US20210154308A1 - Polymeric drug conjugates with tether groups for controlled drug delivery - Google Patents
Polymeric drug conjugates with tether groups for controlled drug delivery Download PDFInfo
- Publication number
- US20210154308A1 US20210154308A1 US16/911,655 US202016911655A US2021154308A1 US 20210154308 A1 US20210154308 A1 US 20210154308A1 US 202016911655 A US202016911655 A US 202016911655A US 2021154308 A1 US2021154308 A1 US 2021154308A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- certain embodiments
- moiety
- group
- therapeutic agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003814 drug Substances 0.000 title claims description 188
- 229940079593 drug Drugs 0.000 title description 33
- 238000012377 drug delivery Methods 0.000 title description 6
- 239000000599 controlled substance Substances 0.000 title 1
- 229920000642 polymer Polymers 0.000 claims abstract description 319
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 claims abstract description 83
- 229920000858 Cyclodextrin Polymers 0.000 claims abstract description 58
- 229940124597 therapeutic agent Drugs 0.000 claims description 147
- 125000000217 alkyl group Chemical group 0.000 claims description 97
- 125000005647 linker group Chemical group 0.000 claims description 88
- -1 poly(ethyleneimine) Polymers 0.000 claims description 87
- 229910052760 oxygen Inorganic materials 0.000 claims description 42
- 229910052717 sulfur Inorganic materials 0.000 claims description 40
- 230000001225 therapeutic effect Effects 0.000 claims description 38
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 35
- 125000005842 heteroatom Chemical group 0.000 claims description 31
- 125000000623 heterocyclic group Chemical group 0.000 claims description 30
- 150000003839 salts Chemical class 0.000 claims description 28
- 238000003776 cleavage reaction Methods 0.000 claims description 25
- 229920001223 polyethylene glycol Polymers 0.000 claims description 25
- 230000007017 scission Effects 0.000 claims description 25
- 150000002148 esters Chemical class 0.000 claims description 23
- 239000002202 Polyethylene glycol Substances 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 16
- 238000007363 ring formation reaction Methods 0.000 claims description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 14
- 150000001408 amides Chemical class 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 239000011593 sulfur Substances 0.000 claims description 14
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 239000008194 pharmaceutical composition Substances 0.000 claims description 12
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 11
- 150000001413 amino acids Chemical group 0.000 claims description 11
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 8
- 229940024606 amino acid Drugs 0.000 claims description 8
- 229920001577 copolymer Polymers 0.000 claims description 8
- 150000007970 thio esters Chemical class 0.000 claims description 8
- 239000002246 antineoplastic agent Substances 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 5
- 229920002873 Polyethylenimine Polymers 0.000 claims description 4
- 150000008064 anhydrides Chemical class 0.000 claims description 4
- 230000000844 anti-bacterial effect Effects 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims description 4
- 229920002643 polyglutamic acid Polymers 0.000 claims description 4
- 230000001093 anti-cancer Effects 0.000 claims description 3
- 230000000843 anti-fungal effect Effects 0.000 claims description 3
- 230000001857 anti-mycotic effect Effects 0.000 claims description 3
- 230000000840 anti-viral effect Effects 0.000 claims description 3
- 239000002543 antimycotic Substances 0.000 claims description 3
- 229920001542 oligosaccharide Polymers 0.000 claims description 3
- 150000002482 oligosaccharides Chemical class 0.000 claims description 3
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical group OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 99
- 150000001875 compounds Chemical class 0.000 description 66
- 239000000562 conjugate Substances 0.000 description 61
- 125000003118 aryl group Chemical group 0.000 description 53
- 239000000463 material Substances 0.000 description 49
- 239000001257 hydrogen Substances 0.000 description 48
- 229910052739 hydrogen Inorganic materials 0.000 description 48
- 239000003795 chemical substances by application Substances 0.000 description 45
- 239000003446 ligand Substances 0.000 description 45
- 230000008685 targeting Effects 0.000 description 45
- 210000004027 cell Anatomy 0.000 description 43
- 239000000243 solution Substances 0.000 description 42
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 41
- 206010028980 Neoplasm Diseases 0.000 description 39
- 238000000034 method Methods 0.000 description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 38
- 125000001072 heteroaryl group Chemical group 0.000 description 37
- 125000004122 cyclic group Chemical group 0.000 description 36
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 35
- 229910001868 water Inorganic materials 0.000 description 35
- 125000003342 alkenyl group Chemical group 0.000 description 32
- 235000002639 sodium chloride Nutrition 0.000 description 32
- 229960005420 etoposide Drugs 0.000 description 30
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 30
- 108700012941 GNRH1 Proteins 0.000 description 29
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 29
- 238000011282 treatment Methods 0.000 description 29
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 28
- DLKUYSQUHXBYPB-NSSHGSRYSA-N (2s,4r)-4-[[2-[(1r,3r)-1-acetyloxy-4-methyl-3-[3-methylbutanoyloxymethyl-[(2s,3s)-3-methyl-2-[[(2r)-1-methylpiperidine-2-carbonyl]amino]pentanoyl]amino]pentyl]-1,3-thiazole-4-carbonyl]amino]-2-methyl-5-(4-methylphenyl)pentanoic acid Chemical compound N([C@@H]([C@@H](C)CC)C(=O)N(COC(=O)CC(C)C)[C@H](C[C@@H](OC(C)=O)C=1SC=C(N=1)C(=O)N[C@H](C[C@H](C)C(O)=O)CC=1C=CC(C)=CC=1)C(C)C)C(=O)[C@H]1CCCCN1C DLKUYSQUHXBYPB-NSSHGSRYSA-N 0.000 description 27
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 26
- 239000007787 solid Substances 0.000 description 26
- 0 [2*]C([U]C(C)C)C([3*])[V]C(=O)CC(C)C Chemical compound [2*]C([U]C(C)C)C([3*])[V]C(=O)CC(C)C 0.000 description 25
- 238000009472 formulation Methods 0.000 description 25
- 239000000126 substance Substances 0.000 description 25
- 125000000753 cycloalkyl group Chemical group 0.000 description 24
- 125000001183 hydrocarbyl group Chemical group 0.000 description 24
- 239000011159 matrix material Substances 0.000 description 23
- 239000000651 prodrug Substances 0.000 description 23
- 229940002612 prodrug Drugs 0.000 description 23
- 241001465754 Metazoa Species 0.000 description 22
- 108090000623 proteins and genes Proteins 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 239000005556 hormone Substances 0.000 description 21
- 229940088597 hormone Drugs 0.000 description 21
- 239000002243 precursor Substances 0.000 description 21
- 241000282414 Homo sapiens Species 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 20
- 239000002105 nanoparticle Substances 0.000 description 20
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 19
- 150000003883 epothilone derivatives Chemical class 0.000 description 19
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 18
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 18
- 125000000304 alkynyl group Chemical group 0.000 description 18
- 238000006065 biodegradation reaction Methods 0.000 description 18
- 102000004169 proteins and genes Human genes 0.000 description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 17
- 125000003545 alkoxy group Chemical group 0.000 description 17
- 239000000178 monomer Substances 0.000 description 17
- 235000018102 proteins Nutrition 0.000 description 17
- 150000003384 small molecules Chemical class 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- 229930184737 tubulysin Natural products 0.000 description 17
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 16
- IBEDDHUHZBDXGB-UHFFFAOYSA-N Tubulysin A Natural products N=1C(C(=O)NC(CC(C)C(O)=O)CC=2C=CC(O)=CC=2)=CSC=1C(OC(C)=O)CC(C(C)C)N(COC(=O)CC(C)C)C(=O)C(C(C)CC)NC(=O)C1CCCCN1C IBEDDHUHZBDXGB-UHFFFAOYSA-N 0.000 description 16
- IBEDDHUHZBDXGB-OEJISELMSA-N Tubulysin A Chemical compound N([C@@H]([C@@H](C)CC)C(=O)N(COC(=O)CC(C)C)[C@H](C[C@@H](OC(C)=O)C=1SC=C(N=1)C(=O)N[C@H](C[C@H](C)C(O)=O)CC=1C=CC(O)=CC=1)C(C)C)C(=O)[C@H]1CCCCN1C IBEDDHUHZBDXGB-OEJISELMSA-N 0.000 description 16
- 229920002988 biodegradable polymer Polymers 0.000 description 16
- 239000004621 biodegradable polymer Substances 0.000 description 16
- 125000004432 carbon atom Chemical group C* 0.000 description 16
- 230000004700 cellular uptake Effects 0.000 description 16
- 125000000524 functional group Chemical group 0.000 description 16
- 125000001424 substituent group Chemical group 0.000 description 16
- 108010061145 tubulysin A Proteins 0.000 description 16
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 15
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 15
- 238000001727 in vivo Methods 0.000 description 15
- 230000015556 catabolic process Effects 0.000 description 14
- 238000006731 degradation reaction Methods 0.000 description 14
- 229930013356 epothilone Natural products 0.000 description 14
- 238000003786 synthesis reaction Methods 0.000 description 14
- 210000001519 tissue Anatomy 0.000 description 14
- 125000003368 amide group Chemical group 0.000 description 13
- 125000003710 aryl alkyl group Chemical group 0.000 description 13
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 13
- 229910052736 halogen Inorganic materials 0.000 description 13
- 150000002367 halogens Chemical group 0.000 description 13
- 125000004404 heteroalkyl group Chemical group 0.000 description 13
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 13
- 239000007943 implant Substances 0.000 description 13
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- 241000699670 Mus sp. Species 0.000 description 12
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 12
- 239000004480 active ingredient Substances 0.000 description 12
- 125000004429 atom Chemical group 0.000 description 12
- 229920000249 biocompatible polymer Polymers 0.000 description 12
- 239000012528 membrane Substances 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 150000003573 thiols Chemical class 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 201000011510 cancer Diseases 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 230000004962 physiological condition Effects 0.000 description 11
- 102000004196 processed proteins & peptides Human genes 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 229940097362 cyclodextrins Drugs 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000002209 hydrophobic effect Effects 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 230000002378 acidificating effect Effects 0.000 description 9
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 9
- 210000004379 membrane Anatomy 0.000 description 9
- 239000004005 microsphere Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 8
- 125000002252 acyl group Chemical group 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 8
- 125000005119 alkyl cycloalkyl group Chemical group 0.000 description 8
- 239000001961 anticonvulsive agent Substances 0.000 description 8
- 230000000975 bioactive effect Effects 0.000 description 8
- 150000001720 carbohydrates Chemical group 0.000 description 8
- 239000000969 carrier Substances 0.000 description 8
- 230000012202 endocytosis Effects 0.000 description 8
- 239000000945 filler Substances 0.000 description 8
- 125000004475 heteroaralkyl group Chemical group 0.000 description 8
- 238000002513 implantation Methods 0.000 description 8
- 231100000252 nontoxic Toxicity 0.000 description 8
- 230000003000 nontoxic effect Effects 0.000 description 8
- 238000007920 subcutaneous administration Methods 0.000 description 8
- 235000000346 sugar Nutrition 0.000 description 8
- 150000008163 sugars Chemical class 0.000 description 8
- 125000003396 thiol group Chemical group [H]S* 0.000 description 8
- 231100000419 toxicity Toxicity 0.000 description 8
- 230000001988 toxicity Effects 0.000 description 8
- 206010009944 Colon cancer Diseases 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 7
- 235000001014 amino acid Nutrition 0.000 description 7
- 230000037396 body weight Effects 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000013270 controlled release Methods 0.000 description 7
- 230000034994 death Effects 0.000 description 7
- 231100000517 death Toxicity 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 239000002552 dosage form Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 7
- 239000010452 phosphate Substances 0.000 description 7
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- 206010033128 Ovarian cancer Diseases 0.000 description 6
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 6
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 239000013543 active substance Substances 0.000 description 6
- 125000004423 acyloxy group Chemical group 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- 239000002260 anti-inflammatory agent Substances 0.000 description 6
- 229940121363 anti-inflammatory agent Drugs 0.000 description 6
- 239000002220 antihypertensive agent Substances 0.000 description 6
- 229940030600 antihypertensive agent Drugs 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 125000000392 cycloalkenyl group Chemical group 0.000 description 6
- 239000000839 emulsion Substances 0.000 description 6
- 230000002255 enzymatic effect Effects 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 6
- 229940093499 ethyl acetate Drugs 0.000 description 6
- 235000019439 ethyl acetate Nutrition 0.000 description 6
- 125000000743 hydrocarbylene group Chemical group 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- 231100000682 maximum tolerated dose Toxicity 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000011859 microparticle Substances 0.000 description 6
- 235000019198 oils Nutrition 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000000932 sedative agent Substances 0.000 description 6
- 229940125723 sedative agent Drugs 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 238000001694 spray drying Methods 0.000 description 6
- 239000000829 suppository Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 5
- 102000004225 Cathepsin B Human genes 0.000 description 5
- 108090000712 Cathepsin B Proteins 0.000 description 5
- 102000005600 Cathepsins Human genes 0.000 description 5
- 108010084457 Cathepsins Proteins 0.000 description 5
- 108010016626 Dipeptides Proteins 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical class C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 5
- 108010038807 Oligopeptides Proteins 0.000 description 5
- 102000015636 Oligopeptides Human genes 0.000 description 5
- 206010061535 Ovarian neoplasm Diseases 0.000 description 5
- 229920000954 Polyglycolide Polymers 0.000 description 5
- 229930006000 Sucrose Natural products 0.000 description 5
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000000443 aerosol Substances 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 229940125681 anticonvulsant agent Drugs 0.000 description 5
- 239000000935 antidepressant agent Substances 0.000 description 5
- 229940005513 antidepressants Drugs 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- 235000006708 antioxidants Nutrition 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 230000027455 binding Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000012043 crude product Substances 0.000 description 5
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 5
- 239000007884 disintegrant Substances 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 239000003995 emulsifying agent Substances 0.000 description 5
- 150000002170 ethers Chemical class 0.000 description 5
- 229940052303 ethers for general anesthesia Drugs 0.000 description 5
- 230000009969 flowable effect Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 239000002674 ointment Substances 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 239000005720 sucrose Substances 0.000 description 5
- 238000013268 sustained release Methods 0.000 description 5
- 239000012730 sustained-release form Substances 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 231100000331 toxic Toxicity 0.000 description 5
- 230000002588 toxic effect Effects 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- 229960003048 vinblastine Drugs 0.000 description 5
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- 241000416162 Astragalus gummifer Species 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical group OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 229920001615 Tragacanth Polymers 0.000 description 4
- 239000000556 agonist Substances 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- 230000003288 anthiarrhythmic effect Effects 0.000 description 4
- 230000000259 anti-tumor effect Effects 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 4
- 125000005605 benzo group Chemical group 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- 210000001124 body fluid Anatomy 0.000 description 4
- 239000010839 body fluid Substances 0.000 description 4
- VTJUKNSKBAOEHE-UHFFFAOYSA-N calixarene Chemical class COC(=O)COC1=C(CC=2C(=C(CC=3C(=C(C4)C=C(C=3)C(C)(C)C)OCC(=O)OC)C=C(C=2)C(C)(C)C)OCC(=O)OC)C=C(C(C)(C)C)C=C1CC1=C(OCC(=O)OC)C4=CC(C(C)(C)C)=C1 VTJUKNSKBAOEHE-UHFFFAOYSA-N 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 235000010980 cellulose Nutrition 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 208000029742 colonic neoplasm Diseases 0.000 description 4
- 150000003983 crown ethers Chemical class 0.000 description 4
- 239000002739 cryptand Substances 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 239000002702 enteric coating Substances 0.000 description 4
- 238000009505 enteric coating Methods 0.000 description 4
- 238000003818 flash chromatography Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- YAMHXTCMCPHKLN-UHFFFAOYSA-N imidazolidin-2-one Chemical compound O=C1NCCN1 YAMHXTCMCPHKLN-UHFFFAOYSA-N 0.000 description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- 229940016286 microcrystalline cellulose Drugs 0.000 description 4
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 4
- 239000008108 microcrystalline cellulose Substances 0.000 description 4
- 210000001724 microfibril Anatomy 0.000 description 4
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 238000007911 parenteral administration Methods 0.000 description 4
- 239000006072 paste Substances 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229960004063 propylene glycol Drugs 0.000 description 4
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000005563 spheronization Methods 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 150000003431 steroids Chemical class 0.000 description 4
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 4
- 125000004434 sulfur atom Chemical group 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 235000010487 tragacanth Nutrition 0.000 description 4
- 239000000196 tragacanth Substances 0.000 description 4
- 229940116362 tragacanth Drugs 0.000 description 4
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 4
- 230000004614 tumor growth Effects 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 3
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 229940078581 Bone resorption inhibitor Drugs 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- WUZUGOCOADMKEE-UHFFFAOYSA-N C.CCC.CCC.CCC.CCC.CCC Chemical compound C.CCC.CCC.CCC.CCC.CCC WUZUGOCOADMKEE-UHFFFAOYSA-N 0.000 description 3
- VVCUCSLVRNTARL-KBJZJHATSA-N CC(C)C.CC(C)C.CCC.CCC.[2H]C Chemical compound CC(C)C.CC(C)C.CCC.CCC.[2H]C VVCUCSLVRNTARL-KBJZJHATSA-N 0.000 description 3
- BTIWAXJORFRQFL-UHFFFAOYSA-N CC(C)NCCSSC1=CC=CC=C1COC(=O)C(C)C Chemical compound CC(C)NCCSSC1=CC=CC=C1COC(=O)C(C)C BTIWAXJORFRQFL-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 208000012766 Growth delay Diseases 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 229920002274 Nalgene Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 3
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 3
- 239000000674 adrenergic antagonist Substances 0.000 description 3
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 3
- 125000003282 alkyl amino group Chemical group 0.000 description 3
- 150000001409 amidines Chemical class 0.000 description 3
- 239000002269 analeptic agent Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000000578 anorexic effect Effects 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000001466 anti-adreneric effect Effects 0.000 description 3
- 230000002456 anti-arthritic effect Effects 0.000 description 3
- 230000001078 anti-cholinergic effect Effects 0.000 description 3
- 230000003556 anti-epileptic effect Effects 0.000 description 3
- 230000001022 anti-muscarinic effect Effects 0.000 description 3
- 230000000118 anti-neoplastic effect Effects 0.000 description 3
- 230000001028 anti-proliverative effect Effects 0.000 description 3
- 230000001139 anti-pruritic effect Effects 0.000 description 3
- 230000001754 anti-pyretic effect Effects 0.000 description 3
- 230000002921 anti-spasmodic effect Effects 0.000 description 3
- 239000003416 antiarrhythmic agent Substances 0.000 description 3
- 229940124346 antiarthritic agent Drugs 0.000 description 3
- 239000000924 antiasthmatic agent Substances 0.000 description 3
- 229960003965 antiepileptics Drugs 0.000 description 3
- 229940125715 antihistaminic agent Drugs 0.000 description 3
- 239000000739 antihistaminic agent Substances 0.000 description 3
- 239000002579 antinauseant Substances 0.000 description 3
- 229940034982 antineoplastic agent Drugs 0.000 description 3
- 239000003908 antipruritic agent Substances 0.000 description 3
- 239000000164 antipsychotic agent Substances 0.000 description 3
- 239000002221 antipyretic Substances 0.000 description 3
- 229940125716 antipyretic agent Drugs 0.000 description 3
- 229940124575 antispasmodic agent Drugs 0.000 description 3
- 239000002249 anxiolytic agent Substances 0.000 description 3
- 230000000949 anxiolytic effect Effects 0.000 description 3
- 229940005530 anxiolytics Drugs 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 239000002617 bone density conservation agent Substances 0.000 description 3
- 230000008468 bone growth Effects 0.000 description 3
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 3
- 125000004452 carbocyclyl group Chemical group 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 230000000718 cholinopositive effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000008045 co-localization Effects 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000004624 confocal microscopy Methods 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 229940037530 cough and cold preparations Drugs 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 239000000850 decongestant Substances 0.000 description 3
- 229940124581 decongestants Drugs 0.000 description 3
- 206010061428 decreased appetite Diseases 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 125000002228 disulfide group Chemical group 0.000 description 3
- 239000002934 diuretic Substances 0.000 description 3
- 229940030606 diuretics Drugs 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000002526 effect on cardiovascular system Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 239000003574 free electron Substances 0.000 description 3
- 239000003193 general anesthetic agent Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000003326 hypnotic agent Substances 0.000 description 3
- 230000000147 hypnotic effect Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229940125721 immunosuppressive agent Drugs 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 239000003701 inert diluent Substances 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000007794 irritation Effects 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 150000003951 lactams Chemical class 0.000 description 3
- 150000002596 lactones Chemical class 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 235000010445 lecithin Nutrition 0.000 description 3
- 239000000787 lecithin Substances 0.000 description 3
- 229940067606 lecithin Drugs 0.000 description 3
- 239000006210 lotion Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 201000005202 lung cancer Diseases 0.000 description 3
- 208000020816 lung neoplasm Diseases 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000000472 muscarinic agonist Substances 0.000 description 3
- 239000003149 muscarinic antagonist Substances 0.000 description 3
- 229940035363 muscle relaxants Drugs 0.000 description 3
- 239000003158 myorelaxant agent Substances 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 239000003176 neuroleptic agent Substances 0.000 description 3
- 239000002698 neuron blocking agent Substances 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 238000011580 nude mouse model Methods 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 239000004006 olive oil Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000002304 perfume Substances 0.000 description 3
- 229940124531 pharmaceutical excipient Drugs 0.000 description 3
- 239000000825 pharmaceutical preparation Substances 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920000747 poly(lactic acid) Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 3
- 150000004804 polysaccharides Chemical class 0.000 description 3
- 229920000053 polysorbate 80 Polymers 0.000 description 3
- 239000003380 propellant Substances 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- 239000003368 psychostimulant agent Substances 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 125000006413 ring segment Chemical group 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000012453 solvate Substances 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000000021 stimulant Substances 0.000 description 3
- 125000000547 substituted alkyl group Chemical group 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 239000003204 tranquilizing agent Substances 0.000 description 3
- 230000002936 tranquilizing effect Effects 0.000 description 3
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 3
- 229940124549 vasodilator Drugs 0.000 description 3
- 239000003071 vasodilator agent Substances 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- NZCNGJHOIKMMCG-UZRVFEFTSA-N (2S,4R)-4-[[2-[(1R,3R)-1-acetyloxy-4-methyl-3-[[(2S,3S)-3-methyl-2-[[(2R)-1-methylpiperidine-2-carbonyl]amino]pentanoyl]-(propanoyloxymethyl)amino]pentyl]-1,3-thiazole-4-carbonyl]amino]-5-(4-hydroxyphenyl)-2-methylpentanoic acid Chemical compound N([C@@H]([C@@H](C)CC)C(=O)N(COC(=O)CC)[C@H](C[C@@H](OC(C)=O)C=1SC=C(N=1)C(=O)N[C@H](C[C@H](C)C(O)=O)CC=1C=CC(O)=CC=1)C(C)C)C(=O)[C@H]1CCCCN1C NZCNGJHOIKMMCG-UZRVFEFTSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- RKBAZLYWJAIMCH-UHFFFAOYSA-N 1-aminoethane-1,1-dithiol Chemical compound CC(N)(S)S RKBAZLYWJAIMCH-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- OGMADIBCHLQMIP-UHFFFAOYSA-N 2-aminoethanethiol;hydron;chloride Chemical compound Cl.NCCS OGMADIBCHLQMIP-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- URQDCKFVRWCBBL-UHFFFAOYSA-N C.C.CCC.CCC.CCC.P Chemical compound C.C.CCC.CCC.CCC.P URQDCKFVRWCBBL-UHFFFAOYSA-N 0.000 description 2
- JPIWQWSXXBOLBZ-UHFFFAOYSA-N CC(C)C(=O)N(C)CCN(C)C(C)C.CC(C)NCCN(C)C(=O)C(C)C.CC(C)SCCCC(=O)C(C)C.CC(C)SCCOC(=O)C(C)C Chemical compound CC(C)C(=O)N(C)CCN(C)C(C)C.CC(C)NCCN(C)C(=O)C(C)C.CC(C)SCCCC(=O)C(C)C.CC(C)SCCOC(=O)C(C)C JPIWQWSXXBOLBZ-UHFFFAOYSA-N 0.000 description 2
- RQDKAHTVUTWERZ-UHFFFAOYSA-N CC(C)CCCNP(=O)(O)C(C)C.CCOP(=O)(NCCCC(C)C)C(C)C Chemical compound CC(C)CCCNP(=O)(O)C(C)C.CCOP(=O)(NCCCC(C)C)C(C)C RQDKAHTVUTWERZ-UHFFFAOYSA-N 0.000 description 2
- LUWYYOMUNPXTJW-UHFFFAOYSA-N CC(C)CCCSC(C)C Chemical compound CC(C)CCCSC(C)C LUWYYOMUNPXTJW-UHFFFAOYSA-N 0.000 description 2
- YYBJZRATXUDALK-UHFFFAOYSA-N CC(C)CCSC(C)C Chemical compound CC(C)CCSC(C)C YYBJZRATXUDALK-UHFFFAOYSA-N 0.000 description 2
- CYKBVWZCRWVOTO-UHFFFAOYSA-N CC(C)CCSSC[W]C(=O)C(C)C Chemical compound CC(C)CCSSC[W]C(=O)C(C)C CYKBVWZCRWVOTO-UHFFFAOYSA-N 0.000 description 2
- IAWAZWGJBWQKDU-UHFFFAOYSA-N CC(C)NCCSSCCCC(=O)C(C)C.CC(C)NCCSSCCOC(=O)C(C)C Chemical compound CC(C)NCCSSCCCC(=O)C(C)C.CC(C)NCCSSCCOC(=O)C(C)C IAWAZWGJBWQKDU-UHFFFAOYSA-N 0.000 description 2
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229920002785 Croscarmellose sodium Polymers 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 2
- 108010021290 LHRH Receptors Proteins 0.000 description 2
- 102000008238 LHRH Receptors Human genes 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- 108010020346 Polyglutamic Acid Proteins 0.000 description 2
- 229920001710 Polyorthoester Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 108010071390 Serum Albumin Proteins 0.000 description 2
- 102000007562 Serum Albumin Human genes 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- HWCIETDQUHYHGQ-YHVCZDCZSA-N Tubulysin B Chemical compound C([C@@H](C[C@H](C)C(O)=O)NC(=O)C=1N=C(SC=1)[C@H](OC(C)=O)C[C@@H](N(COC(=O)CCC)C(=O)[C@@H](NC(=O)[C@@H]1N(CCCC1)C)[C@@H](C)CC)C(C)C)C1=CC=C(O)C=C1 HWCIETDQUHYHGQ-YHVCZDCZSA-N 0.000 description 2
- 108010059993 Vancomycin Proteins 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- GRHZLQBPAJAHDM-SPRQWYLLSA-N [(3as,4r,6ar)-2,3,3a,4,5,6a-hexahydrofuro[2,3-b]furan-4-yl] n-[(2s,4s,5s)-5-[[2-(2,6-dimethylphenoxy)acetyl]amino]-4-hydroxy-1,6-diphenylhexan-2-yl]carbamate Chemical compound CC1=CC=CC(C)=C1OCC(=O)N[C@H]([C@@H](O)C[C@H](CC=1C=CC=CC=1)NC(=O)O[C@@H]1[C@@H]2CCO[C@@H]2OC1)CC1=CC=CC=C1 GRHZLQBPAJAHDM-SPRQWYLLSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 238000007605 air drying Methods 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 description 2
- 229940035674 anesthetics Drugs 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 229940005529 antipsychotics Drugs 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 235000012216 bentonite Nutrition 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 2
- 229940127093 camptothecin Drugs 0.000 description 2
- 239000003560 cancer drug Substances 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000009920 chelation Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 229940110456 cocoa butter Drugs 0.000 description 2
- 235000019868 cocoa butter Nutrition 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- OOTFVKOQINZBBF-UHFFFAOYSA-N cystamine Chemical compound CCSSCCN OOTFVKOQINZBBF-UHFFFAOYSA-N 0.000 description 2
- 229940099500 cystamine Drugs 0.000 description 2
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 2
- 229940097265 cysteamine hydrochloride Drugs 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 2
- 239000006196 drop Substances 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- HESCAJZNRMSMJG-KKQRBIROSA-N epothilone A Chemical class C/C([C@@H]1C[C@@H]2O[C@@H]2CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 HESCAJZNRMSMJG-KKQRBIROSA-N 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 2
- 229940093471 ethyl oleate Drugs 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000003885 eye ointment Substances 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 229920000370 gamma-poly(glutamate) polymer Polymers 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 229940050526 hydroxyethylstarch Drugs 0.000 description 2
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229960003151 mercaptamine Drugs 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 2
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 229960005181 morphine Drugs 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 125000006574 non-aromatic ring group Chemical group 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229960005489 paracetamol Drugs 0.000 description 2
- 239000000816 peptidomimetic Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000447 polyanionic polymer Polymers 0.000 description 2
- 125000003367 polycyclic group Polymers 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 229940044601 receptor agonist Drugs 0.000 description 2
- 239000000018 receptor agonist Substances 0.000 description 2
- 239000002464 receptor antagonist Substances 0.000 description 2
- 229940044551 receptor antagonist Drugs 0.000 description 2
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000002195 soluble material Substances 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 229940124530 sulfonamide Drugs 0.000 description 2
- 150000003456 sulfonamides Chemical class 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- HWCIETDQUHYHGQ-UHFFFAOYSA-N tubulysin B Natural products C1CCCN(C)C1C(=O)NC(C(C)CC)C(=O)N(COC(=O)CCC)C(C(C)C)CC(OC(C)=O)C(SC=1)=NC=1C(=O)NC(CC(C)C(O)=O)CC1=CC=C(O)C=C1 HWCIETDQUHYHGQ-UHFFFAOYSA-N 0.000 description 2
- 108010061146 tubulysin B Proteins 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 2
- 229960003165 vancomycin Drugs 0.000 description 2
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- FXYPGCIGRDZWNR-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-[[3-(2,5-dioxopyrrolidin-1-yl)oxy-3-oxopropyl]disulfanyl]propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSCCC(=O)ON1C(=O)CCC1=O FXYPGCIGRDZWNR-UHFFFAOYSA-N 0.000 description 1
- NXLNNXIXOYSCMB-UHFFFAOYSA-N (4-nitrophenyl) carbonochloridate Chemical compound [O-][N+](=O)C1=CC=C(OC(Cl)=O)C=C1 NXLNNXIXOYSCMB-UHFFFAOYSA-N 0.000 description 1
- 125000006727 (C1-C6) alkenyl group Chemical group 0.000 description 1
- 125000006716 (C1-C6) heteroalkyl group Chemical group 0.000 description 1
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 description 1
- 125000006650 (C2-C4) alkynyl group Chemical group 0.000 description 1
- 125000006645 (C3-C4) cycloalkyl group Chemical group 0.000 description 1
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 description 1
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- XXJGBENTLXFVFI-UHFFFAOYSA-N 1-amino-methylene Chemical group N[CH2] XXJGBENTLXFVFI-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical class CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 1
- MQLACMBJVPINKE-UHFFFAOYSA-N 10-[(3-hydroxy-4-methoxyphenyl)methylidene]anthracen-9-one Chemical compound C1=C(O)C(OC)=CC=C1C=C1C2=CC=CC=C2C(=O)C2=CC=CC=C21 MQLACMBJVPINKE-UHFFFAOYSA-N 0.000 description 1
- XQQZRZQVBFHBHL-UHFFFAOYSA-N 12-crown-4 Chemical compound C1COCCOCCOCCO1 XQQZRZQVBFHBHL-UHFFFAOYSA-N 0.000 description 1
- VFTFKUDGYRBSAL-UHFFFAOYSA-N 15-crown-5 Chemical compound C1COCCOCCOCCOCCO1 VFTFKUDGYRBSAL-UHFFFAOYSA-N 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- SAILTPCYIYNOEL-UHFFFAOYSA-N 2-bromo-1,3,2-benzodioxaborole Chemical compound C1=CC=C2OB(Br)OC2=C1 SAILTPCYIYNOEL-UHFFFAOYSA-N 0.000 description 1
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 1
- JNODDICFTDYODH-UHFFFAOYSA-N 2-hydroxytetrahydrofuran Chemical compound OC1CCCO1 JNODDICFTDYODH-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- AUFVJZSDSXXFOI-UHFFFAOYSA-N 2.2.2-cryptand Chemical compound C1COCCOCCN2CCOCCOCCN1CCOCCOCC2 AUFVJZSDSXXFOI-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- 125000004080 3-carboxypropanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C(O[H])=O 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920001450 Alpha-Cyclodextrin Polymers 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- KBLRNTPJCGSWPR-HXWADRLJSA-N C.CC1=NC(/C=C(\C)C2(C)C/C=C(/C)CCCC(C)C(C)C(C)C(=O)C(C)(C)C(O)CC(=O)O2)=CS1.CC1=NC(/C=C(\C)C2(C)CC3OC3(C)CCCC(C)C(C)C(C)C(=O)C(C)(C)C(O)CC(=O)O2)=CS1.CC1=NC2=CC(C3(C)C/C=C(/C)CCCC(C)C(C)C(C)C(=O)C(C)(C)C(O)CC(=O)O3)=CC=C2S1.CC1=NC2=CC(C3(C)CC4OC4(C)CCCC(C)C(C)C(C)C(=O)C(C)(C)C(O)CC(=O)O3)=CC=C2S1 Chemical compound C.CC1=NC(/C=C(\C)C2(C)C/C=C(/C)CCCC(C)C(C)C(C)C(=O)C(C)(C)C(O)CC(=O)O2)=CS1.CC1=NC(/C=C(\C)C2(C)CC3OC3(C)CCCC(C)C(C)C(C)C(=O)C(C)(C)C(O)CC(=O)O2)=CS1.CC1=NC2=CC(C3(C)C/C=C(/C)CCCC(C)C(C)C(C)C(=O)C(C)(C)C(O)CC(=O)O3)=CC=C2S1.CC1=NC2=CC(C3(C)CC4OC4(C)CCCC(C)C(C)C(C)C(=O)C(C)(C)C(O)CC(=O)O3)=CC=C2S1 KBLRNTPJCGSWPR-HXWADRLJSA-N 0.000 description 1
- OFUPQBMGHRSSEC-UHFFFAOYSA-N C.CCC.CCC.CCC.P Chemical compound C.CCC.CCC.CCC.P OFUPQBMGHRSSEC-UHFFFAOYSA-N 0.000 description 1
- WMXIIDWZVYDGOJ-KRTXGIRCSA-N C/C(=C/C(C)(C)C)C(C)(C)C.CC(C)(C)/C=C\C(C)(C)C.CC(C)(C)C1OC1(C)C(C)(C)C.CC(C)(C)C1OC1C(C)(C)C Chemical compound C/C(=C/C(C)(C)C)C(C)(C)C.CC(C)(C)/C=C\C(C)(C)C.CC(C)(C)C1OC1(C)C(C)(C)C.CC(C)(C)C1OC1C(C)(C)C WMXIIDWZVYDGOJ-KRTXGIRCSA-N 0.000 description 1
- CRRIHETXFCQMDX-UHFFFAOYSA-N C/C1=N/C2=C(C=CC(C(C)(C)C)=C2)S1 Chemical compound C/C1=N/C2=C(C=CC(C(C)(C)C)=C2)S1 CRRIHETXFCQMDX-UHFFFAOYSA-N 0.000 description 1
- 125000004399 C1-C4 alkenyl group Chemical group 0.000 description 1
- JDYLPWQNZKELAV-UHFFFAOYSA-N C1CCC1.OCC1OC2OC3C(CO)OC(OC4C(CO)OC(OC5C(CO)OC(OC6C(CO)OC(OC7C(CO)OC(OC8C(CO)OC(OC1C(O)C2O)C(O)C8O)C(O)C7O)C(O)C6O)C(O)C5O)C(O)C4O)C(O)C3O Chemical compound C1CCC1.OCC1OC2OC3C(CO)OC(OC4C(CO)OC(OC5C(CO)OC(OC6C(CO)OC(OC7C(CO)OC(OC8C(CO)OC(OC1C(O)C2O)C(O)C8O)C(O)C7O)C(O)C6O)C(O)C5O)C(O)C4O)C(O)C3O JDYLPWQNZKELAV-UHFFFAOYSA-N 0.000 description 1
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 1
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 1
- GKFQYJHWEJCGMK-UHFFFAOYSA-N CC(=O)FCCCOCCOCCOCC(=O)O.CC(C)CC(CC(=O)C(CC(=O)CN)CC1=CC=CC=C1)C(=O)CCC(=O)CCCN(C)C(=O)OCC1=CC=CC=C1.CNCCNCC(=O)COCCOCCOCCCFC(C)=O Chemical compound CC(=O)FCCCOCCOCCOCC(=O)O.CC(C)CC(CC(=O)C(CC(=O)CN)CC1=CC=CC=C1)C(=O)CCC(=O)CCCN(C)C(=O)OCC1=CC=CC=C1.CNCCNCC(=O)COCCOCCOCCCFC(C)=O GKFQYJHWEJCGMK-UHFFFAOYSA-N 0.000 description 1
- GTWRWZRCBXNZDT-KNVIOQPZSA-N CC(=O)NCCN.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1P(=O)(O)NCCNC(C)=O.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1P(=O)(O)O.[2H]CP.[2H]CP Chemical compound CC(=O)NCCN.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1P(=O)(O)NCCNC(C)=O.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1P(=O)(O)O.[2H]CP.[2H]CP GTWRWZRCBXNZDT-KNVIOQPZSA-N 0.000 description 1
- UPAIIGWEYRZXMC-UULNMNGPSA-N CC(C)(C)/C=C\C(C)(C)C.CC(C)(C)C1OC1C(C)(C)C Chemical compound CC(C)(C)/C=C\C(C)(C)C.CC(C)(C)C1OC1C(C)(C)C UPAIIGWEYRZXMC-UULNMNGPSA-N 0.000 description 1
- CEKVSYUPHPBKEB-UHFFFAOYSA-N CC(C)(C)CCC1=CC=C(O)C=C1.CC1=CC=C(CC(CC(C)C(=O)O)C(C)(C)C)C=C1 Chemical compound CC(C)(C)CCC1=CC=C(O)C=C1.CC1=CC=C(CC(CC(C)C(=O)O)C(C)(C)C)C=C1 CEKVSYUPHPBKEB-UHFFFAOYSA-N 0.000 description 1
- AICCLFADMXFMCV-UHFFFAOYSA-N CC(C)C(C)c(cc1)cc2c1[s]c(C)n2 Chemical compound CC(C)C(C)c(cc1)cc2c1[s]c(C)n2 AICCLFADMXFMCV-UHFFFAOYSA-N 0.000 description 1
- GEPNUODRHSJPOF-UHFFFAOYSA-N CC(C)COC(=O)CNC(C)C Chemical compound CC(C)COC(=O)CNC(C)C GEPNUODRHSJPOF-UHFFFAOYSA-N 0.000 description 1
- QWOJMRHUQHTCJG-UHFFFAOYSA-N CC([CH2-])=O Chemical compound CC([CH2-])=O QWOJMRHUQHTCJG-UHFFFAOYSA-N 0.000 description 1
- UOUNMQACIRMGGR-QRSMQWOYSA-N CC1OCC2OC(O[C@@H]3C4=CC5=C(C=C4[C@@H](C4=CC(CO)=C(OC(=O)N(C)CCNCC(=O)COCCOCCOCCN)C(CO)=C4)[C@H]4C(=O)OC[C@H]34)OCO5)C(O)C(O)C2O1.CNCCNCC(=O)COCCOCCOCCCFC(C)=O.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(OC)=C1OC(=O)OC1=CC=C([N+](=O)[O-])C=C1 Chemical compound CC1OCC2OC(O[C@@H]3C4=CC5=C(C=C4[C@@H](C4=CC(CO)=C(OC(=O)N(C)CCNCC(=O)COCCOCCOCCN)C(CO)=C4)[C@H]4C(=O)OC[C@H]34)OCO5)C(O)C(O)C2O1.CNCCNCC(=O)COCCOCCOCCCFC(C)=O.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(OC)=C1OC(=O)OC1=CC=C([N+](=O)[O-])C=C1 UOUNMQACIRMGGR-QRSMQWOYSA-N 0.000 description 1
- YLHKADDFJGEBKT-KGJHTZPDSA-N CC1OCC2OC(O[C@@H]3C4=CC5=C(C=C4[C@@H](C4=CC(CO)=C(OC(=O)N(C)CCNCC(=O)COCCOCCOCCN)C(CO)=C4)[C@H]4C(=O)OC[C@H]34)OCO5)C(O)C(O)C2O1.COC1=CC([C@H]2C3=CC4=C(C=C3[C@H](OC3OC5COC(C)OC5C(O)C3O)[C@@H]3COC(=O)[C@@H]23)OCO4)=CC(OC)=C1OC(=O)N(C)CCNCC(=O)COCCOCCOCCCC(C)=O.[2H]CP Chemical compound CC1OCC2OC(O[C@@H]3C4=CC5=C(C=C4[C@@H](C4=CC(CO)=C(OC(=O)N(C)CCNCC(=O)COCCOCCOCCN)C(CO)=C4)[C@H]4C(=O)OC[C@H]34)OCO5)C(O)C(O)C2O1.COC1=CC([C@H]2C3=CC4=C(C=C3[C@H](OC3OC5COC(C)OC5C(O)C3O)[C@@H]3COC(=O)[C@@H]23)OCO4)=CC(OC)=C1OC(=O)N(C)CCNCC(=O)COCCOCCOCCCC(C)=O.[2H]CP YLHKADDFJGEBKT-KGJHTZPDSA-N 0.000 description 1
- FFCOZVSFGUDGLM-UHFFFAOYSA-N CCC(C)C(C(N(COC(C1)c2nc(C(NC(CC(C)C(O)=O)Cc(cc3)ccc3O)=O)c[s]2)C1C(C)C)=O)NC(C1N(C)CCCC1)=O Chemical compound CCC(C)C(C(N(COC(C1)c2nc(C(NC(CC(C)C(O)=O)Cc(cc3)ccc3O)=O)c[s]2)C1C(C)C)=O)NC(C1N(C)CCCC1)=O FFCOZVSFGUDGLM-UHFFFAOYSA-N 0.000 description 1
- KNFPSNXKJXPPIE-UHFFFAOYSA-N CCC(C)C(CC(=O)C1CCCCN1C)C(=O)N(COC(=O)CC(C)C)C(CC(OC(C)=O)C1=NC(C(=O)NC(CC2=CC=C(O)C=C2)CC(C)C(=O)CCCSSCCNC(=O)C(CSCC2OC3OC4C(CO)OC(OC5C(CO)OC(OC6C(CSCC(NC)C(=O)CCCSSCCNC(=O)C(C)CC(CC7=CC=C(O)C=C7)NC(=O)C7=CSC(C(CC(C(C)C)N(COC(=O)CC(C)C)C(=O)C(NC(=O)C8CCCCN8C)C(C)CC)OC(C)=O)=N7)OC(OC7C(CO)OC(OC8C(CO)OC(OC9C(CO)OC(OC2C(O)C3O)C(O)C9O)C(O)C8O)C(O)C7O)C(O)C6O)C(O)C5O)C(O)C4O)NC(=O)CCOCCOCCC(C)=O)=CS1)C(C)C Chemical compound CCC(C)C(CC(=O)C1CCCCN1C)C(=O)N(COC(=O)CC(C)C)C(CC(OC(C)=O)C1=NC(C(=O)NC(CC2=CC=C(O)C=C2)CC(C)C(=O)CCCSSCCNC(=O)C(CSCC2OC3OC4C(CO)OC(OC5C(CO)OC(OC6C(CSCC(NC)C(=O)CCCSSCCNC(=O)C(C)CC(CC7=CC=C(O)C=C7)NC(=O)C7=CSC(C(CC(C(C)C)N(COC(=O)CC(C)C)C(=O)C(NC(=O)C8CCCCN8C)C(C)CC)OC(C)=O)=N7)OC(OC7C(CO)OC(OC8C(CO)OC(OC9C(CO)OC(OC2C(O)C3O)C(O)C9O)C(O)C8O)C(O)C7O)C(O)C6O)C(O)C5O)C(O)C4O)NC(=O)CCOCCOCCC(C)=O)=CS1)C(C)C KNFPSNXKJXPPIE-UHFFFAOYSA-N 0.000 description 1
- INJTZPAHWSMCCP-UHFFFAOYSA-N CCC(C)C(CC(=O)C1CCCCN1C)C(=O)N1COC(C2=NC(C(=O)NC(CC3=CC=C(C)C=C3)CC(C)C(=O)O)=CS2)CC1C(C)C Chemical compound CCC(C)C(CC(=O)C1CCCCN1C)C(=O)N1COC(C2=NC(C(=O)NC(CC3=CC=C(C)C=C3)CC(C)C(=O)O)=CS2)CC1C(C)C INJTZPAHWSMCCP-UHFFFAOYSA-N 0.000 description 1
- WRIDHKHFCBBNDK-BSVNXPGHSA-N CCCSSC1=CC=CC=N1.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)CCCSSC1=CC=CC=N1.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)OC1=CC=C([N+](=O)[O-])C=C1 Chemical compound CCCSSC1=CC=CC=N1.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)CCCSSC1=CC=CC=N1.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)OC1=CC=C([N+](=O)[O-])C=C1 WRIDHKHFCBBNDK-BSVNXPGHSA-N 0.000 description 1
- WLLNGNIUSNLXAD-IZKWAROGSA-N CC[C@H](C)[C@H](CC(=O)[C@H]1CCCCN1C)C(=O)N(COC(=O)CC(C)C)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CCCSSCCNC(C)=O)=CS1)C(C)C.[2H]CP Chemical compound CC[C@H](C)[C@H](CC(=O)[C@H]1CCCCN1C)C(=O)N(COC(=O)CC(C)C)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CCCSSCCNC(C)=O)=CS1)C(C)C.[2H]CP WLLNGNIUSNLXAD-IZKWAROGSA-N 0.000 description 1
- MUMKCUIOMYNTIZ-PTBMNUEQSA-N COC1=CC(C(C)C)=CC(C)=C1O.COC1=CC(C(C)C)=CC(C)=C1O.COC1=CC(C(C)C)=CC(C)=C1OC(=O)N(C)CCN(C)C(=O)/C(=C\C(=O)O)CC(=O)NCCCC(C)C.COC1=CC(C(C)C)=CC(C)=C1OC(=O)N(C)CCN(C)C(=O)/C=C(/CC(=O)NCCCC(C)C)C(=O)O Chemical compound COC1=CC(C(C)C)=CC(C)=C1O.COC1=CC(C(C)C)=CC(C)=C1O.COC1=CC(C(C)C)=CC(C)=C1OC(=O)N(C)CCN(C)C(=O)/C(=C\C(=O)O)CC(=O)NCCCC(C)C.COC1=CC(C(C)C)=CC(C)=C1OC(=O)N(C)CCN(C)C(=O)/C=C(/CC(=O)NCCCC(C)C)C(=O)O MUMKCUIOMYNTIZ-PTBMNUEQSA-N 0.000 description 1
- PHTPXULHXNPPJM-UHFFFAOYSA-N COC1=CC(C(C)C)=CC(C)=C1O.COC1=CC(C(C)C)=CC(C)=C1OC(=O)N(C)CCN(C)C(=O)CCC(=O)C(CC(C)C)NC(=O)C(CC(=O)CNC(C)C)CC1=CC=CC=C1 Chemical compound COC1=CC(C(C)C)=CC(C)=C1O.COC1=CC(C(C)C)=CC(C)=C1OC(=O)N(C)CCN(C)C(=O)CCC(=O)C(CC(C)C)NC(=O)C(CC(=O)CNC(C)C)CC1=CC=CC=C1 PHTPXULHXNPPJM-UHFFFAOYSA-N 0.000 description 1
- BPKQYRIPBUQAST-UHFFFAOYSA-N COC1=CC(C(C)C)=CC(C)=C1O.COC1=CC(C(C)C)=CC(C)=C1OC(=O)N(C)CCN(C)COC(=O)CNC(C)C Chemical compound COC1=CC(C(C)C)=CC(C)=C1O.COC1=CC(C(C)C)=CC(C)=C1OC(=O)N(C)CCN(C)COC(=O)CNC(C)C BPKQYRIPBUQAST-UHFFFAOYSA-N 0.000 description 1
- WACGKLQDPWRACL-DWFNPBKPSA-N COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1O.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)OC1=CC=C([N+](=O)[O-])C=C1.O=C(Cl)OC1=CC=C([N+](=O)[O-])C=C1 Chemical compound COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1O.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)OC1=CC=C([N+](=O)[O-])C=C1.O=C(Cl)OC1=CC=C([N+](=O)[O-])C=C1 WACGKLQDPWRACL-DWFNPBKPSA-N 0.000 description 1
- QPZCMONHMPUVMY-ZKBHYJRASA-P COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)CCCSSC1=CC=CC=N1.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)CCCSSCC[NH3+].[Cl-].[Cl-].[NH3+]CCS Chemical compound COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)CCCSSC1=CC=CC=N1.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)CCCSSCC[NH3+].[Cl-].[Cl-].[NH3+]CCS QPZCMONHMPUVMY-ZKBHYJRASA-P 0.000 description 1
- WZGGIPYBXMNPJF-CQYLJQRQSA-O COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)CCCSSCCNC(C)=O.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)CCCSSCC[NH3+].[2H]CP.[Cl-] Chemical compound COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)CCCSSCCNC(C)=O.COC1=CC([C@@H]2C3=CC4=C(C=C3[C@@H](OC3OC5COC(C)OC5C(O)C3O)[C@H]3COC(=O)[C@H]23)OCO4)=CC(CO)=C1OC(=O)CCCSSCC[NH3+].[2H]CP.[Cl-] WZGGIPYBXMNPJF-CQYLJQRQSA-O 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- JRZJKWGQFNTSRN-UHFFFAOYSA-N Geldanamycin Natural products C1C(C)CC(OC)C(O)C(C)C=C(C)C(OC(N)=O)C(OC)CCC=C(C)C(=O)NC2=CC(=O)C(OC)=C1C2=O JRZJKWGQFNTSRN-UHFFFAOYSA-N 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- GHAZCVNUKKZTLG-UHFFFAOYSA-N N-ethyl-succinimide Natural products CCN1C(=O)CCC1=O GHAZCVNUKKZTLG-UHFFFAOYSA-N 0.000 description 1
- HDFGOPSGAURCEO-UHFFFAOYSA-N N-ethylmaleimide Chemical compound CCN1C(=O)C=CC1=O HDFGOPSGAURCEO-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910003813 NRa Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910004727 OSO3H Inorganic materials 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 229910006069 SO3H Inorganic materials 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 229920001963 Synthetic biodegradable polymer Polymers 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- 231100000230 acceptable toxicity Toxicity 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000005354 acylalkyl group Chemical group 0.000 description 1
- 125000005041 acyloxyalkyl group Chemical group 0.000 description 1
- 125000005042 acyloxymethyl group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000001299 aldehydes Chemical group 0.000 description 1
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000005865 alkene metathesis reaction Methods 0.000 description 1
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000005021 aminoalkenyl group Chemical group 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 125000005014 aminoalkynyl group Chemical group 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical class N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 1
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 229940125388 beta agonist Drugs 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 210000000476 body water Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000480 calcium channel blocker Substances 0.000 description 1
- FATUQANACHZLRT-KMRXSBRUSA-L calcium glucoheptonate Chemical compound [Ca+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O FATUQANACHZLRT-KMRXSBRUSA-L 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- WRWHFVRDUAQRIQ-UHFFFAOYSA-N carbonothioic O,O-acid Chemical compound OC(O)=S WRWHFVRDUAQRIQ-UHFFFAOYSA-N 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000015861 cell surface binding Effects 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 201000010989 colorectal carcinoma Diseases 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 239000003433 contraceptive agent Substances 0.000 description 1
- 230000002254 contraceptive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000003997 cyclic ketones Chemical class 0.000 description 1
- 125000006448 cycloalkyl cycloalkyl group Chemical group 0.000 description 1
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohex-2-enone Chemical compound O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 description 1
- 125000003678 cyclohexadienyl group Chemical group C1(=CC=CCC1)* 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- 238000004163 cytometry Methods 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 125000004855 decalinyl group Chemical group C1(CCCC2CCCCC12)* 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical group C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 230000008406 drug-drug interaction Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical compound [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 208000010749 gastric carcinoma Diseases 0.000 description 1
- QTQAWLPCGQOSGP-GBTDJJJQSA-N geldanamycin Chemical compound N1C(=O)\C(C)=C/C=C\[C@@H](OC)[C@H](OC(N)=O)\C(C)=C/[C@@H](C)[C@@H](O)[C@H](OC)C[C@@H](C)CC2=C(OC)C(=O)C=C1C2=O QTQAWLPCGQOSGP-GBTDJJJQSA-N 0.000 description 1
- 229940005494 general anesthetics Drugs 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002306 glutamic acid derivatives Chemical class 0.000 description 1
- 150000002310 glutaric acid derivatives Chemical class 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 229920000140 heteropolymer Polymers 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 108091008039 hormone receptors Proteins 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 125000000654 isopropylidene group Chemical group C(C)(C)=* 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 150000002576 ketones Chemical group 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- JYTUSYBCFIZPBE-AMTLMPIISA-M lactobionate Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-M 0.000 description 1
- 229940099584 lactobionate Drugs 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000003580 lung surfactant Substances 0.000 description 1
- 229940066294 lung surfactant Drugs 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- AWIJRPNMLHPLNC-UHFFFAOYSA-N methanethioic s-acid Chemical compound SC=O AWIJRPNMLHPLNC-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- YMEHWISYYMKMFO-WOMRJYOTSA-N methyl N-[(12E,15S)-15-[(4S)-4-(3-chlorophenyl)-2-oxopiperidin-1-yl]-9-oxo-8,17,19-triazatricyclo[14.2.1.02,7]nonadeca-1(18),2(7),3,5,12,16-hexaen-5-yl]carbamate Chemical group COC(=O)Nc1ccc2-c3cnc([nH]3)[C@H](C\C=C\CCC(=O)Nc2c1)N1CC[C@@H](CC1=O)c1cccc(Cl)c1 YMEHWISYYMKMFO-WOMRJYOTSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940029985 mineral supplement Drugs 0.000 description 1
- 235000020786 mineral supplement Nutrition 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 230000036457 multidrug resistance Effects 0.000 description 1
- OKPYIWASQZGASP-UHFFFAOYSA-N n-(2-hydroxypropyl)-2-methylprop-2-enamide Chemical compound CC(O)CNC(=O)C(C)=C OKPYIWASQZGASP-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000008058 pain sensation Effects 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229940021222 peritoneal dialysis isotonic solution Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000008191 permeabilizing agent Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- SXADIBFZNXBEGI-UHFFFAOYSA-N phosphoramidous acid Chemical group NP(O)O SXADIBFZNXBEGI-UHFFFAOYSA-N 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- 125000001557 phthalyl group Chemical group C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229920002851 polycationic polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 229940100996 sodium bisulfate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- TYFQFVWCELRYAO-UHFFFAOYSA-L suberate(2-) Chemical compound [O-]C(=O)CCCCCCC([O-])=O TYFQFVWCELRYAO-UHFFFAOYSA-L 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 150000003443 succinic acid derivatives Chemical class 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000003507 tetrahydrothiofenyl group Chemical group 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- DUYAAUVXQSMXQP-UHFFFAOYSA-M thioacetate Chemical compound CC([S-])=O DUYAAUVXQSMXQP-UHFFFAOYSA-M 0.000 description 1
- 150000003566 thiocarboxylic acids Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 231100000816 toxic dose Toxicity 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000723 toxicological property Toxicity 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/61—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/65—Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
- A61K47/6931—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
- A61K47/6939—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being a polysaccharide, e.g. starch, chitosan, chitin, cellulose or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6949—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
- A61K47/6951—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/08—Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/14—Antitussive agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/04—Antipruritics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/02—Muscle relaxants, e.g. for tetanus or cramps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/20—Hypnotics; Sedatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/10—Antioedematous agents; Diuretics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/06—Antiarrhythmics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/08—Vasodilators for multiple indications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
Definitions
- Cyclodextrins ( ⁇ , ⁇ , ⁇ ) and their oxidized forms have unique physico-chemical properties such as good water solubility, low toxicity and low immune response.
- most of the drug delivery studies with cyclodextrins have focused on their ability to form supra-molecular complexes, wherein cyclodextrins form host/guest inclusion complexes with therapeutic molecules and thus alter the physical, chemical, and/or biological properties of these guest molecules.
- One aspect of the invention relates to a polymer conjugate, comprising a therapeutic agent covalently attached to a polymer through a tether, wherein the tether comprises a self-cyclizing moiety.
- the tether further comprises a selectivity-determining moiety.
- One aspect of the invention relates to polymeric materials covalently coupled to therapeutic agents through a tether, wherein the tether comprises a self-cyclizing moiety.
- the tether further comprises a selectivity-determining moiety, e.g., covalently attached to the self-cyclizing moiety, such as in series.
- the selectivity-determining moiety is bonded to the self-cyclizing moiety between the self-cyclizing moiety and the polymer.
- the selectivity-determining moiety promotes selectivity in the cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety, e.g., under acidic conditions or under basic conditions.
- the bond between the selectivity-determining moiety and the self-cyclizing moiety is selected from amide, carbamate, carbonate, ester, thioester, urea, and disulfide bonds.
- the self-cyclizing moiety is selected such that after cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety, cyclization of the self-cyclizing moiety occurs, thereby releasing the therapeutic agent.
- cyclization of the self-cyclizing moiety forms a five- or six-membered ring.
- the five- or six-membered ring is a heterocycle that comprises at least one heteroatom selected from nitrogen, oxygen, and sulfur.
- the heterocycle is an imidazolidinone.
- the selectivity-determining moiety promotes enzymatic cleavage (i.e., by cathepsin or cathepsin B) of the bond between the selectivity-determining moiety and the self-cyclizing moiety.
- the selectivity-determining moiety comprises a peptide (e.g., a dipeptide, tripeptide or tetrapeptide).
- the peptide comprises a sequence selected from GFYA, GFLG, GFA, GLA, AVA, GVA, GIA, GVL, GVF, AVF, KF, and FK.
- the selectivity-determining moiety comprises an aminoalkylcarbonyloxyalkyl moiety. In certain embodiments as disclosed herein, the selectivity-determining moiety comprises cis-aconityl.
- the self-cyclizing moiety has a structure
- U is NR 1 and/or V is NR 4 , and R 1 and R 4 are independently selected from methyl, ethyl, propyl, and isopropyl. In certain embodiments as disclosed herein, both R 1 and R 4 are methyl. In certain embodiments as disclosed herein, both R 2 and R 3 are hydrogen. In certain embodiments as disclosed herein, R 2 and R 3 together are —(CH 2 ) n — wherein n is 3 or 4.
- the self-cyclizing moiety is selected from
- U is bonded to the self-cyclizing moiety.
- the selectivity-determining moiety is represented by Formula A:
- the selectivity-determining moiety is represented by Formula B:
- J comprises an aryl ring, such as a benzo ring.
- W and S are in a 1,2-relationship on the aryl ring.
- the aryl ring is optionally substituted with alkyl, alkenyl, alkoxy, aralkyl, aryl, heteroaryl, halogen, —CN, azido, —NR x R x , —CO 2 OR x , —C(O)—NR x R x , —C(O)—R x , —NR x —C(O)—R x , —NR x SO 2 R x , —SR x , —S(O)R x , —SO 2 R x , —SO 2 NR x R x , —(C(R x ) 2 ), —OR x ,
- J independently and for each occurrence, is polyethylene glycol, polyethylene, polyester, alkenyl, or alkyl.
- J independently and for each occurrence, represents a hydrocarbylene group comprising one or more methylene groups, wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from, substituted or unsubstituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, or —O—, C( ⁇ X) (wherein X is NR 30 , O or S), —OC(O)—, —C( ⁇ O)O, —NR 30 —, —NR 1 CO—, —C(O)NR 30 —, —S(O) n — (wherein n is 0, 1, or 2), —OC(O)—NR 30 , —NR 30 —C(O)—NR 30 —, —NR 30 —C(NR 30 )—NR 30 —NR 30 —C(NR 30 )—NR 30
- J independently and for each occurrence, is substituted or unsubstituted lower alkylene (e.g., unsubstituted ethylene).
- the selectivity-determining moiety is
- the selectivity-determining moiety is selected from
- the selectivity-determining moiety has a structure
- Ar is unsubstituted. In certain embodiments as disclosed herein, Ar is a 1,2-benzo ring. In certain such embodiments, the selectivity determining moiety is
- the polymer comprises a plurality of cyclic moieties selected from cyclodextrins, crown ethers, cyclic oligopeptides, cryptands or cryptates, calixarenes, cavitands, or any combination thereof.
- the polymer conjugate has a structure of Formula I:
- A is a selectivity-determining moiety.
- L 1 , L 2 , L 3 and L 4 are independently selected from an alkyl chain, a polyethylene glycol (PEG) chain, polysuccinic anhydride, poly-L-glutamic acid, poly(ethyleneimine), an oligosaccharide, and an amino acid chain.
- PEG polyethylene glycol
- any of L 1 , L 2 , L 3 and L 4 are independently an alkyl chain wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from aryl, heteroaryl, carbocyclyl, heterocyclyl, or —O—, C( ⁇ X) (wherein X is NR 1 , O or S), —OC(O)—, —C( ⁇ O)O, —NR 1 —, —NR 1 CO—, —C(O)NR 1 —, —S(O) n — (wherein n is 0, 1, or 2), —OC(O)—NR 1 , —NR 1 —C(O)—NR 1 —, —NR 1 —C(NR 1 )—NR 1 —, and —B(OR 1 )—; and R 1 , independently for each occurrence, is H or
- A is selected such that the selectivity-determining moiety promotes selectivity in the cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety.
- B is capable of self-cyclizing to release the therapeutic agent once the bond between A and B has been cleaved.
- the invention provides for a compound represented by Formula C:
- the compound is represented by Formula C
- the compound is represented by Formula D:
- One aspect of the invention relates to a polymer covalently coupled to a therapeutic agent through a linker, wherein the linker comprises a phosphate group.
- One aspect of the invention relates to a polymer, such as any polymer as described above, covalently coupled to a therapeutic agent through a linker, wherein the therapeutic agent is selected from etoposide, tubulysin, epothilone, or an analog or derivative thereof.
- the polymers employed may be biocompatible polymers.
- the polymer comprises a plurality of cyclic moieties selected from cyclodextrins, crown ethers, cyclic oligopeptides, cryptands or cryptates, calixarenes, cavitands, and any combination thereof.
- the therapeutic agent is a small molecule.
- the therapeutic agent contains an amino, hydroxyl, or thiol group.
- the therapeutic agent is attached to the self-cyclizing group through the amino, hydroxyl, or thiol group, preferably a hydroxyl group.
- the therapeutic agent is etoposide, tubulysin, epothilone, or an analog or derivative thereof.
- the targeting ligand is a hormone, such a as a hormone that facilitates endocytosis.
- the hormone is luteinizing hormone-releasing hormone (LHRH).
- a linker group represents a hydrocarbylene group wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from, substituted or unsubstituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, or —O—, C( ⁇ X) (wherein X is NR 1 , O or S), —OC(O)—, —C( ⁇ O)O, —NR 1 —, —NR 1 CO—, —S(O) n — (wherein n is 0, 1, or 2), —OC(O)—NR 1 , —NR 1 —C(NR 1 )—NR 1 —, and —B(OR 1 )—; and R 1 , independently for each occurrence, represents H or a lower alkyl.
- a linker group e.g., between a therapeutic agent and a polymer, comprises a self-cyclizing moiety. In certain embodiments, a linker group, e.g., between a therapeutic agent and a polymer, comprises a selectivity-determining moiety.
- a linker group e.g., between a therapeutic agent and a polymer, comprises a self-cyclizing moiety and a selectivity-determining moiety.
- the linker group represents an amino acid or peptide, or derivative thereof.
- the therapeutic agent or targeting ligand is covalently bonded to the linker group via a biohydrolyzable bond (e.g., an ester, amide, carbonate, carbamate, or a phosphate).
- a biohydrolyzable bond e.g., an ester, amide, carbonate, carbamate, or a phosphate.
- the compound is biodegradable or bioerodable.
- the compound has a number average (M n ) molecular weight between 1,000 to 500,000 amu, or between 5,000 to 200,000 amu, or between 10,000 to 100,000 amu.
- the invention provides for a pharmaceutical preparation comprising a pharmaceutical excipient and a compound of the invention, or a pharmaceutically acceptable ester, salt, or hydrate thereof.
- the therapeutic agent or prodrug thereof makes up at least 5% by weight of the compound. In certain embodiments, the therapeutic agent or prodrug thereof makes up at least 20% by weight of the compound.
- the compound is water soluble.
- P is a linear polymer chain. In certain embodiments as disclosed herein, P is a branched polymer chain.
- P comprises cyclodextrin moieties and at least one of the cyclodextrin moieties of P is oxidized. In certain such embodiments, a plurality of the cyclodextrin moieties of P are oxidized.
- P comprises cyclodextrin moieties that alternate with linker moieties in the polymer chain.
- the linker moieties are attached to therapeutic agents or prodrugs thereof that are cleaved under biological conditions.
- the invention provides for a method for delivering a therapeutic agent comprising administering to a patient in need thereof a therapeutically effective amount of one or more of the compounds of the invention.
- the method is a method for treating cancer.
- the invention relates to a compound represented by Formula C:
- P comprises cyclodextrin moieties in the polymer chain or n is at least 1, and wherein a plurality of therapeutic agents or prodrugs thereof are covalently attached to the polymer chain through attachments that are cleavable, e.g., under biological conditions.
- L 2 is a linker group comprising a phosphate group.
- the compound is represented by Formula C
- At least one linker that connects the therapeutic agent or prodrug thereof to the polymer comprises a group represented by the formula
- E is NR 40 and R 40 is hydrogen.
- K is lower alkylene (e.g., ethylene).
- At least one linker comprises a group selected from
- X is OR 42 .
- the linker group comprises an amino acid or peptide, or derivative thereof.
- the linker is connected to the therapeutic agent through a hydroxyl group (e.g., a phenolic hydroxyl group) on the therapeutic agent.
- a hydroxyl group e.g., a phenolic hydroxyl group
- the therapeutic agent is a small molecule, a peptide, a protein or a polymer that has therapeutic activity. In certain embodiments as disclosed herein, the therapeutic agent is a small molecule. In certain embodiments as disclosed herein, the therapeutic agent is selected from etoposide, tubulysin, epothilone, or an analog or derivative thereof.
- the therapeutic agent is hydrophobic and has a log P>0.4.
- the therapeutic agent has low aqueous solubility.
- the therapeutic agent or targeting ligand is covalently bonded to the linker group via a biohydrolyzable bond (e.g., an ester, amide, carbonate, or a carbamate).
- a biohydrolyzable bond e.g., an ester, amide, carbonate, or a carbamate.
- the therapeutic agent is selected from an anti-cancer, anti-fungal, anti-bacterial, anti-mycotic, or anti-viral therapeutic.
- the therapeutic agent is a receptor agonist. In certain embodiments, the therapeutic agent is a receptor antagonist.
- the compound is biodegradable or bioerodable.
- the compound has a number average (M n ) molecular weight between 1,000 to 500,000 amu, or between 5,000 to 200,000 amu, or between 10,000 to 100,000 amu.
- the invention provides for a pharmaceutical preparation comprising a pharmaceutical excipient and a compound of the invention, or a pharmaceutically acceptable ester, salt, or hydrate thereof.
- the therapeutic agent is selected from anorexics, antiarthritics, antiasthmatic agents, anticonvulsants, antidepressants; antihistamines, anti-inflammatory agents, antinauseants, antineoplastics, antipruritics, antipsychotics, antipyretics, antispasmodics, cardiovascular preparations, antihypertensives, diuretics, vasodilators, central nervous system stimulants, cough and cold preparations, decongestants, diagnostics, hormones, bone growth stimulants and bone resorption inhibitors, immunosuppressives, muscle relaxants, psychostimulants, sedatives, tranquilizers, anti-inflammatory agents, anti-epileptics, anesthetics, hypnotics, sedatives, neuroleptic agents, antidepressants, anxiolytics, anticonvulsant agents, neuron blocking agents, anticholinergic and cholinomimetic agents, antimuscarinic and muscarin
- the therapeutic agent or prodrug thereof makes up at least 5% by weight of the compound. In certain embodiments, the therapeutic agent or prodrug thereof makes up at least 20% by weight of the compound.
- the compound is water soluble.
- a plurality of the linker moieties are attached to therapeutic agents or prodrugs thereof and are cleaved under biological conditions.
- the invention provides for a method for delivering a therapeutic agent comprising administering to a patient in need thereof a therapeutically effective amount of one or more of the compounds of the invention.
- the method is a method for treating cancer.
- FIG. 1 shows the tumor volume mean summary data for HT29 colon carcinoma xenograft in mice treated with CDP-PEG-SS-Tubulysin.
- FIG. 2 shows the body weight mean summary data for HT29 colon carcinoma xenograft in mice treated with CDP-PEG-SS-Tubulysin.
- FIG. 3 shows the relative cellular uptake properties of 5 different CDP-Rho systems as a percentage of total dosing.
- FIG. 4 shows the relative distribution of CDP-Rho in two systems following dosing.
- FIG. 5 shows the uptake of CDP-Rho and LHRH-CDP-Rho by flow cytometry.
- FIG. 6 shows substantial colocalization of LHRH-CDP-Rho with Lysotracker green as observed by confocal microscopy.
- a polymer conjugate comprises a therapeutic agent covalently attached to a polymer, preferably a biocompatible polymer, through a tether, e.g., a linker, wherein the tether comprises a selectivity-determining moiety and a self-cyclizing moiety which are covalently attached to one another in the tether, e.g., between the polymer and the therapeutic agent.
- Polymeric conjugates of the present invention may be useful to improve solubility and/or stability of a therapeutic agent, reduce drug-drug interactions, reduce interactions with blood elements including plasma proteins, reduce or eliminate immunogenicity, protect the agent from metabolism, modulate drug-release kinetics, improve circulation time, improve drug half-life (e.g., in the serum, or in selected tissues, such as tumors), attenuate toxicity, improve efficacy, normalize drug metabolism across subjects of different species, ethnicities, and/or races, and/or provide for targeted delivery into specific cells or tissues. Poorly soluble and/or toxic compounds may benefit particularly from incorporation into polymeric compounds of the invention.
- the therapeutic agent is a small molecule, a macromolecule, an antibody, a peptide, a protein, an enzyme, a nucleic acid, or a polymer that has therapeutic function.
- the polymer may be a polycation, polyanion, or non-ionic polymer.
- a polycationic or polyanionic polymer has at least one site that bears a positive or negative charge, respectively.
- at least one of the linker moiety and the cyclic moiety comprises such a charged site, so that every occurrence of that moiety includes a charged site.
- the polymer may be selected from polysaccharides, and other non-protein biocompatible polymers, and combinations thereof, that contain at least one terminal hydroxyl group, such as polyvinylpyrrollidone, poly(oxyethylene)glycol (PEG), polysuccinic anhydride, polysebacic acid, PEG-phosphate, polyglutamate, polyethylenimine, maleic anhydride divinylether (DIVMA), cellulose, pullulans, inulin, polyvinyl alcohol (PVA), N-(2-hydroxypropyl)methacrylamide (HPMA), dextran and hydroxyethyl starch (HES), and have optional pendant groups for grafting therapeutic agents, targeting ligands and/or cyclodextrin moieties.
- polyvinylpyrrollidone poly(oxyethylene)glycol (PEG), polysuccinic anhydride, polysebacic acid, PEG-phosphate, polyglutamate, polyethylenimine, maleic an
- the polymer may be biodegradable such as poly(lactic acid), poly(glycolic acid), poly(alkyl 2-cyanoacrylates), polyanhydrides, and polyorthoesters, or bioerodible such as polylactide-glycolide copolymers, and derivatives thereof, non-peptide polyaminoacids, polyiminocarbonates, poly alpha-amino acids, polyalkyl-cyano-acrylate, polyphosphazenes or acyloxymethyl poly aspartate and polyglutamate copolymers and mixtures thereof.
- biodegradable such as poly(lactic acid), poly(glycolic acid), poly(alkyl 2-cyanoacrylates), polyanhydrides, and polyorthoesters
- bioerodible such as polylactide-glycolide copolymers, and derivatives thereof, non-peptide polyaminoacids, polyiminocarbonates, poly alpha-amino acids, polyalkyl-cyano-acrylate,
- the polymer comprises cyclic moieties alternating with linker moieties that connect the cyclic structures, e.g., into linear or branched polymers, preferably linear polymers.
- the cyclic moieties may be any suitable cyclic structures, such as cyclodextrins, crown ethers (e.g., 18-crown-6, 15-crown-5, 12-crown-4, etc.), cyclic oligopeptides (e.g., comprising from 5 to 10 amino acid residues), cryptands or cryptates (e.g., cryptand [2.2.2], cryptand-2,1,1, and complexes thereof), calixarenes, or cavitands, or any combination thereof.
- the cyclic structure is (or is modified to be) water-soluble.
- the cyclic structure is selected such that under polymerization conditions, exactly two moieties of each cyclic structure are reactive with the linker moieties, such that the resulting polymer comprises (or consists essentially of) an alternating series of cyclic moieties and linker moieties, such as at least four of each type of moiety.
- Suitable difunctionalized cyclic moieties include many that are commercially available and/or amenable to preparation using published protocols.
- conjugates are soluble in water to a concentration of at least 0.1 g/mL, preferably at least 0.25 g/mL.
- the invention relates to novel compositions of therapeutic cyclodextrin-containing polymeric compounds designed for drug delivery of therapeutic agents.
- these cyclodextrin-containing polymers improve drug stability and/or solubility, and/or reduce toxicity, and/or improve efficacy of the small molecule therapeutic when used in vivo.
- linker groups, and/or targeting ligands the rate of drug release from the polymers can be attenuated for controlled delivery.
- the present invention includes polymer conjugates, such as cyclodextrin-containing polymer conjugates, wherein one or more therapeutic agents are covalently attached.
- the polymers include linear or branched cyclodextrin-containing polymers and polymers grafted with cyclodextrin. Exemplary cyclodextrin-containing polymers that may be modified as described herein are taught in U.S. Pat. Nos. 6,509,323 and 6,884,789, and U.S. Published Patent Application Nos. 2004-0109888, and 2004-0087024, which are incorporated herein in their entirety. These polymers are useful as carriers for small molecule therapeutic delivery, and may improve drug stability and solubility when used in vivo.
- the underlying polymers are linear cyclodextrin-containing polymers, e.g., the polymer backbone includes cyclodextrin moieties.
- the polymer may be a water-soluble, linear cyclodextrin polymer produced by providing at least one cyclodextrin derivative modified to bear one reactive site at each of exactly two positions, and reacting the cyclodextrin derivative with a linker having exactly two reactive moieties capable of forming a covalent bond with the reactive sites under polymerization conditions that promote reaction of the reactive sites with the reactive moieties to form covalent bonds between the linker and the cyclodextrin derivative, whereby a linear polymer comprising alternating units of cyclodextrin derivatives and linkers is produced.
- the polymer may be a water-soluble, linear cyclodextrin polymer having a linear polymer backbone, which polymer comprises a plurality of substituted or unsubstituted cyclodextrin moieties and linker moieties in the linear polymer backbone, wherein each of the cyclodextrin moieties, other than a cyclodextrin moiety at the terminus of a polymer chain, is attached to two of said linker moieties, each linker moiety covalently linking two cyclodextrin moieties.
- the polymer is a water-soluble, linear cyclodextrin polymer comprising a plurality of cyclodextrin moieties covalently linked together by a plurality of linker moieties, wherein each cyclodextrin moiety, other than a cyclodextrin moiety at the terminus of a polymer chain, is attached to two linker moieties to form a linear cyclodextrin polymer.
- Cyclodextrins are cyclic polysaccharides containing naturally occurring D-(+)-glucopyranose units in an ⁇ -(1,4) linkage.
- the most common cyclodextrins are alpha ( ⁇ )-cyclodextrins, beta ( ⁇ )-cyclodextrins and gamma ( ⁇ )-cyclodextrins which contain six, seven, or eight glucopyranose units, respectively.
- the cyclic nature of a cyclodextrin forms a torus or donut-like shape having an inner apolar or hydrophobic cavity, the secondary hydroxyl groups situated on one side of the cyclodextrin torus and the primary hydroxyl groups situated on the other.
- a cyclodextrin is often represented schematically as follows.
- the side on which the secondary hydroxyl groups are located has a wider diameter than the side on which the primary hydroxyl groups are located.
- the present invention contemplates covalent linkages to cyclodextrin moieties on the primary and/or secondary hydroxyl groups.
- the hydrophobic nature of the cyclodextrin inner cavity allows for host-guest inclusion complexes of a variety of compounds, e.g., adamantane. (Comprehensive Supramolecular Chemistry, Volume 3, J. L. Atwood et al., eds., Pergamon Press (1996); T. Cserhati, Anal.
- the invention provides a polymer conjugate, comprising a therapeutic agent covalently attached to a polymer (such as any of the polymers discussed above) through a tether, wherein the tether comprises a self-cyclizing moiety.
- the tether further comprises a selectivity-determining moiety.
- one aspect of the invention relates to a polymer conjugate comprising a therapeutic agent covalently attached to a polymer, preferably a biocompatible polymer, through a tether, wherein the tether comprises a selectivity-determining moiety and a self-cyclizing moiety which are covalently attached to one another.
- the polymer may be biocompatible.
- the selectivity-determining moiety is bonded to the self-cyclizing moiety between the self-cyclizing moiety and the polymer.
- the selectivity-determining moiety is a moiety that promotes selectivity in the cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety.
- a moiety may, for example, promote enzymatic cleavage between the selectivity-determining moiety and the self-cyclizing moiety.
- such a moiety may promote cleavage between the selectivity-determining moiety and the self-cyclizing moiety under acidic conditions or basic conditions.
- the invention contemplates any combination of the foregoing.
- any polymer of the invention in combination with any self-cyclizing moiety, any selectivity-determining moiety, and/or any therapeutic agent are within the scope of the invention.
- any of the various particular recited embodiments for a compound of Formula C may be combined with any of the various particular recited embodiments of the selectivity-determining moiety.
- the selectivity-determining moiety is selected such that the bond is cleaved under acidic conditions.
- the selectivity-determining moiety is selected such that the bond is cleaved under basic conditions
- the selectivity-determining moiety is an aminoalkylcarbonyloxyalkyl moiety.
- the selectivity-determining moiety has a structure
- the selectivity-determining moiety is selected such that the bond is cleaved enzymatically, it may be selected such that a particular enzyme or class of enzymes cleaves the bond. In certain preferred such embodiments, the selectivity-determining moiety may be selected such that the bond is cleaved by a cathepsin, preferably cathepsin B.
- the selectivity-determining moiety comprises a peptide, preferably a dipeptide, tripeptide, or tetrapeptide.
- the peptide is a dipeptide is selected from KF and FK,
- the peptide is a tripeptide is selected from GFA, GLA, AVA, GVA, GIA, GVL, GVF, and AVF.
- the peptide is a tetrapeptide selected from GFYA and GFLG, preferably GFLG.
- a peptide such as GFLG, is selected such that the bond between the selectivity-determining moiety and the self-cyclizing moiety is cleaved by a cathepsin, preferably cathepsin B.
- the selectivity-determining moiety is represented by Formula A:
- J may be polyethylene glycol, polyethylene, polyester, alkenyl, or alkyl.
- J may represent a hydrocarbylene group comprising one or more methylene groups, wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from, substituted or unsubstituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, or —O—, C( ⁇ X) (wherein X is NR 30 , O or S), —OC(O)—, —C( ⁇ O)O, —NR 30 —, —NR 1 CO—, —C(O)NR 30 —, —S(O) n — (wherein n is 0, 1, or 2), —OC(O)—NR 30 , —NR 30 —C(O)—NR 30 —, —NR 30 —C(O)—
- the selectivity-determining moiety is represented by Formula B:
- J may be substituted or unsubstituted lower alkyl, such as methylene.
- J may be an aryl ring.
- the aryl ring is a benzo ring,
- W and S are in a 1,2-relationship on the aryl ring.
- the aryl ring may be optionally substituted with alkyl, alkenyl, alkoxy, aralkyl, aryl, heteroaryl, halogen, —CN, azido, —NR x R x , —CO 2 OR x , —C(O)—NR x R x , —C(O)—R x , —NR x —C(O)—R x , —NR x SO 2 R x , —SR x , —S(O)R x , —SO 2 R x , —SO 2 NR x R x , —(C(R x ) 2 ) n —OR x , —(C(R x ) 2 ) n —NR x R x , and —(C(R x ) 2 ) n —SO 2 R x ; wherein R x is, independently for each
- the aryl ring is optionally substituted with alkyl, alkenyl, alkoxy, aralkyl, aryl, heteroaryl, halogen, —CN, azido, —NR x R x , —CO 2 OR x , —C(O)—NR x R x , —C(O)—R x , —NR x —C(O)—R x , —NR x SO 2 R x , —SR x , —S(O)R x , —SO 2 R x , —SO 2 NR x R x , —(C(R x ) 2 ) n —OR x , —(C(R x ) 2 ) n —NR x R x , and —(C(R x ) 2 ) n —SO 2 R x ; wherein R x is, independently for each occurrence
- J independently and for each occurrence, is polyethylene glycol, polyethylene, polyester, alkenyl, or alkyl.
- each Y independently and for each occurrence, represents a hydrocarbylene group comprising one or more methylene groups, wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from, substituted or unsubstituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, or —O—, C( ⁇ X) (wherein X is NR 30 , O or S), —OC(O)—, —C( ⁇ O)O, —NR 30 —, —NR 1 CO—, —C(O)NR 30 —, —S(O) n — (wherein n is 0, 1, or 2), —OC(O)—NR 30 , —NR 30 —C(O)—NR 30 —, —NR 30 —C(NR 30 )—NR 30 —, and —B(OR 30 )
- J independently and for each occurrence, is substituted or unsubstituted lower alkylene. In certain embodiments, J, independently and for each occurrence, is substituted or unsubstituted ethylene.
- the selectivity-determining moiety is selected from
- the selectivity-determining moiety may include groups with bonds that are cleavable under certain conditions, such as disulfide groups.
- the selectivity-determining moiety comprises a disulfide-containing moiety, for example, comprising aryl and/or alkyl group(s) bonded to a disulfide group.
- the selectivity-determining moiety has a structure
- Ar is unsubstituted. In certain embodiments, Ar is a 1,2-benzo ring.
- suitable moieties within Formula B include
- the self-cyclizing moiety is selected such that upon cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety, cyclization occurs thereby releasing the therapeutic agent.
- a cleavage-cyclization-release cascade may occur sequentially in discrete steps or substantially simultaneously.
- the rate of the self-cyclization cascade may depend on pH, e.g., a basic pH may increase the rate of self-cyclization after cleavage.
- Self-cyclization may have a half-life after introduction in vivo of 24 hours, 18 hours, 14 hours, 10 hours, 6 hours, 3 hours, 2 hours, 1 hour, 30 minutes, 10 minutes, 5 minutes, or 1 minute.
- the self-cyclizing moiety may be selected such that, upon cyclization, a five- or six-membered ring is formed, preferably a five-membered ring.
- the five- or six-membered ring comprises at least one heteroatom selected from oxygen, nitrogen, or sulfur, preferably at least two, wherein the heteroatoms may be the same or different.
- the heterocyclic ring contains at least one nitrogen, preferably two.
- the self-cyclizing moiety cyclizes to form an imidazolidone.
- the self-cyclizing moiety has a structure
- U is NR 1 and/or V is NR 4 , and R 1 and R 4 are independently selected from methyl, ethyl, propyl, and isopropyl. In certain embodiments, both R 1 and R 4 are methyl.
- both R 2 and R 3 are hydrogen. In certain embodiments R 2 and R 3 are independently alkyl, preferably lower alkyl. In certain embodiments, R 2 and R 3 together are —(CH 2 ) n — wherein n is 3 or 4, thereby forming a cyclopentyl or cyclohexyl ring. In certain embodiments, the nature of R 2 and R 3 may affect the rate of cyclization of the self-cyclizing moiety.
- the rate of cyclization would be greater when R 2 and R 3 together with the carbon atoms to which they are attached form a ring than the rate when R 2 and R 3 are independently selected from hydrogen, alkyl, and alkoxy.
- U is bonded to the self-cyclizing moiety.
- the self-cyclizing moiety is selected from
- the selectivity-determining moiety may connect to the self-cyclizing moiety through carbonyl-heteroatom bonds, e.g., amide, carbamate, carbonate, ester, thioester, and urea bonds.
- a therapeutic agent is covalently attached to a polymer through a tether, wherein the tether comprises a selectivity-determining moiety and a self-cyclizing moiety which are covalently attached to one another.
- the self-cyclizing moiety is selected such that after cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety, cyclization of the self-cyclizing moiety occurs, thereby releasing the therapeutic agent.
- ABC may be a selectivity-determining moiety
- DEFGH maybe be a self-cyclizing moiety
- ABC may be selected such that enzyme Y cleaves between C and D. Once cleavage of the bond between C and D progresses to a certain point, D will cyclize onto H, thereby releasing therapeutic agent X, or a prodrug thereof.
- therapeutic agent X may further comprise additional intervening components, including, but not limited to another self-cyclizing moiety or a leaving group linker, such as CO 2 or methoxymethyl, that spontaneously dissociates from the remainder of the molecule after cleavage occurs.
- additional intervening components including, but not limited to another self-cyclizing moiety or a leaving group linker, such as CO 2 or methoxymethyl, that spontaneously dissociates from the remainder of the molecule after cleavage occurs.
- the invention provides a polymer conjugate, comprising a therapeutic agent covalently attached to a polymer (such as any of the polymers discussed above) through a linker, wherein the therapeutic agent is selected from etoposide, tubulysin, epothilone, or an analog or derivative thereof.
- the linkers may be cleavable under biological conditions.
- a polymer may also comprise a targeting ligand and/or one or more cyclodextrin moieties pendant on the polymer.
- a polymer conjugate comprising a therapeutic agent covalently attached to a polymer through a tether, wherein the tether is cleavable under biological conditions.
- One aspect of the invention relates to a compound, in some instances a polymeric compound, having a structure of Formula C:
- the cyclic moieties are independently selected from cyclodextrins, crown ethers, cyclic oligopeptides, cryptands or cryptates, calixarenes, cavitands, and any combination thereof.
- either P comprises cyclodextrin moieties in the polymer chain or n is at least 1.
- Formula C may be represented by Formula C
- Formula C may be represented by Formula D:
- the compound has a number average (M e ) molecular weight between 1,000 to 500,000 amu, between 5,000 to 200,000 amu, or between 10,000 to 100,000 amu.
- the compounds of the invention may be included in a pharmaceutical preparation that further comprises a pharmaceutical excipient.
- B is a self-cyclizing moiety which is capable of self-cyclizing to release the therapeutic agent or prodrug thereof once the bond between the selectivity-determining moiety (A) and the self-cyclizing moiety has been cleaved.
- the self-cyclizing moiety is capable of cyclizing to form an imidazolidinone.
- the therapeutic agent is a small molecule, for example, a hormone (e.g., luteinizing hormone-releasing hormone (LHRH)), etoposide, tubulysin, epothilone, or an analog or derivative thereof.
- therapeutic agent contains an amino, hydroxyl, or thiol group.
- the therapeutic agent is attached to the self-cyclizing group through the amino, hydroxyl, or thiol group.
- the therapeutic agent is attached to the self-cyclizing group through a hydroxyl group.
- the hormone facilitates endocytosis.
- the therapeutic agent is a small molecule, a peptide, a protein, a nucleotide, a polynucleotide, or a polymer that has therapeutic function.
- the agent is an anti-cancer, anti-fungal, anti-bacterial, anti-mycotic, or anti-viral therapeutic.
- the agent is a receptor agonist.
- the agent is a receptor antagonist.
- the therapeutic agent is a protease inhibitor.
- a polymer of the present invention may contain one kind of therapeutic agent, or may contain more than one kind of therapeutic agent.
- two or more different cancer drugs may be grafted on to the polymer.
- the release of each drug may be attenuated to achieve maximal dosage and efficacy.
- the therapeutic agent may contain an amino, hydroxyl, or thiol group. In certain such embodiments, the therapeutic agent may be attached to the self-cyclizing group through the amino, hydroxyl, or thiol group.
- the therapeutic agent is a hydroxyl-containing agent, including, but not limited to, salicylic acid, acetaminophen, morphine, etoposide, a tubulysin (preferably tubulysin A, tubulysin B, or tubulysin C), an epothilone, camptothecin, geldanamycin, rapamycin, or vancomycin, or an analog or derivative thereof.
- such therapeutic agents are covalently attached to subject polymers through functional groups comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups.
- groups may be covalently attached to the subject polymers through linker groups as described herein, for example, biocleavable linker groups, and/or through tethers, such as a tether comprising a selectivity-determining moiety and a self-cyclizing moiety which are covalently attached to one another.
- the therapeutic agent is selected from anorexics, antiarthritics, antiasthmatic agents, anticonvulsants, antidepressants; antihistamines, anti-inflammatory agents, antinauseants, antineoplastics, antipruritics, antipsychotics, antipyretics, antispasmodics, cardiovascular preparations, antihypertensives, diuretics, vasodilators, central nervous system stimulants, cough and cold preparations, decongestants, diagnostics, hormones, bone growth stimulants and bone resorption inhibitors, immunosuppressives, muscle relaxants, psychostimulants, sedatives, tranquilizers, anti-inflammatory agents, anti-epileptics, anesthetics, hypnotics, sedatives, neuroleptic agents, antidepressants, anxiolytics, anticonvulsant agents, neuron blocking agents, anticholinergic and cholinomimetic agents, antimuscarinic and muscarinic agents, anti
- the therapeutic agent is hydrophobic and has a log P>0.4. In certain embodiments, the therapeutic agent has low aqueous solubility. In certain embodiments, the therapeutic agent or targeting ligand is covalently bonded to the linker group via a biohydrolyzable bond (e.g., an ester, amide, carbonate, or a carbamate),
- a biohydrolyzable bond e.g., an ester, amide, carbonate, or a carbamate
- the therapeutic agent or prodrug thereof makes up at least 5%, 10%, 15%, or at least 20% by weight of the compound.
- the compounds comprise cyclodextrin moieties and wherein at least one or a plurality of the cyclodextrin moieties of P is oxidized.
- the cyclodextrin moieties of P alternate with linker moieties in the polymer chain.
- the compounds of the invention may be water soluble.
- the linker group that connects to the therapeutic agent may comprise a self-cyclizing moiety, or a selectivity-determining moiety, or both.
- the selectivity-determining moiety is a moiety that promotes selectivity in the cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety. Such a moiety may, for example, promote enzymatic cleavage between the selectivity-determining moiety and the self-cyclizing moiety. Alternatively, such a moiety may promote cleavage between the selectivity-determining moiety and the self-cyclizing moiety under acidic conditions or basic conditions.
- the selectivity-determining moiety is selected such that the bond is cleaved enzymatically, it may be selected such that a particular enzyme or class of enzymes cleaves the bond. In certain preferred such embodiments, the selectivity-determining moiety may be selected such that the bond is cleaved by a cathepsin, preferably cathepsin B.
- the selectivity-determining moiety comprises a peptide, preferably a dipeptide, tripeptide, or tetrapeptide.
- the peptide is a dipeptide is selected from KF and FK,
- the peptide is a tripeptide is selected from GFA, GLA, AVA, GVA, GIA, GVL, GVF, and AVF.
- the peptide is a tetrapeptide selected from GFYA and GFLG, preferably GFLG.
- a peptide such as GFLG, is selected such that the bond between the selectivity-determining moiety and the self-cyclizing moiety is cleaved by a cathepsin, preferably cathepsin B.
- the linker group that connects to the therapeutic agent may comprise a phosphate group, such as a phosphoramidite group.
- the linker group comprising a phosphate group is represented by the formula
- E is NR 40 and R 40 is hydrogen.
- K is lower alkylene, such as, for example, ethylene.
- X is OR 42 .
- the linker group is selected from
- the linker group is connected to the therapeutic agent through a hydroxyl group (e.g., a phenolic hydroxyl group) on the therapeutic agent.
- a hydroxyl group e.g., a phenolic hydroxyl group
- linker group comprises an amino acid or peptide, or derivative thereof.
- any of the linker groups represents a hydrocarbylene group wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from, substituted or unsubstituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, or —O—, C( ⁇ X) (wherein X is NR 1 , O or S), —OC(O)—, —C( ⁇ O)O, —NR 1 —, —C(O)NR 1 —, —S(O) n — (wherein n is 0, 1, or 2), —OC(O)—NR 1 , —NR 1 —C(O)—NR 1 —, —NR 1 —C(NR 1 )—NR 1 —, and —B(OR 1 )—; and R 1 , independently for each occurrence, represents H or a group Y (
- any of the linker groups may comprise a self-cyclizing moiety or a self-cyclizing moiety, or both.
- the selectivity-determining moiety may be bonded to the self-cyclizing moiety between the self-cyclizing moiety and the polymer.
- any of the linker groups may independently be an alkyl chain, a polyethylene glycol (PEG) chain, polysuccinic anhydride, poly-L-glutamic acid, poly(ethyleneimine), an oligosaccharide, an amino acid chain, or any other suitable linkage.
- the linker group itself can be stable under physiological conditions, such as an alkyl chain, or it can be cleavable under physiological conditions, such as by an enzyme (e.g., the linkage contains a peptide sequence that is a substrate for a peptidase), or by hydrolysis (e.g., the linkage contains a hydrolyzable group, such as an ester or thioester).
- the linker groups can be biologically inactive, such as a PEG, polyglycolic acid, or polylactic acid chain, or can be biologically active, such as an oligo- or polypeptide that, when cleaved from the moieties, binds a receptor, deactivates an enzyme, etc.
- oligomeric linker groups that are biologically compatible and/or bioerodible are known in the art, and the selection of the linkage may influence the ultimate properties of the material, such as whether it is durable when implanted, whether it gradually deforms or shrinks after implantation, or whether it gradually degrades and is absorbed by the body.
- the linker group may be attached to the moieties by any suitable bond or functional group, including carbon-carbon bonds, esters, ethers, amides, amines, carbonates, carbamates, sulfonamides, etc.
- any of the linker groups may independently be an alkyl group wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from aryl, heteroaryl, carbocyclyl, heterocyclyl, or —O—, C( ⁇ X) (wherein X is NR 1 , O or S), —OC(O)—, —C( ⁇ O)O—, —NR 1 —, —NR 1 CO—, —C(O)NR 1 —, —S(O) n — (wherein n is 0, 1, or 2), —OC(O)—NR 1 —, —NR 1 —C(O)—NR 1 —, —NR 1 —C(NR 1 )—NR 1 —, and —B(OR 1 )—; and R 1 , independently for each occurrence, is H or lower alkyl.
- any of the linker groups may independently be a derivatized or non-derivatized amino acid.
- linker groups with one or more terminal carboxyl groups may be conjugated, e.g., covalently conjugated, to the polymer.
- one or more of these terminal carboxyl groups may be capped by covalently attaching them to a therapeutic agent, a targeting ligand, or a cyclodextrin moiety via an (thio)ester or amide bond.
- linker groups with one or more terminal hydroxyl, thiol, or amino groups may be incorporated into the polymer.
- one or more of these terminal hydroxyl groups may be capped by covalently attaching them to a therapeutic agent, a targeting ligand, or a cyclodextrin moiety via an (thio)ester, amide, carbonate, carbamate, thiocarbonate, or thiocarbamate bond.
- these (thio)ester, amide, (thio)carbonate or (thio)carbamates bonds may be biohydrolyzable, i.e., capable of being hydrolyzed under biological conditions.
- the polymers as described above have polydispersities less than about 3, or even less than about 2.
- the invention further contemplates methods for delivering a therapeutic agent comprising administering to a patient in need thereof a therapeutically effective amount of one or more of the compounds of the invention.
- Tubulysins and derivatives and/or analogs thereof may be found, for example, in WO2004/005269, WO2004/005327, WO2004/005326, WO1998/13375, and WO2004/046170 and German Application Serial Nos. DE 100 08 089.8, the contents of which are incorporated herein in their entireties.
- tubulysin derivatives and/or analogs may be represented by Formula II:
- tubulysin derivatives of Formula II are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, for example, when such groups occur in R 11 or R 12 .
- tubulysin derivatives and/or analogs of Formula II may be represented by Formula III:
- R 19 represents the following structure:
- tubulysin derivatives of Formula III are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, such as the hydroxy or amino groups of R 21 or R 22 .
- tubulysin derivatives and/or analogs of Formula II may be represented by Formula IV:
- tubulysin derivatives of Formula IV are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, such as the hydroxy or carboxy groups of R 19 .
- tubulysin derivatives and/or analogs may be represented by Formula V:
- tubulysin derivatives of Formula V are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, in some instances, through T or R.
- Additional tubulysin derivatives of Formula V maybe represented by Formula Va:
- tubulysin derivatives and/or analogs may be represented by Formula VI:
- tubulysin derivatives of Formula VI are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, for example through the phenol group or the carboxy group depicted in Formula VI.
- epothilones and derivatives and/or analogs thereof may be found, for example, in PCT Publication Nos. WO2005/030767, WO2004/007492, WO2004/007483, and WO2002/32844 and German Application Serial Nos. DE 197 13 970.1, DE 100 51 136.8, DE 101 34 172.5, DE 102 32 094.2, the contents of which are incorporated herein in their entireties.
- epothilone derivatives of Formula VII are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, for example, either of the hydroxy groups depicted in Formula VII.
- A is a group of Formula VIII or IX
- R 4 represents
- epothilone derivatives of Formula X are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, for example, either of the hydroxy groups depicted in Formula VII.
- the compound of Formula X can be represented by the following structures:
- epothilone derivatives of Formula XI are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, such as that of Y′ or Z′.
- derivatives and/or analogs of epothilone may be represented by Formula XII:
- R is selected from methyl, CH 2 OH, and CH 2 NH 2 .
- epothilone derivatives of Formula XII are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, for example, the hydroxy group depicted in Formula XII.
- the selectivity-determining moiety may be GFLG or KF or FK
- the self-cyclizing moiety may be an imidazolidone-forming moiety
- the therapeutic agent may be a hydroxyl-containing agent, including, but not limited to, etoposide.
- the cascade to release etoposide for GFLG, for example, may be illustrated as shown below.
- the selectivity-determining moiety may be cis-aconityl
- the self-cyclizing moiety may be an imidazolidone-forming moiety
- the therapeutic agent may be a hydroxyl-containing agent, including, but not limited to, etoposide.
- the cascade to release etoposide may be illustrated as shown below, wherein either isoform of cis-aconityl may be used.
- the selectivity-determining moiety may be cleavable under basic conditions
- the self-cyclizing moiety may be an imidazolidone-forming moiety
- the therapeutic agent may be a hydroxyl-containing agent, including, but not limited to, etoposide.
- the cascade to release etoposide may be illustrated as shown below.
- the present invention contemplates a linear, water-soluble, cyclodextrin-containing polymer, wherein a plurality of therapeutic agents are covalently attached to the polymer through attachments that are cleaved under biological conditions to release the therapeutic agents as discussed above, wherein administration of the polymer to a patient results in release of the therapeutic agent over a period of at least 2, 3, 5, 6, 8, 10, 15, 20, 24, 36, 48 or even 72 hours.
- the polymer conjugates of the present invention preferably have molecular weights in the range of 10,000 to 500,000; 30,000 to 200,000; or even 70,000 to 150,000 amu.
- the cyclodextrin moieties make up at least about 2%, 5% or 10% by weight, up to 20%, 30%, 50% or even 80% of the cyclodextrin-modified polymer by weight.
- the therapeutic agents, or targeting ligands make up at least about 1%, 5%, 10% or 15%, 20%, 25%, 30% or even 35% of the cyclodextrin-modified polymer by weight.
- Number-average molecular weight (M n ) may also vary widely, but generally fall in the range of about 1,000 to about 500,000 daltons, preferably from about 5000 to about 200,000 daltons and, even more preferably, from about 10,000 to about 100,000.
- M n varies between about 12,000 and 65,000 daltons. In certain other embodiments, M n varies between about 3000 and 150,000 daltons.
- a wide range of molecular weights may be present. For example, molecules within the sample may have molecular weights that differ by a factor of 2, 5, 10, 20, 50, 100, or more, or that differ from the average molecular weight by a factor of 2, 5, 10, 20, 50, 100, or more.
- Exemplary cyclodextrin moieties include cyclic structures consisting essentially of from 7 to 9 saccharide moieties, such as cyclodextrin and oxidized cyclodextrin.
- a cyclodextrin moiety optionally comprises a linker moiety that forms a covalent linkage between the cyclic structure and the polymer backbone, preferably having from 1 to 20 atoms in the chain, such as alkyl chains, including dicarboxylic acid derivatives (such as glutaric acid derivatives, succinic acid derivatives, and the like), and heteroalkyl chains, such as oligoethylene glycol chains.
- linker moiety that forms a covalent linkage between the cyclic structure and the polymer backbone, preferably having from 1 to 20 atoms in the chain, such as alkyl chains, including dicarboxylic acid derivatives (such as glutaric acid derivatives, succinic acid derivatives, and the like), and heteroalkyl chains, such as oligoethylene glycol chains.
- the present invention contemplates attenuating the rate of release of the therapeutic agent by introducing various tether groups between the therapeutic agent and the polymer.
- the polymeric therapeutics of the present invention are compositions for controlled delivery of therapeutic agents.
- the polymers of the present invention can achieve a dual diagnostic/therapeutic utility.
- the polymeric compounds stabilize the bioactive form of a therapeutic agent which exists in equilibrium between an active and inactive form.
- conjugating the therapeutic agent to the polymers of the present invention may shift the equilibrium between two tautomeric forms of the agent to the bioactive tautomer.
- the polymeric compounds may attenuate the equilibrium between lactonic and acid forms of a therapeutic agent.
- GPC gel permeation chromatography
- the polymer conjugate of the invention may be a flexible or flowable material.
- the polymer composition of the invention even when viscous, need not include a biocompatible solvent to be flowable, although trace or residual amounts of biocompatible solvents may still be present.
- the biodegradable polymer or the therapeutic agent may be dissolved in a small quantity of a non-toxic solvent to more efficiently produce an amorphous, monolithic distribution or a fine dispersion of the biologically active agent in the flexible or flowable composition
- no solvent is required to form a flowable composition.
- a solvent is used to facilitate mixing or to maintain the flowability of the polymer conjugate of the invention, it is preferably non-toxic and otherwise biocompatible, and preferably used in relatively small amounts.
- suitable biocompatible solvents include, but are not limited to, N-methyl-2-pyrrolidone, 2-pyrrolidone, ethanol, propylene glycol, acetone, methyl acetate, ethyl acetate, methyl ethyl ketone, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, caprolactam, oleic acid, or 1-dodecylazacylcoheptanone.
- Preferred solvents include N-methylpyrrolidone, 2-pyrrolidone, dimethylsulfoxide, and acetone because of their solvating ability and their biocompatibility.
- the subject polymer conjugates are soluble in one or more common organic solvents for ease of fabrication and processing.
- Common organic solvents include, but are not limited to, chloroform, dichloromethane, dichloroethane, 2-butanone, butyl acetate, ethyl butyrate, acetone, ethyl acetate, dimethylacetamide, N-methylpyrrolidone, dimethylformamide, and dimethylsulfoxide.
- the polymer conjugate comprises a targeting ligand.
- a receptor, cell, and/or tissue-targeting ligand, or a precursor thereof is coupled to a polymer conjugate.
- targeting ligand refers to any material or substance which may promote targeting of receptors, cells, and/or tissues in vivo or in vitro with the compositions of the present invention.
- the targeting ligand may be synthetic, semi-synthetic, or naturally-occurring.
- Materials or substances which may serve as targeting ligands include, but are not limited to, proteins, including antibodies, antibody fragments, hormones, hormone analogues, glycoproteins and lectins, peptides, polypeptides, amino acids, sugars, saccharides, including monosaccharides and polysaccharides, carbohydrates, small molecules, vitamins, steroids, steroid analogs, hormones, cofactors, bioactive agents, and genetic material, including nucleosides, nucleotides, nucleotide acid constructs and polynucleotides.
- the targeting ligand may be a hormone, for example a hormone that facilitates endocytosis, such as receptor-mediated endocytosis.
- endocytosis may occur with regard to the present polymer conjugates in various structural forms thereof, such as microspheres, microparticles, and nanoparticles.
- the endocytosis may facilitate cellular uptake of the present polymer conjugates.
- the targeting ligand may be luteinizing hormone-releasing hormone (LHRH).
- targeting ligands such as hormones, such as LHRH
- hormones such as LHRH
- use of a hormone, such as LHRH, as a targeting ligand increases the cellular uptake of the present polymer conjugates in cells exhibiting abnormal proliferation, such as in cancer and/or tumor cells.
- use of a hormone, such as LHRH, as a targeting ligand can be used to increase cellular uptake of the present polymer conjugates in breast, lung, colon, and ovarian cancer cells.
- the term “precursor” to a targeting ligand refers to any material or substance which may be converted to a targeting ligand. Such conversion may involve, for example, anchoring a precursor to a targeting ligand.
- exemplary targeting precursor moieties include maleimide groups, disulfide groups, such as ortho-pyridyl disulfide, vinylsulfone groups, azide groups, and ⁇ -iodo acetyl groups.
- the attachment of the targeting ligand or precursor thereof to the polymer may be accomplished in various ways including, but not limited to chelation, covalent attachment, or formation of host-guest complexes.
- an optional linker group may be present between the targeting ligand or precursor thereof and the polymer, wherein the linker group is attached to the polymer via chelation, covalent attachment or form host guest complexes.
- the one terminal end of a linker group may be attached to the targeting ligand while the other may be attached to an adamantane group, or other such hydrophobic moiety, which forms a host guest complex with a cyclodextrin moiety.
- the targeting ligand may be attached to a grafted cyclodextrin moiety, to a cyclodextrin moiety within the polymeric chain, or to the polymeric chain itself.
- the number of targeting ligands per polymeric chain may vary according to various factors including but not limited to the identity of the therapeutic agent, nature of the disease, type of polymer chain. Structures of possible linker groups are the same as linker groups defined elsewhere in this application.
- active means biologically, therapeutically or pharmacologically active.
- adjuvant is a compound that has little or no therapeutic value on its own, but increases the effectiveness of a therapeutic agent.
- exemplary adjuvants include radiosensitizers, transfection-enhancing agents (such as chloroquine and analogs thereof), chemotactic agents and chemoattractants, peptides that modulate cell adhesion and/or cell mobility, cell permeabilizing agents, inhibitors of multidrug resistance and/or efflux pumps, etc.
- agonist is meant to refer to an agent that mimics or up-regulates (e.g., potentiates or supplements) the bioactivity of a protein of interest, or an agent that facilitates or promotes (e.g., potentiates or supplements) an interaction among polypeptides or between a polypeptide and another molecule (e.g., a steroid, hormone, nucleic acids, small molecules etc.).
- An agonist can be a wild-type protein or derivative thereof having at least one bioactivity of the wild-type protein.
- An agonist can also be a small molecule that up-regulates the expression of a gene or which increases at least one bioactivity of a protein.
- An agonist can also be a protein or small molecule which increases the interaction of a polypeptide of interest with another molecule, e.g., a target peptide or nucleic acid.
- biocompatible polymer and “biocompatibility” when used in relation to polymers are art-recognized.
- biocompatible polymers include polymers that are neither themselves toxic to the host (e.g., an animal or human), nor degrade (if the polymer degrades) at a rate that produces monomeric or oligomeric subunits or other byproducts at toxic concentrations in the host.
- biodegradation generally involves degradation of the polymer in an organism, e.g., into its monomeric subunits, which may be known to be effectively non-toxic.
- oligomeric products resulting from such degradation may have different toxicological properties, however, or biodegradation may involve oxidation or other biochemical reactions that generate molecules other than monomeric subunits of the polymer. Consequently, in certain embodiments, toxicology of a biodegradable polymer intended for in vivo use, such as implantation or injection into a patient, may be determined after one or more toxicity analyses. It is not necessary that any subject composition have a purity of 100% to be deemed biocompatible. Hence, a subject composition may comprise 99%, 98%, 97%, 96%, 95%, 90% 85%, 80%, 75% or even less of biocompatible polymers, e.g., including polymers and other materials and excipients described herein, and still be biocompatible.
- Such assays are well known in the art.
- One example of such an assay may be performed with live carcinoma cells, such as GT3TKB tumor cells, in the following manner: the sample is degraded in 1 M NaOH at 37° C. until complete degradation is observed. The solution is then neutralized with 1 M HCl. About 200 ⁇ L of various concentrations of the degraded sample products are placed in 96-well tissue culture plates and seeded with human gastric carcinoma cells (GT3TKB) at 104/well density. The degraded sample products are incubated with the GT3TKB cells for 48 hours. The results of the assay may be plotted as % relative growth vs.
- GT3TKB human gastric carcinoma cells
- polymers and formulations of the present invention may also be evaluated by well-known in vivo tests, such as subcutaneous implantations in rats to confirm that they do not cause significant levels of irritation or inflammation at the subcutaneous implantation sites.
- one type of biodegradation may involve cleavage of bonds (whether covalent or otherwise) in the polymer backbone.
- monomers and oligomers typically result, and even more typically, such biodegradation occurs by cleavage of a bond connecting one or more of subunits of a polymer.
- another type of biodegradation may involve cleavage of a bond (whether covalent or otherwise) internal to sidechain or that connects a side chain to the polymer backbone.
- a therapeutic agent or other chemical moiety attached as a side chain to the polymer backbone may be released by biodegradation.
- one or the other or both general types of biodegradation may occur during use of a polymer.
- biodegradation encompasses both general types of biodegradation.
- the degradation rate of a biodegradable polymer often depends in part on a variety of factors, including the chemical identity of the linkage responsible for any degradation, the molecular weight, crystallinity, biostability, and degree of cross-linking of such polymer, the physical characteristics (e.g., shape and size) of an implant, and the mode and location of administration.
- the greater the molecular weight, the higher the degree of crystallinity, and/or the greater the biostability the biodegradation of any biodegradable polymer is usually slower.
- biodegradable is intended to cover materials and processes also termed “bioerodible”.
- the biodegradation rate of such polymer may be characterized by a release rate of such materials.
- the biodegradation rate may depend on not only the chemical identity and physical characteristics of the polymer, but also on the identity of material(s) incorporated therein.
- Degradation of the subject compositions includes not only the cleavage of intramolecular bonds, e.g., by oxidation and/or hydrolysis, but also the disruption of intermolecular bonds, such as dissociation of host/guest complexes by competitive complex formation with foreign inclusion hosts.
- the biodegradable polymers polylactic acid, polyglycolic acid, and polylactic-glycolic acid copolymer (PLGA), have been investigated extensively for nanoparticle formulation. These polymers are polyesters that, upon implantation in the body, undergo simple hydrolysis. The products of such hydrolysis are biologically compatible and metabolizable moieties (e.g., lactic acid and glycolic acid), which are eventually removed from the body by the citric acid cycle. Polymer biodegradation products are formed at a very slow rate, and hence do not affect normal cell function.
- Several implant studies with these polymers have proven safe in drug delivery applications, used in the form of matrices, microspheres, bone implant materials, surgical sutures, and also in contraceptive applications for long-term effects.
- polymers are also used as graft materials for artificial organs, and recently as basement membranes in tissue engineering investigations. Nature Med. 824-826 (1996). Thus, these polymers have been time-tested in various applications and proven safe for human use. Most importantly, these polymers are FDA-approved for human use.
- polymers When polymers are used for delivery of pharmacologically active agents in vivo, it is essential that the polymers themselves be nontoxic and that they degrade into non-toxic degradation products as the polymer is eroded by the body fluids. Many synthetic biodegradable polymers, however, yield oligomers and monomers upon erosion in vivo that adversely interact with the surrounding tissue. D. F. Williams, J. Mater. Sci. 1233 (1982). To minimize the toxicity of the intact polymer carrier and its degradation products, polymers have been designed based on naturally occurring metabolites. Probably the most extensively studied examples of such polymers are the polyesters derived from lactic or glycolic acid and polyamides derived from amino acids.
- bioerodable or biodegradable polymers are known and used for controlled release of pharmaceuticals. Such polymers are described in, for example, U.S. Pat. Nos. 4,291,013, 4,347,234, 4,525,495, 4,570,629, 4,572,832, 4,587,268, 4,638,04, 4,675,381, 4,745,160, and 5,219,980, which are incorporated herein in their entirety.
- a biohydrolyzable bond refers to a bond that is cleaved (e.g., an ester is cleaved to form a hydroxyl and a carboxylic acid) under physiological conditions.
- Physiological conditions include the acidic and basic environments of the digestive tract (e.g., stomach, intestines, etc.), acidic environment of a tumor, enzymatic cleavage, metabolism, and other biological processes, and preferably refer to physiological conditions in a vertebrate, such as a mammal.
- two cyclodextrin monomers may be linked together by joining the primary hydroxyl side of one cyclodextrin monomer with the primary hydroxyl side of another cyclodextrin monomer, by joining the secondary hydroxyl side of one cyclodextrin monomer with the secondary hydroxyl side of another cyclodextrin monomer, or by joining the primary hydroxyl side of one cyclodextrin monomer with the secondary hydroxyl side of another cyclodextrin monomer. Accordingly, combinations of such linkages may exist in the final copolymer.
- Both the comonomer A precursor and the comonomer A of the final copolymer may be neutral, cationic (for example quaternary ammonium groups), or anionic (for example sulfate, phosphate, borinate or carboxylate) groups.
- the charge of comonomer A of the copolymer may be adjusted by adjusting pH conditions.
- suitable comonomer A precursors include, but are not limited to succinimide (e.g., dithiobis(succinimidyl propionate) DSP, and dissucinimidyl suberate (DSS)), glutamates, and aspartates).
- the cyclodextrin-containing polymers of the present invention may be linear, branched or grafted.
- linear cyclodextrin-containing polymer refers to a polymer comprising ( ⁇ , ⁇ , or ⁇ ) cyclodextrin molecules, or derivatives thereof which are inserted within a polymer chain.
- grafted cyclodextrin-containing polymer refers to a polymer comprising ( ⁇ , ⁇ , or ⁇ ) cyclodextrin molecules, or derivatives thereof which are pendant off of the polymer chain.
- graft polymer refers to a polymer molecule which has additional moieties attached as pendent groups along a polymer backbone.
- graft polymerization denotes a polymerization in which a side chain is grafted onto a polymer chain, which side chain consists of one or several other monomers.
- the properties of the graft copolymer obtained such as, for example, solubility, melting point, water absorption, wettability, mechanical properties, adsorption behavior, etc., deviate more or less sharply from those of the initial polymer as a function of the type and amount of the grafted monomers.
- grafting ratio means the weight percent of the amount of the monomers grafted based on the weight of the polymer.
- a branched cyclodextrin-containing polymer refers to a polymer backbone with a plurality of branch points, wherein each branch point is a starting point of yet another strand of the polymer backbone, and each section of polymer backbone may have a plurality of ( ⁇ , ⁇ , or ⁇ ) cyclodextrin molecules, or derivatives thereof, inserted into or grafted onto the chain.
- controlled release refers to the use of systems that allow for the controlled or tunable delivery of one or more of the present compounds or compositions over time.
- the present compounds or compositions are used in conjunction with a controlled release system that delivers an effective amount (such as an approximately continuous amount, an increasing amount, or a decreasing amount) of the compound(s) over a certain period of time, for example, over a period of at least about 4, 8, 12, 24, 48, or 72 hours, over a period of at least about 1, 2, 3, 4, or 5 days, over a period of at least about 1, 2, or 3 weeks, or over a period of at least about 1, 2, 3, 4, 5, or 6 months.
- an effective amount such as an approximately continuous amount, an increasing amount, or a decreasing amount
- controlled release systems may be used in conjunction with medical devices, such as stents and catheters, to provide medical devices which offer controlled release of the present compounds and/or compositions.
- medical devices such as stents and catheters
- suitable controlled release systems include hydrogels, polymers, meshes, and others demonstrated in the art.
- cyclodextrin moiety refers to ( ⁇ , ⁇ , or ⁇ ) cyclodextrin molecules or derivatives thereof, which may be in their oxidized or reduced forms.
- Cyclodextrin moieties may comprise optional linkers.
- Optional therapeutic agents and/or targeting ligands may be further linked to these moieties via an optional linker.
- the linkage may be covalent (optionally via biohydrolyzable bonds, e.g., esters, amides, carbamates, and carbonates) or may be a host-guest complex between the cyclodextrin derivative and the therapeutic agent and/or targeting ligand or the optional linkers of each.
- Cyclodextrin moieties may further include one or more carbohydrate moieties, preferably simple carbohydrate moieties such as galactose, attached to the cyclic core, either directly (i.e., via a carbohydrate linkage) or through a linker group.
- carbohydrate moieties preferably simple carbohydrate moieties such as galactose
- EC 50 means the concentration of a drug that produces 50% of its maximum response or effect.
- ED 50 means the dose of a drug that produces 50% of its maximum response or effect.
- an “effective amount” of a subject compound, with respect to the subject method of treatment refers to an amount of the therapeutic in a preparation which, when applied as part of a desired dosage regimen provides a benefit according to clinically acceptable standards for the treatment or prophylaxis of a particular disorder.
- low aqueous solubility refers to water insoluble compounds having poor solubility in water, that is ⁇ 5 mg/ml at physiological pH (6.5-7.4). Preferably, their water solubility is ⁇ 1 mg/ml, more preferably ⁇ 0.1 mg/ml. It is desirable that the drug is stable in water as a dispersion; otherwise a lyophilized or spray-dried solid form may be desirable.
- a “patient” or “subject” to be treated by the subject method can mean either a human or non-human subject.
- polymerizations of the present invention include radical, anionic, and cationic mechanisms, as well as reactions of bifunctional molecules (analogous to the formation of nylon, e.g., reacting molecules each of which bears two or more different reactive moieties that react with each other (but, preferably, are disfavored from reacting intramolecularly by steric, conformational, or other constraints), or reacting two or more different compounds, each compound bearing two or more reactive moieties that react only with reactive moieties of different compounds (i.e., intermolecularly)), as well as metal-catalyzed polymerizations such as olefin metathesis, and other polymerization reactions known to those of skill in the art.
- prophylactic and therapeutic are art-recognized and includes administration to the host of one or more of the subject compositions. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing the unwanted condition, whereas if it is administered after manifestation of the unwanted condition, the treatment is therapeutic, (i.e., it is intended to diminish, ameliorate, or stabilize the existing unwanted condition or side effects thereof).
- the unwanted condition e.g., disease or other unwanted state of the host animal
- preventing is art-recognized, and when used in relation to a condition, such as a local recurrence (e.g., pain), a disease such as cancer, a syndrome complex such as heart failure or any other medical condition, is well understood in the art, and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition.
- a condition such as a local recurrence (e.g., pain)
- a disease such as cancer
- a syndrome complex such as heart failure or any other medical condition
- prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, e.g., by a statistically and/or clinically significant amount.
- Prevention of an infection includes, for example, reducing the number of diagnoses of the infection in a treated population versus an untreated control population, and/or delaying the onset of symptoms of the infection in a treated population versus an untreated control population.
- Prevention of pain includes, for example, reducing the frequency of, or alternatively delaying, pain sensations experienced by subjects in a treated population versus an untreated control population.
- small molecule refers to a compound having a molecular weight less than about 2500 amu, preferably less than about 2000 amu, even more preferably less than about 1500 amu, still more preferably less than about 1000 amu, or most preferably less than about 750 amu.
- substituted refers to moieties having substituents replacing a hydrogen on one or more carbons of the backbone. It will be understood that “substitution” or “substituted with” includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds.
- the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and non-aromatic substituents of organic compounds.
- the permissible substituents may be one or more and the same or different for appropriate organic compounds.
- the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms.
- Substituents may include any substituents described herein, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic mo
- moieties substituted on the hydrocarbon chain may themselves be substituted, if appropriate. Unless specifically indicated as unsubstituted, all occurrences of moieties bearing one or more C—H bonds may be either unsubstituted or substituted as defined herein.
- a reference to an “alkyl” or “aryl” group will be understood to include unsubstituted or substituted variants thereof.
- therapeutic agent includes any synthetic or naturally occurring biologically active compound or composition of matter which, when administered to an organism (human or nonhuman animal), induces a desired pharmacologic, immunogenic, and/or physiologic effect by local and/or systemic action.
- the term therefore encompasses those compounds or chemicals traditionally regarded as drugs, vaccines, and biopharmaceuticals including molecules such as proteins, peptides, hormones, nucleic acids, gene constructs and the like.
- therapeutic agent includes compounds or compositions for use in all of the major therapeutic areas including, but not limited to, adjuvants; anti-infectives such as antibiotics and antiviral agents; analgesics and analgesic combinations, anorexics, anti-inflammatory agents, anti-epileptics, local and general anesthetics, hypnotics, sedatives, antipsychotic agents, neuroleptic agents, antidepressants, anxiolytics, antagonists, neuron blocking agents, anticholinergic and cholinomimetic agents, antimuscarinic and muscarinic agents, antiadrenergics, antiarrhythmics, antihypertensive agents, hormones, and nutrients, antiarthritics, antiasthmatic agents, anticonvulsants, antihistamines, antinauseants, antineoplastics, antipruritics, antipyretics; antispasmodics, cardiovascular preparations (including calcium channel blockers, beta-blockers, and analgesics
- the agent may be a biologically active agent used in medical, including veterinary, applications and in agriculture, such as with plants, as well as other areas.
- the term therapeutic agent also includes without limitation, medicaments; vitamins; mineral supplements; substances used for the treatment, prevention, diagnosis, cure or mitigation of disease or illness; or substances which affect the structure or function of the body; or prodrugs, which become biologically active or more active after they have been placed in a predetermined physiological environment.
- a “therapeutically effective amount” of a compound refers to an amount of the compound(s) in a preparation which, when administered as part of a desired dosage regimen (to a mammal, preferably a human) alleviates a symptom, ameliorates a condition, or slows the onset of disease conditions according to clinically acceptable standards for the disorder or condition to be treated or the cosmetic purpose, e.g., at a reasonable benefit/risk ratio applicable to any medical treatment.
- Physiological conditions describe the conditions inside an organism, i.e., in vivo. Physiological conditions include the acidic and basic environments of body cavities and organs, enzymatic cleavage, metabolism, and other biological processes, and preferably refer to physiological conditions in a vertebrate, such as a mammal.
- physiological pH refers to a pH that is about 7.4 at the standard physiological temperature of 37.4° C.
- non-physiological pH refers to a pH that is less than or greater than “physiological pH,” preferably between about 4 and 7.3, or greater than 7.5 and less than about 12.
- neutral pH refers to a pH of about 7.
- physiological pH refers to pH 7.4
- non-physiological pH refers to pH between about 6 and 7.
- acidic pH refers to a pH that is below pH 7, preferably below about pH 6, or even below about pH 4.
- prodrug is intended to encompass compounds which, under physiological conditions, are converted into the therapeutically active agents of the present invention.
- a common method for making a prodrug is to include selected moieties which are hydrolyzed under physiological conditions to reveal the desired molecule.
- the prodrug is converted by an enzymatic activity of the host animal.
- proliferating and “proliferation” refer to cells undergoing mitosis.
- acyl is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)—, preferably alkylC(O)—.
- acyloxy is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)O—, preferably alkylC(O)O—.
- alkoxyalkyl refers to an alkyl group substituted with an alkoxy group and may be represented by the general formula alkyl-O-alkyl.
- alkenyl and alkynyl refer to unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described below, but that contain at least one double or triple bond respectively.
- alkoxy refers to an alkyl group having an oxygen attached thereto.
- Representative alkoxy groups include methoxy, ethoxy, propoxy, tert-butoxy and the like.
- alkyl refers to saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl-substituted cycloalkyl groups, and cycloalkyl-substituted alkyl groups.
- a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (e.g., C 1-30 for straight chains, C 3-30 for branched chains), and more preferably 20 or fewer.
- alkyl as used throughout the specification, examples, and claims is intended to include both unsubstituted and substituted alkyl groups, the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone, including haloalkyl groups such as trifluoromethyl and 2,2,2-trifluoroethyl, etc.
- C x-y when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups that contain from x to y carbons in the chain.
- C 0 alkyl indicates a hydrogen where the group is in a terminal position, a bond if internal.
- a C 1-6 alkyl group for example, contains from one to six carbon atoms in the chain.
- alkylamino refers to an amino group substituted with at least one alkyl group.
- alkylcycloalkyl refers to groups, which contain cycloalkyl as well as alkyl, alkenyl or alkynyl groups according to the above definition, e.g. alkylcycloalkyl, alkylcycloalkenyl, alkenylcycloalkyl and alkynylcycloalkyl groups, etc.
- a alkylcycloalkyl group is composed of a cycloalkyl group, comprising one or more rings, comprising three to ten, preferentially three, four, five, six or seven carbon-atoms and one or two alkyl, alkenyl, or alkynyl groups with one or two to six carbon atoms.
- alkylthio refers to a thiol group substituted with an alkyl group and may be represented by the general formula alkyl-S—.
- amide or “amido,” as used herein, refers to a group
- R 9 and R 10 each independently represent a hydrogen or hydrocarbyl group, or R 9 and R 10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- amine and “amino” are art-recognized and refer to both unsubstituted and substituted amines and salts thereof, e.g., a moiety that can be represented by
- R 9 , R 10 , and R ′ each independently represent a hydrogen or a hydrocarbyl group, or R 9 and R 10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- aminoalkyl refers to an alkyl group substituted with an amino group.
- amidine denotes the group —C(NH)—NHR wherein R is H or alkyl or aralkyl.
- a preferred amidine is the group —C(NH)—NH 2 .
- aralkyl refers to an alkyl group substituted with an aryl group.
- aryl as used herein include substituted or unsubstituted single-ring aromatic groups in which each atom of the ring is carbon.
- the ring is a 5- to 7-membered ring, more preferably a 6-membered ring.
- aryl also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
- Aryl groups include benzene, naphthalene, phenanthrene, phenol, aniline, and the like.
- R 9 and R 10 independently represent hydrogen or a hydrocarbyl group.
- carbonate is art-recognized and refers to a group —OCO2-.
- carbocycle refers to a non-aromatic saturated or unsaturated ring in which each atom of the ring is carbon.
- a carbocycle ring contains from 3 to 10 atoms, more preferably from 5 to 7 atoms.
- carbonyl is art-recognized and includes such moieties as may be represented by the general formula:
- X is a bond or represents an oxygen or a sulfur
- R 11 represents a hydrogen, an alkyl, an alkenyl, —(CH 2 ) m —R 8 or a pharmaceutically acceptable salt
- R 11 represents a hydrogen, an alkyl, an alkenyl or —(CH 2 ) m —R 8 , where m and R 8 are as defined above.
- X is an oxygen and R 11 or R 11 is not hydrogen
- the formula represents an “ester”.
- X is an oxygen, and R 11 is as defined above, the moiety is referred to herein as a carboxyl group, and particularly when R 11 is a hydrogen, the formula represents a “carboxylic acid”.
- cycloalkyl refers to a saturated or partially unsaturated (e.g. cycloalkenyl) cyclic group, comprising one or several rings, preferentially one or two, containing three to fourteen ring carbon atoms, preferentially three to ten, preferentially three, four, five, six or seven ring carbon atoms.
- cycloalkyl refers to a group where one or more hydrogen atoms are replaced by F, Cl, Br, I, OH, ⁇ O, SH, ⁇ S, NH 2 , ⁇ NH, or NO 2 , or cyclic ketones, for example cyclohexanone, 2-cyclohexenone or cyclopentanone.
- cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentenyl, spiro[4,5]-decanyl, norbornyl, cyclohexyl, cyclopentenyl, cyclohexadienyl, decalinyl, cubanyl, bicyclo[4.3.0]nonyl, tetralin, cyclopentylcyclohexyl, fluor-cyclohexyl or the cyclohex-2-enyl group.
- esters refers to a group —C(O)OR 9 wherein R 9 represents a hydrocarbyl group.
- ether refers to a hydrocarbyl group linked through an oxygen to another hydrocarbyl group. Accordingly, an ether substituent of a hydrocarbyl group may be hydrocarbyl-O—. Ethers may be either symmetrical or unsymmetrical. Examples of ethers include, but are not limited to, heterocycle-O-heterocycle and aryl-O-heterocycle. Ethers include “alkoxyalkyl” groups, which may be represented by the general formula alkyl-O-alkyl.
- halo and “halogen” as used herein means halogen and includes chloro, fluoro, bromo, and iodo.
- heteroaryl refers to an alkyl group substituted with a heteroaryl group.
- heteroarykenyl and “heteroaralkenyl”, as used herein, refers to an alkenyl group substituted with a heteroaryl group.
- heteroalkyl refers to a alkyl, alkenyl or alkynyl group, where several, preferentially one, two or three carbon atoms are replaced by a O, N, P, B, Se, Si, or S atom, preferentially O, S, N.
- heteroalkyl also includes a carboxylic acid or a thereof derived group, for example acyl (alkyl-CO), acylalkyl, alkoxycarbonyl, acyloxy, acyloxyalkyl, carboxyalkylamid or alkoxycarbonyloxy.
- heterocyclyl refers to substituted or unsubstituted non-aromatic ring structures, preferably 3- to 10-membered rings, more preferably 3- to 7-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms.
- heterocyclyl and “heterocyclic” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heterocyclic, e.g., the other cyclic rings may be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
- Heterocyclyl groups include, for example, piperidine, piperazine, pyrrolidine, morpholine, lactones, lactams, and the like.
- heteroalkylcycloalkyl refers to alkylcycloalkyl groups, according to the above definition, wherein one or several, preferentially one, two or three carbon atoms are replaced by O, N, Si, Se, P or S, preferentially O, S, N.
- a heteroakylcycloalkyl group comprises one or two ring systems with three to ten, preferentially three, four, five, six or seven ring atoms and one or two alkyl, alkenyl, alkynyl or heteroalkyl groups with one or two to six carbon atoms.
- Examples of such a group are alkylheterocycloalkyl, alkylheterocycloalkenyl, alkenyl-heterocycloalkyl, alkynylheterocycloalkyl, heteroalkyl-cycloalkyl, heteroalkylheterocycloalkyl and heteroalkylheterocycloalkenyl, wherein the cyclic group is saturated or partially (e.g., twofold or threefold) unsaturated.
- heteroaryl and “hetaryl” include substituted or unsubstituted aromatic single ring structures, preferably 5- to 7-membered rings, more preferably 5- to 6-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms.
- heteroaryl also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heteroaromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
- Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like.
- heteroatom as used herein means an atom of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, and sulfur.
- heterocycloalkyl refers to the above definition of cycloalkyl, wherein one or more, preferentially one, two or three ring carbon atoms are replaced by a O, N, Si, Se, P, or S, preferentially O, S, N.
- a heterocycloalkyl group is composed of one or two rings comprising three to ten, preferentially three, four, five, six or seven ring atoms.
- heterocycloalkyl refers to groups where one or more hydrogen atoms are replaced by F, Cl, Br, I, OH, ⁇ O, SH, ⁇ S, NH 2 , NO 2 .
- heterocycloalkyl examples include piperidyl, morpholinyl, urotropinyl, pyrrolidinyl, tetrahydrothiophenyl, tetrahydropyranyl, tetrahydrofuryl, oxacyclopropyl, azacyclopropyl or 2-pyrazolinyl groups as well as lactams, lactones, cyclic imides and cyclic anhydrides.
- heterocyclyl refers to substituted or unsubstituted non-aromatic ring structures, preferably 3- to 10-membered rings, more preferably 3- to 7-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms.
- heterocyclyl and “heterocyclic” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heterocyclic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
- Heterocyclyl groups include, for example, imidazolidinone, piperidine, piperazine, pyrrolidine, morpholine, lactones, lactams, and the like.
- hydrocarbyl refers to a group that is bonded through a carbon atom that optionally has a ⁇ O or ⁇ S substituent and typically has at least one carbon-hydrogen bond and a primarily carbon backbone, but may optionally include functional groups with heteroatoms interrupting the carbon backbone.
- functional groups with interrupting heteroatoms include amino, amide, carbonate, carbamate, ether (e.g., polyethylene glycol), ester, thioester, thiourea, and urea groups.
- hydrocarbyl groups include methyl, ethoxyethyl, 2-pyridyl, trifluoromethyl, and acetyl, but not, for example, ethoxy (which is linked through oxygen, not carbon).
- Additional hydrocarbyl groups include, but are not limited to aryl, heteroaryl, carbocycle, heterocycle, alkyl, alkenyl, alkynyl, and combinations thereof.
- Hydrocarbyl also includes corresponding divalent species (i.e., hydrocarbylene), such as alkylene, arylene, etc.
- hydroxyalkyl refers to an alkyl group substituted with a hydroxy group.
- lower when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups where there are ten or fewer non-hydrogen atoms in the substituent, preferably six or fewer.
- acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy substituents defined herein are respectively lower acyl, lower acyloxy, lower alkyl, lower alkenyl, lower alkynyl, or lower alkoxy, whether they appear alone or in combination with other substituents, such as in the recitations hydroxyalkyl and aralkyl (in which case, for example, the atoms within the aryl group are not counted when counting the carbon atoms in the alkyl substituent).
- polycyclyl refers to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls) in which two or more atoms are common to two adjoining rings, e.g., the rings are “fused rings”.
- Each of the rings of the polycycle may be substituted or unsubstituted.
- each ring of the polycycle contains from 3 to 10 atoms in the ring, preferably from 5 to 7.
- sulfate is art-recognized and refers to the group —OSO 3 H, or a pharmaceutically acceptable salt thereof.
- R 9 and R 10 independently represents hydrogen or hydrocarbyl.
- sulfoxide is art-recognized and refers to the group —S(O)—.
- sulfonate is art-recognized and refers to the group SO 3 H, or a pharmaceutically acceptable salt thereof.
- thioester refers to a group —C(O)SR 9 or —SC(O)R 9 wherein R 9 represents a hydrocarbyl.
- urea is art-recognized and may be represented by the general formula
- R 9 and R 10 independently represent hydrogen or a hydrocarbyl.
- Analogous substitutions may be made to alkenyl and alkynyl groups to produce, for example, aminoalkenyls, aminoalkynyls, amidoalkenyls, amidoalkynyls, iminoalkenyls, iminoalkynyls, thioalkenyls, thioalkynyls, carbonyl-substituted alkenyls or alkynyls.
- each expression e.g., alkyl, m, n, etc., when it occurs more than once in any structure, is intended to be independent of its definition elsewhere in the same structure.
- a biocompatible polymer composition of the present invention includes a biocompatible and optionally biodegradable polymer, such as one having the recurring monomeric units shown in one of the foregoing formulas, optionally including any other biocompatible and optionally biodegradable polymer mentioned above or known in the art.
- the compositions are non-pyrogenic, e.g., do not trigger elevation of a patient's body temperature by more than a clinically acceptable amount.
- the subject compositions may contain a “drug,” “therapeutic agent,” “medicament,” or “bioactive substance,” which are biologically, physiologically, or pharmacologically active substances that act locally or systemically in the human or animal body.
- a subject composition may include any of the other compounds discussed above.
- medicaments or biologically active materials may be used which are capable of being released from the polymer matrix into adjacent tissues or fluids. They may be hydrophobic molecules, neutral molecules, polar molecules, or molecular complexes capable of hydrogen bonding. They may be in the form of ethers, esters, amides and the like, including prodrugs which are biologically activated when injected into the human or animal body, e.g., by cleavage of an ester or amide.
- a therapeutic agent in a subject composition may vary widely with the purpose for the composition.
- Plasticizers and stabilizing agents known in the art may be incorporated in polymers of the present invention.
- additives such as plasticizers and stabilizing agents are selected for their biocompatibility.
- the additives are lung surfactants, such as 1,2-dipalmitoylphosphatidycholine (DPPC) and L- ⁇ -phosphatidylcholine (PC).
- DPPC 1,2-dipalmitoylphosphatidycholine
- PC L- ⁇ -phosphatidylcholine
- a composition of this invention may further contain one or more adjuvant substances, such as fillers, thickening agents or the like.
- adjuvant substances such as fillers, thickening agents or the like.
- materials that serve as adjuvants may be associated with the polymer matrix. Such additional materials may affect the characteristics of the polymer matrix that results.
- fillers such as bovine serum albumin (BSA) or mouse serum albumin (MSA) may be associated with the polymer matrix.
- BSA bovine serum albumin
- MSA mouse serum albumin
- the amount of filler may range from about 0.1 to about 50% or more by weight of the polymer matrix, or about 2.5, 5, 10, 25, or 40 percent. Incorporation of such fillers may affect the biodegradation of the polymeric material and/or the sustained release rate of any encapsulated substance.
- Other fillers known to those of skill in the art such as carbohydrates, sugars, starches, saccharides, celluloses and polysaccharides, including mannitose and sucrose, may be used in certain embodiments of the present invention.
- spheronization enhancers facilitate the production of subject polymeric matrices that are generally spherical in shape.
- Substances such as zein, microcrystalline cellulose or microcrystalline cellulose co-processed with sodium carboxymethyl cellulose may confer plasticity to the subject compositions as well as implant strength and integrity.
- extrudates that are rigid, but not plastic result in the formation of dumbbell shaped implants and/or a high proportion of fines, and extrudates that are plastic, but not rigid, tend to agglomerate and form excessively large implants.
- a balance between rigidity and plasticity is desirable.
- the percent of spheronization enhancer in a formulation typically range from 10 to 90% (w/w).
- a subject composition includes an excipient.
- a particular excipient may be selected based on its melting point, solubility in a selected solvent (e.g., a solvent that dissolves the polymer and/or the therapeutic agent), and the resulting characteristics of the microparticles or nanoparticles.
- Excipients may comprise a few percent, about 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, or higher percentage of the subject compositions.
- Buffers, acids and bases may be incorporated in the subject compositions to adjust their pH.
- Agents to increase the diffusion distance of agents released from the polymer matrix may also be included.
- Disintegrants are substances that, in the presence of liquid, promote the disruption of the subject compositions. Disintegrants are most often used in implants, in which the function of the disintegrant is to counteract or neutralize the effect of any binding materials used in the subject formulation. In general, the mechanism of disintegration involves moisture absorption and swelling by an insoluble material.
- disintegrants examples include croscarmellose sodium and crospovidone which, in certain embodiments, may be incorporated into the polymeric matrices in the range of about 1-20% of total matrix weight.
- soluble fillers such as sugars (mannitol and lactose) may also be added to facilitate disintegration of implants.
- a pore-forming agent may be added to generate additional pores in the matrix.
- Any biocompatible water-soluble material may be used as the pore-forming agent. They may be capable of dissolving, diffusing or dispersing out of the formed polymer system whereupon pores and microporous channels are generated in the system.
- the amount of pore-forming agent (and size of dispersed particles of such pore-forming agent, if appropriate) within the composition should affect the size and number of the pores in the polymer system.
- Pore-forming agents include any pharmaceutically acceptable organic or inorganic substance that is substantially miscible in water and body fluids and will dissipate from the forming and formed matrix into aqueous medium or body fluids or water-immiscible substances that rapidly degrade to water-soluble substances.
- Suitable pore-forming agents include, for example, sugars such as sucrose and dextrose, salts such as sodium chloride and sodium carbonate, and polymers such as hydroxylpropylcellulose, carboxymethylcellulose, polyethylene glycol, and PVP.
- sugars such as sucrose and dextrose
- salts such as sodium chloride and sodium carbonate
- polymers such as hydroxylpropylcellulose, carboxymethylcellulose, polyethylene glycol, and PVP.
- the size and extent of the pores may be varied over a wide range by changing the molecular weight and percentage of pore-forming agent incorporated into the polymer system.
- the charge, lipophilicity or hydrophilicity of any subject polymeric matrix may be modified by attaching in some fashion an appropriate compound to the surface of the matrix.
- surfactants may be used to enhance wettability of poorly soluble or hydrophobic compositions.
- suitable surfactants include dextran, polysorbates and sodium lauryl sulfate.
- surfactants are used in low concentrations, generally less than about 5%.
- Binders are adhesive materials that may be incorporated in polymeric formulations to bind and maintain matrix integrity. Binders may be added as dry powder or as solution. Sugars and natural and synthetic polymers may act as binders.
- binders Materials added specifically as binders are generally included in the range of about 0.5%-15% w/w of the matrix formulation. Certain materials, such as microcrystalline cellulose, also used as a spheronization enhancer, also have additional binding properties.
- Various coatings may be applied to modify the properties of the matrices.
- coatings Three exemplary types of coatings are seal, gloss and enteric coatings. Other types of coatings having various dissolution or erosion properties may be used to further modify subject matrices behavior, and such coatings are readily known to one of ordinary skill in the art.
- the seal coat may prevent excess moisture uptake by the matrices during the application of aqueous based enteric coatings.
- the gloss coat generally improves the handling of the finished matrices.
- Water-soluble materials such as hydroxypropylcellulose may be used to seal coat and gloss coat implants.
- the seal coat and gloss coat are generally sprayed onto the matrices until an increase in weight between about 0.5% and about 5%, often about 1% for a seal coat and about 3% for a gloss coat, has been obtained.
- Enteric coatings consist of polymers which are insoluble in the low pH (less than 3.0) of the stomach, but are soluble in the elevated pH (greater than 4.0) of the small intestine.
- Polymers such as EUDRAGITTM, RohmTech, Inc., Malden, Mass., and AQUATERICTM, FMC Corp., Philadelphia, Pa., may be used and are layered as thin membranes onto the implants from aqueous solution or suspension or by a spray drying method.
- the enteric coat is generally sprayed to a weight increase of about 1% to about 30%, preferably about 10 to about 15% and may contain coating adjuvants such as plasticizers, surfactants, separating agents that reduce the tackiness of the implants during coating, and coating permeability adjusters.
- the present compositions may additionally contain one or more optional additives such as fibrous reinforcement, colorants, perfumes, rubber modifiers, modifying agents, etc.
- optional additives such as fibrous reinforcement, colorants, perfumes, rubber modifiers, modifying agents, etc.
- fibrous reinforcement examples include PGA microfibrils, collagen microfibrils, cellulosic microfibrils, and olefinic microfibrils.
- the amount of each of these optional additives employed in the composition is an amount necessary to achieve the desired effect.
- the therapeutic polymer conjugates as described herein can be administered in various pharmaceutical formulations, depending on the disorder to be treated and the age, condition and body weight of the patient, as is well known in the art.
- the compounds may be formulated as tablets, capsules, granules, powders or syrups; or for parenteral administration, they may be formulated as injections (intravenous, intramuscular or subcutaneous), drop infusion preparations or suppositories.
- injections intravenous, intramuscular or subcutaneous
- drop infusion preparations or suppositories For application by the ophthalmic mucous membrane route, they may be formulated as eyedrops or eye ointments.
- formulations can be prepared by conventional means, and, if desired, the active ingredient may be mixed with any conventional additive, such as an excipient, a binder, a disintegrating agent, a lubricant, a corrigent, a solubilizing agent, a suspension aid, an emulsifying agent or a coating agent.
- an excipient such as an excipient, a binder, a disintegrating agent, a lubricant, a corrigent, a solubilizing agent, a suspension aid, an emulsifying agent or a coating agent.
- a daily dosage of from 0.01 to 2000 mg of the therapeutic agent is recommended for an adult human patient, and this may be administered in a single dose or in divided doses.
- the precise time of administration and/or amount of therapeutic polymer conjugate that will yield the most effective results in terms of efficacy of treatment in a given patient will depend upon the activity, pharmacokinetics, and bioavailability of a particular compound, physiological condition of the patient (including age, sex, disease type and stage, general physical condition, responsiveness to a given dosage and type of medication), route of administration, etc.
- physiological condition of the patient including age, sex, disease type and stage, general physical condition, responsiveness to a given dosage and type of medication
- route of administration etc.
- the above guidelines can be used as the basis for fine-tuning the treatment, e.g., determining the optimum time and/or amount of administration, which will require no more than routine experimentation consisting of monitoring the subject and adjusting the dosage and/or timing.
- phrases “pharmaceutically acceptable” is employed herein to refer to those therapeutic polymer conjugates, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- pharmaceutically acceptable carrier means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
- materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide;
- pharmaceutically acceptable salts refers to the relatively non-toxic, inorganic and organic acid addition salts of the therapeutic polymer conjugates. These salts can be prepared in situ during the final isolation and purification of the therapeutic polymer conjugates, or by separately reacting a purified polymer in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed.
- Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like.
- sulfate bisulfate
- phosphate nitrate
- acetate valerate
- oleate palmitate
- stearate laurate
- benzoate lactate
- phosphate tosylate
- citrate maleate
- fumarate succinate
- tartrate naphthylate
- mesylate glucoheptonate
- lactobionate lactobionate
- laurylsulphonate salts and the like See, for
- the therapeutic polymer conjugates useful in the methods of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable bases.
- pharmaceutically acceptable salts refers to the relatively non-toxic, inorganic and organic base addition salts of the polymer(s). These salts can likewise be prepared in situ during the final isolation and purification of the polymer(s), or by separately reacting the purified polymer(s) in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary or tertiary amine.
- Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like.
- Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like (see, for example, Berge et al., supra).
- wetting agents such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
- antioxidants examples include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
- water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like
- oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), le
- Formulations useful in the methods of the present invention include those suitable for oral, nasal, topical (including ophthalmic, otic, buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration.
- the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
- the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration.
- the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 1 percent to about ninety-nine percent of active ingredient, preferably from about 5 percent to about 70 percent, most preferably from about 10 percent to about 30 percent.
- Methods of preparing these formulations or compositions include the step of bringing into association a therapeutic polymer conjugate(s) with the carrier and, optionally, one or more accessory ingredients.
- the formulations are prepared by uniformly and intimately bringing into association a therapeutic polymer conjugate with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
- Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, gums, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouthwashes and the like, each containing a predetermined amount of a therapeutic polymer conjugate(s) as an active ingredient.
- a compound may also be administered as a bolus, electuary or paste.
- a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent.
- Molded tablets may be made by molding in a suitable machine a mixture of the powdered peptide or peptidomimetic moistened with an inert liquid diluent.
- Tablets, and other solid dosage forms may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use.
- compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner.
- opacifying agents include polymeric substances and waxes.
- the active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers
- the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
- adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
- Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more therapeutic polymer conjugates with one or more suitable nonirritating excipients or carriers comprising for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active agent.
- suitable nonirritating excipients or carriers comprising for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active agent.
- Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.
- Dosage forms for the topical or transdermal administration of a therapeutic polymer conjugate(s) include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants.
- the active component may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required.
- the ointments, pastes, creams and gels may contain, in addition to ligand(s), excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays can contain, in addition to a therapeutic polymer conjugate(s), excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
- Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
- the therapeutic polymer conjugate(s) can be alternatively administered by aerosol. This is accomplished by preparing an aqueous aerosol, liposomal preparation or solid particles containing the compound. A nonaqueous (e.g., fluorocarbon propellant) suspension could be used. Sonic nebulizers are preferred because they minimize exposing the agent to shear, which can result in degradation of the compound.
- an aqueous aerosol is made by formulating an aqueous solution or suspension of the agent together with conventional pharmaceutically acceptable carriers and stabilizers.
- the carriers and stabilizers vary with the requirements of the particular compound, but typically include nonionic surfactants (Tweens, Pluronics, or polyethylene glycol), innocuous proteins like serum albumin, sorbitan esters, oleic acid, lecithin, amino acids such as glycine, buffers, salts, sugars or sugar alcohols.
- Aerosols generally are prepared from isotonic solutions.
- Transdermal patches have the added advantage of providing controlled delivery of a therapeutic polymer conjugate(s) to the body.
- dosage forms can be made by dissolving or dispersing the agent in the proper medium.
- Absorption enhancers can also be used to increase the flux of the ligand across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the peptidomimetic in a polymer matrix or gel.
- Ophthalmic formulations are also contemplated as being within the scope of this invention.
- compositions of this invention suitable for parenteral administration comprise one or more therapeutic polymer conjugate(s) in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
- aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
- polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
- vegetable oils such as olive oil
- injectable organic esters such as ethyl oleate.
- Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
- adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents.
- Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride
- the absorption of the drug in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.
- Injectable depot forms are made by forming microencapsule matrices of therapeutic polymer conjugate(s) in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissue.
- the therapeutic polymer conjugate(s) of the present invention are administered as pharmaceuticals, to humans and animals, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
- agents may be given orally, parenterally, topically, or rectally. They are of course given by forms suitable for each administration route. For example, they are administered in tablets or capsule form, by injection, inhalation, eye lotion, ointment, suppository, infusion; topically by lotion or ointment; and rectally by suppositories. Oral administration is preferred.
- parenteral administration and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.
- systemic administration means the administration of a therapeutic polymer conjugate, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration.
- the present therapeutic polymer conjugate(s) may be administered to humans and other animals for therapy by any suitable route of administration, including orally, nasally, as by, for example, a spray, rectally, intravaginally, parenterally, intracisternally and topically, as by powders, ointments or drops, including buccally and sublingually.
- the therapeutic polymer conjugate(s), which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.
- Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
- subject polymers may be formed in a variety of shapes.
- subject polymer matrices may be presented in the form of microparticles or nanoparticles.
- Microspheres typically comprise a biodegradable polymer matrix incorporating a drug. Microspheres can be formed by a wide variety of techniques known to those of skill in the art.
- microsphere forming techniques include, but are not limited to, (a) phase separation by emulsification and subsequent organic solvent evaporation (including complex emulsion methods such as oil in water emulsions, water in oil emulsions and water-oil-water emulsions); (b) coacervation-phase separation; (c) melt dispersion; (d) interfacial deposition; (e) in situ polymerization; (f) spray drying and spray congealing; (g) air suspension coating; and (h) pan and spray coating.
- phase separation by emulsification and subsequent organic solvent evaporation including complex emulsion methods such as oil in water emulsions, water in oil emulsions and water-oil-water emulsions
- coacervation-phase separation including complex emulsion methods such as oil in water emulsions, water in oil emulsions and water-oil-water emulsions
- coacervation-phase separation including
- Suitable methods include, but are not limited to, spray drying, freeze drying, air drying, vacuum drying, fluidized-bed drying, milling, co-precipitation and critical fluid extraction.
- spray drying freeze drying, air drying, vacuum drying, fluidized-bed drying and critical fluid extraction
- the components stabilizing polyol, bioactive material, buffers, etc.
- milling the components are mixed in the dried form and milled by any method known in the art.
- co-precipitation the components are mixed in organic conditions and processed as described below.
- Spray drying can be used to load the stabilizing polyol with the bioactive material.
- the components are mixed under aqueous conditions and dried using precision nozzles to produce extremely uniform droplets in a drying chamber.
- Suitable spray drying machines include, but are not limited to, Buchi, NIRO, APV and Lab-plant spray driers used according to the manufacturer's instructions.
- microparticles and nanoparticles may be determined by scanning electron microscopy. Spherically shaped nanoparticles are used in certain embodiments, for circulation through the bloodstream. If desired, the particles may be fabricated using known techniques into other shapes that are more useful for a specific application.
- particles of the subject compositions may undergo endocytosis, thereby obtaining access to the cell.
- the frequency of such an endocytosis process will likely depend on the size of any particle.
- solid articles useful in defining shape and providing rigidity and structural strength to the polymeric matrices may be used.
- a polymer may be formed on a mesh or other weave for implantation.
- a polymer may also be fabricated as a stent or as a shunt, adapted for holding open areas within body tissues or for draining fluid from one body cavity or body lumen into another.
- a polymer may be fabricated as a drain or a tube suitable for removing fluid from a post-operative site, and in some embodiments adaptable for use with closed section drainage systems such as Jackson-Pratt drains and the like as are familiar in the art.
- the mechanical properties of the polymer may be important for the processability of making molded or pressed articles for implantation.
- the glass transition temperature may vary widely but must be sufficiently lower than the temperature of decomposition to accommodate conventional fabrication techniques, such, as compression molding, extrusion, or injection molding.
- the polymers and blends of the present invention upon contact with body fluids, undergo gradual degradation.
- the life of a biodegradable polymer in vivo depends upon, among other things, its molecular weight, crystallinity, biostability, and the degree of crosslinking. In general, the greater the molecular weight, the higher the degree of crystallinity, and the greater the biostability, the slower biodegradation will be.
- a subject composition is formulated with a therapeutic agent or other material
- release of such an agent or other material for a sustained or extended period as compared to the release from an isotonic saline solution generally results.
- Such release profile may result in prolonged delivery (over, about 1 to about 2,000 hours, or alternatively about 2 to about 800 hours) of effective amounts (e.g., about 0.0001 mg/kg/hour to about 1 0 mg/kg/hour) of the agent or any other material associated with the polymer.
- a variety of factors may affect the desired rate of hydrolysis of polymers of the subject invention, the desired softness and flexibility of the resulting solid matrix, rate and extent of bioactive material release. Some of such factors include the selection/identity of the various subunits, the enantiomeric or diastereomeric purity of the monomeric subunits, homogeneity of subunits found in the polymer, and the length of the polymer.
- the present invention contemplates heteropolymers with varying linkages, and/or the inclusion of other monomeric elements in the polymer, in order to control, for example, the rate of biodegradation of the matrix.
- a wide range of degradation rates may be obtained by adjusting the hydrophobicities of the backbones or side chains of the polymers while still maintaining sufficient biodegradability for the use intended for any such polymer.
- Such a result may be achieved by varying the various functional groups of the polymer. For example, the combination of a hydrophobic backbone and a hydrophilic linkage produces heterogeneous degradation because cleavage is encouraged whereas water penetration is resisted.
- PBS protocol is used herein to refer to such protocol.
- the release rates of different polymer systems of the present invention may be compared by subjecting them to such a protocol.
- the present invention teaches several different means of formulating the polymeric, matrices of the present invention. Such comparisons may indicate that any one polymeric system releases incorporated material at a rate from about 2 or less to about 1000 or more times faster than another polymeric system.
- a comparison may reveal a rate difference of about 3, 5, 7, 10, 25, 50, 100, 250, 500 or 750 times. Even higher rate differences are contemplated by the present invention and release rate protocols.
- the release rate for polymer systems of the present invention may present as mono- or bi-phasic.
- Release of any material incorporated into the polymer matrix may be characterized in certain instances by an initial increased release rate, which may release from about 5 to about 50% or more of any incorporated material, or alternatively about 10, about 15, about 20, about 25, about 30 or about 40%, followed by a release rate of lesser magnitude.
- the release rate of any incorporated material may also be characterized by the amount of such material released per day per mg of polymer matrix.
- the release rate may vary from about 1 ng or less of any incorporated material per day per mg of polymeric system to about 500 or more ng/day/mg.
- the release rate may be about 0.05, 0.5, 5, 10, 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, or 500 ng/day/mg.
- the release rate of any incorporated material may be about 10,000 ng/day/mg, or greater.
- materials incorporated and characterized by such release rate protocols may include therapeutic agents, fillers, and other substances.
- the rate of release of any material from any polymer matrix of the present invention may be presented as the half-life of such material in the matrix.
- in vivo protocols whereby in certain instances release rates for polymeric systems may be determined in vivo, are also contemplated by the present invention.
- Other assays useful for determining the release of any material from the polymers of the present system are known in the art.
- a biodegradable delivery system for a therapeutic agent consists of a dispersion of such a therapeutic agent in a polymer matrix.
- an article is used for implantation, injection, or otherwise placed totally or partially within the body, the article comprising the subject compositions. It is particularly important that such an article result in minimal tissue irritation when implanted or injected into vasculated tissue.
- Biodegradable delivery systems, and articles thereof may be prepared in a variety of ways known in the art.
- the subject polymer may be melt-processed using conventional extrusion or injection molding techniques, or these products may be prepared by dissolving in an appropriate solvent, followed by formation of the device, and subsequent removal of the solvent by evaporation or extraction.
- a system or implant article Once a system or implant article is in place, it should remain in at least partial contact with a biological fluid, such as blood, internal organ secretions, mucus membranes, cerebrospinal fluid, and the like to allow for sustained release of any encapsulated therapeutic agent.
- a biological fluid such as blood, internal organ secretions, mucus membranes, cerebrospinal fluid, and the like to allow for sustained release of any encapsulated therapeutic agent.
- the present polymer conjugates can be used in the treatment of one or more diseases, such as those exhibiting abnormal cellular proliferation, such as cancer, for example, breast, lung, colon, and ovarian cancer.
- the subject polymer conjugates in some cases comprise one or more therapeutic agents including, but not limited to, salicylic acid, acetaminophen, morphine, etoposide, a tubulysin (preferably tubulysin A, tubulysin B, or tubulysin C), an epothilone, camptothecin, or vancomycin, or an analog or derivative thereof, particularly a tubulysin, an epothilone or an analog or derivative thereof.
- one or more therapeutic agents including, but not limited to, salicylic acid, acetaminophen, morphine, etoposide, a tubulysin (preferably tubulysin A, tubulysin B, or tubulysin C), an epothilone, camptothec
- Fmoc-PEG-aceticacid (5.7 g, 13 mmol), HBTU (4.9 g, 13 mmol), HOBT (2.0 g, 13 mmol), and DIPEA (3.4 g, 26 mmol) were dissolved in DMF (25 mL).
- GFLG-MEDA-Z (5.1 g, 8.8 mmol) was dissolved in DMF (13 mL) and DIPEA (3.7 g, 29 mmol) and added to the previous solution prepared. The reaction mixture was stirred for 1.5 h at room temperature.
- FMOC-PEG-GFLG-MEDA-Z (3.0 g, 3.0 mmol) was dissolved in CH 2 Cl 2 (60 mL) of 0.2 M 2-Bromo-1,3,2-benzodioxaborole (2.4 g, 12 mmol). The reaction mixture was stirred overnight at room temperature. The reaction was stopped by the addition of MeOH (10 mL). Solvents were removed under vacuum. The obtained residue was dissolved in a small volume of methanol and precipitated in cool diethyl ether to yield the product (2.6 g, >99%). ESI/MS (m/z) expected 860.01; found 882.76 [M+Na].
- Cyclodextrin-based polymer (CDP) (1.8 g, 0.36 mmol) was dissolved in dry DMF (35 mL). The mixture was stirred until completely dissolved. DIPEA (0.94 g, 7.3 mmol), EDC (0.70 g, 3.6 mmol), and NHS (420 mg, 3.6 mmol) were added into the above solution. PEG-GFLG-MEDA-ETOP (1.4 g, 1.1 mmol) was dissolved in DMF (10 mL) and added to the polymer solution. The solution was stirred for 4 h, and then the polymer was precipitated in ethylacetate (150 mL).
- the precipitate was dissolved in DMF (15 mL) and precipitated in acetone (75 mL).
- the precipitated product was dissolved in pH 4 water (80 mL).
- the solution was dialyzed using 25K MWCO membrane (Spectra/Por 7) for 24 h. It was filtered through 0.2 ⁇ m filters (Nalgene) and lyophilized to yield white solid (1.1 g, 61%). Loading of etoposide was determined to be 10% w/w by UV-Vis Spectroscopy at 283 nm.
- CDP (96 mg, 0.020 mmol) was dissolved in dry N,N-dimethylformamide (2 mL). The mixture was stirred for 20 min. Cystamine carbamate of etoposide (35 mg, 0.044 mmol), N,N-Diisopropylethylamine (5.6 mg, 0.044 mmol), N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (11 mg, 0.059 mmol), and N-Hydroxysuccinimide (5.0 mg, 0.044 mmol) were added to the polymer solution and stirred for 4 h. The polymer was precipitated with ethylacetate (50 mL).
- the precipitate was dissolved in deionized water (10 mL). The solution was dialyzed using 25K MWCO membrane (Spectra/Por 7) for 27 h. It was filtered through 0.2 ⁇ m filters (Nalgene) and lyophilized to yield white solid (57 mg, 59%). Loading of etoposide was determined to be 12.5% w/w by UV-Vis Spectroscopy at 283 nm.
- etopophosphate 720 mg, 1.1 mmol
- N,N′-diisopropylcarbodiimide 96 mg, 0.72 mmol
- N-hydroxysuccinimide 83 mg, 0.72 mmol
- N,N-Diisopropylethylamine 140 mg, 2.3 mmol
- the crude product was dissolved in H 2 O (400 mL) and the solution was dialyzed using a 25K MWCO membrane (Spectra/Por 7) against water.
- the dialysis water was changed twice over a period of 24 h, after which the polymer containing solution was filtered through a 0.2 ⁇ m filter membrane and lyophilized to yield 1.64 g of CDP-PEG-SS-Py (82% yield) as a white solid.
- CDP-PEG-SS-Py 43 mg, 0.0094 mmole was dissolved in degassed MeOH (1.8 mL), into which was added a methanol solution (0.35 mL) of Tub-S—S-pyr (9.5 mg, 0.0094 mmole) to bring the total reaction volume of 2.15 mL.
- the resulting yellow mixture was stirred under argon at room temperature for 4 h.
- N-ethyl maleimide 118 mg, 0.94 mmole was then added to quench the reaction resulting in clear, colorless solution.
- This solution was dialyzed using a 25K MWCO membrane, and the dialysis water was changed once over a period of 24 h. The solution was then filtered through 0.2 ⁇ m filter membrane and lyophilized to afford target polymer (27 mg, 45% yield) as a white solid.
- the cytotoxicity of drug-polymer conjugates and linker-drug precursors was determined in the human ovarian carcinoma cell line A2780.
- Cells were grown in RPMI 1640 media containing 10% fetal bovine serum (FBS). 10,000 cells per well were seeded in a 96-well plate and incubated at 37° C. for 24 hours, at which time drug was added to triplicate wells at various concentrations. After 72 hours of incubation at 37° C. in the presence of drug, cells were washed with PBS, incubated for 1 hour with an MTS solution, and analyzed according to manufacturer's instructions (CellTiter 96 one solution cell proliferation assay, Promega, Madison, Wis.). The concentration of drug to kill 50% of cells (IC50) was determined using a 4-parameter fit (see Table 1).
- CDP-PEG-SS-Tubulysin CDP-S—S-Tub
- CDP-S—S-Tub The antiproliferative activity of CDP-PEG-SS-Tubulysin (CDP-S—S-Tub) was evaluated in vitro in multiple human cancer cell lines (NCI-H1299 lung cancer, HT-29 colon cancer, and A2780 ovarian cancer) and compared with Tubylysin A (Tub A) and the sulfur derivatized Tubylysin A (Tub-SH) (Table 2). The data shows that the conjugate maintains high antiproliferative activity.
- CDP-PEG-SS-Tubulysin (CDP-S—S-Tub) was determined in nude mice and found to be 6 mg/kg (in Tubulysin equivalents) whereas that of Tubulysin A was 0.05 mg/kg (Table 3).
- Subcutaneous human tumor xenografts The HT29 colon cancer cell line was maintained in nude mice. Then 1 mm 3 HT29 tumor fragments were implanted s.c. into the right flank of HRLN female nu/nu mice.
- Endpoint of the experiment was a tumor volume of 1 gm or 90 days. When tumor reached the endpoint the mouse was euthanized and endpoint tumor growth delay was calculated consequently. End-point tumor size was chosen to maximize the number of tumor doublings within the exponential growth phase in the control animals. It was set at 1000 mm 3 for HT29.
- Treatment efficacy was determined by the time which took a specific tumor to reach the predetermined endpoint size (1000 mm 3 for HT29).
- TTE values equal to the last day of the study were assigned to those mice whose tumor volume did not reach the endpoint size.
- a TTE value equal to the day of death was assigned to a mouse whose death was classified as treatment-related death.
- TGD Tumor growth delay
- Treatment may cause partial regression or complete regression of the tumor in an animal.
- Partial regression response is defined as the tumor volume's being ⁇ 50% of its day 1 volume for three consecutive measurements during the course of the study and ⁇ 13.5 mm 3 for one or more of these three measurements.
- Complete regression response is defined as the tumor volume is ⁇ 13.5 mm 3 for three consecutive measurements during the course of the study.
- a tumor-free survivor is an animal with a complete regression response at the end of the study.
- Efficacy was evaluated in nude mice bearing subcutaneously implanted HT-29 colorectal carcinoma xenografts. HRLN female nu/nu mice were set up with 1 mm 3 HT-29 tumor fragments s.c. in the flank. The pair match was then done when the tumors reached an average size of 80 to 120 mg and was followed by beginning treatment. Dosing solutions were prepared daily and body weight was determined bi-weekly until the end of the study. Caliper measurements were taken bi-weekly to the end of the study. Animals were monitored individually, and the endpoint of the experiment was a tumor volume of 1 g or 90 days, whichever came first. Responders were followed longer. When the endpoint was reached, the animals were euthanized.
- CDP-PEG-SS-Tubulysin (CDP-S—S-Tub) was administered as a solution in 100% water.
- Tubulysin A was administered as a solution in 10% DMSO:1% Tween 80:89% Saline.
- the vehicle was 10% DMSO:1% Tween 80:89% Saline.
- Vinblastine was administered as a solution in 100% Saline.
- the dosing volume was 10 mL/kg (0.200 mL/20 g mouse) adjusted for body weight.
- CDP-PEG-SS-Tubulysin Treatment with CDP-PEG-SS-Tubulysin (CDP-S—S-Tub) was well tolerated, with no mortality or significant antitumor effect. It was better tolerated than vinblastine and Tubulysin A. Treatment with CDP-PEG-SS-Tubulysin resulted in a higher number of regressions and a significant increase in tumor growth delay compared to Vinblastine. Treatment with Tubulysin A was proven to be toxic for the mice, causing 50% mortality and 26.8% maximum body weight loss on day 26 (Table 4 and FIGS. 1-2 ).
- CDP-PEG-SS-Tubulysin A polymer-tubulysin conjugate CDP-PEG-SS-Tubulysin was synthesized and found to be highly soluble in water. The conjugate showed strong antiproliferative activity in multiple human cancer cell lines.
- the MTD of CDP-PEG-SS-Tubulysin was determined to be between 3 and 10 mg/kg while the free drug Tubulysin A was severely toxic even at 0.1 mg/kg.
- Efficacy studies of CDP-PEG-SS-Tubulysin at 3 mg/kg showed that it was well-tolerated and produced substantial antitumor activity during a 90-day study. By contrast, the free drug Tubulysin A showed excessive toxicity, causing 50% mortality.
- Vinblastine a vinca alkaloid that inhibits tubulin polymerization by binding to the same binding site as Tubulysin A, was significantly less effective as an antitumor agent compared to CDP-PEG-SS-Tubulysin.
- Loading was determined by HPLC to be 12%.
- the particle size of the parent polymer was measured to be 9-10 nm while CDP-PEG-SS-Tubulysin self-assembled into nanoparticles with a particle size of 127 nm.
- the solubility of Tubulysin A in water was determined to be 0.1 mg/mL at a neutral pH while that of CDP-PEG-SS-Tubulysin was found to be 100 times higher.
- luteinizing hormone-releasing hormone LHRH was used as a targeting ligand and the receptor-mediated endocytosis of the nanoparticles investigated in several human cancer cell lines.
- LHRH-PEG-maleimide and rhodamine (Rho)-maleimide were conjugated to CDP to form LHRH targeted nanoparticulate polymers (7.1% w/w LHRH, 11.3% w/w Rho).
- Table 5 lists properties of the prepared CDP naoparticles.
- LHRH-CDP-Rho LHRH-CDP-Rho
- CDP-Rho non-targeted polymer
- CDP-Rho mixed with excess LHRH and scrambled LHRH conjugated polymer sLHRH-CDP-Rho
- MCF-7 breast cancer
- OVCAR-3 ovarian cancer
- SKOV-3 ovarian cancer
- MCF-7 Cells were incubated with LHRHa targeted, sLHRHa targeted or non-targeted CDP-Rho conjugates at a concentration of 30 ⁇ M (Rhodamine equivalent) for 3 h at 37° C. or 4° C. Cells in parallel wells were incubated with mixture of CDP-Rho and LHRHa. Cells were then assayed for fluorescence by using a spectrofluorometer ( FIG. 3 ). Each column in FIG. 3 represents the mean of three measurements with error bars representing the standard deviation.
- MCF-7 Cells were pulsed with targeted (LHRHa-CDP-Rho) or non-targeted CDP-Rho conjugates at a concentration of 30 ⁇ M for 3 h at 4° C. and then chased at 37° C. for 2 h in fresh medium.
- the chased medium was assayed as dissociated and/or recycling polymer.
- the amount of cell surface bound polymer conjugates was determined by trypsin treatment.
- the lysed cell was assayed as cellular uptake. Data were interpreted as percentage of initially binding conjugates ( FIG. 4 ). Each column in FIG. 4 represents the mean of three measurements.
- FIG. 6 Pulse chase studies were also conducted ( FIG. 6 ).
- MCF-7 cells were coincubated with 1 ⁇ M Lysotracker Green DND-26 and 2.3 ⁇ M LHRHa-CDP-Rho (Rhodamine equivalent) for 1 h at 37° C.
- panel (a) shows localization of LHRHa-CDP-Rho
- panel (b) shows localization of lysotracker Green DND-26
- panel (c) shows epifluorescence image of MCF cells
- panel (d) shows superposition of (a) and (b), which allows for detection of colocalization of LHRHa-CDP-Rho and Lysotracker Green DND-26.
- FIGS. 3-4 Cellular uptake of LHRH targeted polymer nanoparticle was 40-60 times higher than that of non-targeted polymer nanoparticle in various cancer cell lines.
- a mixture of CDP-Rho with LHRH did not increase the cellular uptake of the CDP-Rho; the cellular uptake of the polymeric nanoparticles was largely decreased when scrambled LHRH was conjugated to polymer compared with LHRH-CDP-Rho; and the increased cellular uptake of LHRH targeted polymer was inhibited at 4° C. ( FIG. 3 ).
- the cellular uptake of the examined CDP nanoparticles was greatly enhanced by conjugation with LHRH.
- the increase in uptake was observed with covalent attachment of LHRH to the polymer nanoparticles and specific binding between LHRH and LHRH-receptor.
- the internalization process was temperature dependent, and the LHRH targeted polymer nanoparticles localized into the endocytic pathway.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Nanotechnology (AREA)
- Epidemiology (AREA)
- Neurology (AREA)
- Immunology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Communicable Diseases (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Oncology (AREA)
- Pulmonology (AREA)
- Diabetes (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Biotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hematology (AREA)
- Psychiatry (AREA)
Abstract
Description
- This application is a continuation of U.S. Ser. No. 15/434,431, filed Feb. 16, 2017, which is a continuation of U.S. Ser. No. 13/922,739, filed Jun. 20, 2013, which is a continuation of U.S. Ser. No. 13/198,403, filed Aug. 4, 2011, which is a continuation of U.S. Ser. No. 13/190,401, filed Jul. 25, 2011 which is a continuation of U.S. Ser. No. 12/002,305, filed Dec. 14, 2007, which claims priority to U.S. Ser. No. 60/897,096 filed on Jan. 24, 2007 and U.S. Ser. No. 61/002,752, filed on Nov. 9, 2007. The specifications of these applications are incorporated herein by reference in their entirety.
- Drug delivery of some small molecule therapeutic agents has been problematic due to their poor pharmacological profiles. These therapeutic agents often have low aqueous solubility, their bioactive forms exist in equilibrium with an inactive form, or high systemic concentrations of the agents lead to toxic side-effects. Some approaches to circumvent the problem of their delivery have been to conjugate the agent directly to a water-soluble polymer such as hydroxypropyl methacrylate (HPMA), polyethyleneglycol, and poly-L-glutamic acid. In some cases, such conjugates have been successful in solubilizing or stabilizing the bioactive form of the therapeutic agent, or achieving a sustained release formulation which circumvents complications associated with high systemic concentrations of the agent.
- Another approach to the drug delivery problem has been to form host/guest inclusion complexes between the therapeutic agent and cyclodextrins or derivatives thereof. Cyclodextrins (α, β, γ) and their oxidized forms have unique physico-chemical properties such as good water solubility, low toxicity and low immune response. To date, most of the drug delivery studies with cyclodextrins have focused on their ability to form supra-molecular complexes, wherein cyclodextrins form host/guest inclusion complexes with therapeutic molecules and thus alter the physical, chemical, and/or biological properties of these guest molecules.
- There is an ongoing need for new approaches to the delivery of small therapeutic agents that have poor pharmacological profiles.
- The present invention relates to novel compositions of polymer conjugates, defined as polymeric materials covalently coupled to therapeutic agents as carriers for therapeutics delivery. In one aspect, the present invention provides water-soluble, biocompatible polymer conjugates comprising a water-soluble, biocompatible polymer covalently attached to therapeutic agents through attachments that are cleaved under biological conditions to release the therapeutic agent.
- One aspect of the invention relates to a polymer conjugate, comprising a therapeutic agent covalently attached to a polymer through a tether, wherein the tether comprises a self-cyclizing moiety. In some embodiments, the tether further comprises a selectivity-determining moiety.
- One aspect of the invention relates to polymeric materials covalently coupled to therapeutic agents through a tether, wherein the tether comprises a self-cyclizing moiety. In certain embodiments, the tether further comprises a selectivity-determining moiety, e.g., covalently attached to the self-cyclizing moiety, such as in series.
- In certain embodiments as disclosed herein, the selectivity-determining moiety is bonded to the self-cyclizing moiety between the self-cyclizing moiety and the polymer. In certain embodiments as disclosed herein, the selectivity-determining moiety promotes selectivity in the cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety, e.g., under acidic conditions or under basic conditions. In certain embodiments as disclosed herein, the bond between the selectivity-determining moiety and the self-cyclizing moiety is selected from amide, carbamate, carbonate, ester, thioester, urea, and disulfide bonds.
- In certain embodiments as disclosed herein, the self-cyclizing moiety is selected such that after cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety, cyclization of the self-cyclizing moiety occurs, thereby releasing the therapeutic agent.
- In certain embodiments as disclosed herein, cyclization of the self-cyclizing moiety forms a five- or six-membered ring. In certain embodiments as disclosed herein, the five- or six-membered ring is a heterocycle that comprises at least one heteroatom selected from nitrogen, oxygen, and sulfur. In certain embodiments as disclosed herein, the heterocycle is an imidazolidinone.
- In certain embodiments as disclosed herein, the selectivity-determining moiety promotes enzymatic cleavage (i.e., by cathepsin or cathepsin B) of the bond between the selectivity-determining moiety and the self-cyclizing moiety. In certain embodiments as disclosed herein, the selectivity-determining moiety comprises a peptide (e.g., a dipeptide, tripeptide or tetrapeptide). In certain embodiments as disclosed herein, the peptide comprises a sequence selected from GFYA, GFLG, GFA, GLA, AVA, GVA, GIA, GVL, GVF, AVF, KF, and FK.
- In certain embodiments as disclosed herein, the selectivity-determining moiety comprises an aminoalkylcarbonyloxyalkyl moiety. In certain embodiments as disclosed herein, the selectivity-determining moiety comprises cis-aconityl.
- In certain embodiments as disclosed herein, the self-cyclizing moiety has a structure
-
- wherein
- U is selected from NR1 and S;
- X is selected from O, NR5, and S;
- V is selected from O, S, and NR4;
- R2 and R3 are independently selected from hydrogen, alkyl, and alkoxy; or R2 and R3 together with the carbon atoms to which they are attached form a ring; and
- R1, R4, and R5 are independently selected from hydrogen and alkyl.
- In certain embodiments as disclosed herein, U is NR1 and/or V is NR4, and R1 and R4 are independently selected from methyl, ethyl, propyl, and isopropyl. In certain embodiments as disclosed herein, both R1 and R4 are methyl. In certain embodiments as disclosed herein, both R2 and R3 are hydrogen. In certain embodiments as disclosed herein, R2 and R3 together are —(CH2)n— wherein n is 3 or 4.
- In certain embodiments as disclosed herein, the self-cyclizing moiety is selected from
- In certain embodiments as disclosed herein, U is bonded to the self-cyclizing moiety.
- In certain embodiments as disclosed herein, the selectivity-determining moiety is represented by Formula A:
-
- wherein
- S a sulfur atom that is part of a disulfide bond;
- J is optionally substituted hydrocarbyl; and
- Q is O or NR13, wherein R13 is hydrogen or alkyl.
- In certain embodiments as disclosed herein, the selectivity-determining moiety is represented by Formula B:
-
- wherein
- W is selected from NR14, S, and O;
- J, independently and for each occurrence, is hydrocarbyl or polyethylene glycol;
- S is sulfur;
- Q is O or NR13, wherein R13 is hydrogen or alkyl; and
- R14 is selected from hydrogen and alkyl.
- In certain embodiments as disclosed herein according to Formula B, J comprises an aryl ring, such as a benzo ring. In certain such embodiments as disclosed herein, W and S are in a 1,2-relationship on the aryl ring. In certain embodiments as disclosed herein, the aryl ring is optionally substituted with alkyl, alkenyl, alkoxy, aralkyl, aryl, heteroaryl, halogen, —CN, azido, —NRxRx, —CO2ORx, —C(O)—NRxRx, —C(O)—Rx, —NRx—C(O)—Rx, —NRxSO2Rx, —SRx, —S(O)Rx, —SO2Rx, —SO2NRxRx, —(C(Rx)2), —ORx, —(C(Rx)2)n—NRxRx, and —(C(Rx)2)n—SO2Rx; wherein Rx is, independently for each occurrence, H or lower alkyl; and n is, independently for each occurrence, an integer from 0 to 2.
- In certain embodiments as disclosed herein according to Formula A or B, J, independently and for each occurrence, is polyethylene glycol, polyethylene, polyester, alkenyl, or alkyl.
- In certain embodiments as disclosed herein according to Formula A or B, J, independently and for each occurrence, represents a hydrocarbylene group comprising one or more methylene groups, wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from, substituted or unsubstituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, or —O—, C(═X) (wherein X is NR30, O or S), —OC(O)—, —C(═O)O, —NR30—, —NR1CO—, —C(O)NR30—, —S(O)n— (wherein n is 0, 1, or 2), —OC(O)—NR30, —NR30—C(O)—NR30—, —NR30—C(NR30)—NR30—, and —B(OR30)—; and R30, independently for each occurrence, represents H or a lower alkyl.
- In certain embodiments as disclosed herein according to Formula A or B, J, independently and for each occurrence, is substituted or unsubstituted lower alkylene (e.g., unsubstituted ethylene).
- In certain embodiments as disclosed herein according to Formula A, the selectivity-determining moiety is
- In certain embodiments as disclosed herein according to Formula B, the selectivity-determining moiety is selected from
- In certain embodiments as disclosed herein, the selectivity-determining moiety has a structure
-
- wherein Ar is a substituted or unsubstituted benzo ring;
- J is optionally substituted hydrocarbyl (e.g., as defined anywhere above); and
- Q is O or NR13, wherein R13 is hydrogen or alkyl.
- In certain embodiments as disclosed herein Ar is unsubstituted. In certain embodiments as disclosed herein, Ar is a 1,2-benzo ring. In certain such embodiments, the selectivity determining moiety is
- In certain embodiments as disclosed herein, the polymer comprises a plurality of cyclic moieties selected from cyclodextrins, crown ethers, cyclic oligopeptides, cryptands or cryptates, calixarenes, cavitands, or any combination thereof.
- In certain embodiments, the polymer conjugate has a structure of Formula I:
-
- wherein P is a monomer moiety;
- A, independently for each occurrence, is a selectivity-determining moiety or a direct bond;
- B, independently for each occurrence, is a self-cyclizing moiety;
- L1, L2, L3 and L4, independently for each occurrence, are a linker group;
- D and D′ are independently a therapeutic agent or prodrug thereof;
- T and T′ are independently a targeting ligand or precursor thereof;
- y and y′ are independently an integer from 1 to 10;
- x, x′, z, and z′ are independently an integer from 0 to 10; and
- h is an integer from 2 to 30,000 (for example, from 2, 3, 4, 5, or 8 to about 25, 50, 100, 500, 1,000, 5,000, 10,000, 15,000, 20,000, or 25,000; or, for example, from 2, 3, or 4 to 5 or 10); wherein at least one occurrence of either x or x′ is an integer greater than 0.
- In certain embodiments, A is a selectivity-determining moiety.
- In certain embodiments, L1, L2, L3 and L4 are independently selected from an alkyl chain, a polyethylene glycol (PEG) chain, polysuccinic anhydride, poly-L-glutamic acid, poly(ethyleneimine), an oligosaccharide, and an amino acid chain.
- In certain embodiments, any of L1, L2, L3 and L4 are independently an alkyl chain wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from aryl, heteroaryl, carbocyclyl, heterocyclyl, or —O—, C(═X) (wherein X is NR1, O or S), —OC(O)—, —C(═O)O, —NR1—, —NR1CO—, —C(O)NR1—, —S(O)n— (wherein n is 0, 1, or 2), —OC(O)—NR1, —NR1—C(O)—NR1—, —NR1—C(NR1)—NR1—, and —B(OR1)—; and R1, independently for each occurrence, is H or lower alkyl.
- In certain embodiments, A is selected such that the selectivity-determining moiety promotes selectivity in the cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety.
- In certain embodiments, B is capable of self-cyclizing to release the therapeutic agent once the bond between A and B has been cleaved.
- In one aspect, the invention provides for a compound represented by Formula C:
-
- wherein
- P represents a polymer chain;
- CD represents a cyclic moiety;
- L1, L2 and L3, independently for each occurrence, may be absent or represent a linker group, provided that a plurality of occurrences of L2 represent linkers that are cleavable under biological conditions;
- D, independently for each occurrence, is selected from etoposide, tubulysin, epothilone, or an analog or derivative thereof;
- T, independently for each occurrence, represents a targeting ligand or precursor thereof;
- a, m and v, independently for each occurrence, represent integers in the range of 1 to 10;
- n and w, independently for each occurrence, represent an integer in the range of 0 to about 30,000; and
- b represents an integer in the range of 1 to about 30,000; and
- either P comprises cyclodextrin moieties in the polymer chain or n is at least 1.
-
-
- wherein
- CD represents a cyclodextrin moiety, or derivative thereof;
- L4, L5, L6, and L7, independently for each occurrence, may be absent or represent a linker group;
- D and D′, independently for each occurrence, is selected from etoposide, tubulysin, epothilone, or an analog or derivative thereof;
- T and T′, independently for each occurrence, represents the same or different targeting ligand or precursor thereof;
- f and y, independently for each occurrence, represent an integer in the range of 1 and 10;
- g and z, independently for each occurrence, represent an integer in the range of 0 and 10; and
- h is an integer from 2 to 30,000 (for example, from 2, 3, 4, 5, or 8 to about 25, 50, 100, 500, 1,000, 5,000, 10,000, 15,000, 20,000, or 25,000; or, for example, from 2, 3, or 4 to 5 or 10).
- In certain embodiments, the compound is represented by Formula D:
-
- wherein
- γ represents a monomer unit of a polymer that comprises cyclodextrin moieties;
- T, independently for each occurrence, represents a targeting ligand or a precursor thereof;
- L6, L7, L8, L9, and L10, independently for each occurrence, may be absent or represent a linker group;
- CD, independently for each occurrence, represents a cyclodextrin moiety or a derivative thereof;
- D, independently for each occurrence, is selected from etoposide, tubulysin, epothilone, or an analog or derivative thereof;
- m, independently for each occurrence, represents an integer in the range of 1 to 10;
- o is an integer from 2 to 30,000 (for example, from 2, 3, 4, 5, or 8 to about 25, 50, 100, 500, 1,000, 5,000, 10,000, 15,000, 20,000, or 25,000; or, for example, from 2, 3, or 4 to 5 or 10); and
- p, n, and q, independently for each occurrence, represent an integer in the range of 0 to 10,
- wherein CD and D are each present at least once in the compound.
- One aspect of the invention relates to a polymer covalently coupled to a therapeutic agent through a linker, wherein the linker comprises a phosphate group.
- One aspect of the invention relates to a polymer, such as any polymer as described above, covalently coupled to a therapeutic agent through a linker, wherein the therapeutic agent is selected from etoposide, tubulysin, epothilone, or an analog or derivative thereof.
- In certain embodiments as described above, the polymers employed may be biocompatible polymers.
- In certain embodiments as described above, the polymer comprises a plurality of cyclic moieties selected from cyclodextrins, crown ethers, cyclic oligopeptides, cryptands or cryptates, calixarenes, cavitands, and any combination thereof.
- In certain embodiments as described above, the therapeutic agent is a small molecule. In certain embodiments, the therapeutic agent contains an amino, hydroxyl, or thiol group. In certain embodiments, the therapeutic agent is attached to the self-cyclizing group through the amino, hydroxyl, or thiol group, preferably a hydroxyl group.
- In certain embodiments as described above, the therapeutic agent is etoposide, tubulysin, epothilone, or an analog or derivative thereof. In certain embodiments as disclosed herein, the targeting ligand is a hormone, such a as a hormone that facilitates endocytosis. In certain embodiments, the hormone is luteinizing hormone-releasing hormone (LHRH).
- In certain embodiments, a linker group represents a hydrocarbylene group wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from, substituted or unsubstituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, or —O—, C(═X) (wherein X is NR1, O or S), —OC(O)—, —C(═O)O, —NR1—, —NR1CO—, —S(O)n— (wherein n is 0, 1, or 2), —OC(O)—NR1, —NR1—C(NR1)—NR1—, and —B(OR1)—; and R1, independently for each occurrence, represents H or a lower alkyl.
- In certain embodiments, a linker group, e.g., between a therapeutic agent and a polymer, comprises a self-cyclizing moiety. In certain embodiments, a linker group, e.g., between a therapeutic agent and a polymer, comprises a selectivity-determining moiety.
- In certain embodiments as disclosed herein, a linker group, e.g., between a therapeutic agent and a polymer, comprises a self-cyclizing moiety and a selectivity-determining moiety.
- In certain embodiments, the linker group represents an amino acid or peptide, or derivative thereof.
- In certain embodiments as disclosed herein, the therapeutic agent or targeting ligand is covalently bonded to the linker group via a biohydrolyzable bond (e.g., an ester, amide, carbonate, carbamate, or a phosphate).
- In certain embodiments, the compound is biodegradable or bioerodable.
- In certain embodiments as disclosed herein, the compound has a number average (Mn) molecular weight between 1,000 to 500,000 amu, or between 5,000 to 200,000 amu, or between 10,000 to 100,000 amu.
- In one aspect, the invention provides for a pharmaceutical preparation comprising a pharmaceutical excipient and a compound of the invention, or a pharmaceutically acceptable ester, salt, or hydrate thereof. In certain embodiments, the therapeutic agent or prodrug thereof makes up at least 5% by weight of the compound. In certain embodiments, the therapeutic agent or prodrug thereof makes up at least 20% by weight of the compound.
- In certain embodiments, the compound is water soluble.
- In certain embodiments as disclosed herein, P is a linear polymer chain. In certain embodiments as disclosed herein, P is a branched polymer chain.
- In certain embodiment as disclosed herein s, P comprises cyclodextrin moieties and at least one of the cyclodextrin moieties of P is oxidized. In certain such embodiments, a plurality of the cyclodextrin moieties of P are oxidized.
- In certain embodiments as disclosed herein, P comprises cyclodextrin moieties that alternate with linker moieties in the polymer chain.
- In certain embodiments, the linker moieties are attached to therapeutic agents or prodrugs thereof that are cleaved under biological conditions.
- In one aspect, the invention provides for a method for delivering a therapeutic agent comprising administering to a patient in need thereof a therapeutically effective amount of one or more of the compounds of the invention. In certain such embodiments, the method is a method for treating cancer.
- In one aspect, the invention relates to a compound represented by Formula C:
-
- wherein
- P represents a polymer chain;
- CD represents a cyclodextrin moiety;
- L2 independently for each occurrence, may be absent or represents a linker group, wherein for one or more occurrences, L2 is a linker group that comprises a phosphate group;
- L1 and L3, independently for each occurrence, may be absent or represent a linker group;
- D, independently for each occurrence, represents a therapeutic agent or a prodrug thereof;
- T, independently for each occurrence, represents a targeting ligand or precursor thereof;
- a, m and v, independently for each occurrence, represent integers in the range of 1 to 10;
- n and w, independently for each occurrence, represent an integer in the range of 0 to about 30,000; and
- b represents an integer in the range of 1 to about 30,000; and
- wherein either P comprises cyclodextrin moieties in the polymer chain or n is at least 1, and wherein a plurality of therapeutic agents or prodrugs thereof are covalently attached to the polymer chain through attachments that are cleavable, e.g., under biological conditions.
- In certain embodiments, for a plurality of occurrences, L2 is a linker group comprising a phosphate group.
-
-
- wherein
- CD represents a cyclodextrin moiety, or derivative thereof;
- L4 and L6, independently for each occurrence, may be absent or represent a linker group, wherein for one or more occurrences, L4 or L6 is a linker group that comprises a phosphate group;
- L5 and L7, independently for each occurrence, may be absent or represent a linker group;
- D and D′, independently for each occurrence, represent the same or different therapeutic agent or prodrugs thereof;
- T and T′, independently for each occurrence, represents the same or different targeting ligand or precursor thereof;
- f and y, independently for each occurrence, represent an integer in the range of 1 and 10;
- g and z, independently for each occurrence, represent an integer in the range of 0 and 10; and
- h is an integer from 2 to 30,000 (for example, from 2, 3, 4, 5, or 8 to about 25, 50, 100, 500, 1,000, 5,000, 10,000, 15,000, 20,000, or 25,000; or, for example, from 2, 3, or 4 to 5 or 10).
- In certain embodiments, the compound represented by Formula D:
-
- wherein
- γ represents a monomer unit of a polymer;
- T, independently for each occurrence, represents a targeting ligand or a precursor thereof;
- L6, L7, L8, and L10, independently for each occurrence, may be absent or represent a linker group;
- L9, independently for each occurrence, may be absent or represents a linker group, wherein for one or more occurrences, L9 is a linker group that comprises a phosphate group;
- CD, independently for each occurrence, represents a cyclodextrin moiety or a derivative thereof;
- D, independently for each occurrence, represents a therapeutic agent or a prodrug form thereof;
- m, independently for each occurrence, represents an integer in the range of 1 to 10;
- o is an integer from 2 to 30,000 (for example, from 2, 3, 4, 5, or 8 to about 25, 50, 100, 500, 1,000, 5,000, 10,000, 15,000, 20,000, or 25,000; or, for example, from 2, 3, or 4 to 5 or 10); and
- p, n, and q, independently for each occurrence, represent an integer in the range of 0 to 10,
- wherein CD and D are each present at least once in the compound.
- In certain embodiments, at least one linker that connects the therapeutic agent or prodrug thereof to the polymer comprises a group represented by the formula
-
- wherein
- P is phosphorus;
- O is oxygen;
- E represents oxygen or NR40;
- K represents hydrocarbyl;
- X is selected from OR42 or NR43R44; and
- R40, R41, R42, R43, and R44 independently represent hydrogen or optionally substituted alkyl.
- In certain embodiments, E is NR40 and R40 is hydrogen.
- In certain embodiments, K is lower alkylene (e.g., ethylene).
- In certain embodiments, at least one linker comprises a group selected from
- In certain embodiments, X is OR42.
- In certain embodiments, the linker group comprises an amino acid or peptide, or derivative thereof.
- In certain embodiments as disclosed herein, the linker is connected to the therapeutic agent through a hydroxyl group (e.g., a phenolic hydroxyl group) on the therapeutic agent.
- In certain embodiments as disclosed herein, the therapeutic agent is a small molecule, a peptide, a protein or a polymer that has therapeutic activity. In certain embodiments as disclosed herein, the therapeutic agent is a small molecule. In certain embodiments as disclosed herein, the therapeutic agent is selected from etoposide, tubulysin, epothilone, or an analog or derivative thereof.
- In certain embodiments as disclosed herein, the therapeutic agent is hydrophobic and has a log P>0.4.
- In certain embodiments as disclosed herein, the therapeutic agent has low aqueous solubility.
- In certain embodiments as disclosed herein, the therapeutic agent or targeting ligand is covalently bonded to the linker group via a biohydrolyzable bond (e.g., an ester, amide, carbonate, or a carbamate).
- In certain embodiments as disclosed herein, the therapeutic agent is selected from an anti-cancer, anti-fungal, anti-bacterial, anti-mycotic, or anti-viral therapeutic.
- In certain embodiments as disclosed herein, the therapeutic agent is a receptor agonist. In certain embodiments, the therapeutic agent is a receptor antagonist.
- In certain embodiments as disclosed herein, the compound is biodegradable or bioerodable.
- In certain embodiments as disclosed herein, the compound has a number average (Mn) molecular weight between 1,000 to 500,000 amu, or between 5,000 to 200,000 amu, or between 10,000 to 100,000 amu.
- In one aspect as disclosed herein, the invention provides for a pharmaceutical preparation comprising a pharmaceutical excipient and a compound of the invention, or a pharmaceutically acceptable ester, salt, or hydrate thereof.
- In certain embodiments as disclosed herein, the therapeutic agent is selected from anorexics, antiarthritics, antiasthmatic agents, anticonvulsants, antidepressants; antihistamines, anti-inflammatory agents, antinauseants, antineoplastics, antipruritics, antipsychotics, antipyretics, antispasmodics, cardiovascular preparations, antihypertensives, diuretics, vasodilators, central nervous system stimulants, cough and cold preparations, decongestants, diagnostics, hormones, bone growth stimulants and bone resorption inhibitors, immunosuppressives, muscle relaxants, psychostimulants, sedatives, tranquilizers, anti-inflammatory agents, anti-epileptics, anesthetics, hypnotics, sedatives, neuroleptic agents, antidepressants, anxiolytics, anticonvulsant agents, neuron blocking agents, anticholinergic and cholinomimetic agents, antimuscarinic and muscarinic agents, antiadrenergics, antiarrhythmics, and antihypertensive agents.
- In certain embodiments as disclosed herein, the therapeutic agent or prodrug thereof makes up at least 5% by weight of the compound. In certain embodiments, the therapeutic agent or prodrug thereof makes up at least 20% by weight of the compound.
- In certain embodiments as disclosed herein, the compound is water soluble.
- In certain embodiments, a plurality of the linker moieties are attached to therapeutic agents or prodrugs thereof and are cleaved under biological conditions.
- In one aspect, the invention provides for a method for delivering a therapeutic agent comprising administering to a patient in need thereof a therapeutically effective amount of one or more of the compounds of the invention. In certain such embodiments, the method is a method for treating cancer.
-
FIG. 1 shows the tumor volume mean summary data for HT29 colon carcinoma xenograft in mice treated with CDP-PEG-SS-Tubulysin. -
FIG. 2 shows the body weight mean summary data for HT29 colon carcinoma xenograft in mice treated with CDP-PEG-SS-Tubulysin. -
FIG. 3 shows the relative cellular uptake properties of 5 different CDP-Rho systems as a percentage of total dosing. -
FIG. 4 shows the relative distribution of CDP-Rho in two systems following dosing. -
FIG. 5 shows the uptake of CDP-Rho and LHRH-CDP-Rho by flow cytometry. -
FIG. 6 shows substantial colocalization of LHRH-CDP-Rho with Lysotracker green as observed by confocal microscopy. - The present invention provides water-soluble, biocompatible polymer conjugates comprising a water-soluble, biocompatible polymer covalently attached to therapeutic agents through attachments that are cleaved under biological conditions to release the therapeutic agent. In certain embodiments, a polymer conjugate comprises a therapeutic agent covalently attached to a polymer, preferably a biocompatible polymer, through a tether, e.g., a linker, wherein the tether comprises a selectivity-determining moiety and a self-cyclizing moiety which are covalently attached to one another in the tether, e.g., between the polymer and the therapeutic agent.
- Polymeric conjugates of the present invention may be useful to improve solubility and/or stability of a therapeutic agent, reduce drug-drug interactions, reduce interactions with blood elements including plasma proteins, reduce or eliminate immunogenicity, protect the agent from metabolism, modulate drug-release kinetics, improve circulation time, improve drug half-life (e.g., in the serum, or in selected tissues, such as tumors), attenuate toxicity, improve efficacy, normalize drug metabolism across subjects of different species, ethnicities, and/or races, and/or provide for targeted delivery into specific cells or tissues. Poorly soluble and/or toxic compounds may benefit particularly from incorporation into polymeric compounds of the invention. In certain embodiments, the therapeutic agent is a small molecule, a macromolecule, an antibody, a peptide, a protein, an enzyme, a nucleic acid, or a polymer that has therapeutic function.
- The polymer may be a polycation, polyanion, or non-ionic polymer. A polycationic or polyanionic polymer has at least one site that bears a positive or negative charge, respectively. In certain such embodiments, at least one of the linker moiety and the cyclic moiety comprises such a charged site, so that every occurrence of that moiety includes a charged site.
- In certain embodiments, the polymer may be selected from polysaccharides, and other non-protein biocompatible polymers, and combinations thereof, that contain at least one terminal hydroxyl group, such as polyvinylpyrrollidone, poly(oxyethylene)glycol (PEG), polysuccinic anhydride, polysebacic acid, PEG-phosphate, polyglutamate, polyethylenimine, maleic anhydride divinylether (DIVMA), cellulose, pullulans, inulin, polyvinyl alcohol (PVA), N-(2-hydroxypropyl)methacrylamide (HPMA), dextran and hydroxyethyl starch (HES), and have optional pendant groups for grafting therapeutic agents, targeting ligands and/or cyclodextrin moieties. In certain embodiments, the polymer may be biodegradable such as poly(lactic acid), poly(glycolic acid), poly(alkyl 2-cyanoacrylates), polyanhydrides, and polyorthoesters, or bioerodible such as polylactide-glycolide copolymers, and derivatives thereof, non-peptide polyaminoacids, polyiminocarbonates, poly alpha-amino acids, polyalkyl-cyano-acrylate, polyphosphazenes or acyloxymethyl poly aspartate and polyglutamate copolymers and mixtures thereof.
- In certain such embodiments, the polymer comprises cyclic moieties alternating with linker moieties that connect the cyclic structures, e.g., into linear or branched polymers, preferably linear polymers. The cyclic moieties may be any suitable cyclic structures, such as cyclodextrins, crown ethers (e.g., 18-crown-6, 15-crown-5, 12-crown-4, etc.), cyclic oligopeptides (e.g., comprising from 5 to 10 amino acid residues), cryptands or cryptates (e.g., cryptand [2.2.2], cryptand-2,1,1, and complexes thereof), calixarenes, or cavitands, or any combination thereof. Preferably, the cyclic structure is (or is modified to be) water-soluble. In certain embodiments, e.g., for the preparation of a linear polymer, the cyclic structure is selected such that under polymerization conditions, exactly two moieties of each cyclic structure are reactive with the linker moieties, such that the resulting polymer comprises (or consists essentially of) an alternating series of cyclic moieties and linker moieties, such as at least four of each type of moiety. Suitable difunctionalized cyclic moieties include many that are commercially available and/or amenable to preparation using published protocols. In certain embodiments, conjugates are soluble in water to a concentration of at least 0.1 g/mL, preferably at least 0.25 g/mL.
- Thus, in certain embodiments, the invention relates to novel compositions of therapeutic cyclodextrin-containing polymeric compounds designed for drug delivery of therapeutic agents. In certain embodiments, these cyclodextrin-containing polymers improve drug stability and/or solubility, and/or reduce toxicity, and/or improve efficacy of the small molecule therapeutic when used in vivo. Furthermore, by selecting from a variety of linker groups, and/or targeting ligands, the rate of drug release from the polymers can be attenuated for controlled delivery.
- The present invention includes polymer conjugates, such as cyclodextrin-containing polymer conjugates, wherein one or more therapeutic agents are covalently attached. The polymers include linear or branched cyclodextrin-containing polymers and polymers grafted with cyclodextrin. Exemplary cyclodextrin-containing polymers that may be modified as described herein are taught in U.S. Pat. Nos. 6,509,323 and 6,884,789, and U.S. Published Patent Application Nos. 2004-0109888, and 2004-0087024, which are incorporated herein in their entirety. These polymers are useful as carriers for small molecule therapeutic delivery, and may improve drug stability and solubility when used in vivo.
- In certain embodiments, the underlying polymers are linear cyclodextrin-containing polymers, e.g., the polymer backbone includes cyclodextrin moieties. For example, the polymer may be a water-soluble, linear cyclodextrin polymer produced by providing at least one cyclodextrin derivative modified to bear one reactive site at each of exactly two positions, and reacting the cyclodextrin derivative with a linker having exactly two reactive moieties capable of forming a covalent bond with the reactive sites under polymerization conditions that promote reaction of the reactive sites with the reactive moieties to form covalent bonds between the linker and the cyclodextrin derivative, whereby a linear polymer comprising alternating units of cyclodextrin derivatives and linkers is produced. Alternatively the polymer may be a water-soluble, linear cyclodextrin polymer having a linear polymer backbone, which polymer comprises a plurality of substituted or unsubstituted cyclodextrin moieties and linker moieties in the linear polymer backbone, wherein each of the cyclodextrin moieties, other than a cyclodextrin moiety at the terminus of a polymer chain, is attached to two of said linker moieties, each linker moiety covalently linking two cyclodextrin moieties. In yet another embodiment, the polymer is a water-soluble, linear cyclodextrin polymer comprising a plurality of cyclodextrin moieties covalently linked together by a plurality of linker moieties, wherein each cyclodextrin moiety, other than a cyclodextrin moiety at the terminus of a polymer chain, is attached to two linker moieties to form a linear cyclodextrin polymer.
- Cyclodextrins are cyclic polysaccharides containing naturally occurring D-(+)-glucopyranose units in an α-(1,4) linkage. The most common cyclodextrins are alpha (α)-cyclodextrins, beta (β)-cyclodextrins and gamma (γ)-cyclodextrins which contain six, seven, or eight glucopyranose units, respectively. Structurally, the cyclic nature of a cyclodextrin forms a torus or donut-like shape having an inner apolar or hydrophobic cavity, the secondary hydroxyl groups situated on one side of the cyclodextrin torus and the primary hydroxyl groups situated on the other. Thus, using (β)-cyclodextrin as an example, a cyclodextrin is often represented schematically as follows.
- The side on which the secondary hydroxyl groups are located has a wider diameter than the side on which the primary hydroxyl groups are located. The present invention contemplates covalent linkages to cyclodextrin moieties on the primary and/or secondary hydroxyl groups. The hydrophobic nature of the cyclodextrin inner cavity allows for host-guest inclusion complexes of a variety of compounds, e.g., adamantane. (Comprehensive Supramolecular Chemistry,
Volume 3, J. L. Atwood et al., eds., Pergamon Press (1996); T. Cserhati, Anal. Biochem., 1995, 225:328-332; Husain et al., Applied Spectroscopy, 1992, 46:652-658;FR 2 665 169). Additional methods for modifying polymers are disclosed in Suh, J. and Noh, Y., Bioorg. Med. Chem. Lett. 1998, 8, 1327-1330. - In certain embodiments, the invention provides a polymer conjugate, comprising a therapeutic agent covalently attached to a polymer (such as any of the polymers discussed above) through a tether, wherein the tether comprises a self-cyclizing moiety. In some embodiments, the tether further comprises a selectivity-determining moiety. Thus, one aspect of the invention relates to a polymer conjugate comprising a therapeutic agent covalently attached to a polymer, preferably a biocompatible polymer, through a tether, wherein the tether comprises a selectivity-determining moiety and a self-cyclizing moiety which are covalently attached to one another.
- In some embodiments, the polymer may be biocompatible.
- In some embodiments, the selectivity-determining moiety is bonded to the self-cyclizing moiety between the self-cyclizing moiety and the polymer.
- In certain embodiments, the selectivity-determining moiety is a moiety that promotes selectivity in the cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety. Such a moiety may, for example, promote enzymatic cleavage between the selectivity-determining moiety and the self-cyclizing moiety. Alternatively, such a moiety may promote cleavage between the selectivity-determining moiety and the self-cyclizing moiety under acidic conditions or basic conditions.
- In certain embodiments, the invention contemplates any combination of the foregoing. Those skilled in the art will recognize that, for example, any polymer of the invention in combination with any self-cyclizing moiety, any selectivity-determining moiety, and/or any therapeutic agent are within the scope of the invention. As an example, any of the various particular recited embodiments for a compound of Formula C may be combined with any of the various particular recited embodiments of the selectivity-determining moiety.
- In certain embodiments, the selectivity-determining moiety is selected such that the bond is cleaved under acidic conditions.
- In certain embodiments where the selectivity-determining moiety is selected such that the bond is cleaved under basic conditions, the selectivity-determining moiety is an aminoalkylcarbonyloxyalkyl moiety. In certain embodiments, the selectivity-determining moiety has a structure
- In certain embodiments where the selectivity-determining moiety is selected such that the bond is cleaved enzymatically, it may be selected such that a particular enzyme or class of enzymes cleaves the bond. In certain preferred such embodiments, the selectivity-determining moiety may be selected such that the bond is cleaved by a cathepsin, preferably cathepsin B.
- In certain embodiments the selectivity-determining moiety comprises a peptide, preferably a dipeptide, tripeptide, or tetrapeptide. In certain such embodiments, the peptide is a dipeptide is selected from KF and FK, In certain embodiments, the peptide is a tripeptide is selected from GFA, GLA, AVA, GVA, GIA, GVL, GVF, and AVF. In certain embodiments, the peptide is a tetrapeptide selected from GFYA and GFLG, preferably GFLG.
- In certain such embodiments, a peptide, such as GFLG, is selected such that the bond between the selectivity-determining moiety and the self-cyclizing moiety is cleaved by a cathepsin, preferably cathepsin B.
- In certain embodiments, the selectivity-determining moiety is represented by Formula A:
-
- wherein
- S a sulfur atom that is part of a disulfide bond;
- J is optionally substituted hydrocarbyl; and
- Q is O or NR13, wherein R13 is hydrogen or alkyl.
- In certain embodiments, J may be polyethylene glycol, polyethylene, polyester, alkenyl, or alkyl. In certain embodiments, J may represent a hydrocarbylene group comprising one or more methylene groups, wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from, substituted or unsubstituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, or —O—, C(═X) (wherein X is NR30, O or S), —OC(O)—, —C(═O)O, —NR30—, —NR1CO—, —C(O)NR30—, —S(O)n— (wherein n is 0, 1, or 2), —OC(O)—NR30, —NR30—C(O)—NR30—, —NR30—C(NR30)—NR30—, and —B(OR30)—; and R30, independently for each occurrence, represents H or a lower alkyl. In certain embodiments, J may be substituted or unsubstituted lower alkylene, such as ethylene. For example, the selectivity-determining moiety may be
- In certain embodiments, the selectivity-determining moiety is represented by Formula B:
-
- wherein
- W is either a direct bond or selected from lower alkyl, NR14; S, O;
- S is sulfur;
- J, independently and for each occurrence, is hydrocarbyl or polyethylene glycol;
- Q is O or NR13, wherein R13 is hydrogen or alkyl; and
- R14 is selected from hydrogen and alkyl.
- In certain such embodiments, J may be substituted or unsubstituted lower alkyl, such as methylene. In certain such embodiments, J may be an aryl ring. In certain embodiments, the aryl ring is a benzo ring, In certain embodiments W and S are in a 1,2-relationship on the aryl ring. In certain embodiments, the aryl ring may be optionally substituted with alkyl, alkenyl, alkoxy, aralkyl, aryl, heteroaryl, halogen, —CN, azido, —NRxRx, —CO2ORx, —C(O)—NRxRx, —C(O)—Rx, —NRx—C(O)—Rx, —NRxSO2Rx, —SRx, —S(O)Rx, —SO2Rx, —SO2NRxRx, —(C(Rx)2)n—ORx, —(C(Rx)2)n—NRxRx, and —(C(Rx)2)n—SO2Rx; wherein Rx is, independently for each occurrence, H or lower alkyl; and n is, independently for each occurrence, an integer from 0 to 2.
- In certain embodiments, the aryl ring is optionally substituted with alkyl, alkenyl, alkoxy, aralkyl, aryl, heteroaryl, halogen, —CN, azido, —NRxRx, —CO2ORx, —C(O)—NRxRx, —C(O)—Rx, —NRx—C(O)—Rx, —NRxSO2Rx, —SRx, —S(O)Rx, —SO2Rx, —SO2NRxRx, —(C(Rx)2)n—ORx, —(C(Rx)2)n—NRxRx, and —(C(Rx)2)n—SO2Rx; wherein Rx is, independently for each occurrence, H or lower alkyl; and n is, independently for each occurrence, an integer from 0 to 2.
- In certain embodiments, J, independently and for each occurrence, is polyethylene glycol, polyethylene, polyester, alkenyl, or alkyl.
- In certain embodiments, independently and for each occurrence, represents a hydrocarbylene group comprising one or more methylene groups, wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from, substituted or unsubstituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, or —O—, C(═X) (wherein X is NR30, O or S), —OC(O)—, —C(═O)O, —NR30—, —NR1CO—, —C(O)NR30—, —S(O)n— (wherein n is 0, 1, or 2), —OC(O)—NR30, —NR30—C(O)—NR30—, —NR30—C(NR30)—NR30—, and —B(OR30)—; and R30, independently for each occurrence, represents H or a lower alkyl.
- In certain embodiments, J, independently and for each occurrence, is substituted or unsubstituted lower alkylene. In certain embodiments, J, independently and for each occurrence, is substituted or unsubstituted ethylene.
- In certain embodiments, the selectivity-determining moiety is selected from
- The selectivity-determining moiety may include groups with bonds that are cleavable under certain conditions, such as disulfide groups. In certain embodiments, the selectivity-determining moiety comprises a disulfide-containing moiety, for example, comprising aryl and/or alkyl group(s) bonded to a disulfide group. In certain embodiments, the selectivity-determining moiety has a structure
-
- wherein
- Ar is a substituted or unsubstituted benzo ring;
- J is optionally substituted hydrocarbyl; and
- Q is O or NR13,
- wherein R13 is hydrogen or alkyl.
- In certain embodiments, Ar is unsubstituted. In certain embodiments, Ar is a 1,2-benzo ring. For example, suitable moieties within Formula B include
- In certain embodiments, the self-cyclizing moiety is selected such that upon cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety, cyclization occurs thereby releasing the therapeutic agent. Such a cleavage-cyclization-release cascade may occur sequentially in discrete steps or substantially simultaneously. Thus, in certain embodiments, there may be a temporal and/or spatial difference between the cleavage and the self-cyclization. The rate of the self-cyclization cascade may depend on pH, e.g., a basic pH may increase the rate of self-cyclization after cleavage. Self-cyclization may have a half-life after introduction in vivo of 24 hours, 18 hours, 14 hours, 10 hours, 6 hours, 3 hours, 2 hours, 1 hour, 30 minutes, 10 minutes, 5 minutes, or 1 minute.
- In certain such embodiments, the self-cyclizing moiety may be selected such that, upon cyclization, a five- or six-membered ring is formed, preferably a five-membered ring. In certain such embodiments, the five- or six-membered ring comprises at least one heteroatom selected from oxygen, nitrogen, or sulfur, preferably at least two, wherein the heteroatoms may be the same or different. In certain such embodiments, the heterocyclic ring contains at least one nitrogen, preferably two. In certain such embodiments, the self-cyclizing moiety cyclizes to form an imidazolidone.
- In certain embodiments, the self-cyclizing moiety has a structure
-
- wherein
- U is selected from NR1 and S;
- X is selected from O, NR5, and S, preferably O or S;
- V is selected from O, S and NR4, preferably O or NR4;
- R2 and R3 are independently selected from hydrogen, alkyl, and alkoxy; or R2 and R3 together with the carbon atoms to which they are attached form a ring; and
- R1, R4, and R5 are independently selected from hydrogen and alkyl.
- In certain embodiments, U is NR1 and/or V is NR4, and R1 and R4 are independently selected from methyl, ethyl, propyl, and isopropyl. In certain embodiments, both R1 and R4 are methyl. On certain embodiments, both R2 and R3 are hydrogen. In certain embodiments R2 and R3 are independently alkyl, preferably lower alkyl. In certain embodiments, R2 and R3 together are —(CH2)n— wherein n is 3 or 4, thereby forming a cyclopentyl or cyclohexyl ring. In certain embodiments, the nature of R2 and R3 may affect the rate of cyclization of the self-cyclizing moiety. In certain such embodiments, it would be expected that the rate of cyclization would be greater when R2 and R3 together with the carbon atoms to which they are attached form a ring than the rate when R2 and R3 are independently selected from hydrogen, alkyl, and alkoxy. In certain embodiments, U is bonded to the self-cyclizing moiety.
- In certain embodiments, the self-cyclizing moiety is selected from
- In certain embodiments, the selectivity-determining moiety may connect to the self-cyclizing moiety through carbonyl-heteroatom bonds, e.g., amide, carbamate, carbonate, ester, thioester, and urea bonds.
- In certain embodiments, a therapeutic agent is covalently attached to a polymer through a tether, wherein the tether comprises a selectivity-determining moiety and a self-cyclizing moiety which are covalently attached to one another. In certain embodiments, the self-cyclizing moiety is selected such that after cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety, cyclization of the self-cyclizing moiety occurs, thereby releasing the therapeutic agent. As an illustration, ABC may be a selectivity-determining moiety, and DEFGH maybe be a self-cyclizing moiety, and ABC may be selected such that enzyme Y cleaves between C and D. Once cleavage of the bond between C and D progresses to a certain point, D will cyclize onto H, thereby releasing therapeutic agent X, or a prodrug thereof.
- In certain embodiments therapeutic agent X may further comprise additional intervening components, including, but not limited to another self-cyclizing moiety or a leaving group linker, such as CO2 or methoxymethyl, that spontaneously dissociates from the remainder of the molecule after cleavage occurs.
- In certain embodiments, the invention provides a polymer conjugate, comprising a therapeutic agent covalently attached to a polymer (such as any of the polymers discussed above) through a linker, wherein the therapeutic agent is selected from etoposide, tubulysin, epothilone, or an analog or derivative thereof. The linkers may be cleavable under biological conditions. In some embodiments, a polymer may also comprise a targeting ligand and/or one or more cyclodextrin moieties pendant on the polymer. Thus one aspect of the invention relates to a polymer conjugate comprising a therapeutic agent covalently attached to a polymer through a tether, wherein the tether is cleavable under biological conditions.
- One aspect of the invention relates to a compound, in some instances a polymeric compound, having a structure of Formula C:
-
- wherein
- P represents a polymer chain;
- CD represents a cyclic moiety;
- L1, L2 and L3, independently for each occurrence, may be absent or represent a linker group, provided that a plurality of occurrences of L2 represent linkers that are cleavable under biological conditions;
- D, independently for each occurrence, represents a therapeutic agent or a prodrug thereof;
- T, independently for each occurrence, represents a targeting ligand or precursor thereof;
- a, m and v, independently for each occurrence, represent integers in the range of 1 to 10;
- n and w, independently for each occurrence, represent an integer in the range of 0 to about 30,000; and
- b represents an integer in the range of 1 to about 30,000, and
- wherein either P comprises a plurality of cyclic moieties in the polymer chain or n is at least 1.
- In some embodiments, the cyclic moieties are independently selected from cyclodextrins, crown ethers, cyclic oligopeptides, cryptands or cryptates, calixarenes, cavitands, and any combination thereof. In certain embodiments, either P comprises cyclodextrin moieties in the polymer chain or n is at least 1.
-
-
- wherein
- CD represents a cyclodextrin moiety, or derivative thereof;
- L4, L5, L6, and L7, independently for each occurrence, may be absent or represent a linker group;
- D and D′, independently for each occurrence, represents a therapeutic agent or a prodrug thereof;
- T and T′, independently for each occurrence, represents the same or different targeting ligand or precursor thereof;
- f and y, independently for each occurrence, represent an integer in the range of 1 and 10;
- g and z, independently for each occurrence, represent an integer in the range of 0 and 10; and
- h is an integer from 2 to 30,000 (for example, from 2, 3, 4, 5, or 8 to about 25, 50, 100, 500, 1,000, 5,000, 10,000, 15,000, 20,000, or 25,000; or, for example, from 2, 3, or 4 to 5 or 10).
- In one aspect, Formula C may be represented by Formula D:
-
- wherein
- γ represents a monomer unit of a polymer;
- T, independently for each occurrence, represents a targeting ligand or a precursor thereof; L6, L7, L8, L9, and L10, independently for each occurrence, may be absent or represent a linker group;
- CD, independently for each occurrence, represents a cyclodextrin moiety or a derivative thereof;
- D, independently for each occurrence, represents a therapeutic agent or a prodrug thereof;
- m, independently for each occurrence, represents an integer in the range of 1 to 10;
- o is an integer from 2 to 30,000 (for example, from 2, 3, 4, 5, or 8 to about 25, 50, 100, 500, 1,000, 5,000, 10,000, 15,000, 20,000, or 25,000; or, for example, from 2, 3, or 4 to 5 or 10); and
- p, n, and q, independently for each occurrence, represent an integer in the range of 0 to 10, wherein CD and D are each present at least once in the compound.
- In certain embodiments, the compound has a number average (Me) molecular weight between 1,000 to 500,000 amu, between 5,000 to 200,000 amu, or between 10,000 to 100,000 amu.
- In one aspect, the compounds of the invention, or a pharmaceutically acceptable ester, salt, or hydrate thereof, may be included in a pharmaceutical preparation that further comprises a pharmaceutical excipient.
- In certain embodiments, B is a self-cyclizing moiety which is capable of self-cyclizing to release the therapeutic agent or prodrug thereof once the bond between the selectivity-determining moiety (A) and the self-cyclizing moiety has been cleaved. In certain such embodiments, the self-cyclizing moiety is capable of cyclizing to form an imidazolidinone.
- In some embodiments, the therapeutic agent is a small molecule, for example, a hormone (e.g., luteinizing hormone-releasing hormone (LHRH)), etoposide, tubulysin, epothilone, or an analog or derivative thereof. In certain embodiments, therapeutic agent contains an amino, hydroxyl, or thiol group. In certain embodiments, the therapeutic agent is attached to the self-cyclizing group through the amino, hydroxyl, or thiol group. In certain embodiments, the therapeutic agent is attached to the self-cyclizing group through a hydroxyl group. In certain embodiments, the hormone facilitates endocytosis.
- In certain embodiments, the therapeutic agent is a small molecule, a peptide, a protein, a nucleotide, a polynucleotide, or a polymer that has therapeutic function. In certain embodiments, the agent is an anti-cancer, anti-fungal, anti-bacterial, anti-mycotic, or anti-viral therapeutic. In certain embodiments, the agent is a receptor agonist. In certain embodiments, the agent is a receptor antagonist. In certain embodiments, the therapeutic agent is a protease inhibitor. Furthermore, a polymer of the present invention may contain one kind of therapeutic agent, or may contain more than one kind of therapeutic agent. For instance, two or more different cancer drugs, or a cancer drug and an immunosuppressant, or an antibiotic and an anti-inflammatory agent may be grafted on to the polymer. By selecting different selectivity determining moieties for different drugs, the release of each drug may be attenuated to achieve maximal dosage and efficacy.
- In certain embodiments, the therapeutic agent may contain an amino, hydroxyl, or thiol group. In certain such embodiments, the therapeutic agent may be attached to the self-cyclizing group through the amino, hydroxyl, or thiol group. In certain such embodiments, the therapeutic agent is a hydroxyl-containing agent, including, but not limited to, salicylic acid, acetaminophen, morphine, etoposide, a tubulysin (preferably tubulysin A, tubulysin B, or tubulysin C), an epothilone, camptothecin, geldanamycin, rapamycin, or vancomycin, or an analog or derivative thereof.
- In some embodiments, such therapeutic agents are covalently attached to subject polymers through functional groups comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups. Such groups may be covalently attached to the subject polymers through linker groups as described herein, for example, biocleavable linker groups, and/or through tethers, such as a tether comprising a selectivity-determining moiety and a self-cyclizing moiety which are covalently attached to one another.
- In certain embodiments, the therapeutic agent is selected from anorexics, antiarthritics, antiasthmatic agents, anticonvulsants, antidepressants; antihistamines, anti-inflammatory agents, antinauseants, antineoplastics, antipruritics, antipsychotics, antipyretics, antispasmodics, cardiovascular preparations, antihypertensives, diuretics, vasodilators, central nervous system stimulants, cough and cold preparations, decongestants, diagnostics, hormones, bone growth stimulants and bone resorption inhibitors, immunosuppressives, muscle relaxants, psychostimulants, sedatives, tranquilizers, anti-inflammatory agents, anti-epileptics, anesthetics, hypnotics, sedatives, neuroleptic agents, antidepressants, anxiolytics, anticonvulsant agents, neuron blocking agents, anticholinergic and cholinomimetic agents, antimuscarinic and muscarinic agents, antiadrenergics, antiarrhythmics, and antihypertensive agents
- In certain embodiments, the therapeutic agent is hydrophobic and has a log P>0.4. In certain embodiments, the therapeutic agent has low aqueous solubility. In certain embodiments, the therapeutic agent or targeting ligand is covalently bonded to the linker group via a biohydrolyzable bond (e.g., an ester, amide, carbonate, or a carbamate),
- In certain embodiments, the therapeutic agent or prodrug thereof makes up at least 5%, 10%, 15%, or at least 20% by weight of the compound.
- In certain embodiments, the compounds comprise cyclodextrin moieties and wherein at least one or a plurality of the cyclodextrin moieties of P is oxidized. In certain embodiments, the cyclodextrin moieties of P alternate with linker moieties in the polymer chain.
- In certain embodiments, the compounds of the invention may be water soluble.
- In certain embodiments, the linker group that connects to the therapeutic agent may comprise a self-cyclizing moiety, or a selectivity-determining moiety, or both. In certain embodiments, the selectivity-determining moiety is a moiety that promotes selectivity in the cleavage of the bond between the selectivity-determining moiety and the self-cyclizing moiety. Such a moiety may, for example, promote enzymatic cleavage between the selectivity-determining moiety and the self-cyclizing moiety. Alternatively, such a moiety may promote cleavage between the selectivity-determining moiety and the self-cyclizing moiety under acidic conditions or basic conditions.
- In certain embodiments where the selectivity-determining moiety is selected such that the bond is cleaved enzymatically, it may be selected such that a particular enzyme or class of enzymes cleaves the bond. In certain preferred such embodiments, the selectivity-determining moiety may be selected such that the bond is cleaved by a cathepsin, preferably cathepsin B.
- In certain embodiments the selectivity-determining moiety comprises a peptide, preferably a dipeptide, tripeptide, or tetrapeptide. In certain such embodiments, the peptide is a dipeptide is selected from KF and FK, In certain embodiments, the peptide is a tripeptide is selected from GFA, GLA, AVA, GVA, GIA, GVL, GVF, and AVF. In certain embodiments, the peptide is a tetrapeptide selected from GFYA and GFLG, preferably GFLG.
- In certain such embodiments, a peptide, such as GFLG, is selected such that the bond between the selectivity-determining moiety and the self-cyclizing moiety is cleaved by a cathepsin, preferably cathepsin B.
- In certain embodiments, the linker group that connects to the therapeutic agent may comprise a phosphate group, such as a phosphoramidite group. In certain embodiments, the linker group comprising a phosphate group is represented by the formula
-
- wherein
- P is phosphorus;
- O is oxygen;
- E represents oxygen or NR40,
- K represents hydrocarbyl;
- X is selected from OR42 or NR43R44; and
- R40, R41, R42, R43, and
- R44 independently represent hydrogen or optionally substituted alkyl, including lower alkyl (e.g., methyl, ethyl).
- In certain embodiments, E is NR40 and R40 is hydrogen. In certain embodiments, K is lower alkylene, such as, for example, ethylene. In certain embodiments, X is OR42.
- In certain embodiments, the linker group is selected from
- In certain embodiments, the linker group is connected to the therapeutic agent through a hydroxyl group (e.g., a phenolic hydroxyl group) on the therapeutic agent.
- In certain embodiments, linker group comprises an amino acid or peptide, or derivative thereof.
- In certain embodiments, any of the linker groups represents a hydrocarbylene group wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from, substituted or unsubstituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, or —O—, C(═X) (wherein X is NR1, O or S), —OC(O)—, —C(═O)O, —NR1—, —C(O)NR1—, —S(O)n— (wherein n is 0, 1, or 2), —OC(O)—NR1, —NR1—C(O)—NR1—, —NR1—C(NR1)—NR1—, and —B(OR1)—; and R1, independently for each occurrence, represents H or a lower alkyl.
- In certain embodiments, any of the linker groups may comprise a self-cyclizing moiety or a self-cyclizing moiety, or both. In certain embodiments, the selectivity-determining moiety may be bonded to the self-cyclizing moiety between the self-cyclizing moiety and the polymer.
- In certain embodiments, any of the linker groups may independently be an alkyl chain, a polyethylene glycol (PEG) chain, polysuccinic anhydride, poly-L-glutamic acid, poly(ethyleneimine), an oligosaccharide, an amino acid chain, or any other suitable linkage. In certain embodiments, the linker group itself can be stable under physiological conditions, such as an alkyl chain, or it can be cleavable under physiological conditions, such as by an enzyme (e.g., the linkage contains a peptide sequence that is a substrate for a peptidase), or by hydrolysis (e.g., the linkage contains a hydrolyzable group, such as an ester or thioester). The linker groups can be biologically inactive, such as a PEG, polyglycolic acid, or polylactic acid chain, or can be biologically active, such as an oligo- or polypeptide that, when cleaved from the moieties, binds a receptor, deactivates an enzyme, etc. Various oligomeric linker groups that are biologically compatible and/or bioerodible are known in the art, and the selection of the linkage may influence the ultimate properties of the material, such as whether it is durable when implanted, whether it gradually deforms or shrinks after implantation, or whether it gradually degrades and is absorbed by the body. The linker group may be attached to the moieties by any suitable bond or functional group, including carbon-carbon bonds, esters, ethers, amides, amines, carbonates, carbamates, sulfonamides, etc.
- In certain embodiments, any of the linker groups may independently be an alkyl group wherein one or more methylene groups is optionally replaced by a group Y (provided that none of the Y groups are adjacent to each other), wherein each Y, independently for each occurrence, is selected from aryl, heteroaryl, carbocyclyl, heterocyclyl, or —O—, C(═X) (wherein X is NR1, O or S), —OC(O)—, —C(═O)O—, —NR1—, —NR1CO—, —C(O)NR1—, —S(O)n— (wherein n is 0, 1, or 2), —OC(O)—NR1—, —NR1—C(O)—NR1—, —NR1—C(NR1)—NR1—, and —B(OR1)—; and R1, independently for each occurrence, is H or lower alkyl.
- In certain embodiments, any of the linker groups may independently be a derivatized or non-derivatized amino acid. In certain embodiments, linker groups with one or more terminal carboxyl groups may be conjugated, e.g., covalently conjugated, to the polymer. In certain embodiments, one or more of these terminal carboxyl groups may be capped by covalently attaching them to a therapeutic agent, a targeting ligand, or a cyclodextrin moiety via an (thio)ester or amide bond. In still other embodiments, linker groups with one or more terminal hydroxyl, thiol, or amino groups may be incorporated into the polymer. In preferred embodiments, one or more of these terminal hydroxyl groups may be capped by covalently attaching them to a therapeutic agent, a targeting ligand, or a cyclodextrin moiety via an (thio)ester, amide, carbonate, carbamate, thiocarbonate, or thiocarbamate bond. In certain embodiments, these (thio)ester, amide, (thio)carbonate or (thio)carbamates bonds may be biohydrolyzable, i.e., capable of being hydrolyzed under biological conditions.
- In certain embodiments, the polymers as described above have polydispersities less than about 3, or even less than about 2.
- The invention further contemplates methods for delivering a therapeutic agent comprising administering to a patient in need thereof a therapeutically effective amount of one or more of the compounds of the invention.
- Tubulysins and derivatives and/or analogs thereof may be found, for example, in WO2004/005269, WO2004/005327, WO2004/005326, WO1998/13375, and WO2004/046170 and German Application Serial Nos.
DE 100 08 089.8, the contents of which are incorporated herein in their entireties. - For example, tubulysin derivatives and/or analogs may be represented by Formula II:
-
- wherein
- A is a substituted 5- or 6-membered heteroaryl;
- X is O, S or NR13 or CR14R15;
- Xa is O, S or NRa;
- Y is O, S or NR16; and
- R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R13, R14, R15, R16, and Ra are independently H, alkyl, alkenyl, alkynyl, heteroalkyl, aryl, heteroaryl, cycloalkyl, alkylcycloalkyl, heteroalkylcycloalkyl, heterocycloalkyl, aralkyl or heteroaralkyl;
- R11 is H, alkyl, alkenyl, alkynyl, heteroalkyl, aryl, heteroaryl, cycloalkyl, alkylcycloalkyl, heteroalkylcycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, —C(═O)-alkyl, —C(═O)-alkenyl, —C(═O)-alkynyl, —C(═O)-heteroalkyl, —C(═O)-aryl, —C(═O)-heteroaryl, —C(═O)-cycloalkyl, —C(═O)-alkylcycloalkyl, —C(═O)-heteroalkylcycloalkyl, —C(═O)-heterocycloalkyl, —C(═O)-aralkyl, or —C(═O)-heteroaralkyl;
- R12 is H, alkyl, alkenyl, alkynyl, heteroalkyl, aryl, heteroaryl, cycloalkyl, alkylcycloalkyl, heteroalkylcycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, —Xa-alkyl, —Xa-alkenyl, —Xa-alkynyl, —Xa-heteroalkyl, —Xa-aryl, —Xa-heteroaryl, —Xa-cycloalkyl, —Xa-alkylcycloalkyl, —Xa-heteroalkylcycloalkyl, —Xa-heterocycloalkyl, —Xa-aralkyl, or —Xa-heteroaralkyl;
- or two R's taken together form a cycloalkyl or heterocycloalkyl ring system;
- or a pharmacologically acceptable salt, a solvate, a hydrate or a pharmacologically acceptable formulation thereof.
- In some embodiments, tubulysin derivatives of Formula II are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, for example, when such groups occur in R11 or R12.
- In certain embodiments, tubulysin derivatives and/or analogs of Formula II may be represented by Formula III:
-
- wherein
- wherein Ru represents C1-C4 alkyl;
- R6 represents C1-C6 alkyl;
- R9 represents C1-C6 alkyl;
- R17 represents C1-C6 alkyl or C1-C6 alkenyl;
- R19 represents aralkyl or heteroaralkyl;
- R20 represents C1-C4 alkyl; and
- m equals 1 or 2.
- In certain embodiments, R19 represents the following structure:
-
- wherein
- R21 represents OH, NH2, alkyloxy, alkyl amino or dialkyl amino;
- R22 represents halogen, OH, NO2, NH2, alkyloxy, alkyl amino or dialkyl amino; and
- p equals 0, 1, 2 or 3.
- In some embodiments, tubulysin derivatives of Formula III are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, such as the hydroxy or amino groups of R21 or R22.
- In certain embodiments, tubulysin derivatives and/or analogs of Formula II may be represented by Formula IV:
-
- wherein
- m represents 0, 1, 2, or 3;
- R1 represents methyl or ethyl;
- R6 represents isopropyl, isobutyl, ethyl, cyclopropyl, CH2-cyclopropyl, or CH(CH3)CH2CH3;
- R9 represents isopropyl, trifluoromethyl, chloromethyl, isobutyl, ethyl, cyclopropyl, CH2-cyclopropyl, CH(CH3)CH2CH3, cyclopentyl, or cyclohexyl;
- R17 represents methyl, ethyl, propyl, isopropyl, butyl, isobutyl, CH═C(CH3), cyclopropyl, cyclobutyl, or cyclohexyl;
- R20 represents methyl, ethyl, propyl, isopropyl, or phenyl; and
- R19 represents
- In some embodiments, tubulysin derivatives of Formula IV are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, such as the hydroxy or carboxy groups of R19.
- Further tubulysin derivatives and/or analogs may be represented by Formula V:
-
- wherein
- R represents H, alkyl, aryl, OR1, NR1R2 or NH(CH2)2-4;
- R1 represents H, alkyl or aryl;
- R2 represents H, alkyl or aryl;
- Q represents H, halogen, NO2 or NHR3;
- U represents H, halogen, NO2 or NHR3;
- R3 represents H, HCO or C1-4 alkyl-CO;
- T represents H, halogen, or OR4, for example, T may represent H or OR4;
- R4 represents H, alkyl, aryl, COR5, P(O)(OR6)2 or SO3R6;
- R5 represents alkyl, alkenyl, aryl or heteroaryl;
- R6 represents H, alkyl or a metal ion;
- V represents H, OR7, halogen, or taken together with W represents ═O;
- R7 represents H, alkyl or COR8;
- R8 represents alkyl, alkenyl or aryl;
- W represents H or alkyl, or taken together with V represents ═O;
- X represents H, alkyl, alkenyl, CH2NR9 or CH2OR9, for example, X may represent H, alkyl, alkenyl or CH2OR9;
- R9 represents H, alkyl, alkenyl, aryl or COR10;
- R10 represents alkyl (e.g., methyl, ethyl, propyl, butyl (e.g., n-butyl, i-butyl), alkenyl (e.g., vinyl, dimethylvinyl), aryl or heteroaryl;
- Y represents a free electron pair when Z represents CH3 or COR11, or O when Z represents CH3;
- R11 represents alkyl, CF3 or aryl; and
- Z represents CH3 when Y represents O or a free electron pair, or COR11 when Y represents a free electron pair.
- In some embodiments, tubulysin derivatives of Formula V are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, in some instances, through T or R.
- Additional tubulysin derivatives of Formula V maybe represented by Formula Va:
-
Tubulysin R1 R2 R3 A OH Ac CH2O-CO-CH2CH(CH3)2 B OH Ac CH2O-CO-CH2CH2CH3 C OH Ac CH2O-CO-CH2CH3 D H Ac CH2O-CO-CH2CH(CH3)2 E H Ac CH2O-CO-CH2CH2CH3 F H Ac CH2O-CO-CH2CH3 G OH Ac CH2O-CO-CH=C(CH3)2 H H Ac CH3 I OH Ac CH3 U H Ac H V H H H W OH H CH2O-CO-CH2CH(CH3)2 X OH Ac CH2OH Y OH Ac H Z OH H H Halogen Ac H, CH2, CH2CH2CH3 CH3 Ac CH3 OCH3 Ac CH3 - In some embodiments, tubulysin derivatives of Formula Va are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, such as the carboxy group of Formula Va or R′.
- Further tubulysin derivatives and/or analogs may be represented by Formula VI:
- In some embodiments, tubulysin derivatives of Formula VI are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, for example through the phenol group or the carboxy group depicted in Formula VI.
- Additionally, epothilones and derivatives and/or analogs thereof may be found, for example, in PCT Publication Nos. WO2005/030767, WO2004/007492, WO2004/007483, and WO2002/32844 and German Application Serial Nos. DE 197 13 970.1,
DE 100 51 136.8, DE 101 34 172.5, DE 102 32 094.2, the contents of which are incorporated herein in their entireties. - For example, epothilone derivatives and/or analogs may be represented by Formula VII:
-
- wherein
- A is a heteroalkyl, heterocycloalkyl, heteroalkylcycloalkyl, heteroaryl, heteroaralkenyl, or heteroaralkyl group;
- U is hydrogen, halogen, an alkyl, heteroalkyl, heterocycloalkyl, heteroalkylcycloalkyl, heteroaryl or heteroaralkyl group;
- G-E is selected from the following groups,
-
- or is part of an optionally substituted phenyl ring;
- R1 is a C1-C4-alkyl, a C2-C4-alkenyl, a C2-C4-alkynyl, or a C3-C4-cycloalkyl group;
- V—W is a group of formula CH2CH or CH═C;
- X is oxygen or a group of the formula NR2, wherein R2 is hydrogen, an alkyl, alkenyl, alkynyl, heteroalkyl, aryl, heteroaryl, cycloalkyl, alkylcycloalkyl, heteroalkylcycloalkyl, heterocycloalkyl, aralkyl, or heteroaralkyl group; and
- R3 and R4 independently from each other represent hydrogen, C1-C4-alkyl or together are part of a cycloalkyl group with 3 or 4 ring atoms, or a pharmacologically acceptable salt, solvate, hydrate or formulation thereof;
- or tautomers, geometrical isomers, or stereoisomers thereof.
- In some embodiments, epothilone derivatives of Formula VII are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, for example, either of the hydroxy groups depicted in Formula VII.
- In certain embodiments of Formula VII, A is a group of Formula VIII or IX,
-
- wherein
- Q is sulfur, oxygen or NR7 (especially oxygen or sulfur), wherein R7 is hydrogen, C1-C4 alkyl or C1-C4 heteroalkyl;
- Z is nitrogen or CH (especially CH); and
- R6 is OR8, NHR8, C1-C4 alkyl, C1-C4 alkenyl, C1-C4 alkynyl or C1-C6 heteroalkyl (especially methyl, CH2OR8 or CH2NHR8), wherein R8 is hydrogen, C1-C4 alkyl or C1-C4 heteroalkyl (especially hydrogen).
- Further epothilone derivatives and/or analogs may be represented by Formula X:
-
- wherein
- R1 is a C1-6alkyl, a C2-6alkynyl or a C2-6alkenyl radical;
- R2 is a hydrogen atom or a C1-6 alkyl radical;
- X—Y is selected from the following groups:
-
- R3 is a halogen atom or a C1-6alkyl, a C2-6alkenyl or a C1-6-heteroalkyl radical;
- R4 is a bicycloaryl radical, a bicycloheteroaryl radical or a group of formula —C(R5)═CHR6;
- R5 is a hydrogen atom or a methyl group; and
- R6 is an optionally substituted aryl or heteroaryl group;
- or a pharmacologically acceptable salt, solvate, hydrate or a pharmacologically acceptable formulation thereof.
- In certain embodiments, R4 represents
- In some embodiments, epothilone derivatives of Formula X are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, for example, either of the hydroxy groups depicted in Formula VII.
- In certain embodiments, the compound of Formula X can be represented by the following structures:
- Further epothilone derivatives and/or analogs may be represented by Formula XI:
-
- wherein
- B1, B2, B3 are selected from single bonds; double bonds in the E(trans) form, Z(cis) form or as E/Z mixture; epoxide rings in the E(trans) form, Z(cis) form or E/Z mixture; cyclopropane rings in the E(trans) form, Z(cis) form or E/Z mixture; and/or combinations thereof; and being preferably selected from single and double bonds; and particularly preferably being selected from B1 as Z double bonds or epoxide and B2 and B3 as single bond;
- R is selected from H; alkyl; aryl; aralkyl such as —CH2-aryl, —C2H4-aryl and the like; alkenyl, such as vinyl; cycloalkyl, particularly a 3- to 7-membered cycloalkyl; CHnF3-n with n=0 to 3; oxacycloalkyl, particularly a 3- to 7-membered oxacycloalkyl; and/or combinations thereof; being particularly selected from H, methyl, ethyl, phenyl, benzyl; and being particularly preferred selected from H, methyl, ethyl and combinations thereof;
- R′ is selected from the same group as R, and is preferably H;
- R″ is selected from the same group as R, and is preferably methyl;
- Y is selected from S, NH, N-PG, NR and O; being preferably selected from NH, N-PG, NR and O, and being particularly preferably O;
- Y′ is selected from H, OH, OR, O-PG, NH2, NR2, N(PG)2, SR and SH; being preferably O-PG and/or OH;
- Nu is selected from R, O-PG, OR, N(PG)2, NR2, S-PG, SR, SeR, CN, N3, aryl and heteroaryl; being preferably selected from R, O-PG, OR, N(PG)2 and NR2, and being particularly preferably H;
- Z is selected from —OH, —O-PG, —OR, ═O, ═N-Nu, ═CH-heteroaryl, ═CH-aryl and ═PR3, where all previously mentioned double bound groups may be present in the E(trans) form, Z(cis) form or as E/Z mixture; being preferably ═CH-heteroaryl; and being particularly preferred selected from ═O, (E)-(2-methylthiazol-4-yl)-CH═ and (E)-(2-methyloxazol-4-yl)-CH═;
- Z′ is selected from O, OH, OR, O-PG, N(H)1-2, N(R)1-2, N(PG)1-2, SR, S-PG and R; being preferably O, O-PG and/or OR;
- B3 is selected from single or double bonds in the E(trans) form, Z(cis) form or as E/Z mixture; being preferably selected from single and double bonds with heteroatoms such as O, S and N; and being particularly preferred a single bond to O-PG and/or OH;
- PG is a protecting group, and is preferably selected from allyl, methyl, t-butyl (preferably with electron withdrawing group), benzyl, silyl, acyl and activated methylene derivatives such as methoxymethyl, alkoxyalkyl or 2-oxacycloalkyl; being preferably—predominantly for alcohol and amine functions—selected from trimethylsilyl, triethylsilyl, dimethyl-tert-butylsilyl, acetyl, propionyl, benzoyl, tetrahydropyranyl as well as protecting groups protecting neighbouring or bivalent groups (PG2) concomitantly under formation of 5- to 7-membered rings, such as succinyl, phthalyl, methylene, ethylene, propylene, 2,2-dimethylpropa-1,3-diyl, acetonide; and/or combinations of all previously named protecting groups; alkyl is selected from hydrocarbons, also of branched isomers, preferably with C1-20, particularly with 1 to 8 carbon atoms; aryl is selected from phenyl, naphthyl, benzyl, and their derivatives, preferably with up to five alkyl, alkoxy and/or halogen substituents, preferably from those with up to three substituents, particularly preferred with up to one substituent; preferably being selected from phenyl and benzyl derivatives; and combinations of these.
- Hetaryl/heteroaryl is selected from five- or six-membered heteroaromatic moieties with one or more O, S and N atoms and their derivatives with up to four alkyl, alkoxy and/or halogen substituents, preferably from those with up to two substituents, particularly preferred with up to one substituent; preferably being selected from oxazole, thiazole and pyrimidine derivatives; and particularly preferred being an alkylthiazole derivative; and combinations thereof; with being particularly preferred Z=O, (E)-(2-methylthiazol-4-yl)-CH═, (E)-(2-methyloxazol-4-yl)-CH═; R′=H; R″=Me; Y′, Z′=O-PG, OH and/or Y=O.
- In some embodiments, epothilone derivatives of Formula XI are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, such as that of Y′ or Z′.
- In certain embodiments, derivatives and/or analogs of epothilone may be represented by Formula XII:
-
- wherein R is selected from OR1, NHR1, alkyl, alkenyl, alkynyl, and heteroalkyl (e.g., CH2OR1 or CH2NHR1); and
- R1 is selected from hydrogen, C1-4 alkyl, and C1-4heteroalkyl, preferably hydrogen.
- In certain embodiments, R is selected from methyl, CH2OH, and CH2NH2.
- In some embodiments, epothilone derivatives of Formula XII are covalently attached to subject polymers through an occurrence of a functional group comprising one or more heteroatoms, for example, hydroxy, thiol, carboxy, amino, and amide groups, for example, the hydroxy group depicted in Formula XII.
- In certain embodiments, the selectivity-determining moiety may be GFLG or KF or FK, the self-cyclizing moiety may be an imidazolidone-forming moiety, and the therapeutic agent may be a hydroxyl-containing agent, including, but not limited to, etoposide. The cascade to release etoposide for GFLG, for example, may be illustrated as shown below.
- A similar cascade is contemplated when KF or FK is used in place of GFLG as the selectivity-determining moiety.
- In certain embodiments, the selectivity-determining moiety may be cis-aconityl, the self-cyclizing moiety may be an imidazolidone-forming moiety, and the therapeutic agent may be a hydroxyl-containing agent, including, but not limited to, etoposide. The cascade to release etoposide may be illustrated as shown below, wherein either isoform of cis-aconityl may be used.
- In certain embodiments, the selectivity-determining moiety may be cleavable under basic conditions, the self-cyclizing moiety may be an imidazolidone-forming moiety, and the therapeutic agent may be a hydroxyl-containing agent, including, but not limited to, etoposide. The cascade to release etoposide may be illustrated as shown below.
- In certain embodiments, the present invention contemplates a linear, water-soluble, cyclodextrin-containing polymer, wherein a plurality of therapeutic agents are covalently attached to the polymer through attachments that are cleaved under biological conditions to release the therapeutic agents as discussed above, wherein administration of the polymer to a patient results in release of the therapeutic agent over a period of at least 2, 3, 5, 6, 8, 10, 15, 20, 24, 36, 48 or even 72 hours.
- One embodiment of the present invention provides an improved delivery of certain hydrophobic small molecule therapeutics by covalently conjugating them to cyclodextrin-containing polymers as discussed above. Such conjugation improves the aqueous solubility and hence the bioavailability of the therapeutic agents. Accordingly, in one embodiment of the invention, the therapeutic agent is a hydrophobic compound with a log P>0.4, >0.6, >0.8, >1, >2, >3, >4, or even >5.
- The polymer conjugates of the present invention preferably have molecular weights in the range of 10,000 to 500,000; 30,000 to 200,000; or even 70,000 to 150,000 amu.
- In certain embodiments, the cyclodextrin moieties make up at least about 2%, 5% or 10% by weight, up to 20%, 30%, 50% or even 80% of the cyclodextrin-modified polymer by weight. In certain embodiments, the therapeutic agents, or targeting ligands make up at least about 1%, 5%, 10% or 15%, 20%, 25%, 30% or even 35% of the cyclodextrin-modified polymer by weight. Number-average molecular weight (Mn) may also vary widely, but generally fall in the range of about 1,000 to about 500,000 daltons, preferably from about 5000 to about 200,000 daltons and, even more preferably, from about 10,000 to about 100,000. Most preferably, Mn varies between about 12,000 and 65,000 daltons. In certain other embodiments, Mn varies between about 3000 and 150,000 daltons. Within a given sample of a subject polymer, a wide range of molecular weights may be present. For example, molecules within the sample may have molecular weights that differ by a factor of 2, 5, 10, 20, 50, 100, or more, or that differ from the average molecular weight by a factor of 2, 5, 10, 20, 50, 100, or more. Exemplary cyclodextrin moieties include cyclic structures consisting essentially of from 7 to 9 saccharide moieties, such as cyclodextrin and oxidized cyclodextrin. A cyclodextrin moiety optionally comprises a linker moiety that forms a covalent linkage between the cyclic structure and the polymer backbone, preferably having from 1 to 20 atoms in the chain, such as alkyl chains, including dicarboxylic acid derivatives (such as glutaric acid derivatives, succinic acid derivatives, and the like), and heteroalkyl chains, such as oligoethylene glycol chains.
- In certain embodiments, the present invention contemplates attenuating the rate of release of the therapeutic agent by introducing various tether groups between the therapeutic agent and the polymer. Thus, in certain embodiments, the polymeric therapeutics of the present invention are compositions for controlled delivery of therapeutic agents. One skilled in the art would also recognize that by labeling the therapeutic agent and/or targeting ligand with radionuclei, or by forming complexes of NMR active nuclei, e.g., technetium, gadolinium, or dysprosium, the polymers of the present invention can achieve a dual diagnostic/therapeutic utility.
- In other embodiments, the polymeric compounds stabilize the bioactive form of a therapeutic agent which exists in equilibrium between an active and inactive form. For instance, conjugating the therapeutic agent to the polymers of the present invention may shift the equilibrium between two tautomeric forms of the agent to the bioactive tautomer. In other embodiment, the polymeric compounds may attenuate the equilibrium between lactonic and acid forms of a therapeutic agent.
- One method to determine molecular weight is by gel permeation chromatography (“GPC”), e.g., mixed bed columns, CH2Cl2 solvent, light scattering detector, and off-line do/dc. Other methods are known in the art.
- In other embodiments, the polymer conjugate of the invention may be a flexible or flowable material. When the polymer used is itself flowable, the polymer composition of the invention, even when viscous, need not include a biocompatible solvent to be flowable, although trace or residual amounts of biocompatible solvents may still be present.
- While in certain embodiments the biodegradable polymer or the therapeutic agent may be dissolved in a small quantity of a non-toxic solvent to more efficiently produce an amorphous, monolithic distribution or a fine dispersion of the biologically active agent in the flexible or flowable composition, in certain preferred embodiments, no solvent is required to form a flowable composition. In certain embodiments where a solvent is used to facilitate mixing or to maintain the flowability of the polymer conjugate of the invention, it is preferably non-toxic and otherwise biocompatible, and preferably used in relatively small amounts.
- Examples of suitable biocompatible solvents, include, but are not limited to, N-methyl-2-pyrrolidone, 2-pyrrolidone, ethanol, propylene glycol, acetone, methyl acetate, ethyl acetate, methyl ethyl ketone, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, caprolactam, oleic acid, or 1-dodecylazacylcoheptanone. Preferred solvents include N-methylpyrrolidone, 2-pyrrolidone, dimethylsulfoxide, and acetone because of their solvating ability and their biocompatibility.
- In certain embodiments, the subject polymer conjugates are soluble in one or more common organic solvents for ease of fabrication and processing. Common organic solvents include, but are not limited to, chloroform, dichloromethane, dichloroethane, 2-butanone, butyl acetate, ethyl butyrate, acetone, ethyl acetate, dimethylacetamide, N-methylpyrrolidone, dimethylformamide, and dimethylsulfoxide.
- In certain embodiments, the polymer conjugate comprises a targeting ligand. Thus in certain embodiments, a receptor, cell, and/or tissue-targeting ligand, or a precursor thereof is coupled to a polymer conjugate.
- As used herein the term “targeting ligand” refers to any material or substance which may promote targeting of receptors, cells, and/or tissues in vivo or in vitro with the compositions of the present invention. The targeting ligand may be synthetic, semi-synthetic, or naturally-occurring. Materials or substances which may serve as targeting ligands include, but are not limited to, proteins, including antibodies, antibody fragments, hormones, hormone analogues, glycoproteins and lectins, peptides, polypeptides, amino acids, sugars, saccharides, including monosaccharides and polysaccharides, carbohydrates, small molecules, vitamins, steroids, steroid analogs, hormones, cofactors, bioactive agents, and genetic material, including nucleosides, nucleotides, nucleotide acid constructs and polynucleotides.
- As indicated above, in certain instances, the targeting ligand may be a hormone, for example a hormone that facilitates endocytosis, such as receptor-mediated endocytosis. Such endocytosis may occur with regard to the present polymer conjugates in various structural forms thereof, such as microspheres, microparticles, and nanoparticles. The endocytosis may facilitate cellular uptake of the present polymer conjugates. In certain embodiments, the targeting ligand may be luteinizing hormone-releasing hormone (LHRH). For example, targeting ligands, such as hormones, such as LHRH, may be used in the subject polymer conjugates in combination with therapeutic agents and analogs or derivatives thereof as described herein, such as epothilones and tubulysins and analogs or derivatives thereof. In some embodiments, use of a hormone, such as LHRH, as a targeting ligand increases the cellular uptake of the present polymer conjugates in cells exhibiting abnormal proliferation, such as in cancer and/or tumor cells. For example, use of a hormone, such as LHRH, as a targeting ligand can be used to increase cellular uptake of the present polymer conjugates in breast, lung, colon, and ovarian cancer cells.
- As used herein, the term “precursor” to a targeting ligand refers to any material or substance which may be converted to a targeting ligand. Such conversion may involve, for example, anchoring a precursor to a targeting ligand. Exemplary targeting precursor moieties include maleimide groups, disulfide groups, such as ortho-pyridyl disulfide, vinylsulfone groups, azide groups, and α-iodo acetyl groups. The attachment of the targeting ligand or precursor thereof to the polymer may be accomplished in various ways including, but not limited to chelation, covalent attachment, or formation of host-guest complexes. In certain embodiments, an optional linker group may be present between the targeting ligand or precursor thereof and the polymer, wherein the linker group is attached to the polymer via chelation, covalent attachment or form host guest complexes. For example, the one terminal end of a linker group may be attached to the targeting ligand while the other may be attached to an adamantane group, or other such hydrophobic moiety, which forms a host guest complex with a cyclodextrin moiety. Thus the targeting ligand may be attached to a grafted cyclodextrin moiety, to a cyclodextrin moiety within the polymeric chain, or to the polymeric chain itself. The number of targeting ligands per polymeric chain may vary according to various factors including but not limited to the identity of the therapeutic agent, nature of the disease, type of polymer chain. Structures of possible linker groups are the same as linker groups defined elsewhere in this application.
- The term “active” as used herein means biologically, therapeutically or pharmacologically active.
- An “adjuvant”, as the term is used herein, is a compound that has little or no therapeutic value on its own, but increases the effectiveness of a therapeutic agent. Exemplary adjuvants include radiosensitizers, transfection-enhancing agents (such as chloroquine and analogs thereof), chemotactic agents and chemoattractants, peptides that modulate cell adhesion and/or cell mobility, cell permeabilizing agents, inhibitors of multidrug resistance and/or efflux pumps, etc.
- The term “agonist”, as used herein, is meant to refer to an agent that mimics or up-regulates (e.g., potentiates or supplements) the bioactivity of a protein of interest, or an agent that facilitates or promotes (e.g., potentiates or supplements) an interaction among polypeptides or between a polypeptide and another molecule (e.g., a steroid, hormone, nucleic acids, small molecules etc.). An agonist can be a wild-type protein or derivative thereof having at least one bioactivity of the wild-type protein. An agonist can also be a small molecule that up-regulates the expression of a gene or which increases at least one bioactivity of a protein. An agonist can also be a protein or small molecule which increases the interaction of a polypeptide of interest with another molecule, e.g., a target peptide or nucleic acid.
- “Antagonist” as used herein is meant to refer to an agent that down-regulates (e.g., suppresses or inhibits) the bioactivity of a protein of interest, or an agent that inhibits/suppresses or reduces (e.g., destabilizes or decreases) interaction among polypeptides or other molecules (e.g., steroids, hormones, nucleic acids, etc.). An antagonist can also be a compound that down-regulates the expression of a gene of interest or which reduces the amount of the wild-type protein present. An antagonist can also be a protein or small molecule which decreases or inhibits the interaction of a polypeptide of interest with another molecule, e.g., a target peptide or nucleic acid.
- The terms “biocompatible polymer” and “biocompatibility” when used in relation to polymers are art-recognized. For example, biocompatible polymers include polymers that are neither themselves toxic to the host (e.g., an animal or human), nor degrade (if the polymer degrades) at a rate that produces monomeric or oligomeric subunits or other byproducts at toxic concentrations in the host. In certain embodiments of the present invention, biodegradation generally involves degradation of the polymer in an organism, e.g., into its monomeric subunits, which may be known to be effectively non-toxic. Intermediate oligomeric products resulting from such degradation may have different toxicological properties, however, or biodegradation may involve oxidation or other biochemical reactions that generate molecules other than monomeric subunits of the polymer. Consequently, in certain embodiments, toxicology of a biodegradable polymer intended for in vivo use, such as implantation or injection into a patient, may be determined after one or more toxicity analyses. It is not necessary that any subject composition have a purity of 100% to be deemed biocompatible. Hence, a subject composition may comprise 99%, 98%, 97%, 96%, 95%, 90% 85%, 80%, 75% or even less of biocompatible polymers, e.g., including polymers and other materials and excipients described herein, and still be biocompatible.
- To determine whether a polymer or other material is biocompatible, it may be necessary to conduct a toxicity analysis. Such assays are well known in the art. One example of such an assay may be performed with live carcinoma cells, such as GT3TKB tumor cells, in the following manner: the sample is degraded in 1 M NaOH at 37° C. until complete degradation is observed. The solution is then neutralized with 1 M HCl. About 200 μL of various concentrations of the degraded sample products are placed in 96-well tissue culture plates and seeded with human gastric carcinoma cells (GT3TKB) at 104/well density. The degraded sample products are incubated with the GT3TKB cells for 48 hours. The results of the assay may be plotted as % relative growth vs. concentration of degraded sample in the tissue-culture well. In addition, polymers and formulations of the present invention may also be evaluated by well-known in vivo tests, such as subcutaneous implantations in rats to confirm that they do not cause significant levels of irritation or inflammation at the subcutaneous implantation sites.
- The term “biodegradable” is art-recognized, and includes polymers, compositions and formulations, such as those described herein, that are intended to degrade during use. Biodegradable polymers typically differ from non-biodegradable polymers in that the former may be degraded during use. In certain embodiments, such use involves in vivo use, such as in vivo therapy, and in other certain embodiments, such use involves in vitro use. In general, degradation attributable to biodegradability involves the degradation of a biodegradable polymer into its component subunits, or digestion, e.g., by a biochemical process, of the polymer into smaller, non-polymeric subunits. In certain embodiments, two different types of biodegradation may generally be identified. For example, one type of biodegradation may involve cleavage of bonds (whether covalent or otherwise) in the polymer backbone. In such biodegradation, monomers and oligomers typically result, and even more typically, such biodegradation occurs by cleavage of a bond connecting one or more of subunits of a polymer. In contrast, another type of biodegradation may involve cleavage of a bond (whether covalent or otherwise) internal to sidechain or that connects a side chain to the polymer backbone. For example, a therapeutic agent or other chemical moiety attached as a side chain to the polymer backbone may be released by biodegradation. In certain embodiments, one or the other or both general types of biodegradation may occur during use of a polymer.
- As used herein, the term “biodegradation” encompasses both general types of biodegradation. The degradation rate of a biodegradable polymer often depends in part on a variety of factors, including the chemical identity of the linkage responsible for any degradation, the molecular weight, crystallinity, biostability, and degree of cross-linking of such polymer, the physical characteristics (e.g., shape and size) of an implant, and the mode and location of administration. For example, the greater the molecular weight, the higher the degree of crystallinity, and/or the greater the biostability, the biodegradation of any biodegradable polymer is usually slower. The term “biodegradable” is intended to cover materials and processes also termed “bioerodible”.
- In certain embodiments wherein the biodegradable polymer also has a therapeutic agent or other material associated with it, the biodegradation rate of such polymer may be characterized by a release rate of such materials. In such circumstances, the biodegradation rate may depend on not only the chemical identity and physical characteristics of the polymer, but also on the identity of material(s) incorporated therein. Degradation of the subject compositions includes not only the cleavage of intramolecular bonds, e.g., by oxidation and/or hydrolysis, but also the disruption of intermolecular bonds, such as dissociation of host/guest complexes by competitive complex formation with foreign inclusion hosts.
- In certain embodiments, polymeric formulations of the present invention biodegrade within a period that is acceptable in the desired application. In certain embodiments, such as in vivo therapy, such degradation occurs in a period usually less than about five years, one year, six months, three months, one month, fifteen days, five days, three days, or even one day on exposure to a physiological solution with a pH between 6 and 8 having a temperature of between 25 and 37° C. In other embodiments, the polymer degrades in a period of between about one hour and several weeks, depending on the desired application.
- As used herein the term “bioerodable” refers to polymers which deliver sustained effective amounts of therapeutic agent to target tissue over desired extended periods of time. Thus, a polymer according to the invention in the biological environment of host tissue and the like, in one aspect, is subjected to hydrolytic enzymes and oxidative species under, and in proportion to, the host's inflammatory response. This results in release of the therapeutic agent via the breaking of the covalent linked bonds. Thus, in certain embodiments, the materials of the invention utilize the mammal's own wound-healing repair process in being degraded thereby, as hereinbefore described.
- The biodegradable polymers polylactic acid, polyglycolic acid, and polylactic-glycolic acid copolymer (PLGA), have been investigated extensively for nanoparticle formulation. These polymers are polyesters that, upon implantation in the body, undergo simple hydrolysis. The products of such hydrolysis are biologically compatible and metabolizable moieties (e.g., lactic acid and glycolic acid), which are eventually removed from the body by the citric acid cycle. Polymer biodegradation products are formed at a very slow rate, and hence do not affect normal cell function. Several implant studies with these polymers have proven safe in drug delivery applications, used in the form of matrices, microspheres, bone implant materials, surgical sutures, and also in contraceptive applications for long-term effects. These polymers are also used as graft materials for artificial organs, and recently as basement membranes in tissue engineering investigations. Nature Med. 824-826 (1996). Thus, these polymers have been time-tested in various applications and proven safe for human use. Most importantly, these polymers are FDA-approved for human use.
- When polymers are used for delivery of pharmacologically active agents in vivo, it is essential that the polymers themselves be nontoxic and that they degrade into non-toxic degradation products as the polymer is eroded by the body fluids. Many synthetic biodegradable polymers, however, yield oligomers and monomers upon erosion in vivo that adversely interact with the surrounding tissue. D. F. Williams, J. Mater. Sci. 1233 (1982). To minimize the toxicity of the intact polymer carrier and its degradation products, polymers have been designed based on naturally occurring metabolites. Probably the most extensively studied examples of such polymers are the polyesters derived from lactic or glycolic acid and polyamides derived from amino acids.
- A number of bioerodable or biodegradable polymers are known and used for controlled release of pharmaceuticals. Such polymers are described in, for example, U.S. Pat. Nos. 4,291,013, 4,347,234, 4,525,495, 4,570,629, 4,572,832, 4,587,268, 4,638,04, 4,675,381, 4,745,160, and 5,219,980, which are incorporated herein in their entirety.
- A biohydrolyzable bond (e.g., ester, amide, carbonate, carbamates, or imide) refers to a bond that is cleaved (e.g., an ester is cleaved to form a hydroxyl and a carboxylic acid) under physiological conditions. Physiological conditions include the acidic and basic environments of the digestive tract (e.g., stomach, intestines, etc.), acidic environment of a tumor, enzymatic cleavage, metabolism, and other biological processes, and preferably refer to physiological conditions in a vertebrate, such as a mammal.
- Upon copolymerization of a comonomer precursor with a cyclodextrin monomer precursor, two cyclodextrin monomers may be linked together by joining the primary hydroxyl side of one cyclodextrin monomer with the primary hydroxyl side of another cyclodextrin monomer, by joining the secondary hydroxyl side of one cyclodextrin monomer with the secondary hydroxyl side of another cyclodextrin monomer, or by joining the primary hydroxyl side of one cyclodextrin monomer with the secondary hydroxyl side of another cyclodextrin monomer. Accordingly, combinations of such linkages may exist in the final copolymer. Both the comonomer A precursor and the comonomer A of the final copolymer may be neutral, cationic (for example quaternary ammonium groups), or anionic (for example sulfate, phosphate, borinate or carboxylate) groups. The charge of comonomer A of the copolymer may be adjusted by adjusting pH conditions. Examples of suitable comonomer A precursors include, but are not limited to succinimide (e.g., dithiobis(succinimidyl propionate) DSP, and dissucinimidyl suberate (DSS)), glutamates, and aspartates).
- The cyclodextrin-containing polymers of the present invention may be linear, branched or grafted. As used herein, the term “linear cyclodextrin-containing polymer” refers to a polymer comprising (α, β, or γ) cyclodextrin molecules, or derivatives thereof which are inserted within a polymer chain. As used herein, the term “grafted cyclodextrin-containing polymer” refers to a polymer comprising (α, β, or γ) cyclodextrin molecules, or derivatives thereof which are pendant off of the polymer chain. The term “graft polymer” as used herein refers to a polymer molecule which has additional moieties attached as pendent groups along a polymer backbone. The term “graft polymerization” denotes a polymerization in which a side chain is grafted onto a polymer chain, which side chain consists of one or several other monomers. The properties of the graft copolymer obtained such as, for example, solubility, melting point, water absorption, wettability, mechanical properties, adsorption behavior, etc., deviate more or less sharply from those of the initial polymer as a function of the type and amount of the grafted monomers. The term “grafting ratio”, as used herein, means the weight percent of the amount of the monomers grafted based on the weight of the polymer. As used herein, a branched cyclodextrin-containing polymer refers to a polymer backbone with a plurality of branch points, wherein each branch point is a starting point of yet another strand of the polymer backbone, and each section of polymer backbone may have a plurality of (α, β, or γ) cyclodextrin molecules, or derivatives thereof, inserted into or grafted onto the chain.
- The phrase “controlled release” or “sustained release” refers to the use of systems that allow for the controlled or tunable delivery of one or more of the present compounds or compositions over time. For example, in certain instances, the present compounds or compositions are used in conjunction with a controlled release system that delivers an effective amount (such as an approximately continuous amount, an increasing amount, or a decreasing amount) of the compound(s) over a certain period of time, for example, over a period of at least about 4, 8, 12, 24, 48, or 72 hours, over a period of at least about 1, 2, 3, 4, or 5 days, over a period of at least about 1, 2, or 3 weeks, or over a period of at least about 1, 2, 3, 4, 5, or 6 months. Such controlled release systems may be used in conjunction with medical devices, such as stents and catheters, to provide medical devices which offer controlled release of the present compounds and/or compositions. By way of example, some suitable controlled release systems include hydrogels, polymers, meshes, and others demonstrated in the art.
- The term “cyclodextrin moiety” refers to (α, β, or γ) cyclodextrin molecules or derivatives thereof, which may be in their oxidized or reduced forms. Cyclodextrin moieties may comprise optional linkers. Optional therapeutic agents and/or targeting ligands may be further linked to these moieties via an optional linker. The linkage may be covalent (optionally via biohydrolyzable bonds, e.g., esters, amides, carbamates, and carbonates) or may be a host-guest complex between the cyclodextrin derivative and the therapeutic agent and/or targeting ligand or the optional linkers of each. Cyclodextrin moieties may further include one or more carbohydrate moieties, preferably simple carbohydrate moieties such as galactose, attached to the cyclic core, either directly (i.e., via a carbohydrate linkage) or through a linker group.
- As used herein, the term “EC50” means the concentration of a drug that produces 50% of its maximum response or effect.
- The term “ED50” means the dose of a drug that produces 50% of its maximum response or effect.
- An “effective amount” of a subject compound, with respect to the subject method of treatment, refers to an amount of the therapeutic in a preparation which, when applied as part of a desired dosage regimen provides a benefit according to clinically acceptable standards for the treatment or prophylaxis of a particular disorder.
- As used herein the term “low aqueous solubility” refers to water insoluble compounds having poor solubility in water, that is <5 mg/ml at physiological pH (6.5-7.4). Preferably, their water solubility is <1 mg/ml, more preferably <0.1 mg/ml. It is desirable that the drug is stable in water as a dispersion; otherwise a lyophilized or spray-dried solid form may be desirable.
- A “patient” or “subject” to be treated by the subject method can mean either a human or non-human subject.
- The “polymerizations” of the present invention include radical, anionic, and cationic mechanisms, as well as reactions of bifunctional molecules (analogous to the formation of nylon, e.g., reacting molecules each of which bears two or more different reactive moieties that react with each other (but, preferably, are disfavored from reacting intramolecularly by steric, conformational, or other constraints), or reacting two or more different compounds, each compound bearing two or more reactive moieties that react only with reactive moieties of different compounds (i.e., intermolecularly)), as well as metal-catalyzed polymerizations such as olefin metathesis, and other polymerization reactions known to those of skill in the art.
- The terms “prophylactic” and “therapeutic” are art-recognized and includes administration to the host of one or more of the subject compositions. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing the unwanted condition, whereas if it is administered after manifestation of the unwanted condition, the treatment is therapeutic, (i.e., it is intended to diminish, ameliorate, or stabilize the existing unwanted condition or side effects thereof).
- The term “preventing” is art-recognized, and when used in relation to a condition, such as a local recurrence (e.g., pain), a disease such as cancer, a syndrome complex such as heart failure or any other medical condition, is well understood in the art, and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition. Thus, prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, e.g., by a statistically and/or clinically significant amount. Prevention of an infection includes, for example, reducing the number of diagnoses of the infection in a treated population versus an untreated control population, and/or delaying the onset of symptoms of the infection in a treated population versus an untreated control population. Prevention of pain includes, for example, reducing the frequency of, or alternatively delaying, pain sensations experienced by subjects in a treated population versus an untreated control population.
- The term “small molecule” refers to a compound having a molecular weight less than about 2500 amu, preferably less than about 2000 amu, even more preferably less than about 1500 amu, still more preferably less than about 1000 amu, or most preferably less than about 750 amu.
- The term “substituted” refers to moieties having substituents replacing a hydrogen on one or more carbons of the backbone. It will be understood that “substitution” or “substituted with” includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and non-aromatic substituents of organic compounds. The permissible substituents may be one or more and the same or different for appropriate organic compounds. For purposes of this invention, the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. Substituents may include any substituents described herein, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic moiety. It will be understood by those skilled in the art that the moieties substituted on the hydrocarbon chain may themselves be substituted, if appropriate. Unless specifically indicated as unsubstituted, all occurrences of moieties bearing one or more C—H bonds may be either unsubstituted or substituted as defined herein. By way of example, a reference to an “alkyl” or “aryl” group will be understood to include unsubstituted or substituted variants thereof.
- As used herein, the terms “therapeutic agent” includes any synthetic or naturally occurring biologically active compound or composition of matter which, when administered to an organism (human or nonhuman animal), induces a desired pharmacologic, immunogenic, and/or physiologic effect by local and/or systemic action. The term therefore encompasses those compounds or chemicals traditionally regarded as drugs, vaccines, and biopharmaceuticals including molecules such as proteins, peptides, hormones, nucleic acids, gene constructs and the like. More particularly, the term “therapeutic agent” includes compounds or compositions for use in all of the major therapeutic areas including, but not limited to, adjuvants; anti-infectives such as antibiotics and antiviral agents; analgesics and analgesic combinations, anorexics, anti-inflammatory agents, anti-epileptics, local and general anesthetics, hypnotics, sedatives, antipsychotic agents, neuroleptic agents, antidepressants, anxiolytics, antagonists, neuron blocking agents, anticholinergic and cholinomimetic agents, antimuscarinic and muscarinic agents, antiadrenergics, antiarrhythmics, antihypertensive agents, hormones, and nutrients, antiarthritics, antiasthmatic agents, anticonvulsants, antihistamines, antinauseants, antineoplastics, antipruritics, antipyretics; antispasmodics, cardiovascular preparations (including calcium channel blockers, beta-blockers, beta-agonists and antiarrythmics), antihypertensives, diuretics, vasodilators; central nervous system stimulants; cough and cold preparations; decongestants; diagnostics; hormones; bone growth stimulants and bone resorption inhibitors; immunosuppressives; muscle relaxants; psychostimulants; sedatives; tranquilizers; proteins, peptides, and fragments thereof (whether naturally occurring, chemically synthesized or recombinantly produced); and nucleic acid molecules (polymeric forms of two or more nucleotides, either ribonucleotides (RNA) or deoxyribonucleotides (DNA) including both double- and single-stranded molecules, gene constructs, expression vectors, antisense molecules and the like), small molecules (e.g., doxorubicin) and other biologically active macromolecules such as, for example, proteins and enzymes. The agent may be a biologically active agent used in medical, including veterinary, applications and in agriculture, such as with plants, as well as other areas. The term therapeutic agent also includes without limitation, medicaments; vitamins; mineral supplements; substances used for the treatment, prevention, diagnosis, cure or mitigation of disease or illness; or substances which affect the structure or function of the body; or prodrugs, which become biologically active or more active after they have been placed in a predetermined physiological environment.
- A “therapeutically effective amount” of a compound, with respect to a method of treatment, refers to an amount of the compound(s) in a preparation which, when administered as part of a desired dosage regimen (to a mammal, preferably a human) alleviates a symptom, ameliorates a condition, or slows the onset of disease conditions according to clinically acceptable standards for the disorder or condition to be treated or the cosmetic purpose, e.g., at a reasonable benefit/risk ratio applicable to any medical treatment.
- “Physiological conditions” describe the conditions inside an organism, i.e., in vivo. Physiological conditions include the acidic and basic environments of body cavities and organs, enzymatic cleavage, metabolism, and other biological processes, and preferably refer to physiological conditions in a vertebrate, such as a mammal.
- The term “physiological pH,” as used herein, refers to a pH that is about 7.4 at the standard physiological temperature of 37.4° C. The term “non-physiological pH,” as used herein, refers to a pH that is less than or greater than “physiological pH,” preferably between about 4 and 7.3, or greater than 7.5 and less than about 12. The term “neutral pH,” as used herein, refers to a pH of about 7. In preferred embodiments, physiological pH refers to pH 7.4, and non-physiological pH refers to pH between about 6 and 7. The term “acidic pH” refers to a pH that is below pH 7, preferably below about
pH 6, or even below aboutpH 4. - The term “prodrug” is intended to encompass compounds which, under physiological conditions, are converted into the therapeutically active agents of the present invention. A common method for making a prodrug is to include selected moieties which are hydrolyzed under physiological conditions to reveal the desired molecule. In other embodiments, the prodrug is converted by an enzymatic activity of the host animal.
- As used herein, “proliferating” and “proliferation” refer to cells undergoing mitosis.
- The term “acyl” is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)—, preferably alkylC(O)—.
- The term “acyloxy” is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)O—, preferably alkylC(O)O—.
- The term “alkoxyalkyl” refers to an alkyl group substituted with an alkoxy group and may be represented by the general formula alkyl-O-alkyl.
- The terms “alkenyl” and “alkynyl” refer to unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described below, but that contain at least one double or triple bond respectively.
- The term “alkoxy” refers to an alkyl group having an oxygen attached thereto. Representative alkoxy groups include methoxy, ethoxy, propoxy, tert-butoxy and the like.
- The term “alkyl” refers to saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl-substituted cycloalkyl groups, and cycloalkyl-substituted alkyl groups. In preferred embodiments, a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (e.g., C1-30 for straight chains, C3-30 for branched chains), and more preferably 20 or fewer.
- Moreover, the term “alkyl” as used throughout the specification, examples, and claims is intended to include both unsubstituted and substituted alkyl groups, the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone, including haloalkyl groups such as trifluoromethyl and 2,2,2-trifluoroethyl, etc.
- The term “Cx-y” when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups that contain from x to y carbons in the chain. C0alkyl indicates a hydrogen where the group is in a terminal position, a bond if internal. A C1-6alkyl group, for example, contains from one to six carbon atoms in the chain.
- The term “alkylamino”, as used herein, refers to an amino group substituted with at least one alkyl group.
- The term “alkylcycloalkyl” refers to groups, which contain cycloalkyl as well as alkyl, alkenyl or alkynyl groups according to the above definition, e.g. alkylcycloalkyl, alkylcycloalkenyl, alkenylcycloalkyl and alkynylcycloalkyl groups, etc. Preferentially a alkylcycloalkyl group is composed of a cycloalkyl group, comprising one or more rings, comprising three to ten, preferentially three, four, five, six or seven carbon-atoms and one or two alkyl, alkenyl, or alkynyl groups with one or two to six carbon atoms.
- The term “alkylthio”, as used herein, refers to a thiol group substituted with an alkyl group and may be represented by the general formula alkyl-S—.
- The term “amide” or “amido,” as used herein, refers to a group
- wherein R9 and R10 each independently represent a hydrogen or hydrocarbyl group, or R9 and R10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- The terms “amine” and “amino” are art-recognized and refer to both unsubstituted and substituted amines and salts thereof, e.g., a moiety that can be represented by
- wherein R9, R10, and R ′ each independently represent a hydrogen or a hydrocarbyl group, or R9 and R10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- The term “aminoalkyl”, as used herein, refers to an alkyl group substituted with an amino group.
- The term “amidine” denotes the group —C(NH)—NHR wherein R is H or alkyl or aralkyl. A preferred amidine is the group —C(NH)—NH2.
- The term “aralkyl”, as used herein, refers to an alkyl group substituted with an aryl group.
- The term “aryl” as used herein include substituted or unsubstituted single-ring aromatic groups in which each atom of the ring is carbon. Preferably the ring is a 5- to 7-membered ring, more preferably a 6-membered ring. The term “aryl” also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Aryl groups include benzene, naphthalene, phenanthrene, phenol, aniline, and the like.
- The term “carbamate” is art-recognized and refers to a group
- wherein R9 and R10 independently represent hydrogen or a hydrocarbyl group.
- The term “carbonate” is art-recognized and refers to a group —OCO2-.
- The term “carboxy”, as used herein, refers to a group represented by the formula CO2H.
- The terms “carbocycle”, “carbocyclyl”, and “carbocyclic”, as used herein, refers to a non-aromatic saturated or unsaturated ring in which each atom of the ring is carbon. Preferably a carbocycle ring contains from 3 to 10 atoms, more preferably from 5 to 7 atoms.
- The term “carbonyl” is art-recognized and includes such moieties as may be represented by the general formula:
- wherein X is a bond or represents an oxygen or a sulfur, and R11 represents a hydrogen, an alkyl, an alkenyl, —(CH2)m—R8 or a pharmaceutically acceptable salt, R11 represents a hydrogen, an alkyl, an alkenyl or —(CH2)m—R8, where m and R8 are as defined above. Where X is an oxygen and R11 or R11 is not hydrogen, the formula represents an “ester”. Where X is an oxygen, and R11 is as defined above, the moiety is referred to herein as a carboxyl group, and particularly when R11 is a hydrogen, the formula represents a “carboxylic acid”. Where X is an oxygen, and R11 is hydrogen, the formula represents a “formate”. In general, where the oxygen atom of the above formula is replaced by sulfur, the formula represents a “thiocarbonyl” group. Where X is a sulfur and R11 or R11 is not hydrogen, the formula represents a “thioester.” Where X is a sulfur and R11 is hydrogen, the formula represents a “thiocarboxylic acid.” Where X is a sulfur and R11 is hydrogen, the formula represents a “thioformate.” On the other hand, where X is a bond, and R11 is not hydrogen, the above formula represents a “ketone” group. Where X is a bond, and R11 is hydrogen, the above formula represents an “aldehyde” group.
- The term “cycloalkyl” refers to a saturated or partially unsaturated (e.g. cycloalkenyl) cyclic group, comprising one or several rings, preferentially one or two, containing three to fourteen ring carbon atoms, preferentially three to ten, preferentially three, four, five, six or seven ring carbon atoms. Furthermore the term cycloalkyl refers to a group where one or more hydrogen atoms are replaced by F, Cl, Br, I, OH, ═O, SH, ═S, NH2, ═NH, or NO2, or cyclic ketones, for example cyclohexanone, 2-cyclohexenone or cyclopentanone. Examples of cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentenyl, spiro[4,5]-decanyl, norbornyl, cyclohexyl, cyclopentenyl, cyclohexadienyl, decalinyl, cubanyl, bicyclo[4.3.0]nonyl, tetralin, cyclopentylcyclohexyl, fluor-cyclohexyl or the cyclohex-2-enyl group.
- The term “ester”, as used herein, refers to a group —C(O)OR9 wherein R9 represents a hydrocarbyl group.
- The term “ether”, as used herein, refers to a hydrocarbyl group linked through an oxygen to another hydrocarbyl group. Accordingly, an ether substituent of a hydrocarbyl group may be hydrocarbyl-O—. Ethers may be either symmetrical or unsymmetrical. Examples of ethers include, but are not limited to, heterocycle-O-heterocycle and aryl-O-heterocycle. Ethers include “alkoxyalkyl” groups, which may be represented by the general formula alkyl-O-alkyl.
- The terms “halo” and “halogen” as used herein means halogen and includes chloro, fluoro, bromo, and iodo.
- The terms “hetaralkyl” and “heteroaralkyl”, as used herein, refers to an alkyl group substituted with a heteroaryl group.
- The terms “hetaralkenyl” and “heteroaralkenyl”, as used herein, refers to an alkenyl group substituted with a heteroaryl group.
- The term “heteroalkyl” refers to a alkyl, alkenyl or alkynyl group, where several, preferentially one, two or three carbon atoms are replaced by a O, N, P, B, Se, Si, or S atom, preferentially O, S, N. The term heteroalkyl also includes a carboxylic acid or a thereof derived group, for example acyl (alkyl-CO), acylalkyl, alkoxycarbonyl, acyloxy, acyloxyalkyl, carboxyalkylamid or alkoxycarbonyloxy.
- The terms “heterocyclyl”, “heterocycle”, and “heterocyclic” refer to substituted or unsubstituted non-aromatic ring structures, preferably 3- to 10-membered rings, more preferably 3- to 7-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms. The terms “heterocyclyl” and “heterocyclic” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heterocyclic, e.g., the other cyclic rings may be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Heterocyclyl groups include, for example, piperidine, piperazine, pyrrolidine, morpholine, lactones, lactams, and the like.
- The term “heteroalkylcycloalkyl” refers to alkylcycloalkyl groups, according to the above definition, wherein one or several, preferentially one, two or three carbon atoms are replaced by O, N, Si, Se, P or S, preferentially O, S, N. In certain instances a heteroakylcycloalkyl group comprises one or two ring systems with three to ten, preferentially three, four, five, six or seven ring atoms and one or two alkyl, alkenyl, alkynyl or heteroalkyl groups with one or two to six carbon atoms. Examples of such a group are alkylheterocycloalkyl, alkylheterocycloalkenyl, alkenyl-heterocycloalkyl, alkynylheterocycloalkyl, heteroalkyl-cycloalkyl, heteroalkylheterocycloalkyl and heteroalkylheterocycloalkenyl, wherein the cyclic group is saturated or partially (e.g., twofold or threefold) unsaturated.
- The terms “heteroaryl” and “hetaryl” include substituted or unsubstituted aromatic single ring structures, preferably 5- to 7-membered rings, more preferably 5- to 6-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms. The term “heteroaryl” also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heteroaromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like.
- The term “heteroatom” as used herein means an atom of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, and sulfur.
- The term “heterocycloalkyl” refers to the above definition of cycloalkyl, wherein one or more, preferentially one, two or three ring carbon atoms are replaced by a O, N, Si, Se, P, or S, preferentially O, S, N. Preferentially a heterocycloalkyl group is composed of one or two rings comprising three to ten, preferentially three, four, five, six or seven ring atoms. Moreover, the term heterocycloalkyl refers to groups where one or more hydrogen atoms are replaced by F, Cl, Br, I, OH, ═O, SH, ═S, NH2, NO2. Examples of heterocycloalkyl are piperidyl, morpholinyl, urotropinyl, pyrrolidinyl, tetrahydrothiophenyl, tetrahydropyranyl, tetrahydrofuryl, oxacyclopropyl, azacyclopropyl or 2-pyrazolinyl groups as well as lactams, lactones, cyclic imides and cyclic anhydrides.
- The terms “heterocyclyl”, “heterocycle”, and “heterocyclic” refer to substituted or unsubstituted non-aromatic ring structures, preferably 3- to 10-membered rings, more preferably 3- to 7-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms. The terms “heterocyclyl” and “heterocyclic” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heterocyclic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Heterocyclyl groups include, for example, imidazolidinone, piperidine, piperazine, pyrrolidine, morpholine, lactones, lactams, and the like.
- The term “hydrocarbyl”, as used herein, refers to a group that is bonded through a carbon atom that optionally has a ═O or ═S substituent and typically has at least one carbon-hydrogen bond and a primarily carbon backbone, but may optionally include functional groups with heteroatoms interrupting the carbon backbone. Examples of such functional groups with interrupting heteroatoms include amino, amide, carbonate, carbamate, ether (e.g., polyethylene glycol), ester, thioester, thiourea, and urea groups. For illustrative purposes, additional examples of hydrocarbyl groups include methyl, ethoxyethyl, 2-pyridyl, trifluoromethyl, and acetyl, but not, for example, ethoxy (which is linked through oxygen, not carbon). Additional hydrocarbyl groups include, but are not limited to aryl, heteroaryl, carbocycle, heterocycle, alkyl, alkenyl, alkynyl, and combinations thereof. Hydrocarbyl also includes corresponding divalent species (i.e., hydrocarbylene), such as alkylene, arylene, etc.
- The term “hydroxyalkyl”, as used herein, refers to an alkyl group substituted with a hydroxy group.
- The term “lower” when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups where there are ten or fewer non-hydrogen atoms in the substituent, preferably six or fewer. A “lower alkyl”, for example, refers to an alkyl group that contains ten or fewer carbon atoms, preferably six or fewer. In certain embodiments, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy substituents defined herein are respectively lower acyl, lower acyloxy, lower alkyl, lower alkenyl, lower alkynyl, or lower alkoxy, whether they appear alone or in combination with other substituents, such as in the recitations hydroxyalkyl and aralkyl (in which case, for example, the atoms within the aryl group are not counted when counting the carbon atoms in the alkyl substituent).
- The terms “polycyclyl”, “polycycle”, and “polycyclic” refer to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls) in which two or more atoms are common to two adjoining rings, e.g., the rings are “fused rings”. Each of the rings of the polycycle may be substituted or unsubstituted. In certain embodiments, each ring of the polycycle contains from 3 to 10 atoms in the ring, preferably from 5 to 7.
- The term “sulfate” is art-recognized and refers to the group —OSO3H, or a pharmaceutically acceptable salt thereof.
- The term “sulfonamide” is art-recognized and refers to the group represented by the general formulae
- wherein R9 and R10 independently represents hydrogen or hydrocarbyl.
- The term “sulfoxide” is art-recognized and refers to the group —S(O)—.
- The term “sulfonate” is art-recognized and refers to the group SO3H, or a pharmaceutically acceptable salt thereof.
- The term “sulfone” is art-recognized and refers to the group —S(O)2—.
- The term “thioester”, as used herein, refers to a group —C(O)SR9 or —SC(O)R9 wherein R9 represents a hydrocarbyl.
- The term “urea” is art-recognized and may be represented by the general formula
- wherein R9 and R10 independently represent hydrogen or a hydrocarbyl.
- Analogous substitutions may be made to alkenyl and alkynyl groups to produce, for example, aminoalkenyls, aminoalkynyls, amidoalkenyls, amidoalkynyls, iminoalkenyls, iminoalkynyls, thioalkenyls, thioalkynyls, carbonyl-substituted alkenyls or alkynyls.
- As used herein, the definition of each expression, e.g., alkyl, m, n, etc., when it occurs more than once in any structure, is intended to be independent of its definition elsewhere in the same structure.
- In part, a biocompatible polymer composition of the present invention includes a biocompatible and optionally biodegradable polymer, such as one having the recurring monomeric units shown in one of the foregoing formulas, optionally including any other biocompatible and optionally biodegradable polymer mentioned above or known in the art. In certain embodiments, the compositions are non-pyrogenic, e.g., do not trigger elevation of a patient's body temperature by more than a clinically acceptable amount.
- The subject compositions may contain a “drug,” “therapeutic agent,” “medicament,” or “bioactive substance,” which are biologically, physiologically, or pharmacologically active substances that act locally or systemically in the human or animal body. For example, a subject composition may include any of the other compounds discussed above.
- Various forms of the medicaments or biologically active materials may be used which are capable of being released from the polymer matrix into adjacent tissues or fluids. They may be hydrophobic molecules, neutral molecules, polar molecules, or molecular complexes capable of hydrogen bonding. They may be in the form of ethers, esters, amides and the like, including prodrugs which are biologically activated when injected into the human or animal body, e.g., by cleavage of an ester or amide. A therapeutic agent in a subject composition may vary widely with the purpose for the composition.
- Plasticizers and stabilizing agents known in the art may be incorporated in polymers of the present invention. In certain embodiments, additives such as plasticizers and stabilizing agents are selected for their biocompatibility. In certain embodiments, the additives are lung surfactants, such as 1,2-dipalmitoylphosphatidycholine (DPPC) and L-α-phosphatidylcholine (PC).
- A composition of this invention may further contain one or more adjuvant substances, such as fillers, thickening agents or the like. In other embodiments, materials that serve as adjuvants may be associated with the polymer matrix. Such additional materials may affect the characteristics of the polymer matrix that results.
- For example, fillers, such as bovine serum albumin (BSA) or mouse serum albumin (MSA), may be associated with the polymer matrix. In certain embodiments, the amount of filler may range from about 0.1 to about 50% or more by weight of the polymer matrix, or about 2.5, 5, 10, 25, or 40 percent. Incorporation of such fillers may affect the biodegradation of the polymeric material and/or the sustained release rate of any encapsulated substance. Other fillers known to those of skill in the art, such as carbohydrates, sugars, starches, saccharides, celluloses and polysaccharides, including mannitose and sucrose, may be used in certain embodiments of the present invention.
- In other embodiments, spheronization enhancers facilitate the production of subject polymeric matrices that are generally spherical in shape. Substances such as zein, microcrystalline cellulose or microcrystalline cellulose co-processed with sodium carboxymethyl cellulose may confer plasticity to the subject compositions as well as implant strength and integrity. In particular embodiments, during spheronization, extrudates that are rigid, but not plastic, result in the formation of dumbbell shaped implants and/or a high proportion of fines, and extrudates that are plastic, but not rigid, tend to agglomerate and form excessively large implants. In such embodiments, a balance between rigidity and plasticity is desirable. The percent of spheronization enhancer in a formulation typically range from 10 to 90% (w/w).
- In certain embodiments, a subject composition includes an excipient. A particular excipient may be selected based on its melting point, solubility in a selected solvent (e.g., a solvent that dissolves the polymer and/or the therapeutic agent), and the resulting characteristics of the microparticles or nanoparticles.
- Excipients may comprise a few percent, about 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, or higher percentage of the subject compositions.
- Buffers, acids and bases may be incorporated in the subject compositions to adjust their pH. Agents to increase the diffusion distance of agents released from the polymer matrix may also be included.
- Disintegrants are substances that, in the presence of liquid, promote the disruption of the subject compositions. Disintegrants are most often used in implants, in which the function of the disintegrant is to counteract or neutralize the effect of any binding materials used in the subject formulation. In general, the mechanism of disintegration involves moisture absorption and swelling by an insoluble material.
- Examples of disintegrants include croscarmellose sodium and crospovidone which, in certain embodiments, may be incorporated into the polymeric matrices in the range of about 1-20% of total matrix weight. In other cases, soluble fillers such as sugars (mannitol and lactose) may also be added to facilitate disintegration of implants.
- Other materials may be used to advantage or to control the desired release rate of a therapeutic agent for a particular treatment protocol. For example, if the sustained release is too slow for a particular application, a pore-forming agent may be added to generate additional pores in the matrix. Any biocompatible water-soluble material may be used as the pore-forming agent. They may be capable of dissolving, diffusing or dispersing out of the formed polymer system whereupon pores and microporous channels are generated in the system. The amount of pore-forming agent (and size of dispersed particles of such pore-forming agent, if appropriate) within the composition should affect the size and number of the pores in the polymer system.
- Pore-forming agents include any pharmaceutically acceptable organic or inorganic substance that is substantially miscible in water and body fluids and will dissipate from the forming and formed matrix into aqueous medium or body fluids or water-immiscible substances that rapidly degrade to water-soluble substances.
- Suitable pore-forming agents include, for example, sugars such as sucrose and dextrose, salts such as sodium chloride and sodium carbonate, and polymers such as hydroxylpropylcellulose, carboxymethylcellulose, polyethylene glycol, and PVP. The size and extent of the pores may be varied over a wide range by changing the molecular weight and percentage of pore-forming agent incorporated into the polymer system.
- The charge, lipophilicity or hydrophilicity of any subject polymeric matrix may be modified by attaching in some fashion an appropriate compound to the surface of the matrix. For example, surfactants may be used to enhance wettability of poorly soluble or hydrophobic compositions. Examples of suitable surfactants include dextran, polysorbates and sodium lauryl sulfate. In general, surfactants are used in low concentrations, generally less than about 5%.
- Binders are adhesive materials that may be incorporated in polymeric formulations to bind and maintain matrix integrity. Binders may be added as dry powder or as solution. Sugars and natural and synthetic polymers may act as binders.
- Materials added specifically as binders are generally included in the range of about 0.5%-15% w/w of the matrix formulation. Certain materials, such as microcrystalline cellulose, also used as a spheronization enhancer, also have additional binding properties.
- Various coatings may be applied to modify the properties of the matrices.
- Three exemplary types of coatings are seal, gloss and enteric coatings. Other types of coatings having various dissolution or erosion properties may be used to further modify subject matrices behavior, and such coatings are readily known to one of ordinary skill in the art.
- The seal coat may prevent excess moisture uptake by the matrices during the application of aqueous based enteric coatings. The gloss coat generally improves the handling of the finished matrices. Water-soluble materials such as hydroxypropylcellulose may be used to seal coat and gloss coat implants. The seal coat and gloss coat are generally sprayed onto the matrices until an increase in weight between about 0.5% and about 5%, often about 1% for a seal coat and about 3% for a gloss coat, has been obtained.
- Enteric coatings consist of polymers which are insoluble in the low pH (less than 3.0) of the stomach, but are soluble in the elevated pH (greater than 4.0) of the small intestine. Polymers such as EUDRAGIT™, RohmTech, Inc., Malden, Mass., and AQUATERIC™, FMC Corp., Philadelphia, Pa., may be used and are layered as thin membranes onto the implants from aqueous solution or suspension or by a spray drying method. The enteric coat is generally sprayed to a weight increase of about 1% to about 30%, preferably about 10 to about 15% and may contain coating adjuvants such as plasticizers, surfactants, separating agents that reduce the tackiness of the implants during coating, and coating permeability adjusters.
- The present compositions may additionally contain one or more optional additives such as fibrous reinforcement, colorants, perfumes, rubber modifiers, modifying agents, etc. In practice, each of these optional additives should be compatible with the resulting polymer and its intended use. Examples of suitable fibrous reinforcement include PGA microfibrils, collagen microfibrils, cellulosic microfibrils, and olefinic microfibrils. The amount of each of these optional additives employed in the composition is an amount necessary to achieve the desired effect.
- The therapeutic polymer conjugates as described herein can be administered in various pharmaceutical formulations, depending on the disorder to be treated and the age, condition and body weight of the patient, as is well known in the art. For example, where the compounds are to be administered orally, they may be formulated as tablets, capsules, granules, powders or syrups; or for parenteral administration, they may be formulated as injections (intravenous, intramuscular or subcutaneous), drop infusion preparations or suppositories. For application by the ophthalmic mucous membrane route, they may be formulated as eyedrops or eye ointments. These formulations can be prepared by conventional means, and, if desired, the active ingredient may be mixed with any conventional additive, such as an excipient, a binder, a disintegrating agent, a lubricant, a corrigent, a solubilizing agent, a suspension aid, an emulsifying agent or a coating agent. Although the dosage will vary depending on the symptoms, age and body weight of the patient, the nature and severity of the disorder to be treated or prevented, the route of administration and the form of the drug, in general, a daily dosage of from 0.01 to 2000 mg of the therapeutic agent is recommended for an adult human patient, and this may be administered in a single dose or in divided doses.
- The precise time of administration and/or amount of therapeutic polymer conjugate that will yield the most effective results in terms of efficacy of treatment in a given patient will depend upon the activity, pharmacokinetics, and bioavailability of a particular compound, physiological condition of the patient (including age, sex, disease type and stage, general physical condition, responsiveness to a given dosage and type of medication), route of administration, etc. However, the above guidelines can be used as the basis for fine-tuning the treatment, e.g., determining the optimum time and/or amount of administration, which will require no more than routine experimentation consisting of monitoring the subject and adjusting the dosage and/or timing.
- The phrase “pharmaceutically acceptable” is employed herein to refer to those therapeutic polymer conjugates, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- The phrase “pharmaceutically acceptable carrier” as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.
- The term “pharmaceutically acceptable salts” refers to the relatively non-toxic, inorganic and organic acid addition salts of the therapeutic polymer conjugates. These salts can be prepared in situ during the final isolation and purification of the therapeutic polymer conjugates, or by separately reacting a purified polymer in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like. (See, for example, Berge et al. (1977) “Pharmaceutical Salts”, J. Pharm. Sci. 66:1-19)
- In other cases, the therapeutic polymer conjugates useful in the methods of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable bases. The term “pharmaceutically acceptable salts” in these instances refers to the relatively non-toxic, inorganic and organic base addition salts of the polymer(s). These salts can likewise be prepared in situ during the final isolation and purification of the polymer(s), or by separately reacting the purified polymer(s) in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like. Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like (see, for example, Berge et al., supra).
- Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
- Examples of pharmaceutically acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
- Formulations useful in the methods of the present invention include those suitable for oral, nasal, topical (including ophthalmic, otic, buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 1 percent to about ninety-nine percent of active ingredient, preferably from about 5 percent to about 70 percent, most preferably from about 10 percent to about 30 percent.
- Methods of preparing these formulations or compositions include the step of bringing into association a therapeutic polymer conjugate(s) with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a therapeutic polymer conjugate with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
- Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, gums, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouthwashes and the like, each containing a predetermined amount of a therapeutic polymer conjugate(s) as an active ingredient. A compound may also be administered as a bolus, electuary or paste.
- A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered peptide or peptidomimetic moistened with an inert liquid diluent.
- Tablets, and other solid dosage forms, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
- Suspensions, in addition to the active therapeutic polymer conjugates may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more therapeutic polymer conjugates with one or more suitable nonirritating excipients or carriers comprising for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active agent.
- Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.
- Dosage forms for the topical or transdermal administration of a therapeutic polymer conjugate(s) include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active component may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required.
- The ointments, pastes, creams and gels may contain, in addition to ligand(s), excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays can contain, in addition to a therapeutic polymer conjugate(s), excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
- The therapeutic polymer conjugate(s) can be alternatively administered by aerosol. This is accomplished by preparing an aqueous aerosol, liposomal preparation or solid particles containing the compound. A nonaqueous (e.g., fluorocarbon propellant) suspension could be used. Sonic nebulizers are preferred because they minimize exposing the agent to shear, which can result in degradation of the compound.
- Ordinarily, an aqueous aerosol is made by formulating an aqueous solution or suspension of the agent together with conventional pharmaceutically acceptable carriers and stabilizers. The carriers and stabilizers vary with the requirements of the particular compound, but typically include nonionic surfactants (Tweens, Pluronics, or polyethylene glycol), innocuous proteins like serum albumin, sorbitan esters, oleic acid, lecithin, amino acids such as glycine, buffers, salts, sugars or sugar alcohols. Aerosols generally are prepared from isotonic solutions.
- Transdermal patches have the added advantage of providing controlled delivery of a therapeutic polymer conjugate(s) to the body. Such dosage forms can be made by dissolving or dispersing the agent in the proper medium. Absorption enhancers can also be used to increase the flux of the ligand across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the peptidomimetic in a polymer matrix or gel.
- Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.
- Pharmaceutical compositions of this invention suitable for parenteral administration comprise one or more therapeutic polymer conjugate(s) in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
- Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
- In some cases, in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.
- Injectable depot forms are made by forming microencapsule matrices of therapeutic polymer conjugate(s) in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissue.
- When the therapeutic polymer conjugate(s) of the present invention are administered as pharmaceuticals, to humans and animals, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
- The preparations of agents may be given orally, parenterally, topically, or rectally. They are of course given by forms suitable for each administration route. For example, they are administered in tablets or capsule form, by injection, inhalation, eye lotion, ointment, suppository, infusion; topically by lotion or ointment; and rectally by suppositories. Oral administration is preferred.
- The phrases “parenteral administration” and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.
- The phrases “systemic administration,” “administered systemically,” “peripheral administration” and “administered peripherally” as used herein mean the administration of a therapeutic polymer conjugate, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration.
- The present therapeutic polymer conjugate(s) may be administered to humans and other animals for therapy by any suitable route of administration, including orally, nasally, as by, for example, a spray, rectally, intravaginally, parenterally, intracisternally and topically, as by powders, ointments or drops, including buccally and sublingually.
- Regardless of the route of administration selected, the therapeutic polymer conjugate(s), which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.
- Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
- The subject polymers may be formed in a variety of shapes. For example, in certain embodiments, subject polymer matrices may be presented in the form of microparticles or nanoparticles. Microspheres typically comprise a biodegradable polymer matrix incorporating a drug. Microspheres can be formed by a wide variety of techniques known to those of skill in the art. Examples of microsphere forming techniques include, but are not limited to, (a) phase separation by emulsification and subsequent organic solvent evaporation (including complex emulsion methods such as oil in water emulsions, water in oil emulsions and water-oil-water emulsions); (b) coacervation-phase separation; (c) melt dispersion; (d) interfacial deposition; (e) in situ polymerization; (f) spray drying and spray congealing; (g) air suspension coating; and (h) pan and spray coating. These methods, as well as properties and characteristics of microspheres are disclosed in, for example, U.S. Pat. Nos. 4,438,253; 4,652,441; 5,100,669; 5,330,768; 4,526,938; 5,889,110; 6,034,175; and European Patent 0258780, the entire disclosures of which are incorporated by reference herein in their entireties.
- To prepare microspheres of the present invention, several methods can be employed depending upon the desired application of the delivery vehicles. Suitable methods include, but are not limited to, spray drying, freeze drying, air drying, vacuum drying, fluidized-bed drying, milling, co-precipitation and critical fluid extraction. In the case of spray drying, freeze drying, air drying, vacuum drying, fluidized-bed drying and critical fluid extraction; the components (stabilizing polyol, bioactive material, buffers, etc.) are first dissolved or suspended in aqueous conditions. In the case of milling, the components are mixed in the dried form and milled by any method known in the art. In the case of co-precipitation, the components are mixed in organic conditions and processed as described below. Spray drying can be used to load the stabilizing polyol with the bioactive material. The components are mixed under aqueous conditions and dried using precision nozzles to produce extremely uniform droplets in a drying chamber. Suitable spray drying machines include, but are not limited to, Buchi, NIRO, APV and Lab-plant spray driers used according to the manufacturer's instructions.
- The shape of microparticles and nanoparticles may be determined by scanning electron microscopy. Spherically shaped nanoparticles are used in certain embodiments, for circulation through the bloodstream. If desired, the particles may be fabricated using known techniques into other shapes that are more useful for a specific application.
- In addition to intracellular delivery of a therapeutic agent, it also possible that particles of the subject compositions, such as microparticles or nanoparticles, may undergo endocytosis, thereby obtaining access to the cell. The frequency of such an endocytosis process will likely depend on the size of any particle.
- In certain embodiments, solid articles useful in defining shape and providing rigidity and structural strength to the polymeric matrices may be used. For example, a polymer may be formed on a mesh or other weave for implantation. A polymer may also be fabricated as a stent or as a shunt, adapted for holding open areas within body tissues or for draining fluid from one body cavity or body lumen into another. Further, a polymer may be fabricated as a drain or a tube suitable for removing fluid from a post-operative site, and in some embodiments adaptable for use with closed section drainage systems such as Jackson-Pratt drains and the like as are familiar in the art.
- The mechanical properties of the polymer may be important for the processability of making molded or pressed articles for implantation. For example, the glass transition temperature may vary widely but must be sufficiently lower than the temperature of decomposition to accommodate conventional fabrication techniques, such, as compression molding, extrusion, or injection molding.
- In certain embodiments, the polymers and blends of the present invention, upon contact with body fluids, undergo gradual degradation. The life of a biodegradable polymer in vivo depends upon, among other things, its molecular weight, crystallinity, biostability, and the degree of crosslinking. In general, the greater the molecular weight, the higher the degree of crystallinity, and the greater the biostability, the slower biodegradation will be.
- If a subject composition is formulated with a therapeutic agent or other material, release of such an agent or other material for a sustained or extended period as compared to the release from an isotonic saline solution generally results. Such release profile may result in prolonged delivery (over, about 1 to about 2,000 hours, or alternatively about 2 to about 800 hours) of effective amounts (e.g., about 0.0001 mg/kg/hour to about 1 0 mg/kg/hour) of the agent or any other material associated with the polymer.
- A variety of factors may affect the desired rate of hydrolysis of polymers of the subject invention, the desired softness and flexibility of the resulting solid matrix, rate and extent of bioactive material release. Some of such factors include the selection/identity of the various subunits, the enantiomeric or diastereomeric purity of the monomeric subunits, homogeneity of subunits found in the polymer, and the length of the polymer. For instance, the present invention contemplates heteropolymers with varying linkages, and/or the inclusion of other monomeric elements in the polymer, in order to control, for example, the rate of biodegradation of the matrix.
- To illustrate further, a wide range of degradation rates may be obtained by adjusting the hydrophobicities of the backbones or side chains of the polymers while still maintaining sufficient biodegradability for the use intended for any such polymer. Such a result may be achieved by varying the various functional groups of the polymer. For example, the combination of a hydrophobic backbone and a hydrophilic linkage produces heterogeneous degradation because cleavage is encouraged whereas water penetration is resisted.
- One protocol generally accepted in the field that may be used to determine the release rate of any therapeutic agent or other material loaded in the polymer matrices of the present invention involves degradation of any such matrix in a 0.1 M PBS solution (pH 7.4) at 37° C., an assay known in the art. For purposes of the present invention, the term “PBS protocol” is used herein to refer to such protocol.
- In certain instances, the release rates of different polymer systems of the present invention may be compared by subjecting them to such a protocol. In certain instances, it may be necessary to process polymeric systems in the same fashion to allow direct and relatively accurate comparisons of different systems to be made. For example, the present invention teaches several different means of formulating the polymeric, matrices of the present invention. Such comparisons may indicate that any one polymeric system releases incorporated material at a rate from about 2 or less to about 1000 or more times faster than another polymeric system.
- Alternatively, a comparison may reveal a rate difference of about 3, 5, 7, 10, 25, 50, 100, 250, 500 or 750 times. Even higher rate differences are contemplated by the present invention and release rate protocols.
- In certain embodiments, when formulated in a certain manner, the release rate for polymer systems of the present invention may present as mono- or bi-phasic.
- Release of any material incorporated into the polymer matrix, which is often provided as a microsphere, may be characterized in certain instances by an initial increased release rate, which may release from about 5 to about 50% or more of any incorporated material, or alternatively about 10, about 15, about 20, about 25, about 30 or about 40%, followed by a release rate of lesser magnitude.
- The release rate of any incorporated material may also be characterized by the amount of such material released per day per mg of polymer matrix. For example, in certain embodiments, the release rate may vary from about 1 ng or less of any incorporated material per day per mg of polymeric system to about 500 or more ng/day/mg. Alternatively, the release rate may be about 0.05, 0.5, 5, 10, 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, or 500 ng/day/mg. In still other embodiments, the release rate of any incorporated material may be about 10,000 ng/day/mg, or greater. In certain instances, materials incorporated and characterized by such release rate protocols may include therapeutic agents, fillers, and other substances.
- In another aspect, the rate of release of any material from any polymer matrix of the present invention may be presented as the half-life of such material in the matrix.
- In addition to the embodiment involving protocols for in vitro determination of release rates, in vivo protocols, whereby in certain instances release rates for polymeric systems may be determined in vivo, are also contemplated by the present invention. Other assays useful for determining the release of any material from the polymers of the present system are known in the art.
- In its simplest form, a biodegradable delivery system for a therapeutic agent consists of a dispersion of such a therapeutic agent in a polymer matrix. In other embodiments, an article is used for implantation, injection, or otherwise placed totally or partially within the body, the article comprising the subject compositions. It is particularly important that such an article result in minimal tissue irritation when implanted or injected into vasculated tissue.
- Biodegradable delivery systems, and articles thereof, may be prepared in a variety of ways known in the art. The subject polymer may be melt-processed using conventional extrusion or injection molding techniques, or these products may be prepared by dissolving in an appropriate solvent, followed by formation of the device, and subsequent removal of the solvent by evaporation or extraction.
- Once a system or implant article is in place, it should remain in at least partial contact with a biological fluid, such as blood, internal organ secretions, mucus membranes, cerebrospinal fluid, and the like to allow for sustained release of any encapsulated therapeutic agent.
- In certain situations, the present polymer conjugates can be used in the treatment of one or more diseases, such as those exhibiting abnormal cellular proliferation, such as cancer, for example, breast, lung, colon, and ovarian cancer. When employed in the treatment of cancers, the subject polymer conjugates in some cases comprise one or more therapeutic agents including, but not limited to, salicylic acid, acetaminophen, morphine, etoposide, a tubulysin (preferably tubulysin A, tubulysin B, or tubulysin C), an epothilone, camptothecin, or vancomycin, or an analog or derivative thereof, particularly a tubulysin, an epothilone or an analog or derivative thereof.
- Additional cyclodextrin-containing polymers that can be modified according to the teachings of the present invention, as well as methods of preparing such polymers, are disclosed in U.S. Pat. Nos. 6,509,323; 7,018,609; 7,091,192; and, 7,166,302 and U.S. patent application Ser. No. 09/453,707, all of which are hereby incorporated herein by reference in their entireties.
- All of the references, patents, and publications cited herein are hereby incorporated by reference in their entireties.
-
- Fmoc-PEG-aceticacid (5.7 g, 13 mmol), HBTU (4.9 g, 13 mmol), HOBT (2.0 g, 13 mmol), and DIPEA (3.4 g, 26 mmol) were dissolved in DMF (25 mL). GFLG-MEDA-Z (5.1 g, 8.8 mmol) was dissolved in DMF (13 mL) and DIPEA (3.7 g, 29 mmol) and added to the previous solution prepared. The reaction mixture was stirred for 1.5 h at room temperature. DMF was removed under reduced pressure and the obtained residue was dissolved in 200 mL CH2Cl2, the solution was washed twice with 0.1 N HCl (200 mL) and followed by washing with water (200 mL). It was then dried over MgSO4 and CH2Cl2 was removed under vacuum to yield crude product. It was then purified by flash column chromatography to yield white solid product, FMOC-PEG-GFLG-MEDA-Z (6.2 g, 72%).
- FMOC-PEG-GFLG-MEDA-Z (3.0 g, 3.0 mmol) was dissolved in CH2Cl2 (60 mL) of 0.2 M 2-Bromo-1,3,2-benzodioxaborole (2.4 g, 12 mmol). The reaction mixture was stirred overnight at room temperature. The reaction was stopped by the addition of MeOH (10 mL). Solvents were removed under vacuum. The obtained residue was dissolved in a small volume of methanol and precipitated in cool diethyl ether to yield the product (2.6 g, >99%). ESI/MS (m/z) expected 860.01; found 882.76 [M+Na].
-
- FMOC-PEG-GFLG-MEDA (2.6 g, 2.8 mmol), Etop-NP (2.7 g, 3.6 mmol), DIPEA (0.70 g, 5.5 mmol) and DMAP (34 mg, 0.28 mmol) were dissolved in DMF (60 mL) and stirred for 1.5 h at 60° C. DMF was removed under vacuum. The obtained residue was dissolved in CH2Cl2 (150 mL). It was then washed twice with 0.1 N HCl (150 mL) and followed by washing with water (150 mL). It was dried over MgSO4 and reduced under vacuum to yield the crude product. The crude product was purified by flash column chromatography to yield the product, FMOC-PEG-GFLG-MEDA-ETOP (3.2 g, 80%). ESI/MS (m/z) expected 1474.6; found 1497.16 [M+Na].
- FMOC-PEG-GFLG-MEDA-ETOP (100 mg, 0.068 mmol) was dissolved in 1.2 mL of 20% piperidine in DMF. The reaction mixture was stirred for 3 min at room temperature. The product was precipitated in diethyl ether (50 mL) and washed with to yield the product (60 mg, 70%). ESI/MS (m/z) expected 1252.32; found 1274.87 [M+Na].
-
- Cyclodextrin-based polymer (CDP) (1.8 g, 0.36 mmol) was dissolved in dry DMF (35 mL). The mixture was stirred until completely dissolved. DIPEA (0.94 g, 7.3 mmol), EDC (0.70 g, 3.6 mmol), and NHS (420 mg, 3.6 mmol) were added into the above solution. PEG-GFLG-MEDA-ETOP (1.4 g, 1.1 mmol) was dissolved in DMF (10 mL) and added to the polymer solution. The solution was stirred for 4 h, and then the polymer was precipitated in ethylacetate (150 mL). The precipitate was dissolved in DMF (15 mL) and precipitated in acetone (75 mL). The precipitated product was dissolved in
pH 4 water (80 mL). The solution was dialyzed using 25K MWCO membrane (Spectra/Por 7) for 24 h. It was filtered through 0.2 μm filters (Nalgene) and lyophilized to yield white solid (1.1 g, 61%). Loading of etoposide was determined to be 10% w/w by UV-Vis Spectroscopy at 283 nm. -
- In a dry 100 mL round bottom flask, etoposide (1.0 g, 1.7 mmol) and TEA (2.5 g, 25 mmol) were dissolved in anhydrous THF (35 mL) under argon. To that solution, 4-nitrophenyl chloroformate (0.39 g, 1.95 mmol) in anhydrous THF (15 mL) was added dropwise over 30 min. The reaction mixture was stirred for additional 2 h at RT. The mixture was filtered and concentrated under reduced pressure to yield yellow solid. The solid was purified by flash column chromatography to yield light yellow solid (0.75 g, 59%).
-
- In a dry 25 mL round bottom flask, 4-nitrophenyl carbonate ester of etoposide (100 mg, 0.13 mmol), 4-pyridylthiol cysteamine hydrochloride (35 mg, 0.16 mmol), DIPEA (34 mg, 0.27 mmol) were dissolved in DMF (5 mL). The reaction mixture was stirred at room temperature for 15 h. DMF was removed under reduced pressure to yield a light yellow solid. CH2Cl2 (25 mL) was added and it was washed with 0.1 N HCl (10 mL) twice. It was then dried over MgSO4 and concentrated to yield a light yellow solid. The solid was purified by flash column chromatography to yield yellow solid (51 mg, 48%).
-
- In a 10 mL round bottom flask, 4-pyridylthiol cysteamine carbamate of etoposide (50 mg, 0.0625 mmol) and cysteamine hydrochloride (6.4 mg, 0.057 mmol) were dissolved in MeOH (2 mL). The mixture was stirred for 1 h at room temperature. The solution was concentrated under vacuum and diethyl ether (5 mL) was added to precipitate out white solid. The solid was filtered and redissolved in MeOH (0.5 mL) and precipitated in CH2Cl2 (15 mL). The solid was filtered and dried under vacuum to yield a white solid. It was then purified by Prep HPLC to yield white solid (19 mg, 38%). ESI/MS (m/z) expected 767.84; found 767.29 [M]+.
-
- CDP (96 mg, 0.020 mmol) was dissolved in dry N,N-dimethylformamide (2 mL). The mixture was stirred for 20 min. Cystamine carbamate of etoposide (35 mg, 0.044 mmol), N,N-Diisopropylethylamine (5.6 mg, 0.044 mmol), N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (11 mg, 0.059 mmol), and N-Hydroxysuccinimide (5.0 mg, 0.044 mmol) were added to the polymer solution and stirred for 4 h. The polymer was precipitated with ethylacetate (50 mL). The precipitate was dissolved in deionized water (10 mL). The solution was dialyzed using 25K MWCO membrane (Spectra/Por 7) for 27 h. It was filtered through 0.2 μm filters (Nalgene) and lyophilized to yield white solid (57 mg, 59%). Loading of etoposide was determined to be 12.5% w/w by UV-Vis Spectroscopy at 283 nm.
-
- In a 100 mL round bottom flask, etopophosphate (720 mg, 1.1 mmol), N,N′-diisopropylcarbodiimide (96 mg, 0.72 mmol), N-hydroxysuccinimide (83 mg, 0.72 mmol) and N,N-Diisopropylethylamine (140 mg, 2.3 mmol) were dissolved in anhydrous DMF (10 mL). The solution was stirred for 45 min at room temperature. EDA functionalized CDP (1.5 g, 0.60 mmol) and N,N-Diisopropylethylamine (160 mg, 2.3 mmol) were dissolved in anhydrous DMF (10 mL) on a separate 100 mL round bottom flask. This reaction mixture was added to the previous mixture at room temperature and stirred for 4 h at room temperature. The mixture was concentrated to 10 mL and precipitated out in ethyl acetate (500 mL). The polymer was dissolved in deionized water (150 mL) and it was dialyzed using 25K MWCO membrane (Spectra/Por 7) for 26 h. It was then filtered through 0.2 μm filters (Nalgene) and lyophilized to yield white solid (1.1 g, 73%). Loading of etoposide was determined to be 8.3% w/w by UV-Vis Spectroscopy at 283 nm.
- A mixture of CDP-PEG (2 g, 0.43 mmole), which was synthesized according to a published procedure (Bioconjugate Chem. 2003, 14, 1007), pyridine dithioethylamine hydrochloric salt (384 mg, 1.73 mmole), EDC (333 mg, 1.73 mmole), and NHS (198 mg, 1.73 mmole) was dried overnight in a 200 mL round bottom flask under vacuum. Anhydrous DMF (40 mL) was then added, followed by DIEA (0.3 mL, 1.73 mmole). The reaction mixture was stirred under argon at room temperature for 4 h. Diethyl ether (300 mL) was then added into the mixture to precipitate the polymer. The crude product was dissolved in H2O (400 mL) and the solution was dialyzed using a 25K MWCO membrane (Spectra/Por 7) against water. The dialysis water was changed twice over a period of 24 h, after which the polymer containing solution was filtered through a 0.2 μm filter membrane and lyophilized to yield 1.64 g of CDP-PEG-SS-Py (82% yield) as a white solid.
- To a PBS (6.8 mL) solution of CDP-PEG-SS-Py (155 mg, 0.032 mmole) was added a water (1 mL) solution of DTT, which gave rise to 20 mg/mL of the concentration of polymer. The reaction mixture was stirred at room temperature for 3 h and then dialyzed by a 25K MWCO membrane in degassed EDTA (1 mM, 2 L) water solution. The dialysis water was changed once over a period of 24 h. After filtration with 0.2 μm filter membrane, the solution was lyophilized to produce a white solid (109 mg) in quantitative yield.
- To a solution of pyridine dithioethylamine hydrochloric salt (15.8 mg, 0.071 mmole) in anhydrous DMF (1.5 mL) was added DIEA (25 μL, 0.142 mmole) followed by a solution of tubulysin A (40 mg, 0.047 mmole) in anhydrous DMF (0.5 mL). The reaction mixture was stirred under argon at room temperature for 2 h. The mixture was then evaporated under vacuum. The crude product was purified by silica gel column chromatography (CH2Cl2/MeOH, 15/1) to afford white solid (54 mg) in quantitative yield.
- CDP-PEG-SS-Py (43 mg, 0.0094 mmole) was dissolved in degassed MeOH (1.8 mL), into which was added a methanol solution (0.35 mL) of Tub-S—S-pyr (9.5 mg, 0.0094 mmole) to bring the total reaction volume of 2.15 mL. The resulting yellow mixture was stirred under argon at room temperature for 4 h. N-ethyl maleimide (118 mg, 0.94 mmole) was then added to quench the reaction resulting in clear, colorless solution. This solution was dialyzed using a 25K MWCO membrane, and the dialysis water was changed once over a period of 24 h. The solution was then filtered through 0.2 μm filter membrane and lyophilized to afford target polymer (27 mg, 45% yield) as a white solid.
- The cytotoxicity of drug-polymer conjugates and linker-drug precursors was determined in the human ovarian carcinoma cell line A2780. Cells were grown in RPMI 1640 media containing 10% fetal bovine serum (FBS). 10,000 cells per well were seeded in a 96-well plate and incubated at 37° C. for 24 hours, at which time drug was added to triplicate wells at various concentrations. After 72 hours of incubation at 37° C. in the presence of drug, cells were washed with PBS, incubated for 1 hour with an MTS solution, and analyzed according to manufacturer's instructions (CellTiter 96 one solution cell proliferation assay, Promega, Madison, Wis.). The concentration of drug to kill 50% of cells (IC50) was determined using a 4-parameter fit (see Table 1).
-
TABLE 1 IC50 values for etoposide derivatives Drug IC50 Compound Linker Loading (μM) etoposide — — 0.2 CDP-GFLG- DMEDA-GFLG 8.1% 349.0 DMEDA-Eton CDP-GFLG- MEDA-GFLG 9.2% 81.3 MEDA-Etop CDP-PEG-GFLG- MEDA-GFLG- 10.9% 22.6 MEDA-Eton PEG CDP-carbonate-SS-Eton disulfide bond 17.0% 12.3 CDP-carbamate-SS-Eton disulfide bond 12.5% 15.1 CDP-EDA-EtopPhos phosphate 10.7% 0.7 CDP-EDA- phosphoester 13.7% 25.7 EtopPhosphoester - The antiproliferative activity of CDP-PEG-SS-Tubulysin (CDP-S—S-Tub) was evaluated in vitro in multiple human cancer cell lines (NCI-H1299 lung cancer, HT-29 colon cancer, and A2780 ovarian cancer) and compared with Tubylysin A (Tub A) and the sulfur derivatized Tubylysin A (Tub-SH) (Table 2). The data shows that the conjugate maintains high antiproliferative activity.
-
TABLE 2 IC50 values for CDP-PEG-SS-Tubulysin IC50 (nM) Cell lines CDP-S-S-Tub Tub A Tub-SH NCI-H1299 23.7 2.8 N/A (lung) cells HT-29 (colon) cells 4.9 1.3 4.4 A2780 (ovarian) cells 13 2.4 N/A - HRLN female nu/nu mice were set up and dosing solutions were prepared. Body weight was determined biweekly until the end of the study. The endpoint was where mean weight loss exceeded 20% or >10% of animals in a group died, dosing was immediately stopped. Moribund animals were euthanized following PRC SOP. All animals were euthanized 14 days post final dose.
- The maximum tolerated dose of CDP-PEG-SS-Tubulysin (CDP-S—S-Tub) was determined in nude mice and found to be 6 mg/kg (in Tubulysin equivalents) whereas that of Tubulysin A was 0.05 mg/kg (Table 3).
-
TABLE 3 MTD studies of CDP-S-S-Tub a Treatment Mean BW # of Avg. Day Group n agent mg/kg Nadirb TRc of TR 1 4 CDP-S-S-Tub 10 (−) 23.4% Day 5 4 7 2 5 CDP-S-S-Tub 8 (−) 22.1% Day 11 1 11 3 5 CDP-S-S-Tub 6 (−) 10.8 % Day 40 N/ A 4 4 CDP-S-S-Tub 3 (−) 8.7% Day 11 0 N/A 5 4 CDP-S-S-Tub 1 (−) 0.4 % Day 20 N/ A 6 4 Tubulysin A 3 (−) 9.7 % Day 24 3 7 4 Tubulysin A 1 (−) 15.7 % Day 34 4 8 4 Tubulysin A 0.3 (−) 18.9% Day 8 4 9 9 5 Tubulysin A 0.05 (−) 0.3% Day 5 0 N/A a all mice were treated with schedule qwkx3 using iv injection b Nadir: the lowest point c TR: treatment related deaths - Subcutaneous human tumor xenografts. The HT29 colon cancer cell line was maintained in nude mice. Then 1 mm3 HT29 tumor fragments were implanted s.c. into the right flank of HRLN female nu/nu mice.
- Tumors were measured in two dimensions with calipers bi-weekly to the end of the study. Tumor volume was calculated based on the formula: tumor volume=(length×width2)/2. Tumor weight was obtained from tumor volume assuming 1 mm3 is equal to 1 mg of tumor in weight. When tumors reach an average size of 80-120 mg, a pair match was done to sort mice into groups of ten each and then treatment was started (day 1).
- All of the treatments were given by i.v. The endpoint of the experiment was a tumor volume of 1 gm or 90 days. When tumor reached the endpoint the mouse was euthanized and endpoint tumor growth delay was calculated consequently. End-point tumor size was chosen to maximize the number of tumor doublings within the exponential growth phase in the control animals. It was set at 1000 mm3 for HT29.
- Determination of treatment efficacy. Treatment efficacy was determined by the time which took a specific tumor to reach the predetermined endpoint size (1000 mm3 for HT29). The time to endpoint (TTE) for each mouse was calculated from the equation TTE=[log(endpoint)−b]/m, where b was the intercept and m was the slope of the line obtained by linear regression of a log-transformed tumor growth data set, which consisted of the first observation that exceeded the study endpoint volume and the three consecutive observations that immediately preceded the attainment of the endpoint volume. TTE values equal to the last day of the study were assigned to those mice whose tumor volume did not reach the endpoint size. A TTE value equal to the day of death was assigned to a mouse whose death was classified as treatment-related death. The mice whose deaths were classed as non-treatment-related deaths were excluded from TTE calculations. Tumor growth delay (TGD) is defined as the difference between the median TTE for a treatment group and the median TTE of the control group (TGD=T−C). It is expressed in days and as a percentage of the median TTE of the control group: % TGD=[(T−C)/C]×100, where T equals the median TTE for a treatment group and C equals the median TTE for control.
- Treatment may cause partial regression or complete regression of the tumor in an animal. Partial regression response is defined as the tumor volume's being ≤50% of its
day 1 volume for three consecutive measurements during the course of the study and ≥13.5 mm3 for one or more of these three measurements. Complete regression response is defined as the tumor volume is <13.5 mm3 for three consecutive measurements during the course of the study. A tumor-free survivor is an animal with a complete regression response at the end of the study. - Determination of tolerability. Animals were weighed daily on
days 1 to 5, then twice per week until the completion of the study. The mice were examined for overt signs of any adverse drug-related side effects. Acceptable toxicity for the maximum tolerated dose was defined as group mean weight loss less than 20% or no more than 10% of animals in a group die from toxicity. - Efficacy was evaluated in nude mice bearing subcutaneously implanted HT-29 colorectal carcinoma xenografts. HRLN female nu/nu mice were set up with 1 mm3 HT-29 tumor fragments s.c. in the flank. The pair match was then done when the tumors reached an average size of 80 to 120 mg and was followed by beginning treatment. Dosing solutions were prepared daily and body weight was determined bi-weekly until the end of the study. Caliper measurements were taken bi-weekly to the end of the study. Animals were monitored individually, and the endpoint of the experiment was a tumor volume of 1 g or 90 days, whichever came first. Responders were followed longer. When the endpoint was reached, the animals were euthanized.
- CDP-PEG-SS-Tubulysin (CDP-S—S-Tub) was administered as a solution in 100% water. Tubulysin A was administered as a solution in 10% DMSO:1% Tween 80:89% Saline. The vehicle was 10% DMSO:1% Tween 80:89% Saline. Vinblastine was administered as a solution in 100% Saline. The dosing volume was 10 mL/kg (0.200 mL/20 g mouse) adjusted for body weight.
- Treatment with CDP-PEG-SS-Tubulysin (CDP-S—S-Tub) was well tolerated, with no mortality or significant antitumor effect. It was better tolerated than vinblastine and Tubulysin A. Treatment with CDP-PEG-SS-Tubulysin resulted in a higher number of regressions and a significant increase in tumor growth delay compared to Vinblastine. Treatment with Tubulysin A was proven to be toxic for the mice, causing 50% mortality and 26.8% maximum body weight loss on day 26 (Table 4 and
FIGS. 1-2 ). -
TABLE 4 Antitumor activity of CDP-S-S- Tub Group 1b 2 3 4 5 n 10 10 10 10 10 Treatment Regimena Agent Vehiclec Tubulysin Vinblastine CDP- CDP- A S-S- S-S- TUB TUB mg/kg — 0.1 4 3d 3d Schedule qwkx3 qwkx3 qwkx3 qwkx3 qdxl Treatment Results MTV(n), Day 90e— — — 700.0 (3) — BW Nadir (%) — −26.80 −3.60 −2.20 −2.90 Median TTE 33.65 34.46 45.05 73.55 56.92 TC 0.81 11.4 39.9 23.27 % TGD 2.42 33.89 118.57 69.15 Statistical Significancef vs G1 — ne ** *** *** vs G4 *** ne *** *** vs G5 *** ne ns *** Regressions PR 0 0 0 6 0 CR 0 0 0 3 0 TFS 0 0 0 1 0 Deaths TR 0 5 0 0 0 Endpoint: TV = 1000 mm3 or Day 90, whichever comes firsta all mice were treated using i.v. injection b control group c vehicle: 10% DMSO: 1% Tween 80: 89% Saline d active Tub dose equivalents e MTV(n): median tumor volume (mm3) for the number of animals on the day of TGD analysis (excludes animals with tumor volume at endpoint) f ne = not evaluable; ns = non-significant; ** = 0.001 < P <0.01; *** = P < 0.001 - A polymer-tubulysin conjugate CDP-PEG-SS-Tubulysin was synthesized and found to be highly soluble in water. The conjugate showed strong antiproliferative activity in multiple human cancer cell lines. The MTD of CDP-PEG-SS-Tubulysin was determined to be between 3 and 10 mg/kg while the free drug Tubulysin A was severely toxic even at 0.1 mg/kg. Efficacy studies of CDP-PEG-SS-Tubulysin at 3 mg/kg showed that it was well-tolerated and produced substantial antitumor activity during a 90-day study. By contrast, the free drug Tubulysin A showed excessive toxicity, causing 50% mortality. Vinblastine, a vinca alkaloid that inhibits tubulin polymerization by binding to the same binding site as Tubulysin A, was significantly less effective as an antitumor agent compared to CDP-PEG-SS-Tubulysin. These results demonstrate that conjugation to a cyclodextrin-based polymer can improve the solubility, tolerability, and preclinical antitumor activity of antitumor drugs such as Tubulysin A.
- Loading was determined by HPLC to be 12%. The particle size of the parent polymer was measured to be 9-10 nm while CDP-PEG-SS-Tubulysin self-assembled into nanoparticles with a particle size of 127 nm. The solubility of Tubulysin A in water was determined to be 0.1 mg/mL at a neutral pH while that of CDP-PEG-SS-Tubulysin was found to be 100 times higher.
- Release studies were performed by incubating CDP-PEG-SS-Tubulysin in both PBS and human plasma. Release kinetics of tubulysin from the polymer conjugate at 24 h showed 4.5% release in PBS at pH 5.5, 48% release in PBS at pH 7.4 and 75% release in human plasma at pH 7.5. At 48 h, release kinetics were determined to be 9.2% release in PBS at pH 5.5, 68% release in PBS at pH 7.4 and 82% release in human plasma at pH 7.5.
- To increase the cellular uptake of cyclodextrin-based polymer (CDP) in cancer cells, luteinizing hormone-releasing hormone (LHRH) was used as a targeting ligand and the receptor-mediated endocytosis of the nanoparticles investigated in several human cancer cell lines.
- LHRH-PEG-maleimide and rhodamine (Rho)-maleimide were conjugated to CDP to form LHRH targeted nanoparticulate polymers (7.1% w/w LHRH, 11.3% w/w Rho). Table 5 lists properties of the prepared CDP naoparticles.
-
TABLE 5 Properties of CDP naoparticles Mw of parent LHRH Rho Particle polymer Mw/ loading loading Size Compound (kDa) Mn* (wt %) (wt %) (nm)+ LHRHa- 64 2.1 7.1 11.3 41 (145.3) CDP-Rho CDP-Rho 64 2.1 — 10.7 34 (34) sLHRHa- 64 2.1 5.2 8.8 30 (228.6) CDP-Rho * Polymer dispersity determined by light scattering techniques. + Mean particle size determined in water (number in bracket represent in RPMI culture medium) by dynamic light scattering using a ZetaPals instrument (Brookhaven Instruments, Holtsville, NY). - Cellular uptake studies of nanoparticles formed by LHRH targeted CDP-Rho (LHRH-CDP-Rho), non-targeted polymer (CDP-Rho, 10.7% w/w Rho), CDP-Rho mixed with excess LHRH and scrambled LHRH conjugated polymer (sLHRH-CDP-Rho) (5.2% w/w LHRH, 8.8% w/w Rho) were performed at either 37 or 4° C. in MCF-7 (breast cancer), OVCAR-3 (ovarian cancer), and SKOV-3 (ovarian cancer) cell lines and analyzed by microplate reader or FACS. To investigate the endocytosis of LHRH-CDP-Rho, cells were incubated with conjugates at 4° C. and chased with fresh medium at 37° C. The intracellular localization of LHRH-CDP-Rho was visualized by laser scanning confocal microscopy. Table 6 lists cellular uptake levels in various cell lines.
-
TABLE 6 Cellular uptake levels Percentage (%) of Total Dosing Cell Lines CDP-Rho LHRHa-CDP-Rho MCF-7 0.02 ± 0.005 0.85 ± 0.11 OVCAR 0.01 ± 0.001 0.59 ± 0.18 SKOV-3 0.01 ± 0.004 0.40 ± 0.09 - To assess comparative cellular uptake of CDP-Rho systems, MCF-7 Cells were incubated with LHRHa targeted, sLHRHa targeted or non-targeted CDP-Rho conjugates at a concentration of 30 μM (Rhodamine equivalent) for 3 h at 37° C. or 4° C. Cells in parallel wells were incubated with mixture of CDP-Rho and LHRHa. Cells were then assayed for fluorescence by using a spectrofluorometer (
FIG. 3 ). Each column inFIG. 3 represents the mean of three measurements with error bars representing the standard deviation. - The distribution of CDP-Rho systems following dosing was determined. MCF-7 Cells were pulsed with targeted (LHRHa-CDP-Rho) or non-targeted CDP-Rho conjugates at a concentration of 30 μM for 3 h at 4° C. and then chased at 37° C. for 2 h in fresh medium. The chased medium was assayed as dissociated and/or recycling polymer. The amount of cell surface bound polymer conjugates was determined by trypsin treatment. Finally, the lysed cell was assayed as cellular uptake. Data were interpreted as percentage of initially binding conjugates (
FIG. 4 ). Each column inFIG. 4 represents the mean of three measurements. - Comparison of cellular uptake of CDP-Rho vs. LHRH-CDP-Rho was also determined by flow cytometry (
FIG. 5 ). MCF-7 Cells were incubated with polymer conjugates at a concentration of 30 μM (Rhodamine equivalent) for 3 h at 37° C. Cells were then collected, washed and analyzed by flow cytometry. - Pulse chase studies were also conducted (
FIG. 6 ). MCF-7 cells were coincubated with 1 μM Lysotracker Green DND-26 and 2.3 μM LHRHa-CDP-Rho (Rhodamine equivalent) for 1 h at 37° C. InFIG. 6 , panel (a) shows localization of LHRHa-CDP-Rho; panel (b) shows localization of lysotracker Green DND-26; panel (c) shows epifluorescence image of MCF cells; and panel (d) shows superposition of (a) and (b), which allows for detection of colocalization of LHRHa-CDP-Rho and Lysotracker Green DND-26. - Cellular uptake of LHRH targeted polymer nanoparticle was 40-60 times higher than that of non-targeted polymer nanoparticle in various cancer cell lines (
FIGS. 3-4 ). A mixture of CDP-Rho with LHRH did not increase the cellular uptake of the CDP-Rho; the cellular uptake of the polymeric nanoparticles was largely decreased when scrambled LHRH was conjugated to polymer compared with LHRH-CDP-Rho; and the increased cellular uptake of LHRH targeted polymer was inhibited at 4° C. (FIG. 3 ). - The percentage cellar uptake and cell surface binding was much greater for LHRH-CDP-Rho than for CDP-Rho, while disassociation and/or recycling was reduced (
FIG. 4 ). - Cytometry further showed that cells treated with LHRH targeted CDP nanoparticles showed higher uptake than non-targeted nanoparticles (
FIG. 5 ). - Pulse chase studies demonstrated that the internalization of LHRH-CDP-Rho was temperature dependent. Substantial colocalization of LHRH-CDP-Rho with Lysotracker green was observed by confocal microscopy (
FIG. 6 ). - The cellular uptake of the examined CDP nanoparticles was greatly enhanced by conjugation with LHRH. In this particular embodiment, the increase in uptake was observed with covalent attachment of LHRH to the polymer nanoparticles and specific binding between LHRH and LHRH-receptor. Also, the internalization process was temperature dependent, and the LHRH targeted polymer nanoparticles localized into the endocytic pathway. These results indicate that hormones, such as LHRH, can be used to increase the intracellular concentration of CDP polymer microparticles or nanoparticles in cells that express the corresponding hormone receptor, such as the LHRH receptor.
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the compounds and methods of use thereof described herein. Such equivalents are considered to be within the scope of this invention and are covered by the following claims.
Claims (24)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/911,655 US20210154308A1 (en) | 2007-01-24 | 2020-06-25 | Polymeric drug conjugates with tether groups for controlled drug delivery |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US89709607P | 2007-01-24 | 2007-01-24 | |
| US275207P | 2007-11-09 | 2007-11-09 | |
| US12/002,305 US20080176958A1 (en) | 2007-01-24 | 2007-12-14 | Cyclodextrin-based polymers for therapeutics delivery |
| US13/190,401 US20110282047A1 (en) | 2007-01-24 | 2011-07-25 | Cyclodextrin-based polymers for therapeutics delivery |
| US13/198,403 US8497365B2 (en) | 2007-01-24 | 2011-08-04 | Cyclodextrin-based polymers for therapeutics delivery |
| US13/922,739 US9610360B2 (en) | 2007-01-24 | 2013-06-20 | Polymer drug conjugates with tether groups for controlled drug delivery |
| US15/434,431 US20180008719A1 (en) | 2007-01-24 | 2017-02-16 | Polymeric drug conjugates with tether groups for controlled drug delivery |
| US16/911,655 US20210154308A1 (en) | 2007-01-24 | 2020-06-25 | Polymeric drug conjugates with tether groups for controlled drug delivery |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/434,431 Continuation US20180008719A1 (en) | 2007-01-24 | 2017-02-16 | Polymeric drug conjugates with tether groups for controlled drug delivery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20210154308A1 true US20210154308A1 (en) | 2021-05-27 |
Family
ID=39641902
Family Applications (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/002,305 Abandoned US20080176958A1 (en) | 2007-01-24 | 2007-12-14 | Cyclodextrin-based polymers for therapeutics delivery |
| US13/190,401 Abandoned US20110282047A1 (en) | 2007-01-24 | 2011-07-25 | Cyclodextrin-based polymers for therapeutics delivery |
| US13/198,403 Expired - Fee Related US8497365B2 (en) | 2007-01-24 | 2011-08-04 | Cyclodextrin-based polymers for therapeutics delivery |
| US13/922,739 Expired - Fee Related US9610360B2 (en) | 2007-01-24 | 2013-06-20 | Polymer drug conjugates with tether groups for controlled drug delivery |
| US15/434,431 Abandoned US20180008719A1 (en) | 2007-01-24 | 2017-02-16 | Polymeric drug conjugates with tether groups for controlled drug delivery |
| US16/911,655 Abandoned US20210154308A1 (en) | 2007-01-24 | 2020-06-25 | Polymeric drug conjugates with tether groups for controlled drug delivery |
Family Applications Before (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/002,305 Abandoned US20080176958A1 (en) | 2007-01-24 | 2007-12-14 | Cyclodextrin-based polymers for therapeutics delivery |
| US13/190,401 Abandoned US20110282047A1 (en) | 2007-01-24 | 2011-07-25 | Cyclodextrin-based polymers for therapeutics delivery |
| US13/198,403 Expired - Fee Related US8497365B2 (en) | 2007-01-24 | 2011-08-04 | Cyclodextrin-based polymers for therapeutics delivery |
| US13/922,739 Expired - Fee Related US9610360B2 (en) | 2007-01-24 | 2013-06-20 | Polymer drug conjugates with tether groups for controlled drug delivery |
| US15/434,431 Abandoned US20180008719A1 (en) | 2007-01-24 | 2017-02-16 | Polymeric drug conjugates with tether groups for controlled drug delivery |
Country Status (2)
| Country | Link |
|---|---|
| US (6) | US20080176958A1 (en) |
| JP (4) | JP2010516625A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12128063B2 (en) | 2021-10-05 | 2024-10-29 | International Business Machines Corporation | Biocompatible and biodegradable antiviral polymers |
Families Citing this family (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BR122012021252B8 (en) | 2002-09-06 | 2021-05-25 | Cerulean Pharma Inc | cyclodextrin-based polymers for the delivery of covalently linked therapeutic agents |
| KR20050051686A (en) * | 2002-10-09 | 2005-06-01 | 인설트 테라페틱스, 인코퍼레이티드 | Cyclodextrin-based materials, compositions and uses related thereto |
| CN101098854B (en) | 2004-07-23 | 2012-12-05 | 恩多塞特公司 | Bivalent linkers and conjugates thereof |
| JP2010516625A (en) | 2007-01-24 | 2010-05-20 | インサート セラピューティクス, インコーポレイテッド | Polymer-drug conjugates with tether groups for controlled drug delivery |
| NZ599239A (en) | 2007-03-14 | 2013-10-25 | Endocyte Inc | Binding ligand linked drug delivery conjugates of tubulysins |
| US9138484B2 (en) | 2007-06-25 | 2015-09-22 | Endocyte, Inc. | Conjugates containing hydrophilic spacer linkers |
| US9877965B2 (en) | 2007-06-25 | 2018-01-30 | Endocyte, Inc. | Vitamin receptor drug delivery conjugates for treating inflammation |
| WO2010114770A1 (en) * | 2009-03-30 | 2010-10-07 | Cerulean Pharma Inc. | Polymer-agent conjugates, particles, compositions, and related methods of use |
| WO2010117668A1 (en) * | 2009-03-30 | 2010-10-14 | Cerulean Pharma Inc. | Polymer-agent conjugates, particles, compositions, and related methods of use |
| WO2010114768A1 (en) * | 2009-03-30 | 2010-10-07 | Cerulean Pharma Inc. | Polymer-epothilone conjugates, particles, compositions, and related methods of use |
| US8394922B2 (en) * | 2009-08-03 | 2013-03-12 | Medarex, Inc. | Antiproliferative compounds, conjugates thereof, methods therefor, and uses thereof |
| US20110152512A1 (en) * | 2009-09-09 | 2011-06-23 | John Ryan | Cyclodextrin-based polymers for therapeutics delivery |
| WO2011089214A1 (en) * | 2010-01-22 | 2011-07-28 | Ascendis Pharma As | Carrier-linked carbamate prodrug linkers |
| CN103037903A (en) * | 2010-05-18 | 2013-04-10 | 天蓝制药公司 | Compositions and methods for treating autoimmune or other diseases |
| US20120213854A1 (en) * | 2010-09-30 | 2012-08-23 | Fetzer Oliver S | Methods of treating a subject and related particles, polymers and compositions |
| US8815226B2 (en) | 2011-06-10 | 2014-08-26 | Mersana Therapeutics, Inc. | Protein-polymer-drug conjugates |
| BR112013031819B1 (en) | 2011-06-10 | 2022-05-03 | Mersana Therapeutics, Inc | Polymeric support, pharmaceutical composition, compound and support use |
| CN104245794A (en) | 2011-12-16 | 2014-12-24 | 麻省理工学院 | α-Aminoamidine polymers and uses thereof |
| WO2013126797A1 (en) | 2012-02-24 | 2013-08-29 | Purdue Research Foundation | Cholecystokinin b receptor targeting for imaging and therapy |
| US20140080175A1 (en) | 2012-03-29 | 2014-03-20 | Endocyte, Inc. | Processes for preparing tubulysin derivatives and conjugates thereof |
| US11873281B2 (en) | 2012-07-12 | 2024-01-16 | Hangzhou Dac Biotech Co., Ltd. | Conjugates of cell binding molecules with cytotoxic agents |
| PL2872157T3 (en) * | 2012-07-12 | 2020-07-13 | Hangzhou Dac Biotech Co., Ltd | Conjugates of cell binding molecules with cytotoxic agents |
| WO2014055493A1 (en) | 2012-10-02 | 2014-04-10 | Cerulean Pharma Inc. | Methods and systems for polymer precipitation and generation of particles |
| US9662402B2 (en) | 2012-10-16 | 2017-05-30 | Endocyte, Inc. | Drug delivery conjugates containing unnatural amino acids and methods for using |
| JP6334553B2 (en) | 2012-12-10 | 2018-05-30 | メルサナ セラピューティクス,インコーポレイティド | Protein-polymer-drug conjugate |
| US9872918B2 (en) | 2012-12-12 | 2018-01-23 | Mersana Therapeutics, Inc. | Hydroxyl-polymer-drug-protein conjugates |
| ES2628156T3 (en) | 2013-02-14 | 2017-08-01 | Bristol-Myers Squibb Company | Tubulisin compounds, methods for their manufacture and use |
| WO2014152451A2 (en) | 2013-03-14 | 2014-09-25 | University Of Rochester | Compositions and methods for controlled localized delivery of bone forming therapeutic agents |
| US10195284B2 (en) | 2013-03-14 | 2019-02-05 | University Of Rochester | Compositions and methods for controlled localized delivery of bone forming therapeutic agents |
| US9901663B2 (en) | 2013-05-06 | 2018-02-27 | Abbott Cardiovascular Systems Inc. | Hollow stent filled with a therapeutic agent formulation |
| KR102087850B1 (en) | 2013-10-11 | 2020-03-12 | 메르사나 테라퓨틱스, 인코포레이티드 | Protein-Polymer-Drug Conjugates |
| ES2754397T3 (en) | 2013-10-11 | 2020-04-17 | Asana Biosciences Llc | Protein-polymer-drug conjugates |
| WO2015179402A1 (en) * | 2014-05-19 | 2015-11-26 | North Carolina State University | Methods of folding a graft copolymer with dual anticancer drugs and related applications |
| US10077287B2 (en) | 2014-11-10 | 2018-09-18 | Bristol-Myers Squibb Company | Tubulysin analogs and methods of making and use |
| US11229708B2 (en) * | 2015-12-04 | 2022-01-25 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
| US11793880B2 (en) | 2015-12-04 | 2023-10-24 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
| EP3442595A1 (en) * | 2016-04-14 | 2019-02-20 | Polytherics Limited | Conjugates and conjugating reagents comprising a linker that includes at least two (-ch2-ch2-0-) units in a ring |
| KR102195910B1 (en) * | 2016-09-07 | 2020-12-28 | 부산대학교병원 | Tumorigenic-specific enzyme sensitive-nanofiber coated gastrointestinal stent for eluting vorinostat and manufacturing method the same |
| EP3936112A1 (en) * | 2020-07-07 | 2022-01-12 | Occlugel | Hydrophilic degradable microspheres for delivering buprenorphine |
Family Cites Families (244)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3472835A (en) | 1964-02-12 | 1969-10-14 | American Mach & Foundry | Schardinger dextrins |
| US3454530A (en) | 1966-03-07 | 1969-07-08 | Leslie C Case | Novel polyols which are reaction products of a monoepoxide and a cyclic monoanhydride |
| US3453257A (en) | 1967-02-13 | 1969-07-01 | Corn Products Co | Cyclodextrin with cationic properties |
| US3426011A (en) | 1967-02-13 | 1969-02-04 | Corn Products Co | Cyclodextrins with anionic properties |
| US3654261A (en) | 1968-06-27 | 1972-04-04 | Cpc International Inc | Quaternary ammonium alkoxide alkoxy polyol compounds |
| USRE32268E (en) | 1973-03-01 | 1986-10-21 | Strategic Medical Research Corp. | Therapeutic composition and method of therapeutically treating warm blooded animals therewith |
| GB1390479A (en) | 1973-09-05 | 1975-04-16 | I Orch Sinteza Akademii Nauk L | Pharmaceutical composition for treatment of parkinsonism |
| DE2843963A1 (en) | 1978-10-09 | 1980-04-24 | Merck Patent Gmbh | BODY-RESORBABLE SHAPED MATERIAL BASED ON COLLAGEN AND THEIR USE IN MEDICINE |
| DE2842862A1 (en) | 1978-10-02 | 1980-04-10 | Boehringer Mannheim Gmbh | METHOD FOR DETERMINING ION, POLAR AND / OR LIPOPHILE SUBSTANCES IN LIQUIDS |
| CA1190855A (en) | 1980-09-03 | 1985-07-23 | Rolf W. Pfirrmann | Treatment of osteitis |
| JPS58113198A (en) | 1981-12-26 | 1983-07-05 | Hidetoshi Tsuchida | Porphyrin compound bonded with cyclodextrin |
| US4570629A (en) | 1982-03-17 | 1986-02-18 | University Of Illinois Foundation | Hydrophilic biopolymeric copolyelectrolytes, and biodegradable wound dressing comprising same |
| JPS58167613A (en) | 1982-03-26 | 1983-10-03 | Mitsubishi Petrochem Co Ltd | Preparation of water-soluble cyclodextrin-containing polymer |
| EP0092918B1 (en) | 1982-04-22 | 1988-10-19 | Imperial Chemical Industries Plc | Continuous release formulations |
| CA1208558A (en) | 1982-10-07 | 1986-07-29 | Kazuo Kigasawa | Soft buccal |
| US4438253A (en) | 1982-11-12 | 1984-03-20 | American Cyanamid Company | Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same |
| HU191101B (en) | 1983-02-14 | 1987-01-28 | Chinoin Gyogyszer Es Vegyeszeti Termekek Gyara Rt,Hu | Process for preparing water-soluble cyclodextrin polymers substituted with ionic groups |
| WO1985000372A1 (en) | 1983-07-01 | 1985-01-31 | Battelle Memorial Institute | Biodegradable polypeptide and utilization thereof for the progressive release of drugs |
| US4525495A (en) | 1983-07-22 | 1985-06-25 | The Dow Chemical Company | Mineral filled composites |
| JPS60100516A (en) | 1983-11-04 | 1985-06-04 | Takeda Chem Ind Ltd | Preparation of sustained release microcapsule |
| US4818542A (en) | 1983-11-14 | 1989-04-04 | The University Of Kentucky Research Foundation | Porous microspheres for drug delivery and methods for making same |
| US4727064A (en) | 1984-04-25 | 1988-02-23 | The United States Of America As Represented By The Department Of Health And Human Services | Pharmaceutical preparations containing cyclodextrin derivatives |
| GB8416234D0 (en) | 1984-06-26 | 1984-08-01 | Ici Plc | Biodegradable amphipathic copolymers |
| US4625014A (en) | 1984-07-10 | 1986-11-25 | Dana-Farber Cancer Institute, Inc. | Cell-delivery agent |
| CH663951A5 (en) | 1984-10-10 | 1988-01-29 | Nestle Sa | PROCESS FOR THE SELECTIVE ENRICHMENT OF POLYUNSATURATED FATTY ACIDS IN A MIXTURE CONTAINING ENRICHED FRACTION FATTY ACIDS AND COMPOSITIONS CONTAINING THE SAME. |
| US4582865A (en) | 1984-12-06 | 1986-04-15 | Biomatrix, Inc. | Cross-linked gels of hyaluronic acid and products containing such gels |
| US4638045A (en) | 1985-02-19 | 1987-01-20 | Massachusetts Institute Of Technology | Non-peptide polyamino acid bioerodible polymers |
| JPH0651725B2 (en) | 1985-02-28 | 1994-07-06 | メルシャン株式会社 | Partially methylated cyclodextrin and method for producing the same |
| GB8506792D0 (en) | 1985-03-15 | 1985-04-17 | Janssen Pharmaceutica Nv | Derivatives of y-cyclodextrin |
| US4841081A (en) | 1985-10-16 | 1989-06-20 | Osaka Soda Co., Ltd. | Method of optically resolving a racemate or a diastereomeric mixture of glycidyl compound |
| FR2601675B1 (en) | 1986-07-17 | 1988-09-23 | Rhone Poulenc Sante | TAXOL DERIVATIVES, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
| ES2058081T3 (en) | 1986-09-05 | 1994-11-01 | American Cyanamid Co | POLYESTERS CONTAINING BLOCKS OF ALKYLENE OXIDE AS SYSTEMS FOR ADMINISTRATION OF MEDICINES. |
| GB2197720A (en) | 1986-11-20 | 1988-05-25 | Nat Res Dev | Immobilisation of polynucleotides |
| US5166320A (en) | 1987-04-22 | 1992-11-24 | University Of Connecticut | Carrier system and method for the introduction of genes into mammalian cells |
| AU624077B2 (en) | 1987-06-17 | 1992-06-04 | Institute For Child Health Research | Cloning of mite allergens |
| US4877778A (en) | 1987-07-01 | 1989-10-31 | The Children's Medical Center Corporation | Method of enhancing lipophile transport using cyclodextrin derivatives |
| US4774329A (en) | 1987-08-04 | 1988-09-27 | American Maize-Products Company | Controlled release agent for cetylpyridinium chloride |
| US4941996A (en) | 1987-10-19 | 1990-07-17 | Minnesota Mining And Manufacturing Company | Inclusion complexes providing second harmonic generation |
| US5760015A (en) | 1988-01-19 | 1998-06-02 | The Trustees Of The University Of Pennsylvania | Cyclodextrin compounds and methods of making and use thereof |
| JP2670680B2 (en) | 1988-02-24 | 1997-10-29 | 株式会社ビーエムジー | Polylactic acid microspheres containing physiologically active substance and method for producing the same |
| JP2614081B2 (en) | 1988-05-27 | 1997-05-28 | 大塚化学株式会社 | Method for producing optically active β-lactam derivative |
| US4887778A (en) | 1988-06-01 | 1989-12-19 | Universal Instruments Corporation | Feeder drive assembly and replaceable section for tape supplying and cover peeling |
| JPH01319502A (en) | 1988-06-21 | 1989-12-25 | Showa Denko Kk | Cyclodextrin derivative and production thereof |
| HU200913B (en) | 1988-07-28 | 1990-09-28 | Ciklodextrin Kutato Fejlesztoe | Process for producing infusion stock-solution containing pharmaceutically active components of bad water solubility |
| MY106598A (en) | 1988-08-31 | 1995-06-30 | Australian Commercial Res & Development Ltd | Compositions and methods for drug delivery and chromatography. |
| US5098793A (en) | 1988-09-29 | 1992-03-24 | Uop | Cyclodextrin films on solid substrates |
| US4902788A (en) | 1988-09-29 | 1990-02-20 | Uop | Crosslinked cyclodextrins supported on porous refractory inorganic oxides |
| IT1230566B (en) | 1988-10-17 | 1991-10-28 | Vectorpharma Int | LITTLE SOLUBLE DRUGS SUPPORTED ON POLYMERIC SUBSTANCES IN A FORM THAT WILL INCREASE THE DISSOLUTION SPEED |
| US5688488A (en) | 1989-04-03 | 1997-11-18 | Purdue Research Foundation | Composition and method for tumor imaging |
| US5108921A (en) | 1989-04-03 | 1992-04-28 | Purdue Research Foundation | Method for enhanced transmembrane transport of exogenous molecules |
| US5143854A (en) | 1989-06-07 | 1992-09-01 | Affymax Technologies N.V. | Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof |
| US5424186A (en) | 1989-06-07 | 1995-06-13 | Affymax Technologies N.V. | Very large scale immobilized polymer synthesis |
| US5376645A (en) | 1990-01-23 | 1994-12-27 | University Of Kansas | Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof |
| JPH03221505A (en) | 1990-01-29 | 1991-09-30 | Toppan Printing Co Ltd | Synthesis of cyclodextrin polymer and production of cyclodextrin film |
| EP0518930A4 (en) | 1990-03-02 | 1993-09-15 | Australian Commercial Research & Development Limited | Cyclodextrin compositions and methods for pharmaceutical and industrial applications |
| IT1241417B (en) | 1990-03-06 | 1994-01-14 | Vectorpharma Int | THERAPEUTIC COMPOSITIONS WITH CONTROLLED RELEASE OF DRUGS SUPPORTED ON CROSS-LINKED POLYMERS AND COATED WITH POLYMER FILM, AND THEIR PREPARATION PROCESS |
| DE4009825A1 (en) | 1990-03-27 | 1991-10-02 | Consortium Elektrochem Ind | WATER-INSOLUBLE CYCLODEXTRIN POLYMERISATES AND METHOD FOR PRODUCING THE SAME |
| US5139687A (en) | 1990-05-09 | 1992-08-18 | The Proctor & Gamble Company | Non-destructive carriers for cyclodextrin complexes |
| JPH0425505A (en) | 1990-05-21 | 1992-01-29 | Toppan Printing Co Ltd | Cyclodextrain polymer and production of cyclodextrin membrane |
| JPH0463535A (en) | 1990-06-29 | 1992-02-28 | Motoaki Kanbara | Extermination of vermin with steam and apparatus therefor |
| US5650489A (en) | 1990-07-02 | 1997-07-22 | The Arizona Board Of Regents | Random bio-oligomer library, a method of synthesis thereof, and a method of use thereof |
| FR2665169A1 (en) | 1990-07-30 | 1992-01-31 | Rhone Poulenc Chimie | Cyclodextrin inclusion compounds containing phenolic antioxidants and their use in polymers |
| EP0477931B1 (en) | 1990-09-28 | 1994-08-17 | Mercian Corporation | Novel adriamycin derivatives |
| CA2066616A1 (en) | 1990-10-01 | 1992-04-02 | Masanobu Yoshinaga | Cyclodextrin polymer and cyclodextrin membrane prepared using said polymer |
| CA2066633A1 (en) | 1990-11-30 | 1992-05-31 | Masanobu Yoshinaga | Processes for producing cyclodextrin derivatives and polymers containing immobilizing cyclodextrin therein |
| EP0562025B1 (en) | 1990-12-06 | 2001-02-07 | Affymetrix, Inc. (a Delaware Corporation) | Compounds and their use in a binary synthesis strategy |
| US5148854A (en) | 1990-12-11 | 1992-09-22 | Toshiba Kikai Kabushiki Kaisha | Counting die cast manufactured goods |
| US5330768A (en) | 1991-07-05 | 1994-07-19 | Massachusetts Institute Of Technology | Controlled drug delivery using polymer/pluronic blends |
| US5750561A (en) | 1991-07-08 | 1998-05-12 | Rhone-Poulenc Rorer, S.A. | Compositions containing taxane derivatives |
| US5714512A (en) | 1991-07-08 | 1998-02-03 | Rhone-Poulenc Rorer, S.A. | Compositions containing taxane derivatives |
| US5698582A (en) | 1991-07-08 | 1997-12-16 | Rhone-Poulenc Rorer S.A. | Compositions containing taxane derivatives |
| EP0602149A1 (en) | 1991-09-06 | 1994-06-22 | Commonwealth Scientific And Industrial Research Organisation | Composition and method for reducing cholesterol concentration |
| NZ244306A (en) | 1991-09-30 | 1995-07-26 | Boehringer Ingelheim Int | Composition for introducing nucleic acid complexes into eucaryotic cells, complex containing nucleic acid and endosomolytic agent, peptide with endosomolytic domain and nucleic acid binding domain and preparation |
| CA2121129A1 (en) | 1991-10-29 | 1993-05-13 | Patrick Soon-Shiong | Crosslinkable polysaccharides, polycations and lipids useful for encapsulation and drug release |
| US6864101B1 (en) | 1991-11-22 | 2005-03-08 | Affymetrix, Inc. | Combinatorial strategies for polymer synthesis |
| JP2976154B2 (en) | 1991-11-27 | 1999-11-10 | コニカ株式会社 | Solid processing agents for silver halide photographic materials |
| US5219980A (en) | 1992-04-16 | 1993-06-15 | Sri International | Polymers biodegradable or bioerodiable into amino acids |
| JPH05331074A (en) | 1992-05-27 | 1993-12-14 | Nippon Oil & Fats Co Ltd | Drug carrier |
| GB9211268D0 (en) | 1992-05-28 | 1992-07-15 | Ici Plc | Salts of basic peptides with carboxyterminated polyesters |
| IT1256134B (en) | 1992-09-09 | 1995-11-29 | Luigi Boltri | LYPHOPHILIC SALTS CONTAINING ACTUABLE NEUTRON ISOTOPES AND COMPOSITIONS CONTAINING THEM |
| US5482719A (en) | 1992-10-30 | 1996-01-09 | Guillet; James E. | Drug delivery systems |
| ES2102186T3 (en) | 1992-11-30 | 1997-07-16 | Ciba Geigy Ag | ESTERS OF POLYMERIZABLE CARBON HYDRATES, POLYMERS OF THE SAME AND THEIR USE. |
| FR2698543B1 (en) | 1992-12-02 | 1994-12-30 | Rhone Poulenc Rorer Sa | New taxoid-based compositions. |
| US6096331A (en) | 1993-02-22 | 2000-08-01 | Vivorx Pharmaceuticals, Inc. | Methods and compositions useful for administration of chemotherapeutic agents |
| US5439686A (en) | 1993-02-22 | 1995-08-08 | Vivorx Pharmaceuticals, Inc. | Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor |
| US6749868B1 (en) | 1993-02-22 | 2004-06-15 | American Bioscience, Inc. | Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof |
| US6753006B1 (en) | 1993-02-22 | 2004-06-22 | American Bioscience, Inc. | Paclitaxel-containing formulations |
| US6537579B1 (en) | 1993-02-22 | 2003-03-25 | American Bioscience, Inc. | Compositions and methods for administration of pharmacologically active compounds |
| AU673057B2 (en) | 1993-02-22 | 1996-10-24 | Abraxis Bioscience, Llc | Methods for (in vivo) delivery of biologics and compositionsuseful therefor |
| US5298410A (en) | 1993-02-25 | 1994-03-29 | Sterling Winthrop Inc. | Lyophilized formulation of polyethylene oxide modified proteins with increased shelf-life |
| HU210922B (en) | 1993-05-24 | 1995-09-28 | Europharmaceuticals Sa | Nimesulide alkali salt cyclodextrin inclusion complexes their preparation and pharmaceutical compositions containing them |
| US5840485A (en) | 1993-05-27 | 1998-11-24 | Selectide Corporation | Topologically segregated, encoded solid phase libraries |
| TW328535B (en) | 1993-07-02 | 1998-03-21 | Novartis Ag | Functional photoinitiators and their manufacture |
| JP3288149B2 (en) | 1993-08-05 | 2002-06-04 | 日本食品化工株式会社 | Cyclodextrin polymer and method for producing the same |
| RU2094059C1 (en) | 1993-08-30 | 1997-10-27 | Московский государственный университет, химический факультет | Method of transport of neurotropic preparation to brain |
| US5616568A (en) | 1993-11-30 | 1997-04-01 | The Research Foundation Of State University Of New York | Functionalized derivatives of hyaluronic acid |
| US5880154A (en) | 1994-02-01 | 1999-03-09 | The Board Of Regents Of The University Of Nebraska | Polymeric adamantane analogues |
| TW307775B (en) | 1994-02-15 | 1997-06-11 | Novartis Erfind Verwalt Gmbh | Unsaturated carbohydrate derivatives, polymers thereof and their use |
| CA2161684C (en) | 1994-03-07 | 2010-11-09 | Larry R. Wilson | Bioactive and/or targeted dendrimer conjugates |
| JPH07316205A (en) | 1994-03-30 | 1995-12-05 | D D S Kenkyusho:Kk | Cyclodextrin derivative |
| HU218280B (en) | 1994-04-26 | 2000-07-28 | Cyclodextrin inclusion complexes containing sin-1a which are stable intheir solid state, process for their preparation and pharmaceutical compositions containing the comlexes | |
| US6589736B1 (en) | 1994-11-22 | 2003-07-08 | The Trustees Of Boston University | Photocleavable agents and conjugates for the detection and isolation of biomolecules |
| US5691316A (en) | 1994-06-01 | 1997-11-25 | Hybridon, Inc. | Cyclodextrin cellular delivery system for oligonucleotides |
| US5716594A (en) | 1994-06-06 | 1998-02-10 | The Jmde Trust | Biotin compounds for targetting tumors and sites of infection |
| US5776842A (en) | 1994-06-23 | 1998-07-07 | Cellresin Technologies, Llc | Cellulosic web with a contaminant barrier or trap |
| US5549974A (en) | 1994-06-23 | 1996-08-27 | Affymax Technologies Nv | Methods for the solid phase synthesis of thiazolidinones, metathiazanones, and derivatives thereof |
| DE69531545T2 (en) | 1994-06-23 | 2004-06-24 | Affymax Technologies N.V., Willemstad | PHOTOLABILE CONNECTIONS AND METHOD FOR THE USE THEREOF |
| US5679773A (en) | 1995-01-17 | 1997-10-21 | Affymax Technologies N.V | Reagants and methods for immobilized polymer synthesis and display |
| JP3699141B2 (en) | 1994-09-24 | 2005-09-28 | 伸彦 由井 | Biomolecular assembly of biodegradable pharmaceutical polymer having supramolecular structure and preparation method thereof |
| US5656611A (en) | 1994-11-18 | 1997-08-12 | Supratek Pharma Inc. | Polynucleotide compositions |
| US6353055B1 (en) | 1994-11-18 | 2002-03-05 | Supratek Pharma Inc. | Polynucleotide compositions |
| US5847170A (en) | 1995-03-27 | 1998-12-08 | Rhone-Poulenc Rorer, S.A. | Taxoids, their preparation and pharmaceutical compositions containing them |
| MA23823A1 (en) | 1995-03-27 | 1996-10-01 | Aventis Pharma Sa | NEW TAXOIDS, THEIR PREPARATION AND THE COMPOSITIONS CONTAINING THEM |
| US6372780B2 (en) | 1995-03-27 | 2002-04-16 | Aventis Pharma S.A. | Methods of treating cell lines expressing multidrug resistance P-glycoprotein |
| US5728804A (en) | 1995-06-02 | 1998-03-17 | Research Corporation Technologies, Inc. | Use of cyclodextrins for protein renaturation |
| US6667293B1 (en) | 1995-09-12 | 2003-12-23 | Hybridon, Inc. | Use of cyclodextrins to modulate gene expression with reduced immunostimulatory response |
| US5834025A (en) | 1995-09-29 | 1998-11-10 | Nanosystems L.L.C. | Reduction of intravenously administered nanoparticulate-formulation-induced adverse physiological reactions |
| SI0932399T1 (en) | 1996-03-12 | 2006-10-31 | Pg Txl Co Lp | Water soluble paclitaxel prodrugs |
| US6441025B2 (en) | 1996-03-12 | 2002-08-27 | Pg-Txl Company, L.P. | Water soluble paclitaxel derivatives |
| DE19612768A1 (en) | 1996-03-29 | 1997-10-02 | Basf Ag | Polymers containing cyclodextrin groups, process for their preparation and their use |
| JPH106101A (en) | 1996-06-14 | 1998-01-13 | Nkk Corp | Scraper for resin pipe |
| DE19629494A1 (en) | 1996-07-09 | 1998-01-15 | Schering Ag | Pseudopolyrotaxanes |
| US5844030A (en) | 1996-07-09 | 1998-12-01 | Andros; Nicholas | Charged ion cleaning devices and cleaning system |
| US5770645A (en) | 1996-08-02 | 1998-06-23 | Duke University Medical Center | Polymers for delivering nitric oxide in vivo |
| US6232434B1 (en) | 1996-08-02 | 2001-05-15 | Duke University Medical Center | Polymers for delivering nitric oxide in vivo |
| EP0946286B1 (en) | 1996-11-14 | 2003-03-19 | Affymetrix, Inc. | Chemical amplification for the synthesis of patterned arrays |
| JPH10158195A (en) | 1996-11-28 | 1998-06-16 | Res Inst For Prod Dev | Production of drug-polymer composite reparation using coordination bond |
| US6495579B1 (en) | 1996-12-02 | 2002-12-17 | Angiotech Pharmaceuticals, Inc. | Method for treating multiple sclerosis |
| HUP9700632A3 (en) | 1997-03-24 | 1999-10-28 | Cyclolab Ciklodextrin Kutato F | Pharmaceutical compositions containing propylamine derivative and cyclodextrine and process for producing the same |
| WO1998047496A2 (en) | 1997-04-18 | 1998-10-29 | Access Pharmaceuticals, Inc. | Polymer-platinum compounds |
| AU743204B2 (en) | 1997-04-23 | 2002-01-24 | University Of Otago | Controlled release of ophthalmic compositions |
| CN1268186A (en) | 1997-04-30 | 2000-09-27 | 明尼苏达大学评议会 | i (in vivo) use of recombinagenic oligonucleobases to correct genetic lesions in hepatocytes |
| US5990237A (en) | 1997-05-21 | 1999-11-23 | Shearwater Polymers, Inc. | Poly(ethylene glycol) aldehyde hydrates and related polymers and applications in modifying amines |
| AU749032B2 (en) | 1997-06-13 | 2002-06-20 | Johns Hopkins University, The | Therapeutic nanospheres |
| DE19726186A1 (en) | 1997-06-20 | 1998-12-24 | Boehringer Ingelheim Int | Complexes for the transport of nucleic acid into higher eukaryotic cells |
| JPH11100401A (en) | 1997-07-30 | 1999-04-13 | Kikkoman Corp | Cyclic oligosaccharide and preventive or treating agent for retrovirus disease containing the same |
| US6410342B1 (en) | 1997-08-19 | 2002-06-25 | Pharmacopeia, Inc. | Method and apparatus for controlled photoelution |
| BR9813202B1 (en) | 1997-09-15 | 2011-11-01 | gene administration complex; process of transducing cells with foreign genetic material, useful composition for administering genetic material and use of a gene delivery complex. | |
| EP1037649B1 (en) * | 1997-12-17 | 2009-09-30 | Enzon, Inc. | Polymeric prodrugs of amino- and hydroxyl-containing bioactive agents |
| US6383811B2 (en) | 1997-12-30 | 2002-05-07 | Mirus Corporation | Polyampholytes for delivering polyions to a cell |
| GB9801109D0 (en) | 1998-01-20 | 1998-03-18 | Pfizer | Cyclodextrin compositions |
| DE69909972T2 (en) | 1998-02-11 | 2004-05-13 | University Of Houston, Houston | DEVICE FOR CARRYING OUT CHEMICAL AND BIOCHEMICAL REACTIONS USING PHOTO-GENERATED REAGENTS |
| IT1298732B1 (en) | 1998-03-13 | 2000-02-02 | Recordati Chem Pharm | ORAL PHARMACEUTICAL COMPOSITIONS ASSUMABLE WITHOUT LIQUIDS, CONTAINING INCLUSION COMPLEXES |
| US6048736A (en) | 1998-04-29 | 2000-04-11 | Kosak; Kenneth M. | Cyclodextrin polymers for carrying and releasing drugs |
| WO1999061062A1 (en) | 1998-05-29 | 1999-12-02 | Massachusetts Institute Of Technology | Cyclodextrin complexes |
| US7091192B1 (en) * | 1998-07-01 | 2006-08-15 | California Institute Of Technology | Linear cyclodextrin copolymers |
| US6509323B1 (en) | 1998-07-01 | 2003-01-21 | California Institute Of Technology | Linear cyclodextrin copolymers |
| US6261583B1 (en) | 1998-07-28 | 2001-07-17 | Atrix Laboratories, Inc. | Moldable solid delivery system |
| US6703381B1 (en) | 1998-08-14 | 2004-03-09 | Nobex Corporation | Methods for delivery therapeutic compounds across the blood-brain barrier |
| EP1126871A2 (en) | 1998-10-16 | 2001-08-29 | The Government of The United States of America, as represented by The Department of Health and Human Services | Combination therapy with vip antagonist |
| WO2000033885A1 (en) | 1998-12-04 | 2000-06-15 | California Institute Of Technology | Supramolecular complexes containing therapeutic agents |
| US7375096B1 (en) | 1998-12-04 | 2008-05-20 | California Institute Of Technology | Method of preparing a supramolecular complex containing a therapeutic agent and a multi-dimensional polymer network |
| EP1140194A2 (en) | 1998-12-23 | 2001-10-10 | G.D. SEARLE & CO. | Use of cyclooxygenase-2 inhibitor, a matrix metallaproteinase inhibitor, an antineoplastic agent and optionally radiation as a combined treatment of neoplasia |
| US6740643B2 (en) | 1999-01-21 | 2004-05-25 | Mirus Corporation | Compositions and methods for drug delivery using amphiphile binding molecules |
| FR2789685B1 (en) | 1999-02-15 | 2001-05-04 | Univ Lille Sciences Tech | PROCESS FOR MANUFACTURING SOLUBLE AND INSOLUBLE POLYMERS BASED ON CYCLODEXTRIN (S) AND / OR DERIVATIVES OF CYCLODEXTRIN (S) AND SOLUBLE POLYMERS BASED ON CYCLODEXTRIN (S) AND / OR DERIVATIVES OF CYCLODEXTRIN (S) |
| AUPP913999A0 (en) | 1999-03-12 | 1999-04-01 | Biota Scientific Management Pty Ltd | Novel chemical compounds and their use |
| FR2792942B1 (en) | 1999-04-29 | 2001-06-08 | Commissariat Energie Atomique | AMPHIPHILIC CYCLODEXTRINS, THEIR PREPARATION AND THEIR USE FOR SOLUBILIZING ORGANIZED SYSTEMS AND INCORPORATING HYDROPHOBIC MOLECULES |
| EP1102785B1 (en) | 1999-06-07 | 2013-02-13 | Arrowhead Research Corporation | COMPOSITIONS FOR DRUG DELIVERY USING pH SENSITIVE MOLECULES |
| JP2003501440A (en) | 1999-06-07 | 2003-01-14 | マイラス コーポレーション | Compound containing reactive disulfide bond |
| US6309633B1 (en) | 1999-06-19 | 2001-10-30 | Nobex Corporation | Amphiphilic drug-oligomer conjugates with hydroyzable lipophile components and methods for making and using the same |
| US6420378B1 (en) | 1999-10-15 | 2002-07-16 | Supergen, Inc. | Inhibition of abnormal cell proliferation with camptothecin and combinations including the same |
| EP1233671A4 (en) | 1999-11-29 | 2005-11-02 | Mirus Corp | Compositions and methods for drug delivery using amphiphile binding molecules |
| SK282717B6 (en) | 2000-03-10 | 2002-11-06 | �Stav Experiment�Lnej Farmakol�Gie Sav | Preparation method of ultrahigh molecular hyaluronans |
| US20010041706A1 (en) | 2000-03-24 | 2001-11-15 | Synold Timothy W. | Blockade of taxane metabolism |
| JP2001288097A (en) | 2000-04-07 | 2001-10-16 | Pg-Txl Co Lp | Water-soluble paclitaxel derivative |
| PT2857516T (en) | 2000-04-11 | 2017-08-28 | Genentech Inc | Multivalent antibodies and uses therefor |
| EP1301500B1 (en) | 2000-06-22 | 2007-11-21 | Nitromed, Inc. | Nitrosated and nitrosylated taxanes, compositions and methods of use |
| US6664228B1 (en) | 2000-08-10 | 2003-12-16 | Ceramoptec Industries, Inc. | Photoselective marking of biological targets |
| CA2417087A1 (en) | 2000-08-01 | 2002-02-07 | Oregon Health And Science University | Mammalian dna binding membrane-associated protein-encoding gene and uses |
| TWI321054B (en) | 2000-12-19 | 2010-03-01 | California Inst Of Techn | Compositions containing inclusion complexes |
| EP1352072A4 (en) | 2001-01-17 | 2004-09-01 | Zycos Inc | FORMULATIONS FOR THE ADDITION OF NUCLEIC ACIDS |
| EP1243276A1 (en) * | 2001-03-23 | 2002-09-25 | Franciscus Marinus Hendrikus De Groot | Elongated and multiple spacers containing activatible prodrugs |
| US6828392B2 (en) | 2001-08-28 | 2004-12-07 | Carlsberg A/S | Hydroxy and amine functionalized resins |
| US20030129262A1 (en) | 2001-08-30 | 2003-07-10 | Epner Daniel E. | Methionine restriction for cancer therapy |
| US20030049203A1 (en) | 2001-08-31 | 2003-03-13 | Elmaleh David R. | Targeted nucleic acid constructs and uses related thereto |
| WO2004033620A2 (en) | 2001-11-02 | 2004-04-22 | Insert Therapeutics, Inc. | Methods and compositions for therapeutic use of rna interference |
| US20040063654A1 (en) | 2001-11-02 | 2004-04-01 | Davis Mark E. | Methods and compositions for therapeutic use of RNA interference |
| US20030134824A1 (en) | 2001-11-12 | 2003-07-17 | Ronald Breslow | Beta-cyclodextrin dimers and phthalocyanines and uses thereof |
| US20030157523A1 (en) | 2001-11-20 | 2003-08-21 | Genentech, Inc. | Cell and tissue arrays and microarrays and methods of use |
| US7141540B2 (en) | 2001-11-30 | 2006-11-28 | Genta Salus Llc | Cyclodextrin grafted biocompatible amphilphilic polymer and methods of preparation and use thereof |
| US6527887B1 (en) | 2002-01-18 | 2003-03-04 | Mach I, Inc. | Polymeric cyclodextrin nitrate esters |
| EP2316468A1 (en) | 2002-02-22 | 2011-05-04 | Shire LLC | Delivery system and methods for protecting and administering dextroamphetamine |
| CA2476769A1 (en) | 2002-02-22 | 2003-09-04 | Insert Therapeutics, Inc. | Carbohydrate-modified polymers, compositions and uses related thereto |
| US7008936B2 (en) | 2002-06-14 | 2006-03-07 | Bristol-Myers Squibb Company | Combination of epothilone analogs and chemotherapeutic agents for the treatment of proliferative diseases |
| AU2003253048A1 (en) * | 2002-07-09 | 2004-01-23 | Morphochem Aktiengellschaft Fur Kombinatorische Chemie | Tubulysin conjugates |
| CN100519643C (en) | 2002-07-19 | 2009-07-29 | 奥默罗斯公司 | Biodegradable triblock copolymers, synthesis methods therefor, and hydrogels and biomaterials made there from |
| WO2004017904A2 (en) | 2002-08-23 | 2004-03-04 | The Mclean Hospital Corporation | Corticosteroid conjugates and uses thereof |
| AU2003256038A1 (en) * | 2002-08-30 | 2004-03-19 | Ramot At Tel Aviv University Ltd. | Self-immolative dendrimers releasing many active moieties upon a single activating event |
| BR122012021252B8 (en) * | 2002-09-06 | 2021-05-25 | Cerulean Pharma Inc | cyclodextrin-based polymers for the delivery of covalently linked therapeutic agents |
| CA2818071C (en) | 2002-09-06 | 2015-08-18 | Cerulean Pharma Inc. | Modified cyclodextrin ring compounds having exactly two hydroxyl moieties substituted with an amino acid for therapeutics delivery |
| US20040047835A1 (en) | 2002-09-06 | 2004-03-11 | Cell Therapeutics, Inc. | Combinatorial drug therapy using polymer drug conjugates |
| KR20050051686A (en) | 2002-10-09 | 2005-06-01 | 인설트 테라페틱스, 인코퍼레이티드 | Cyclodextrin-based materials, compositions and uses related thereto |
| WO2004032866A2 (en) | 2002-10-09 | 2004-04-22 | Kosan Biosciences, Inc. | Therapeutic formulations |
| CN1309763C (en) | 2002-10-31 | 2007-04-11 | 日本化药株式会社 | High-molecular weight derivatives of camptothecins |
| DK2284266T3 (en) | 2002-11-14 | 2014-01-13 | Thermo Fisher Scient Biosciences Inc | SIRNA MOLECULE MOD TP53 |
| LT1585548T (en) | 2002-12-09 | 2018-09-25 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
| AU2003299651A1 (en) | 2002-12-11 | 2004-06-30 | Merck And Co., Inc. | Tyrosine kinase inhibitors |
| AR042942A1 (en) | 2003-01-27 | 2005-07-06 | Endocyte Inc | CONJUGATES OF DRUG ADMINISTRATION OF VITAMIN RECEPTORS UNION |
| US7358262B2 (en) | 2003-01-29 | 2008-04-15 | Whitehead Institute For Biomedical Research | Identification of genotype-selective anti-tumor agents |
| CN1216057C (en) | 2003-03-28 | 2005-08-24 | 贵州省生物研究所 | Derivatives of camptothecin analogues and preparation methods thereof |
| RS20150135A1 (en) | 2003-05-30 | 2015-08-31 | Genentech Inc. | TREATMENT WITH ANTI-VEGF ANTIBODIES |
| US20070036755A1 (en) | 2004-05-28 | 2007-02-15 | Genentech, Inc. | Treatment with anti-vegf antibodies |
| FR2859996B1 (en) | 2003-09-19 | 2006-02-03 | Aventis Pharma Sa | ACETONIC SOLVAT OF DIMETHOXY DOCETAXEL AND PROCESS FOR PREPARING THE SAME |
| EP1525890A1 (en) * | 2003-10-02 | 2005-04-27 | Complex Biosystems GmbH | Protein-Proteophore complexes |
| CA2547934C (en) | 2004-02-19 | 2013-05-21 | Abbott Laboratories | Methods of using gamma cyclodextrin to control blood glucose and insulin secretion |
| US7932026B2 (en) | 2004-06-04 | 2011-04-26 | Genentech, Inc. | EGFR mutations |
| CN101098854B (en) * | 2004-07-23 | 2012-12-05 | 恩多塞特公司 | Bivalent linkers and conjugates thereof |
| DE602005010899D1 (en) | 2004-09-27 | 2008-12-18 | Sigmoid Pharma Ltd | MICRO CAPSULES WITH A METHYLXANTHINE AND A CORTICOSTEROID |
| SI1827437T1 (en) | 2004-12-15 | 2012-02-29 | Sigma Tau Ind Farmaceuti | Combinations of therapeutic agents for treating cancer |
| TW200640493A (en) | 2005-02-16 | 2006-12-01 | Insert Therapeutics Inc | Cyclodextrin-based polymers for therapeutics delivery |
| HUE038768T2 (en) | 2005-02-18 | 2018-11-28 | Abraxis Bioscience Llc | Combinations and modes of administration of therapeutic agents and combination therapy |
| CA2598441A1 (en) | 2005-02-24 | 2006-08-31 | Elan Pharma International Limited | Nanoparticulate formulations of docetaxel and analogues thereof |
| JP2008537551A (en) | 2005-03-31 | 2008-09-18 | カランド ファーマシューティカルズ, インコーポレイテッド | Inhibitors of ribonucleotide reductase subunit 2 and uses thereof |
| SI1913157T2 (en) | 2005-06-28 | 2017-02-28 | Genentech, Inc. | Egfr and kras mutations for prediction of patient response to egfr inhibitor treatment |
| JP4994618B2 (en) | 2005-08-11 | 2012-08-08 | 学校法人北里研究所 | Chemoradiation with TS-1 / camptothecins |
| US8143236B2 (en) | 2005-12-13 | 2012-03-27 | Bionumerik Pharmaceuticals, Inc. | Chemoprotective methods |
| EP1996612A4 (en) | 2006-03-03 | 2010-10-20 | Univ Kingston | COMPOSITIONS FOR THE TREATMENT OF CANCERS |
| KR100917809B1 (en) | 2006-05-22 | 2009-09-18 | 에스케이케미칼주식회사 | Stable Pharmaceutical Composition containing Docetaxel |
| US20100112077A1 (en) | 2006-11-06 | 2010-05-06 | Abraxis Bioscience, Llc | Nanoparticles of paclitaxel and albumin in combination with bevacizumab against cancer |
| TW201509433A (en) | 2006-12-13 | 2015-03-16 | Cerulean Pharma Inc | Cyclodextrin-based polymers for therapeutics delivery |
| EP2121681B1 (en) | 2007-01-11 | 2015-04-15 | Critical Outcome Technologies, Inc. | Compounds and method for treatment of cancer |
| JP2010516625A (en) | 2007-01-24 | 2010-05-20 | インサート セラピューティクス, インコーポレイテッド | Polymer-drug conjugates with tether groups for controlled drug delivery |
| US20110177161A1 (en) | 2007-05-24 | 2011-07-21 | Dr. Reddy's Laboratories Limited | Pharmaceutical compositions of [5(s)-(2'-hydroxyethoxy)-20(s)-camptothecin |
| CA2692021A1 (en) | 2007-06-28 | 2008-12-31 | Capsutech Ltd | Targeting conjugates comprising active agents encapsulated in cyclodextrin-containing polymers |
| FR2918279B1 (en) | 2007-07-05 | 2010-10-22 | Aventis Pharma Sa | ANTITUMOR COMBINATIONS CONTAINING A VEGF INHIBITOR AGENT AND IRINOTECAN |
| EP2231176A2 (en) | 2007-12-14 | 2010-09-29 | The Brigham and Women's Hospital, Inc. | Treatment and prevention of hiv infection |
| AU2009232355A1 (en) | 2008-04-04 | 2009-10-08 | Calando Pharmaceuticals, Inc. | Compositions and use of EPAS1 inhibitors |
| US20100056555A1 (en) | 2008-08-29 | 2010-03-04 | Enzon Pharmaceuticals, Inc. | Method of treating ras associated cancer |
| ES2704986T3 (en) | 2008-10-16 | 2019-03-21 | Celator Pharmaceuticals Inc | Combinations of a water-soluble liposomal camptothecin with cetuximab or bevacizumab |
| WO2010117668A1 (en) | 2009-03-30 | 2010-10-14 | Cerulean Pharma Inc. | Polymer-agent conjugates, particles, compositions, and related methods of use |
| US20110245201A1 (en) | 2009-09-15 | 2011-10-06 | John Ryan | Treatment of cancer |
| CA2774015A1 (en) | 2009-09-15 | 2011-03-24 | Cerulean Pharma Inc. | A cdp-camptothecin conjugate, particle or composition and uses thereof |
| US20130029909A1 (en) | 2009-09-15 | 2013-01-31 | John Ryan | Treatment of cancer |
| US20120114658A1 (en) | 2009-09-15 | 2012-05-10 | John Ryan | Treatment of cancer |
| WO2011063421A1 (en) | 2009-11-23 | 2011-05-26 | Cerulean Pharma Inc. | Cyclodextrin-based polymers for therapeutic delivery |
| WO2011090940A1 (en) | 2010-01-19 | 2011-07-28 | Cerulean Pharma Inc. | Cyclodextrin-based polymers for therapeutic delivery |
| US9062094B2 (en) | 2010-01-22 | 2015-06-23 | Ascendis Pharma As | Dipeptide-based prodrug linkers for aliphatic amine-containing drugs |
| US8207290B2 (en) | 2010-03-26 | 2012-06-26 | Cerulean Pharma Inc. | Methods and systems for generating nanoparticles |
| CN103037903A (en) | 2010-05-18 | 2013-04-10 | 天蓝制药公司 | Compositions and methods for treating autoimmune or other diseases |
| US20120213854A1 (en) | 2010-09-30 | 2012-08-23 | Fetzer Oliver S | Methods of treating a subject and related particles, polymers and compositions |
| EP2463289A1 (en) | 2010-11-26 | 2012-06-13 | Almirall, S.A. | Imidazo[1,2-b]pyridazine derivatives as JAK inhibitors |
| US9279812B2 (en) | 2011-09-12 | 2016-03-08 | Universiteit Gent | Neuregulin-1-based prognosis and therapeutic stratification of colorectal cancer |
| US9200035B2 (en) | 2011-10-21 | 2015-12-01 | University of Pittsburgh—of the Commonwealth System of Higher Education | Bifunctional compounds |
| WO2014055913A1 (en) | 2012-10-05 | 2014-04-10 | Cerulean Pharma Inc. | Treatment of cancer |
-
2007
- 2007-12-14 JP JP2009541386A patent/JP2010516625A/en not_active Withdrawn
- 2007-12-14 US US12/002,305 patent/US20080176958A1/en not_active Abandoned
-
2011
- 2011-07-25 US US13/190,401 patent/US20110282047A1/en not_active Abandoned
- 2011-08-04 US US13/198,403 patent/US8497365B2/en not_active Expired - Fee Related
-
2013
- 2013-06-20 US US13/922,739 patent/US9610360B2/en not_active Expired - Fee Related
- 2013-12-13 JP JP2013257554A patent/JP2014051527A/en not_active Withdrawn
-
2016
- 2016-03-07 JP JP2016043528A patent/JP2016104825A/en active Pending
- 2016-03-07 JP JP2016043527A patent/JP2016104824A/en active Pending
-
2017
- 2017-02-16 US US15/434,431 patent/US20180008719A1/en not_active Abandoned
-
2020
- 2020-06-25 US US16/911,655 patent/US20210154308A1/en not_active Abandoned
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12128063B2 (en) | 2021-10-05 | 2024-10-29 | International Business Machines Corporation | Biocompatible and biodegradable antiviral polymers |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2016104824A (en) | 2016-06-09 |
| US20180008719A1 (en) | 2018-01-11 |
| US8497365B2 (en) | 2013-07-30 |
| US20130288986A1 (en) | 2013-10-31 |
| US9610360B2 (en) | 2017-04-04 |
| US20110294998A1 (en) | 2011-12-01 |
| JP2016104825A (en) | 2016-06-09 |
| US20080176958A1 (en) | 2008-07-24 |
| US20110282047A1 (en) | 2011-11-17 |
| JP2010516625A (en) | 2010-05-20 |
| JP2014051527A (en) | 2014-03-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20210154308A1 (en) | Polymeric drug conjugates with tether groups for controlled drug delivery | |
| WO2008076333A2 (en) | Polymer-drug conjugates with tether groups for controlled drug delivery | |
| US7270808B2 (en) | Cyclodextrin-based polymers for therapeutics delivery | |
| US20110237540A1 (en) | Cyclodextrin-based polymers for therapeutic delivery | |
| US20110178287A1 (en) | Cyclodextrin-based polymers for therapeutic delivery | |
| US20200323889A1 (en) | Cyclodextrin-based polymers for therapeutic delivery | |
| US20150141638A1 (en) | Cyclodextrin-based polymers for therapeutics delivery | |
| CA2892003A1 (en) | Modified cyclodextrin ring compounds having exactly two hydroxyl moieties substituted with an amino acid for therapeutics delivery | |
| US20140274947A1 (en) | Cyclodextrin-based polymers for therapeutic delivery | |
| US20160082111A1 (en) | Cyclodextrin-based polymers for therapeutic delivery | |
| US20140288024A1 (en) | Cyclodextrin-based polymers for therapeutics delivery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INSERT THERAPEUTICS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAVIS, MARK E.;HWANG, JUNGYEON;KE, TIANYI;AND OTHERS;SIGNING DATES FROM 20080307 TO 20080312;REEL/FRAME:053997/0713 Owner name: CALANDO PHARMACEUTICALS, INC., CALIFORNIA Free format text: MERGER;ASSIGNOR:INSERT THERAPEUTICS, INC.;REEL/FRAME:053997/0725 Effective date: 20080417 Owner name: CERULEAN PHARMA INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALANDO PHARMACEUTICALS, INC.;REEL/FRAME:053997/0736 Effective date: 20090623 Owner name: NOVARTIS INSTITUTES FOR BIOMEDICAL RESEARCH, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CERULEAN PHARMA INC.;REEL/FRAME:054266/0203 Effective date: 20170719 Owner name: NOVARTIS AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVARTIS INSTITUTES FOR BIOMEDICAL RESEARCH, INC.;REEL/FRAME:054266/0228 Effective date: 20200217 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |