US20210139904A1 - Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 - Google Patents
Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 Download PDFInfo
- Publication number
- US20210139904A1 US20210139904A1 US17/129,117 US202017129117A US2021139904A1 US 20210139904 A1 US20210139904 A1 US 20210139904A1 US 202017129117 A US202017129117 A US 202017129117A US 2021139904 A1 US2021139904 A1 US 2021139904A1
- Authority
- US
- United States
- Prior art keywords
- seq
- exon
- backbone
- antisense oligonucleotide
- skipping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 title claims description 112
- 108700024394 Exon Proteins 0.000 title abstract description 52
- 108090000623 proteins and genes Proteins 0.000 title description 25
- 108091034117 Oligonucleotide Proteins 0.000 claims description 119
- 125000003729 nucleotide group Chemical group 0.000 claims description 101
- 239000000074 antisense oligonucleotide Substances 0.000 claims description 71
- 238000012230 antisense oligonucleotides Methods 0.000 claims description 71
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 claims description 15
- 238000012986 modification Methods 0.000 claims description 12
- 230000004048 modification Effects 0.000 claims description 12
- -1 siloxane backbone Chemical group 0.000 claims description 11
- 239000008194 pharmaceutical composition Substances 0.000 claims description 8
- 108091093037 Peptide nucleic acid Proteins 0.000 claims description 7
- 108020004707 nucleic acids Proteins 0.000 claims description 6
- 102000039446 nucleic acids Human genes 0.000 claims description 6
- 150000007523 nucleic acids Chemical class 0.000 claims description 6
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 claims description 5
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 claims description 5
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 claims description 5
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 claims description 5
- ANCLJVISBRWUTR-UHFFFAOYSA-N diaminophosphinic acid Chemical compound NP(N)(O)=O ANCLJVISBRWUTR-UHFFFAOYSA-N 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 2
- 150000001336 alkenes Chemical class 0.000 claims description 2
- 150000001408 amides Chemical group 0.000 claims description 2
- 150000003457 sulfones Chemical group 0.000 claims description 2
- 150000003462 sulfoxides Chemical group 0.000 claims description 2
- STGXGJRRAJKJRG-JDJSBBGDSA-N (3r,4r,5r)-5-(hydroxymethyl)-3-methoxyoxolane-2,4-diol Chemical compound CO[C@H]1C(O)O[C@H](CO)[C@H]1O STGXGJRRAJKJRG-JDJSBBGDSA-N 0.000 claims 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical group NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 claims 1
- 125000000565 sulfonamide group Chemical group 0.000 claims 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims 1
- 125000000101 thioether group Chemical group 0.000 claims 1
- 108020004999 messenger RNA Proteins 0.000 abstract description 54
- 230000001939 inductive effect Effects 0.000 abstract description 21
- 230000001737 promoting effect Effects 0.000 abstract description 7
- 239000002773 nucleotide Substances 0.000 description 79
- 102000001039 Dystrophin Human genes 0.000 description 70
- 108010069091 Dystrophin Proteins 0.000 description 70
- 210000004027 cell Anatomy 0.000 description 41
- 101150015424 dmd gene Proteins 0.000 description 40
- 230000000692 anti-sense effect Effects 0.000 description 29
- 201000006935 Becker muscular dystrophy Diseases 0.000 description 28
- 230000008685 targeting Effects 0.000 description 27
- 210000000663 muscle cell Anatomy 0.000 description 25
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 23
- 150000001875 compounds Chemical class 0.000 description 23
- 230000035772 mutation Effects 0.000 description 23
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 19
- 235000018102 proteins Nutrition 0.000 description 18
- 102000004169 proteins and genes Human genes 0.000 description 18
- 238000012217 deletion Methods 0.000 description 15
- 230000037430 deletion Effects 0.000 description 15
- 230000006872 improvement Effects 0.000 description 15
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 14
- 210000003205 muscle Anatomy 0.000 description 13
- 239000013598 vector Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 150000001413 amino acids Chemical group 0.000 description 11
- 239000000546 pharmaceutical excipient Substances 0.000 description 11
- 238000012384 transportation and delivery Methods 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 10
- 238000012300 Sequence Analysis Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 210000001087 myotubule Anatomy 0.000 description 10
- 238000010240 RT-PCR analysis Methods 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 9
- 230000027455 binding Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000003556 assay Methods 0.000 description 8
- 230000000295 complement effect Effects 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 230000003612 virological effect Effects 0.000 description 8
- 230000001594 aberrant effect Effects 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 230000003834 intracellular effect Effects 0.000 description 7
- 102000007469 Actins Human genes 0.000 description 6
- 108010085238 Actins Proteins 0.000 description 6
- 108020004485 Nonsense Codon Proteins 0.000 description 6
- 230000037434 nonsense mutation Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000002452 interceptive effect Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 230000017074 necrotic cell death Effects 0.000 description 5
- 208000018360 neuromuscular disease Diseases 0.000 description 5
- 238000012385 systemic delivery Methods 0.000 description 5
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 4
- 102000004420 Creatine Kinase Human genes 0.000 description 4
- 108010042126 Creatine kinase Proteins 0.000 description 4
- 101001053946 Homo sapiens Dystrophin Proteins 0.000 description 4
- 229920002873 Polyethylenimine Polymers 0.000 description 4
- 238000001574 biopsy Methods 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 102000057878 human DMD Human genes 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 238000001964 muscle biopsy Methods 0.000 description 4
- 230000001114 myogenic effect Effects 0.000 description 4
- 210000005036 nerve Anatomy 0.000 description 4
- 230000000803 paradoxical effect Effects 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- KSXTUUUQYQYKCR-LQDDAWAPSA-M 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KSXTUUUQYQYKCR-LQDDAWAPSA-M 0.000 description 3
- 101710163270 Nuclease Proteins 0.000 description 3
- 102100029812 Protein S100-A12 Human genes 0.000 description 3
- 101710110949 Protein S100-A12 Proteins 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000010166 immunofluorescence Methods 0.000 description 3
- 201000006938 muscular dystrophy Diseases 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 230000002028 premature Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 102100039217 3-ketoacyl-CoA thiolase, peroxisomal Human genes 0.000 description 2
- 102100032091 ALK and LTK ligand 2 Human genes 0.000 description 2
- RTDFOQVLLJZRIH-JZAVHCKJSA-N Glycoursocholanic acid Chemical compound C([C@H]1CC2)CCC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)CC1 RTDFOQVLLJZRIH-JZAVHCKJSA-N 0.000 description 2
- 102100033969 Guanylyl cyclase-activating protein 1 Human genes 0.000 description 2
- 101100153048 Homo sapiens ACAA1 gene Proteins 0.000 description 2
- 101000776351 Homo sapiens ALK and LTK ligand 2 Proteins 0.000 description 2
- 101001068480 Homo sapiens Guanylyl cyclase-activating protein 1 Proteins 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 101710203526 Integrase Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 230000004570 RNA-binding Effects 0.000 description 2
- 101710185494 Zinc finger protein Proteins 0.000 description 2
- 102100023597 Zinc finger protein 816 Human genes 0.000 description 2
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 210000004413 cardiac myocyte Anatomy 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- XDZLHTBOHLGGCJ-UHFFFAOYSA-N hexyl 2-cyanoprop-2-enoate Chemical compound CCCCCCOC(=O)C(=C)C#N XDZLHTBOHLGGCJ-UHFFFAOYSA-N 0.000 description 2
- 238000010185 immunofluorescence analysis Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000007914 intraventricular administration Methods 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000004713 phosphodiesters Chemical class 0.000 description 2
- 108010011110 polyarginine Proteins 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000012096 transfection reagent Substances 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- PIINGYXNCHTJTF-UHFFFAOYSA-N 2-(2-azaniumylethylamino)acetate Chemical group NCCNCC(O)=O PIINGYXNCHTJTF-UHFFFAOYSA-N 0.000 description 1
- VUFNLQXQSDUXKB-DOFZRALJSA-N 2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]ethyl (5z,8z,11z,14z)-icosa-5,8,11,14-tetraenoate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)OCCOC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 VUFNLQXQSDUXKB-DOFZRALJSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 101710159080 Aconitate hydratase A Proteins 0.000 description 1
- 101710159078 Aconitate hydratase B Proteins 0.000 description 1
- 102100034082 Alkaline ceramidase 3 Human genes 0.000 description 1
- 101710085003 Alpha-tubulin N-acetyltransferase Proteins 0.000 description 1
- 101710085461 Alpha-tubulin N-acetyltransferase 1 Proteins 0.000 description 1
- 108700031308 Antennapedia Homeodomain Proteins 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 108010051109 Cell-Penetrating Peptides Proteins 0.000 description 1
- 102000020313 Cell-Penetrating Peptides Human genes 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 101100316028 Drosophila melanogaster Uggt gene Proteins 0.000 description 1
- 102000002578 Dystrophin-Associated Proteins Human genes 0.000 description 1
- 108010093446 Dystrophin-Associated Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000798828 Homo sapiens Alkaline ceramidase 3 Proteins 0.000 description 1
- 101100443349 Homo sapiens DMD gene Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 102000002151 Microfilament Proteins Human genes 0.000 description 1
- 108010040897 Microfilament Proteins Proteins 0.000 description 1
- 102000008934 Muscle Proteins Human genes 0.000 description 1
- 108010074084 Muscle Proteins Proteins 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 201000009623 Myopathy Diseases 0.000 description 1
- PKFBJSDMCRJYDC-GEZSXCAASA-N N-acetyl-s-geranylgeranyl-l-cysteine Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CSC[C@@H](C(O)=O)NC(C)=O PKFBJSDMCRJYDC-GEZSXCAASA-N 0.000 description 1
- 229920002730 Poly(butyl cyanoacrylate) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 102000044126 RNA-Binding Proteins Human genes 0.000 description 1
- 101710105008 RNA-binding protein Proteins 0.000 description 1
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 101710175714 Tyrosine aminotransferase Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 210000001766 X chromosome Anatomy 0.000 description 1
- WCDYMMVGBZNUGB-ORPFKJIMSA-N [(2r,3r,4s,5r,6r)-6-[[(1r,3r,4r,5r,6r)-4,5-dihydroxy-2,7-dioxabicyclo[4.2.0]octan-3-yl]oxy]-3,4,5-trihydroxyoxan-2-yl]methyl 3-hydroxy-2-tetradecyloctadecanoate Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](COC(=O)C(CCCCCCCCCCCCCC)C(O)CCCCCCCCCCCCCCC)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H]2OC[C@H]2O1 WCDYMMVGBZNUGB-ORPFKJIMSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 230000003185 calcium uptake Effects 0.000 description 1
- 229940077731 carbohydrate nutrients Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 150000001841 cholesterols Chemical class 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 238000000749 co-immunoprecipitation Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000010415 colloidal nanoparticle Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- JJJFUHOGVZWXNQ-UHFFFAOYSA-N enbucrilate Chemical compound CCCCOC(=O)C(=C)C#N JJJFUHOGVZWXNQ-UHFFFAOYSA-N 0.000 description 1
- 229950010048 enbucrilate Drugs 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000009760 functional impairment Effects 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000001744 histochemical effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 231100001224 moderate toxicity Toxicity 0.000 description 1
- 238000009126 molecular therapy Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920000333 poly(propyleneimine) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 208000026526 progressive weakness Diseases 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 230000009325 pulmonary function Effects 0.000 description 1
- 150000003214 pyranose derivatives Chemical class 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 201000004193 respiratory failure Diseases 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- JRPHGDYSKGJTKZ-UHFFFAOYSA-N selenophosphoric acid Chemical compound OP(O)([SeH])=O JRPHGDYSKGJTKZ-UHFFFAOYSA-N 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- 150000003456 sulfonamides Chemical group 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- PBKWZFANFUTEPS-CWUSWOHSSA-N transportan Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(N)=O)[C@@H](C)CC)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CN)[C@@H](C)O)C1=CC=C(O)C=C1 PBKWZFANFUTEPS-CWUSWOHSSA-N 0.000 description 1
- 108010062760 transportan Proteins 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
- A61K31/52—Purines, e.g. adenine
- A61K31/522—Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/58—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- A61K38/1719—Muscle proteins, e.g. myosin or actin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0058—Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/02—Muscle relaxants, e.g. for tetanus or cramps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/12—Drugs for disorders of the metabolism for electrolyte homeostasis
- A61P3/14—Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/06—Free radical scavengers or antioxidants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
- C12N2310/111—Antisense spanning the whole gene, or a large part of it
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/313—Phosphorodithioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/314—Phosphoramidates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/318—Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
- C12N2310/3181—Peptide nucleic acid, PNA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/321—2'-O-R Modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/323—Chemical structure of the sugar modified ring structure
- C12N2310/3231—Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/323—Chemical structure of the sugar modified ring structure
- C12N2310/3233—Morpholino-type ring
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/346—Spatial arrangement of the modifications having a combination of backbone and sugar modifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/31—Combination therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/33—Alteration of splicing
Definitions
- the invention relates to the field of genetics, more specifically human genetics.
- the invention in particular relates to modulation of splicing of the human Duchenne Muscular Dystrophy pre-mRNA.
- Myopathies are disorders that result in functional impairment of muscles.
- Muscular dystrophy refers to genetic diseases that are characterized by progressive weakness and degeneration of skeletal muscles.
- Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are the most common childhood forms of muscular dystrophy. They are recessive disorders and because the gene responsible for DMD and BMD resides on the X-chromosome, mutations mainly affect males with an incidence of about 1 in 3500 boys.
- DMD and BMD are caused by genetic defects in the DMD gene encoding dystrophin, a muscle protein that is required for interactions between the cytoskeleton and the extracellular matrix to maintain muscle fiber stability during contraction.
- DMD is a severe, lethal neuromuscular disorder resulting in a dependency on wheelchair support before the age of 12 and DMD patients often die before the age of thirty due to respiratory- or heart failure. In contrast, BMD patients often remain ambulatory until later in life, and have near normal life expectancies.
- DMD mutations in the DMD gene are characterized by frame shifting insertions or deletions or nonsense point mutations, resulting in the absence of functional dystrophin. BMD mutations in general keep the reading frame intact, allowing synthesis of a partly functional dystrophin.
- DMD Duchenne muscular dystrophy
- AONs antisense oligonucleotides interfering with splicing signals the skipping of specific exons can be induced in the DMD pre-mRNA, thus restoring the open reading frame and converting the severe DMD into a milder BMD phenotype (van Deutekom et al. Hum Mol Genet. 2001; 10: 1547-54; Aartsma-Rus et al., Hum Mol Genet 2003; 12(8):907-14.). In vivo proof-of-concept was first obtained in the mdx mouse model, which is dystrophin-deficient due to a nonsense mutation in exon 23.
- Intramuscular and intravenous injections of AONs targeting the mutated exon 23 restored dystrophin expression for at least three months (Lu et al. Nat Med. 2003; 8: 1009-14; Lu et al., Proc Natl Acad Sci US A. 2005; 102(1):198-203). This was accompanied by restoration of dystrophin-associated proteins at the fiber membrane as well as functional improvement of the treated muscle.
- In vivo skipping of human exons has also been achieved in the hDMD mouse model, which contains a complete copy of the human DMD gene integrated in chromosome 5 of the mouse (Bremmer-Bout et al. Molecular Therapy. 2004; 10: 232-40; ′t Hoen et al. J Biol Chem. 2008; 283: 5899-907).
- FIG. 1 In human control myotubes, a series of AONs (PS237, PS238, and PS240; SEQ ID NO 65, 66, 16 respectively) targeting exon 43 was tested at 500 nM. PS237 (SEQ ID NO 65) reproducibly induced highest levels of exon 43 skipping. (M: DNA size marker; NT: non-treated cells)
- FIG. 2 In myotubes from a DMD patient with an exon 45 deletion, a series of AONs (PS177, PS179, PS181, and PS182; SEQ ID NO 91, 70, 110, and 117 respectively) targeting exon 46 was tested at two different concentrations (50 and 150 nM). PS182 (SEQ ID NO 117) reproducibly induced highest levels of exon 46 skipping. (M: DNA size marker)
- FIG. 3 In human control myotubes, a series of AONs (PS245, PS246, PS247, and PS248; SEQ ID NO 167, 165, 166, and 127 respectively) targeting exon 50 was tested at 500 nM.
- PS248 SEQ ID NO 127) reproducibly induced highest levels of exon 50 skipping.
- M DNA size marker
- NT non-treated cells.
- FIG. 4 In human control myotubes, two novel AONs (PS232 and PS236; SEQ ID NO 246 and 299 respectively) targeting exon 52 were tested at two different concentrations (200 and 500 nM) and directly compared to a previously described AON (52-1).
- PS236 SEQ ID NO 299
- M DNA size marker
- NT non-treated cells
- the present invention provides a method for inducing, and/or promoting skipping of at least one of exons 43, 46, 50-53 of the DMD pre-mRNA in a patient, preferably in an isolated cell of a patient, the method comprising providing said cell and/or said patient with a molecule that binds to a continuous stretch of at least 8 nucleotides within said exon. It is to be understood that said method encompasses an in vitro, in vivo or ex vivo method.
- a method for inducing and/or promoting skipping of at least one of exons 43, 46, 50-53 of DMD pre-mRNA in a patient, preferably in an isolated cell of said patient, the method comprising providing said cell and/or said patient with a molecule that binds to a continuous stretch of at least 8 nucleotides within said exon.
- a DMD pre-mRNA preferably means the pre-mRNA of a DMD gene of a DMD or BMD patient.
- a patient is preferably intended to mean a patient having DMD or BMD as later defined herein or a patient susceptible to develop DMD or BMD due to his or her genetic background.
- an oligonucleotide used will preferably correct one mutation as present in the DMD gene of said patient and therefore will preferably create a DMD protein that will look like a BMD protein: said protein will preferably be a functional dystrophin as later defined herein.
- an oligonucleotide as used will preferably correct one mutation as present in the BMD gene of said patient and therefore will preferably create a dystrophin which will be more functional than the dystrophin which was originally present in said BMD patient.
- Exon skipping refers to the induction in a cell of a mature mRNA that does not contain a particular exon that is normally present therein. Exon skipping is performed by providing a cell expressing the pre-mRNA of said mRNA with a molecule capable of interfering with essential sequences such as for example the splice donor of splice acceptor sequence that required for splicing of said exon, or a molecule that is capable of interfering with an exon inclusion signal that is required for recognition of a stretch of nucleotides as an exon to be included in the mRNA.
- the term pre-mRNA refers to a non-processed or partly processed precursor mRNA that is synthesized from a DNA template in the cell nucleus by transcription.
- inducing and/or promoting skipping of an exon as indicated herein means that at least 1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the DMD mRNA in one or more (muscle) cells of a treated patient will not contain said exon. This is preferably assessed by PCR as described in the examples.
- a method of the invention by inducing and/or promoting skipping of at least one of the following exons 43, 46, 50-53 of the DMD pre-mRNA in one or more (muscle) cells of a patient, provides said patient with a functional dystrophin protein and/or decreases the production of an aberrant dystrophin protein in said patient and/or increases the production of a functional dystrophin is said patient.
- Providing a patient with a functional dystrophin protein and/or decreasing the production of an aberrant dystrophin protein in said patient is typically applied in a DMD patient.
- Increasing the production of a functional dystrophin is typically applied in a BMD patient.
- a preferred method is a method, wherein a patient or one or more cells of said patient is provided with a functional dystrophin protein and/or wherein the production of an aberrant dystrophin protein in said patient is decreased and/or wherein the production of a functional dystrophin is increased in said patient, wherein the level of said aberrant or functional dystrophin is assessed by comparison to the level of said dystrophin in said patient at the onset of the method.
- Decreasing the production of an aberrant dystrophin may be assessed at the mRNA level and preferably means that 99%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 5% or less of the initial amount of aberrant dystrophin mRNA, is still detectable by RT PCR.
- An aberrant dystrophin mRNA or protein is also referred to herein as a non-functional dystrophin mRNA or protein.
- a non-functional dystrophin protein is preferably a dystrophin protein which is not able to bind actin and/or members of the DGC protein complex.
- a non-functional dystrophin protein or dystrophin mRNA does typically not have, or does not encode, a dystrophin protein with an intact C-terminus of the protein.
- Increasing the production of a functional dystrophin in said patient or in a cell of said patient may be assessed at the mRNA level (by RT-PCR analysis) and preferably means that a detectable amount of a functional dystrophin mRNA is detectable by RT PCR.
- 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the detectable dystrophin mRNA is a functional dystrophin mRNA.
- Increasing the production of a functional dystrophin in said patient or in a cell of said patient may be assessed at the protein level (by immunofluorescence and western blot analyses) and preferably means that a detectable amount of a functional dystrophin protein is detectable by immunofluorescence or western blot analysis.
- 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the detectable dystrophin protein is a functional dystrophin protein.
- a functional dystrophin is preferably a wild type dystrophin corresponding to a protein having the amino acid sequence as identified in SEQ ID NO: 1.
- a functional dystrophin is preferably a dystrophin, which has an actin binding domain in its N terminal part (first 240 amino acids at the N terminus), a cysteine-rich domain (amino acid 3361 till 3685) and a C terminal domain (last 325 amino acids at the C terminus) each of these domains being present in a wild type dystrophin as known to the skilled person.
- the amino acids indicated herein correspond to amino acids of the wild type dystrophin being represented by SEQ ID NO:1.
- a functional dystrophin is a dystrophin which exhibits at least to some extent an activity of a wild type dystrophin. “At least to some extent” preferably means at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 100% of a corresponding activity of a wild type functional dystrophin.
- an activity of a functional dystrophin is preferably binding to actin and to the dystrophin-associated glycoprotein complex (DGC) (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144). Binding of dystrophin to actin and to the DGC complex may be visualized by either co-immunoprecipitation using total protein extracts or immunofluorescence analysis of cross-sections, from a muscle biopsy, as known to the skilled person.
- DGC dystrophin-associated glycoprotein complex
- Duchenne muscular dystrophy typically have a mutation in the gene encoding dystrophin that prevent synthesis of the complete protein, i.e of a premature stop prevents the synthesis of the C-terminus.
- the DMD gene also comprises a mutation compared to the wild type gene, but the mutation does typically not induce a premature stop and the C-terminus is typically synthesized.
- a functional dystrophin protein is synthesized that has at least the same activity in kind as the wild type protein, not although not necessarily the same amount of activity.
- the genome of a BMD individual typically encodes a dystrophin protein comprising the N terminal part (first 240 amino acids at the N terminus), a cysteine-rich domain (amino acid 3361 till 3685) and a C terminal domain (last 325 amino acids at the C terminus) but its central rod shaped domain may be shorter than the one of a wild type dystrophin (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144).
- Exon skipping for the treatment of DMD is typically directed to overcome a premature stop in the pre-mRNA by skipping an exon in the rod-shaped domain to correct the reading frame and allow synthesis of remainder of the dystrophin protein including the C-terminus, albeit that the protein is somewhat smaller as a result of a smaller rod domain.
- an individual having DMD and being treated by a method as defined herein will be provided a dystrophin which exhibits at least to some extent an activity of a wild type dystrophin.
- a functional dystrophin is a dystrophin of an individual having BMD: typically said dystrophin is able to interact with both actin and the DGC, but its central rod shaped domain may be shorter than the one of a wild type dystrophin (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144).
- the central rod-shaped domain of wild type dystrophin comprises 24 spectrin-like repeats (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144).
- a central rod-shaped domain of a dystrophin as provided herein may comprise 5 to 23, 10 to 22 or 12 to 18 spectrin-like repeats as long as it can bind to actin and to DGC.
- a method of the invention may alleviate one or more characteristics of a myogenic or muscle cell of a patient or alleviate one or more symptoms of a DMD patient having a deletion including but not limited to exons 44, 44-46, 44-47, 44-48, 44-49, 44-51, 44-53 (correctable by exon 43 skipping), 19-45, 21-45, 43-45, 45, 47-54, 47-56 (correctable by exon 46 skipping), 51, 51-53, 51-55, 51-57 (correctable by exon 50 skipping), 13-50, 19-50, 29-50, 43-50, 45-50, 47-50, 48-50, 49-50, 50, 52 (correctable by exon 51 skipping), exons 8-51, 51, 53, 53-55, 53-57, 53-59, 53-60, (correctable by exon 52 skipping) and exons 10-52, 42-52, 43-52, 45-52, 47-52, 48-52, 49-52, 50-52, 52 (correctable by exon 53
- a method of the invention may improve one or more characteristics of a muscle cell of a patient or alleviate one or more symptoms of a DMD patient having small mutations in, or single exon duplications of exon 43, 46, 50-53 in the DMD gene, occurring in a total of 36% of all DMD patients with a deletion (Aartsma-Rus et al, Hum. Mut. 2009)
- exon 46 and/or exon 50-53 is required to restore the open reading frame, including patients with specific deletions, small (point) mutations, or double or multiple exon duplications, such as (but not limited to) a deletion of exons 44-50 requiring the co-skipping of exons 43 and 51, with a deletion of exons 46-50 requiring the co-skipping of exons 45 and 51, with a deletion of exons 44-52 requiring the co-skipping of exons 43 and 53, with a deletion of exons 46-52 requiring the co-skipping of exons 45 and 53, with a deletion of exons 51-54 requiring the co-skipping of exons 50 and 55, with a deletion of exons 53-54 requiring the co-skipping of exons 52 and 55, with a deletion of exons 53-56 requiring the co-skipping of exons 52 and 57,
- the skipping of exon 43 is induced, or the skipping of exon 46 is induced, or the skipping of exon 50 is induced or the skipping of exon 51 is induced or the skipping of exon 52 is induced or the skipping of exon 53 is induced.
- An induction of the skipping of two of these exons is also encompassed by a method of the invention. For example, preferably skipping of exons 50 and 51, or 52 and 53, or 30 43 and 51, or 43 and 53, or 51 and 52.
- the skilled person will know which combination of exons needs to be skipped in said patient.
- one or more symptom(s) of a DMD or a BMD patient is/are alleviated and/or one or more characteristic(s) of one or more muscle cells from a DMD or a BMD patient is/are improved.
- symptoms or characteristics may be assessed at the cellular, tissue level or on the patient self
- An alleviation of one or more characteristics may be assessed by any of the following assays on a myogenic cell or muscle cell from a patient: reduced calcium uptake by muscle cells, decreased collagen synthesis, altered morphology, altered lipid biosynthesis, decreased oxidative stress, and/or improved muscle fiber function, integrity, and/or survival. These parameters are usually assessed using immunofluorescence and/or histochemical analyses of cross sections of muscle biopsies.
- the improvement of muscle fiber function, integrity and/or survival may be assessed using at least one of the following assays: a detectable decrease of creatine kinase in blood, a detectable decrease of necrosis of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic, and/or a detectable increase of the homogeneity of the diameter of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic.
- a detectable decrease of creatine kinase in blood a detectable decrease of necrosis of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic
- a detectable increase of the homogeneity of the diameter of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic are known to the skilled person.
- Creatine kinase may be detected in blood as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006).
- a detectable decrease in creatine kinase may mean a decrease of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more compared to the concentration of creatine kinase in a same DMD or BMD patient before treatment.
- a detectable decrease of necrosis of muscle fibers is preferably assessed in a muscle biopsy, more preferably as described in Hodgetts et al (Hodgetts S., et al (2006), Neuromuscular Disorders, 16: 591-602.2006) using biopsy cross-sections.
- a detectable decrease of necrosis may be a decrease of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the area wherein necrosis has been identified using biopsy cross-sections. The decrease is measured by comparison to the necrosis as assessed in a same DMD or BMD patient before treatment.
- a detectable increase of the homogeneity of the diameter of a muscle fiber is preferably assessed in a muscle biopsy cross-section, more preferably as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006). The increase is measured by comparison to the homogeneity of the diameter of a muscle fiber in a same DMD or BMD patient before treatment.
- An alleviation of one or more symptoms may be assessed by any of the following assays on the patient self: prolongation of time to loss of walking, improvement of muscle strength, improvement of the ability to lift weight, improvement of the time taken to rise from the floor, improvement in the nine-meter walking time, improvement in the time taken for four-stairs climbing, improvement of the leg function grade, improvement of the pulmonary function, improvement of cardiac function, improvement of the quality of life.
- assays are known to the skilled person. As an example, the publication of Manzur et al.
- Detectable improvement or prolongation is preferably a statistically significant improvement or prolongation as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006).
- the alleviation of one or more symptom(s) of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy may be assessed by measuring an improvement of a muscle fiber function, integrity and/or survival as later defined herein.
- a treatment in a method according to the invention may have a duration of at least one week, at least one month, at least several months, at least one year, at least 2, 3, 4, 5, 6 years or more.
- Each molecule or oligonucleotide or equivalent thereof as defined herein for use according to the invention may be suitable for direct administration to a cell, tissue and/or an organ in vivo of individuals affected by or at risk of developing DMD or BMD, and may be administered directly in vivo, ex vivo or in vitro.
- the frequency of administration of a molecule or an oligonucleotide or a composition of the invention may depend on several parameters such as the age of the patient, the mutation of the patient, the number of molecules (dose), the formulation of said molecule. The frequency may be ranged between at least once in a two weeks, or three weeks or four weeks or five weeks or a longer time period.
- a molecule or oligonucleotide or equivalent thereof can be delivered as is to a cell.
- a solution that is compatible with the delivery method.
- the solution is a physiological salt solution.
- an excipient that will further enhance delivery of said molecule, oligonucleotide or functional equivalent thereof as defined herein, to a cell and into a cell, preferably a muscle cell. Preferred excipients are defined in the section entitled “pharmaceutical composition”.
- an additional molecule is used which is able to induce and/or promote skipping of another exon of the DMD pre-mRNA of a patient.
- the second exon is selected from: exon 6, 7, 11, 17, 19, 21, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 62, 63, 65, 66, 69, or 75 of the DMD pre-mRNA of a patient.
- Molecules which can be used are depicted in any one of Table 1 to 7. This way, inclusion of two or more exons of a DMD pre-mRNA in mRNA produced from this pre-mRNA is prevented.
- This embodiment is further referred to as double- or multi-exon skipping (Aartsma-Rus A, Janson A A, Kaman W E, et al. Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet 2004; 74(1):83-92, Aartsma-Rus A, Kaman W E, Weij R, den Dunnen J T, van Ommen G J, van Deutekom J C. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 2006; 14(3):401-7). In most cases double-exon skipping results in the exclusion of only the two targeted exons from the DMD pre-mRNA.
- stretches of nucleotides complementary to at least two dystrophin exons are separated by a linking moiety.
- the at least two stretches of nucleotides are thus linked in this embodiment so as to form a single molecule.
- said compounds can be administered to an individual in any order.
- said compounds are administered simultaneously (meaning that said compounds are administered within 10 hours, preferably within one hour). This is however not necessary.
- said compounds are administered sequentially.
- a molecule as defined herein is preferably an oligonucleotide or antisense oligonucleotide (AON).
- any of exon 43, 46, 50-53 is specifically skipped at a high frequency using a molecule that preferably binds to a continuous stretch of at least 8 nucleotides within said exon.
- this effect can be associated with a higher binding affinity of said molecule, compared to a molecule that binds to a continuous stretch of less than 8 nucleotides, there could be other intracellular parameters involved that favor thermodynamic, kinetic, or structural characteristics of the hybrid duplex.
- a molecule that binds to a continuous stretch of at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 nucleotides within said exon is used.
- a molecule or an oligonucleotide of the invention which comprises a sequence that is complementary to a part of any of exon 43, 46, 50-53 of DMD pre-mRNA is such that the complementary part is at least 50% of the length of the oligonucleotide of the invention, more preferably at least 60%, even more preferably at least 70%, even more preferably at least 80%, even more preferably at least 90% or even more preferably at least 95%, or even more preferably 98% and most preferably up to 100%.
- “A part of said exon” preferably means a stretch of at least 8 nucleotides.
- an oligonucleotide of the invention consists of a sequence that is complementary to part of said exon DMD pre-mRNA as defined herein.
- an oligonucleotide may comprise a sequence that is complementary to part of said exon DMD pre-mRNA as defined herein and additional flanking sequences.
- the length of said complementary part of said oligonucleotide is of at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 nucleotides.
- additional flanking sequences are used to modify the binding of a protein to said molecule or oligonucleotide, or to modify a thermodynamic property of the oligonucleotide, more preferably to modify target RNA binding affinity.
- a preferred molecule to be used in a method of the invention binds or is complementary to a continuous stretch of at least 8 nucleotides within one of the following nucleotide sequences selected from:
- the invention provides distinct molecules that can be used in a method for efficiently skipping of at least one of exon 43, exon 46 and/or exon 50-53.
- skipping effect can be addressed to the relatively high density of putative SR protein binding sites within said stretches, there could be other parameters involved that favor uptake of the molecule or other, intracellular parameters such as thermodynamic, kinetic, or structural characteristics of the hybrid duplex.
- a molecule that binds to a continuous stretch comprised within or consisting of any of SEQ ID NO 2-7 results in highly efficient skipping of exon 43, exon 46 and/or exon 50-53 respectively in a cell and/or in a patient provided with this molecule. Therefore, in a preferred embodiment, a method is provided wherein a molecule binds to a continuous stretch of at least 8, 10, 12, 15, 18, 20, 25, 30, 35, 40, 45, 50 nucleotides within SEQ ID NO 2-7.
- the invention provides a molecule comprising or consisting of an antisense nucleotide sequence selected from the antisense nucleotide sequences depicted in any of Tables 1 to 6.
- a molecule of the invention preferably comprises or consist of the antisense nucleotide sequence of SEQ ID NO 16, SEQ ID NO 65, SEQ ID NO 70, SEQ ID NO 91, SEQ ID NO 110, SEQ ID NO 117, SEQ ID NO 127, SEQ ID NO 165, SEQ ID NO 166, SEQ ID NO 167, SEQ ID NO 246, SEQ ID NO 299, SEQ ID NO:357.
- a preferred molecule of the invention comprises a nucleotide-based or nucleotide or an antisense oligonucleotide sequence of between 8 and 50 nucleotides or bases, more preferred between 10 and 50 nucleotides, more preferred between 20 and 40 nucleotides, more preferred between 20 and 30 nucleotides, such as 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, 40 nucleotides, 41 nucleotides, 42 nucleotides, 43 nucleot
- a molecule of the invention is a compound molecule that binds to the specified sequence, or a protein such as an RNA-binding protein or a non-natural zinc-finger protein that has been modified to be able to bind to the corresponding nucleotide sequence on a DMD pre-RNA molecule.
- Methods for screening compound molecules that bind specific nucleotide sequences are, for example, disclosed in PCT/NL01/00697 and U.S. Pat. No. 6,875,736, which are herein incorporated by reference.
- Methods for designing RNA-binding Zinc-finger proteins that bind specific nucleotide sequences are disclosed by Friesen and Darby, Nature Structural Biology 5: 543-546 (1998) which is herein incorporated by reference.
- a preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 2: 5′-AGAUAGUCUACAACAAAGCUCAGGUCGGAUUGACAUUAUUCAU AGCAAGAAGACAGCAGCAUUGCAAAGUGCAACGCCUGUGG-3′ which is present in exon 43 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 8 to SEQ ID NO 69.
- the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO:16 and/or SEQ ID NO:65. In a most preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 65. It was found that this molecule is very efficient in modulating splicing of exon 43 of the DMD pre-mRNA in a muscle cell and/or in a patient.
- Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 3: 5′-UUAUGGUUGGAGGAAGCAGAUAACAUUGCUAGUAUCCCACUUG AACCUGGAAAAGAGCAGCAACUAAAAGAAAAGC-3′ which is present in exon 46 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 70 to SEQ ID NO 122.
- the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 70, SEQ ID NO 91, SEQ ID NO 110, and/or SEQ ID N0117.
- the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 117. It was found that this molecule is very efficient in modulating splicing of exon 46 of the DMD pre-mRNA in a muscle cell or in a patient.
- Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 4: 5′-GGCGGUAAACCGUUUACUUCAAGAGCU GAGGGCAAAGCAGCCUG ACCUAGCUCCUGGACUGACCACUAUUGG-3′ which is present in exon 50 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 123 to SEQ ID NO 167 and/or SEQ ID NO 529 to SEQ ID NO 535.
- the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 127, or SEQ ID NO 165, or SEQ ID NO 166 and/or SEQ ID NO 167.
- the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 127. It was found that this molecule is very efficient in modulating splicing of exon 50 of the DMD pre-mRNA in a muscle cell and/or in a patient.
- Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 5: 5′-CUCCUACUCAGACUGUUACUCUGGUGACACAACCUGUGGUUACU AAGGAAACUGCCAUCUCCAAACUAGAAAUGCCAUCUUCCUUGAUG UUGGAGGUAC-3′ which is present in exon 51 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 168 to SEQ ID NO 241.
- Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 6: 5′-AUGCAGGAUUUGGAACAGAGGCGUCCCCAGUUGGAAGAACUCAU UACCGCUGCCCAAAAUUUGAAAAACAAGACCAGCAAUCAAGAGGCU-3′ which is present in exon 52 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 242 to SEQ ID NO 310. In an even more preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 246 and/or SEQ ID NO 299.
- the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 299. It was found that this molecule is very efficient in modulating splicing of exon 52 of the DMD pre-mRNA in a muscle cell and/or in a patient.
- Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 7: 5′-AAAUGUUAAAGGAUUCAACACAAUGGCUGGAAGCUAAGGAAGAA GCUGAGCAGGUCUUAGGACAGGCCAGAG-3′ which is present in exon 53 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 311 to SEQ ID NO 358.
- the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 357. It was found that this molecule is very efficient in modulating splicing of exon 53 of the DMD pre-mRNA in a muscle cell and/or in a patient.
- a nucleotide sequence of a molecule of the invention may contain RNA residues, or one or more DNA residues, and/or one or more nucleotide analogues or equivalents, as will be further detailed herein below.
- a molecule of the invention comprises one or more residues that are modified to increase nuclease resistance, and/or to increase the affinity of the antisense nucleotide for the target sequence. Therefore, in a preferred embodiment, the antisense nucleotide sequence comprises at least one nucleotide analogue or equivalent, wherein a nucleotide analogue or equivalent is defined as a residue having a modified base, and/or a modified backbone, and/or a non-natural internucleoside linkage, or a combination of these modifications.
- the nucleotide analogue or equivalent comprises a modified backbone.
- backbones are provided by morpholino backbones, carbamate backbones, siloxane backbones, sulfide, sulfoxide and sulfone backbones, formacetyl and thioformacetyl backbones, methyleneformacetyl backbones, riboacetyl backbones, alkene containing backbones, sulfamate, sulfonate and sulfonamide backbones, methyleneimino and methylenehydrazino backbones, and amide backbones.
- Phosphorodiamidate morpholino oligomers are modified backbone oligonucleotides that have previously been investigated as antisense agents.
- Morpholino oligonucleotides have an uncharged backbone in which the deoxyribose sugar of DNA is replaced by a six membered ring and the phosphodiester linkage is replaced by a phosphorodiamidate linkage.
- Morpholino oligonucleotides are resistant to enzymatic degradation and appear to function as antisense agents by arresting translation or interfering with pre-mRNA splicing rather than by activating RNase H.
- Morpholino oligonucleotides have been successfully delivered to tissue culture cells by methods that physically disrupt the cell membrane, and one study comparing several of these methods found that scrape loading was the most efficient method of delivery; however, because the morpholino backbone is uncharged, cationic lipids are not effective mediators of morpholino oligonucleotide uptake in cells. A recent report demonstrated triplex formation by a morpholino oligonucleotide and, because of the non-ionic backbone, these studies showed that the morpholino oligonucleotide was capable of triplex formation in the absence of magnesium.
- the linkage between the residues in a backbone do not include a phosphorus atom, such as a linkage that is formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages.
- a preferred nucleotide analogue or equivalent comprises a Peptide Nucleic Acid (PNA), having a modified polyamide backbone (Nielsen, et al. (1991) Science 254, 1497-1500). PNA-based molecules are true mimics of DNA molecules in terms of base-pair recognition.
- the backbone of the PNA is composed of N-(2-aminoethyl)-glycine units linked by peptide bonds, wherein the nucleobases are linked to the backbone by methylene carbonyl bonds.
- An alternative backbone comprises a one-carbon extended pyrrolidine PNA monomer (Govindaraju and Kumar (2005) Chem. Commun, 495-497).
- PNA-RNA hybrids are usually more stable than RNA-RNA or RNA-DNA hybrids, respectively (Egholm et al (1993) Nature 365, 566-568).
- a further preferred backbone comprises a morpholino nucleotide analog or equivalent, in which the ribose or deoxyribose sugar is replaced by a 6-membered morpholino ring.
- a most preferred nucleotide analog or equivalent comprises a phosphorodiamidate morpholino oligomer (PMO), in which the ribose or deoxyribose sugar is replaced by a 6-membered morpholino ring, and the anionic phosphodiester linkage between adjacent morpholino rings is replaced by a non-ionic phosphorodiamidate linkage.
- PMO phosphorodiamidate morpholino oligomer
- a nucleotide analogue or equivalent of the invention comprises a substitution of one of the non-bridging oxygens in the phosphodiester linkage. This modification slightly destabilizes base-pairing but adds significant resistance to nuclease degradation.
- a preferred nucleotide analogue or equivalent comprises phosphorothioate, chiral phosphorothioate, phosphorodithioate, phosphotriester, aminoalkylphosphotriester, H-phosphonate, methyl and other alkylphosphonate including 3′-alkylene phosphonate, 5′-alkylene phosphonate and chiral phosphonate, phosphinate, phosphoramidate including 3′-amino phosphoramidate and aminoalkylphosphoramidate, thionophosphoramidate, thionoalkylphosphonate, thionoalkylphosphotriester, selenophosphate or boranophosphate.
- a further preferred nucleotide analogue or equivalent of the invention comprises one or more sugar moieties that are mono- or disubstituted at the 2′, 3′ and/or 5′ position such as a —OH; —F; substituted or unsubstituted, linear or branched lower (C1-C10) alkyl, alkenyl, alkynyl, alkaryl, allyl, aryl, or aralkyl, that may be interrupted by one or more heteroatoms; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; O-, S-, or N-allyl; O-alkyl-O-alkyl, -methoxy, -aminopropoxy; -aminoxy; methoxyethoxy; -dimethylaminooxyethoxy; and -dimethylaminoethoxyethoxy.
- the sugar moiety can be a pyranose or derivative thereof, or a deoxypyranose or derivative thereof, preferably a ribose or a derivative thereof, or a deoxyribose or a derivative thereof.
- Such preferred derivatized sugar moieties comprise Locked Nucleic Acid (LNA), in which the 2′-carbon atom is linked to the 3′ or 4′ carbon atom of the sugar ring thereby forming a bicyclic sugar moiety.
- LNA Locked Nucleic Acid
- a preferred LNA comprises 2′-0,4′-C-ethylene-bridged nucleic acid (Morita et al. 2001. Nucleic Acid Res Supplement No. 1: 241-242). These substitutions render the nucleotide analogue or equivalent RNase H and nuclease resistant and increase the affinity for the target RNA.
- an antisense oligonucleotide of the invention has at least two different types of analogues or equivalents.
- a preferred antisense oligonucleotide according to the invention comprises a 2′-O alkyl phosphorothioate antisense oligonucleotide, such as 2′-O-methyl modified ribose (RNA), 2′-O-ethyl modified ribose, 2′-O-propyl modified ribose, and/or substituted derivatives of these modifications such as halogenated derivatives.
- RNA 2′-O-methyl modified ribose
- 2′-O-ethyl modified ribose 2′-O-propyl modified ribose
- substituted derivatives of these modifications such as halogenated derivatives.
- a most preferred antisense oligonucleotide according to the invention comprises of 2′-O-methyl phosphorothioate ribose.
- a functional equivalent of a molecule of the invention may be defined as an oligonucleotide as defined herein wherein an activity of said functional equivalent is retained to at least some extent.
- an activity of said functional equivalent is inducing exon 43, 46, 50, 51, 52, or 53 skipping and providing a functional dystrophin protein. Said activity of said functional equivalent is therefore preferably assessed by detection of exon 43, 46, 50, 51, 52, or 53 skipping and by quantifying the amount of functional dystrophin protein.
- a functional dystrophin is herein preferably defined as being a dystrophin able to bind actin and members of the DGC protein complex.
- the assessment of said activity of an oligonucleotide is preferably done by RT-PCR or by immunofluorescence or Western blot analyses. Said activity is preferably retained to at least some extent when it represents at least 50%, or at least 60%, or at least 70% or at least 80% or at least 90% or at least 95% or more of corresponding activity of said oligonucleotide the functional equivalent derives from. Throughout this application, when the word oligonucleotide is used it may be replaced by a functional equivalent thereof as defined herein.
- distinct antisense oligonucleotides can be combined for efficiently skipping any of exon 43, exon 46, exon 50, exon 51, exon 52 and/or exon 53 of the human DMD pre-mRNA. It is encompassed by the present invention to use one, two, three, four, five or more oligonucleotides for skipping one of said exons (i.e., exon, 43, 46, 50, 51, 52, or 53). It is also encompassed to use at least two oligonucleotides for skipping at least two, of said exons. Preferably two of said exons are skipped. More preferably, these two exons are:
- ⁇ 43 and 51 or ⁇ 43 and 53, or ⁇ 50 and 51, or ⁇ 51 and 52, or ⁇ 52 and 53.
- An antisense oligonucleotide can be linked to a moiety that enhances uptake of the antisense oligonucleotide in cells, preferably muscle cells.
- moieties are cholesterols, carbohydrates, vitamins, biotin, lipids, phospholipids, cell-penetrating peptides including but not limited to antennapedia, TAT, transportan and positively charged amino acids such as oligoarginine, poly-arginine, oligolysine or polylysine, antigen-binding domains such as provided by an antibody, a Fab fragment of an antibody, or a single chain antigen binding domain such as a cameloid single domain antigen-binding domain.
- a preferred antisense oligonucleotide comprises a peptide-linked PMO.
- a preferred antisense oligonucleotide comprising one or more nucleotide analogs or equivalents of the invention modulates splicing in one or more muscle cells, including heart muscle cells, upon systemic delivery.
- systemic delivery of an antisense oligonucleotide comprising a specific nucleotide analog or equivalent might result in targeting a subset of muscle cells, while an antisense oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting of a different subset of muscle cells.
- a combination of antisense oligonucleotides comprising different nucleotide analogs or equivalents for inducing skipping of exon 43, 46, 50, 51, 52, or 53 of the human DMD pre-mRNA.
- a cell can be provided with a molecule capable of interfering with essential sequences that result in highly efficient skipping of exon 43, exon 46, exon 50, exon 51, exon 52 or exon 53 of the human DMD pre-mRNA by plasmid-derived antisense oligonucleotide expression or viral expression provided by adenovirus- or adeno-associated virus-based vectors.
- a viral-based expression vector comprising an expression cassette that drives expression of a molecule as identified herein. Expression is preferably driven by a polymerase III promoter, such as a U1, a U6, or a U7 RNA promoter.
- a muscle or myogenic cell can be provided with a plasmid for antisense oligonucleotide expression by providing the plasmid in an aqueous solution.
- a plasmid can be provided by transfection using known transfection agentia such as, for example, LipofectAMINETM 2000 (Invitrogen) or polyethyleneimine (PEI; ExGen500 (MBI Fermentas)), or derivatives thereof.
- AAV adenovirus associated virus
- a preferred AAV-based vector comprises an expression cassette that is driven by a polymerase III-promoter (Pol III).
- Pol III polymerase III-promoter
- a preferred Pol III promoter is, for example, a Ul, a U6, or a U7 RNA promoter.
- the invention therefore also provides a viral-based vector, comprising a Pol III-promoter driven expression cassette for expression of one or more antisense sequences of the invention for inducing skipping of exon 43, exon 46, exon 50, exon 51, exon 52 or exon 53 of the human DMD pre-mRNA.
- a molecule or a vector expressing an antisense oligonucleotide of the invention can be incorporated into a pharmaceutically active mixture or composition by adding a pharmaceutically acceptable carrier.
- the invention provides a composition, preferably a pharmaceutical composition comprising a molecule comprising an antisense oligonucleotide according to the invention, and/or a viral-based vector expressing the antisense sequence(s) according to the invention and a pharmaceutically acceptable carrier.
- a preferred pharmaceutical composition comprises a molecule as defined herein and/or a vector as defined herein, and a pharmaceutical acceptable carrier or excipient, optionally combined with a molecule and/or a vector as defined herein which is able to induce skipping of exon 6, 7, 11, 17, 19, 21, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 62, 63, 65, 66, 69, or 75 of the DMD pre-mRNA.
- Preferred molecules able to induce skipping of any of these exon are identified in any one of Tables 1 to 7.
- Preferred excipients include excipients capable of forming complexes, vesicles and/or liposomes that deliver such a molecule as defined herein, preferably an oligonucleotide complexed or trapped in a vesicle or liposome through a cell membrane. Many of these excipients are known in the art.
- Suitable excipients comprise polyethylenimine and derivatives, or similar cationic polymers, including polypropyleneimine or polyethylenimine copolymers (PECs) and derivatives, ExGen 500, synthetic amphiphils (SAINT-18), lipofectin, DOTAP and/or viral capsid proteins that are capable of self-assembly into particles that can deliver such molecule, preferably an oligonucleotide as defined herein to a cell, preferably a muscle cell.
- excipients have been shown to efficiently deliver (oligonucleotide such as antisense) nucleic acids to a wide variety of cultured cells, including muscle cells. Their high transfection potential is combined with an excepted low to moderate toxicity in terms of overall cell survival. The ease of structural modification can be used to allow further modifications and the analysis of their further (in vivo) nucleic acid transfer characteristics and toxicity.
- Lipofectin represents an example of a liposomal transfection agent. It consists of two lipid components, a cationic lipid N-[1-(2,3 dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) (cp. DOTAP which is the methylsulfate salt) and a neutral lipid dioleoylphosphatidylethanolamine (DOPE). The neutral component mediates the intracellular release.
- DOTMA cationic lipid N-[1-(2,3 dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride
- DOPE neutral lipid dioleoylphosphatidylethanolamine
- Another group of delivery systems are polymeric nanoparticles.
- Polycations such like diethylaminoethylaminoethyl (DEAE)-dextran, which are well known as DNA transfection reagent can be combined with butylcyanoacrylate (PBCA) and hexylcyanoacrylate (PHCA) to formulate cationic nanoparticles that can deliver a molecule or a compound as defined herein, preferably an oligonucleotide across cell membranes into cells.
- PBCA butylcyanoacrylate
- PHCA hexylcyanoacrylate
- the cationic peptide protamine offers an alternative approach to formulate a compound as defined herein, preferably an oligonucleotide as colloids.
- This colloidal nanoparticle system can form so called proticles, which can be prepared by a simple self-assembly process to package and mediate intracellular release of a compound as defined herein, preferably an oligonucleotide.
- the skilled person may select and adapt any of the above or other commercially available alternative excipients and delivery systems to package and deliver a compound as defined herein, preferably an oligonucleotide for use in the current invention to deliver said compound for the treatment of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy in humans.
- a compound as defined herein preferably an oligonucleotide could be covalently or non-covalently linked to a targeting ligand specifically designed to facilitate the uptake into the cell, cytoplasm and/or its nucleus.
- a targeting ligand specifically designed to facilitate the uptake into the cell, cytoplasm and/or its nucleus.
- ligand could comprise (i) a compound (including but not limited to peptide(-like) structures) recognizing cell, tissue or organ specific elements facilitating cellular uptake and/or (ii) a chemical compound able to facilitate the uptake into cells and/or the intracellular release of a compound as defined herein, preferably an oligonucleotide from vesicles, e.g. endosomes or lysosomes.
- a compound as defined herein, preferably an oligonucleotide are formulated in a medicament which is provided with at least an excipient and/or a targeting ligand for delivery and/or a delivery device of said compound to a cell and/or enhancing its intracellular delivery.
- the invention also encompasses a pharmaceutically acceptable composition comprising a compound as defined herein, preferably an oligonucleotide and further comprising at least one excipient and/or a targeting ligand for delivery and/or a delivery device of said compound to a cell and/or enhancing its intracellular delivery. It is to be understood that a molecule or compound or oligonucleotide may not be formulated in one single composition or preparation. Depending on their identity, the skilled person will know which type of formulation is the most appropriate for each compound.
- an in vitro concentration of a molecule or an oligonucleotide as defined herein which is ranged between 0.1 nM and 1 ⁇ M is used. More preferably, the concentration used is ranged between 0.3 to 400 nM, even more preferably between 1 to 200 nM.
- a molecule or an oligonucleotide as defined herein may be used at a dose which is ranged between 0.1 and 20 mg/kg, preferably 0.5 and 10 mg/kg. If several molecules or oligonucleotides are used, these concentrations may refer to the total concentration of oligonucleotides or the concentration of each oligonucleotide added.
- oligonucleotide(s) as given above are preferred concentrations for in vitro or ex vivo uses.
- concentration of oligonucleotide(s) used may further vary and may need to be optimized any further.
- a compound preferably an oligonucleotide to be used in the invention to prevent, treat DMD or BMD are synthetically produced and administered directly to a cell, a tissue, an organ and/or patients in formulated form in a pharmaceutically acceptable composition or preparation.
- the delivery of a pharmaceutical composition to the subject is preferably carried out by one or more parenteral injections, e.g., intravenous and/or subcutaneous and/or intramuscular and/or intrathecal and/or intraventricular administrations, preferably injections, at one or at multiple sites in the human body.
- a preferred oligonucleotide as defined herein optionally comprising one or more nucleotide analogs or equivalents of the invention modulates splicing in one or more muscle cells, including heart muscle cells, upon systemic delivery.
- systemic delivery of an oligonucleotide comprising a specific nucleotide analog or equivalent might result in targeting a subset of muscle cells, while an oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting of a different subset of muscle cells.
- oligonucleotide comprising a specific nucleotide analog or equivalent
- an oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting a different subset of muscle cells. Therefore, in this embodiment, it is preferred to use a combination of oligonucleotides comprising different nucleotide analogs or equivalents for modulating splicing of the DMD mRNA in at least one type of muscle cells.
- a molecule or a viral-based vector for use as a medicament, preferably for modulating splicing of the DMD pre-mRNA, more preferably for promoting or inducing skipping of any of exon 43, 46, 50-53 as identified herein.
- the invention provides the use of an antisense oligonucleotide or molecule according to the invention, and/or a viral-based vector that expresses one or more antisense sequences according to the invention and/or a pharmaceutical composition, for modulating splicing of the DMD pre-mRNA.
- the splicing is preferably modulated in a human myogenic cell or muscle cell in vitro. More preferred is that splicing is modulated in a human muscle cell in vivo.
- the invention further relates to the use of the molecule as defined herein and/or the vector as defined herein and/or or the pharmaceutical composition as defined herein for modulating splicing of the DMD pre-mRNA or for the preparation of a medicament for the treatment of a DMD or BMD patient.
- the verb “to comprise” and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded.
- the verb “to consist” may be replaced by “to consist essentially of’ meaning that a molecule or a viral-based vector or a composition as defined herein may comprise additional component(s) than the ones specifically identified, said additional component(s) not altering the unique characteristic of the invention.
- reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.
- the indefinite article “a” or “an” thus usually means “at least one”.
- AON design was based on (partly) overlapping open secondary structures of the target exon RNA as predicted by them-fold program, on (partly) overlapping putative SR— protein binding sites as predicted by the ESE-finder software.
- AONs were synthesized by Prosensa Therapeutics B.V. (Leiden, Netherlands), and contain 2′-O-methyl RNA and full-length phosphorothioate (PS) backbones.
- Myotube cultures derived from a healthy individual (“human control”) (examples 1, 3, and 4; exon 43, 50, 52 skipping) or a DMD patient carrying an exon 45 deletion (example 2; exon 46 skipping) were processed as described previously (Aartsma-Rus et al., Neuromuscul. Disord. 2002; 12: S71-77 and Hum Mol Genet 2003; 12(8): 907-14).
- human control human control
- examples 1, 3, and 4 exon 43, 50, 52 skipping
- a DMD patient carrying an exon 45 deletion (example 2; exon 46 skipping) were processed as described previously (Aartsma-Rus et al., Neuromuscul. Disord. 2002; 12: S71-77 and Hum Mol Genet 2003; 12(8): 907-14).
- myotube cultures were transfected with 50 nM and 150 nM (example 2), 200 nM and 500 nM (example 4) or 500 nM only (
- a series of AONs targeting sequences within exon 43 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 43 herein defined as SEQ ID NO 2, was indeed capable of inducing exon 43 skipping.
- PS237 SEQ ID NO: 65
- PS238 and PS240 are shown, inducing exon 43 skipping levels up to 13% and 36% respectively ( FIG. 1 ).
- the precise skipping of exon 43 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 43 skipping was observed in non-treated cells (NT).
- a series of AONs targeting sequences within exon 46 were designed and transfected in myotube cultures derived from a DMD patient carrying an exon 45 deletion in the DMD gene.
- antisense-induced exon 46 skipping would induce the synthesis of a novel, BMD-like dystrophin protein that may indeed alleviate one or more symptoms of the disease.
- Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 46 herein defined as SEQ ID NO 3, was indeed capable of inducing exon 46 skipping, even at relatively low AON concentrations of 50 nM.
- PS182 (SEQ ID NO: 117) reproducibly induced highest levels of exon 46 skipping (up to 50% at 50 nM and 74% at 150 nM), as shown in FIG. 2 .
- PS177, PS179, and PS181 are shown, inducing exon 46 skipping levels up to 55%, 58% and 42% respectively at 150 nM ( FIG. 2 ).
- the precise skipping of exon 46 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 46 skipping was observed in non-treated cells (NT).
- a series of AONs targeting sequences within exon 50 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 50 herein defined as SEQ ID NO 4, was indeed capable of inducing exon 50 skipping.
- PS248 SEQ ID NO: 127) reproducibly induced highest levels of exon 50 skipping (up to 35% at 500 nM), as shown in FIG. 3 .
- PS245, PS246, and PS247 are shown, inducing exon 50 skipping levels up to 14-16% at 500 nM ( FIG. 3 ).
- the precise skipping of exon 50 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 50 skipping was observed in non-treated cells (NT).
- a series of AONs targeting sequences within exon 51 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 51 herein defined as SEQ ID NO 5, was indeed capable of inducing exon 51 skipping.
- the AON with SEQ ID NO 180 reproducibly induced highest levels of exon 51 skipping (not shown).
- a series of AONs targeting sequences within exon 52 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 52 herein defined as SEQ ID NO 6, was indeed capable of inducing exon 52 skipping.
- PS236 SEQ ID NO: 299 reproducibly induced highest levels of exon 52 skipping (up to 88% at 200 nM and 91% at 500 nM), as shown in FIG. 4 .
- PS232 and AON 52-1 previously published by Aartsma-Rus et al.
- Oligonucleotides 2005 are shown, inducing exon 52 skipping at levels up to 59% and 10% respectively when applied at 500 nM ( FIG. 4 ).
- the precise skipping of exon 52 was confirmed by sequence analysis of the novel smaller transcript fragments. No exon 52 skipping was observed in non-treated cells (NT).
- a series of AONs targeting sequences within exon 53 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 53 herein defined as SEQ ID NO 7, was indeed capable of inducing exon 53 skipping.
- the AON with SEQ ID NO 328 reproducibly induced highest levels of exon 53 skipping (not shown).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Neurology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Marine Sciences & Fisheries (AREA)
- Endocrinology (AREA)
- Neurosurgery (AREA)
- Diabetes (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 16/024,558, filed Jun. 29, 2018, which is a continuation of U.S. application Ser. No. 15/289,053, filed Oct. 7, 2016, which is a continuation of U.S. application Ser. No. 14/631,686, filed Feb. 25, 2015, now U.S. Pat. No. 9,499,818, which is a continuation of U.S. application Ser. No. 13/094,571, filed Apr. 26, 2011, which is a continuation of PCTNL2009/050113, filed Mar. 11, 2009, which is a continuation-in-part of PCT/NL2008/050673, filed Oct. 27, 2008. The disclosures of each of the above-referenced applications are incorporated by reference herein in their entirety.
- This specification is being filed with a Sequence Listing in Computer Readable Form (CFR), which is entitled “0105_07 US1CN4_SL.txt” of 128885 bytes in size and was created on Dec. 14, 2020, the content of which is incorporated herein by reference in its entirety.
- The invention relates to the field of genetics, more specifically human genetics. The invention in particular relates to modulation of splicing of the human Duchenne Muscular Dystrophy pre-mRNA.
- Myopathies are disorders that result in functional impairment of muscles. Muscular dystrophy (MD) refers to genetic diseases that are characterized by progressive weakness and degeneration of skeletal muscles. Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are the most common childhood forms of muscular dystrophy. They are recessive disorders and because the gene responsible for DMD and BMD resides on the X-chromosome, mutations mainly affect males with an incidence of about 1 in 3500 boys.
- DMD and BMD are caused by genetic defects in the DMD gene encoding dystrophin, a muscle protein that is required for interactions between the cytoskeleton and the extracellular matrix to maintain muscle fiber stability during contraction. DMD is a severe, lethal neuromuscular disorder resulting in a dependency on wheelchair support before the age of 12 and DMD patients often die before the age of thirty due to respiratory- or heart failure. In contrast, BMD patients often remain ambulatory until later in life, and have near normal life expectancies. DMD mutations in the DMD gene are characterized by frame shifting insertions or deletions or nonsense point mutations, resulting in the absence of functional dystrophin. BMD mutations in general keep the reading frame intact, allowing synthesis of a partly functional dystrophin.
- During the last decade, specific modification of splicing in order to restore the disrupted reading frame of the dystrophin transcript has emerged as a promising therapy for Duchenne muscular dystrophy (DMD) (van Ommen, van Deutekom, Aartsma-Rus, Curr Opin Mol Ther. 2008; 10(2):140-9, Yokota, Duddy, Partidge, Acta Myol. 2007; 26(3):179-84, van Deutekom et al., N Engl J Med. 2007; 357(26):2677-86).
- Using antisense oligonucleotides (AONs) interfering with splicing signals the skipping of specific exons can be induced in the DMD pre-mRNA, thus restoring the open reading frame and converting the severe DMD into a milder BMD phenotype (van Deutekom et al. Hum Mol Genet. 2001; 10: 1547-54; Aartsma-Rus et al., Hum Mol Genet 2003; 12(8):907-14.). In vivo proof-of-concept was first obtained in the mdx mouse model, which is dystrophin-deficient due to a nonsense mutation in exon 23. Intramuscular and intravenous injections of AONs targeting the mutated exon 23 restored dystrophin expression for at least three months (Lu et al. Nat Med. 2003; 8: 1009-14; Lu et al., Proc Natl Acad Sci US A. 2005; 102(1):198-203). This was accompanied by restoration of dystrophin-associated proteins at the fiber membrane as well as functional improvement of the treated muscle. In vivo skipping of human exons has also been achieved in the hDMD mouse model, which contains a complete copy of the human DMD gene integrated in chromosome 5 of the mouse (Bremmer-Bout et al. Molecular Therapy. 2004; 10: 232-40; ′t Hoen et al. J Biol Chem. 2008; 283: 5899-907).
- Recently, a first-in-man study was successfully completed where an AON inducing the skipping of
exon 51 was injected into a small area of the tibialis anterior muscle of four DMD patients. Novel dystrophin expression was observed in the majority of muscle fibers in all four patients treated, and the AON was safe and well tolerated (van Deutekom et al. N Engl J Med. 2007; 357: 2677-86). -
FIG. 1 . In human control myotubes, a series of AONs (PS237, PS238, and PS240; 65, 66, 16 respectively) targetingSEQ ID NO exon 43 was tested at 500 nM. PS237 (SEQ ID NO 65) reproducibly induced highest levels ofexon 43 skipping. (M: DNA size marker; NT: non-treated cells) -
FIG. 2 . In myotubes from a DMD patient with an exon 45 deletion, a series of AONs (PS177, PS179, PS181, and PS182;SEQ ID NO 91, 70, 110, and 117 respectively) targetingexon 46 was tested at two different concentrations (50 and 150 nM). PS182 (SEQ ID NO 117) reproducibly induced highest levels ofexon 46 skipping. (M: DNA size marker) -
FIG. 3 . In human control myotubes, a series of AONs (PS245, PS246, PS247, and PS248; SEQ ID NO 167, 165, 166, and 127 respectively) targetingexon 50 was tested at 500 nM. PS248 (SEQ ID NO 127) reproducibly induced highest levels ofexon 50 skipping. (M: DNA size marker; NT: non-treated cells). -
FIG. 4 . In human control myotubes, two novel AONs (PS232 and PS236; SEQ ID NO 246 and 299 respectively) targetingexon 52 were tested at two different concentrations (200 and 500 nM) and directly compared to a previously described AON (52-1). PS236 (SEQ ID NO 299) reproducibly induced highest levels ofexon 52 skipping. (M: DNA size marker; NT: non-treated cells). - In a first aspect, the present invention provides a method for inducing, and/or promoting skipping of at least one of
43, 46, 50-53 of the DMD pre-mRNA in a patient, preferably in an isolated cell of a patient, the method comprising providing said cell and/or said patient with a molecule that binds to a continuous stretch of at least 8 nucleotides within said exon. It is to be understood that said method encompasses an in vitro, in vivo or ex vivo method.exons - Accordingly, a method is provided for inducing and/or promoting skipping of at least one of
43, 46, 50-53 of DMD pre-mRNA in a patient, preferably in an isolated cell of said patient, the method comprising providing said cell and/or said patient with a molecule that binds to a continuous stretch of at least 8 nucleotides within said exon.exons - As defined herein a DMD pre-mRNA preferably means the pre-mRNA of a DMD gene of a DMD or BMD patient.
- A patient is preferably intended to mean a patient having DMD or BMD as later defined herein or a patient susceptible to develop DMD or BMD due to his or her genetic background. In the case of a DMD patient, an oligonucleotide used will preferably correct one mutation as present in the DMD gene of said patient and therefore will preferably create a DMD protein that will look like a BMD protein: said protein will preferably be a functional dystrophin as later defined herein. In the case of a BMD patient, an oligonucleotide as used will preferably correct one mutation as present in the BMD gene of said patient and therefore will preferably create a dystrophin which will be more functional than the dystrophin which was originally present in said BMD patient.
- Exon skipping refers to the induction in a cell of a mature mRNA that does not contain a particular exon that is normally present therein. Exon skipping is performed by providing a cell expressing the pre-mRNA of said mRNA with a molecule capable of interfering with essential sequences such as for example the splice donor of splice acceptor sequence that required for splicing of said exon, or a molecule that is capable of interfering with an exon inclusion signal that is required for recognition of a stretch of nucleotides as an exon to be included in the mRNA. The term pre-mRNA refers to a non-processed or partly processed precursor mRNA that is synthesized from a DNA template in the cell nucleus by transcription.
- Within the context of the invention, inducing and/or promoting skipping of an exon as indicated herein means that at least 1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the DMD mRNA in one or more (muscle) cells of a treated patient will not contain said exon. This is preferably assessed by PCR as described in the examples.
- Preferably, a method of the invention by inducing and/or promoting skipping of at least one of the following
43, 46, 50-53 of the DMD pre-mRNA in one or more (muscle) cells of a patient, provides said patient with a functional dystrophin protein and/or decreases the production of an aberrant dystrophin protein in said patient and/or increases the production of a functional dystrophin is said patient.exons - Providing a patient with a functional dystrophin protein and/or decreasing the production of an aberrant dystrophin protein in said patient is typically applied in a DMD patient. Increasing the production of a functional dystrophin is typically applied in a BMD patient.
- Therefore, a preferred method is a method, wherein a patient or one or more cells of said patient is provided with a functional dystrophin protein and/or wherein the production of an aberrant dystrophin protein in said patient is decreased and/or wherein the production of a functional dystrophin is increased in said patient, wherein the level of said aberrant or functional dystrophin is assessed by comparison to the level of said dystrophin in said patient at the onset of the method.
- Decreasing the production of an aberrant dystrophin may be assessed at the mRNA level and preferably means that 99%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 5% or less of the initial amount of aberrant dystrophin mRNA, is still detectable by RT PCR. An aberrant dystrophin mRNA or protein is also referred to herein as a non-functional dystrophin mRNA or protein. A non-functional dystrophin protein is preferably a dystrophin protein which is not able to bind actin and/or members of the DGC protein complex. A non-functional dystrophin protein or dystrophin mRNA does typically not have, or does not encode, a dystrophin protein with an intact C-terminus of the protein.
- Increasing the production of a functional dystrophin in said patient or in a cell of said patient may be assessed at the mRNA level (by RT-PCR analysis) and preferably means that a detectable amount of a functional dystrophin mRNA is detectable by RT PCR. In another embodiment, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the detectable dystrophin mRNA is a functional dystrophin mRNA. Increasing the production of a functional dystrophin in said patient or in a cell of said patient may be assessed at the protein level (by immunofluorescence and western blot analyses) and preferably means that a detectable amount of a functional dystrophin protein is detectable by immunofluorescence or western blot analysis. In another embodiment, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the detectable dystrophin protein is a functional dystrophin protein.
- As defined herein, a functional dystrophin is preferably a wild type dystrophin corresponding to a protein having the amino acid sequence as identified in SEQ ID NO: 1. A functional dystrophin is preferably a dystrophin, which has an actin binding domain in its N terminal part (first 240 amino acids at the N terminus), a cysteine-rich domain (amino acid 3361 till 3685) and a C terminal domain (last 325 amino acids at the C terminus) each of these domains being present in a wild type dystrophin as known to the skilled person. The amino acids indicated herein correspond to amino acids of the wild type dystrophin being represented by SEQ ID NO:1. In other words, a functional dystrophin is a dystrophin which exhibits at least to some extent an activity of a wild type dystrophin. “At least to some extent” preferably means at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 100% of a corresponding activity of a wild type functional dystrophin. In this context, an activity of a functional dystrophin is preferably binding to actin and to the dystrophin-associated glycoprotein complex (DGC) (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144). Binding of dystrophin to actin and to the DGC complex may be visualized by either co-immunoprecipitation using total protein extracts or immunofluorescence analysis of cross-sections, from a muscle biopsy, as known to the skilled person.
- Individuals or patients suffering from Duchenne muscular dystrophy typically have a mutation in the gene encoding dystrophin that prevent synthesis of the complete protein, i.e of a premature stop prevents the synthesis of the C-terminus. In Becker muscular dystrophy the DMD gene also comprises a mutation compared to the wild type gene, but the mutation does typically not induce a premature stop and the C-terminus is typically synthesized. As a result, a functional dystrophin protein is synthesized that has at least the same activity in kind as the wild type protein, not although not necessarily the same amount of activity. The genome of a BMD individual typically encodes a dystrophin protein comprising the N terminal part (first 240 amino acids at the N terminus), a cysteine-rich domain (amino acid 3361 till 3685) and a C terminal domain (last 325 amino acids at the C terminus) but its central rod shaped domain may be shorter than the one of a wild type dystrophin (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144). Exon skipping for the treatment of DMD is typically directed to overcome a premature stop in the pre-mRNA by skipping an exon in the rod-shaped domain to correct the reading frame and allow synthesis of remainder of the dystrophin protein including the C-terminus, albeit that the protein is somewhat smaller as a result of a smaller rod domain. In a preferred embodiment, an individual having DMD and being treated by a method as defined herein will be provided a dystrophin which exhibits at least to some extent an activity of a wild type dystrophin. More preferably, if said individual is a Duchenne patient or is suspected to be a Duchenne patient, a functional dystrophin is a dystrophin of an individual having BMD: typically said dystrophin is able to interact with both actin and the DGC, but its central rod shaped domain may be shorter than the one of a wild type dystrophin (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144). The central rod-shaped domain of wild type dystrophin comprises 24 spectrin-like repeats (Aartsma-Rus A et al, (2006), Entries in the leiden Duchenne Muscular Dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule, Muscle Nerve, 34: 135-144). For example, a central rod-shaped domain of a dystrophin as provided herein may comprise 5 to 23, 10 to 22 or 12 to 18 spectrin-like repeats as long as it can bind to actin and to DGC.
- A method of the invention may alleviate one or more characteristics of a myogenic or muscle cell of a patient or alleviate one or more symptoms of a DMD patient having a deletion including but not limited to exons 44, 44-46, 44-47, 44-48, 44-49, 44-51, 44-53 (correctable by exon 43 skipping), 19-45, 21-45, 43-45, 45, 47-54, 47-56 (correctable by exon 46 skipping), 51, 51-53, 51-55, 51-57 (correctable by exon 50 skipping), 13-50, 19-50, 29-50, 43-50, 45-50, 47-50, 48-50, 49-50, 50, 52 (correctable by exon 51 skipping), exons 8-51, 51, 53, 53-55, 53-57, 53-59, 53-60, (correctable by exon 52 skipping) and exons 10-52, 42-52, 43-52, 45-52, 47-52, 48-52, 49-52, 50-52, 52 (correctable by exon 53 skipping) in the DMD gene, occurring in a total of 68% of all DMD patients with a deletion (Aartsma-Rus et al., Hum. Mut. 2009).
- Alternatively, a method of the invention may improve one or more characteristics of a muscle cell of a patient or alleviate one or more symptoms of a DMD patient having small mutations in, or single exon duplications of
43, 46, 50-53 in the DMD gene, occurring in a total of 36% of all DMD patients with a deletion (Aartsma-Rus et al, Hum. Mut. 2009)exon - Furthermore, for some patients the simultaneous skipping of one of more exons in addition to exon 43, exon 46 and/or exon 50-53 is required to restore the open reading frame, including patients with specific deletions, small (point) mutations, or double or multiple exon duplications, such as (but not limited to) a deletion of exons 44-50 requiring the co-skipping of exons 43 and 51, with a deletion of exons 46-50 requiring the co-skipping of exons 45 and 51, with a deletion of exons 44-52 requiring the co-skipping of exons 43 and 53, with a deletion of exons 46-52 requiring the co-skipping of exons 45 and 53, with a deletion of exons 51-54 requiring the co-skipping of exons 50 and 55, with a deletion of exons 53-54 requiring the co-skipping of exons 52 and 55, with a deletion of exons 53-56 requiring the co-skipping of exons 52 and 57, with a nonsense mutation in exon 43 or exon 44 requiring the co-skipping of exon 43 and 44, with a nonsense mutation in exon 45 or exon 46 requiring the co-skipping of exon 45 and 46, with a nonsense mutation in exon 50 or exon 51 requiring the co-skipping of exon 50 and 51, with a nonsense mutation in exon 51 or exon 52 requiring the co-skipping of exon 51 and 52, with a nonsense mutation in exon 52 or exon 53 requiring the co-skipping of exon 52 and 53, or with a double or multiple exon duplication involving exons 43, 46, 50, 51, 52, and/or 53.
- In a preferred method, the skipping of
exon 43 is induced, or the skipping ofexon 46 is induced, or the skipping ofexon 50 is induced or the skipping ofexon 51 is induced or the skipping ofexon 52 is induced or the skipping of exon 53 is induced. An induction of the skipping of two of these exons is also encompassed by a method of the invention. For example, preferably skipping of 50 and 51, or 52 and 53, or 30 43 and 51, or 43 and 53, or 51 and 52. Depending on the type and the identity (the specific exons involved) of mutation identified in a patient, the skilled person will know which combination of exons needs to be skipped in said patient.exons - In a preferred method, one or more symptom(s) of a DMD or a BMD patient is/are alleviated and/or one or more characteristic(s) of one or more muscle cells from a DMD or a BMD patient is/are improved. Such symptoms or characteristics may be assessed at the cellular, tissue level or on the patient self
- An alleviation of one or more characteristics may be assessed by any of the following assays on a myogenic cell or muscle cell from a patient: reduced calcium uptake by muscle cells, decreased collagen synthesis, altered morphology, altered lipid biosynthesis, decreased oxidative stress, and/or improved muscle fiber function, integrity, and/or survival. These parameters are usually assessed using immunofluorescence and/or histochemical analyses of cross sections of muscle biopsies.
- The improvement of muscle fiber function, integrity and/or survival may be assessed using at least one of the following assays: a detectable decrease of creatine kinase in blood, a detectable decrease of necrosis of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic, and/or a detectable increase of the homogeneity of the diameter of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic. Each of these assays is known to the skilled person.
- Creatine kinase may be detected in blood as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006). A detectable decrease in creatine kinase may mean a decrease of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more compared to the concentration of creatine kinase in a same DMD or BMD patient before treatment.
- A detectable decrease of necrosis of muscle fibers is preferably assessed in a muscle biopsy, more preferably as described in Hodgetts et al (Hodgetts S., et al (2006), Neuromuscular Disorders, 16: 591-602.2006) using biopsy cross-sections. A detectable decrease of necrosis may be a decrease of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the area wherein necrosis has been identified using biopsy cross-sections. The decrease is measured by comparison to the necrosis as assessed in a same DMD or BMD patient before treatment.
- A detectable increase of the homogeneity of the diameter of a muscle fiber is preferably assessed in a muscle biopsy cross-section, more preferably as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006). The increase is measured by comparison to the homogeneity of the diameter of a muscle fiber in a same DMD or BMD patient before treatment. An alleviation of one or more symptoms may be assessed by any of the following assays on the patient self: prolongation of time to loss of walking, improvement of muscle strength, improvement of the ability to lift weight, improvement of the time taken to rise from the floor, improvement in the nine-meter walking time, improvement in the time taken for four-stairs climbing, improvement of the leg function grade, improvement of the pulmonary function, improvement of cardiac function, improvement of the quality of life. Each of these assays is known to the skilled person. As an example, the publication of Manzur et al. (Manzur A Y et al, (2008), Glucocorticoid corticosteroids for Duchenne muscular dystrophy (review), Wiley publishers, The Cochrane collaboration.) gives an extensive explanation of each of these assays. For each of these assays, as soon as a detectable improvement or prolongation of a parameter measured in an assay has been found, it will preferably mean that one or more symptoms of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy has been alleviated in an individual using a method of the invention. Detectable improvement or prolongation is preferably a statistically significant improvement or prolongation as described in Hodgetts et al (Hodgetts S., et al, (2006), Neuromuscular Disorders, 16: 591-602.2006). Alternatively, the alleviation of one or more symptom(s) of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy may be assessed by measuring an improvement of a muscle fiber function, integrity and/or survival as later defined herein.
- A treatment in a method according to the invention may have a duration of at least one week, at least one month, at least several months, at least one year, at least 2, 3, 4, 5, 6 years or more.
- Each molecule or oligonucleotide or equivalent thereof as defined herein for use according to the invention may be suitable for direct administration to a cell, tissue and/or an organ in vivo of individuals affected by or at risk of developing DMD or BMD, and may be administered directly in vivo, ex vivo or in vitro. The frequency of administration of a molecule or an oligonucleotide or a composition of the invention may depend on several parameters such as the age of the patient, the mutation of the patient, the number of molecules (dose), the formulation of said molecule. The frequency may be ranged between at least once in a two weeks, or three weeks or four weeks or five weeks or a longer time period.
- A molecule or oligonucleotide or equivalent thereof can be delivered as is to a cell. When administering said molecule, oligonucleotide or equivalent thereof to an individual, it is preferred that it is dissolved in a solution that is compatible with the delivery method. For intravenous, subcutaneous, intramuscular, intrathecal and/or intraventricular administration it is preferred that the solution is a physiological salt solution. Particularly preferred for a method of the invention is the use of an excipient that will further enhance delivery of said molecule, oligonucleotide or functional equivalent thereof as defined herein, to a cell and into a cell, preferably a muscle cell. Preferred excipients are defined in the section entitled “pharmaceutical composition”.
- In a preferred method of the invention, an additional molecule is used which is able to induce and/or promote skipping of another exon of the DMD pre-mRNA of a patient. Preferably, the second exon is selected from:
6, 7, 11, 17, 19, 21, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 62, 63, 65, 66, 69, or 75 of the DMD pre-mRNA of a patient. Molecules which can be used are depicted in any one of Table 1 to 7. This way, inclusion of two or more exons of a DMD pre-mRNA in mRNA produced from this pre-mRNA is prevented. This embodiment is further referred to as double- or multi-exon skipping (Aartsma-Rus A, Janson A A, Kaman W E, et al. Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet 2004; 74(1):83-92, Aartsma-Rus A, Kaman W E, Weij R, den Dunnen J T, van Ommen G J, van Deutekom J C. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 2006; 14(3):401-7). In most cases double-exon skipping results in the exclusion of only the two targeted exons from the DMD pre-mRNA. However, in other cases it was found that the targeted exons and the entire region in between said exons in said pre-mRNA were not present in the produced mRNA even when other exons (intervening exons) were present in such region. This multi-skipping was notably so for the combination of oligonucleotides derived from the DMD gene, wherein one oligonucleotide for exon 45 and one oligonucleotide forexon exon 51 was added to a cell transcribing the DMD gene. Such a set-up resulted in mRNA being produced that did not contain exons 45 to 51. Apparently, the structure of the pre-mRNA in the presence of the mentioned oligonucleotides was such that the splicing machinery was stimulated to connect 44 and 52 to each other.exons - It is possible to specifically promote the skipping of also the intervening exons by providing a linkage between the two complementary oligonucleotides. Hence, in one embodiment stretches of nucleotides complementary to at least two dystrophin exons are separated by a linking moiety. The at least two stretches of nucleotides are thus linked in this embodiment so as to form a single molecule.
- In case, more than one compounds or molecules are used in a method of the invention, said compounds can be administered to an individual in any order. In one embodiment, said compounds are administered simultaneously (meaning that said compounds are administered within 10 hours, preferably within one hour). This is however not necessary. In another embodiment, said compounds are administered sequentially.
- In a second aspect, there is provided a molecule for use in a method as described in the previous section entitled “Method”. A molecule as defined herein is preferably an oligonucleotide or antisense oligonucleotide (AON).
- It was found by the present investigators that any of
43, 46, 50-53 is specifically skipped at a high frequency using a molecule that preferably binds to a continuous stretch of at least 8 nucleotides within said exon. Although this effect can be associated with a higher binding affinity of said molecule, compared to a molecule that binds to a continuous stretch of less than 8 nucleotides, there could be other intracellular parameters involved that favor thermodynamic, kinetic, or structural characteristics of the hybrid duplex. In a preferred embodiment, a molecule that binds to a continuous stretch of at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 nucleotides within said exon is used.exon - In a preferred embodiment, a molecule or an oligonucleotide of the invention which comprises a sequence that is complementary to a part of any of
43, 46, 50-53 of DMD pre-mRNA is such that the complementary part is at least 50% of the length of the oligonucleotide of the invention, more preferably at least 60%, even more preferably at least 70%, even more preferably at least 80%, even more preferably at least 90% or even more preferably at least 95%, or even more preferably 98% and most preferably up to 100%. “A part of said exon” preferably means a stretch of at least 8 nucleotides. In a most preferred embodiment, an oligonucleotide of the invention consists of a sequence that is complementary to part of said exon DMD pre-mRNA as defined herein. For example, an oligonucleotide may comprise a sequence that is complementary to part of said exon DMD pre-mRNA as defined herein and additional flanking sequences. In a more preferred embodiment, the length of said complementary part of said oligonucleotide is of at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 nucleotides. Preferably, additional flanking sequences are used to modify the binding of a protein to said molecule or oligonucleotide, or to modify a thermodynamic property of the oligonucleotide, more preferably to modify target RNA binding affinity.exon - A preferred molecule to be used in a method of the invention binds or is complementary to a continuous stretch of at least 8 nucleotides within one of the following nucleotide sequences selected from:
-
(SEQ ID NO: 2) 5′-AGAUAGUCUACAACAAAGCUCAGGUCGGAUUGACAUUAUUCAUAGCA AGAAGACAGCAGCAUUGCAAAGUGCAACGCCUGUGG-3′ for skipping of exon 43;(SEQ ID NO: 3) 5′-UUAUGGUUGGAGGAAGCAGAUAACAUUGCUAGUAUCCCACUUGAACC UGGAAAAGAGCAGCAACUAAAAGAAAAGC-3′ for skipping of exon 46;(SEQ ID NO: 4) 5′-GGCGGUAAACCGUUUACUUCAAGAGCUGAGGGCAAAGCAGCCUGACC UAGCUCCUGGACUGACCACUAUUGG-3′ for skipping of exon 50;(SEQ ID NO: 5) 5′-CUCCUACUCAGACUGUUACUCUGGUGACACAACCUGUGGUUACUAAG GAAACUGCCAUCUCCAAACUAGAAAUGCCAUCUUCCUUGAUGUUGGAGGU AC-3′ for skipping of exon 51;(SEQ ID NO: 6) 5′-AUGCAGGAUUUGGAACAGAGGCGUCCCCAGUUGGAAGAACUCAU UACCGCUGCCCAAAAUUUGAAAAACAAGACCAGCAAUCAAGAGGCU-3′ for skipping of exon 52;and (SEQ ID NO: 7) 5′-AAAUGUUAAAGGAUUCAACACAAUGGCUGGAAGCUAAGGAAGAA GCUGAGCAGGUCUUAGGACAGGCCAGAG-3′ for skipping of exon 53. - Of the numerous molecules that theoretically can be prepared to bind to the continuous nucleotide stretches as defined by SEQ ID NO 2-7 within one of said exons, the invention provides distinct molecules that can be used in a method for efficiently skipping of at least one of
exon 43,exon 46 and/or exon 50-53. Although the skipping effect can be addressed to the relatively high density of putative SR protein binding sites within said stretches, there could be other parameters involved that favor uptake of the molecule or other, intracellular parameters such as thermodynamic, kinetic, or structural characteristics of the hybrid duplex. - It was found that a molecule that binds to a continuous stretch comprised within or consisting of any of SEQ ID NO 2-7 results in highly efficient skipping of
exon 43,exon 46 and/or exon 50-53 respectively in a cell and/or in a patient provided with this molecule. Therefore, in a preferred embodiment, a method is provided wherein a molecule binds to a continuous stretch of at least 8, 10, 12, 15, 18, 20, 25, 30, 35, 40, 45, 50 nucleotides within SEQ ID NO 2-7. - In a preferred embodiment for inducing and/or promoting the skipping of any of
exon 43,exon 46 and/or exon 50-53, the invention provides a molecule comprising or consisting of an antisense nucleotide sequence selected from the antisense nucleotide sequences depicted in any of Tables 1 to 6. A molecule of the invention preferably comprises or consist of the antisense nucleotide sequence ofSEQ ID NO 16, SEQ ID NO 65, SEQ ID NO 70,SEQ ID NO 91, SEQ ID NO 110, SEQ ID NO 117, SEQ ID NO 127, SEQ ID NO 165, SEQ ID NO 166, SEQ ID NO 167, SEQ ID NO 246, SEQ ID NO 299, SEQ ID NO:357. - A preferred molecule of the invention comprises a nucleotide-based or nucleotide or an antisense oligonucleotide sequence of between 8 and 50 nucleotides or bases, more preferred between 10 and 50 nucleotides, more preferred between 20 and 40 nucleotides, more preferred between 20 and 30 nucleotides, such as 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, 40 nucleotides, 41 nucleotides, 42 nucleotides, 43 nucleotides, 44 nucleotides, 45 nucleotides, 46 nucleotides, 47 nucleotides, 48 nucleotides, 49 nucleotides or 50 nucleotides. A most preferred molecule of the invention comprises a nucleotide-based sequence of 25 nucleotides.
- Furthermore, none of the indicated sequences is derived from conserved parts of splice-junction sites. Therefore, said molecule is not likely to mediate differential splicing of other exons from the DMD pre-mRNA or exons from other genes.
- In one embodiment, a molecule of the invention is a compound molecule that binds to the specified sequence, or a protein such as an RNA-binding protein or a non-natural zinc-finger protein that has been modified to be able to bind to the corresponding nucleotide sequence on a DMD pre-RNA molecule. Methods for screening compound molecules that bind specific nucleotide sequences are, for example, disclosed in PCT/NL01/00697 and U.S. Pat. No. 6,875,736, which are herein incorporated by reference. Methods for designing RNA-binding Zinc-finger proteins that bind specific nucleotide sequences are disclosed by Friesen and Darby, Nature Structural Biology 5: 543-546 (1998) which is herein incorporated by reference.
- A preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 2: 5′-AGAUAGUCUACAACAAAGCUCAGGUCGGAUUGACAUUAUUCAU AGCAAGAAGACAGCAGCAUUGCAAAGUGCAACGCCUGUGG-3′ which is present in
exon 43 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 8 to SEQ ID NO 69. - In an even more preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO:16 and/or SEQ ID NO:65. In a most preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 65. It was found that this molecule is very efficient in modulating splicing of
exon 43 of the DMD pre-mRNA in a muscle cell and/or in a patient. - Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 3: 5′-UUAUGGUUGGAGGAAGCAGAUAACAUUGCUAGUAUCCCACUUG AACCUGGAAAAGAGCAGCAACUAAAAGAAAAGC-3′ which is present in
exon 46 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 70 to SEQ ID NO 122. - In an even more preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 70,
SEQ ID NO 91, SEQ ID NO 110, and/or SEQ ID N0117. - In a most preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 117. It was found that this molecule is very efficient in modulating splicing of
exon 46 of the DMD pre-mRNA in a muscle cell or in a patient. - Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 4: 5′-GGCGGUAAACCGUUUACUUCAAGAGCU GAGGGCAAAGCAGCCUG ACCUAGCUCCUGGACUGACCACUAUUGG-3′ which is present in
exon 50 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 123 to SEQ ID NO 167 and/or SEQ ID NO 529 to SEQ ID NO 535. - In an even more preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 127, or SEQ ID NO 165, or SEQ ID NO 166 and/or SEQ ID NO 167.
- In a most preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 127. It was found that this molecule is very efficient in modulating splicing of
exon 50 of the DMD pre-mRNA in a muscle cell and/or in a patient. - Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 5: 5′-CUCCUACUCAGACUGUUACUCUGGUGACACAACCUGUGGUUACU AAGGAAACUGCCAUCUCCAAACUAGAAAUGCCAUCUUCCUUGAUG UUGGAGGUAC-3′ which is present in
exon 51 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 168 to SEQ ID NO 241. - Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 6: 5′-AUGCAGGAUUUGGAACAGAGGCGUCCCCAGUUGGAAGAACUCAU UACCGCUGCCCAAAAUUUGAAAAACAAGACCAGCAAUCAAGAGGCU-3′ which is present in
exon 52 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 242 to SEQ ID NO 310. In an even more preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 246 and/or SEQ ID NO 299. In a most preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 299. It was found that this molecule is very efficient in modulating splicing ofexon 52 of the DMD pre-mRNA in a muscle cell and/or in a patient. - Another preferred molecule of the invention binds to at least part of the sequence of SEQ ID NO 7: 5′-AAAUGUUAAAGGAUUCAACACAAUGGCUGGAAGCUAAGGAAGAA GCUGAGCAGGUCUUAGGACAGGCCAGAG-3′ which is present in exon 53 of the DMD gene. More preferably, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 311 to SEQ ID NO 358.
- In a most preferred embodiment, the invention provides a molecule comprising or consisting of the antisense nucleotide sequence of SEQ ID NO 357. It was found that this molecule is very efficient in modulating splicing of exon 53 of the DMD pre-mRNA in a muscle cell and/or in a patient.
- A nucleotide sequence of a molecule of the invention may contain RNA residues, or one or more DNA residues, and/or one or more nucleotide analogues or equivalents, as will be further detailed herein below.
- It is preferred that a molecule of the invention comprises one or more residues that are modified to increase nuclease resistance, and/or to increase the affinity of the antisense nucleotide for the target sequence. Therefore, in a preferred embodiment, the antisense nucleotide sequence comprises at least one nucleotide analogue or equivalent, wherein a nucleotide analogue or equivalent is defined as a residue having a modified base, and/or a modified backbone, and/or a non-natural internucleoside linkage, or a combination of these modifications.
- In a preferred embodiment, the nucleotide analogue or equivalent comprises a modified backbone. Examples of such backbones are provided by morpholino backbones, carbamate backbones, siloxane backbones, sulfide, sulfoxide and sulfone backbones, formacetyl and thioformacetyl backbones, methyleneformacetyl backbones, riboacetyl backbones, alkene containing backbones, sulfamate, sulfonate and sulfonamide backbones, methyleneimino and methylenehydrazino backbones, and amide backbones. Phosphorodiamidate morpholino oligomers are modified backbone oligonucleotides that have previously been investigated as antisense agents. Morpholino oligonucleotides have an uncharged backbone in which the deoxyribose sugar of DNA is replaced by a six membered ring and the phosphodiester linkage is replaced by a phosphorodiamidate linkage. Morpholino oligonucleotides are resistant to enzymatic degradation and appear to function as antisense agents by arresting translation or interfering with pre-mRNA splicing rather than by activating RNase H. Morpholino oligonucleotides have been successfully delivered to tissue culture cells by methods that physically disrupt the cell membrane, and one study comparing several of these methods found that scrape loading was the most efficient method of delivery; however, because the morpholino backbone is uncharged, cationic lipids are not effective mediators of morpholino oligonucleotide uptake in cells. A recent report demonstrated triplex formation by a morpholino oligonucleotide and, because of the non-ionic backbone, these studies showed that the morpholino oligonucleotide was capable of triplex formation in the absence of magnesium.
- It is further preferred that that the linkage between the residues in a backbone do not include a phosphorus atom, such as a linkage that is formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages.
- A preferred nucleotide analogue or equivalent comprises a Peptide Nucleic Acid (PNA), having a modified polyamide backbone (Nielsen, et al. (1991) Science 254, 1497-1500). PNA-based molecules are true mimics of DNA molecules in terms of base-pair recognition. The backbone of the PNA is composed of N-(2-aminoethyl)-glycine units linked by peptide bonds, wherein the nucleobases are linked to the backbone by methylene carbonyl bonds. An alternative backbone comprises a one-carbon extended pyrrolidine PNA monomer (Govindaraju and Kumar (2005) Chem. Commun, 495-497). Since the backbone of a PNA molecule contains no charged phosphate groups, PNA-RNA hybrids are usually more stable than RNA-RNA or RNA-DNA hybrids, respectively (Egholm et al (1993) Nature 365, 566-568).
- A further preferred backbone comprises a morpholino nucleotide analog or equivalent, in which the ribose or deoxyribose sugar is replaced by a 6-membered morpholino ring. A most preferred nucleotide analog or equivalent comprises a phosphorodiamidate morpholino oligomer (PMO), in which the ribose or deoxyribose sugar is replaced by a 6-membered morpholino ring, and the anionic phosphodiester linkage between adjacent morpholino rings is replaced by a non-ionic phosphorodiamidate linkage.
- In yet a further embodiment, a nucleotide analogue or equivalent of the invention comprises a substitution of one of the non-bridging oxygens in the phosphodiester linkage. This modification slightly destabilizes base-pairing but adds significant resistance to nuclease degradation. A preferred nucleotide analogue or equivalent comprises phosphorothioate, chiral phosphorothioate, phosphorodithioate, phosphotriester, aminoalkylphosphotriester, H-phosphonate, methyl and other alkylphosphonate including 3′-alkylene phosphonate, 5′-alkylene phosphonate and chiral phosphonate, phosphinate, phosphoramidate including 3′-amino phosphoramidate and aminoalkylphosphoramidate, thionophosphoramidate, thionoalkylphosphonate, thionoalkylphosphotriester, selenophosphate or boranophosphate.
- A further preferred nucleotide analogue or equivalent of the invention comprises one or more sugar moieties that are mono- or disubstituted at the 2′, 3′ and/or 5′ position such as a —OH; —F; substituted or unsubstituted, linear or branched lower (C1-C10) alkyl, alkenyl, alkynyl, alkaryl, allyl, aryl, or aralkyl, that may be interrupted by one or more heteroatoms; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; O-, S-, or N-allyl; O-alkyl-O-alkyl, -methoxy, -aminopropoxy; -aminoxy; methoxyethoxy; -dimethylaminooxyethoxy; and -dimethylaminoethoxyethoxy. The sugar moiety can be a pyranose or derivative thereof, or a deoxypyranose or derivative thereof, preferably a ribose or a derivative thereof, or a deoxyribose or a derivative thereof. Such preferred derivatized sugar moieties comprise Locked Nucleic Acid (LNA), in which the 2′-carbon atom is linked to the 3′ or 4′ carbon atom of the sugar ring thereby forming a bicyclic sugar moiety. A preferred LNA comprises 2′-0,4′-C-ethylene-bridged nucleic acid (Morita et al. 2001. Nucleic Acid Res Supplement No. 1: 241-242). These substitutions render the nucleotide analogue or equivalent RNase H and nuclease resistant and increase the affinity for the target RNA.
- It is understood by a skilled person that it is not necessary for all positions in an antisense oligonucleotide to be modified uniformly. In addition, more than one of the aforementioned analogues or equivalents may be incorporated in a single antisense oligonucleotide or even at a single position within an antisense oligonucleotide. In certain embodiments, an antisense oligonucleotide of the invention has at least two different types of analogues or equivalents.
- A preferred antisense oligonucleotide according to the invention comprises a 2′-O alkyl phosphorothioate antisense oligonucleotide, such as 2′-O-methyl modified ribose (RNA), 2′-O-ethyl modified ribose, 2′-O-propyl modified ribose, and/or substituted derivatives of these modifications such as halogenated derivatives.
- A most preferred antisense oligonucleotide according to the invention comprises of 2′-O-methyl phosphorothioate ribose.
- A functional equivalent of a molecule of the invention may be defined as an oligonucleotide as defined herein wherein an activity of said functional equivalent is retained to at least some extent. Preferably, an activity of said functional equivalent is inducing
43, 46, 50, 51, 52, or 53 skipping and providing a functional dystrophin protein. Said activity of said functional equivalent is therefore preferably assessed by detection ofexon 43, 46, 50, 51, 52, or 53 skipping and by quantifying the amount of functional dystrophin protein. A functional dystrophin is herein preferably defined as being a dystrophin able to bind actin and members of the DGC protein complex. The assessment of said activity of an oligonucleotide is preferably done by RT-PCR or by immunofluorescence or Western blot analyses. Said activity is preferably retained to at least some extent when it represents at least 50%, or at least 60%, or at least 70% or at least 80% or at least 90% or at least 95% or more of corresponding activity of said oligonucleotide the functional equivalent derives from. Throughout this application, when the word oligonucleotide is used it may be replaced by a functional equivalent thereof as defined herein.exon - It will be understood by a skilled person that distinct antisense oligonucleotides can be combined for efficiently skipping any of
exon 43,exon 46,exon 50,exon 51,exon 52 and/or exon 53 of the human DMD pre-mRNA. It is encompassed by the present invention to use one, two, three, four, five or more oligonucleotides for skipping one of said exons (i.e., exon, 43, 46, 50, 51, 52, or 53). It is also encompassed to use at least two oligonucleotides for skipping at least two, of said exons. Preferably two of said exons are skipped. More preferably, these two exons are: - −43 and 51, or
−43 and 53, or
−50 and 51, or
−51 and 52, or
−52 and 53. - The skilled person will know which combination of exons is preferred to be skipped depending on the type, the number and the location of the mutation present in a DMD or BMD patient.
- An antisense oligonucleotide can be linked to a moiety that enhances uptake of the antisense oligonucleotide in cells, preferably muscle cells. Examples of such moieties are cholesterols, carbohydrates, vitamins, biotin, lipids, phospholipids, cell-penetrating peptides including but not limited to antennapedia, TAT, transportan and positively charged amino acids such as oligoarginine, poly-arginine, oligolysine or polylysine, antigen-binding domains such as provided by an antibody, a Fab fragment of an antibody, or a single chain antigen binding domain such as a cameloid single domain antigen-binding domain.
- A preferred antisense oligonucleotide comprises a peptide-linked PMO.
- A preferred antisense oligonucleotide comprising one or more nucleotide analogs or equivalents of the invention modulates splicing in one or more muscle cells, including heart muscle cells, upon systemic delivery. In this respect, systemic delivery of an antisense oligonucleotide comprising a specific nucleotide analog or equivalent might result in targeting a subset of muscle cells, while an antisense oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting of a different subset of muscle cells. Therefore, in one embodiment it is preferred to use a combination of antisense oligonucleotides comprising different nucleotide analogs or equivalents for inducing skipping of
43, 46, 50, 51, 52, or 53 of the human DMD pre-mRNA.exon - A cell can be provided with a molecule capable of interfering with essential sequences that result in highly efficient skipping of
exon 43,exon 46,exon 50,exon 51,exon 52 or exon 53 of the human DMD pre-mRNA by plasmid-derived antisense oligonucleotide expression or viral expression provided by adenovirus- or adeno-associated virus-based vectors. In a preferred embodiment, there is provided a viral-based expression vector comprising an expression cassette that drives expression of a molecule as identified herein. Expression is preferably driven by a polymerase III promoter, such as a U1, a U6, or a U7 RNA promoter. A muscle or myogenic cell can be provided with a plasmid for antisense oligonucleotide expression by providing the plasmid in an aqueous solution. Alternatively, a plasmid can be provided by transfection using known transfection agentia such as, for example, LipofectAMINE™ 2000 (Invitrogen) or polyethyleneimine (PEI; ExGen500 (MBI Fermentas)), or derivatives thereof. - One preferred antisense oligonucleotide expression system is an adenovirus associated virus (AAV)-based vector. Single chain and double chain AAV-based vectors have been developed that can be used for prolonged expression of small antisense nucleotide sequences for highly efficient skipping of
43, 46, 50, 51, 52 or 53 of the DMD pre-mRNA.exon - A preferred AAV-based vector comprises an expression cassette that is driven by a polymerase III-promoter (Pol III). A preferred Pol III promoter is, for example, a Ul, a U6, or a U7 RNA promoter.
- The invention therefore also provides a viral-based vector, comprising a Pol III-promoter driven expression cassette for expression of one or more antisense sequences of the invention for inducing skipping of
exon 43,exon 46,exon 50,exon 51,exon 52 or exon 53 of the human DMD pre-mRNA. - If required, a molecule or a vector expressing an antisense oligonucleotide of the invention can be incorporated into a pharmaceutically active mixture or composition by adding a pharmaceutically acceptable carrier.
- Therefore, in a further aspect, the invention provides a composition, preferably a pharmaceutical composition comprising a molecule comprising an antisense oligonucleotide according to the invention, and/or a viral-based vector expressing the antisense sequence(s) according to the invention and a pharmaceutically acceptable carrier.
- A preferred pharmaceutical composition comprises a molecule as defined herein and/or a vector as defined herein, and a pharmaceutical acceptable carrier or excipient, optionally combined with a molecule and/or a vector as defined herein which is able to induce skipping of
6, 7, 11, 17, 19, 21, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 62, 63, 65, 66, 69, or 75 of the DMD pre-mRNA. Preferred molecules able to induce skipping of any of these exon are identified in any one of Tables 1 to 7.exon - Preferred excipients include excipients capable of forming complexes, vesicles and/or liposomes that deliver such a molecule as defined herein, preferably an oligonucleotide complexed or trapped in a vesicle or liposome through a cell membrane. Many of these excipients are known in the art. Suitable excipients comprise polyethylenimine and derivatives, or similar cationic polymers, including polypropyleneimine or polyethylenimine copolymers (PECs) and derivatives,
ExGen 500, synthetic amphiphils (SAINT-18), lipofectin, DOTAP and/or viral capsid proteins that are capable of self-assembly into particles that can deliver such molecule, preferably an oligonucleotide as defined herein to a cell, preferably a muscle cell. Such excipients have been shown to efficiently deliver (oligonucleotide such as antisense) nucleic acids to a wide variety of cultured cells, including muscle cells. Their high transfection potential is combined with an excepted low to moderate toxicity in terms of overall cell survival. The ease of structural modification can be used to allow further modifications and the analysis of their further (in vivo) nucleic acid transfer characteristics and toxicity. - Lipofectin represents an example of a liposomal transfection agent. It consists of two lipid components, a cationic lipid N-[1-(2,3 dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) (cp. DOTAP which is the methylsulfate salt) and a neutral lipid dioleoylphosphatidylethanolamine (DOPE). The neutral component mediates the intracellular release. Another group of delivery systems are polymeric nanoparticles.
- Polycations such like diethylaminoethylaminoethyl (DEAE)-dextran, which are well known as DNA transfection reagent can be combined with butylcyanoacrylate (PBCA) and hexylcyanoacrylate (PHCA) to formulate cationic nanoparticles that can deliver a molecule or a compound as defined herein, preferably an oligonucleotide across cell membranes into cells.
- In addition to these common nanoparticle materials, the cationic peptide protamine offers an alternative approach to formulate a compound as defined herein, preferably an oligonucleotide as colloids. This colloidal nanoparticle system can form so called proticles, which can be prepared by a simple self-assembly process to package and mediate intracellular release of a compound as defined herein, preferably an oligonucleotide. The skilled person may select and adapt any of the above or other commercially available alternative excipients and delivery systems to package and deliver a compound as defined herein, preferably an oligonucleotide for use in the current invention to deliver said compound for the treatment of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy in humans.
- In addition, a compound as defined herein, preferably an oligonucleotide could be covalently or non-covalently linked to a targeting ligand specifically designed to facilitate the uptake into the cell, cytoplasm and/or its nucleus. Such ligand could comprise (i) a compound (including but not limited to peptide(-like) structures) recognizing cell, tissue or organ specific elements facilitating cellular uptake and/or (ii) a chemical compound able to facilitate the uptake into cells and/or the intracellular release of a compound as defined herein, preferably an oligonucleotide from vesicles, e.g. endosomes or lysosomes.
- Therefore, in a preferred embodiment, a compound as defined herein, preferably an oligonucleotide are formulated in a medicament which is provided with at least an excipient and/or a targeting ligand for delivery and/or a delivery device of said compound to a cell and/or enhancing its intracellular delivery. Accordingly, the invention also encompasses a pharmaceutically acceptable composition comprising a compound as defined herein, preferably an oligonucleotide and further comprising at least one excipient and/or a targeting ligand for delivery and/or a delivery device of said compound to a cell and/or enhancing its intracellular delivery. It is to be understood that a molecule or compound or oligonucleotide may not be formulated in one single composition or preparation. Depending on their identity, the skilled person will know which type of formulation is the most appropriate for each compound.
- In a preferred embodiment, an in vitro concentration of a molecule or an oligonucleotide as defined herein, which is ranged between 0.1 nM and 1 μM is used. More preferably, the concentration used is ranged between 0.3 to 400 nM, even more preferably between 1 to 200 nM. A molecule or an oligonucleotide as defined herein may be used at a dose which is ranged between 0.1 and 20 mg/kg, preferably 0.5 and 10 mg/kg. If several molecules or oligonucleotides are used, these concentrations may refer to the total concentration of oligonucleotides or the concentration of each oligonucleotide added. The ranges of concentration of oligonucleotide(s) as given above are preferred concentrations for in vitro or ex vivo uses. The skilled person will understand that depending on the oligonucleotide(s) used, the target cell to be treated, the gene target and its expression levels, the medium used and the transfection and incubation conditions, the concentration of oligonucleotide(s) used may further vary and may need to be optimized any further.
- More preferably, a compound preferably an oligonucleotide to be used in the invention to prevent, treat DMD or BMD are synthetically produced and administered directly to a cell, a tissue, an organ and/or patients in formulated form in a pharmaceutically acceptable composition or preparation. The delivery of a pharmaceutical composition to the subject is preferably carried out by one or more parenteral injections, e.g., intravenous and/or subcutaneous and/or intramuscular and/or intrathecal and/or intraventricular administrations, preferably injections, at one or at multiple sites in the human body.
- A preferred oligonucleotide as defined herein optionally comprising one or more nucleotide analogs or equivalents of the invention modulates splicing in one or more muscle cells, including heart muscle cells, upon systemic delivery. In this respect, systemic delivery of an oligonucleotide comprising a specific nucleotide analog or equivalent might result in targeting a subset of muscle cells, while an oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting of a different subset of muscle cells.
- In this respect, systemic delivery of an oligonucleotide comprising a specific nucleotide analog or equivalent might result in targeting a subset of muscle cells, while an oligonucleotide comprising a distinct nucleotide analog or equivalent might result in targeting a different subset of muscle cells. Therefore, in this embodiment, it is preferred to use a combination of oligonucleotides comprising different nucleotide analogs or equivalents for modulating splicing of the DMD mRNA in at least one type of muscle cells.
- In a preferred embodiment, there is provided a molecule or a viral-based vector for use as a medicament, preferably for modulating splicing of the DMD pre-mRNA, more preferably for promoting or inducing skipping of any of
43, 46, 50-53 as identified herein.exon - In yet a further aspect, the invention provides the use of an antisense oligonucleotide or molecule according to the invention, and/or a viral-based vector that expresses one or more antisense sequences according to the invention and/or a pharmaceutical composition, for modulating splicing of the DMD pre-mRNA. The splicing is preferably modulated in a human myogenic cell or muscle cell in vitro. More preferred is that splicing is modulated in a human muscle cell in vivo. Accordingly, the invention further relates to the use of the molecule as defined herein and/or the vector as defined herein and/or or the pharmaceutical composition as defined herein for modulating splicing of the DMD pre-mRNA or for the preparation of a medicament for the treatment of a DMD or BMD patient.
- In this document and in its claims, the verb “to comprise” and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. In addition, the verb “to consist” may be replaced by “to consist essentially of’ meaning that a molecule or a viral-based vector or a composition as defined herein may comprise additional component(s) than the ones specifically identified, said additional component(s) not altering the unique characteristic of the invention. In addition, reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements. The indefinite article “a” or “an” thus usually means “at least one”. Each embodiment as identified herein may be combined together unless otherwise indicated. All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.
- The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.
- AON design was based on (partly) overlapping open secondary structures of the target exon RNA as predicted by them-fold program, on (partly) overlapping putative SR— protein binding sites as predicted by the ESE-finder software. AONs were synthesized by Prosensa Therapeutics B.V. (Leiden, Netherlands), and contain 2′-O-methyl RNA and full-length phosphorothioate (PS) backbones.
- Myotube cultures derived from a healthy individual (“human control”) (examples 1, 3, and 4;
43, 50, 52 skipping) or a DMD patient carrying an exon 45 deletion (example 2;exon exon 46 skipping) were processed as described previously (Aartsma-Rus et al., Neuromuscul. Disord. 2002; 12: S71-77 and Hum Mol Genet 2003; 12(8): 907-14). For the screening of AONs, myotube cultures were transfected with 50 nM and 150 nM (example 2), 200 nM and 500 nM (example 4) or 500 nM only (examples 1 and 3) of each AON. Transfection reagent UNIFectylin (Prosensa Therapeutics BV, Netherlands) was used, with 2 μl UNIFectylin per AON. Exon skipping efficiencies were determined by nested RT-PCR analysis using primers in the exons flanking the targeted exons (43, 46, 50, 51, 52, or 53). PCR fragments were isolated from agarose gels for sequence verification. For quantification, the PCR products were analyzed using the DNA 1000 LabChips Kit on the Agilent 2100 bioanalyzer (Agilent Technologies, USA). - A series of AONs targeting sequences within
exon 43 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch withinexon 43 herein defined as SEQ ID NO 2, was indeed capable of inducingexon 43 skipping. PS237 (SEQ ID NO: 65) reproducibly induced highest levels ofexon 43 skipping (up to 66%) at 500 nM, as shown inFIG. 1 . For comparison, also PS238 and PS240 are shown, inducingexon 43 skipping levels up to 13% and 36% respectively (FIG. 1 ). The precise skipping ofexon 43 was confirmed by sequence analysis of the novel smaller transcript fragments. Noexon 43 skipping was observed in non-treated cells (NT). - A series of AONs targeting sequences within
exon 46 were designed and transfected in myotube cultures derived from a DMD patient carrying an exon 45 deletion in the DMD gene. For patients with such mutation antisense-inducedexon 46 skipping would induce the synthesis of a novel, BMD-like dystrophin protein that may indeed alleviate one or more symptoms of the disease. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch withinexon 46 herein defined asSEQ ID NO 3, was indeed capable of inducingexon 46 skipping, even at relatively low AON concentrations of 50 nM. PS182 (SEQ ID NO: 117) reproducibly induced highest levels ofexon 46 skipping (up to 50% at 50 nM and 74% at 150 nM), as shown inFIG. 2 . For comparison, also PS177, PS179, and PS181 are shown, inducingexon 46 skipping levels up to 55%, 58% and 42% respectively at 150 nM (FIG. 2 ). The precise skipping ofexon 46 was confirmed by sequence analysis of the novel smaller transcript fragments. Noexon 46 skipping was observed in non-treated cells (NT). - A series of AONs targeting sequences within
exon 50 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch withinexon 50 herein defined as SEQ ID NO 4, was indeed capable of inducingexon 50 skipping. PS248 (SEQ ID NO: 127) reproducibly induced highest levels ofexon 50 skipping (up to 35% at 500 nM), as shown inFIG. 3 . For comparison, also PS245, PS246, and PS247 are shown, inducingexon 50 skipping levels up to 14-16% at 500 nM (FIG. 3 ). The precise skipping ofexon 50 was confirmed by sequence analysis of the novel smaller transcript fragments. Noexon 50 skipping was observed in non-treated cells (NT). - A series of AONs targeting sequences within
exon 51 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch withinexon 51 herein defined as SEQ ID NO 5, was indeed capable of inducingexon 51 skipping. The AON with SEQ ID NO 180 reproducibly induced highest levels ofexon 51 skipping (not shown). - A series of AONs targeting sequences within
exon 52 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch withinexon 52 herein defined as SEQ ID NO 6, was indeed capable of inducingexon 52 skipping. PS236 (SEQ ID NO: 299) reproducibly induced highest levels ofexon 52 skipping (up to 88% at 200 nM and 91% at 500 nM), as shown inFIG. 4 . For comparison, also PS232 and AON 52-1 (previously published by Aartsma-Rus et al. Oligonucleotides 2005) are shown, inducingexon 52 skipping at levels up to 59% and 10% respectively when applied at 500 nM (FIG. 4 ). The precise skipping ofexon 52 was confirmed by sequence analysis of the novel smaller transcript fragments. Noexon 52 skipping was observed in non-treated cells (NT). - A series of AONs targeting sequences within exon 53 were designed and transfected in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that almost all AONs targeting a continuous nucleotide stretch within exon 53 herein defined as
SEQ ID NO 7, was indeed capable of inducing exon 53 skipping. The AON with SEQ ID NO 328 reproducibly induced highest levels of exon 53 skipping (not shown). -
SEQUENCE LISTING: DMD GENE AMINO ACID SEQUENCE SEO ID NO 1: MLWWEEVEDCYEREDVQKKTFTKWVNAQFSKEGKQHIENLFSDLQDGRR LLDLLEGLTGQKLPKEKGSTRVHALNNVNKALRVLQNNNVDLVNIGSTD IVDGNHKLTLGLIWNIILHWQVKNVMKNIMAGLQQTNSEKILLSWVRQS TRNYPQVNVINFTTSWSDGLALNALIHSHRPDLFDWNSVVCQQSATQRL EHAFNIARYQLGIEKLLDPEDVDTTYPDKKSILMYITSLFQVLPQQVSI EAIQEVEMLPRPPKVTKEEHFQLHHQMHYSQQITVSLAQGYERTSSPKP RFKSYAYTQAAYVTTSDPTRSPFPSQHLEAPEDKSEGSSLMESEVNLDR YQTALEEVLSWLLSAEDTLQAQGEISNDVEVVKDQFHTHEGYMMDLTAH QGRVGNILQLGSKLIGTGKLSEDEETEVQEQMNLLNSRWECLRVASMEK QSNLHRVLMDLQNQKLKELNDWLTKTEERTRKMEEEPLGPDLEDLKRQV QQHKVLQEDLEQEQVRVNSLTHMVVVVDESSGDHATAALEEQLKVLGDR WANICRWTEDRWVLLQDILLKWQRLTEEQCLFSAWLSEKEDAVNKIHTT GFKDQNEMLSSLQKLAVLKADLEKKKQSMGKLYSLKQDLLSTLKNKSVT QKTEAWLDNFARCWDNLVQKLEKSTAQISQAVTTTQPSLTQTTVMETVT TVTTREQILVKHAQEELPPPPPQKKRQITVDSEIRKRLDVDITELHSWI TRSEAVLQSPEFAIFRKEGNFSDLKEKVNAIEREKAEKERKLQDASRSA QALVEQMVNEGVNADSIKQASEQLNSRWIEFCQLLSERLNWLEYQNNII AFYNQLQQLEQMTTTAENWLKIQPTTPSEPTAIKSQLKICKDEVNRLSG LQPQIERLKIQSIALKEKGQGPMFLDADFVAFTNHFKQVFSDVQAREKE LQTIFDTLPPMRYQETMSAIRTWVQQSETKLSIPQLSVTDYEIMEQRLG ELQALQSSLQEQQSGLYYLSTTVKEMSKKAPSEISRKYQSEFEEIEGRW KKLSSQLVEHCQKLEEQMNKLRKIQNHIQTLKKWMAEVDVFLKEEWPAL GDSEILKKQLKQCRLLVSDIQTIQPSLNSVNEGGQKIKNEAEPEFASRL ETELKELNTQWDHMCQQVYARKEALKGGLEKTVSLQKDLSEMHEWMTQA EEEYLERDFEYKTPDELQKAVEEMKRAKEEAQQKEAKVKLLTESVNSVI AQAPPVAQEALKKELETLTTNYQWLCTRLNGKCKTLEEVWACWHELLSY LEKANKWLNEVEFKLKTTENIPGGAEEISEVLDSLENLMRHSEDNPNQI RILAQTLTDGGVMDELINEELETFNSRWRELHEEAVRRQKLLEQSIQSA QETEKSLHLIQESLTFIDKQLAAYIADKVDAAQMPQEAQKIQSDLTSHE ISLEEMKKHNQGKEAAQRVLSQIDVAQKKLQDVSMKFRLFQKPANFEQR LQESKMILDEVKMHLPALETKSVEQEVVQSQLNHCVNLYKSLSEVKSEV EMVIKTGRQIVQKKQTENPKELDERVTALKLHYNELGAKVTERKQQLEK CLKLSRKMRKEMNVLTEWLAATDMELTKRSAVEGMPSNLDSEVAWGKAT QKEIEKQKVHLKSITEVGEALKTVLGKKETLVEDKLSLLNSNWIAVTSR AEEWLNLLLEYQKHMETFDQNVDHITKWIIQADTLLDESEKKKPQQKED VLKRLKAELNDIRPKVDSTRDQAANLMANRGDHCRKLVEPQISELNHRF AAISHRIKTGKASIPLKELEQFNSDIQKLLEPLEAEIQQGVNLKEEDFN KDMNEDNEGTVKELLQRGDNLQQRITDERKREEIKIKQQLLQTKHNALK DLRSQRRKKALEISHQWYQYKRQADDLLKCLDDIEKKLASLPEPRDERK IKEIDRELQKKKEELNAVRRQAEGLSEDGAAMAVEPTQIQLSKRWREIE SKFAQFRRLNFAQIHTVREETMMVMTEDMPLEISYVPSTYLTEITHVSQ ALLEVEQLLNAPDLCAKDFEDLFKQEESLKNIKDSLQQSSGRIDIIHSK KTAALQSATPVERVKLQEALSQLDFQWEKVNKMYKDRQGRFDRSVEKWR RFHYDIKIFNQWLTEAEQFLRKTQIPENWEHAKYKWYLKELQDGIGQRQ TVVRTLNATGEEIIQQSSKTDASILQEKLGSLNLRWQEVCKQLSDRKKR LEEQKNILSEFQRDLNEFVLWLEEADNIASIPLEPGKEQQLKEKLEQVK LLVEELPLRQGILKQLNETGGPVLVSAPISPEEQDKLENKLKQTNLQWI KVSRALPEKQGEIEAQIKDLGQLEKKLEDLEEQLNHLLLWLSPIRNQLE IYNQPNQEGPFDVQETEIAVQAKQPDVEEILSKGQHLYKEKPATQPVKR KLEDLSSEWKAVNRLLQELRAKQPDLAPGLTTIGASPTQTVTLVTQPVV TKETAISKLEMPSSLMLEVPALADFNRAWTELTDWLSLLDQVIKSQRVM VGDLEDINEMIIKQKATMQDLEQRRPQLEELITAAQNLKNKTSNQEART IITDRIERIQNQWDEVQEHLQNRRQQLNEMLKDSTQWLEAKEEAEQVLG QARAKLESWKEGPYTVDAIQKKITETKQLAKDLRQWQTNVDVANDLALK LLRDYSADDTRKVHMITENINASWRSIHKRVSEREAALEETHRLLQQFP LDLEKFLAWLTEAETTANVLQDATRKERLLEDSKGVKELMKQWQDLQGE IEAHTDVYHNLDENSQKILRSLEGSDDAVLLQRRLDNMNFKWSELRKKS LNIRSHLEASSDQWKRLHLSLQELLVWLQLKDDELSRQAPIGGDFPAVQ KQNDVHRAFKRELKTKEPVIMSTLETVRIFLTEQPLEGLEKLYQEPREL PPEERAQNVTRLLRKQAEEVNTEWEKLNLHSADWQRKIDETLERLQELQ EATDELDLKLRQAEVIKGSWQPVGDLLIDSLQDHLEKVKALRGEIAPLK ENVSHVNDLARQLTTLGIQLSPYNLSTLEDLNTRWKLLQVAVEDRVRQL HEAHRDFGPASQHFLSTSVQGPWERAISPNKVPYYINHETQTTCWDHPK MTELYQSLADLNNVRFSAYRTAMKLRRLQKALCLDLLSLSAACDALDQH NLKQNDQPMDILQIINCLTTIYDRLEQEHNNLVNVPLCVDMCLNWLLNV YDTGRTGRIRVLSFKTGIISLCKAHLEDKYRYLFKQVASSTGFCDQRRL GLLLHDSIQIPRQLGEVASFGGSNIEPSVRSCFQFANNKPEIEAALFLD WMRLEPQSMVWLPVLHRVAAAETAKHQAKCNICKECPIIGFRYRSLKHF NYDICQSCFFSGRVAKGHKMHYPMVEYCTPTTSGEDVRDFAKVLKNKFR TKRYFAKHPRMGYLPVQTVLEGDNMETPVTLINFWPVDSAPASSPQLSH DDTHSRIEHYASRLAEMENSNGSYLNDSISPNESIDDEHLLIQHYCQSL NQDSPLSQPRSPAQILISLESEERGELERILADLEEENRNLQAEYDRLK QQHEHKGLSPLPSPPEMMPTSPQSPRDAELIAEAKLLRQHKGRLEARMQ ILEDHNKQLESQLHRLRQLLEQPQAEAKVNGTTVSSPSTSLQRSDSSQP MLLRVVGSQTSDSMGEEDLLSPPQDTSTGLEEVMEQLNNSFPSSRGRNT PGKPMREDTM SEQ ID NO 2 (EXON 43): AGAUAGUCUACAACAAAGCUCAGGUCGGAUUGACAUUAUUCAUAGCAAG AAGACAG CAGCAUUGCAMGUGCAACGCCUGUGG SEQ ID NO 3 (EXON 46): UUAUGGUUGGAGGAAGCAGAUAACAUUGCUAGUAUCCCACUUGAACCUG GAMAGAGCAGCAACUAAAAGAMAGC SEQ ID NO 4 (EXON 50): GGCGGUAMCCGUUUACUUCAAGAGCUGAGGGCAAAGCAGCCUGACCUAG CUCCUGGACUGACCACUAUUGG SEQ ID NO 5 (EXON 51): CUCCUACUCAGACUGUUACUCUGGUGACACAACCUGUGGUUACUAAGGA MCUGCCAUCUCCAAACUAGAAAUGCCAUCUUCCUUGAUGUUGGAGGUAC SEQ ID NO 6 (EXON 52): AUGCAGGAUUUGGAACAGAGGCGUCCCCAGUUGGAAGAACUCAUUACCG CUGCCCAAAAUUU GAAAAACAAGACCAGCAAUCAAGAGGCU SEQ ID NO 7 (EXON 53): AAAUGUUAAAGGAUUCAACACAAUGGCUGGAAGCUAAGGAAGAAGCUGA GCAGGUCUUAGGA CAGGCCAGAG -
TABLE 1 OLIGONUCLEOTIDES FOR SKIPPING DMD GENE EXON 43 SEQ ID CCACAGGCGUUGCACUUUGCA NO 8 AUGC SEQ ID CACAGGCGUUGCACUUUGCAA NO 9 UGCU SEQ ID ACAGGCGUUGCACUUUGCAAU NO 10 GCUG SEQ ID CAGGCGUUGCACUUUGCAAUG NO 11 CUGC SEQ ID AGGCGUUGCACULTUGCAAUGC NO 12 UGCU SEQ ID GGCGUUGCACULTUGCAAUGCU NO 13 GCUG SEQ ID GCGUUGCACULTUGCAAUGCUG NO 14 CUGU SEQ ID CGUUGCACUUUGCAAUGCUGC NO 15 UGUC SEQ ID CGUUGCACULTUGCAAUGCUGC NO 16 UG PS240 SEQ ID GUUGCACUUUGCAAUGCUGCU NO 17 GUCU SEQ ID UUGCACUUUGCAAUGCUGCUG NO 18 UCUU SEQ ID UGCACUUUGCAAUGCUGCUGU NO 19 CUUC SEQ ID GCACUUUGCAAUGCUGCUGUC NO 20 UUCU SEQ ID CACUUUGCAAUGCUGCUGUCU NO 21 UCUU SEQ ID ACUUUGCAAUGCUGCUGUCUU NO 22 CUUG SEQ ID CUUUGCAAUGCUGCUGUCUUC NO 23 UUGC SEQ ID UUUGCAAUGCUGCUGUCUUCU NO 24 UGCU SEQ ID UUGCAAUGCUGCUGUCUUCUU NO 25 GCUA SEQ ID UGCAAUGCUGCUGUCUUCUUG NO 26 CUAU SEQ ID GCAAUGCUGCUGUCUUCUUGC NO 27 UAUG SEQ ID CAAUGCUGCUGUCUUCUUGCU NO 28 AUGA SEQ ID AAUGCUGCUGUCUUCUUGCUA NO 29 UGAA SEQ ID AUGCUGCUGUCUUCUUGCUAU NO 30 GAAU SEQ ID UGCUGCUGUCUUCUUGCUAUG NO 31 AAUA SEQ ID GCUGCUGUCUUCUUGCUAUGA NO 32 AUAA SEQ ID CUGCUGUCUUCUUGCUAUGAA NO 33 UAAU SEQ ID UGCUGUCUUCUUGCUAUGAAU NO 34 AAUG SEQ ID GCUGUCUUCUUGCUAUGAAUA NO 35 AUGU SEQ ID CUGUCUUCUUGCUAUGAAUAA NO 36 UGUC SEQ ID UGUCUUCUUGCUAUGAAUAAU NO 37 GUCA SEQ ID GUCUUCUUGCUAUGAAUAAUG NO 38 UCAA SEQ ID UCUUCUUGCUAUGAAUAAUGUC NO 39 AAU SEQ ID CUUCUUGCUAUGAAUAAUGUCA NO 40 AUC SEQ ID UUCUUGCUAUGAAUAAUGUCAA NO 41 UCC SEQ ID UCUUGCUAUGAAUAAUGUCAAU NO 42 CCG SEQ ID CUUGCUAUGAAUAAUGUCAAUC NO 43 CGA SEQ ID UUGCUAUGAAUAAUGUCAAUCC NO 44 GAC SEQ ID UGCUAUGAAUAAUGUCAAUCCG NO 45 ACC SEQ ID GCUAUGAAUAAUGUCAAUCCGA NO 46 CCU SEQ ID CUAUGAAUAAUGUCAAUCCGACC NO 47 UG SEQ ID UAUGAAUAAUGUCAAUCCGACC NO 48 UGA SEQ ID AUGAAUAAUGUCAAUCCGACCU NO 49 GAG SEQ ID UGAAUAAUGUCAAUCCGACCUG NO 50 AGC SEQ ID GAAUAAUGUCAAUCCGACCUGA NO 51 GCU SEQ ID AAUAAUGUCAAUCCGACCUGAGC NO 52 UU SEQ ID AUAAUGUCAAUCCGACCUGAGCU NO 53 UU SEQ ID UAAUGUCAAUCCGACCUGAGCUU NO 54 UG SEQ ID AAUGUCAAUCCGACCUGAGCUUU NO 55 GU SEQ ID AUGUCAAUCCGACCUGAGCUUUG NO 56 UU SEQ ID UGUCAAUCCGACCUGAGCUUUGU NO 57 UG SEQ ID GUCAAUCCGACCUGAGCUUUGUU NO 58 GU SEQ ID UCAAUCCGACCUGAGCUUUGUUG NO 59 UA SEQ ID CAAUCCGACCUGAGCUUUGUUGU NO 60 AG SEQ ID AAUCCGACCUGAGCUUUGUUGU NO 61 AGA SEQ ID AUCCGACCUGAGCUUUGUUGUA NO 62 GAC SEQ ID UCCGACCUGAGCUUUGUUGUAG NO 63 ACU SEQ ID CCGACCUGAGCUUUGUUGUAGAC NO 64 UA SEQ ID CGACCUGAGCUUUGUUGUAG NO 65 PS237 SEQ ID CGACCUGAGCUUUGUUGUAGAC NO 66 UAU PS238 SEQ ID GACCUGAGCUUUGUUGUAGACU NO 67 AUC SEQ ID ACCUGAGCUUUGUUGUAGACUA NO 68 UCA SEQ ID CCUGAGCUUUGUUGUAGACU NO 69 AUC -
TABLE 2 OLIGONUCLEOTIDES FOR SKIPPING DMD GENE EXON 46 SEQ ID GCUUUUCUUUUAGUUGCUGCUC NO 70 UUU PS179 SEQ ID CUUUUCUUUUAGUUGCUGCUCU NO 71 UUU SEQ ID UUUUCUUUUAGUUGCUGCUCU NO 72 UUUC SEQ ID UUUCUUUUAGUUGCUGCUCUU NO 73 UUCC SEQ ID UUCUUUUAGUUGCUGCUCUUU NO 74 UCCA SEQ ID UCUUUUAGUUGCUGCUCUUUUC NO 75 CAG SEQ ID CUUUUAGUUGCUGCUCUUUUCC NO 76 AGG SEQ ID UUUUAGUUGCUGCUCUUUUCCA NO 77 GGU SEQ ID UUUAGUUGCUGCUCUUUUCCAG NO 78 GUU SEQ ID UUAGUUGCUGCUCUUUUCCAGG NO 79 UUC SEQ ID UAGUUGCUGCUCUUUUCCAGGU NO 80 UCA SEQ ID AGUUGCUGCUCUUUUCCAGGUU NO 81 CAA SEQ ID GUUGCUGCUCUUUUCCAGGUUC NO 82 AAG SEQ ID UUGCUGCUCUUUUCCAGGUUCA NO 83 AGU SEQ ID UGCUGCUCUUUUCCAGGUUCAA NO 84 GUG SEQ ID GCUGCUCUUUUCCAGGUUCAAG NO 85 UGG SEQ ID CUGCUCUUUUCCAGGUUCAAGU NO 86 GGG SEQ ID UGCUCUUUUCCAGGUUCAAGUG NO 87 GGA SEQ ID GCUCUUUUCCAGGUUCAAGUGG NO 88 GAC SEQ ID CUCUUUUCCAGGUUCAAGUGGG NO 89 AUA SEQ ID UCUUUUCCAGGUUCAAGUGGG NO 90 AUAC SEQ ID UCUUUUCCAGGUUCAAGUGG NO 91 PS177 SEQ ID CUUUUCCAGGUUCAAGUGGGA NO 92 UACU SEQ ID UUUUCCAGGUUCAAGUGGGAU NO 93 ACUA SEQ ID UUUCCAGGUUCAAGUGGGAUA NO 94 CUAG SEQ ID UUCCAGGUUCAAGUGGGAUAC NO 95 UAGC SEQ ID UCCAGGUUCAAGUGGGAUACU NO 96 AGCA SEQ ID CCAGGUUCAAGUGGGAUACUA NO 97 GCAA SEQ ID CAGGUUCAAGUGGGAUACUAG NO 98 CAAU SEQ ID AGGUUCAAGUGGGAUACUAGC NO 99 AAUG SEQ ID GGUUCAAGUGGGAUACUAGCA NO 100 AUGU SEQ ID GUUCAAGUGGGAUACUAGCAA NO 101 UGUU SEQ ID UUCAAGUGGGAUACUAGCAAU NO 102 GUUA SEQ ID UCAAGUGGGAUACUAGCAAUG NO 103 UUAU SEQ ID CAAGUGGGAUACUAGCAAUGU NO 104 UAUC SEQ ID AAGUGGGAUACUAGCAAUGUU NO 105 AUCU SEQ ID AGUGGGAUACUAGCAAUGUUA NO 106 UCUG SEQ ID GUGGGAUACUAGCAAUGUUAU NO 107 CUGC SEQ ID UGGGAUACUAGCAAUGUUAUC NO 108 UGCU SEQ ID GGGAUACUAGCAAUGUUAUCU NO 109 GCUU SEQ ID GGAUACUAGCAAUGUUAUCUG NO 110 CUUC PS181 SEQ ID GAUACUAGCAAUGUUAUCUGC NO 111 UUCC SEQ ID AUACUAGCAAUGUUAUCUGCU NO 112 UCCU SEQ ID UACUAGCAAUGUUAUCUGCUU NO 113 CCUC SEQ ID ACUAGCAAUGUUAUCUGCUUCC NO 114 UCC SEQ ID CUAGCAAUGUUAUCUGCUUCCU NO 115 CCA SEQ ID UAGCAAUGUUAUCUGCUUCCUC NO 116 CAA SEQ ID AGCAAUGUUAUCUGCUUCCUCC NO 117 AAC PS182 SEQ ID GCAAUGUUAUCUGCUUCCUCCA NO 118 ACC SEQ ID CAAUGUUAUCUGCUUCCUCCAA NO 119 CCA SEQ ID AAUGUUAUCUGCUUCCUCCAAC NO 120 CAU SEQ ID AUGUUAUCUGCUUCCUCCAACC NO 121 AUA SEQ ID UGUUAUCUGCUUCCUCCAACCA NO 122 UAA -
TABLE 3 OLIGONUCLEOTIDES FOR SKIPPING DMD GENE EXON 50 SEQ ID CCAAUAGUGGUCAGUCCAGGA NO 123 GCUA SEQ ID CAAUAGUGGUCAGUCCAGGAG NO 124 CUAG SEQ ID AAUAGUGGUCAGUCCAGGAGC NO 125 UAGG SEQ ID AUAGUGGUCAGUCCAGGAGCU NO 126 AGGU SEQ ID AUAGUGGUCAGUCCAGGAGCU NO 127 PS248 SEQ ID UAGUGGUCAGUCCAGGAGCUA NO 128 GGUC SEQ ID AGUGGUCAGUCCAGGAGCUAG NO 129 GUCA SEQ ID GUGGUCAGUCCAGGAGCUAGG NO 130 UCAG SEQ ID UGGUCAGUCCAGGAGCUAGGU NO 131 CAGG SEQ ID GGUCAGUCCAGGAGCUAGGUC NO 132 AGGC SEQ ID GUCAGUCCAGGAGCUAGGUCA NO 133 GGCU SEQ ID UCAGUCCAGGAGCUAGGUCAG NO 134 GCUG SEQ ID CAGUCCAGGAGCUAGGUCAGG NO 135 CUGC SEQ ID AGUCCAGGAGCUAGGUCAGGC NO 136 UGCU SEQ ID GUCCAGGAGCUAGGUCAGGCU NO 137 GCUU SEQ ID UCCAGGAGCUAGGUCAGGCUG NO 138 CUUU SEQ ID CCAGGAGCUAGGUCAGGCUGC NO 139 UUUG SEQ ID CAGGAGCUAGGUCAGGCUGCU NO 140 UUGC SEQ ID AGGAGCUAGGUCAGGCUGCUU NO 141 UGCC SEQ ID GGAGCUAGGUCAGGCUGCUUU NO 142 GCCC SEQ ID GAGCUAGGUCAGGCUGCUUUG NO 143 CCCU SEQ ID AGCUAGGUCAGGCUGCUUUGC NO 144 CCUC SEQ ID GCUAGGUCAGGCUGCUUUGCC NO 145 CUCA SEQ ID CUAGGUCAGGCUGCUUUGCCCU NO 146 CAG SEQ ID UAGGUCAGGCUGCUUUGCCCUC NO 147 AGC SEQ ID AGGUCAGGCUGCUUUGCCCUCA NO 148 GCU SEQ ID GGUCAGGCUGCUUUGCCCUCAG NO 149 CUC SEQ ID GUCAGGCUGCUUUGCCCUCAGC NO 150 UCU SEQ ID UCAGGCUGCUUUGCCCUCAGCU NO 151 CUU SEQ ID CAGGCUGCUUUGCCCUCAGCUC NO 152 UUG SEQ ID AGGCUGCUUUGCCCUCAGCUCU NO 153 UGA SEQ ID GGCUGCUUUGCCCUCAGCUCUU NO 154 GAA SEQ ID GCUGCUUUGCCCUCAGCUCUUG NO 155 AAG SEQ ID CUGCUUUGCCCUCAGCUCUUGA NO 156 AGU SEQ ID UGCUUUGCCCUCAGCUCUUGAA NO 157 GUA SEQ ID GCUUUGCCCUCAGCUCUUGAAG NO 158 UAA SEQ ID CUUUGCCCUCAGCUCUUGAAGU NO 159 AAA SEQ ID UUUGCCCUCAGCUCUUGAAGU NO 160 AAAC SEQ ID UUGCCCUCAGCUCUUGAAGUA NO 161 AACG SEQ ID UGCCCUCAGCUCUUGAAGUAA NO 162 ACGG SEQ ID GCCCUCAGCUCUUGAAGUAAAC NO 163 GGU SEQ ID CCCUCAGCUCUUGAAGUAAACG NO 164 GUU SEQ ID CCUCAGCUCUUGAAGUAAAC NO 165 PS246 SEQ ID CCUCAGCUCUUGAAGUAAACG NO 166 PS247 SEQ ID CUCAGCUCUUGAAGUAAACG NO 167 PS245 SEQ ID CCUCAGCUCUUGAAGUAAACG NO 529 GUUU SEQ ID CUCAGCUCUUGAAGUAAACGG NO 530 UUUA SEQ ID UCAGCUCUUGAAGUAAACGGU NO 531 UUAC SEQ ID CAGCUCUUGAAGUAAACGGUU NO 532 UACC SEQ ID AGCUCUUGAAGUAAACGGUUU NO 533 ACCG SEQ ID GCUCUUGAAGUAAACGGUUUA NO 534 CCGC SEQ ID CUCUUGAAGUAAACGGUUUAC NO 535 CGCC -
TABLE 4 OLIGONUCLEOTIDES FOR SKIPPING DMD GENE EXON 51 SEQ ID GUACCUCCAACAUCAAGGAAGA NO 168 UGG SEQ ID UACCUCCAACAUCAAGGAAGAU NO 169 GGC SEQ ID ACCUCCAACAUCAAGGAAGAUG NO 170 GCA SEQ ID CCUCCAACAUCAAGGAAGAUGG NO 171 CAU SEQ ID CUCCAACAUCAAGGAAGAUGGC NO 172 AUU SEQ ID UCCAACAUCAAGGAAGAUGGCA NO 173 UUU SEQ ID CCAACAUCAAGGAAGAUGGCAU NO 174 UUC SEQ ID CAACAUCAAGGAAGAUGGCAUU NO 175 UCU SEQ ID AACAUCAAGGAAGAUGGCAUUU NO 176 CUA SEQ ID ACAUCAAGGAAGAUGGCAUUUC NO 177 UAG SEQ ID CAUCAAGGAAGAUGGCAUUUCU NO 178 AGU SEQ ID AUCAAGGAAGAUGGCAUUUCUA NO 179 GUU SEQ ID UCAAGGAAGAUGGCAUUUCUAG NO 180 UUU SEQ ID CAAGGAAGAUGGCAUUUCUAGU NO 181 UUG SEQ ID AAGGAAGAUGGCAUUUCUAGUU NO 182 UGG SEQ ID AGGAAGAUGGCAUUUCUAGUUU NO 183 GGA SEQ ID GGAAGAUGGCAUUUCUAGUUUG NO 184 GAG SEQ ID GAAGAUGGCAUUUCUAGUUUGG NO 185 AGA SEQ ID AAGAUGGCAUUUCUAGUUUGGA NO 186 GAU SEQ ID AGAUGGCAUUUCUAGUUUGGAG NO 187 AUG SEQ ID GAUGGCAUUUCUAGUUUGGAGA NO 188 UGG SEQ ID AUGGCAUUUCUAGUUUGGAGAU NO 189 GGC SEQ ID UGGCAUUUCUAGUUUGGAGAUG NO 190 GCA SEQ ID GGCAUUUCUAGUUUGGAGAUGG NO 191 CAG SEQ ID GCAUUUCUAGUUUGGAGAUGGC NO 192 AGU SEQ ID CAUUUCUAGUUUGGAGAUGGCA NO 193 GUU SEQ ID AUUUCUAGUUUGGAGAUGGCAG NO 194 UUU SEQ ID UUUCUAGUUUGGAGAUGGCAGU NO 195 UUC SEQ ID UUCUAGUUUGGAGAUGGCAGUU NO 196 UCC SEQ ID UCUAGUUUGGAGAUGGCAGUUU NO 197 CCU SEQ ID CUAGUUUGGAGAUGGCAGUUUC NO 198 CUU SEQ ID UAGUUUGGAGAUGGCAGUUUCC NO 199 UUA SEQ ID AGUUUGGAGAUGGCAGUUUCCU NO 200 UAG SEQ ID GUUUGGAGAUGGCAGUUUCCUU NO 201 AGU SEQ ID UUUGGAGAUGGCAGUUUCCUUA NO 202 GUA SEQ ID UUGGAGAUGGCAGUUUCCUUAG NO 203 UAA SEQ ID UGGAGAUGGCAGUUUCCUUAGU NO 204 AAC SEQ ID GAGAUGGCAGUUUCCUUAGUAA NO 205 CCA SEQ ID AGAUGGCAGUUUCCUUAGUAAC NO 206 CAC SEQ ID GAUGGCAGUUUCCUUAGUAACC NO 207 ACA SEQ ID AUGGCAGUUUCCUUAGUAACCA NO 208 CAG SEQ ID UGGCAGUUUCCUUAGUAACCAC NO 209 AGG SEQ ID GGCAGUUUCCUUAGUAACCACA NO 210 GGU SEQ ID GCAGUUUCCUUAGUAACCACAG NO 211 GUU SEQ ID CAGUUUCCUUAGUAACCACAGG NO 212 UUG SEQ ID AGUUUCCUUAGUAACCACAGGU NO 213 UGU SEQ ID GUUUCCUUAGUAACCACAGGUU NO 214 GUG SEQ ID UUUCCUUAGUAACCACAGGUUG NO 215 UGU SEQ ID UUCCUUAGUAACCACAGGUUGU NO 216 GUC SEQ ID UCCUUAGUAACCACAGGUUGUG NO 217 UCA SEQ ID CCUUAGUAACCACAGGUUGUGU NO 218 CAC SEQ ID CUUAGUAACCACAGGUUGUGUC NO 219 ACC SEQ ID UUAGUAACCACAGGUUGUGUCA NO 220 CCA SEQ ID UAGUAACCACAGGUUGUGUCAC NO 221 CAG SEQ ID AGUAACCACAGGUUGUGUCACC NO 222 AGA SEQ ID GUAACCACAGGUUGUGUCACCA NO 223 GAG SEQ ID UAACCACAGGUUGUGUCACCAG NO 224 AGU SEQ ID AACCACAGGUUGUGUCACCAGA NO 225 GUA SEQ ID ACCACAGGUUGUGUCACCAGAG NO 226 UAA SEQ ID CCACAGGUUGUGUCACCAGAGU NO 227 AAC SEQ ID CACAGGUUGUGUCACCAGAGUA NO 228 ACA SEQ ID ACAGGUUGUGUCACCAGAGUAA NO 229 CAG SEQ ID CAGGUUGUGUCACCAGAGUAAC NO 230 AGU SEQ ID AGGUUGUGUCACCAGAGUAACA NO 231 GUC SEQ ID GGUUGUGUCACCAGAGUAACAG NO 232 UCU SEQ ID GUUGUGUCACCAGAGUAACAGU NO 233 CUG SEQ ID UUGUGUCACCAGAGUAACAGUC NO 234 UGA SEQ ID UGUGUCACCAGAGUAACAGUCU NO 235 GAG SEQ ID GUGUCACCAGAGUAACAGUCUG NO 236 AGU SEQ ID UGUCACCAGAGUAACAGUCUGA NO 237 GUA SEQ ID GUCACCAGAGUAACAGUCUGAG NO 238 UAG SEQ ID UCACCAGAGUAACAGUCUGAGU NO 239 AGG SEQ ID CACCAGAGUAACAGUCUGAGUA NO 240 GGA SEQ ID ACCAGAGUAACAGUCUGAGUA NO 241 GGAG -
TABLE 5 OLIGONUCLEOTIDES FOR SKIPPING DMD GENE EXON 52 SEQ ID AGCCUCUUGAUUGCUGGUCUUG NO 242 UUU SEQ ID GCCUCUUGAUUGCUGGUCUUGU NO 243 UUU SEQ ID CCUCUUGAUUGCUGGUCUUGUU NO 244 UUU SEQ ID CCUCUUGAUUGCUGGUCUUG NO 245 SEQ ID CUCUUGAUUGCUGGUCUUGUU NO 246 UUUC PS232 SEQ ID UCUUGAUUGCUGGUCUUGUUU NO 247 UUCA SEQ ID CUUGAUUGCUGGUCUUGUUUU NO 248 UCAA SEQ ID UUGAUUGCUGGUCUUGUUUUU NO 249 CAAA SEQ ID UGAUUGCUGGUCUUGUUUUUC NO 250 AAAU SEQ ID GAUUGCUGGUCUUGUUUUUCA NO 251 AAUU SEQ ID GAUUGCUGGUCUUGUUUUUC NO 252 SEQ ID AUUGCUGGUCUUGUUUUUCAA NO 253 AUUU SEQ ID UUGCUGGUCUUGUUUUUCAAA NO 254 UUUU SEQ ID UGCUGGUCUUGUUUUUCAAAU NO 255 UUUG SEQ ID GCUGGUCUUGUUUUUCAAAUU NO 256 UUGG SEQ ID CUGGUCUUGUUUUUCAAAUUU NO 257 UGGG SEQ ID UGGUCUUGUUUUUCAAAUUUU NO 258 GGGC SEQ ID GGUCUUGUUUUUCAAAUUUUG NO 259 GGCA SEQ ID GUCUUGUUUUUCAAAUUUUGG NO 260 GCAG SEQ ID UCUUGUUUUUCAAAUUUUGGG NO 261 CAGC SEQ ID CUUGUUUUUCAAAUUUUGGGC NO 262 AGCG SEQ ID UUGUUUUUCAAAUUUUGGGCA NO 263 GCGG SEQ ID UGUUUUUCAAAUUUUGGGCAG NO 264 CGGU SEQ ID GUUUUUCAAAUUUUGGGCAGC NO 265 GGUA SEQ ID UUUUUCAAAUUUUGGGCAGCG NO 266 GUAA SEQ ID UUUUCAAAUUUUGGGCAGCGG NO 267 UAAU SEQ ID UUUCAAAUUUUGGGCAGCGGU NO 268 AAUG SEQ ID UUCAAAUUUUGGGCAGCGGUA NO 269 AUGA SEQ ID UCAAAUUUUGGGCAGCGGUAA NO 270 UGAG SEQ ID CAAAUUUUGGGCAGCGGUAAU NO 271 GAGU SEQ ID AAAUUUUGGGCAGCGGUAAUG NO 272 AGUU SEQ ID AAUUUUGGGCAGCGGUAAUGA NO 273 GUUC SEQ ID AUUUUGGGCAGCGGUAAUGAG NO 274 UUCU SEQ ID UUUUGGGCAGCGGUAAUGAGU NO 275 UCUU SEQ ID UUUGGGCAGCGGUAAUGAGUU NO 276 CUUC SEQ ID UUGGGCAGCGGUAAUGAGUUCU NO 277 UCC SEQ ID UGGGCAGCGGUAAUGAGUUCUU NO 278 CCA SEQ ID GGGCAGCGGUAAUGAGUUCUUC NO 279 CAA SEQ ID GGCAGCGGUAAUGAGUUCUUCC NO 280 AAC SEQ ID GCAGCGGUAAUGAGUUCUUCCA NO 281 ACU SEQ ID CAGCGGUAAUGAGUUCUUCCAA NO 282 CUG SEQ ID AGCGGUAAUGAGUUCUUCCAAC NO 283 UGG SEQ ID GCGGUAAUGAGUUCUUCCAACU NO 284 GGG SEQ ID CGGUAAUGAGUUCUUCCAACUG NO 285 GGG SEQ ID GGUAAUGAGUUCUUCCAACUGG NO 286 GGA SEQ ID GGUAAUGAGUUCUUCCAACUGG NO 287 SEQ ID GUAAUGAGUUCUUCCAACUGGG NO 288 GAC SEQ ID UAAUGAGUUCUUCCAACUGGGG NO 289 ACG SEQ ID AAUGAGUUCUUCCAACUGGGGA NO 290 CGC SEQ ID AUGAGUUCUUCCAACUGGGGAC NO 291 GCC SEQ ID UGAGUUCUUCCAACUGGGGACG NO 292 CCU SEQ ID GAGUUCUUCCAACUGGGGACGC NO 293 CUC SEQ ID AGUUCUUCCAACUGGGGACGCC NO 294 UCU SEQ ID GUUCUUCCAACUGGGGACGCCU NO 295 CUG SEQ ID UUCUUCCAACUGGGGACGCCUC NO 296 UGU SEQ ID UCUUCCAACUGGGGACGCCUCU NO 297 GUU SEQ ID CUUCCAACUGGGGACGCCUCUG NO 298 UUC SEQ ID UUCCAACUGGGGACGCCUCUGU NO 299 UCC PS236 SEQ ID UCCAACUGGGGACGCCUCUGUU NO 300 CCA SEQ ID CCAACUGGGGACGCCUCUGUUC NO 301 CAA SEQ ID CAACUGGGGACGCCUCUGUUCC NO 302 AAA SEQ ID AACUGGGGACGCCUCUGUUCCA NO 303 AAU SEQ ID ACUGGGGACGCCUCUGUUCCAA NO 304 AUC SEQ ID CUGGGGACGCCUCUGUUCCAAA NO 305 UCC SEQ ID UGGGGACGCCUCUGUUCCAAAU NO 306 CCU SEQ ID GGGGACGCCUCUGUUCCAAAUC NO 307 CUG SEQ ID GGGACGCCUCUGUUCCAAAUCC NO 308 UGC SEQ ID GGACGCCUCUGUUCCAAAUCCU NO 309 GCA SEQ ID GACGCCUCUGUUCCAAAUCCUG NO 310 CAU -
TABLE 6 OLIGONUCLEOTIDES FOR SKIPPING DMD GENE EXON 53 SEQ ID CUCUGGCCUGUCCUAAGACCU NO 311 GCUC SEQ ID UCUGGCCUGUCCUAAGACCUG NO 312 CUCA SEQ ID CUGGCCUGUCCUAAGACCUGC NO 313 UCAG SEQ ID UGGCCUGUCCUAAGACCUGCU NO 314 CAGC SEQ ID GGCCUGUCCUAAGACCUGCUC NO 315 AGCU SEQ ID GCCUGUCCUAAGACCUGCUCA NO 316 GCUU SEQ ID CCUGUCCUAAGACCUGCUCAG NO 317 CUUC SEQ ID CUGUCCUAAGACCUGCUCAGC NO 318 UUCU SEQ ID UGUCCUAAGACCUGCUCAGCU NO 319 UCUU SEQ ID GUCCUAAGACCUGCUCAGCUU NO 320 CUUC SEQ ID UCCUAAGACCUGCUCAGCUUC NO 321 UUCC SEQ ID CCUAAGACCUGCUCAGCUUCU NO 322 UCCU SEQ ID CUAAGACCUGCUCAGCUUCUU NO 323 CCUU SEQ ID UAAGACCUGCUCAGCUUCUUC NO 324 CUUA SEQ ID AAGACCUGCUCAGCUUCUUCC NO 325 UUAG SEQ ID AGACCUGCUCAGCUUCUUCCU NO 326 UAGC SEQ ID GACCUGCUCAGCUUCUUCCUU NO 327 AGCU SEQ ID ACCUGCUCAGCUUCUUCCUUA NO 328 GCUU SEQ ID CCUGCUCAGCUUCUUCCUUAG NO 329 CUUC SEQ ID CUGCUCAGCUUCUUCCUUAGC NO 330 UUCC SEQ ID UGCUCAGCUUCUUCCUUAGCU NO 331 UCCA SEQ ID GCUCAGCUUCUUCCUUAGCUU NO 332 CCAG SEQ ID CUCAGCUUCUUCCUUAGCUUC NO 333 CAGC SEQ ID UCAGCUUCUUCCUUAGCUUCC NO 334 AGCC SEQ ID CAGCUUCUUCCUUAGCUUCCAG NO 335 CCA SEQ ID AGCUUCUUCCUUAGCUUCCAGC NO 336 CAU SEQ ID GCUUCUUCCUUAGCUUCCAGCC NO 337 AUU SEQ ID CUUCUUCCUUAGCUUCCAGCCA NO 338 UUG SEQ ID UUCUUCCUUAGCUUCCAGCCAU NO 339 UGU SEQ ID UCUUCCUUAGCUUCCAGCCAUU NO 340 GUG SEQ ID CUUCCUUAGCUUCCAGCCAUUG NO 341 UGU SEQ ID UUCCUUAGCUUCCAGCCAUUGU NO 342 GUU SEQ ID UCCUUAGCUUCCAGCCAUUGUG NO 343 UUG SEQ ID CCUUAGCUUCCAGCCAUUGUGU NO 344 UGA SEQ ID CUUAGCUUCCAGCCAUUGUGUU NO 345 GAA SEQ ID UUAGCUUCCAGCCAUUGUGUUG NO 346 AAU SEQ ID UAGCUUCCAGCCAUUGUGUUGA NO 347 AUC SEQ ID AGCUUCCAGCCAUUGUGUUGAA NO 348 UCC SEQ ID GCUUCCAGCCAUUGUGUUGAAU NO 349 CCU SEQ ID CUUCCAGCCAUUGUGUUGAAUC NO 350 CUU SEQ ID UUCCAGCCAUUGUGUUGAAUCC NO 351 UUU SEQ ID UCCAGCCAUUGUGUUGAAUCCU NO 352 UUA SEQ ID CCAGCCAUUGUGUUGAAUCCUU NO 353 UAA SEQ ID CAGCCAUUGUGUUGAAUCCUUU NO 354 AAC SEQ ID AGCCAUUGUGUUGAAUCCUUUA NO 355 ACA SEQ ID GCCAUUGUGUUGAAUCCUUUAA NO 356 CAU SEQ ID CCAUUGUGUUGAAUCCUUUAAC NO 357 AUU SEQ ID CAUUGUGUUGAAUCCUUUAACA NO 358 UUU -
TABLE 7 OLIGONUCLEOTIDES FOR SKIPPING OTHER EXONS OF THE DMD GENE AS IDENTIFIED DMD Gene Exon 6 SEQ ID CAUUUUUGACCUACAUGUGG NO 359 SEQ ID UUUGACCUACAUGUGGAAAG NO 360 SEQ ID UACAUUUUUGACCUACAUGUG NO 361 GAAA G SEQ ID GGUCUCCUUACCUAUGA NO 362 SEQ ID UCUUACCUAUGACUAUGGAUG NO 363 AGA SEQ ID AUUUUUGACCUACAUGGGAAA NO 364 G SEQ ID UACGAGUUGAUUGUCGGACCCA NO 365 G SEQ ID GUGGUCUCCUUACCUAUGACUG NO 366 UGG SEQ ID UGUCUCAGUAAUCUUCUUACCU NO 367 AU DMD Gene Exon 7 SEQ ID UGCAUGUUCCAGUCGUUGUGU NO 368 GG SEQ ID CACUAUUCCAGUCAAAUAGGU NO 369 CUGG SEQ ID AUUUACCAACCUUCAGGAUCGA NO 370 GUA SEQ ID GGCCUAAAACACAUACACAUA NO 371 DMD Gene Exon 11 SEQ ID CCCUGAGGCAUUCCCAUCUUG NO 372 AAU SEQ ID AGGACUUACUUGCUUUGUUU NO 373 SEQ ID CUUGAAUUUAGGAGAUUCAUCU NO 374 G SEQ ID CAUCUUCUGAUAAUUUUCCUGU NO 375 U DMD Gene Exon 17 SEQ ID CCAUUACAGUUGUCUGUGUU NO 376 SEQ ID UGACAGCCUGUGAAAUCUGUG NO 377 AG SEQ ID UAAUCUGCCUCUUCUUUUGG NO 378 DMD Gene Exon 19 SEQ ID CAGCAGUAGUUGUCAUCUGC NO 379 SEQ ID GCCUGAGCUGAUCUGCUGGCA NO 380 UCUUGC SEQ ID GCCUGAGCUGAUCUGCUGGCAU NO 381 CUUGCA GUU SEQ ID UCUGCUGGCAUCUUGC NO 382 DMD Gene Exon 21 SEQ ID GCCGGUUGACUUCAUCCUGUG NO 383 C SEQ ID GUCUGCAUCCAGGAACAUGGG NO 384 UC SEQ ID UACUUACUGUCUGUAGCUCUU NO 385 UCU SEQ ID CUGCAUCCAGGAACAUGGGUCC NO 386 SEQ ID GUUGAAGAUCUGAUAGCCGGUU NO 387 GA DMD Gene Exon 44 SEQ ID UCAGCUUCUGUUAGCCACUG NO 388 SEQ ID UUCAGCUUCUGUUAGCCACU NO 389 SEQ ID UUCAGCUUCUGUUAGCCACUG NO 390 SEQ ID UCAGCUUCUGUUAGCCACUGA NO 391 SEQ ID UUCAGCUUCUGUUAGCCACUG NO 392 A SEQ ID UCAGCUUCUGUUAGCCACUGA NO 393 SEQ ID UUCAGCUUCUGUUAGCCACUG NO 394 A SEQ ID UCAGCUUCUGUUAGCCACUGA NO 395 U SEQ ID UUCAGCUUCUGUUAGCCACUG NO 396 AU SEQ ID UCAGCUUCUGUUAGCCACUGA NO 397 UU SEQ ID UUCAGCUUCUGUUAGCCACUG NO 398 AUU SEQ ID UCAGCUUCUGUUAGCCACUGA NO 399 UUA SEQ ID UUCAGCUUCUGUUAGCCACUG NO 400 AUA SEQ ID UCAGCUUCUGUUAGCCACUGA NO 401 UUAA SEQ ID UUCAGCUUCUGUUAGCCACUG NO 402 AUUAA SEQ ID UCAGCUUCUGUUAGCCACUGA NO 403 UUAAA SEQ ID UUCAGCUUCUGUUAGCCACUG NO 404 AUUAAA SEQ ID CAGCUUCUGUUAGCCACUG NO 405 SEQ ID CAGCUUCUGUUAGCCACUGAU NO 406 SEQ ID AGCUUCUGUUAGCCACUGAUU NO 407 SEQ ID CAGCUUCUGUUAGCCACUGAU NO 408 U SEQ ID AGCUUCUGUUAGCCACUGAUU NO 409 A SEQ ID CAGCUUCUGUUAGCCACUGAU NO 410 UA SEQ ID AGCUUCUGUUAGCCACUGAUU NO 411 AA SEQ ID CAGCUUCUGUUAGCCACUGAU NO 412 UAA SEQ ID AGCUUCUGUUAGCCACUGAUUA NO 413 AA SEQ ID CAGCUUCUGUUAGCCACUGAUU NO 414 AAA SEQ ID AGCUUCUGUUAGCCACUGAUUA NO 415 AA SEQ ID AGCUUCUGUUAGCCACUGAU NO 416 SEQ ID GCUUCUGUUAGCCACUGAUU NO 417 SEQ ID AGCUUCUGUUAGCCACUGAUU NO 418 SEQ ID GCUUCUGUUAGCCACUGAUUA NO 419 SEQ ID AGCUUCUGUUAGCCACUGAUUA NO 420 SEQ ID GCUUCUGUUAGCCACUGAUUAA NO 421 SEQ ID AGCUUCUGUUAGCCACUGAUUA NO 422 A SEQ ID GCUUCUGUUAGCCACUGAUUAA NO 423 A SEQ ID AGCUUCUGUUAGCCACUGAUUA NO 424 AA SEQ ID GCUUCUGUUAGCCACUGAUUAA NO 425 A SEQ ID CCAUUUGUAUUUAGCAUGUUCC NO 426 C SEQ ID AGAUACCAUUUGUAUUUAGC NO 427 SEQ ID GCCAUUUCUCAACAGAUCU NO 428 SEQ ID GCCAUUUCUCAACAGAUCUGUC NO 429 A SEQ ID AUUCUCAGGAAUUUGUGUCUUU NO 430 C SEQ ID UCUCAGGAAUUUGUGUCUUUC NO 431 SEQ ID GUUCAGCUUCUGUUAGCC NO 432 SEQ ID CUGAUUAAAUAUCUUUAUAUC NO 433 SEQ ID GCCGCCAUUUCUCAACAG NO 434 SEQ ID GUAUUUAGCAUGUUCCCA NO 435 SEQ ID CAGGAAUUUGUGUCUUUC NO 436 DMD Gene Exon 45 SEQ ID UUUGCCGCUGCCCAAUGCCAU NO 437 CCUG SEQ ID AUUCAAUGUUCUGACAACAGU NO 438 UUGC SEQ ID CCAGUUGCAUUCAAUGUUCUG NO 439 ACAA SEQ ID CAGUUGCAUUCAAUGUUCUGA NO 440 C SEQ ID AGUUGCAUUCAAUGUUCUGA NO 441 SEQ ID GAUUGCUGAAUUAUUUCUUCC NO 442 SEQ ID GAUUGCUGAAUUAUUUCUUCC NO 443 CCAG SEQ ID AUUGCUGAAUUAUUUCUUCCC NO 444 CAGU SEQ ID UUGCUGAAUUAUUUCUUCCCC NO 445 AGUU SEQ ID UGCUGAAUUAUUUCUUCCCCA NO 446 GUUG SEQ ID GCUGAAUUAUUUCUUCCCCAG NO 447 UUGC SEQ ID CUGAAUUAUUUCUUCCCCAGU NO 448 UGCA SEQ ID UGAAUUAUUUCUUCCCCAGUU NO 449 GCAU SEQ ID GAAUUAUUUCUUCCCCAGUUG NO 450 CAUU SEQ ID AAUUAUUUCUUCCCCAGUUGC NO 451 AUUC SEQ ID AUUAUUUCUUCCCCAGUUGCA NO 452 UUCA SEQ ID UUAUUUCUUCCCCAGUUGCAU NO 453 UCAA SEQ ID UAUUUCUUCCCCAGUUGCAUU NO 454 CAAU SEQ ID AUUUCUUCCCCAGUUGCAUUC NO 455 AAUG SEQ ID UUUCUUCCCCAGUUGCAUUCA NO 456 AUGU SEQ ID UUCUUCCCCAGUUGCAUUCAA NO 457 UGUU SEQ ID UCUUCCCCAGUUGCAUUCAAU NO 458 GUUC SEQ ID CUUCCCCAGUUGCAUUCAAUG NO 459 UUCU SEQ ID UUCCCCAGUUGCAUUCAAUGU NO 460 UCUG SEQ ID UCCCCAGUUGCAUUCAAUGUU NO 461 CUGA SEQ ID CCCCAGUUGCAUUCAAUGUUC NO 462 UGAC SEQ ID CCCAGUUGCAUUCAAUGUUCU NO 463 GACA SEQ ID CCAGUUGCAUUCAAUGUUCUG NO 464 ACAA SEQ ID CAGUUGCAUUCAAUGUUCUGA NO 465 CAAC SEQ ID AGUUGCAUUCAAUGUUCUGAC NO 466 AACA SEQ ID UCC UGU AGA AUA CUG GCA NO 467 UC SEQ ID UGCAGACCUCCUGCCACCGCAG NO 468 AUUCA SEQ ID UUGCAGACCUCCUGCCACCGCA NO 469 GAUUC AGGCUUC SEQ ID GUUGCAUUCAAUGUUCUGACAA NO 470 CAG SEQ ID UUGCAUUCAAUGUUCUGACAAC NO 471 AGU SEQ ID UGCAUUCAAUGUUCUGACAACA NO 472 GUU SEQ ID GCAUUCAAUGUUCUGACAACAG NO 473 UUU SEQ ID CAUUCAAUGUUCUGACAACAGU NO 474 UUG SEQ ID AUUCAAUGUUCUGACAACAGUU NO 475 UGC SEQ ID UCAAUGUUCUGACAACAGUUUG NO 476 CCG SEQ ID CAAUGUUCUGACAACAGUUUGC NO 477 CGC SEQ ID AAUGUUCUGACAACAGUUUGCC NO 478 GCU SEQ ID AUGUUCUGACAACAGUUUGCCG NO 479 CUG SEQ ID UGUUCUGACAACAGUUUGCCGC NO 480 UGC SEQ ID GUUCUGACAACAGUUUGCCGCU NO 481 GCC SEQ ID UUCUGACAACAGUUUGCCGCUG NO 482 CCC SEQ ID UCUGACAACAGUUUGCCGCUGC NO 483 CCA SEQ ID CUGACAACAGUUUGCCGCUGCC NO 484 CAA SEQ ID UGACAACAGUUUGCCGCUGCCC NO 485 AAU SEQ ID GACAACAGUUUGCCGCUGCCCA NO 486 AUG SEQ ID ACAACAGUUUGCCGCUGCCCAA NO 487 UGC SEQ ID CAACAGUUUGCCGCUGCCCAAU NO 488 GCC SEQ ID AACAGUUUGCCGCUGCCCAAUG NO 489 CCA SEQ ID ACAGUUUGCCGCUGCCCAAUGC NO 490 CAU SEQ ID CAGUUUGCCGCUGCCCAAUGCC NO 491 AUC SEQ ID AGUUUGCCGCUGCCCAAUGCCA NO 492 UCC SEQ ID GUUUGCCGCUGCCCAAUGCCAU NO 493 CCU SEQ ID UUUGCCGCUGCCCAAUGCCAUC NO 494 CUG SEQ ID UUGCCGCUGCCCAAUGCCAUCC NO 495 UGG SEQ ID UGCCGCUGCCCAAUGCCAUCCU NO 496 GGA SEQ ID GCCGCUGCCCAAUGCCAUCCUG NO 497 GAG SEQ ID CCGCUGCCCAAUGCCAUCCUGG NO 498 AGU SEQ ID CGCUGCCCAAUGCCAUCCUGGA NO 499 GUU SEQ ID UGUUUUUGAGGAUUGCUGAA NO 500 SEQ ID UGUUCUGACAACAGUUUGCCGC NO 501 UGCCCA AUGCCAUCCUGG DMD Gene Exon 55 SEQ ID CUGUUGCAGUAAUCUAUGAG NO 502 SEQ ID UGCAGUAAUCUAUGAGUUUC NO 503 SEQ ID GAGUCUUCUAGGAGCCUU NO 504 SEQ ID UGCCAUUGUUUCAUCAGCUCUU NO 505 U SEQ ID UCCUGUAGGACAUUGGCAGU NO 506 SEQ ID CUUGGAGUCUUCUAGGAGCC NO 507 DMD Gene Exon 57 SEQ ID UAGGUGCCUGCCGGCUU NO 508 SEQ ID UUCAGCUGUAGCCACACC NO 509 SEQ ID CUGAACUGCUGGAAAGUCGCC NO 510 SEQ ID CUGGCUUCCAAAUGGGACCUGA NO 511 AAAAGA AC DMD Gene Exon 59 SEQ ID CAAUUUUUCCCACUCAGUAUU NO 512 SEQ ID UUGAAGUUCCUGGAGUCUU NO 513 SEQ ID UCCUCAGGAGGCAGCUCUAAAU NO 514 DMD Gene Exon 62 SEQ ID UGGCUCUCUCCCAGGG NO 515 SEQ ID GAGAUGGCUCUCUCCCAGGGA NO 516 CCCUGG SEQ ID GGGCACUUUGUUUGGCG NO 517 DMD Gene Exon 63 SEQ ID GGUCCCAGCAAGUUGUUUG NO 518 SEQ ID UGGGAUGGUCCCAGCAAGUUG NO 519 UUUG SEQ ID GUAGAGCUCUGUCAUUUUGGG NO 520 DMD Gene Exon 65 SEQ ID GCUCAAGAGAUCCACUGCAAA NO 521 AAAC SEQ ID GCCAUACGUACGUAUCAUAAA NO 522 CAUUC SEQ ID UCUGCAGGAUAUCCAUGGGCUG NO 523 GUC DMD Gene Exon 66 SEQ ID GAUCCUCCCUGUUCGUCCCCUA NO 524 UUAUG DMD Gene Exon 69 SEQ ID UGCUUUAGACUCCUGUACCUG NO 525 AUA DMD Gene Exon 75 SEQ ID GGCGGCCUUUGUGUUGAC NO 526 SEQ ID GGACAGGCCUUUAUGUUCGUG NO 527 CUGC SEQ ID CCUUUAUGUUCGUGCUGCU NO 528
Claims (16)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/129,117 US20210139904A1 (en) | 2007-10-26 | 2020-12-21 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
| US18/771,603 US20240360452A1 (en) | 2007-10-26 | 2024-07-12 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP07119351 | 2007-10-26 | ||
| PCT/NL2008/050673 WO2009054725A2 (en) | 2007-10-26 | 2008-10-27 | Means and methods for counteracting muscle disorders |
| PCT/NL2009/050113 WO2010050802A2 (en) | 2008-10-27 | 2009-03-11 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50- 53. |
| US13/094,571 US20110263682A1 (en) | 2007-10-26 | 2011-04-26 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
| US14/631,686 US9499818B2 (en) | 2007-10-26 | 2015-02-25 | Methods and means for efficient skipping of at least one of the exons 51-53, 55, 57 and 59 of the human duchenne muscular dystrophy gene |
| US15/289,053 US20170044534A1 (en) | 2007-10-26 | 2016-10-07 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
| US16/024,558 US10876114B2 (en) | 2007-10-26 | 2018-06-29 | Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53 |
| US17/129,117 US20210139904A1 (en) | 2007-10-26 | 2020-12-21 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/024,558 Continuation US10876114B2 (en) | 2007-10-26 | 2018-06-29 | Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US18/771,603 Continuation US20240360452A1 (en) | 2007-10-26 | 2024-07-12 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20210139904A1 true US20210139904A1 (en) | 2021-05-13 |
Family
ID=39045623
Family Applications (19)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/767,702 Ceased US9243245B2 (en) | 2007-10-26 | 2010-04-26 | Means and methods for counteracting muscle disorders |
| US13/094,571 Abandoned US20110263682A1 (en) | 2007-10-26 | 2011-04-26 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
| US13/094,548 Active US9926557B2 (en) | 2007-10-26 | 2011-04-26 | Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA |
| US14/097,210 Abandoned US20140113955A1 (en) | 2007-10-26 | 2013-12-04 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US14/134,971 Abandoned US20140128592A1 (en) | 2007-10-26 | 2013-12-19 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US14/200,251 Abandoned US20140221458A1 (en) | 2007-10-26 | 2014-03-07 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US14/542,183 Active US9528109B2 (en) | 2007-10-26 | 2014-11-14 | Methods and means for efficient skipping of exon 45 in duchenne muscular dystrophy pre-mRNA |
| US14/631,686 Active US9499818B2 (en) | 2007-10-26 | 2015-02-25 | Methods and means for efficient skipping of at least one of the exons 51-53, 55, 57 and 59 of the human duchenne muscular dystrophy gene |
| US14/990,712 Abandoned US20160304864A1 (en) | 2007-10-26 | 2016-01-07 | Means and methods for counteracting muscle disorders |
| US15/289,053 Abandoned US20170044534A1 (en) | 2007-10-26 | 2016-10-07 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
| US15/390,836 Abandoned US20170107512A1 (en) | 2007-10-26 | 2016-12-27 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US16/024,558 Active US10876114B2 (en) | 2007-10-26 | 2018-06-29 | Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53 |
| US16/229,821 Abandoned US20190119679A1 (en) | 2007-10-26 | 2018-12-21 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US16/229,534 Abandoned US20190112604A1 (en) | 2007-10-26 | 2018-12-21 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US16/283,458 Abandoned US20190177725A1 (en) | 2007-10-26 | 2019-02-22 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US16/584,115 Active US11427820B2 (en) | 2007-10-26 | 2019-09-26 | Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA |
| US17/129,117 Abandoned US20210139904A1 (en) | 2007-10-26 | 2020-12-21 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
| US17/814,781 Abandoned US20230151362A1 (en) | 2007-10-26 | 2022-07-25 | Methods and means for efficient dkipping of exon 45 in duchenne muscular dystrophy pre-mrna |
| US18/771,603 Pending US20240360452A1 (en) | 2007-10-26 | 2024-07-12 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
Family Applications Before (16)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/767,702 Ceased US9243245B2 (en) | 2007-10-26 | 2010-04-26 | Means and methods for counteracting muscle disorders |
| US13/094,571 Abandoned US20110263682A1 (en) | 2007-10-26 | 2011-04-26 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
| US13/094,548 Active US9926557B2 (en) | 2007-10-26 | 2011-04-26 | Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA |
| US14/097,210 Abandoned US20140113955A1 (en) | 2007-10-26 | 2013-12-04 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US14/134,971 Abandoned US20140128592A1 (en) | 2007-10-26 | 2013-12-19 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US14/200,251 Abandoned US20140221458A1 (en) | 2007-10-26 | 2014-03-07 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US14/542,183 Active US9528109B2 (en) | 2007-10-26 | 2014-11-14 | Methods and means for efficient skipping of exon 45 in duchenne muscular dystrophy pre-mRNA |
| US14/631,686 Active US9499818B2 (en) | 2007-10-26 | 2015-02-25 | Methods and means for efficient skipping of at least one of the exons 51-53, 55, 57 and 59 of the human duchenne muscular dystrophy gene |
| US14/990,712 Abandoned US20160304864A1 (en) | 2007-10-26 | 2016-01-07 | Means and methods for counteracting muscle disorders |
| US15/289,053 Abandoned US20170044534A1 (en) | 2007-10-26 | 2016-10-07 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
| US15/390,836 Abandoned US20170107512A1 (en) | 2007-10-26 | 2016-12-27 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US16/024,558 Active US10876114B2 (en) | 2007-10-26 | 2018-06-29 | Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53 |
| US16/229,821 Abandoned US20190119679A1 (en) | 2007-10-26 | 2018-12-21 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US16/229,534 Abandoned US20190112604A1 (en) | 2007-10-26 | 2018-12-21 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US16/283,458 Abandoned US20190177725A1 (en) | 2007-10-26 | 2019-02-22 | METHODS AND MEANS FOR EFFICIENT SKIPPING OF EXON 45 IN DUCHENNE MUSCULAR DYSTROPHY PRE-mRNA |
| US16/584,115 Active US11427820B2 (en) | 2007-10-26 | 2019-09-26 | Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/814,781 Abandoned US20230151362A1 (en) | 2007-10-26 | 2022-07-25 | Methods and means for efficient dkipping of exon 45 in duchenne muscular dystrophy pre-mrna |
| US18/771,603 Pending US20240360452A1 (en) | 2007-10-26 | 2024-07-12 | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 |
Country Status (16)
| Country | Link |
|---|---|
| US (19) | US9243245B2 (en) |
| EP (4) | EP2614827B1 (en) |
| JP (6) | JP5600064B2 (en) |
| CN (5) | CN101896186A (en) |
| AU (1) | AU2008317566B2 (en) |
| CA (1) | CA2704049A1 (en) |
| CY (3) | CY1117286T1 (en) |
| DK (1) | DK2203173T3 (en) |
| ES (5) | ES2639852T3 (en) |
| HR (1) | HRP20160025T1 (en) |
| HU (2) | HUE028662T2 (en) |
| IL (4) | IL205322A (en) |
| NZ (2) | NZ584793A (en) |
| PL (1) | PL2203173T3 (en) |
| PT (1) | PT2203173E (en) |
| WO (1) | WO2009054725A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12331293B2 (en) | 2018-11-02 | 2025-06-17 | Biomarin Technologies B.V. | Bispecific antisense oligonucleotides for dystrophin exon skipping |
Families Citing this family (129)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1191097A1 (en) * | 2000-09-21 | 2002-03-27 | Leids Universitair Medisch Centrum | Induction of exon skipping in eukaryotic cells |
| WO2004083432A1 (en) | 2003-03-21 | 2004-09-30 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure |
| ES2770035T3 (en) | 2003-04-11 | 2020-06-30 | Ptc Therapeutics Inc | 1,2,4-Oxadiazole benzoic acid compound and its use for senseless suppression and treatment of diseases |
| EP3808845A1 (en) | 2004-06-28 | 2021-04-21 | The University Of Western Australia | Antisense oligonucleotides for inducing exon skipping and methods of use thereof |
| USRE48960E1 (en) | 2004-06-28 | 2022-03-08 | The University Of Western Australia | Antisense oligonucleotides for inducing exon skipping and methods of use thereof |
| ES2852549T3 (en) | 2005-02-09 | 2021-09-13 | Sarepta Therapeutics Inc | Antisense composition for treatment of muscle atrophy |
| EP2049664B1 (en) | 2006-08-11 | 2011-09-14 | Prosensa Technologies B.V. | Single stranded oligonucleotides complementary to repetitive elements for treating DNA repeat instability associated genetic disorders |
| PT2203173E (en) | 2007-10-26 | 2016-03-15 | Academisch Ziekenhuis Leiden | Means and methods for counteracting muscle disorders |
| EP2119783A1 (en) | 2008-05-14 | 2009-11-18 | Prosensa Technologies B.V. | Method for efficient exon (44) skipping in Duchenne Muscular Dystrophy and associated means |
| US8084601B2 (en) | 2008-09-11 | 2011-12-27 | Royal Holloway And Bedford New College Royal Holloway, University Of London | Oligomers |
| CA3066050A1 (en) | 2008-10-24 | 2010-04-29 | Sarepta Therapeutics, Inc. | Multiple exon skipping compositions for dmd |
| ES2532634T5 (en) | 2008-10-27 | 2018-04-30 | Biomarin Technologies B.V. | Procedures and means for efficient skipping of exon 45 in the pre-mRNA of Duchenne muscular dystrophy |
| ES2593836T3 (en) | 2009-04-24 | 2016-12-13 | Biomarin Technologies B.V. | Oligonucleotide comprising an inosine to treat DMD |
| US20120270930A1 (en) | 2009-10-29 | 2012-10-25 | Academisch Ziekenhuis Leiden H.O.D.N. Lumc | Methods and compositions for dysferlin exon-skipping |
| SI2499249T1 (en) | 2009-11-12 | 2019-02-28 | The University Of Western Australia, | Antisense molecules and methods for treating pathologies |
| DK2601294T3 (en) * | 2010-08-05 | 2019-02-18 | Academisch Ziekenhuis Leiden | ANTISENSE OLIGONUCLEOTIDE CALCULATED FOR THE REMOVAL OF PROTEOLYTIC DIVISION PLACES FROM PROTEINS |
| TWI541024B (en) | 2010-09-01 | 2016-07-11 | 日本新藥股份有限公司 | Antisense nucleic acid |
| CA2826836A1 (en) | 2011-02-08 | 2012-08-16 | The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Medical Center | Antisense oligonucleotides |
| US20140088174A1 (en) | 2011-04-05 | 2014-03-27 | Academisch Ziekenhuis Leiden H.O.D.N. Lumc | Compounds and methods for altering activin receptor-like kinase signaling |
| JP5850519B2 (en) * | 2011-05-09 | 2016-02-03 | ネッパジーン株式会社 | A therapeutic agent for muscular dystrophy containing morpholino-loaded bubble liposomes as active ingredients |
| US9765398B2 (en) | 2011-07-28 | 2017-09-19 | The Regents Of The University Of California | Exonic splicing enhancers and exonic splicing silencers |
| US20130085139A1 (en) | 2011-10-04 | 2013-04-04 | Royal Holloway And Bedford New College | Oligomers |
| CN117721110A (en) | 2011-12-28 | 2024-03-19 | 日本新药株式会社 | antisense nucleic acid |
| CA2862628C (en) | 2012-01-27 | 2021-08-24 | Prosensa Technologies B.V. | Rna modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy |
| DE102012103041A1 (en) | 2012-04-10 | 2013-10-10 | Eberhard-Karls-Universität Tübingen Universitätsklinikum | New isolated antisense-oligonucleotide comprising sequence that is hybridized to messenger RNA-splicing-sequence of mutation-bearing exons of pre-messenger RNA of titin-gene and induces skipping of exons, used to treat heart disease |
| EP2841572B1 (en) | 2012-04-27 | 2019-06-19 | Duke University | Genetic correction of mutated genes |
| JP6460983B2 (en) * | 2012-07-03 | 2019-01-30 | バイオマリン テクノロジーズ ベー.フェー. | Oligonucleotides for the treatment of patients with muscular dystrophy |
| EP3760720A1 (en) * | 2013-03-14 | 2021-01-06 | Sarepta Therapeutics, Inc. | Exon skipping compositions for treating muscular dystrophy |
| IL280443B (en) | 2013-03-14 | 2022-07-01 | Sarepta Therapeutics Inc | Exon skipping compositions for treating muscular dystrophy |
| MX373959B (en) * | 2013-03-15 | 2020-07-13 | Sarepta Therapeutics Inc | Improved compositions for treating muscular dystrophy |
| US9828582B2 (en) | 2013-03-19 | 2017-11-28 | Duke University | Compositions and methods for the induction and tuning of gene expression |
| US9849066B2 (en) | 2013-04-24 | 2017-12-26 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| CA2914519A1 (en) | 2013-06-05 | 2014-12-11 | Duke University | Rna-guided gene editing and gene regulation |
| KR102497273B1 (en) | 2014-03-06 | 2023-02-07 | 피티씨 테라퓨틱스, 인크. | Pharmaceutical compositions and salts of a 1,2,4-oxadiazole benzoic acid |
| WO2015137409A1 (en) * | 2014-03-12 | 2015-09-17 | 日本新薬株式会社 | Antisense nucleic acid |
| GB201410693D0 (en) | 2014-06-16 | 2014-07-30 | Univ Southampton | Splicing modulation |
| SI3159409T1 (en) | 2014-06-17 | 2020-02-28 | Nippon Shinyaku Co., Ltd. | An antisense nucleic acid for use in the treatment of Duchenne muscular dystrophy |
| JP6837429B2 (en) * | 2014-08-11 | 2021-03-03 | ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム | Prevention of muscular dystrophy by editing CRISPR / CAS9-mediated genes |
| AU2015327836B2 (en) | 2014-10-03 | 2021-07-01 | Cold Spring Harbor Laboratory | Targeted augmentation of nuclear gene output |
| US10676726B2 (en) | 2015-02-09 | 2020-06-09 | Duke University | Compositions and methods for epigenome editing |
| MA41795A (en) | 2015-03-18 | 2018-01-23 | Sarepta Therapeutics Inc | EXCLUSION OF AN EXON INDUCED BY ANTISENSE COMPOUNDS IN MYOSTATIN |
| CA2986642A1 (en) * | 2015-05-21 | 2016-11-24 | Proqr Therapeutics Ii B.V. | Antisense oligonucleotides to treat dystrophic epidermolysis bullosa |
| JP7007199B2 (en) * | 2015-06-10 | 2022-02-10 | アソシアシオン・アンスティテュ・ドゥ・ミオロジー | Combination therapy for Duchenne muscular dystrophy |
| WO2017015637A1 (en) | 2015-07-22 | 2017-01-26 | Duke University | High-throughput screening of regulatory element function with epigenome editing technologies |
| ES2929110T3 (en) | 2015-08-25 | 2022-11-24 | Univ Duke | Compositions and methods to improve the specificity in genetic engineering using RNA-guided endonucleases |
| PL3351633T3 (en) | 2015-09-15 | 2020-11-02 | Nippon Shinyaku Co., Ltd. | Antisense nucleic acid |
| CN108137492B (en) * | 2015-10-09 | 2021-12-21 | 波涛生命科学有限公司 | Oligonucleotide compositions and methods thereof |
| EP3359685A1 (en) | 2015-10-09 | 2018-08-15 | University Of Southampton | Modulation of gene expression and screening for deregulated protein expression |
| MA45819A (en) | 2015-10-09 | 2018-08-15 | Sarepta Therapeutics Inc | COMPOSITIONS AND METHODS FOR TREATING DUCHENNE MUSCLE DYSTROPHY AND RELATED DISORDERS |
| US11970710B2 (en) | 2015-10-13 | 2024-04-30 | Duke University | Genome engineering with Type I CRISPR systems in eukaryotic cells |
| US10517853B2 (en) | 2015-10-30 | 2019-12-31 | Ptc Therapeutics, Inc. | Methods for treating epilepsy |
| JP7418957B2 (en) | 2015-11-16 | 2024-01-22 | リサーチ インスティチュート アット ネイションワイド チルドレンズ ホスピタル | Materials and methods for the treatment of titinic myopathies and other titinopathies |
| EA201891317A3 (en) | 2015-11-30 | 2019-04-30 | Дьюк Юниверсити | THERAPEUTIC TARGETS FOR CORRECTION OF HUMAN DISTROPHIN GENE BY EDITING GENES AND METHODS OF THEIR APPLICATION |
| US11096956B2 (en) | 2015-12-14 | 2021-08-24 | Stoke Therapeutics, Inc. | Antisense oligomers and uses thereof |
| ES2882500T3 (en) | 2015-12-14 | 2021-12-02 | Cold Spring Harbor Laboratory | Antisense oligomers for the treatment of Dravet syndrome |
| GB2574525B (en) * | 2015-12-21 | 2020-09-02 | Sutura Therapeutics Ltd | Improved drug delivery by conjugating oligonucleotides to stitched/stapled peptides |
| GB2545898B (en) * | 2015-12-21 | 2019-10-09 | Sutura Therapeutics Ltd | Improved drug delivery by conjugating oligonucleotides to stitched/stapled peptides |
| MA45328A (en) | 2016-04-01 | 2019-02-06 | Avidity Biosciences Llc | NUCLEIC ACID-POLYPEPTIDE COMPOSITIONS AND USES THEREOF |
| EP3443081A4 (en) | 2016-04-13 | 2019-10-30 | Duke University | CRISPR / CAS9-BASED REPRESSORS TO INACTIVATE IN VIVO GENE TARGETS AND METHODS OF USE |
| EP3442600B1 (en) * | 2016-04-15 | 2024-03-13 | Research Institute at Nationwide Children's Hospital | Adeno-associated virus vector delivery of b-sarcoglycan and microrna-29 and the treatment of muscular dystrophy |
| MA45290A (en) * | 2016-05-04 | 2019-03-13 | Wave Life Sciences Ltd | PROCESSES AND COMPOSITIONS OF BIOLOGICALLY ACTIVE AGENTS |
| CN109311919A (en) * | 2016-06-30 | 2019-02-05 | 萨勒普塔医疗公司 | Exon skipping oligomer for muscular dystrophy |
| CN109757108A (en) * | 2016-07-05 | 2019-05-14 | 比奥马林技术公司 | The Pre-mRNA montage conversion comprising bicyclic holder part of improvement feature with treatment genetic disease adjusts oligonucleotides |
| EP4275747A3 (en) | 2016-07-19 | 2024-01-24 | Duke University | Therapeutic applications of cpf1-based genome editing |
| MD3554553T2 (en) | 2016-12-19 | 2022-10-31 | Sarepta Therapeutics Inc | Exon skipping oligomer conjugates for muscular dystrophy |
| DK3554552T3 (en) | 2016-12-19 | 2022-10-24 | Sarepta Therapeutics Inc | EXON SKIPPING OLIGOMER CONJUGATES AGAINST MUSCULAR DYSTROPHY |
| MA65895B1 (en) | 2016-12-19 | 2024-06-28 | Sarepta Therapeutics, Inc. | EXON SKIPPING-INDUCING OLIGOMERIC CONJUGATES FOR MUSCULAR DYSTROPHY |
| WO2018129384A1 (en) * | 2017-01-06 | 2018-07-12 | Avidity Biosciences Llc | Nucleic acid-polypeptide compositions and methods of inducing exon skipping |
| MA47800A (en) | 2017-03-17 | 2020-01-22 | Univ Newcastle | ADENO-ASSOCIATED VIRAL VECTOR DELIVERY OF A MICRO-DYSTROPHINE FRAGMENT TO TREAT MUSCLE DYSTROPHY |
| HRP20230522T1 (en) * | 2017-03-17 | 2023-08-04 | Research Institute At Nationwide Children's Hospital | Adeno-associated virus vector delivery of muscle specific micro-dystrophin to treat muscular dystrophy |
| CN110945005A (en) * | 2017-04-20 | 2020-03-31 | 新特纳股份公司 | Modified oligomeric compounds comprising tricyclic DNA nucleosides and uses thereof |
| GB201711809D0 (en) * | 2017-07-21 | 2017-09-06 | Governors Of The Univ Of Alberta | Antisense oligonucleotide |
| SG10202002990XA (en) | 2017-08-04 | 2020-05-28 | Skyhawk Therapeutics Inc | Methods and compositions for modulating splicing |
| RS65031B1 (en) | 2017-08-25 | 2024-02-29 | Stoke Therapeutics Inc | Antisense oligomers for treatment of conditions and diseases |
| MX2020003130A (en) * | 2017-09-22 | 2020-09-25 | Avidity Biosciences Inc | Nucleic acid-polypeptide compositions and methods of inducing exon skipping. |
| EA201991450A1 (en) | 2017-09-22 | 2019-12-30 | Сарепта Терапьютикс, Инк. | OLIGOMER CONJUGATES FOR EXONISM SKIP IN MUSCULAR DYSTROPHY |
| US20210145852A1 (en) | 2017-09-28 | 2021-05-20 | Sarepta Therapeutics, Inc. | Combination Therapies for Treating Muscular Dystrophy |
| US20200248178A1 (en) | 2017-09-28 | 2020-08-06 | Sarepta Therapeutics, Inc. | Combination therapies for treating muscular dystrophy |
| EP3687519A1 (en) | 2017-09-28 | 2020-08-05 | Sarepta Therapeutics, Inc. | Combination therapies for treating muscular dystrophy |
| IL319835A (en) | 2017-12-06 | 2025-05-01 | Avidity Biosciences Inc | Compositions and methods of treating muscle atrophy and myotonic dystrophy |
| BR112020015173A2 (en) | 2018-01-31 | 2020-12-29 | Research Institute At Nationwide Children's Hospital | GENE THERAPY FOR MUSCULAR DYSTROPHY OF THE WAIST AND LIMBS TYPE 2C |
| CN112004533A (en) * | 2018-02-20 | 2020-11-27 | 艾知怀斯治疗学公司 | Methods and compositions for treating movement disorders |
| CN112004928A (en) * | 2018-04-12 | 2020-11-27 | 波涛生命科学有限公司 | Oligonucleotide compositions and methods of use thereof |
| JP2021523227A (en) | 2018-05-04 | 2021-09-02 | ストーク セラピューティクス,インク. | Methods and Compositions for the Treatment of Cholesteryl Ester Accumulation |
| TWI844541B (en) | 2018-05-11 | 2024-06-11 | 新加坡商波濤生命科學有限公司 | Oligonucleotide compositions and methods of use thereof |
| US10758629B2 (en) | 2018-05-29 | 2020-09-01 | Sarepta Therapeutics, Inc. | Exon skipping oligomer conjugates for muscular dystrophy |
| JP2021526796A (en) * | 2018-06-13 | 2021-10-11 | サレプタ セラピューティクス, インコーポレイテッド | Exon skipping oligomer for muscular dystrophy |
| KR20210028162A (en) | 2018-06-29 | 2021-03-11 | 더 리서치 인스티튜트 앳 네이션와이드 칠드런스 하스피탈 | Recombinant adeno-associated virus products and methods for the treatment of rhomboid muscle dystrophy type 2A |
| TW202449155A (en) * | 2018-07-27 | 2024-12-16 | 美商薩羅塔治療公司 | Exon skipping oligomers for muscular dystrophy |
| CN112912499A (en) | 2018-08-02 | 2021-06-04 | 达因疗法公司 | Muscle-targeting complex and its use in the treatment of facioscapulohumeral muscular dystrophy |
| US11168141B2 (en) | 2018-08-02 | 2021-11-09 | Dyne Therapeutics, Inc. | Muscle targeting complexes and uses thereof for treating dystrophinopathies |
| US12018087B2 (en) | 2018-08-02 | 2024-06-25 | Dyne Therapeutics, Inc. | Muscle-targeting complexes comprising an anti-transferrin receptor antibody linked to an oligonucleotide and methods of delivering oligonucleotide to a subject |
| CN112955153A (en) | 2018-08-02 | 2021-06-11 | 达因疗法公司 | Muscle targeting complexes and their use for the treatment of dystrophinopathies |
| GB201812980D0 (en) | 2018-08-09 | 2018-09-26 | Univ Oxford Innovation Ltd | Cell-penetrating peptides |
| GB201812972D0 (en) | 2018-08-09 | 2018-09-26 | Univ Oxford Innovation Ltd | Cell-penetrating peptides |
| CN109486813B (en) * | 2018-10-10 | 2022-01-18 | 广州医科大学附属第二医院 | U1-snRNA for repairing abnormal splicing of PremRNA of TPP1 gene and application thereof |
| JP2022513719A (en) * | 2018-12-06 | 2022-02-09 | ウェイブ ライフ サイエンシズ リミテッド | Oligonucleotide composition and its method |
| CN113453723A (en) | 2018-12-07 | 2021-09-28 | 牛津大学科技创新有限公司 | Joint |
| KR20210135241A (en) | 2019-02-05 | 2021-11-12 | 스카이호크 테라퓨틱스, 인코포레이티드 | Methods and compositions for controlling splicing |
| KR20210135507A (en) | 2019-02-06 | 2021-11-15 | 스카이호크 테라퓨틱스, 인코포레이티드 | Methods and compositions for controlling splicing |
| SG11202109113TA (en) | 2019-02-26 | 2021-09-29 | Res Inst Nationwide Childrens Hospital | Adeno-associated virus vector delivery of b-sarcoglycan and the treatment of muscular dystrophy |
| CA3135641A1 (en) | 2019-04-10 | 2020-10-15 | Ptc Therapeutics, Inc. | Method for treating nonsense mutation mediated duchenne muscular dystrophy in pediatric patients |
| CN110288555B (en) * | 2019-07-02 | 2022-08-02 | 桂林电子科技大学 | Low-illumination enhancement method based on improved capsule network |
| CA3149488A1 (en) * | 2019-08-02 | 2021-02-11 | Research Institute At Nationwide Children's Hospital | Exon 44-targeted nucleic acids and recombinant adeno-associated virus comprising said nucleic acids for treatment of dystrophin-based myopathies |
| PL4017871T3 (en) | 2019-08-21 | 2024-07-08 | Research Institute At Nationwide Children's Hospital | Adeno-associated virus vector delivery of alpha-sarcoglycan and the treatment of muscular dystrophy |
| WO2021055011A1 (en) * | 2019-09-19 | 2021-03-25 | Sudhir Agrawal | Compounds and methods useful for modulating gene splicing |
| AU2021226089A1 (en) | 2020-02-28 | 2022-09-15 | National Center Of Neurology And Psychiatry | Antisense nucleic acid inducing skipping of exon 51 |
| IL296387B2 (en) | 2020-03-19 | 2024-08-01 | Avidity Biosciences Inc | Compositions and methods of treating facioscapulohumeral muscular dystrophy |
| AU2021270720A1 (en) | 2020-05-11 | 2022-12-08 | Stoke Therapeutics, Inc. | OPA1 antisense oligomers for treatment of conditions and diseases |
| MX2023011612A (en) | 2021-03-31 | 2023-12-15 | Entrada Therapeutics Inc | CYCLIC CELL PENETRATION PEPTIDES. |
| US20240358845A1 (en) | 2021-05-10 | 2024-10-31 | Entrada Therapeutics, Inc. | Compositions and methods for intracellular therapeutics |
| EP4088722A1 (en) * | 2021-05-12 | 2022-11-16 | Justus-Liebig-Universität Gießen | Pharmaceutical compositions, uses thereof and methods for treatment of genetic diseases caused by intronic splice-acceptor site mutations |
| EP4359006A1 (en) | 2021-06-23 | 2024-05-01 | Entrada Therapeutics, Inc. | Antisense compounds and methods for targeting cug repeats |
| US11638761B2 (en) | 2021-07-09 | 2023-05-02 | Dyne Therapeutics, Inc. | Muscle targeting complexes and uses thereof for treating Facioscapulohumeral muscular dystrophy |
| US11969475B2 (en) | 2021-07-09 | 2024-04-30 | Dyne Therapeutics, Inc. | Muscle targeting complexes and uses thereof for treating facioscapulohumeral muscular dystrophy |
| JP2024525612A (en) * | 2021-07-09 | 2024-07-12 | ダイン セラピューティクス,インコーポレーテッド | Muscle-targeting complexes and their use for treating dystrophinopathies - Patents.com |
| MX2024000490A (en) * | 2021-07-09 | 2024-04-10 | Dyne Therapeutics Inc | MUSCLE-TARGETED COMPLEXES AND THEIR USES TO TREAT DYSTROPHYNOPATHIES. |
| US11771776B2 (en) | 2021-07-09 | 2023-10-03 | Dyne Therapeutics, Inc. | Muscle targeting complexes and uses thereof for treating dystrophinopathies |
| CA3226307A1 (en) * | 2021-07-09 | 2023-01-12 | Dyne Therapeutics, Inc. | Muscle targeting complexes and uses thereof for treating dystrophinopathies |
| IL309936A (en) | 2021-07-09 | 2024-03-01 | Dyne Therapeutics Inc | Muscle targeting complexes and formulations for treating dystrophinopathies |
| KR20240055874A (en) | 2021-09-16 | 2024-04-29 | 어비디티 바이오사이언시스 인크. | Compositions and methods for treating facioscapulohumeral muscular dystrophy |
| US12285497B2 (en) | 2021-10-15 | 2025-04-29 | Research Institute At Nationwide Children's Hospital | Self-complementary adeno-associated virus vector and its use in treatment of muscular dystrophy |
| EP4215614A1 (en) | 2022-01-24 | 2023-07-26 | Dynacure | Combination therapy for dystrophin-related diseases |
| EP4486386A1 (en) | 2022-03-03 | 2025-01-08 | Yale University | Compositions and methods for delivering therapeutic polynucleotides for exon skipping |
| US12071621B2 (en) | 2022-04-05 | 2024-08-27 | Avidity Biosciences, Inc. | Anti-transferrin receptor antibody-PMO conjugates for inducing DMD exon 44 skipping |
| AU2023289696A1 (en) | 2022-06-24 | 2025-01-16 | Tune Therapeutics, Inc. | Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression |
| WO2024069229A2 (en) | 2022-08-03 | 2024-04-04 | Sutura Therapeutics Ltd | Biologically active compounds |
| WO2025027389A1 (en) | 2023-08-03 | 2025-02-06 | Sutura Therapeutics Limited | Biologically active compounds comprising a stapled or stitched peptide |
| WO2025072883A2 (en) * | 2023-09-28 | 2025-04-03 | Wave Life Sciences Ltd. | Oligonucleotide compositions and methods thereof |
Family Cites Families (220)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2752581C2 (en) | 1977-11-25 | 1979-12-13 | Wolfgang 4044 Kaarst Keil | Device for the complete demineralisation of water |
| US5034506A (en) | 1985-03-15 | 1991-07-23 | Anti-Gene Development Group | Uncharged morpholino-based polymers having achiral intersubunit linkages |
| US5541308A (en) | 1986-11-24 | 1996-07-30 | Gen-Probe Incorporated | Nucleic acid probes for detection and/or quantitation of non-viral organisms |
| DE3834636A1 (en) | 1988-10-11 | 1990-04-19 | Max Planck Gesellschaft | METHOD FOR ANALYZING LENGTH POLYMORPHISMS IN DNA AREAS |
| US5766847A (en) | 1988-10-11 | 1998-06-16 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Process for analyzing length polymorphisms in DNA regions |
| US6867195B1 (en) | 1989-03-21 | 2005-03-15 | Vical Incorporated | Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected |
| US5681941A (en) | 1990-01-11 | 1997-10-28 | Isis Pharmaceuticals, Inc. | Substituted purines and oligonucleotide cross-linking |
| US5608046A (en) | 1990-07-27 | 1997-03-04 | Isis Pharmaceuticals, Inc. | Conjugated 4'-desmethyl nucleoside analog compounds |
| FR2675803B1 (en) | 1991-04-25 | 1996-09-06 | Genset Sa | CLOSED, ANTISENSE AND SENSE OLIGONUCLEOTIDES AND THEIR APPLICATIONS. |
| EP0558697A1 (en) | 1991-06-28 | 1993-09-08 | Massachusetts Institute Of Technology | Localized oligonucleotide therapy |
| JPH07501204A (en) | 1991-06-28 | 1995-02-09 | マサチューセッツ インスティテュート オブ テクノロジー | Topical oligonucleotide therapy |
| US6200747B1 (en) | 1992-01-28 | 2001-03-13 | North Shore University Hospital Research Corp. | Method and kits for detection of fragile X specific, GC-rich DNA sequences |
| US5869252A (en) | 1992-03-31 | 1999-02-09 | Abbott Laboratories | Method of multiplex ligase chain reaction |
| US6172208B1 (en) | 1992-07-06 | 2001-01-09 | Genzyme Corporation | Oligonucleotides modified with conjugate groups |
| US5418139A (en) | 1993-02-10 | 1995-05-23 | University Of Iowa Research Foundation | Method for screening for cardiomyopathy |
| CA2116280A1 (en) | 1993-03-05 | 1994-09-06 | Marcy E. Macdonald | Huntingtin dna, protein and uses thereof |
| DE69435005T2 (en) | 1993-05-11 | 2008-04-17 | The University Of North Carolina At Chapel Hill | Antisense oligonucleotides that prevent abnormal splicing and their use |
| US5695933A (en) | 1993-05-28 | 1997-12-09 | Massachusetts Institute Of Technology | Direct detection of expanded nucleotide repeats in the human genome |
| US5741645A (en) | 1993-06-29 | 1998-04-21 | Regents Of The University Of Minnesota | Gene sequence for spinocerebellar ataxia type 1 and method for diagnosis |
| US5624803A (en) | 1993-10-14 | 1997-04-29 | The Regents Of The University Of California | In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom |
| US5627263A (en) | 1993-11-24 | 1997-05-06 | La Jolla Cancer Research Foundation | Integrin-binding peptides |
| DE4342605A1 (en) | 1993-12-14 | 1995-06-22 | Buna Gmbh | Functionalized olefin homo- and copolymers |
| US5962332A (en) | 1994-03-17 | 1999-10-05 | University Of Massachusetts | Detection of trinucleotide repeats by in situ hybridization |
| DE69503126T2 (en) | 1994-05-05 | 1998-11-12 | Beckman Instruments Inc | REPETITIVE OLIGONUCLEOTIDE MATRIX |
| US5968909A (en) | 1995-08-04 | 1999-10-19 | Hybridon, Inc. | Method of modulating gene expression with reduced immunostimulatory response |
| US5854223A (en) | 1995-10-06 | 1998-12-29 | The Trustees Of Columbia University In The City Of New York | S-DC28 as an antirestenosis agent after balloon injury |
| US20070173465A9 (en) | 1995-10-11 | 2007-07-26 | Monahan Sean D | Expression of zeta negative and zeta positive nucleic acids using a dystrophin gene |
| US7034009B2 (en) | 1995-10-26 | 2006-04-25 | Sirna Therapeutics, Inc. | Enzymatic nucleic acid-mediated treatment of ocular diseases or conditions related to levels of vascular endothelial growth factor receptor (VEGF-R) |
| US6300060B1 (en) | 1995-11-09 | 2001-10-09 | Dana-Farber Cancer Institute, Inc. | Method for predicting the risk of prostate cancer morbidity and mortality |
| WO1997030067A1 (en) | 1996-02-14 | 1997-08-21 | Isis Pharmaceuticals, Inc. | Sugar-modified gapped oligonucleotides |
| US6251589B1 (en) | 1996-07-18 | 2001-06-26 | Srl, Inc. | Method for diagnosing spinocerebellar ataxia type 2 and primers therefor |
| AU4725597A (en) | 1996-10-30 | 1998-05-22 | Srl Inc. | Cdna fragments of gene causative of spinocerebellar ataxia type |
| US5853995A (en) | 1997-01-07 | 1998-12-29 | Research Development Foundation | Large scale genotyping of diseases and a diagnostic test for spinocerebellar ataxia type 6 |
| US20020137890A1 (en) | 1997-03-31 | 2002-09-26 | Genentech, Inc. | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
| AU6591798A (en) | 1997-03-31 | 1998-10-22 | Yale University | Nucleic acid catalysts |
| WO1998049345A1 (en) | 1997-04-29 | 1998-11-05 | Trustees Of Boston University | Methods and compositions for targeted dna differential display |
| US6329501B1 (en) | 1997-05-29 | 2001-12-11 | Auburn University | Methods and compositions for targeting compounds to muscle |
| US6514755B1 (en) | 1998-08-18 | 2003-02-04 | Regents Of The University Of Minnesota | SCA7 gene and methods of use |
| US6280938B1 (en) | 1997-08-19 | 2001-08-28 | Regents Of The University Of Minnesota | SCA7 gene and method of use |
| US6794499B2 (en) | 1997-09-12 | 2004-09-21 | Exiqon A/S | Oligonucleotide analogues |
| CA2304813A1 (en) | 1997-09-22 | 1999-04-08 | Fritz Eckstein | Nucleic acid catalysts with endonuclease activity |
| US6130207A (en) | 1997-11-05 | 2000-10-10 | South Alabama Medical Science Foundation | Cell-specific molecule and method for importing DNA into a nucleus |
| JP3012923B2 (en) | 1998-01-26 | 2000-02-28 | 新潟大学長 | Drug for treating CAG repeat disease |
| KR100280219B1 (en) | 1998-02-26 | 2001-04-02 | 이수빈 | Diagnostic Method and Diagnostic Reagent of Neuropsychiatric Disease Using Trinucleic Acid Repeat Sequence |
| US6322978B1 (en) | 1998-04-20 | 2001-11-27 | Joslin Diabetes Center, Inc. | Repeat polymorphism in the frataxin gene and uses therefore |
| WO1999055857A2 (en) | 1998-04-29 | 1999-11-04 | Ribozyme Pharmaceuticals, Inc. | Nucleoside triphosphates and their incorporation into ribozymes |
| WO1999063975A2 (en) | 1998-06-10 | 1999-12-16 | Biognostik Gesellschaft für Biomolekulare Diagnostik mbH | A method for stimulating the immune system |
| US20030096955A1 (en) | 1998-09-01 | 2003-05-22 | Genentech, Inc. | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
| IL142828A0 (en) | 1998-09-25 | 2002-03-10 | Childrens Medical Center | Short peptides which selectively modulate the activity of protein kinases |
| US6210892B1 (en) | 1998-10-07 | 2001-04-03 | Isis Pharmaceuticals, Inc. | Alteration of cellular behavior by antisense modulation of mRNA processing |
| US6172216B1 (en) | 1998-10-07 | 2001-01-09 | Isis Pharmaceuticals Inc. | Antisense modulation of BCL-X expression |
| AU771579B2 (en) * | 1998-10-26 | 2004-03-25 | Avi Biopharma, Inc. | p53 antisense agent and method |
| US6399575B1 (en) | 1998-11-10 | 2002-06-04 | Auburn University | Methods and compositions for targeting compounds to the central nervous system |
| US6133031A (en) | 1999-08-19 | 2000-10-17 | Isis Pharmaceuticals Inc. | Antisense inhibition of focal adhesion kinase expression |
| US20040226056A1 (en) | 1998-12-22 | 2004-11-11 | Myriad Genetics, Incorporated | Compositions and methods for treating neurological disorders and diseases |
| US20020049173A1 (en) | 1999-03-26 | 2002-04-25 | Bennett C. Frank | Alteration of cellular behavior by antisense modulation of mRNA processing |
| US6379698B1 (en) | 1999-04-06 | 2002-04-30 | Isis Pharmaceuticals, Inc. | Fusogenic lipids and vesicles |
| KR20020013519A (en) | 1999-04-08 | 2002-02-20 | 추후제출 | Antisense Oligonucleotides Comprising Universal and/or Degenerate Bases |
| JP2000325085A (en) | 1999-05-21 | 2000-11-28 | Masafumi Matsuo | Pharmaceutical composition for treatment of duchenne muscular dystrophy |
| US20030236214A1 (en) | 1999-06-09 | 2003-12-25 | Wolff Jon A. | Charge reversal of polyion complexes and treatment of peripheral occlusive disease |
| US6656730B1 (en) | 1999-06-15 | 2003-12-02 | Isis Pharmaceuticals, Inc. | Oligonucleotides conjugated to protein-binding drugs |
| US6355481B1 (en) | 1999-06-18 | 2002-03-12 | Emory University | Hybridoma cell line and monoclonal antibody for huntingtin protein |
| JP2004512810A (en) | 1999-08-31 | 2004-04-30 | サーナ・セラピューティクス・インコーポレイテッド | Modulators of gene expression based on nucleic acids |
| EP1226115A4 (en) | 1999-10-04 | 2006-03-15 | Univ New Jersey Med | CARBAMATE AND UREA |
| US6165786A (en) | 1999-11-03 | 2000-12-26 | Isis Pharmaceuticals, Inc. | Antisense modulation of nucleolin expression |
| WO2001059102A2 (en) | 2000-02-08 | 2001-08-16 | Ribozyme Pharmaceuticals, Inc. | Nucleozymes with endonuclease activity |
| EP1133993A1 (en) | 2000-03-10 | 2001-09-19 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Substances for the treatment of spinal muscular atrophy |
| AU4819101A (en) | 2000-04-13 | 2001-10-30 | University Of British Columbia, The | Modulating cell survival by modulating huntingtin function |
| US6653467B1 (en) | 2000-04-26 | 2003-11-25 | Jcr Pharmaceutical Co., Ltd. | Medicament for treatment of Duchenne muscular dystrophy |
| WO2001083695A2 (en) | 2000-04-28 | 2001-11-08 | Xiao Xiao | Dna sequences encoding dystrophin minigenes and methods of use thereof |
| AU2001257366B2 (en) | 2000-05-01 | 2006-03-16 | Idera Pharmaceuticals, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
| AU2001259706A1 (en) | 2000-05-09 | 2001-11-20 | Reliable Biopharmaceutical, Inc. | Polymeric compounds useful as prodrugs |
| WO2001092330A2 (en) | 2000-05-31 | 2001-12-06 | Genset S.A. | Use of acrp30 globular head to promote increases in muscle mass and muscle differentiation |
| CN1326990A (en) | 2000-06-07 | 2001-12-19 | 上海博德基因开发有限公司 | New polypeptide-human DNA-like CGG repeative conjugated protein 16.17 and polynucleotide for encoding such polypeptide |
| US20030124523A1 (en) | 2000-06-22 | 2003-07-03 | Asselbergs Fredericus Alphonsus Maria | Organic compounds |
| US6794192B2 (en) | 2000-06-29 | 2004-09-21 | Pfizer Inc. | Target |
| RU2165149C1 (en) | 2000-07-03 | 2001-04-20 | Шапошников Валерий Геннадьевич | "sugar wool" products forming and packaging method |
| US6727355B2 (en) | 2000-08-25 | 2004-04-27 | Jcr Pharmaceuticals Co., Ltd. | Pharmaceutical composition for treatment of Duchenne muscular dystrophy |
| JP4836366B2 (en) | 2000-08-25 | 2011-12-14 | 雅文 松尾 | Duchenne muscular dystrophy treatment |
| EP1191097A1 (en) | 2000-09-21 | 2002-03-27 | Leids Universitair Medisch Centrum | Induction of exon skipping in eukaryotic cells |
| AU3922802A (en) | 2000-10-02 | 2002-05-27 | Keck Graduate Inst | Methods for identifying nucleotides at defined positions in target nucleic acidsusing fluorescence polarization |
| EP1366160B1 (en) | 2000-10-06 | 2008-07-09 | The Regents Of The University Of Michigan | Mini-dystrophin nucleic acid and peptide sequences |
| US6623927B1 (en) | 2000-11-08 | 2003-09-23 | Council Of Scientific And Industrial Research | Method of detection of allelic variants of SCA2 gene |
| AU2002236499A8 (en) | 2000-11-30 | 2009-12-03 | Uab Research Foundation | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
| US7001994B2 (en) | 2001-01-18 | 2006-02-21 | Genzyme Corporation | Methods for introducing mannose 6-phosphate and other oligosaccharides onto glycoproteins |
| TWI329129B (en) | 2001-02-08 | 2010-08-21 | Wyeth Corp | Modified and stabilized gdf propeptides and uses thereof |
| KR100408053B1 (en) | 2001-02-13 | 2003-12-01 | 엘지전자 주식회사 | Torque ripple reduction method for srm |
| WO2002085308A2 (en) * | 2001-04-24 | 2002-10-31 | Epigenesis Pharmaceuticals, Inc. | Antisense and anti-inflammatory based compositions to treat respiratory disorders |
| CA2414782C (en) | 2001-05-11 | 2012-10-09 | Regents Of The University Of Minnesota | Intron associated with myotonic dystrophy type 2 and methods of use |
| US20050282188A1 (en) | 2001-05-18 | 2005-12-22 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA) |
| US20050014172A1 (en) | 2002-02-20 | 2005-01-20 | Ivan Richards | RNA interference mediated inhibition of muscarinic cholinergic receptor gene expression using short interfering nucleic acid (siNA) |
| US20050277133A1 (en) | 2001-05-18 | 2005-12-15 | Sirna Therapeutics, Inc. | RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA) |
| EP1627061B1 (en) | 2001-05-18 | 2009-08-12 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION USING CHEMICALLY MODIFIED SHORT INTERFERING NUCLEIC ACID (siNA) |
| IL143379A (en) | 2001-05-24 | 2013-11-28 | Yissum Res Dev Co | Antisense oligonucleotide against the r isophorm of human ache and uses thereof |
| JP4510442B2 (en) | 2001-06-26 | 2010-07-21 | ブリストル−マイヤーズ スクイブ カンパニー | N-heterocyclic inhibitor of TNF-α expression |
| MXPA04000162A (en) | 2001-07-06 | 2006-05-22 | Topigen Pharma Inc | Methods for increasing in vivo efficacy of oligonucleotides and inhibiting inflammation in mammals. |
| EP1423537A4 (en) | 2001-08-07 | 2006-11-29 | Univ Delaware | COMPOSITIONS AND METHOD FOR THE PREVENTION AND TREATMENT OF MORBUS HUNTINGTON |
| WO2003014145A2 (en) | 2001-08-10 | 2003-02-20 | Novartis Ag | Peptides that bind to atherosclerotic lesions |
| US20060074034A1 (en) | 2001-09-17 | 2006-04-06 | Collins Douglas A | Cobalamin mediated delivery of nucleic acids, analogs and derivatives thereof |
| KR20030035047A (en) | 2001-10-29 | 2003-05-09 | (주)바이오코돈 | Use of BMP-4 gene and its gene product for treatment and diagnosis of Lichen Planus |
| AU2002363253A1 (en) | 2001-11-01 | 2003-05-12 | Gpc Biotech Inc. | Endothelial-cell binding peptides for diagnosis and therapy |
| US20030134790A1 (en) | 2002-01-11 | 2003-07-17 | University Of Medicine And Dentistry Of New Jersey | Bone Morphogenetic Protein-2 And Bone Morphogenetic Protein-4 In The Treatment And Diagnosis Of Cancer |
| WO2003062258A1 (en) | 2002-01-22 | 2003-07-31 | The Cleveland Clinic Foundation | Rnase l activator-antisense complexes |
| WO2003069330A1 (en) | 2002-02-11 | 2003-08-21 | The Trustees Of Columbia University In The City Of New York | System and method for identifying proteins involved in force-initiated signal transduction |
| US20050096284A1 (en) | 2002-02-20 | 2005-05-05 | Sirna Therapeutics, Inc. | RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA) |
| ATE455561T1 (en) | 2002-03-01 | 2010-02-15 | Univ Tulane | CONJUGATES OF CYTOTOXIC AGENTS AND BIOLOGICALLY ACTIVE PEPTIDES |
| US20040101852A1 (en) | 2002-11-21 | 2004-05-27 | Isis Pharmaceuticals Inc. | Modulation of CGG triplet repeat binding protein 1 expression |
| ITRM20020253A1 (en) | 2002-05-08 | 2003-11-10 | Univ Roma | SNRNA CHEMICAL MOLECULES WITH ANTISENSE SEQUENCES FOR SPLICING JUNCTIONS OF THE DYSTROPHINE GENE AND THERAPEUTIC APPLICATIONS. |
| US20040102395A1 (en) | 2002-11-22 | 2004-05-27 | Isis Pharmaceuticals Inc. | Modulation of IAP-like expression |
| EP1380644A1 (en) | 2002-07-08 | 2004-01-14 | Kylix B.V. | The use of specified TCF target genes to identify drugs for the treatment of cancer, in particular colorectal cancer, in which TCF/beta-catenin/WNT signalling plays a central role |
| WO2004011060A2 (en) | 2002-07-26 | 2004-02-05 | Mirus Corporation | Delivery of molecules and complexes to mammalian cells in vivo |
| US20050255086A1 (en) | 2002-08-05 | 2005-11-17 | Davidson Beverly L | Nucleic acid silencing of Huntington's Disease gene |
| US20060058253A1 (en) | 2002-08-12 | 2006-03-16 | Benoit Chabot | Methods to reprogram splice site selection in pre-messenger rnas |
| GB0219143D0 (en) | 2002-08-16 | 2002-09-25 | Univ Leicester | Modified tailed oligonucleotides |
| US20040219565A1 (en) | 2002-10-21 | 2004-11-04 | Sakari Kauppinen | Oligonucleotides useful for detecting and analyzing nucleic acids of interest |
| DK1554305T3 (en) | 2002-10-23 | 2007-04-23 | Ct For Res And Technology Hell | Prion protein binding peptide sequences |
| US7892793B2 (en) | 2002-11-04 | 2011-02-22 | University Of Massachusetts | Allele-specific RNA interference |
| US7250496B2 (en) | 2002-11-14 | 2007-07-31 | Rosetta Genomics Ltd. | Bioinformatically detectable group of novel regulatory genes and uses thereof |
| EP2213738B1 (en) | 2002-11-14 | 2012-10-10 | Dharmacon, Inc. | siRNA molecules targeting Bcl-2 |
| US7655785B1 (en) | 2002-11-14 | 2010-02-02 | Rosetta Genomics Ltd. | Bioinformatically detectable group of novel regulatory oligonucleotides and uses thereof |
| ES2509140T3 (en) | 2002-11-25 | 2014-10-17 | Masafumi Matsuo | ENA nucleic acid drugs that modify splicing in mRNA precursors |
| GB0228079D0 (en) | 2002-12-02 | 2003-01-08 | Laxdale Ltd | Huntington's Disease |
| CA2518475C (en) | 2003-03-07 | 2014-12-23 | Alnylam Pharmaceuticals, Inc. | Irna agents comprising asymmetrical modifications |
| WO2004083432A1 (en) | 2003-03-21 | 2004-09-30 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure |
| US7514551B2 (en) | 2003-04-03 | 2009-04-07 | Enzo Life Sciences, Inc. | Multisignal labeling reagents, and processes and uses therefor |
| WO2004101787A1 (en) | 2003-05-14 | 2004-11-25 | Japan Science And Technology Agency | Inhibition of the expression of huntington gene |
| US7785587B2 (en) | 2003-06-02 | 2010-08-31 | Wyeth | Therapeutic methods for muscular or neuromuscular disorders |
| DE60319354T2 (en) | 2003-07-11 | 2009-03-26 | Lbr Medbiotech B.V. | Mannose-6-phosphate receptor mediated gene transfer to muscle cells |
| US20050048495A1 (en) | 2003-08-29 | 2005-03-03 | Baker Brenda F. | Isoform-specific targeting of splice variants |
| US20050054752A1 (en) | 2003-09-08 | 2005-03-10 | O'brien John P. | Peptide-based diblock and triblock dispersants and diblock polymers |
| US7355018B2 (en) | 2003-09-30 | 2008-04-08 | Regeneron Pharmaceuticals, Inc. | Modified IGF1 polypeptides with increased stability and potency |
| JP2007508030A (en) | 2003-10-14 | 2007-04-05 | カーネル・バイオファーマ・インコーポレイテッド | Two-phase PNA conjugate for delivering PNA across the blood brain barrier |
| US20050191636A1 (en) | 2004-03-01 | 2005-09-01 | Biocept, Inc. | Detection of STRP, such as fragile X syndrome |
| WO2005086768A2 (en) | 2004-03-11 | 2005-09-22 | Albert Einstein College Of Medicine Of Yeshiva University | Enhanced production of functional proteins from defective genes |
| EP1735443A2 (en) | 2004-04-14 | 2006-12-27 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED TREATMENT OF POLYGLUTAMINE (POLYQ) REPEAT EXPANSION DISEASES USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| KR20070085113A (en) | 2004-05-11 | 2007-08-27 | 가부시키가이샤 알파젠 | Polynucleotides causing RNA interference, and gene expression inhibition method using the same |
| US20050288246A1 (en) | 2004-05-24 | 2005-12-29 | Iversen Patrick L | Peptide conjugated, inosine-substituted antisense oligomer compound and method |
| JP2008500373A (en) | 2004-05-27 | 2008-01-10 | アクセルロン ファーマ インコーポレーテッド | Cerberus / Coco derivatives and their use |
| EP3808845A1 (en) | 2004-06-28 | 2021-04-21 | The University Of Western Australia | Antisense oligonucleotides for inducing exon skipping and methods of use thereof |
| US7361468B2 (en) * | 2004-07-02 | 2008-04-22 | Affymetrix, Inc. | Methods for genotyping polymorphisms in humans |
| EP1618881A1 (en) * | 2004-07-20 | 2006-01-25 | Santhera Pharmaceuticals (Schweiz) GmbH | Use of non-glucocorticoid steroids for the treatment of muscular dystrophy |
| WO2006017522A2 (en) | 2004-08-03 | 2006-02-16 | University Of Utah Research Foundation | Use of antisense oligonucleotides to effect translation modulation |
| US20060099612A1 (en) | 2004-09-02 | 2006-05-11 | Suntory Limited | Method for analyzing genes of industrial yeasts |
| WO2007018563A2 (en) | 2004-10-05 | 2007-02-15 | Wyeth | Probe arrays for detecting multiple strains of different species |
| ITRM20040568A1 (en) | 2004-11-18 | 2005-02-18 | Uni Degli Studi Di Roma Tor Vergata | USE OF THE "PHAGE DISPLAY" TECHNIQUE FOR THE IDENTIFICATION OF PEPTIDES WITH CAPACITY OF STAMIN CELLS / PROGENITOR, PEPTIDES SO OBTAINED AND THEIR USES. |
| US7838657B2 (en) | 2004-12-03 | 2010-11-23 | University Of Massachusetts | Spinal muscular atrophy (SMA) treatment via targeting of SMN2 splice site inhibitory sequences |
| KR100663277B1 (en) | 2004-12-20 | 2007-01-02 | 삼성전자주식회사 | Device and?method for processing system-related event in wireless terminal |
| US20060148740A1 (en) | 2005-01-05 | 2006-07-06 | Prosensa B.V. | Mannose-6-phosphate receptor mediated gene transfer into muscle cells |
| US20120122801A1 (en) | 2005-01-05 | 2012-05-17 | Prosensa B.V. | Mannose-6-phosphate receptor mediated gene transfer into muscle cells |
| CA2596588C (en) | 2005-01-31 | 2017-06-27 | University Of Iowa Research Foundation | Nucleic acid silencing of huntington's disease gene |
| PL1877099T3 (en) | 2005-04-06 | 2013-02-28 | Genzyme Corp | Therapeutic conjugates comprising a lysosomal enzyme, polysialic acid and a targeting moiety |
| CA2605512A1 (en) | 2005-04-22 | 2006-10-26 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mrna by interfering with the binding of sr proteins and by interfering with secondary rna structure. |
| WO2006121960A2 (en) | 2005-05-06 | 2006-11-16 | Medtronic, Inc. | Methods and sequences to suppress primate huntington gene expression |
| US7902352B2 (en) | 2005-05-06 | 2011-03-08 | Medtronic, Inc. | Isolated nucleic acid duplex for reducing huntington gene expression |
| WO2006121277A1 (en) | 2005-05-09 | 2006-11-16 | Korea Research Institute Of Standards And Science | Fret probes for fluorescent detection of the epsps gene |
| PL1910395T3 (en) | 2005-06-23 | 2013-03-29 | Cold Spring Harbor Laboratory | Compositions and methods for modulation of SMN2 splicing |
| EP2062980B1 (en) | 2005-06-28 | 2011-08-31 | Medtronic, Inc. | Methods and sequences to preferentially suppress expression of mutated huntingtin gene. |
| DK2179737T3 (en) * | 2005-07-01 | 2013-11-11 | Index Pharmaceuticals Ab | MODULE RESPONSE ON STEROIDS |
| EP1941059A4 (en) | 2005-10-28 | 2010-11-03 | Alnylam Pharmaceuticals Inc | Compositions and methods for inhibiting expression of huntingtin gene |
| US7906617B2 (en) | 2005-12-15 | 2011-03-15 | E. I. Du Pont De Nemours And Company | Polyethylene binding peptides and methods of use |
| WO2007089611A2 (en) | 2006-01-26 | 2007-08-09 | Isis Pharmaceuticals Inc. | Compositions and their uses directed to huntingtin |
| WO2007123391A1 (en) | 2006-04-20 | 2007-11-01 | Academisch Ziekenhuis Leiden | Therapeutic intervention in a genetic disease in an individual by modifying expression of an aberrantly expressed gene. |
| EP1857548A1 (en) | 2006-05-19 | 2007-11-21 | Academisch Ziekenhuis Leiden | Means and method for inducing exon-skipping |
| US7855053B2 (en) | 2006-07-19 | 2010-12-21 | The Regents Of The University Of California | Methods for detecting the presence of expanded CGG repeats in the FMR1 gene 5′ untranslated region |
| CN101501193B (en) | 2006-08-11 | 2013-07-03 | 普罗森那技术公司 | Methods and means for treating DNA repeat instability associated genetic disorders |
| EP2049664B1 (en) | 2006-08-11 | 2011-09-14 | Prosensa Technologies B.V. | Single stranded oligonucleotides complementary to repetitive elements for treating DNA repeat instability associated genetic disorders |
| US20090253744A1 (en) | 2006-09-27 | 2009-10-08 | Bakshi Raman K | Acylated piperidine derivatives as melanocortin-4 receptor modulators |
| SG166778A1 (en) | 2006-10-11 | 2010-12-29 | Max Planck Gesellschaft | Influenza targets |
| EP2125032A4 (en) | 2007-02-20 | 2011-02-23 | Mayo Foundation | TREATMENT OF CANCER USING VIRAL NUCLEIC ACID |
| PL381824A1 (en) | 2007-02-22 | 2008-09-01 | Instytut Chemii Bioorganicznej Pan W Poznaniu | The sequence of siRNA, vector, molecular target for siRNA reagents and vectors introduced to cells and tissues, the manner of assessment of specifity of silencing of a mutated transcript, the manner of testing of influences of RNA interference route of enz |
| EP2170363B1 (en) | 2007-06-29 | 2018-08-08 | Sarepta Therapeutics, Inc. | Tissue specific peptide conjugates and methods |
| EP2505211B1 (en) | 2007-07-12 | 2020-04-08 | BioMarin Technologies B.V. | Molecules for targeting compounds to various selected organs or tissues |
| CA2693742A1 (en) | 2007-07-12 | 2009-01-15 | Prosensa Technologies B.V. | Molecules for targeting compounds to various selected organs, tissues or tumor cells |
| WO2009015384A1 (en) | 2007-07-26 | 2009-01-29 | University Of Rochester | Nucleic acid binding compounds and methods of use |
| EP2188298B1 (en) | 2007-08-15 | 2013-09-18 | Isis Pharmaceuticals, Inc. | Tetrahydropyran nucleic acid analogs |
| PT2203173E (en) | 2007-10-26 | 2016-03-15 | Academisch Ziekenhuis Leiden | Means and methods for counteracting muscle disorders |
| CN101980726A (en) | 2008-02-08 | 2011-02-23 | 普罗森那控股公司 | Methods and means for treating DNA repeat instability associated genetic disorders |
| WO2009101399A1 (en) | 2008-02-12 | 2009-08-20 | Isis Innovation Limited | Treatment of muscular dystrophy using peptide nucleic acid ( pna) |
| EP2105145A1 (en) | 2008-03-27 | 2009-09-30 | ETH Zürich | Method for muscle-specific delivery lipid-conjugated oligonucleotides |
| WO2009135322A1 (en) | 2008-05-09 | 2009-11-12 | The Universtity Of British Columbia | Methods and compositions for the treatment of huntington's disease |
| EP2119783A1 (en) | 2008-05-14 | 2009-11-18 | Prosensa Technologies B.V. | Method for efficient exon (44) skipping in Duchenne Muscular Dystrophy and associated means |
| US20110130346A1 (en) | 2008-05-30 | 2011-06-02 | Isis Innovation Limited | Peptide conjugates for delvery of biologically active compounds |
| US20110152352A1 (en) | 2008-06-10 | 2011-06-23 | Tufts University | Smad proteins control drosha-mediated mirna maturation |
| GB2457965B8 (en) | 2008-07-01 | 2011-02-16 | Renovo Ltd | Methods and systems for determining efficacy of medicaments. |
| WO2010006237A2 (en) | 2008-07-11 | 2010-01-14 | Alnylam Pharmaceuticals, Inc. | Phosphorothioate oligonucleotides non-nucleosidic phosphorothiotes as delivery agents for irna agents |
| AU2009276763B2 (en) | 2008-07-29 | 2015-07-16 | The Board Of Regents Of The University Of Texas Sytem | Selective inhibition of polyglutamine protein expression |
| US8084601B2 (en) * | 2008-09-11 | 2011-12-27 | Royal Holloway And Bedford New College Royal Holloway, University Of London | Oligomers |
| CA2777486A1 (en) | 2008-10-15 | 2010-04-22 | 4S3 Bioscience Inc. | Methods and compositions for treatment of myotonic dystrophy |
| CA3066050A1 (en) | 2008-10-24 | 2010-04-29 | Sarepta Therapeutics, Inc. | Multiple exon skipping compositions for dmd |
| ES2532634T5 (en) | 2008-10-27 | 2018-04-30 | Biomarin Technologies B.V. | Procedures and means for efficient skipping of exon 45 in the pre-mRNA of Duchenne muscular dystrophy |
| CN102449171B (en) | 2009-03-24 | 2015-12-02 | 奥斯瑞根公司 | A PCR method for the characterization of the 5' untranslated regions of the FMR1 and FMR2 genes |
| US20100248239A1 (en) | 2009-03-24 | 2010-09-30 | Mayo Foundation For Medical Education And Research | Methods and materials for detecting fragile x mutations |
| EP2417257B1 (en) | 2009-04-10 | 2016-03-09 | Association Institut de Myologie | Tricyclo-dna antisense oligonucleotides, compositions, and methods for the treatment of disease |
| ES2593836T3 (en) | 2009-04-24 | 2016-12-13 | Biomarin Technologies B.V. | Oligonucleotide comprising an inosine to treat DMD |
| GEP20156329B (en) | 2009-06-08 | 2015-07-27 | Miragen Therapeutics | CHEMICAL MODIFICATIONS OF miRNA INHIBITORS AND MIMETICS |
| EP3626823A1 (en) | 2009-09-11 | 2020-03-25 | Ionis Pharmaceuticals, Inc. | Modulation of huntingtin expression |
| SI2499249T1 (en) | 2009-11-12 | 2019-02-28 | The University Of Western Australia, | Antisense molecules and methods for treating pathologies |
| US20110166081A1 (en) | 2009-12-03 | 2011-07-07 | University Of Iowa Research Foundation | Alpha-dystroglycan as a Protein Therapeutic |
| WO2011078797A2 (en) | 2009-12-22 | 2011-06-30 | Singapore Health Services Pte. Ltd | Antisense oligonucleotides and uses threreof |
| WO2011078672A1 (en) | 2009-12-24 | 2011-06-30 | Prosensa Technologies B.V. | Molecule for treating an inflammatory disorder |
| WO2011097614A1 (en) | 2010-02-08 | 2011-08-11 | Isis Pharmaceuticals, Inc. | Mehods and compositions useful in diseases or conditions related to repeat expansion |
| US20130059902A1 (en) | 2010-02-08 | 2013-03-07 | Isis Pharmaceuticals, Inc. | Methods and compositions useful in treatment of diseases or conditions related to repeat expansion |
| DK3031920T3 (en) | 2010-07-19 | 2019-10-14 | Ionis Pharmaceuticals Inc | MODULATION OF DYSTROPHY MYOTONICA-PROTEIN KINASE (DMPK) EXPRESSION |
| HUE029521T2 (en) | 2010-08-20 | 2017-03-28 | Replicor Inc | Oligonucleotide chelate complexes |
| TWI541024B (en) | 2010-09-01 | 2016-07-11 | 日本新藥股份有限公司 | Antisense nucleic acid |
| CA2826836A1 (en) | 2011-02-08 | 2012-08-16 | The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Medical Center | Antisense oligonucleotides |
| EP3067421B1 (en) | 2011-02-08 | 2018-10-10 | Ionis Pharmaceuticals, Inc. | Oligomeric compounds comprising bicyclic nucleotides and uses thereof |
| WO2012144906A1 (en) | 2011-04-22 | 2012-10-26 | Prosensa Technologies B.V. | New compounds for treating, delaying and/or preventing a human genetic disorder such as myotonic dystrophy type 1 (dm1) |
| KR102339196B1 (en) | 2011-05-05 | 2021-12-15 | 사렙타 쎄러퓨틱스, 인코퍼레이티드 | Peptide Oligonucleotide Conjugates |
| WO2012178122A2 (en) | 2011-06-23 | 2012-12-27 | Cold Spring Harbor Laboratory | Phenocopy model of disease |
| ES2832531T3 (en) | 2011-11-30 | 2021-06-10 | Sarepta Therapeutics Inc | Oligonucleotides for the treatment of repeat expansion diseases |
| US9203291B2 (en) | 2011-12-03 | 2015-12-01 | Thomas Krupenkin | Method and apparatus for mechanical energy harvesting using combined magnetic and microfluidic energy generation |
| WO2013090457A2 (en) | 2011-12-12 | 2013-06-20 | Oncoimmunin Inc. | In vivo delivery of oligonucleotides |
| CN117721110A (en) | 2011-12-28 | 2024-03-19 | 日本新药株式会社 | antisense nucleic acid |
| CA2862628C (en) | 2012-01-27 | 2021-08-24 | Prosensa Technologies B.V. | Rna modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy |
| US20140378533A1 (en) | 2012-02-08 | 2014-12-25 | Isis Pharmaceuticals, Inc. | Modulation of rna by repeat targeting |
| PL2841578T3 (en) | 2012-04-23 | 2017-12-29 | Biomarin Technologies B.V. | RNA modulating oligonucleotides with improved characteristics for the treatment of neuromuscular disorders |
| AR091065A1 (en) | 2012-05-18 | 2014-12-30 | Replicor Inc | A PHARMACEUTICAL FORMULATION THAT INCLUDES AN ANTIVIRAL OLIGONUCLEOTIDE CHELATE FOR THE TREATMENT OF AN ANTI-VIRAL INFECTION |
| JP6460983B2 (en) | 2012-07-03 | 2019-01-30 | バイオマリン テクノロジーズ ベー.フェー. | Oligonucleotides for the treatment of patients with muscular dystrophy |
| EP3760720A1 (en) * | 2013-03-14 | 2021-01-06 | Sarepta Therapeutics, Inc. | Exon skipping compositions for treating muscular dystrophy |
-
2008
- 2008-10-27 PT PT88425590T patent/PT2203173E/en unknown
- 2008-10-27 EP EP13160310.2A patent/EP2614827B1/en active Active
- 2008-10-27 HR HRP20160025TT patent/HRP20160025T1/en unknown
- 2008-10-27 CA CA2704049A patent/CA2704049A1/en not_active Abandoned
- 2008-10-27 CN CN200880120198XA patent/CN101896186A/en active Pending
- 2008-10-27 NZ NZ584793A patent/NZ584793A/en unknown
- 2008-10-27 EP EP17171389.4A patent/EP3238737B1/en not_active Revoked
- 2008-10-27 DK DK08842559.0T patent/DK2203173T3/en active
- 2008-10-27 HU HUE08842559A patent/HUE028662T2/en unknown
- 2008-10-27 WO PCT/NL2008/050673 patent/WO2009054725A2/en not_active Ceased
- 2008-10-27 AU AU2008317566A patent/AU2008317566B2/en active Active
- 2008-10-27 ES ES13160310.2T patent/ES2639852T3/en active Active
- 2008-10-27 ES ES08842559.0T patent/ES2564563T3/en active Active
- 2008-10-27 EP EP08842559.0A patent/EP2203173B1/en not_active Revoked
- 2008-10-27 JP JP2010530946A patent/JP5600064B2/en active Active
- 2008-10-27 ES ES17171389T patent/ES2914775T3/en active Active
- 2008-10-27 PL PL08842559T patent/PL2203173T3/en unknown
- 2008-10-27 CN CN201610053552.8A patent/CN105641700B/en active Active
-
2009
- 2009-01-13 CN CN200980152464.1A patent/CN102264903B/en active Active
- 2009-01-13 NZ NZ592446A patent/NZ592446A/en unknown
- 2009-01-13 HU HUE13160338A patent/HUE027124T2/en unknown
- 2009-03-11 CN CN2009801519198A patent/CN102256606A/en active Pending
- 2009-03-11 ES ES09788170.0T patent/ES2692886T3/en active Active
- 2009-03-11 EP EP22203933.1A patent/EP4183399A1/en active Pending
- 2009-03-11 CN CN201510825064.XA patent/CN105647921A/en active Pending
- 2009-03-11 ES ES18180952T patent/ES2936464T3/en active Active
-
2010
- 2010-04-25 IL IL205322A patent/IL205322A/en active IP Right Grant
- 2010-04-26 US US12/767,702 patent/US9243245B2/en not_active Ceased
-
2011
- 2011-04-26 US US13/094,571 patent/US20110263682A1/en not_active Abandoned
- 2011-04-26 US US13/094,548 patent/US9926557B2/en active Active
-
2013
- 2013-12-04 US US14/097,210 patent/US20140113955A1/en not_active Abandoned
- 2013-12-19 US US14/134,971 patent/US20140128592A1/en not_active Abandoned
-
2014
- 2014-02-07 JP JP2014022084A patent/JP5879374B2/en not_active Expired - Fee Related
- 2014-03-07 US US14/200,251 patent/US20140221458A1/en not_active Abandoned
- 2014-11-14 US US14/542,183 patent/US9528109B2/en active Active
-
2015
- 2015-02-25 US US14/631,686 patent/US9499818B2/en active Active
- 2015-10-06 IL IL241928A patent/IL241928B/en active IP Right Grant
- 2015-11-09 JP JP2015219928A patent/JP2016033140A/en active Pending
-
2016
- 2016-01-07 US US14/990,712 patent/US20160304864A1/en not_active Abandoned
- 2016-03-11 CY CY20161100214T patent/CY1117286T1/en unknown
- 2016-04-04 CY CY20161100268T patent/CY1117454T1/en unknown
- 2016-10-07 US US15/289,053 patent/US20170044534A1/en not_active Abandoned
- 2016-12-27 US US15/390,836 patent/US20170107512A1/en not_active Abandoned
-
2017
- 2017-05-12 JP JP2017095804A patent/JP6579629B2/en active Active
-
2018
- 2018-06-29 US US16/024,558 patent/US10876114B2/en active Active
- 2018-08-13 IL IL261127A patent/IL261127B/en active IP Right Grant
- 2018-12-21 US US16/229,821 patent/US20190119679A1/en not_active Abandoned
- 2018-12-21 US US16/229,534 patent/US20190112604A1/en not_active Abandoned
-
2019
- 2019-02-22 US US16/283,458 patent/US20190177725A1/en not_active Abandoned
- 2019-04-25 JP JP2019084505A patent/JP6885620B2/en active Active
- 2019-09-26 US US16/584,115 patent/US11427820B2/en active Active
-
2020
- 2020-12-21 US US17/129,117 patent/US20210139904A1/en not_active Abandoned
-
2021
- 2021-05-06 JP JP2021078561A patent/JP7107622B2/en active Active
- 2021-06-23 IL IL284321A patent/IL284321B/en unknown
-
2022
- 2022-06-09 CY CY20221100404T patent/CY1125234T1/en unknown
- 2022-07-25 US US17/814,781 patent/US20230151362A1/en not_active Abandoned
-
2024
- 2024-07-12 US US18/771,603 patent/US20240360452A1/en active Pending
Non-Patent Citations (1)
| Title |
|---|
| Homo sapiens dystrophin (DMD) mRNA, complete cds, GenBank: M18533.1, sequence provided on May 25, 2000, total 8 pages. Accessed and retrieved from www.ncbi.nih.gov on February 15, 2023. (Year: 2000) * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12331293B2 (en) | 2018-11-02 | 2025-06-17 | Biomarin Technologies B.V. | Bispecific antisense oligonucleotides for dystrophin exon skipping |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240360452A1 (en) | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50-53 | |
| EP3400948B1 (en) | Methods and means for efficient skipping of at least exon 52 of the human duchenne muscular dystrophy gene | |
| AU2009310558B8 (en) | Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50- 53. | |
| HK1262582B (en) | Methods and means for efficient skipping of at least exon 52 of the human duchenne muscular dystrophy gene | |
| HK1262582A1 (en) | Methods and means for efficient skipping of at least exon 52 of the human duchenne muscular dystrophy gene | |
| HK1185098B (en) | Methods and means for efficient skipping of exon 45 in duchenne muscular dystrophy pre-mrna | |
| HK1160033A (en) | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50- 53. | |
| HK1160033B (en) | Methods and means for efficient skipping of at least one of the following exons of the human duchenne muscular dystrophy gene: 43, 46, 50- 53. | |
| HK1160169B (en) | Methods and means for efficient skipping of exon 45 in duchenne muscular dystrophy pre-mrna |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ACADEMISCH ZIEKENHUIS LEIDEN, NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VAN DEUTEKOM, JUDITH CHRISTINA THEODORA;REEL/FRAME:054743/0737 Effective date: 20160809 Owner name: BIOMARIN TECHNOLOGIES B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VAN DEUTEKOM, JUDITH CHRISTINA THEODORA;REEL/FRAME:054743/0737 Effective date: 20160809 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |