 9, wherein the filtering system extends out of and is located on a side of the cart below the basin.
11. The apparatus of claim 5, wherein the rotator plate comprises a top surface having ribs extending vertically therefrom.
12. The apparatus of claim 11, wherein tops of the ribs on the rotator plate are rounded.
13. The apparatus of claim 11, wherein tops of the ribs are located vertically below a cooling jacket.
14. The apparatus of claim 5, wherein the bottom is flat and the rotator plate is flat.
15. The apparatus of claim 5 wherein, relative to the axis, a radial distance from a center of the semi-cylindrical front portion to a flat wall of the rounded box back portion is equal to or greater than a radius of the semi-cylindrical front portion.
16. The apparatus of claim 5, wherein the basin comprises a D-shaped tub when viewed from above.
17. The apparatus of claim 5, further comprising a control panel configured to automatically control the apparatus and reverse a rotational direction of the rotator plate at selected intervals.
18. The apparatus of claim 5, wherein, when the rotator plate reverses rotational direction, the second agitation of the mixture is configured to move and form adjacent to a second one of the two rounded corners of the basin.
19. The apparatus of claim 5, wherein the control panel is configured to automatically increase a speed of the reversible motor during operation.
20. The apparatus of claim 19, wherein the speed is in a range of 300 rpm to 1700 rpm.
21. An apparatus for separating plant material from plants, the apparatus comprising:
a basin comprising a bottom, a semi-cylindrical front portion and a rounded box back portion comprising two rounded corners extending in a vertical direction;
a rotator plate located inside the basin, the rotator plate having an axis of rotation that is vertical;
a reversible motor coupled to the rotator plate, such that when the basin contains a mixture of liquid and plant material and the motor rotates the flat rotator plate, a double agitation is configured to form in the mixture comprising a first vortex of the mixture about the axis, and a second agitation of the mixture adjacent to a first one of the two rounded corners of the basin; and
when the rotator plate reverses rotational direction, the second agitation of the mixture is configured to move and form adjacent to a second one of the two rounded corners of the basin.
22. The apparatus of claim 21 wherein, relative to the axis, a radial distance from a center of the semi-cylindrical front portion to a flat wall of the rounded box back portion is equal to or greater than a radius of the semi-cylindrical front portion.
23. The apparatus of claim 21, further comprising a control panel configured to automatically control the apparatus and reverse a rotational direction of the rotator plate at selected intervals.
24. The apparatus of claim 21, wherein the control panel is configured to automatically increase a speed of the reversible motor during operation.
US17/184,780 2017-08-18 2021-02-25 Apparatus and Method for Separating Plant Trichomes Using a Double Vortex Turbulence Abandoned US20210178286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/184,780 US20210178286A1 (en) 2017-08-18 2021-02-25 Apparatus and Method for Separating Plant Trichomes Using a Double Vortex Turbulence

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762547600P 2017-08-18 2017-08-18
US16/103,972 US10933347B2 (en) 2017-08-18 2018-08-16 Apparatus and method for separating plant trichomes using a double vortex turbulence
US17/184,780 US20210178286A1 (en) 2017-08-18 2021-02-25 Apparatus and Method for Separating Plant Trichomes Using a Double Vortex Turbulence

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/103,972 Continuation US10933347B2 (en) 2017-08-18 2018-08-16 Apparatus and method for separating plant trichomes using a double vortex turbulence

Publications (1)

Publication Number Publication Date
US20210178286A1 true US20210178286A1 (en) 2021-06-17

Family

ID=65360334

Family Applications (4)

Application Number Title Priority Date Filing Date
US16/103,972 Active US10933347B2 (en) 2017-08-18 2018-08-16 Apparatus and method for separating plant trichomes using a double vortex turbulence
US16/881,422 Active 2038-11-09 US10933348B2 (en) 2017-08-18 2020-05-22 Apparatus and method for separating plant trichomes using a double vortex turbulence
US17/184,019 Abandoned US20210178285A1 (en) 2017-08-18 2021-02-24 Apparatus and Method for Separating Plant Trichomes Using a Double Vortex Turbulence
US17/184,780 Abandoned US20210178286A1 (en) 2017-08-18 2021-02-25 Apparatus and Method for Separating Plant Trichomes Using a Double Vortex Turbulence

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US16/103,972 Active US10933347B2 (en) 2017-08-18 2018-08-16 Apparatus and method for separating plant trichomes using a double vortex turbulence
US16/881,422 Active 2038-11-09 US10933348B2 (en) 2017-08-18 2020-05-22 Apparatus and method for separating plant trichomes using a double vortex turbulence
US17/184,019 Abandoned US20210178285A1 (en) 2017-08-18 2021-02-24 Apparatus and Method for Separating Plant Trichomes Using a Double Vortex Turbulence

Country Status (1)

Country Link
US (4) US10933347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12036485B1 (en) * 2019-07-16 2024-07-16 Green Vault Systems, LLC Continuous flow cold water extraction

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933347B2 (en) * 2017-08-18 2021-03-02 Delta Separations, Llc Apparatus and method for separating plant trichomes using a double vortex turbulence
US11167225B2 (en) * 2019-01-18 2021-11-09 Spiral Water Technologies, Inc. Plant trichome filtration and concentration
US11931669B2 (en) * 2020-05-14 2024-03-19 John C. Digertt, Inc. Cannabis extraction system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158591A (en) * 1998-02-24 2000-12-12 Delp; Reinhard C. Method and apparatus for extracting plant resins
CN205340617U (en) * 2015-11-26 2016-06-29 东至县鑫农菌业有限公司 Stirring device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU82145A1 (en) * 1980-02-07 1981-09-10 Cipari IMPROVEMENTS IN PROCESSES AND PLANTS USING YEAST
US9050631B2 (en) 2013-02-06 2015-06-09 Cullen Raichart Apparatus and related methods for extracting resins from cannabis
CN104745472B (en) * 2015-04-14 2017-09-19 长春工程学院 A plant tissue culture tank
US10933347B2 (en) * 2017-08-18 2021-03-02 Delta Separations, Llc Apparatus and method for separating plant trichomes using a double vortex turbulence

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158591A (en) * 1998-02-24 2000-12-12 Delp; Reinhard C. Method and apparatus for extracting plant resins
CN205340617U (en) * 2015-11-26 2016-06-29 东至县鑫农菌业有限公司 Stirring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12036485B1 (en) * 2019-07-16 2024-07-16 Green Vault Systems, LLC Continuous flow cold water extraction

Also Published As

Publication number Publication date
US10933347B2 (en) 2021-03-02
US20200282328A1 (en) 2020-09-10
US10933348B2 (en) 2021-03-02
US20190054393A1 (en) 2019-02-21
US20210178285A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US20210178286A1 (en) Apparatus and Method for Separating Plant Trichomes Using a Double Vortex Turbulence
US20020074026A1 (en) Dishwasher
CN208771995U (en) A kind of surface cleaning apparatus of plastic products
CN204995412U (en) A scarfing cinder structure for basin formula cleaning machine
CN208250258U (en) A kind of fire sesame oil purifier
CN204769692U (en) Tealeaves belt cleaning device
CN107442234A (en) It is a kind of Rapid Cleaning and the Chinese medicine of big powder Chinese medicine be screened to smash equipment
CN106820198B (en) Liquid whistle ultrasonic fruit and vegetable cleaning machine and its working method
CN109730340A (en) A kind of marinated automatic cleaning equipment of green plum
CN209300744U (en) Juice extractor with cleaning and sterilizing strainer
CN208426718U (en) A kind of filtering tank with automatic discharging function
CN218245522U (en) A kind of ultra-clean workbench for coconut processing
CN209436232U (en) A kind of cleaning device of multi-filtering cleaning bean sprouts
CN211721797U (en) A small-size desquamation device for walnut-meat
CN208038403U (en) Novel Zanthoxylum essential oil extraction equipment
CN209577572U (en) A kind of Manufacture of medicinal slices of TCM cleaning classifying equipoment
CN208807586U (en) A kind of agricultural product production and processing potato cleaning device
CN205409561U (en) A novel vegetable washing machine for vegetables processing
CN209135279U (en) A kind of aquatic products cleaning device
US1998622A (en) Method of purifying cream
CN220970135U (en) Cleaning device for rhizoma polygonati lotus leaf tea raw material
CN220862194U (en) Raw and other materials belt cleaning device is used in flavouring production
CN220734328U (en) Soybean washs screening all-in-one
CN217220543U (en) Filtering device for the production of melon fruit drink
CN221601426U (en) Concentration filter equipment

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION