[go: up one dir, main page]

US20210137031A1 - Method of producing a plant growth substrate - Google Patents

Method of producing a plant growth substrate Download PDF

Info

Publication number
US20210137031A1
US20210137031A1 US16/611,706 US201716611706A US2021137031A1 US 20210137031 A1 US20210137031 A1 US 20210137031A1 US 201716611706 A US201716611706 A US 201716611706A US 2021137031 A1 US2021137031 A1 US 2021137031A1
Authority
US
United States
Prior art keywords
binder composition
oil
growth substrate
gelatin
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/611,706
Inventor
Charlotte LIND
Thomas HJELMGAARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwool AS
Original Assignee
Rockwool International AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwool International AS filed Critical Rockwool International AS
Priority claimed from PCT/EP2017/079089 external-priority patent/WO2018206130A1/en
Assigned to ROCKWOOL INTERNATIONAL A/S reassignment ROCKWOOL INTERNATIONAL A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIND, Charlotte, Hjelmgaard, Thomas
Publication of US20210137031A1 publication Critical patent/US20210137031A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/22Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing plant material
    • A01G24/23Wood, e.g. wood chips or sawdust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • A01G24/12Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material containing soil minerals
    • A01G24/15Calcined rock, e.g. perlite, vermiculite or clay aggregates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/40Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • B32B19/041Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/1095Coating to obtain coated fabrics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/321Starch; Starch derivatives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/328Polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/12Agar or agar-agar, i.e. mixture of agarose and agaropectin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • C08L89/04Products derived from waste materials, e.g. horn, hoof or hair
    • C08L89/06Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin, e.g. gelatin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09HPREPARATION OF GLUE OR GELATINE
    • C09H11/00Adhesives based on glue or gelatine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J101/00Adhesives based on cellulose, modified cellulose, or cellulose derivatives
    • C09J101/08Cellulose derivatives
    • C09J101/26Cellulose ethers
    • C09J101/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J101/00Adhesives based on cellulose, modified cellulose, or cellulose derivatives
    • C09J101/08Cellulose derivatives
    • C09J101/26Cellulose ethers
    • C09J101/28Alkyl ethers
    • C09J101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J103/00Adhesives based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09J103/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • C09J105/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • C09J105/06Pectin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • C09J105/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J189/00Adhesives based on proteins; Adhesives based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J189/00Adhesives based on proteins; Adhesives based on derivatives thereof
    • C09J189/005Casein
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J189/00Adhesives based on proteins; Adhesives based on derivatives thereof
    • C09J189/04Products derived from waste materials, e.g. horn, hoof or hair
    • C09J189/06Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4266Natural fibres not provided for in group D04H1/425
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/593Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives to layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • D04H1/645Impregnation followed by a solidification process
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/724Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged forming webs during fibre formation, e.g. flash-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • D04H3/004Glass yarns or filaments
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/88Insulating elements for both heat and sound
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B1/941Building elements specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/35Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
    • E04D3/351Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material
    • E04D3/352Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material at least one insulating layer being located between non-insulating layers, e.g. double skin slabs or sheets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0866Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements composed of several layers, e.g. sandwich panels or layered panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1215Hot-melt adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1269Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives multi-component adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/20Fibres of continuous length in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/14Mineral wool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2317/00Animal or vegetable based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • C08J2389/04Products derived from waste materials, e.g. horn, hoof or hair
    • C08J2389/06Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/06Pectin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2493/00Characterised by the use of natural resins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/52Aqueous emulsion or latex, e.g. containing polymers of a glass transition temperature (Tg) below 20°C
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/14Glass
    • C09J2400/146Glass in the pretreated surface to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2401/00Presence of cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2403/00Presence of starch
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2405/00Presence of polysaccharides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2489/00Presence of protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0051Oxidoreductases (1.) acting on a sulfur group of donors (1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0059Catechol oxidase (1.10.3.1), i.e. tyrosinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/104Aminoacyltransferases (2.3.2)
    • C12N9/1044Protein-glutamine gamma-glutamyltransferase (2.3.2.13), i.e. transglutaminase or factor XIII
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03013Protein-lysine 6-oxidase (1.4.3.13), i.e. lysyl-oxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y108/00Oxidoreductases acting on sulfur groups as donors (1.8)
    • C12Y108/03Oxidoreductases acting on sulfur groups as donors (1.8) with oxygen as acceptor (1.8.3)
    • C12Y108/03002Thiol oxidase (1.8.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03001Catechol oxidase (1.10.3.1), i.e. tyrosinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01007Peroxidase (1.11.1.7), i.e. horseradish-peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/18Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with another compound as one donor, and incorporation of one atom of oxygen (1.14.18)
    • C12Y114/18001Tyrosinase (1.14.18.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01013Glycine N-acyltransferase (2.3.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/02Aminoacyltransferases (2.3.2)
    • C12Y203/02013Protein-glutamine gamma-glutamyltransferase (2.3.2.13), i.e. transglutaminase or factor XIII
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/04Intramolecular oxidoreductases (5.3) transposing S-S bonds (5.3.4)
    • C12Y503/04001Protein disulfide-isomerase (5.3.4.1), i.e. disufide bond-forming enzyme
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/20Industrial for civil engineering, e.g. geotextiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7608Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/762Exterior insulation of exterior walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • E04B2001/743Animal products, e.g. wool, feathers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • E04B2001/745Vegetal products, e.g. plant stems, barks
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7683Fibrous blankets or panels characterised by the orientation of the fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7687Crumble resistant fibrous blankets or panels using adhesives or meltable fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/16Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure

Definitions

  • the present invention relates to a method of producing a coherent growth substrate, a coherent growth substrate product, a method of propagating seeds or seedlings, a method of growing plants and use of a coherent growth substrate.
  • MMVF products for this purpose which are provided as a coherent plug, block or slab, generally include a binder, usually an organic binder, in order to provide structural integrity to the product.
  • binder usually an organic binder
  • Such binders are conventionally associated with extensive curing times and high curing temperatures, and specific curing equipment is needed for curing the binder composition.
  • the curing equipment is conventionally an oven operating at a temperature of 150° C. to 300° C., often 200° C. to 275° C.
  • additives which improve re-saturation properties; water distribution properties; water retention; initial wetting; seed germination, rooting-in and plant growth are commonly used in plant growth substrates.
  • these additives are negatively impacted by high temperatures.
  • the additives may start to degrade, decompose or be destroyed by temperatures of 50° C. or more, such as 100° C. or more or 200° C. or more and are not able to provide their desired function once decomposed.
  • Particularly desirable additives are superabsorbent polymers. Such polymers can absorb fluid and retain it under pressure without dissolution in the fluid being absorbed. However, superabsorbent polymers may start to degrade or are destroyed by temperatures of 50° C. or more, such as 100° C. or more or 200° C.
  • US 2014/0130410 discloses a method for including superabsorbent polymers in a MMVF plant growth substrate. This process involves needling the superabsorbent polymer into the substrate in order to avoid the use of a binder composition, and its associated high curing temperature which would degrade the superabsorbent polymer. However, this process requires the use of complex equipment and does not allow for the presence of any binder, which negatively affects the structural integrity of the substrate.
  • a binder composition which cures at 5-95° C., 5 to 80° C., such as 10 to 60° C., such as 20 to 40° C., and therefore allows addition of temperature-sensitive additives, such as superabsorbent polymers, before curing of the binder composition occurs, and which does not result in the additives degrading or decomposing such that they cannot perform their desired function.
  • binder compositions in addition to requiring high curing temperatures, typically include phenol-formaldehyde resins, as these can be economically produced.
  • formaldehyde-containing binders include WO2009/090053, WO2008009467, WO2008/009462, WO2008/009461, WO2008/009460 and WO2008/009465.
  • these binders suffer from the disadvantage that they contain formaldehyde.
  • formaldehyde compounds can be damaging to health and are therefore environmentally undesirable; this has been reflected in legislation directed to lowering or eliminating formaldehyde emissions.
  • formaldehyde is known to have negative effects in terms of phytotoxicity.
  • binder than the standard phenol urea formaldehyde type have been disclosed for use in MMVF growth substrates
  • non-phenol-formaldehyde binders examples include those described in WO2017/114723 and WO2017/114724. However, these binders require a high curing temperature, such as at least 200° C.
  • WO2012/028650 discloses a mineral fibre product comprising MMVF bonded with a cured binder composition, wherein the binder composition prior to curing comprises (i) a sugar component, (ii) a reaction product of a polycarboxylic acid component and an alkanolamine component.
  • the binder composition of WO2012/028650 requires high curing temperatures such as of 200° C. to 300° C.
  • the starting materials used in the production of these binders are rather expensive chemicals. Therefore, there is an on-going need to provide formaldehyde-free binders which have low curing temperatures and are economically produced.
  • a further effect in connection with previously known binder compositions for plant growth substrates is that at least the majority of the starting materials used for the production of these binders stems from fossil fuels.
  • the binder is produced from non-toxic materials.
  • Binder compositions based on renewable materials have been proposed before. However, there are still some disadvantages of MMVF products prepared with these binders in terms of strength when compared with MMVF products prepared with phenol-formaldehyde resins.
  • the reference EP 2424886 B1 (Dynea OY) describes a composite material comprising a crosslinkable resin of a proteinous material.
  • the composite material is a cast mould comprising an inorganic filler, like e.g. sand, and/or wood, and a proteinous material as well as enzymes suitable for crosslinking the proteinous material.
  • a mineral wool product is not described in EP 2424886 B1.
  • the reference C. Pe ⁇ a, K. de la Caba, A. Eceiza, R. Ruseckaite, I. Mondragon in Biores. Technol. 2010, 101, 6836-6842 is concerned with the replacement of non-biodegradable plastic films by renewable raw materials from plants and wastes of meat industry.
  • this reference describes the use of hydrolysable chestnut-tree tannin for modification of a gelatin in order to form films.
  • the reference does not describe binders, in particular not binders for mineral wool.
  • binder compositions involve components which are corrosive and/or harmful. This requires protective measures for the machinery involved in the production of growth substrates to prevent corrosion and also requires safety measures for the persons handling this machinery. This leads to increased costs and health issues.
  • Temperature-sensitive means additives which starts to degrade, decompose or be destroyed when exposed to temperatures of 50° C. or more, such as 100° C. or more or 200° C., such as between 50 to 300° C., such as 80° C. to 230° C. or 100° C. to 200° C. It would therefore be desirable to produce a binder composition which does not require high temperatures for curing. It would be desirable for the binder composition to have a curing temperature which does not degrade, decompose or destroy temperature-sensitive additives, such as superabsorbent polymers.
  • this binder composition it would be desirable for this binder composition to be formaldehyde-free. It would also be desirable for the binder composition to be derived mostly from renewable materials. It would also be desirable for the binder composition to be economical to produce. It would be desirable for the binder composition to be free from components which are corrosive and/or harmful.
  • MMVF man-made vitreous fibres
  • the uncured binder composition comprises at least one hydrocolloid.
  • coherent growth substrate product comprising;
  • binder composition prior to curing comprises at least one hydrocolloid.
  • a coherent growth substrate product as a substrate for growing plants or for propagating seeds
  • the coherent growth substrate product comprises;
  • binder composition prior to curing comprises at least one hydrocolloid.
  • a method of growing plants in a coherent growth substrate product comprising:
  • the coherent growth substrate product comprises;
  • binder composition prior to curing comprises at least one hydrocolloid.
  • a method of propagating seeds in a coherent growth substrate product comprising:
  • the coherent growth substrate product comprises;
  • binder composition prior to curing comprises at least one hydrocolloid.
  • the present inventors have surprisingly found that it is possible to produce a binder composition, as described above, which has a low curing temperature. This allows additives which would normally start to degrade, decompose or be destroyed by high temperatures to be included in a growth substrate, along with a binder composition, and in particular, before the binder composition is cured.
  • the inventors also surprisingly discovered that a binder composition with the above-described advantages can be produced from renewable materials to a large degree.
  • the binder composition is formaldehyde-free, economical to produce and does not contain components which are corrosive and/or harmful.
  • the present invention provides a method of producing a coherent growth substrate product formed of man-made vitreous fibres (MMVF), comprising the steps of:
  • the uncured binder composition comprises at least one hydrocolloid and preferably at least one fatty acid ester of glycerol;
  • MMVF man-made vitreous fibres
  • the MMVF may be made by any of the methods known to those skilled in the art for production of MMVF growth substrate products.
  • a mineral charge is provided, which is melted in a furnace to form a mineral melt.
  • the melt is then formed into fibres by means of rotational fiberisation.
  • the melt may be formed into fibres by external centrifuging e.g. using a cascade spinner, to form a cloud of fibres.
  • the melt may be formed into fibres by internal centrifugal fiberisation e.g. using a spinning cup, to form a cloud of fibres.
  • these fibres are then collected to form a primary fleece or web, the primary fleece or web is then cross-lapped to form a secondary fleece or web.
  • the secondary fleece or web is then cured and formed into a growth substrate.
  • the MMVF can be of the conventional type used for formation of known MMVF growth substrates. It can be glass wool or slag wool but is usually stone wool. Stone wool generally has a content of iron oxide at least 3% and content of alkaline earth metals (calcium oxide and magnesium oxide) from 10 to 40%, along with the other usual oxide constituents of mineral wool. These may include silica; alumina; alkali metals (sodium oxide and potassium oxide), titania and other minor oxides. In general it can be any of the types of man-made vitreous fibre which are conventionally known for production of growth substrates.
  • the geometric mean fibre diameter is often in the range of 1.5 to 10 microns, in particular 2 to 8 microns, preferably 3 to 6 microns as conventional.
  • the uncured binder composition may be added to the MMVF at the fiberisation stage.
  • the fiberisation stage is the stage at which the fibres are formed. This involves adding the uncured binder composition to the fibres as they form i.e. to the clouds of fibres as they form. These methods are well known in the art.
  • the uncured binder composition is sprayed onto the fibres as they form i.e. onto the clouds of forming fibres.
  • the uncured binder composition may be added in solid or liquid form.
  • the uncured binder composition is in liquid form, most preferably in aqueous form.
  • the uncured binder composition may be added to the fibres after they have formed.
  • the uncured binder composition may be added to the fibres that are formed from either internal or external centrifugal fiberisation.
  • the uncured binder composition may be added in solid or liquid form, preferably in liquid form, most preferably in aqueous form.
  • the superabsorbent polymer may be added after the fibres are formed.
  • the superabsorbent polymer may be added to the fibres that are formed from either internal or external centrifugal fiberisation.
  • the superabsorbent polymer is preferably added to a primary fleece or web. Preferably the superabsorbent polymer is added as particles.
  • the uncured binder composition and the superabsorbent polymer are added after fiberisation, such as to the primary web or fleece then they can be added simultaneously or consecutively.
  • the uncured binder composition may be added first to the formed fibres, and then the superabsorbent polymer added subsequently.
  • the uncured binder composition and superabsorbent polymer may be combined into a mixture, and said mixture is then added to the formed fibres.
  • the superabsorbent polymer may be added first to the formed fibres and the uncured binder composition added subsequently.
  • the uncured binder composition may be added to the fibres as they form i.e to the clouds of fibres as they form, and the superabsorbent polymer is subsequently added to the formed fibres.
  • the uncured binder composition and the superabsorbent polymer are added at the same stage, as this simplifies the overall process of producing the growth substrate, by avoiding an additional step in manufacturing.
  • the uncured binder composition and the superabsorbent polymer are both added after fiberisation, such as to the primary web or fleece as it simplifies the process of producing the growth substrate by avoiding an additional step in manufacturing.
  • the binder composition is then cured to form the coherent growth substrate.
  • the binder composition is cured by a chemical and/or physical reaction of the binder composition components.
  • the curing takes place in a curing device.
  • the curing is carried out at temperatures from 5 to 95° C., such as 5 to 80° C., such as 5 to 60° C., such as 8 to 50° C., such as 10 to 40° C.
  • the curing takes place in a conventional curing oven for mineral wool production operating at a temperature of from 5 to 95° C., such as 5 to 80° C., such as 10 to 60° C., such as 20 to 40° C.
  • the curing process may commence immediately after application of the binder to the fibres.
  • the curing is defined as a process whereby the binder composition undergoes a physical and/or chemical reaction which in case of a chemical reaction usually increases the molecular weight of the compounds in the binder composition and thereby increases the viscosity of the binder composition, usually until the binder composition reaches a solid state.
  • the curing process comprises cross-linking and/or water inclusion as crystal water.
  • the cured binder contains crystal water that may decrease in content and raise in content depending on the prevailing conditions of temperature, pressure and humidity.
  • the curing process comprises a drying process.
  • the curing process comprises drying by pressure.
  • the pressure may be applied by blowing air or gas through/over the mixture of mineral fibres and binder composition.
  • the blowing process may be accompanied by heating or cooling or it may be at ambient temperature.
  • the curing is performed in oxygen-depleted surroundings.
  • the applicant believes that performing the curing in an oxygen-depleted surrounding is particularly beneficial when the binder composition includes an enzyme because it increases the stability of the enzyme component in some embodiments, in particular of the transglutaminase enzyme, and thereby improves the crosslinking efficiency.
  • the curing process is therefore performed in an inert atmosphere, in particular in an atmosphere of an inert gas, like nitrogen.
  • oxidizing agents can be added.
  • Oxidising agents as additives can serve to increase the oxidising rate of the phenolics in particular tannins.
  • One example is the enzyme tyrosinase which oxidizes phenols to hydroxy-phenols/quinones and therefore accelerates the binder forming reaction.
  • the oxidising agent is oxygen, which is supplied to the binder composition.
  • the curing is performed in oxygen-enriched surroundings.
  • the uncured binder composition comprises at least one hydrocolloid, and preferably at least one fatty acid ester of glycerol.
  • the binder composition preferably has two components, namely at least one hydrocolloid and at least one fatty acid ester of glycerol.
  • the present invention therefore involves natural and non-toxic components and is therefore safe to work with.
  • the binder composition is based on renewable resources and has excellent properties concerning strength (both unaged and aged).
  • the binder composition used for the production of the coherent growth substrate products according to the present invention can be cured at ambient temperature or in the vicinity of ambient temperature, temperature-sensitive additives may be incorporated before curing of the binder composition.
  • a further advantage of the growth substrate products is that they may be shaped as desired after application of the binder composition but prior to curing. This opens the possibility for making tailor-made products.
  • a further advantage is the strongly reduced punking risk.
  • Punking may be associated with exothermic reactions during manufacturing of the mineral wool product which increase temperatures through the thickness of the insulation causing a fusing or devitrification of the MMVF and eventually creating a fire hazard. In the worst case, punking causes fires in the stacked pallets stored in warehouses or during transportation.
  • Yet another advantage is the absence of emissions during curing, in particular the absence of VOC emissions.
  • the binder is formaldehyde free.
  • formaldehyde free is defined to characterize a mineral wool product where the emission is below 5 ⁇ g/m 2 /h of formaldehyde from the mineral wool product, preferably below 3 ⁇ g/m 2 /h.
  • the test is carried out in accordance with ISO 16000 for testing aldehyde emissions.
  • a surprising advantage of embodiments of coherent growth substrate products according to the present invention is that they show self-healing properties. After being exposed to very harsh conditions when MMVF products loose a part of their strength, the growth substrate product according to the present invention can regain a part of, the whole of or even exceed the original strength.
  • the aged strength is at least 80%, such as at least 90%, such as at least 100%, such as at least 130%, such as at least 150% of the unaged strength. This is in contrast to conventional growth substrate products for which the loss of strength after being exposed to harsh environmental conditions is irreversible.
  • Hydrocolloids are hydrophilic polymers, of vegetable, animal, microbial or synthetic origin, that generally contain many hydroxyl groups and may be polyelectrolytes. They are widely used to control the functional properties of aqueous foodstuffs.
  • Hydrocolloids may be proteins or polysaccharides and are fully or partially soluble in water and are used principally to increase the viscosity of the continuous phase (aqueous phase) i.e. as gelling agent or thickener. They can also be used as emulsifiers since their stabilizing effect on emulsions derives from an increase in viscosity of the aqueous phase.
  • a hydrocolloid usually consists of mixtures of similar, but not identical molecules and arising from different sources and methods of preparation. The thermal processing and for example, salt content, pH and temperature all affect the physical properties they exhibit. Descriptions of hydrocolloids often present idealised structures but since they are natural products (or derivatives) with structures determined by for example stochastic enzymatic action, not laid down exactly by the genetic code, the structure may vary from the idealised structure.
  • hydrocolloids are polyelectrolytes (for example alginate, gelatin, carboxymethylcellulose and xanthan gum).
  • Polyelectrolytes are polymers where a significant number of the repeating units bear an electrolyte group. Polycations and polyanions are polyelectrolytes. These groups dissociate in aqueous solutions (water), making the polymers charged. Polyelectrolyte properties are thus similar to both electrolytes (salts) and polymers (high molecular weight compounds) and are sometimes called polysalts.
  • the charged groups ensure strong hydration, particularly on a per-molecule basis.
  • the presence of counter-ions and co-ions introduce complex behavior that is ion-specific.
  • a proportion of the counter-ions remain tightly associated with the polyelectrolyte, being trapped in its electrostatic field and so reducing their activity and mobility.
  • the binder composition may comprise one or more counter-ion(s) selected from the group of Mg2+, Ca2+, Sr2+, Ba2+.
  • Another property of a polyelectrolyte is the high linear charge density (number of charged groups per unit length).
  • Gels are liquid-water-containing networks showing solid-like behavior with characteristic strength, dependent on their concentration, and hardness and brittleness dependent on the structure of the hydrocolloid(s) present.
  • Hydrogels are hydrophilic crosslinked polymers that are capable of swelling to absorb and hold vast amounts of water. They are particularly known from their use in sanitary products. Commonly used materials make use of polyacrylates, but hydrogels may be made by crosslinking soluble hydrocolloids to make an insoluble but elastic and hydrophilic polymer.
  • hydrocolloids comprise: Agar agar, Alginate, Arabinoxylan, Carrageenan, Carboxymethylcellulose, Cellulose, Curdlan, Gelatin, Gellan, ⁇ -Glucan, Guar gum, Gum arabic, Locust bean gum, Pectin, Starch, Xanthan gum.
  • the at least one hydrocolloid is selected from the group consisting of gelatin, pectin, starch, alginate, agar agar, carrageenan, gellan gum, guar gum, gum arabic, locust bean gum, xanthan gum, cellulose derivatives such as carboxymethylcellulose, arabinoxylan, cellulose, curdlan, ⁇ -glucan.
  • polyelectrolytic hydrocolloids comprise: gelatin, pectin, alginate, carrageenan, gum arabic, xanthan gum, cellulose derivatives such as carboxymethylcellulose.
  • the at least one hydrocolloid is a polyelectrolytic hydrocolloid.
  • the at least one hydrocolloid may be selected from the group consisting of gelatin, pectin, alginate, carrageenan, gum arabic, xanthan gum, cellulose derivatives such as carboxymethylcellulose.
  • the at least one hydrocolloid may be a gel former.
  • the at least one hydrocolloid may be used in the form of a salt, such as a salt of Na+, K+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+.
  • Gelatin is derived from chemical degradation of collagen. Gelatin may also be produced by recombinant techniques. Gelatin is water soluble and has a molecular weight of 10.000 to 500.000 g/mol, such as 30.000 to 300.000 g/mol dependent on the grade of hydrolysis. Gelatin is a widely used food product and it is therefore generally accepted that this compound is totally non-toxic and therefore no precautions are to be taken when handling gelatin.
  • Gelatin is a heterogeneous mixture of single or multi-stranded polypeptides, typically showing helix structures. Specifically, the triple helix of type I collagen extracted from skin and bones, as a source for gelatin, is composed of two al (I) and one ⁇ 2(I) chains.
  • Gelatin solutions may undergo coil-helix transitions.
  • A-type gelatins are produced by acidic treatment.
  • B-type gelatins are produced by basic treatment.
  • transglutaminase is used to link lysine to glutamine residues; in one embodiment, glutaraldehyde is used to link lysine to lysine, in one embodiment, tannins are used to link lysine residues.
  • the gelatin can also be further hydrolysed to smaller fragments of down to 3000 g/mol.
  • collagen like helices may be formed.
  • hydrocolloids may also comprise helix structures such as collagen like helices.
  • Gelatin may form helix structures.
  • the cured binder comprising hydrocolloid comprises helix structures.
  • the at least one hydrocolloid is a low strength gelatin, such as a gelatin having a gel strength of 30 to 125 Bloom.
  • the at least one hydrocolloid is a medium strength gelatin, such as a gelatin having a gel strength of 125 to 180 Bloom.
  • the at least one hydrocolloid is a high strength gelatin, such as a gelatin having a gel strength of 180 to 300 Bloom.
  • the gelatin is preferably originating from one or more sources from the group consisting of mammal, bird species, such as from cow, pig, horse, fowl, and/or from scales, skin of fish.
  • urea may be added to the binder composition.
  • the inventors have found that the addition of even small amounts of urea causes denaturation of the gelatin, which can slow down the gelling, which might be desired in some embodiments.
  • the addition of urea might also lead to a softening of the product.
  • the inventors have found that the carboxylic acid groups in gelatins interact strongly with trivalent and tetravalent ions, for example aluminum salts. This is especially true for type B gelatins which contain more carboxylic acid groups than type A gelatins.
  • curing/drying of binder composition including gelatin should not start off at very high temperatures.
  • starting the curing at low temperatures may lead to stronger products. Without being bound to any particular theory, it is assumed by the inventors that starting curing at high temperatures may lead to an impenetrable outer shell of the binder composition which hinders water from underneath to get out.
  • the binder compositions including gelatins are very heat resistant.
  • the present inventors have found that in some embodiments the cured binders can sustain temperatures up to 300° C. without degradation.
  • Pectin is a heterogeneous grouping of acidic structural polysaccharides, found in fruit and vegetables which form acid-stable gels.
  • pectins do not possess exact structures, instead it may contain up to 17 different monosaccharides and over 20 types of different linkages. D-galacturonic acid residues form most of the molecules.
  • Pectin may form helix structures.
  • the gelling ability of the di-cations is similar to that found with alginates (Mg2+ is much less than for Ca2+, Sr2+ being less than for Ba2+).
  • Alginates are scaffolding polysaccharides produced by brown seaweeds.
  • Alginates are linear unbranched polymers containing ⁇ -(1,4)-linked D-mannuronic acid (M) and ⁇ -(1,4)-linked L-guluronic acid (G) residues.
  • Alginate may also be a bacterial alginate, such as which are additionally O-acetylated.
  • Alginates are not random copolymers but, according to the source algae, consist of blocks of similar and strictly alternating residues (that is, MMMMMM, GGGGGG and GMGMGMGM), each of which have different conformational preferences and behavior. Alginates may be prepared with a wide range of average molecular weights (50-100000 residues).
  • the free carboxylic acids have a water molecule H3O+ firmly hydrogen bound to carboxylate.
  • Ca2+ ions can replace this hydrogen bonding, zipping guluronate, but not mannuronate, chains together stoichiometrically in a so-called egg-box like conformation.
  • Recombinant epimerases with different specificities may be used to produce designer alginates.
  • Alginate may form helix structures.
  • Carrageenan is a collective term for scaffolding polysaccharides prepared by alkaline extraction (and modification) from red seaweed.
  • Carrageenans are linear polymers of about 25,000 galactose derivatives with regular but imprecise structures, dependent on the source and extraction conditions.
  • ⁇ -carrageenan (kappa-carrageenan) is produced by alkaline elimination from ⁇ -carrageenan isolated mostly from the tropical seaweed Kappaphycus alvarezii (also known as Eucheuma cottonii ).
  • ⁇ -carrageenan (iota-carrageenan) is produced by alkaline elimination from v-carrageenan isolated mostly from the Philippines seaweed Eucheuma denticulatum (also called Spinosum ).
  • ⁇ -carrageenan (lambda-carrageenan) (isolated mainly from Gigartina pistillata or Chondrus crispus ) is converted into ⁇ -carrageenan (theta-carrageenan) by alkaline elimination, but at a much slower rate than causes the production of ⁇ -carrageenan and ⁇ -carrageenan.
  • the strongest gels of ⁇ -carrageenan are formed with K+ rather than Li+, Na+, Mg2+, Ca2+, or Sr2+.
  • All carrageenans may form helix structures.
  • Gum arabic is a complex and variable mixture of arabinogalactan oligosaccharides, polysaccharides and glycoproteins. Gum arabic consists of a mixture of lower relative molecular mass polysaccharide and higher molecular weight hydroxyproline-rich glycoprotein with a wide variability.
  • Gum arabic has a simultaneous presence of hydrophilic carbohydrate and hydrophobic protein.
  • Xanthan gum is a microbial desiccation-resistant polymer prepared e.g. by aerobic submerged fermentation from Xanthomonas campestris.
  • Xanthan gum is an anionic polyelectrolyte with a ⁇ -(1,4)-D-glucopyranose glucan (as cellulose) backbone with side chains of -(3,1)- ⁇ -linked D-mannopyranose-(2,1)- ⁇ -D-glucuronic acid-(4,1)- ⁇ -D-mannopyranose on alternating residues.
  • Xanthan gums natural state has been proposed to be bimolecular antiparallel double helices.
  • a conversion between the ordered double helical conformation and the single more-flexible extended chain may take place at between 40° C.-80° C.
  • Xanthan gums may form helix structures.
  • Xanthan gums may contain cellulose.
  • cellulose derivative is carboxymethylcellulose.
  • Carboxymethylcellulose is a chemically modified derivative of cellulose formed by its reaction with alkali and chloroacetic acid.
  • the CMC structure is based on the ⁇ -(1,4)-D-glucopyranose polymer of cellulose. Different preparations may have different degrees of substitution, but it is generally in the range 0.6-0.95 derivatives per monomer unit.
  • Agar agar is a scaffolding polysaccharide prepared from the same family of red seaweeds (Rhodophycae) as the carrageenans. It is commercially obtained from species of Gelidium and Gracilariae.
  • Agar agar consists of a mixture of agarose and agaropectin.
  • Agarose is a linear polymer, of relative molecular mass (molecular weight) about 120,000, based on the -(1,3)- ⁇ -D-galactopyranose-(1,4)-3,6-anhydro- ⁇ -L-galactopyranose unit.
  • Agaropectin is a heterogeneous mixture of smaller molecules that occur in lesser amounts.
  • Agar agar may form helix structures.
  • Arabinoxylans consist of ⁇ -L-arabinofuranose residues attached as branch-points to ⁇ -(1,4)-linked D-xylopyranose polymeric backbone chains.
  • Arabinoxylan may form helix structures.
  • Cellulose is a scaffolding polysaccharide found in plants as microfibrils (2-20 nm diameter and 100-40 000 nm long). Cellulose is mostly prepared from wood pulp. Cellulose is also produced in a highly hydrated form by some bacteria (for example, Acetobacter xylinum ).
  • Cellulose is a linear polymer of ⁇ -(1,4)-D-glucopyranose units in 4C1 conformation. There are four crystalline forms, la, 113, II and III.
  • Cellulose derivatives may be methyl cellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose.
  • Curdlan is a polymer prepared commercially from a mutant strain of Alcaligenes faecalis var. myxogenes .
  • Curdlan (curdlan gum) is a moderate relative molecular mass, unbranched linear 1,3 ⁇ -D glucan with no side-chains.
  • Curdlan may form helix structures.
  • Curdlan gum is insoluble in cold water but aqueous suspensions plasticize and briefly dissolve before producing reversible gels on heating to around 55° C. Heating at higher temperatures produces more resilient irreversible gels, which then remain on cooling.
  • Scleroglucan is also a 1,3 ⁇ -D glucan but has additional 1,6 ⁇ -links that confer solubility under ambient conditions.
  • Gellan gum is a linear tetrasaccharide 4)-L-rhamnopyranosyl-( ⁇ -1,3)-D-glucopyranosyl-( ⁇ -1,4)-D-glucuronopyranosyl-( ⁇ -1,4)-D-glucopyranosyl-( ⁇ -1, with O(2) L-glyceryl and O(6) acetyl substituents on the 3-linked glucose.
  • Gellan may form helix structures.
  • ⁇ -Glucans occur in the bran of grasses (Gramineae).
  • ⁇ -Glucans consist of linear unbranched polysaccharides of linked ⁇ -(1,3)- and ⁇ -(1,4)-D-glucopyranose units in a non-repeating but non-random order.
  • Guar gum also called guaran is a reserve polysaccharide (seed flour) extracted from the seed of the leguminous shrub Cyamopsis tetragonoloba.
  • Guar gum is a galactomannana similar to locust bean gum consisting of a (1,4)-linked ⁇ -D-mannopyranose backbone with branch points from their 6-positions linked to ⁇ -D-galactose (that is, 1,6-linked- ⁇ -D-galactopyranose).
  • Guar gum is made up of non-ionic polydisperse rod-shaped polymer.
  • Locust bean gum also called Carob bean gum and Carubin
  • seed flour is a reserve polysaccharide extracted from the seed (kernels) of the carob tree ( Ceratonia siliqua ).
  • Locust bean gum is a galactomannana similar to guar gum consisting of a (1,4)-linked ⁇ -D-mannopyranose backbone with branch points from their 6-positions linked to ⁇ -D-galactose (that is, 1,6-linked ⁇ -D-galactopyranose).
  • Locust bean gum is polydisperse consisting of non-ionic molecules.
  • Starch consists of two types of molecules, amylose (normally 20-30%) and amylopectin (normally 70-80%). Both consist of polymers of ⁇ -D-glucose units in the 4C1 conformation. In amylose these are linked -(1,4)-, with the ring oxygen atoms all on the same side, whereas in amylopectin about one residue in every twenty or so is also linked -(1,6)-forming branch-points. The relative proportions of amylose to amylopectin and -(1,6)-branch-points both depend on the source of the starch. The starch may derive from the source of corn (maize), wheat, potato, tapioca and rice. Amylopectin (without amylose) can be isolated from ‘waxy’ maize starch whereas amylose (without amylopectin) is best isolated after specifically hydrolyzing the amylopectin with pullulanase.
  • Amylose may form helix structures.
  • the at least one hydrocolloid is a functional derivative of starch such as cross-linked, oxidized, acetylated, hydroxypropylated and partially hydrolyzed starch.
  • the binder composition comprises at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least one other hydrocolloid is selected from the group consisting of pectin, starch, alginate, agar agar, carrageenan, gellan gum, guar gum, gum arabic, locust bean gum, xanthan gum, cellulose derivatives such as carboxymethylcellulose, arabinoxylan, cellulose, curdlan, ⁇ -glucan.
  • the binder composition comprises at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least other hydrocolloid is pectin.
  • the binder composition comprises at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least other hydrocolloid is alginate.
  • the binder composition comprises at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least other hydrocolloid is carboxymethylcellulose.
  • the binder composition comprises at least two hydrocolloids, wherein one hydrocolloid is gelatin and wherein the gelatin is present in the aqueous binder composition in an amount of 10 to 95 wt.-%, such as 20 to 80 wt.-%, such as 30 to 70 wt.-%, such as 40 to 60 wt.-%, based on the weight of the hydrocolloids.
  • the binder composition comprises at least two hydrocolloids, wherein the one hydrocolloid and the at least other hydrocolloid have complementary charges.
  • the one hydrocolloid is one or more of gelatin or gum arabic having complementary charges from one or more hydrocolloid(s) selected from the group of pectin, alginate, carrageenan, xanthan gum or carboxymethylcellulose.
  • the binder composition is capable of curing at a temperature of not more than 95° C., such as 5-95° C., such as 10-80° C., such as 20-60° C., such as 40-50° C.
  • the aqueous binder composition is not a thermoset binder composition.
  • thermosetting composition is in a soft solid or viscous liquid state, preferably comprising a prepolymer, preferably comprising a resin, that changes irreversibly into an infusible, insoluble polymer network by curing. Curing is typically induced by the action of heat, whereby typically temperatures above 95° C. are needed.
  • thermosetting resin is called a thermoset or a thermosetting plastic/polymer—when used as the bulk material in a polymer composite, they are referred to as the thermoset polymer matrix.
  • the aqueous binder composition according to the present invention does not contain a poly(meth)acrylic acid, a salt of a poly(meth)acrylic acid or an ester of a poly(meth)acrylic acid.
  • the at least one hydrocolloid is a biopolymer or modified biopolymer.
  • Biopolymers are polymers produced by living organisms. Biopolymers may contain monomeric units that are covalently bonded to form larger structures.
  • RNA and DNA Polynucleotides
  • Polypeptides such as proteins, which are polymers of amino acids
  • Polysaccharides such as linearly bonded polymeric carbohydrate structures.
  • Polysaccharides may be linear or branched; they are typically joined with glycosidic bonds.
  • many saccharide units can undergo various chemical modifications, and may form parts of other molecules, such as glycoproteins.
  • the at least one hydrocolloid is a biopolymer or modified biopolymer with a polydispersity index regarding molecular mass distribution of 1, such as 0.9 to 1.
  • the binder composition comprises proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and the binder composition further comprises at least one phenol and/or quinone containing compound, such as tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups.
  • tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups.
  • the binder composition comprises proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and wherein the binder composition further comprises at least one enzyme selected from the group consisting of transglutaminase (EC 2.3.2.13), protein disulfide isomerase (EC 5.3.4.1), thiol oxidase (EC 1.8.3.2), polyphenol oxidase (EC 1.14.18.1), in particular catechol oxidase, tyrosine oxidase, and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
  • transglutaminase EC 2.3.2.13
  • protein disulfide isomerase EC 5.3.4.1
  • thiol oxidase EC 1.8.3.2
  • polyphenol oxidase EC 1.14.18.1
  • catechol oxidase tyrosine oxidase
  • phenoloxidase lysy
  • the binder composition preferably comprises a component in form of at least one fatty acid ester of glycerol.
  • a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated.
  • Glycerol is a polyol compound having the IUPAC name propane-1,2,3-triol.
  • Naturally occurring fats and oils are glycerol esters with fatty acids (also called triglycerides).
  • fatty acid ester of glycerol refers to mono-, di-, and tri-esters of glycerol with fatty acids.
  • fatty acid can in the context of the present invention be any carboxylic acid with an aliphatic chain, it is preferred that it is carboxylic acid with an aliphatic chain having 4 to 28 carbon atoms, preferably of an even number of carbon atoms.
  • the aliphatic chain of the fatty acid is unbranched.
  • the at least one fatty acid ester of glycerol is in form of a plant oil and/or animal oil.
  • oil comprises at least one fatty acid ester of glycerol in form of oils or fats.
  • the at least one fatty acid ester of glycerol is a plant-based oil.
  • the at least one fatty acid ester of glycerol is in form of fruit pulp fats such as palm oil, olive oil, avocado oil; seed-kernel fats such as lauric acid oils, such as coconut oil, palm kernel oil, babassu oil and other palm seed oils, other sources of lauric acid oils; palmitic-stearic acid oils such as cocoa butter, shea butter, borneo tallow and related fats (vegetable butters); palmitic acid oils such as cottonseed oil, kapok and related oils, pumpkin seed oil, corn (maize) oil, cereal oils; oleic-linoleic acid oils such as sunflower oil, sesame oil, linseed oil, perilla oil, hempseed oil, teaseed oil, safflower and niger seed oils, grape-seed oil, poppyseed oil, leguminous oil such as soybean oil, peanut oil, lupine oil; cruciferous oils such as rapeseed oil, mustard
  • the at least one fatty acid ester of glycerol is in form of a plant oil, in particular selected from one or more components from the group consisting of linseed oil, olive oil, tung oil, coconut oil, hemp oil, rapeseed oil, and sunflower oil.
  • the at least one fatty acid ester of glycerol is selected from one or more components from the group consisting of a plant oil having an iodine number in the range of approximately 136 to 178, such as a linseed oil having an iodine number in the range of approximately 136 to 178, a plant oil having an iodine number in the range of approximately 80 to 88, such as an olive oil having an iodine number in the range of approximately 80 to 88, a plant oil having an iodine number in the range of approximately 163 to 173, such as tung oil having an iodine number in the range of approximately 163 to 173, a plant oil having an iodine number in the range of approximately 7 to 10, such as coconut oil having an iodine number in the range of approximately 7 to 10, a plant oil having an iodine number in the range of approximately 140 to 170, such as hemp oil having an iodine number in the range of approximately
  • the at least one fatty acid ester of glycerol is not of natural origin.
  • the at least one fatty acid ester of glycerol is a modified plant or animal oil.
  • the at least one fatty acid ester of glycerol comprises at least one trans-fatty acid.
  • the at least one fatty acid ester of glycerol is in form of an animal oil, such as a fish oil.
  • an important parameter for the fatty acid ester of glycerol used in the binder composition is the amount of unsaturation in the fatty acid.
  • the amount of unsaturation in fatty acids is usually measured by the iodine number (also called iodine value or iodine absorption value or iodine index). The higher the iodine number, the more C ⁇ C bonds are present in the fatty acid.
  • iodine number also called iodine value or iodine absorption value or iodine index.
  • the higher the iodine number the more C ⁇ C bonds are present in the fatty acid.
  • the at least one fatty acid ester of glycerol comprises a plant oil and/or animal oil having a iodine number of ⁇ 75, such as 75 to 180, such as 130, such as 130 to 180.
  • the at least one fatty acid ester of glycerol comprises a plant oil and/or animal oil having a iodine number of 100, such as 25.
  • the at least one fatty acid ester of glycerol is a drying oil.
  • a drying oil see Poth, Ulrich (2012) “Drying oils and related products” in Ullmann's Encyclopedia of industrial chemistry, Weinheim, Wiley-VCH.
  • the present inventors have found that particularly good results are achieved when the iodine number is either in a fairly high range or, alternatively, in a fairly low range. While not wanting to be bound by any particular theory, the present inventors assume that the advantageous properties inflicted by the fatty acid esters of high iodine number on the one hand and low iodine number on the other hand are based on different mechanisms.
  • the present inventors assume that the advantageous properties of glycerol esters of fatty acids having a high iodine number might be due to the participation of the C ⁇ C double-bonds found in high numbers in these fatty acids in a crosslinking reaction, while the glycerol esters of fatty acids having a low iodine number and lacking high amounts of C ⁇ C double-bonds might allow a stabilization of the cured binder by van der Waals interactions.
  • the content of the fatty acid ester of glycerol is 0.5 to 40, such as 1 to 30, such as 1.5 to 20, such as 3 to 10, such as 4 to 7.5 wt.-%, based on dry hydrocolloid basis.
  • the binder composition comprises gelatin, and the binder composition further comprises a tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups, preferably tannic acid, and the binder composition further comprises at least one fatty acid ester of glycerol, such as at least one fatty acid ester of glycerol selected from one or more components from the group consisting of linseed oil, olive oil, tung oil, coconut oil, hemp oil, rapeseed oil, and sunflower oil.
  • a tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or
  • the binder composition comprises gelatin, and the binder composition further comprises at least one enzyme which is a transglutaminase (EC 2.3.2.13), and the binder composition further comprises at least one fatty acid ester of glycerol, such as at least one fatty acid ester of glycerol selected from one or more components from the group consisting of linseed oil, olive oil, tung oil, coconut oil, hemp oil, rapeseed oil, and sunflower oil.
  • linseed oil olive oil, tung oil, coconut oil, hemp oil, rapeseed oil, and sunflower oil.
  • the aqueous binder composition is formaldehyde-free.
  • the binder composition is consisting essentially of:
  • an oil may be added to the binder composition.
  • the at least one oil is a non-emulsified hydrocarbon oil.
  • the at least one oil is an emulsified hydrocarbon oil.
  • the at least one oil is a plant-based oil.
  • the at least one crosslinker is tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups.
  • the at least one crosslinker is an enzyme selected from the group consisting of transglutaminase (EC 2.3.2.13), protein disulfide isomerase (EC 5.3.4.1), thiol oxidase (EC 1.8.3.2), polyphenol oxidase (EC 1.14.18.1), in particular catechol oxidase, tyrosine oxidase, and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
  • transglutaminase EC 2.3.2.13
  • protein disulfide isomerase EC 5.3.4.1
  • thiol oxidase EC 1.8.3.2
  • polyphenol oxidase EC 1.14.18.1
  • catechol oxidase catechol oxidase
  • tyrosine oxidase tyrosine oxidase
  • phenoloxidase lysyl oxidase
  • the loss on ignition (LOI) of coherent growth substrate product is within the range of 0.1 to 25.0%, such as 0.3 to 18.0%, such as 0.5 to 12.0%, such as 0.7 to 8.0% by weight.
  • the binder is not crosslinked. In an alternative embodiment, the binder is crosslinked.
  • the at least one hydrocolloid is selected from the group consisting of gelatin, pectin, starch, alginate, agar agar, carrageenan, gellan gum, guar gum, gum arabic, locust bean gum, xanthan gum, cellulose derivatives such as carboxymethylcellulose, arabinoxylan, cellulose, curdlan, ⁇ -glucan.
  • the at least one hydrocolloid is a polyelectrolytic hydrocolloid.
  • the binder results from the curing of a binder composition in which the at least one hydrocolloid is selected from the group consisting of gelatin, pectin, alginate, carrageenan, gum arabic, xanthan gum, cellulose derivatives such as carboxymethylcellulose.
  • the binder results from the curing of a binder composition comprising at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least one other hydrocolloid is selected from the group consisting of pectin, starch, alginate, agar agar, carrageenan, gellan gum, guar gum, gum arabic, locust bean gum, xanthan gum, cellulose derivatives such as carboxymethylcellulose, arabinoxylan, cellulose, curdlan, ⁇ -glucan.
  • a binder composition comprising at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least one other hydrocolloid is selected from the group consisting of pectin, starch, alginate, agar agar, carrageenan, gellan gum, guar gum, gum arabic, locust bean gum, xanthan gum, cellulose derivatives such as carboxymethylcellulose, arabinoxylan, cellulose, curdlan, ⁇ -glucan.
  • the binder results from the curing of a binder composition in which the gelatin is present in an amount of 10 to 95 wt.-%, such as 20 to 80 wt.-%, such as 30 to 70 wt.-%, such as 40 to 60 wt.-%, based on the weight of the hydrocolloids.
  • the binder results from the curing of a binder composition in which the one hydrocolloid and the at least other hydrocolloid have complementary charges.
  • the loss on ignition (LOI) is within the range of 0.1 to 25.0%, such as 0.3 to 18.0%, such as 0.5 to 12.0%, such as 0.7 to 8.0% by weight.
  • the binder results from the curing of a binder composition at a temperature of less than 95° C., such as 5-95° C., such as 10-80° C., such as 20-60° C., such as 40-50° C.
  • the binder results from the curing of a binder composition which is not a thermoset binder composition.
  • the binder results from a binder composition which does not contain a poly(meth)acrylic acid, a salt of a poly(meth)acrylic acid or an ester of a poly(meth)acrylic acid.
  • the binder results from the curing of a binder composition comprising at least one hydrocolloid which is a biopolymer or modified biopolymer.
  • the binder results from the curing of a binder composition comprising proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and the binder composition further comprises at least one phenol and/or quinone containing compound, such as tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups.
  • tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups.
  • the binder results from the curing of a binder composition comprising proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and wherein the binder composition further comprises at least one enzyme selected from the group consisting of transglutaminase (EC 2.3.2.13), protein disulfide isomerase (EC 5.3.4.1), thiol oxidase (EC 1.8.3.2), polyphenol oxidase (EC 1.14.18.1), in particular catechol oxidase, tyrosine oxidase, and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
  • transglutaminase EC 2.3.2.13
  • protein disulfide isomerase EC 5.3.4.1
  • thiol oxidase EC 1.8.3.2
  • polyphenol oxidase EC 1.14.18.1
  • catechol oxidase tyrosine oxidase
  • the binder composition applied to the MMVF comprises a pH-adjuster, in particular in form of a pH buffer.
  • the binder composition in its uncured state has a pH value of less than 8, such as less than 7, such as less than 6.
  • the binder composition for mineral fibres comprises a pH-adjuster, preferably in form of a base, such as organic base, such as amine or salts thereof, inorganic bases, such as metal hydroxide, such as KOH or NaOH, ammonia or salts thereof.
  • a base such as organic base, such as amine or salts thereof
  • inorganic bases such as metal hydroxide, such as KOH or NaOH, ammonia or salts thereof.
  • the pH adjuster is an alkaline metal hydroxide, in particular NaOH.
  • the binder composition according to the present invention has a pH of 7 to 10, such as 7.5 to 9.5, such as 8 to 9.
  • an oil may be added to the binder composition.
  • the at least one oil is a non-emulsified hydrocarbon oil.
  • the at least one oil is an emulsified hydrocarbon oil.
  • the at least one oil is a plant-based oil.
  • the at least one crosslinker is tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups.
  • the at least one crosslinker is an enzyme selected from the group consisting of transglutaminase (EC 2.3.2.13), protein disulfide isomerase (EC 5.3.4.1), thiol oxidase (EC 1.8.3.2), polyphenol oxidase (EC 1.14.18.1), in particular catechol oxidase, tyrosine oxidase, and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
  • transglutaminase EC 2.3.2.13
  • protein disulfide isomerase EC 5.3.4.1
  • thiol oxidase EC 1.8.3.2
  • polyphenol oxidase EC 1.14.18.1
  • catechol oxidase catechol oxidase
  • tyrosine oxidase tyrosine oxidase
  • phenoloxidase lysyl oxidase
  • Further additives may be additives containing calcium ions and antioxidants.
  • the binder composition contains additives in form of linkers containing acyl groups and/or amine groups and/or thiol groups. These linkers can strengthen and/or modify the network of the cured binder.
  • the binder compositions contain further additives in form of additives selected from the group consisting of PEG-type reagents, silanes, and hydroxylapatites.
  • Superabsorbent polymers are hydrophilic materials which can absorb fluid and retain it under pressure without dissolution in the fluid being absorbed.
  • the materials used are well-known. They are generally all synthesized by one of two routes. In the first, a water soluble polymer is cross-linked so that it can swell between cross-links but not dissolve. In the second, a water-soluble monomer is co-polymerized with a water insoluble monomer into blocks.
  • the earliest superabsorbent materials were saponified starch graft polyacrylonitrile copolymers.
  • Synthetic superabsorbers include polyacrylic acid, polymaleic anhydride-vinyl monomer superabsorbents, starch-polyacrylic acid grafts, polyacrylonitrile-based polymers, cross-linked polyacrylamide, cross-linked sulfonated polystyrene, cross-linked n-vinyl pyrrolidone or vinyl pyrrolidone-acrylamide copolymer, and polyvinyl alcohol superabsorbents. These polymers absorb many times their own weight in aqueous fluid.
  • Additional superabsorbent polymers include sodium propionate-acrylamide, poly(vinyl pyridine), poly(ethylene imine), polyphosphates, poly(ethylene oxide), vinyl alcohol copolymer with acrylamide, and vinyl alcohol copolymer with acrylic acid acrylate. These superabsorbent polymers can be used in this invention.
  • Superabsorbent polymers are beneficially used in plant growth substrates to improve water retention.
  • the particles of superabsorbent polymer that are present in the growth substrate retain water, and then make the water available to the seed/seedling/plant when required.
  • the superabsorbent polymer is also beneficial for water distribution, as it can be distributed throughout the growth substrate, and hence improves water distribution.
  • By varying the amount of superabsorbent polymer in the substrate it is possible to set the maximum water content in the substrate. The rest of the water will drain from the growth substrate in use. The presence of the superabsorbent polymer will result in stability of the water content in the growth substrate product in use.
  • Superabsorbent polymers typically starts to degrade, decompose or be destroyed when exposed to temperatures of 50° C. or more, such as 100° C. or more or 200° C., such as between 50 to 300° C., such as 80° C. to 230° C. or 100° C. to 200° C.
  • a significant benefit of the present invention is that, due to the use of a binder composition which cures at low temperatures, superabsorbent polymers may be added to the MMVF growth substrate before curing occurs. If the binder composition cured at 150° C. or more (as is typical for binder compositions in the prior art), then the superabsorbent polymer would have to be added after curing
  • a problem associated with adding superabsorbent polymers, or indeed any additive, after curing has occurred is that, typically, this step is carried out by users of the product rather than manufacturers.
  • the binder composition Once the binder composition has cured, the coherent growth substrate has formed. It is undesirable for additives to be added to the coherent growth substrate after manufacture, as this can lead to dusting problems. Specifically, particulates of additives become detached from the product during handling and transport. To avoid this, the growers, who use the coherent substrates in their growing facilities, typically add the superabsorbent polymer to the substrates. This can lead to overdosing or underdosing of the substrate. Further, adding additives after manufacture of the growth substrate can result in inhomogeneous distribution of additives throughout the growth substrate.
  • An advantage of the present invention is that a coherent product can be formed which has the correct amount of superabsorbent polymer present, in the correct place. This is because the superabsorbent polymer is added before the coherent growth product is formed i.e. before curing of the binder composition. Therefore, the growers are not required to add the superabsorbent polymer themselves, and the problems of overdosing or underdosing are removed. Furthermore, the superabsorbent polymer does not become detached during handling and transport.
  • Another benefit associated with adding the superabsorbent polymer before the binder composition is cured, is that this allows the polymer to be contained more securely in the substrate. As the binder composition cures, this helps bind the superabsorbent polymer particles to the MMVF.
  • the superabsorbent polymer is one which starts to degrade, decompose or be destroyed at temperatures of less than or equal to 250° C., more preferably at 80° C. to 230° C., most preferably 100° C. to 200° C.
  • the superabsorbent polymer may be provided in dry form, hydrated form or partially hydrated form.
  • dry form When the SAP is in dry form it is usually provided in the form of particles or granules, which are generally flowable when dry.
  • “Hydrated form” means that the superabsorbent polymer has absorbed at least 90% of the maximum amount of water it is capable of holding.
  • Partially hydrated form means that the superabsorbent polymer has absorbed some water, but is able to absorb more water.
  • “Dry form” means that the SAP comprises less than 5 wt % water, preferably less than 3 wt % water, preferably less than 1 wt % water, preferably no water.
  • the superabsorbent polymer can be added to the growth substrate as discussed above, in any form.
  • the superabsorbent polymer is in dry form when added, most preferably in particles. This is beneficial because solid particles of SAP are easier to handle than hydrated SAP, therefore, manufacturing is simplified.
  • SAPs are added in hydrated form, there is a possibility that dehydration may occur, which is deform the superabsorbent polymer.
  • the superabsorbent polymer is preferably added in amount of 0.1 wt % to 10 wt % based on the weight the growth substrate, preferably 0.5 wt % to 7 wt %, preferably 1 wt % to 5 wt %.
  • the preferred amounts of superabsorbent polymer provide a desirable water buffer in the growth substrate product when it is used to propagated seeds or grow plants. This is particularly advantageous when the growth substrate product is in contact with soil as the superabsorbent polymer forms a reservoir of water within the growth substrate which is not drawn out be the suction pressure into the soil. Maintaining the water buffer helps to prevent plant necrosis and helps the plant survive until it is rooted-in in soil.
  • the superabsorbent polymer is added as particles.
  • the weight average diameter of the particles of superabsorbent polymer is in the range of 0.05 mm to 2 mm, preferably 0.1 mm to 1 mm.
  • the superabsorbent polymer may be distributed evenly throughout the growth substrate product. This has the advantage of improving water distribution over the entire growth substrate.
  • the superabsorbent polymer allows water to be retained across the substrate, thereby counteracting the effect of gravity i.e. for water to accumulate in the bottom of the substrate.
  • the superabsorbent polymer may be more concentrated in certain regions of the growth substrate.
  • the superabsorbent polymer is present in higher concentration around the region in which the seed/seedling/plant will be positioned, in comparison to the rest of the growth substrate, in order to provide optimal water levels.
  • additives are added to the MMVF growth substrate. These additives may be added at the same time as the superabsorbent polymer and/or the uncured binder composition, as discussed above. Preferably the additives are added to the MMVF fibres as they form, along with the uncured binder composition and the superabsorbent polymer. This ensures the manufacturing procedure is simplified.
  • the additive is selected from clay, fertilisers, pesticides, micro-organisms, fungi, biologically active additives, pigments and mixtures thereof.
  • the fertiliser is a controlled-release fertiliser. This ensures that nutrients are released at the optimal time during the growth cycle.
  • the fertilisers may be in the form of solid particles or a dispersion. Preferably it is in the form of solid particles. This is preferred as solids are easier to handle during manufacture than liquids.
  • the pigment may be in the form of solid particles or dispersion. Preferably it is in the form of solid particles. This is preferred as solids are easier to handle during manufacture than liquids.
  • the pigment is used to colour the growth substrate product. For example, it may be desirable for the colour of the substrate to be darker, so that more light is absorbed. Equally, it may be preferable for the substrate to be lighter, in order to reflect light. In addition, it is possible to include a dark colour in the growth substrate as it makes it easier for the grower to check the position of any light coloured seeds in the mineral wool growth substrate. Additionally, a brown coloured mineral wool growth substrate is desirable for the end users as it has a closer resemblance to soil than light coloured mineral wool growth substrates.
  • the growth substrate may further comprise a wetting agent.
  • the present invention provides a coherent growth substrate product comprising; man-made vitreous fibres (MMVF) bonded with a cured binder composition; and a superabsorbent polymer;
  • MMVF man-made vitreous fibres
  • binder composition prior to curing comprises at least one hydrocolloid and preferably at least one fatty acid ester of glycerol.
  • the cured growth substrate of the present invention is a dry product prior to use to propagate seeds or grow plants.
  • “Dry” means that the substrate comprises less than 5 wt % water, preferably less than 3 wt % water, preferably less than 1 wt % water, preferably less than 0.1 wt %, most preferably no water.
  • the growth substrate product comprises at least 90 wt % man-made vitreous fibres by weight of the total solids content of the growth substrate.
  • An advantage of having such an amount of fibres present in the growth substrate product is that there are sufficient pores formed between the fibres to allow the growth substrate product to hold water and nutrients for the plant, whilst maintaining the ability for roots of the plants to permeate the growth substrate product.
  • the remaining solid content is made up primarily of binder and additives.
  • the growth substrate product has an average density of from 30 to 150 kg/m 3 , such as 30 to 100 kg/m 3 , more preferably 40 to 90 kg/m 3 .
  • the growth substrate product preferably has a volume in the range 3 to 86,400 cm 3 , such as 5 to 30,000 cm 3 , preferably 8 to 20,000 cm 3 .
  • the growth substrate product may be in the form of a product conventionally known as a plug, or in the form of a product conventionally known as a block, or in the form of a product conventionally known as a slab.
  • the growth substrate product may have dimensions conventional for the product type commonly known as a plug. Thus it may have height from 20 to 35 mm, often 25 to 28 mm, and length and width in the range 15 to 25 mm, often around 20 mm. In this case the substrate is often substantially cylindrical with the end surfaces of the cylinder forming the top and bottom surfaces of the growth substrate.
  • the volume of the growth substrate product in the form of a plug is preferably not more than 150 cm 3 .
  • the volume of the growth substrate product in the form of a plug is in the range 0.6 to 40 cm 3 , preferably 3 to 150 cm 3 and preferably not more than 100 cm 3 , more preferably not more than 80 cm 3 , in particular not more than 75 cm 3 , most preferably not more than 70 cm 3 .
  • the minimum distance between the top and bottom surfaces of a plug is preferably less than 60 mm, more preferably less than 50 mm and in particular less than 40 mm or less.
  • Another embodiment of a plug has height from 30 to 50 mm, often around 40 mm and length and width in the range 20 to 40 mm, often around 30 mm.
  • the growth substrate in this case is often of cuboid form.
  • the volume of the growth substrate is often not more than 50 cm 3 , preferably not more than 40 cm 3 .
  • the growth substrate may be of the type of plug described as the first coherent MMVF growth substrate in our publication WO2010/003677.
  • the volume of the growth substrate product is most preferably in the range to 10 to 40 cm 3 .
  • the growth substrate product in the form of a plug comprises a liquid-impermeable plastic covering surrounding its side surfaces only i.e. the bottom and top surfaces are not covered.
  • the growth substrate product may have dimensions conventional for the product type commonly known as a block. Thus it may have height from 5 to 20 cm, often 6 to 15 cm, and length and width in the range 4 to 30 cm, often 10 to 20 cm. In this case the substrate is often substantially cuboidal.
  • the volume of the growth substrate product in the form of a block is preferably in the range 80 to 8000 cm 3 , preferably 50 cm 3 to 5000 cm 3 , more preferably 100 cm 3 to 350 cm 3 , most preferably 250 cm 3 to 2500 cm 3 .
  • the growth substrate product in the form of a block comprises a liquid-impermeable covering surrounding its side surfaces only i.e. the bottom and top surfaces are not covered.
  • the growth substrate product may have dimensions conventional for the product type commonly known as a slab. Thus it may have height from 5 to 15 cm, often 7.5 to 12.5 cm, a width in the range of 5 to 30 cm, often 12 to 24 cm, and a length in the range 30 to 240 cm, often 40 to 200 cm. In this case the substrate is often substantially cuboidal.
  • the volume of the growth substrate product in the form of a slab is preferably in the range 750 to 86,400 cm 3 , preferably 3 litres to 20 litres, more preferably 4 litres to 15 litres, most preferably 6 litres to 15 litres.
  • the growth substrate product in the form of a slab comprises a liquid impermeable covering encasing the slab, wherein a drain hole is formed by a first aperture in said covering.
  • blocks contact the slab through a second opening in said covering.
  • the liquid impermeable covering has the effect of guiding liquid through the slab towards the drain hole, and moreover limits evaporation of fluids from the slab to the atmosphere.
  • the height is the vertical height of the growth substrate product when positioned as intended to be used and is thus the distance between the top surface and the bottom surface.
  • the top surface is the surface that faces upwardly when the product is positioned as intended to be used and the bottom surface is the surface that faces downwardly (and on which the product rests) when the product is positioned as intended to be used.
  • the growth substrate product may be of any appropriate shape including cylindrical, cuboidal and cubic. Usually the top and bottom surfaces are substantially planar.
  • the growth substrate product is in the form of a coherent mass. That is, the growth substrate is generally a coherent matrix of man-made vitreous fibres, which has been produced as such.
  • the term “height” means the distance from the bottom surface to the top surface when the substrate is in use.
  • the term “length” means the longest distance between two sides i.e. the distance from one end to the other end when the substrate is in use.
  • the term “width” is the distance between two sides, perpendicular to the length.
  • the present invention provides the use of a coherent growth substrate product as a substrate for growing plants or for propagating seeds;
  • the coherent growth substrate product comprises;
  • binder composition prior to curing comprises at least one hydrocolloid and preferably at least one fatty acid ester of glycerol.
  • the binder composition may have any of the preferred features described herein.
  • the superabsorbent polymer may have any of the preferred features described herein.
  • the coherent growth substrate product may have any of the preferred features described herein.
  • the present invention provides method of growing plants in a coherent growth substrate product, the method comprising:
  • the coherent growth substrate product comprises;
  • binder composition prior to curing comprises at least one hydrocolloid and preferably at least one fatty acid ester of glycerol.
  • Irrigation may occur by direct irrigation of the growth substrate product, that is, water is supplied directly to the growth substrate product, such as by a wetting line, tidal flooding, a dripper, sprinkler or other irrigation system.
  • the growth substrate product used in the method of growing plants is preferably as described above.
  • the binder composition may have any of the preferred features described herein.
  • the superabsorbent polymer may have any of the preferred features described herein.
  • the present invention provides a method of propagating seeds in a coherent growth substrate product, the method comprising:
  • the coherent growth substrate product comprises;
  • binder composition prior to curing comprises at least one hydrocolloid and preferably at least one fatty acid ester of glycerol.
  • Irrigation may occur by direct irrigation of the growth substrate product, that is, water is supplied directly to the growth substrate product, such as by a wetting line, tidal flooding, a dripper, sprinkler or other irrigation system.
  • the growth substrate product used in the method of propagating seeds is preferably as described above.
  • the binder composition may have any of the preferred features described herein.
  • the superabsorbent polymer may have any of the preferred features described herein.
  • binder compositions which fall under the definition of the present invention were prepared and compared to binder compositions according to the prior art.
  • Silane (Momentive VS-142) was supplied by Momentive and was calculated as 100% for simplicity. All other components were supplied in high purity by Sigma-Aldrich and were assumed anhydrous for simplicity unless stated otherwise.
  • each of the components in a given binder solution before curing is based on the anhydrous mass of the components.
  • the following formula can be used:
  • Binder ⁇ ⁇ component ⁇ ⁇ solids ⁇ ⁇ content ⁇ ⁇ ( % ) binder ⁇ ⁇ component ⁇ ⁇ A ⁇ ⁇ solids ⁇ ⁇ ( g ) + binder ⁇ ⁇ component ⁇ ⁇ B ⁇ ⁇ solids ⁇ ⁇ ( g ) + ⁇ total ⁇ ⁇ weight ⁇ ⁇ of ⁇ ⁇ mixture ⁇ ⁇ ( g ) ⁇ 100 ⁇ %
  • binder solids The content of binder after curing is termed “binder solids”.
  • Disc-shaped stone wool samples (diameter: 5 cm; height 1 cm) were cut out of stone wool and heat-treated at 580° C. for at least 30 minutes to remove all organics.
  • the solids of the binder mixture (see below for mixing examples) were measured by distributing a sample of the binder mixture (approx. 2 g) onto a heat treated stone wool disc in a tin foil container. The weight of the tin foil container containing the stone wool disc was weighed before and directly after addition of the binder mixture. Two such binder mixture loaded stone wool discs in tin foil containers were produced and they were then heated at 200° C. for 1 hour.
  • a binder with the desired binder solids could then be produced by diluting with the required amount of water and 10% aq. silane (Momentive VS-142).
  • the reaction loss is defined as the difference between the binder component solids content and the binder solids.
  • the mechanical strength of the binders was tested in a bar test.
  • 16 bars were manufactured from a mixture of the binder and stone wool shots from the stone wool spinning production.
  • the shots are particles which have the same melt composition as the stone wool fibers, and the shots are normally considered a waste product from the spinning process.
  • the shots used for the bar composition have a size of 0.25-0.50 mm.
  • a 15% binder solids binder solution containing 0.5% silane (Momentive VS-142) of binder solids was obtained as described above under “binder solids”.
  • a sample of this binder solution (16.0 g) was mixed well with shots (80.0 g).
  • the mixtures placed in the slots were then pressed hard with a suitably sized flat metal bar to generate even bar surfaces. 16 bars from each binder were made in this fashion.
  • the resulting bars were then cured at 200° C. for 1 h. After cooling to room temperature, the bars were carefully taken out of the containers. Five of the bars were aged in a water bath at 80° C. for 3 h or in an autoclave (15 min/120° C./1.2 bar).
  • the aged bars as well as five unaged bars were broken in a 3 point bending test (test speed: 10.0 mm/min; rupture level: 50%; nominal strength: 30 N/mm 2 ; support distance: 40 mm; max deflection 20 mm; nominal e-module 10000 N/mm 2 ) on a Bent Tram machine to investigate their mechanical strengths.
  • the loss of ignition (LOI) of bars was measured in small tin foil containers by treatment at 580° C.
  • a tin foil container was first heat-treated at 580° C. for 15 minutes to remove all organics.
  • the tin foil container was allowed to cool to ambient temperature, and was then weighed.
  • Four bars (usually after being broken in the 3 point bending test) were placed into the tin foil container and the ensemble was weighed.
  • the tin foil container containing bars was then heat-treated at 580° C. for 30 minutes, allowed to cool to ambient temperature, and finally weighed again.
  • the LOI was then calculated using the following formula:
  • LOI ⁇ ⁇ ( % ) Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ before ⁇ ⁇ heat ⁇ ⁇ treatment ⁇ ⁇ ( g ) - Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ after ⁇ ⁇ heat ⁇ ⁇ treatment ⁇ ⁇ ( g ) Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ before ⁇ ⁇ heat ⁇ ⁇ treatment ⁇ ⁇ ( g ) ⁇ 100 ⁇ ( % )
  • the bars were held (gently) with the length side almost vertical so that the droplets would drip from a corner of the bar.
  • the bars were then weighed and the water absorption was calculated using the following formula:
  • Waterabs . ( % ) Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ after ⁇ ⁇ water ⁇ ⁇ treatment ⁇ ⁇ ( g ) - Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ before ⁇ ⁇ water ⁇ ⁇ treatment ⁇ ⁇ ( g ) Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ before ⁇ ⁇ water ⁇ ⁇ treatment ⁇ ⁇ ( g ) ⁇ 100 ⁇ ( % )
  • Binder Example Reference Binder A (Phenol-Formaldehyde Resin Modified with Urea, a PUF-Resol)
  • a phenol-formaldehyde resin is prepared by reacting 37% aq. formaldehyde (606 g) and phenol (189 g) in the presence of 46% aq. potassium hydroxide (25.5 g) at a reaction temperature of 84° C. preceded by a heating rate of approximately 1° C. per minute. The reaction is continued at 84° C. until the acid tolerance of the resin is 4 and most of the phenol is converted. Urea (241 g) is then added and the mixture is cooled.
  • the acid tolerance expresses the number of times a given volume of a binder can be diluted with acid without the mixture becoming cloudy (the binder precipitates). Sulfuric acid is used to determine the stop criterion in a binder production and an acid tolerance lower than 4 indicates the end of the binder reaction.
  • a titrant is produced from diluting 2.5 mL conc. sulfuric acid (>99%) with 1 L ion exchanged water. 5 mL of the binder to be investigated is then titrated at room temperature with this titrant while keeping the binder in motion by manually shaking it; if preferred, use a magnetic stirrer and a magnetic stick. Titration is continued until a slight cloud appears in the binder, which does not disappear when the binder is shaken.
  • the acid tolerance is calculated by dividing the amount of acid used for the titration (mL) with the amount of sample (mL):
  • a binder is made by addition of 25% aq. ammonia (90 mL) and ammonium sulfate (13.2 g) followed by water (1.30 kg). The binder solids were then measured as described above and the mixture was diluted with the required amount of water and silane (Momentive VS-142) for mechanical strength studies (15% binder solids solution, 0.5% silane of binder solids).
  • each of the components in a given binder solution before curing is based on the anhydrous mass of the components.
  • the following formula can be used:
  • Binder ⁇ ⁇ component ⁇ ⁇ solids ⁇ ⁇ content ⁇ ⁇ ( % ) binder ⁇ ⁇ component ⁇ ⁇ A ⁇ ⁇ solids ⁇ ⁇ ( g ) + binder ⁇ ⁇ component ⁇ ⁇ B ⁇ ⁇ solids ⁇ ⁇ ( g ) + ⁇ total ⁇ ⁇ weight ⁇ ⁇ of ⁇ ⁇ mixture ⁇ ⁇ ( g ) ⁇ 100 ⁇ %
  • the mechanical strength of the binders was tested in a bar test.
  • 16-20 bars were manufactured from a mixture of the binder and stone wool shots from the stone wool spinning production.
  • the shots are particles which have the same melt composition as the stone wool fibers, and the shots are normally considered a waste product from the spinning process.
  • the shots used for the bar composition have a size of 0.25-0.50 mm.
  • a binder solution with approx. 15% binder component solids was obtained as described in the examples below.
  • a sample of the binder solution (16.0 g) was mixed well with shots (80.0 g; pre-heated to 40° C. when used in combination with comparatively fast setting binders).
  • the mixtures placed in the slots were pressed as required and then evened out with a plastic spatula to generate an even bar surface. 16-20 bars from each binder were made in this fashion.
  • the resulting bars were then cured at room temperature for 1-2 days. The bars were then carefully taken out of the containers, turned upside down and left for a day at room temperature to cure completely. Five of the bars were aged in a water bath at 80° C. for 3 h or in an autoclave (15 min/120° C./1.2 bar).
  • the aged bars as well as five unaged bars were broken in a 3 point bending test (test speed: 10.0 mm/min; rupture level: 50%; nominal strength: 30 N/mm 2 ; support distance: 40 mm; max deflection 20 mm; nominal e-module 10000 N/mm 2 ) on a Bent Tram machine to investigate their mechanical strengths.
  • the loss of ignition (LOI) of bars was measured in small tin foil containers by treatment at 580° C.
  • a tin foil container was first heat-treated at 580° C. for 15 minutes to remove all organics.
  • the tin foil container was allowed to cool to ambient temperature, and was then weighed.
  • Four bars (usually after being broken in the 3 point bending test) were placed into the tin foil container and the ensemble was weighed.
  • the tin foil container containing bars was then heat-treated at 580° C. for 30 minutes, allowed to cool to ambient temperature, and finally weighed again.
  • the LOI was then calculated using the following formula:
  • LOI ⁇ ⁇ ( % ) Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ before ⁇ ⁇ heat ⁇ ⁇ treatment ⁇ ⁇ ( g ) - Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ after ⁇ ⁇ heat ⁇ ⁇ treatment ⁇ ⁇ ( g ) Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ before ⁇ ⁇ heat ⁇ ⁇ treatment ⁇ ⁇ ( g ) ⁇ 100 ⁇ ( % )
  • the bars were held (gently) with the length side almost vertical so that the droplets would drip from a corner of the bar.
  • the bars were then weighed and the water absorption was calculated using the following formula:
  • Waterabs . ( % ) Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ after ⁇ ⁇ water ⁇ ⁇ treatment ⁇ ⁇ ( g ) - Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ before ⁇ ⁇ water ⁇ ⁇ treatment ⁇ ⁇ ( g ) Weight ⁇ ⁇ of ⁇ ⁇ bars ⁇ ⁇ before ⁇ ⁇ water ⁇ ⁇ treatment ⁇ ⁇ ( g ) ⁇ 100 ⁇ ( % )
  • Binder Compositions According to the Present Invention and Reference Binders
  • Binder solids (%) 15.0 Reaction loss (%) 28.5 pH 9.6 Bar curing conditions Temperature (° C./1 h) 200 Bar properties Mechanical strength, unaged (kN) 0.39 Mechanical strength, water bath aged (kN) 0.28 Mechanical strength, autoclave aged (kN) 0.28 LOI, unaged (%) 2.8 LOI, water bath aged (%) 2.8 Water absorption, 3 h (%) 4 Water absorption, 24 h (%) 8
  • the binder composition used in the present invention cures at room temperature. This means that temperature-sensitive additives i.e. superabsorbent polymers may be added to the MMVF before curing occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electromagnetism (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Acoustics & Sound (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

The present invention relates to a method of producing a coherent growth substrate product formed of man-made vitreous fibres (MMVF), comprising the steps of (vi) providing MMVF; (vii) providing an uncured binder composition; (viii) providing a superabsorbent polymer; (ix) forming a mixture of the MMVF, the uncured binder composition and the superabsorbent polymer; (x) curing the uncured binder composition in the mixture to form the coherent growth substrate product; wherein the uncured binder composition comprises at least one hydrocolloid.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a method of producing a coherent growth substrate, a coherent growth substrate product, a method of propagating seeds or seedlings, a method of growing plants and use of a coherent growth substrate.
  • BACKGROUND OF THE INVENTION
  • It has been known for many years to grow plants in coherent growth substrates formed from man-made vitreous fibres (MMVF). MMVF products for this purpose, which are provided as a coherent plug, block or slab, generally include a binder, usually an organic binder, in order to provide structural integrity to the product. Such binders are conventionally associated with extensive curing times and high curing temperatures, and specific curing equipment is needed for curing the binder composition. The curing equipment is conventionally an oven operating at a temperature of 150° C. to 300° C., often 200° C. to 275° C.
  • At the same time, it is desirable for coherent plant growth substrates to have additives incorporated therein. In particular, additives which improve re-saturation properties; water distribution properties; water retention; initial wetting; seed germination, rooting-in and plant growth are commonly used in plant growth substrates. Often these additives are negatively impacted by high temperatures. For example, the additives may start to degrade, decompose or be destroyed by temperatures of 50° C. or more, such as 100° C. or more or 200° C. or more and are not able to provide their desired function once decomposed.
  • Particularly desirable additives are superabsorbent polymers. Such polymers can absorb fluid and retain it under pressure without dissolution in the fluid being absorbed. However, superabsorbent polymers may start to degrade or are destroyed by temperatures of 50° C. or more, such as 100° C. or more or 200° C.
  • It is therefore necessary to add these additives after the binder composition has been cured in a conventional curing oven, if a binder composition is to be used.
  • US 2014/0130410 discloses a method for including superabsorbent polymers in a MMVF plant growth substrate. This process involves needling the superabsorbent polymer into the substrate in order to avoid the use of a binder composition, and its associated high curing temperature which would degrade the superabsorbent polymer. However, this process requires the use of complex equipment and does not allow for the presence of any binder, which negatively affects the structural integrity of the substrate.
  • It would therefore be desirable to produce a binder composition which cures at 5-95° C., 5 to 80° C., such as 10 to 60° C., such as 20 to 40° C., and therefore allows addition of temperature-sensitive additives, such as superabsorbent polymers, before curing of the binder composition occurs, and which does not result in the additives degrading or decomposing such that they cannot perform their desired function.
  • Furthermore, known binder compositions, in addition to requiring high curing temperatures, typically include phenol-formaldehyde resins, as these can be economically produced. Examples of documents which disclose the use of formaldehyde-containing binders include WO2009/090053, WO2008009467, WO2008/009462, WO2008/009461, WO2008/009460 and WO2008/009465. However, these binders suffer from the disadvantage that they contain formaldehyde. There have been suggestions that formaldehyde compounds can be damaging to health and are therefore environmentally undesirable; this has been reflected in legislation directed to lowering or eliminating formaldehyde emissions. Furthermore, formaldehyde is known to have negative effects in terms of phytotoxicity.
  • Other types of binder than the standard phenol urea formaldehyde type have been disclosed for use in MMVF growth substrates
  • Examples of non-phenol-formaldehyde binders include those described in WO2017/114723 and WO2017/114724. However, these binders require a high curing temperature, such as at least 200° C.
  • WO2012/028650 discloses a mineral fibre product comprising MMVF bonded with a cured binder composition, wherein the binder composition prior to curing comprises (i) a sugar component, (ii) a reaction product of a polycarboxylic acid component and an alkanolamine component. The binder composition of WO2012/028650 requires high curing temperatures such as of 200° C. to 300° C. In addition, the starting materials used in the production of these binders are rather expensive chemicals. Therefore, there is an on-going need to provide formaldehyde-free binders which have low curing temperatures and are economically produced.
  • A further effect in connection with previously known binder compositions for plant growth substrates is that at least the majority of the starting materials used for the production of these binders stems from fossil fuels. There is an on-going trend for consumers to prefer products that are fully or at least partly produced from renewable materials and there is therefore a need to provide binders for plant growth substrates which are at least partly produced from renewable materials. Preferably the binder is produced from non-toxic materials.
  • Binder compositions based on renewable materials have been proposed before. However, there are still some disadvantages of MMVF products prepared with these binders in terms of strength when compared with MMVF products prepared with phenol-formaldehyde resins.
  • The reference EP 2424886 B1 (Dynea OY) describes a composite material comprising a crosslinkable resin of a proteinous material. In a typical embodiment, the composite material is a cast mould comprising an inorganic filler, like e.g. sand, and/or wood, and a proteinous material as well as enzymes suitable for crosslinking the proteinous material. A mineral wool product is not described in EP 2424886 B1.
  • The reference C. Peña, K. de la Caba, A. Eceiza, R. Ruseckaite, I. Mondragon in Biores. Technol. 2010, 101, 6836-6842 is concerned with the replacement of non-biodegradable plastic films by renewable raw materials from plants and wastes of meat industry. In this connection, this reference describes the use of hydrolysable chestnut-tree tannin for modification of a gelatin in order to form films. The reference does not describe binders, in particular not binders for mineral wool.
  • A further effect in connection with previously known binder compositions is that they involve components which are corrosive and/or harmful. This requires protective measures for the machinery involved in the production of growth substrates to prevent corrosion and also requires safety measures for the persons handling this machinery. This leads to increased costs and health issues.
  • It would be desirable to have a method of producing a growth substrate which allows for temperature-sensitive additives, such as superabsorbent polymers, to be incorporated before a binder composition is cured. Temperature-sensitive means additives which starts to degrade, decompose or be destroyed when exposed to temperatures of 50° C. or more, such as 100° C. or more or 200° C., such as between 50 to 300° C., such as 80° C. to 230° C. or 100° C. to 200° C. It would therefore be desirable to produce a binder composition which does not require high temperatures for curing. It would be desirable for the binder composition to have a curing temperature which does not degrade, decompose or destroy temperature-sensitive additives, such as superabsorbent polymers. In addition, it would be desirable for this binder composition to be formaldehyde-free. It would also be desirable for the binder composition to be derived mostly from renewable materials. It would also be desirable for the binder composition to be economical to produce. It would be desirable for the binder composition to be free from components which are corrosive and/or harmful.
  • SUMMARY OF THE INVENTION
  • In accordance with a first aspect of the present invention, there is provided a method of producing a coherent growth substrate product formed of man-made vitreous fibres (MMVF), comprising the steps of:
      • (i) providing MMVF;
      • (ii) providing an uncured binder composition;
      • (iii) providing a superabsorbent polymer;
      • (iv) forming a mixture of the MMVF, the uncured binder composition and the superabsorbent polymer;
      • (v) curing the uncured binder composition in the mixture to form the coherent growth substrate product;
  • wherein the uncured binder composition comprises at least one hydrocolloid.
  • In accordance with a second aspect of the present invention, there is provided coherent growth substrate product comprising;
      • man-made vitreous fibres (MMVF) bonded with a cured binder composition; and
      • a superabsorbent polymer;
  • wherein the binder composition prior to curing comprises at least one hydrocolloid.
  • In accordance with a third aspect of the present invention, there is provided use of a coherent growth substrate product as a substrate for growing plants or for propagating seeds;
  • wherein the coherent growth substrate product comprises;
      • man-made vitreous fibres (MMVF) bonded with a cured binder composition; and
      • a superabsorbent polymer;
  • wherein the binder composition prior to curing comprises at least one hydrocolloid.
  • In accordance with a fourth aspect of the present invention, there is provided a method of growing plants in a coherent growth substrate product, the method comprising:
      • (i) providing at least one growth substrate product;
      • (ii) positioning one or more plants for growth in the growth substrate product; and
      • (iii) irrigating the growth substrate product;
  • wherein the coherent growth substrate product comprises;
      • man-made vitreous fibres (MMVF) bonded with a cured binder composition;
      • and
      • a superabsorbent polymer;
  • wherein the binder composition prior to curing comprises at least one hydrocolloid.
  • In accordance with a fifth aspect of the present invention, there is provided a method of propagating seeds in a coherent growth substrate product, the method comprising:
      • (i) providing at least one growth substrate product
      • (ii) positioning one or more seeds in the growth substrate product,
      • (iii) irrigating the growth substrate product; and
      • (iv) allowing germination and growth of the seed to form a seedling;
  • wherein the coherent growth substrate product comprises;
      • man-made vitreous fibres (MMVF) bonded with a cured binder composition;
      • and
      • a superabsorbent polymer;
  • wherein the binder composition prior to curing comprises at least one hydrocolloid.
  • The present inventors have surprisingly found that it is possible to produce a binder composition, as described above, which has a low curing temperature. This allows additives which would normally start to degrade, decompose or be destroyed by high temperatures to be included in a growth substrate, along with a binder composition, and in particular, before the binder composition is cured.
  • The inventors also surprisingly discovered that a binder composition with the above-described advantages can be produced from renewable materials to a large degree. In addition, the binder composition is formaldehyde-free, economical to produce and does not contain components which are corrosive and/or harmful.
  • DETAILED DESCRIPTION OF INVENTION
  • Method of Producing Growth Substrate
  • The present invention provides a method of producing a coherent growth substrate product formed of man-made vitreous fibres (MMVF), comprising the steps of:
      • (i) providing MMVF;
      • (ii) providing an uncured binder composition;
      • (iii) providing a superabsorbent polymer;
      • (iv) forming a mixture of the MMVF, the uncured binder composition and the superabsorbent polymer;
      • (v) curing the uncured binder composition in the mixture to form the coherent growth substrate product;
  • wherein the uncured binder composition comprises at least one hydrocolloid and preferably at least one fatty acid ester of glycerol;
  • In the present invention, man-made vitreous fibres (MMVF) are provided. The MMVF may be made by any of the methods known to those skilled in the art for production of MMVF growth substrate products. In general, a mineral charge is provided, which is melted in a furnace to form a mineral melt. The melt is then formed into fibres by means of rotational fiberisation.
  • The melt may be formed into fibres by external centrifuging e.g. using a cascade spinner, to form a cloud of fibres. Alternatively, the melt may be formed into fibres by internal centrifugal fiberisation e.g. using a spinning cup, to form a cloud of fibres.
  • Typically, these fibres are then collected to form a primary fleece or web, the primary fleece or web is then cross-lapped to form a secondary fleece or web. The secondary fleece or web is then cured and formed into a growth substrate.
  • The MMVF can be of the conventional type used for formation of known MMVF growth substrates. It can be glass wool or slag wool but is usually stone wool. Stone wool generally has a content of iron oxide at least 3% and content of alkaline earth metals (calcium oxide and magnesium oxide) from 10 to 40%, along with the other usual oxide constituents of mineral wool. These may include silica; alumina; alkali metals (sodium oxide and potassium oxide), titania and other minor oxides. In general it can be any of the types of man-made vitreous fibre which are conventionally known for production of growth substrates.
  • The geometric mean fibre diameter is often in the range of 1.5 to 10 microns, in particular 2 to 8 microns, preferably 3 to 6 microns as conventional.
  • In the present invention, the uncured binder composition may be added to the MMVF at the fiberisation stage. The fiberisation stage is the stage at which the fibres are formed. This involves adding the uncured binder composition to the fibres as they form i.e. to the clouds of fibres as they form. These methods are well known in the art. Preferably, the uncured binder composition is sprayed onto the fibres as they form i.e. onto the clouds of forming fibres. The uncured binder composition may be added in solid or liquid form. Preferably the uncured binder composition is in liquid form, most preferably in aqueous form.
  • Alternatively, the uncured binder composition may be added to the fibres after they have formed. The uncured binder composition may be added to the fibres that are formed from either internal or external centrifugal fiberisation. The uncured binder composition may be added in solid or liquid form, preferably in liquid form, most preferably in aqueous form.
  • The superabsorbent polymer may be added after the fibres are formed. The superabsorbent polymer may be added to the fibres that are formed from either internal or external centrifugal fiberisation. The superabsorbent polymer is preferably added to a primary fleece or web. Preferably the superabsorbent polymer is added as particles.
  • If the uncured binder composition and the superabsorbent polymer are added after fiberisation, such as to the primary web or fleece then they can be added simultaneously or consecutively. For example, the uncured binder composition may be added first to the formed fibres, and then the superabsorbent polymer added subsequently. Alternatively, the uncured binder composition and superabsorbent polymer may be combined into a mixture, and said mixture is then added to the formed fibres. An advantage of adding the uncured binder composition and the superabsorbent polymer to the primary web or fleece is that the step is carried out further away from the spinner. As a result this step is carried out at a lower temperature than the fibres are formed at.
  • Alternatively, the superabsorbent polymer may be added first to the formed fibres and the uncured binder composition added subsequently.
  • The uncured binder composition may be added to the fibres as they form i.e to the clouds of fibres as they form, and the superabsorbent polymer is subsequently added to the formed fibres.
  • Preferably, the uncured binder composition and the superabsorbent polymer are added at the same stage, as this simplifies the overall process of producing the growth substrate, by avoiding an additional step in manufacturing. Most preferably, the uncured binder composition and the superabsorbent polymer are both added after fiberisation, such as to the primary web or fleece as it simplifies the process of producing the growth substrate by avoiding an additional step in manufacturing.
  • Once the uncured binder composition and the superabsorbent polymer are added to the fibres, in any of the methods outlined above, the binder composition is then cured to form the coherent growth substrate.
  • Curing
  • The binder composition is cured by a chemical and/or physical reaction of the binder composition components.
  • In one embodiment, the curing takes place in a curing device. In one embodiment the curing is carried out at temperatures from 5 to 95° C., such as 5 to 80° C., such as 5 to 60° C., such as 8 to 50° C., such as 10 to 40° C.
  • In one embodiment the curing takes place in a conventional curing oven for mineral wool production operating at a temperature of from 5 to 95° C., such as 5 to 80° C., such as 10 to 60° C., such as 20 to 40° C.
  • The curing process may commence immediately after application of the binder to the fibres. The curing is defined as a process whereby the binder composition undergoes a physical and/or chemical reaction which in case of a chemical reaction usually increases the molecular weight of the compounds in the binder composition and thereby increases the viscosity of the binder composition, usually until the binder composition reaches a solid state.
  • In one embodiment the curing process comprises cross-linking and/or water inclusion as crystal water.
  • In one embodiment the cured binder contains crystal water that may decrease in content and raise in content depending on the prevailing conditions of temperature, pressure and humidity.
  • In one embodiment the curing process comprises a drying process.
  • In one embodiment the curing process comprises drying by pressure. The pressure may be applied by blowing air or gas through/over the mixture of mineral fibres and binder composition. The blowing process may be accompanied by heating or cooling or it may be at ambient temperature.
  • In one embodiment the curing is performed in oxygen-depleted surroundings. Without wanting to be bound by any particular theory, the applicant believes that performing the curing in an oxygen-depleted surrounding is particularly beneficial when the binder composition includes an enzyme because it increases the stability of the enzyme component in some embodiments, in particular of the transglutaminase enzyme, and thereby improves the crosslinking efficiency. In one embodiment, the curing process is therefore performed in an inert atmosphere, in particular in an atmosphere of an inert gas, like nitrogen.
  • In some embodiments, in particular in embodiments in which the binder composition includes phenolics, in particular tannins oxidizing agents can be added. Oxidising agents as additives can serve to increase the oxidising rate of the phenolics in particular tannins. One example is the enzyme tyrosinase which oxidizes phenols to hydroxy-phenols/quinones and therefore accelerates the binder forming reaction.
  • In another embodiment, the oxidising agent is oxygen, which is supplied to the binder composition.
  • In one embodiment, the curing is performed in oxygen-enriched surroundings.
  • Binder Composition
  • The uncured binder composition comprises at least one hydrocolloid, and preferably at least one fatty acid ester of glycerol.
  • An advantage of using this binder composition is that is has a very simple composition which requires as little as only one component, namely at least one hydrocolloid. The binder composition preferably has two components, namely at least one hydrocolloid and at least one fatty acid ester of glycerol. The present invention therefore involves natural and non-toxic components and is therefore safe to work with. At the same time, the binder composition is based on renewable resources and has excellent properties concerning strength (both unaged and aged).
  • Because the binder composition used for the production of the coherent growth substrate products according to the present invention can be cured at ambient temperature or in the vicinity of ambient temperature, temperature-sensitive additives may be incorporated before curing of the binder composition.
  • In addition, the energy consumption during the production of the products is very low. The non-toxic and non-corrosive nature of embodiments of the binders in combination with the curing at ambient temperatures allows a much less complex machinery to be involved. At the same time, because of the curing at ambient temperature, the likelihood of uncured binder composition spots is strongly decreased.
  • Further important advantages are the self-repair capacities of growth substrate products produced from the binder compositions.
  • A further advantage of the growth substrate products is that they may be shaped as desired after application of the binder composition but prior to curing. This opens the possibility for making tailor-made products.
  • A further advantage is the strongly reduced punking risk.
  • Punking may be associated with exothermic reactions during manufacturing of the mineral wool product which increase temperatures through the thickness of the insulation causing a fusing or devitrification of the MMVF and eventually creating a fire hazard. In the worst case, punking causes fires in the stacked pallets stored in warehouses or during transportation.
  • Yet another advantage is the absence of emissions during curing, in particular the absence of VOC emissions.
  • Preferably, the binder is formaldehyde free. For the purpose of the present application, the term “formaldehyde free” is defined to characterize a mineral wool product where the emission is below 5 μg/m2/h of formaldehyde from the mineral wool product, preferably below 3 μg/m2/h. Preferably, the test is carried out in accordance with ISO 16000 for testing aldehyde emissions.
  • A surprising advantage of embodiments of coherent growth substrate products according to the present invention is that they show self-healing properties. After being exposed to very harsh conditions when MMVF products loose a part of their strength, the growth substrate product according to the present invention can regain a part of, the whole of or even exceed the original strength. In one embodiment, the aged strength is at least 80%, such as at least 90%, such as at least 100%, such as at least 130%, such as at least 150% of the unaged strength. This is in contrast to conventional growth substrate products for which the loss of strength after being exposed to harsh environmental conditions is irreversible.
  • While not wanting to be bound to any particular theory, the present inventors believe that this surprising property in coherent growth substrate products according to the present invention is due to the complex nature of the bonds formed in the network of the cured binder composition, such as the protein crosslinked by the phenol and/or quinone containing compound or crosslinked by an enzyme, which also includes quaternary structures and hydrogen bonds and allows bonds in the network to be established after returning to normal environmental conditions.
  • Hydrocolloid
  • Hydrocolloids are hydrophilic polymers, of vegetable, animal, microbial or synthetic origin, that generally contain many hydroxyl groups and may be polyelectrolytes. They are widely used to control the functional properties of aqueous foodstuffs.
  • Hydrocolloids may be proteins or polysaccharides and are fully or partially soluble in water and are used principally to increase the viscosity of the continuous phase (aqueous phase) i.e. as gelling agent or thickener. They can also be used as emulsifiers since their stabilizing effect on emulsions derives from an increase in viscosity of the aqueous phase.
  • A hydrocolloid usually consists of mixtures of similar, but not identical molecules and arising from different sources and methods of preparation. The thermal processing and for example, salt content, pH and temperature all affect the physical properties they exhibit. Descriptions of hydrocolloids often present idealised structures but since they are natural products (or derivatives) with structures determined by for example stochastic enzymatic action, not laid down exactly by the genetic code, the structure may vary from the idealised structure.
  • Many hydrocolloids are polyelectrolytes (for example alginate, gelatin, carboxymethylcellulose and xanthan gum).
  • Polyelectrolytes are polymers where a significant number of the repeating units bear an electrolyte group. Polycations and polyanions are polyelectrolytes. These groups dissociate in aqueous solutions (water), making the polymers charged. Polyelectrolyte properties are thus similar to both electrolytes (salts) and polymers (high molecular weight compounds) and are sometimes called polysalts.
  • The charged groups ensure strong hydration, particularly on a per-molecule basis. The presence of counter-ions and co-ions (ions with the same charge as the polyelectrolyte) introduce complex behavior that is ion-specific.
  • A proportion of the counter-ions remain tightly associated with the polyelectrolyte, being trapped in its electrostatic field and so reducing their activity and mobility.
  • Preferably, the binder composition may comprise one or more counter-ion(s) selected from the group of Mg2+, Ca2+, Sr2+, Ba2+.
  • Another property of a polyelectrolyte is the high linear charge density (number of charged groups per unit length).
  • Generally neutral hydrocolloids are less soluble whereas polyelectrolytes are more soluble.
  • Many hydrocolloids also gel. Gels are liquid-water-containing networks showing solid-like behavior with characteristic strength, dependent on their concentration, and hardness and brittleness dependent on the structure of the hydrocolloid(s) present.
  • Hydrogels are hydrophilic crosslinked polymers that are capable of swelling to absorb and hold vast amounts of water. They are particularly known from their use in sanitary products. Commonly used materials make use of polyacrylates, but hydrogels may be made by crosslinking soluble hydrocolloids to make an insoluble but elastic and hydrophilic polymer.
  • Examples of hydrocolloids comprise: Agar agar, Alginate, Arabinoxylan, Carrageenan, Carboxymethylcellulose, Cellulose, Curdlan, Gelatin, Gellan, β-Glucan, Guar gum, Gum arabic, Locust bean gum, Pectin, Starch, Xanthan gum. In one embodiment, the at least one hydrocolloid is selected from the group consisting of gelatin, pectin, starch, alginate, agar agar, carrageenan, gellan gum, guar gum, gum arabic, locust bean gum, xanthan gum, cellulose derivatives such as carboxymethylcellulose, arabinoxylan, cellulose, curdlan, β-glucan.
  • Examples of polyelectrolytic hydrocolloids comprise: gelatin, pectin, alginate, carrageenan, gum arabic, xanthan gum, cellulose derivatives such as carboxymethylcellulose.
  • In one embodiment, the at least one hydrocolloid is a polyelectrolytic hydrocolloid.
  • The at least one hydrocolloid may be selected from the group consisting of gelatin, pectin, alginate, carrageenan, gum arabic, xanthan gum, cellulose derivatives such as carboxymethylcellulose.
  • The at least one hydrocolloid may be a gel former.
  • The at least one hydrocolloid may be used in the form of a salt, such as a salt of Na+, K+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+.
  • Gelatin
  • Gelatin is derived from chemical degradation of collagen. Gelatin may also be produced by recombinant techniques. Gelatin is water soluble and has a molecular weight of 10.000 to 500.000 g/mol, such as 30.000 to 300.000 g/mol dependent on the grade of hydrolysis. Gelatin is a widely used food product and it is therefore generally accepted that this compound is totally non-toxic and therefore no precautions are to be taken when handling gelatin.
  • Gelatin is a heterogeneous mixture of single or multi-stranded polypeptides, typically showing helix structures. Specifically, the triple helix of type I collagen extracted from skin and bones, as a source for gelatin, is composed of two al (I) and one α2(I) chains.
  • Gelatin solutions may undergo coil-helix transitions.
  • A-type gelatins are produced by acidic treatment. B-type gelatins are produced by basic treatment.
  • Chemical cross-links may be introduced to gelatin. In one embodiment, transglutaminase is used to link lysine to glutamine residues; in one embodiment, glutaraldehyde is used to link lysine to lysine, in one embodiment, tannins are used to link lysine residues.
  • The gelatin can also be further hydrolysed to smaller fragments of down to 3000 g/mol.
  • On cooling a gelatin solution, collagen like helices may be formed.
  • Other hydrocolloids may also comprise helix structures such as collagen like helices. Gelatin may form helix structures.
  • In one embodiment, the cured binder comprising hydrocolloid comprises helix structures.
  • In one embodiment, the at least one hydrocolloid is a low strength gelatin, such as a gelatin having a gel strength of 30 to 125 Bloom.
  • In one embodiment, the at least one hydrocolloid is a medium strength gelatin, such as a gelatin having a gel strength of 125 to 180 Bloom.
  • In one embodiment, the at least one hydrocolloid is a high strength gelatin, such as a gelatin having a gel strength of 180 to 300 Bloom.
  • In a preferred embodiment, the gelatin is preferably originating from one or more sources from the group consisting of mammal, bird species, such as from cow, pig, horse, fowl, and/or from scales, skin of fish.
  • In one embodiment, urea may be added to the binder composition. The inventors have found that the addition of even small amounts of urea causes denaturation of the gelatin, which can slow down the gelling, which might be desired in some embodiments. The addition of urea might also lead to a softening of the product.
  • The inventors have found that the carboxylic acid groups in gelatins interact strongly with trivalent and tetravalent ions, for example aluminum salts. This is especially true for type B gelatins which contain more carboxylic acid groups than type A gelatins.
  • The present inventors have found that in some embodiments, curing/drying of binder composition including gelatin should not start off at very high temperatures.
  • The inventors have found that starting the curing at low temperatures may lead to stronger products. Without being bound to any particular theory, it is assumed by the inventors that starting curing at high temperatures may lead to an impenetrable outer shell of the binder composition which hinders water from underneath to get out.
  • Surprisingly, the binder compositions including gelatins are very heat resistant. The present inventors have found that in some embodiments the cured binders can sustain temperatures up to 300° C. without degradation.
  • Pectin
  • Pectin is a heterogeneous grouping of acidic structural polysaccharides, found in fruit and vegetables which form acid-stable gels.
  • Generally, pectins do not possess exact structures, instead it may contain up to 17 different monosaccharides and over 20 types of different linkages. D-galacturonic acid residues form most of the molecules.
  • Gel strength increases with increasing Ca2+ concentration but reduces with temperature and acidity increase (pH<3).
  • Pectin may form helix structures.
  • The gelling ability of the di-cations is similar to that found with alginates (Mg2+ is much less than for Ca2+, Sr2+ being less than for Ba2+).
  • Alginate
  • Alginates are scaffolding polysaccharides produced by brown seaweeds.
  • Alginates are linear unbranched polymers containing β-(1,4)-linked D-mannuronic acid (M) and α-(1,4)-linked L-guluronic acid (G) residues. Alginate may also be a bacterial alginate, such as which are additionally O-acetylated. Alginates are not random copolymers but, according to the source algae, consist of blocks of similar and strictly alternating residues (that is, MMMMMM, GGGGGG and GMGMGMGM), each of which have different conformational preferences and behavior. Alginates may be prepared with a wide range of average molecular weights (50-100000 residues). The free carboxylic acids have a water molecule H3O+ firmly hydrogen bound to carboxylate. Ca2+ ions can replace this hydrogen bonding, zipping guluronate, but not mannuronate, chains together stoichiometrically in a so-called egg-box like conformation. Recombinant epimerases with different specificities may be used to produce designer alginates.
  • Alginate may form helix structures.
  • Carrageenan
  • Carrageenan is a collective term for scaffolding polysaccharides prepared by alkaline extraction (and modification) from red seaweed.
  • Carrageenans are linear polymers of about 25,000 galactose derivatives with regular but imprecise structures, dependent on the source and extraction conditions.
  • κ-carrageenan (kappa-carrageenan) is produced by alkaline elimination from μ-carrageenan isolated mostly from the tropical seaweed Kappaphycus alvarezii (also known as Eucheuma cottonii).
  • ι-carrageenan (iota-carrageenan) is produced by alkaline elimination from v-carrageenan isolated mostly from the Philippines seaweed Eucheuma denticulatum (also called Spinosum).
  • λ-carrageenan (lambda-carrageenan) (isolated mainly from Gigartina pistillata or Chondrus crispus) is converted into θ-carrageenan (theta-carrageenan) by alkaline elimination, but at a much slower rate than causes the production of ι-carrageenan and κ-carrageenan.
  • The strongest gels of κ-carrageenan are formed with K+ rather than Li+, Na+, Mg2+, Ca2+, or Sr2+.
  • All carrageenans may form helix structures.
  • Gum Arabic
  • Gum arabic is a complex and variable mixture of arabinogalactan oligosaccharides, polysaccharides and glycoproteins. Gum arabic consists of a mixture of lower relative molecular mass polysaccharide and higher molecular weight hydroxyproline-rich glycoprotein with a wide variability.
  • Gum arabic has a simultaneous presence of hydrophilic carbohydrate and hydrophobic protein.
  • Xanthan Gum
  • Xanthan gum is a microbial desiccation-resistant polymer prepared e.g. by aerobic submerged fermentation from Xanthomonas campestris.
  • Xanthan gum is an anionic polyelectrolyte with a β-(1,4)-D-glucopyranose glucan (as cellulose) backbone with side chains of -(3,1)-α-linked D-mannopyranose-(2,1)-β-D-glucuronic acid-(4,1)-β-D-mannopyranose on alternating residues.
  • Xanthan gums natural state has been proposed to be bimolecular antiparallel double helices. A conversion between the ordered double helical conformation and the single more-flexible extended chain may take place at between 40° C.-80° C. Xanthan gums may form helix structures.
  • Xanthan gums may contain cellulose.
  • Cellulose Derivatives
  • An example of a cellulose derivative is carboxymethylcellulose.
  • Carboxymethylcellulose (CMC) is a chemically modified derivative of cellulose formed by its reaction with alkali and chloroacetic acid.
  • The CMC structure is based on the β-(1,4)-D-glucopyranose polymer of cellulose. Different preparations may have different degrees of substitution, but it is generally in the range 0.6-0.95 derivatives per monomer unit.
  • Agar Agar
  • Agar agar is a scaffolding polysaccharide prepared from the same family of red seaweeds (Rhodophycae) as the carrageenans. It is commercially obtained from species of Gelidium and Gracilariae.
  • Agar agar consists of a mixture of agarose and agaropectin. Agarose is a linear polymer, of relative molecular mass (molecular weight) about 120,000, based on the -(1,3)-β-D-galactopyranose-(1,4)-3,6-anhydro-α-L-galactopyranose unit.
  • Agaropectin is a heterogeneous mixture of smaller molecules that occur in lesser amounts.
  • Agar agar may form helix structures.
  • Arabinoxylan
  • Arabinoxylans are naturally found in the bran of grasses (Graminiae).
  • Arabinoxylans consist of α-L-arabinofuranose residues attached as branch-points to β-(1,4)-linked D-xylopyranose polymeric backbone chains.
  • Arabinoxylan may form helix structures.
  • Cellulose
  • Cellulose is a scaffolding polysaccharide found in plants as microfibrils (2-20 nm diameter and 100-40 000 nm long). Cellulose is mostly prepared from wood pulp. Cellulose is also produced in a highly hydrated form by some bacteria (for example, Acetobacter xylinum).
  • Cellulose is a linear polymer of β-(1,4)-D-glucopyranose units in 4C1 conformation. There are four crystalline forms, la, 113, II and III.
  • Cellulose derivatives may be methyl cellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose.
  • Curdlan
  • Curdlan is a polymer prepared commercially from a mutant strain of Alcaligenes faecalis var. myxogenes. Curdlan (curdlan gum) is a moderate relative molecular mass, unbranched linear 1,3β-D glucan with no side-chains.
  • Curdlan may form helix structures.
  • Curdlan gum is insoluble in cold water but aqueous suspensions plasticize and briefly dissolve before producing reversible gels on heating to around 55° C. Heating at higher temperatures produces more resilient irreversible gels, which then remain on cooling.
  • Scleroglucan is also a 1,3β-D glucan but has additional 1,6β-links that confer solubility under ambient conditions.
  • Gellan
  • Gellan gum is a linear tetrasaccharide 4)-L-rhamnopyranosyl-(α-1,3)-D-glucopyranosyl-(β-1,4)-D-glucuronopyranosyl-(β-1,4)-D-glucopyranosyl-(β-1, with O(2) L-glyceryl and O(6) acetyl substituents on the 3-linked glucose.
  • Gellan may form helix structures.
  • β-Glucan
  • β-Glucans occur in the bran of grasses (Gramineae).
  • β-Glucans consist of linear unbranched polysaccharides of linked β-(1,3)- and β-(1,4)-D-glucopyranose units in a non-repeating but non-random order.
  • Guar Qum
  • Guar gum (also called guaran) is a reserve polysaccharide (seed flour) extracted from the seed of the leguminous shrub Cyamopsis tetragonoloba.
  • Guar gum is a galactomannana similar to locust bean gum consisting of a (1,4)-linked β-D-mannopyranose backbone with branch points from their 6-positions linked to α-D-galactose (that is, 1,6-linked-α-D-galactopyranose).
  • Guar gum is made up of non-ionic polydisperse rod-shaped polymer.
  • Unlike locust bean gum, it does not form gels.
  • Locust Bean Qum
  • Locust bean gum (also called Carob bean gum and Carubin) is a reserve polysaccharide (seed flour) extracted from the seed (kernels) of the carob tree (Ceratonia siliqua).
  • Locust bean gum is a galactomannana similar to guar gum consisting of a (1,4)-linked β-D-mannopyranose backbone with branch points from their 6-positions linked to α-D-galactose (that is, 1,6-linked α-D-galactopyranose).
  • Locust bean gum is polydisperse consisting of non-ionic molecules.
  • Starch
  • Starch consists of two types of molecules, amylose (normally 20-30%) and amylopectin (normally 70-80%). Both consist of polymers of α-D-glucose units in the 4C1 conformation. In amylose these are linked -(1,4)-, with the ring oxygen atoms all on the same side, whereas in amylopectin about one residue in every twenty or so is also linked -(1,6)-forming branch-points. The relative proportions of amylose to amylopectin and -(1,6)-branch-points both depend on the source of the starch. The starch may derive from the source of corn (maize), wheat, potato, tapioca and rice. Amylopectin (without amylose) can be isolated from ‘waxy’ maize starch whereas amylose (without amylopectin) is best isolated after specifically hydrolyzing the amylopectin with pullulanase.
  • Amylose may form helix structures.
  • In one embodiment, the at least one hydrocolloid is a functional derivative of starch such as cross-linked, oxidized, acetylated, hydroxypropylated and partially hydrolyzed starch.
  • In a preferred embodiment, the binder composition comprises at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least one other hydrocolloid is selected from the group consisting of pectin, starch, alginate, agar agar, carrageenan, gellan gum, guar gum, gum arabic, locust bean gum, xanthan gum, cellulose derivatives such as carboxymethylcellulose, arabinoxylan, cellulose, curdlan, β-glucan.
  • In one embodiment, the binder composition comprises at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least other hydrocolloid is pectin.
  • In one embodiment, the binder composition comprises at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least other hydrocolloid is alginate.
  • In one embodiment, the binder composition comprises at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least other hydrocolloid is carboxymethylcellulose.
  • In a preferred embodiment, the binder composition comprises at least two hydrocolloids, wherein one hydrocolloid is gelatin and wherein the gelatin is present in the aqueous binder composition in an amount of 10 to 95 wt.-%, such as 20 to 80 wt.-%, such as 30 to 70 wt.-%, such as 40 to 60 wt.-%, based on the weight of the hydrocolloids.
  • In one embodiment, the binder composition comprises at least two hydrocolloids, wherein the one hydrocolloid and the at least other hydrocolloid have complementary charges.
  • In one embodiment, the one hydrocolloid is one or more of gelatin or gum arabic having complementary charges from one or more hydrocolloid(s) selected from the group of pectin, alginate, carrageenan, xanthan gum or carboxymethylcellulose.
  • In one embodiment, the binder composition is capable of curing at a temperature of not more than 95° C., such as 5-95° C., such as 10-80° C., such as 20-60° C., such as 40-50° C.
  • In one embodiment, the aqueous binder composition is not a thermoset binder composition.
  • A thermosetting composition is in a soft solid or viscous liquid state, preferably comprising a prepolymer, preferably comprising a resin, that changes irreversibly into an infusible, insoluble polymer network by curing. Curing is typically induced by the action of heat, whereby typically temperatures above 95° C. are needed.
  • A cured thermosetting resin is called a thermoset or a thermosetting plastic/polymer—when used as the bulk material in a polymer composite, they are referred to as the thermoset polymer matrix. In one embodiment, the aqueous binder composition according to the present invention does not contain a poly(meth)acrylic acid, a salt of a poly(meth)acrylic acid or an ester of a poly(meth)acrylic acid.
  • In one embodiment, the at least one hydrocolloid is a biopolymer or modified biopolymer.
  • Biopolymers are polymers produced by living organisms. Biopolymers may contain monomeric units that are covalently bonded to form larger structures.
  • There are three main classes of biopolymers, classified according to the monomeric units used and the structure of the biopolymer formed: Polynucleotides (RNA and DNA), which are long polymers composed of 13 or more nucleotide monomers; Polypeptides, such as proteins, which are polymers of amino acids; Polysaccharides, such as linearly bonded polymeric carbohydrate structures.
  • Polysaccharides may be linear or branched; they are typically joined with glycosidic bonds. In addition, many saccharide units can undergo various chemical modifications, and may form parts of other molecules, such as glycoproteins.
  • In one embodiment, the at least one hydrocolloid is a biopolymer or modified biopolymer with a polydispersity index regarding molecular mass distribution of 1, such as 0.9 to 1.
  • In one embodiment, the binder composition comprises proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and the binder composition further comprises at least one phenol and/or quinone containing compound, such as tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups.
  • In one embodiment, the binder composition comprises proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and wherein the binder composition further comprises at least one enzyme selected from the group consisting of transglutaminase (EC 2.3.2.13), protein disulfide isomerase (EC 5.3.4.1), thiol oxidase (EC 1.8.3.2), polyphenol oxidase (EC 1.14.18.1), in particular catechol oxidase, tyrosine oxidase, and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
  • Fatty Acid Ester of Glycerol
  • The binder composition preferably comprises a component in form of at least one fatty acid ester of glycerol.
  • A fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated.
  • Glycerol is a polyol compound having the IUPAC name propane-1,2,3-triol.
  • Naturally occurring fats and oils are glycerol esters with fatty acids (also called triglycerides).
  • For the purpose of the present invention, the term fatty acid ester of glycerol refers to mono-, di-, and tri-esters of glycerol with fatty acids.
  • While the term fatty acid can in the context of the present invention be any carboxylic acid with an aliphatic chain, it is preferred that it is carboxylic acid with an aliphatic chain having 4 to 28 carbon atoms, preferably of an even number of carbon atoms. Preferably, the aliphatic chain of the fatty acid is unbranched.
  • In a preferred embodiment, the at least one fatty acid ester of glycerol is in form of a plant oil and/or animal oil. In the context of the present invention, the term “oil” comprises at least one fatty acid ester of glycerol in form of oils or fats.
  • In one preferred embodiment, the at least one fatty acid ester of glycerol is a plant-based oil.
  • In a preferred embodiment, the at least one fatty acid ester of glycerol is in form of fruit pulp fats such as palm oil, olive oil, avocado oil; seed-kernel fats such as lauric acid oils, such as coconut oil, palm kernel oil, babassu oil and other palm seed oils, other sources of lauric acid oils; palmitic-stearic acid oils such as cocoa butter, shea butter, borneo tallow and related fats (vegetable butters); palmitic acid oils such as cottonseed oil, kapok and related oils, pumpkin seed oil, corn (maize) oil, cereal oils; oleic-linoleic acid oils such as sunflower oil, sesame oil, linseed oil, perilla oil, hempseed oil, teaseed oil, safflower and niger seed oils, grape-seed oil, poppyseed oil, leguminous oil such as soybean oil, peanut oil, lupine oil; cruciferous oils such as rapeseed oil, mustard seed oil; conjugated acid oils such as tung oil and related oils, oiticica oil and related oils; substituted fatty acid oils such as castor oil, chaulmoogra, hydnocarpus and gorli oils, vernonia oil; animal fats such as land-animal fats such as lard, beef tallow, mutton tallow, horse fat, goose fat, chicken fat; marine oils such as whale oil and fish oil.
  • In a preferred embodiment, the at least one fatty acid ester of glycerol is in form of a plant oil, in particular selected from one or more components from the group consisting of linseed oil, olive oil, tung oil, coconut oil, hemp oil, rapeseed oil, and sunflower oil.
  • In a preferred embodiment, the at least one fatty acid ester of glycerol is selected from one or more components from the group consisting of a plant oil having an iodine number in the range of approximately 136 to 178, such as a linseed oil having an iodine number in the range of approximately 136 to 178, a plant oil having an iodine number in the range of approximately 80 to 88, such as an olive oil having an iodine number in the range of approximately 80 to 88, a plant oil having an iodine number in the range of approximately 163 to 173, such as tung oil having an iodine number in the range of approximately 163 to 173, a plant oil having an iodine number in the range of approximately 7 to 10, such as coconut oil having an iodine number in the range of approximately 7 to 10, a plant oil having an iodine number in the range of approximately 140 to 170, such as hemp oil having an iodine number in the range of approximately 140 to 170, a plant oil having an iodine number in the range of approximately 94 to 120, such as a rapeseed oil having an iodine number in the range of approximately 94 to 120, a plant oil having an iodine number in the range of approximately 118 to 144, such as a sunflower oil having an iodine number in the range of approximately 118 to 144.
  • In one embodiment, the at least one fatty acid ester of glycerol is not of natural origin.
  • In one embodiment, the at least one fatty acid ester of glycerol is a modified plant or animal oil.
  • In one embodiment, the at least one fatty acid ester of glycerol comprises at least one trans-fatty acid.
  • In an alternative preferred embodiment, the at least one fatty acid ester of glycerol is in form of an animal oil, such as a fish oil.
  • The present inventors have found that an important parameter for the fatty acid ester of glycerol used in the binder composition is the amount of unsaturation in the fatty acid. The amount of unsaturation in fatty acids is usually measured by the iodine number (also called iodine value or iodine absorption value or iodine index). The higher the iodine number, the more C═C bonds are present in the fatty acid. For the determination of the iodine number as a measure of the unsaturation of fatty acids, we make reference to Thomas, Alfred (2002) “Fats and fatty oils” in Ullmann's Encyclopedia of industrial chemistry, Weinheim, Wiley-VCH.
  • In a preferred embodiment, the at least one fatty acid ester of glycerol comprises a plant oil and/or animal oil having a iodine number of ≥75, such as 75 to 180, such as 130, such as 130 to 180.
  • In an alternative preferred embodiment, the at least one fatty acid ester of glycerol comprises a plant oil and/or animal oil having a iodine number of 100, such as 25.
  • In one embodiment, the at least one fatty acid ester of glycerol is a drying oil. For a definition of a drying oil, see Poth, Ulrich (2012) “Drying oils and related products” in Ullmann's Encyclopedia of industrial chemistry, Weinheim, Wiley-VCH.
  • Accordingly, the present inventors have found that particularly good results are achieved when the iodine number is either in a fairly high range or, alternatively, in a fairly low range. While not wanting to be bound by any particular theory, the present inventors assume that the advantageous properties inflicted by the fatty acid esters of high iodine number on the one hand and low iodine number on the other hand are based on different mechanisms. The present inventors assume that the advantageous properties of glycerol esters of fatty acids having a high iodine number might be due to the participation of the C═C double-bonds found in high numbers in these fatty acids in a crosslinking reaction, while the glycerol esters of fatty acids having a low iodine number and lacking high amounts of C═C double-bonds might allow a stabilization of the cured binder by van der Waals interactions.
  • In a preferred embodiment, the content of the fatty acid ester of glycerol is 0.5 to 40, such as 1 to 30, such as 1.5 to 20, such as 3 to 10, such as 4 to 7.5 wt.-%, based on dry hydrocolloid basis.
  • In one embodiment, the binder composition comprises gelatin, and the binder composition further comprises a tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups, preferably tannic acid, and the binder composition further comprises at least one fatty acid ester of glycerol, such as at least one fatty acid ester of glycerol selected from one or more components from the group consisting of linseed oil, olive oil, tung oil, coconut oil, hemp oil, rapeseed oil, and sunflower oil.
  • In one embodiment, the binder composition comprises gelatin, and the binder composition further comprises at least one enzyme which is a transglutaminase (EC 2.3.2.13), and the binder composition further comprises at least one fatty acid ester of glycerol, such as at least one fatty acid ester of glycerol selected from one or more components from the group consisting of linseed oil, olive oil, tung oil, coconut oil, hemp oil, rapeseed oil, and sunflower oil.
  • In one embodiment, the aqueous binder composition is formaldehyde-free.
  • In one embodiment, the binder composition is consisting essentially of:
      • at least one hydrocolloid;
      • optionally at least one fatty acid ester of glycerol;
      • optionally at least one pH-adjuster;
      • optionally at least one crosslinker;
      • optionally at least one anti-swelling agent;
      • optionally at least one anti-fouling agent
      • water.
  • In one embodiment, an oil may be added to the binder composition.
  • In one embodiment, the at least one oil is a non-emulsified hydrocarbon oil.
  • In one embodiment, the at least one oil is an emulsified hydrocarbon oil.
  • In one embodiment, the at least one oil is a plant-based oil.
  • In one embodiment, the at least one crosslinker is tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups.
  • In one embodiment, the at least one crosslinker is an enzyme selected from the group consisting of transglutaminase (EC 2.3.2.13), protein disulfide isomerase (EC 5.3.4.1), thiol oxidase (EC 1.8.3.2), polyphenol oxidase (EC 1.14.18.1), in particular catechol oxidase, tyrosine oxidase, and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
  • In one embodiment, the loss on ignition (LOI) of coherent growth substrate product is within the range of 0.1 to 25.0%, such as 0.3 to 18.0%, such as 0.5 to 12.0%, such as 0.7 to 8.0% by weight.
  • In one embodiment, the binder is not crosslinked. In an alternative embodiment, the binder is crosslinked.
  • In one embodiment, the at least one hydrocolloid is selected from the group consisting of gelatin, pectin, starch, alginate, agar agar, carrageenan, gellan gum, guar gum, gum arabic, locust bean gum, xanthan gum, cellulose derivatives such as carboxymethylcellulose, arabinoxylan, cellulose, curdlan, β-glucan.
  • In one embodiment, the at least one hydrocolloid is a polyelectrolytic hydrocolloid.
  • In one embodiment, the binder results from the curing of a binder composition in which the at least one hydrocolloid is selected from the group consisting of gelatin, pectin, alginate, carrageenan, gum arabic, xanthan gum, cellulose derivatives such as carboxymethylcellulose.
  • In one embodiment, the binder results from the curing of a binder composition comprising at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least one other hydrocolloid is selected from the group consisting of pectin, starch, alginate, agar agar, carrageenan, gellan gum, guar gum, gum arabic, locust bean gum, xanthan gum, cellulose derivatives such as carboxymethylcellulose, arabinoxylan, cellulose, curdlan, β-glucan. In one embodiment, the binder results from the curing of a binder composition in which the gelatin is present in an amount of 10 to 95 wt.-%, such as 20 to 80 wt.-%, such as 30 to 70 wt.-%, such as 40 to 60 wt.-%, based on the weight of the hydrocolloids.
  • In one embodiment, the binder results from the curing of a binder composition in which the one hydrocolloid and the at least other hydrocolloid have complementary charges.
  • In one embodiment, the loss on ignition (LOI) is within the range of 0.1 to 25.0%, such as 0.3 to 18.0%, such as 0.5 to 12.0%, such as 0.7 to 8.0% by weight.
  • In one embodiment, the binder results from the curing of a binder composition at a temperature of less than 95° C., such as 5-95° C., such as 10-80° C., such as 20-60° C., such as 40-50° C.
  • In one embodiment, the binder results from the curing of a binder composition which is not a thermoset binder composition.
  • In one embodiment, the binder results from a binder composition which does not contain a poly(meth)acrylic acid, a salt of a poly(meth)acrylic acid or an ester of a poly(meth)acrylic acid.
  • In one embodiment, the binder results from the curing of a binder composition comprising at least one hydrocolloid which is a biopolymer or modified biopolymer.
  • In one embodiment, the binder results from the curing of a binder composition comprising proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and the binder composition further comprises at least one phenol and/or quinone containing compound, such as tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups.
  • In one embodiment, the binder results from the curing of a binder composition comprising proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and wherein the binder composition further comprises at least one enzyme selected from the group consisting of transglutaminase (EC 2.3.2.13), protein disulfide isomerase (EC 5.3.4.1), thiol oxidase (EC 1.8.3.2), polyphenol oxidase (EC 1.14.18.1), in particular catechol oxidase, tyrosine oxidase, and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
  • Reaction of the Binder Composition Components
  • The present inventors have found that it is beneficial for the binder composition to be applied to the mineral fibres under acidic conditions. Therefore, in a preferred embodiment, the binder composition applied to the MMVF comprises a pH-adjuster, in particular in form of a pH buffer.
  • In a preferred embodiment, the binder composition in its uncured state has a pH value of less than 8, such as less than 7, such as less than 6.
  • The present inventors have found that in some embodiments, the curing of the binder composition is strongly accelerated under alkaline conditions. Therefore, in one embodiment, the binder composition for mineral fibres comprises a pH-adjuster, preferably in form of a base, such as organic base, such as amine or salts thereof, inorganic bases, such as metal hydroxide, such as KOH or NaOH, ammonia or salts thereof.
  • In a particular preferred embodiment, the pH adjuster is an alkaline metal hydroxide, in particular NaOH.
  • In a preferred embodiment, the binder composition according to the present invention has a pH of 7 to 10, such as 7.5 to 9.5, such as 8 to 9.
  • In one embodiment, an oil may be added to the binder composition.
  • In one embodiment, the at least one oil is a non-emulsified hydrocarbon oil.
  • In one embodiment, the at least one oil is an emulsified hydrocarbon oil.
  • In one embodiment, the at least one oil is a plant-based oil.
  • In one embodiment, the at least one crosslinker is tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups.
  • In one embodiment, the at least one crosslinker is an enzyme selected from the group consisting of transglutaminase (EC 2.3.2.13), protein disulfide isomerase (EC 5.3.4.1), thiol oxidase (EC 1.8.3.2), polyphenol oxidase (EC 1.14.18.1), in particular catechol oxidase, tyrosine oxidase, and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
  • Further additives may be additives containing calcium ions and antioxidants.
  • In one embodiment, the binder composition contains additives in form of linkers containing acyl groups and/or amine groups and/or thiol groups. These linkers can strengthen and/or modify the network of the cured binder.
  • In one embodiment, the binder compositions contain further additives in form of additives selected from the group consisting of PEG-type reagents, silanes, and hydroxylapatites.
  • Superabsorbent Polymer
  • Superabsorbent polymers, or SAPs, are hydrophilic materials which can absorb fluid and retain it under pressure without dissolution in the fluid being absorbed. The materials used are well-known. They are generally all synthesized by one of two routes. In the first, a water soluble polymer is cross-linked so that it can swell between cross-links but not dissolve. In the second, a water-soluble monomer is co-polymerized with a water insoluble monomer into blocks.
  • The earliest superabsorbent materials were saponified starch graft polyacrylonitrile copolymers. Synthetic superabsorbers include polyacrylic acid, polymaleic anhydride-vinyl monomer superabsorbents, starch-polyacrylic acid grafts, polyacrylonitrile-based polymers, cross-linked polyacrylamide, cross-linked sulfonated polystyrene, cross-linked n-vinyl pyrrolidone or vinyl pyrrolidone-acrylamide copolymer, and polyvinyl alcohol superabsorbents. These polymers absorb many times their own weight in aqueous fluid. Additional superabsorbent polymers include sodium propionate-acrylamide, poly(vinyl pyridine), poly(ethylene imine), polyphosphates, poly(ethylene oxide), vinyl alcohol copolymer with acrylamide, and vinyl alcohol copolymer with acrylic acid acrylate. These superabsorbent polymers can be used in this invention.
  • Superabsorbent polymers are beneficially used in plant growth substrates to improve water retention. The particles of superabsorbent polymer that are present in the growth substrate retain water, and then make the water available to the seed/seedling/plant when required. The superabsorbent polymer is also beneficial for water distribution, as it can be distributed throughout the growth substrate, and hence improves water distribution. By varying the amount of superabsorbent polymer in the substrate it is possible to set the maximum water content in the substrate. The rest of the water will drain from the growth substrate in use. The presence of the superabsorbent polymer will result in stability of the water content in the growth substrate product in use.
  • Superabsorbent polymers typically starts to degrade, decompose or be destroyed when exposed to temperatures of 50° C. or more, such as 100° C. or more or 200° C., such as between 50 to 300° C., such as 80° C. to 230° C. or 100° C. to 200° C. A significant benefit of the present invention is that, due to the use of a binder composition which cures at low temperatures, superabsorbent polymers may be added to the MMVF growth substrate before curing occurs. If the binder composition cured at 150° C. or more (as is typical for binder compositions in the prior art), then the superabsorbent polymer would have to be added after curing
  • A problem associated with adding superabsorbent polymers, or indeed any additive, after curing has occurred is that, typically, this step is carried out by users of the product rather than manufacturers. Once the binder composition has cured, the coherent growth substrate has formed. It is undesirable for additives to be added to the coherent growth substrate after manufacture, as this can lead to dusting problems. Specifically, particulates of additives become detached from the product during handling and transport. To avoid this, the growers, who use the coherent substrates in their growing facilities, typically add the superabsorbent polymer to the substrates. This can lead to overdosing or underdosing of the substrate. Further, adding additives after manufacture of the growth substrate can result in inhomogeneous distribution of additives throughout the growth substrate. An advantage of the present invention is that a coherent product can be formed which has the correct amount of superabsorbent polymer present, in the correct place. This is because the superabsorbent polymer is added before the coherent growth product is formed i.e. before curing of the binder composition. Therefore, the growers are not required to add the superabsorbent polymer themselves, and the problems of overdosing or underdosing are removed. Furthermore, the superabsorbent polymer does not become detached during handling and transport.
  • Another benefit associated with adding the superabsorbent polymer before the binder composition is cured, is that this allows the polymer to be contained more securely in the substrate. As the binder composition cures, this helps bind the superabsorbent polymer particles to the MMVF.
  • Preferably the superabsorbent polymer is one which starts to degrade, decompose or be destroyed at temperatures of less than or equal to 250° C., more preferably at 80° C. to 230° C., most preferably 100° C. to 200° C.
  • The superabsorbent polymer may be provided in dry form, hydrated form or partially hydrated form. When the SAP is in dry form it is usually provided in the form of particles or granules, which are generally flowable when dry. “Hydrated form” means that the superabsorbent polymer has absorbed at least 90% of the maximum amount of water it is capable of holding. “Partially hydrated form” means that the superabsorbent polymer has absorbed some water, but is able to absorb more water. “Dry form” means that the SAP comprises less than 5 wt % water, preferably less than 3 wt % water, preferably less than 1 wt % water, preferably no water.
  • The superabsorbent polymer can be added to the growth substrate as discussed above, in any form. Preferably, the superabsorbent polymer is in dry form when added, most preferably in particles. This is beneficial because solid particles of SAP are easier to handle than hydrated SAP, therefore, manufacturing is simplified. In addition, if SAPs are added in hydrated form, there is a possibility that dehydration may occur, which is deform the superabsorbent polymer.
  • The superabsorbent polymer is preferably added in amount of 0.1 wt % to 10 wt % based on the weight the growth substrate, preferably 0.5 wt % to 7 wt %, preferably 1 wt % to 5 wt %. The preferred amounts of superabsorbent polymer provide a desirable water buffer in the growth substrate product when it is used to propagated seeds or grow plants. This is particularly advantageous when the growth substrate product is in contact with soil as the superabsorbent polymer forms a reservoir of water within the growth substrate which is not drawn out be the suction pressure into the soil. Maintaining the water buffer helps to prevent plant necrosis and helps the plant survive until it is rooted-in in soil.
  • Preferably the superabsorbent polymer is added as particles. Preferably the weight average diameter of the particles of superabsorbent polymer is in the range of 0.05 mm to 2 mm, preferably 0.1 mm to 1 mm. An advantage of adding the superabsorbent polymer in the form of particles is that it simplifies the manufacturing process.
  • The superabsorbent polymer may be distributed evenly throughout the growth substrate product. This has the advantage of improving water distribution over the entire growth substrate. The superabsorbent polymer allows water to be retained across the substrate, thereby counteracting the effect of gravity i.e. for water to accumulate in the bottom of the substrate.
  • Alternatively, the superabsorbent polymer may be more concentrated in certain regions of the growth substrate. In one embodiment, the superabsorbent polymer is present in higher concentration around the region in which the seed/seedling/plant will be positioned, in comparison to the rest of the growth substrate, in order to provide optimal water levels.
  • Other Additives
  • Preferably further additives are added to the MMVF growth substrate. These additives may be added at the same time as the superabsorbent polymer and/or the uncured binder composition, as discussed above. Preferably the additives are added to the MMVF fibres as they form, along with the uncured binder composition and the superabsorbent polymer. This ensures the manufacturing procedure is simplified.
  • Preferably the additive is selected from clay, fertilisers, pesticides, micro-organisms, fungi, biologically active additives, pigments and mixtures thereof.
  • Preferably the fertiliser is a controlled-release fertiliser. This ensures that nutrients are released at the optimal time during the growth cycle. The fertilisers may be in the form of solid particles or a dispersion. Preferably it is in the form of solid particles. This is preferred as solids are easier to handle during manufacture than liquids.
  • The pigment may be in the form of solid particles or dispersion. Preferably it is in the form of solid particles. This is preferred as solids are easier to handle during manufacture than liquids. The pigment is used to colour the growth substrate product. For example, it may be desirable for the colour of the substrate to be darker, so that more light is absorbed. Equally, it may be preferable for the substrate to be lighter, in order to reflect light. In addition, it is possible to include a dark colour in the growth substrate as it makes it easier for the grower to check the position of any light coloured seeds in the mineral wool growth substrate. Additionally, a brown coloured mineral wool growth substrate is desirable for the end users as it has a closer resemblance to soil than light coloured mineral wool growth substrates.
  • The growth substrate may further comprise a wetting agent.
  • Growth Substrate
  • The present invention provides a coherent growth substrate product comprising; man-made vitreous fibres (MMVF) bonded with a cured binder composition; and a superabsorbent polymer;
  • wherein the binder composition prior to curing comprises at least one hydrocolloid and preferably at least one fatty acid ester of glycerol.
  • Preferably the cured growth substrate of the present invention is a dry product prior to use to propagate seeds or grow plants. “Dry” means that the substrate comprises less than 5 wt % water, preferably less than 3 wt % water, preferably less than 1 wt % water, preferably less than 0.1 wt %, most preferably no water.
  • Preferably the growth substrate product comprises at least 90 wt % man-made vitreous fibres by weight of the total solids content of the growth substrate. An advantage of having such an amount of fibres present in the growth substrate product is that there are sufficient pores formed between the fibres to allow the growth substrate product to hold water and nutrients for the plant, whilst maintaining the ability for roots of the plants to permeate the growth substrate product. The remaining solid content is made up primarily of binder and additives.
  • Preferably the growth substrate product has an average density of from 30 to 150 kg/m3, such as 30 to 100 kg/m3, more preferably 40 to 90 kg/m3.
  • The growth substrate product preferably has a volume in the range 3 to 86,400 cm3, such as 5 to 30,000 cm3, preferably 8 to 20,000 cm3. The growth substrate product may be in the form of a product conventionally known as a plug, or in the form of a product conventionally known as a block, or in the form of a product conventionally known as a slab.
  • The growth substrate product may have dimensions conventional for the product type commonly known as a plug. Thus it may have height from 20 to 35 mm, often 25 to 28 mm, and length and width in the range 15 to 25 mm, often around 20 mm. In this case the substrate is often substantially cylindrical with the end surfaces of the cylinder forming the top and bottom surfaces of the growth substrate.
  • The volume of the growth substrate product in the form of a plug is preferably not more than 150 cm3. In general the volume of the growth substrate product in the form of a plug is in the range 0.6 to 40 cm3, preferably 3 to 150 cm3 and preferably not more than 100 cm3, more preferably not more than 80 cm3, in particular not more than 75 cm3, most preferably not more than 70 cm3. The minimum distance between the top and bottom surfaces of a plug is preferably less than 60 mm, more preferably less than 50 mm and in particular less than 40 mm or less.
  • Another embodiment of a plug has height from 30 to 50 mm, often around 40 mm and length and width in the range 20 to 40 mm, often around 30 mm. The growth substrate in this case is often of cuboid form. In this first case the volume of the growth substrate is often not more than 50 cm3, preferably not more than 40 cm3.
  • Alternatively the growth substrate may be of the type of plug described as the first coherent MMVF growth substrate in our publication WO2010/003677. In this case the volume of the growth substrate product is most preferably in the range to 10 to 40 cm3.
  • Preferably the growth substrate product in the form of a plug comprises a liquid-impermeable plastic covering surrounding its side surfaces only i.e. the bottom and top surfaces are not covered.
  • The growth substrate product may have dimensions conventional for the product type commonly known as a block. Thus it may have height from 5 to 20 cm, often 6 to 15 cm, and length and width in the range 4 to 30 cm, often 10 to 20 cm. In this case the substrate is often substantially cuboidal. The volume of the growth substrate product in the form of a block is preferably in the range 80 to 8000 cm3, preferably 50 cm3 to 5000 cm3, more preferably 100 cm3 to 350 cm3, most preferably 250 cm3 to 2500 cm3.
  • Preferably the growth substrate product in the form of a block comprises a liquid-impermeable covering surrounding its side surfaces only i.e. the bottom and top surfaces are not covered.
  • The growth substrate product may have dimensions conventional for the product type commonly known as a slab. Thus it may have height from 5 to 15 cm, often 7.5 to 12.5 cm, a width in the range of 5 to 30 cm, often 12 to 24 cm, and a length in the range 30 to 240 cm, often 40 to 200 cm. In this case the substrate is often substantially cuboidal. The volume of the growth substrate product in the form of a slab is preferably in the range 750 to 86,400 cm3, preferably 3 litres to 20 litres, more preferably 4 litres to 15 litres, most preferably 6 litres to 15 litres.
  • Preferably the growth substrate product in the form of a slab comprises a liquid impermeable covering encasing the slab, wherein a drain hole is formed by a first aperture in said covering. In addition, blocks contact the slab through a second opening in said covering. There may be further aperture in the covering to allow blocks to contact the slab i.e. one block may positioned on one aperture. The liquid impermeable covering has the effect of guiding liquid through the slab towards the drain hole, and moreover limits evaporation of fluids from the slab to the atmosphere.
  • The height is the vertical height of the growth substrate product when positioned as intended to be used and is thus the distance between the top surface and the bottom surface. The top surface is the surface that faces upwardly when the product is positioned as intended to be used and the bottom surface is the surface that faces downwardly (and on which the product rests) when the product is positioned as intended to be used.
  • In general, the growth substrate product may be of any appropriate shape including cylindrical, cuboidal and cubic. Usually the top and bottom surfaces are substantially planar.
  • The growth substrate product is in the form of a coherent mass. That is, the growth substrate is generally a coherent matrix of man-made vitreous fibres, which has been produced as such.
  • In the present invention, the term “height” means the distance from the bottom surface to the top surface when the substrate is in use. The term “length” means the longest distance between two sides i.e. the distance from one end to the other end when the substrate is in use. The term “width” is the distance between two sides, perpendicular to the length. These terms have their normal meaning in the art.
  • Use of the Growth Substrate Product
  • The present invention provides the use of a coherent growth substrate product as a substrate for growing plants or for propagating seeds;
  • wherein the coherent growth substrate product comprises;
      • man-made vitreous fibres (MMVF) bonded with a cured binder composition; and
      • a superabsorbent polymer;
  • wherein the binder composition prior to curing comprises at least one hydrocolloid and preferably at least one fatty acid ester of glycerol.
  • The binder composition may have any of the preferred features described herein. The superabsorbent polymer may have any of the preferred features described herein. The coherent growth substrate product may have any of the preferred features described herein.
  • Method of Growing Plants
  • The present invention provides method of growing plants in a coherent growth substrate product, the method comprising:
      • (i) providing at least one growth substrate product;
      • (ii) positioning one or more plants for growth in the growth substrate product; and
      • (iii) irrigating the growth substrate product;
  • wherein the coherent growth substrate product comprises;
      • man-made vitreous fibres (MMVF) bonded with a cured binder composition; and
      • a superabsorbent polymer;
  • wherein the binder composition prior to curing comprises at least one hydrocolloid and preferably at least one fatty acid ester of glycerol.
  • Irrigation may occur by direct irrigation of the growth substrate product, that is, water is supplied directly to the growth substrate product, such as by a wetting line, tidal flooding, a dripper, sprinkler or other irrigation system.
  • The growth substrate product used in the method of growing plants is preferably as described above. The binder composition may have any of the preferred features described herein. The superabsorbent polymer may have any of the preferred features described herein.
  • Method of Propagating Seeds
  • The present invention provides a method of propagating seeds in a coherent growth substrate product, the method comprising:
      • (i) providing at least one growth substrate product
      • (ii) positioning one or more seeds in the growth substrate product,
      • (iii) irrigating the growth substrate product; and
      • (iv) allowing germination and growth of the seed to form a seedling;
  • wherein the coherent growth substrate product comprises;
      • man-made vitreous fibres (MMVF) bonded with a cured binder composition; and
      • a superabsorbent polymer;
  • wherein the binder composition prior to curing comprises at least one hydrocolloid and preferably at least one fatty acid ester of glycerol.
  • Irrigation may occur by direct irrigation of the growth substrate product, that is, water is supplied directly to the growth substrate product, such as by a wetting line, tidal flooding, a dripper, sprinkler or other irrigation system.
  • The growth substrate product used in the method of propagating seeds is preferably as described above. The binder composition may have any of the preferred features described herein. The superabsorbent polymer may have any of the preferred features described herein.
  • Examples
  • In the following examples, several binder composition s which fall under the definition of the present invention were prepared and compared to binder compositions according to the prior art.
  • Test Methods for Binder Compositions According to the Prior Art
  • The following properties were determined for the binder compositions according the prior art.
  • Reagents
  • Silane (Momentive VS-142) was supplied by Momentive and was calculated as 100% for simplicity. All other components were supplied in high purity by Sigma-Aldrich and were assumed anhydrous for simplicity unless stated otherwise.
  • Binder Component Solids Content—Definition
  • The content of each of the components in a given binder solution before curing is based on the anhydrous mass of the components. The following formula can be used:
  • Binder component solids content ( % ) = binder component A solids ( g ) + binder component B solids ( g ) + total weight of mixture ( g ) × 100 %
  • Binder Solids—Definition and Procedure
  • The content of binder after curing is termed “binder solids”.
  • Disc-shaped stone wool samples (diameter: 5 cm; height 1 cm) were cut out of stone wool and heat-treated at 580° C. for at least 30 minutes to remove all organics. The solids of the binder mixture (see below for mixing examples) were measured by distributing a sample of the binder mixture (approx. 2 g) onto a heat treated stone wool disc in a tin foil container. The weight of the tin foil container containing the stone wool disc was weighed before and directly after addition of the binder mixture. Two such binder mixture loaded stone wool discs in tin foil containers were produced and they were then heated at 200° C. for 1 hour. After cooling and storing at room temperature for 10 minutes, the samples were weighed and the binder solids were calculated as an average of the two results. A binder with the desired binder solids could then be produced by diluting with the required amount of water and 10% aq. silane (Momentive VS-142).
  • Reaction Loss—Definition
  • The reaction loss is defined as the difference between the binder component solids content and the binder solids.
  • Mechanical Strength Studies (Bar Tests)—Procedure
  • The mechanical strength of the binders was tested in a bar test. For each binder, 16 bars were manufactured from a mixture of the binder and stone wool shots from the stone wool spinning production. The shots are particles which have the same melt composition as the stone wool fibers, and the shots are normally considered a waste product from the spinning process. The shots used for the bar composition have a size of 0.25-0.50 mm.
  • A 15% binder solids binder solution containing 0.5% silane (Momentive VS-142) of binder solids was obtained as described above under “binder solids”. A sample of this binder solution (16.0 g) was mixed well with shots (80.0 g). The resulting mixture was then filled into four slots in a heat resistant silicone form for making small bars (4×5 slots per form; slot top dimension: length=5.6 cm, width=2.5 cm; slot bottom dimension: length=5.3 cm, width=2.2 cm; slot height=1.1 cm). The mixtures placed in the slots were then pressed hard with a suitably sized flat metal bar to generate even bar surfaces. 16 bars from each binder were made in this fashion. The resulting bars were then cured at 200° C. for 1 h. After cooling to room temperature, the bars were carefully taken out of the containers. Five of the bars were aged in a water bath at 80° C. for 3 h or in an autoclave (15 min/120° C./1.2 bar).
  • After drying for 1-2 days, the aged bars as well as five unaged bars were broken in a 3 point bending test (test speed: 10.0 mm/min; rupture level: 50%; nominal strength: 30 N/mm2; support distance: 40 mm; max deflection 20 mm; nominal e-module 10000 N/mm2) on a Bent Tram machine to investigate their mechanical strengths. The bars were placed with the “top face” up (i.e. the face with the dimensions length=5.6 cm, width=2.5 cm) in the machine.
  • Loss of Ignition (LOI) of Bars
  • The loss of ignition (LOI) of bars was measured in small tin foil containers by treatment at 580° C. For each measurement, a tin foil container was first heat-treated at 580° C. for 15 minutes to remove all organics. The tin foil container was allowed to cool to ambient temperature, and was then weighed. Four bars (usually after being broken in the 3 point bending test) were placed into the tin foil container and the ensemble was weighed. The tin foil container containing bars was then heat-treated at 580° C. for 30 minutes, allowed to cool to ambient temperature, and finally weighed again. The LOI was then calculated using the following formula:
  • LOI ( % ) = Weight of bars before heat treatment ( g ) - Weight of bars after heat treatment ( g ) Weight of bars before heat treatment ( g ) × 100 ( % )
  • Water Absorption Measurements
  • The water absorption of the binders was measured by weighing three bars and then submerging the bars in water (approx. 250 mL) in a beaker (565 mL, bottom Ø=9.5 cm; top Ø=10.5 cm; height=7.5 cm) for 3 h or 24 h. The bars were placed next to each other on the bottom of the beaker with the “top face” down (i.e. the face with the dimensions length=5.6 cm, width=2.5 cm). After the designated amount of time, the bars were lifted up one by one and allowed to drip off for one minute. The bars were held (gently) with the length side almost vertical so that the droplets would drip from a corner of the bar. The bars were then weighed and the water absorption was calculated using the following formula:
  • Waterabs . ( % ) = Weight of bars after water treatment ( g ) - Weight of bars before water treatment ( g ) Weight of bars before water treatment ( g ) × 100 ( % )
  • Reference Binder Compositions from the Prior Art
  • Binder Example, Reference Binder A (Phenol-Formaldehyde Resin Modified with Urea, a PUF-Resol)
  • A phenol-formaldehyde resin is prepared by reacting 37% aq. formaldehyde (606 g) and phenol (189 g) in the presence of 46% aq. potassium hydroxide (25.5 g) at a reaction temperature of 84° C. preceded by a heating rate of approximately 1° C. per minute. The reaction is continued at 84° C. until the acid tolerance of the resin is 4 and most of the phenol is converted. Urea (241 g) is then added and the mixture is cooled.
  • The acid tolerance (AT) expresses the number of times a given volume of a binder can be diluted with acid without the mixture becoming cloudy (the binder precipitates). Sulfuric acid is used to determine the stop criterion in a binder production and an acid tolerance lower than 4 indicates the end of the binder reaction. To measure the AT, a titrant is produced from diluting 2.5 mL conc. sulfuric acid (>99%) with 1 L ion exchanged water. 5 mL of the binder to be investigated is then titrated at room temperature with this titrant while keeping the binder in motion by manually shaking it; if preferred, use a magnetic stirrer and a magnetic stick. Titration is continued until a slight cloud appears in the binder, which does not disappear when the binder is shaken.
  • The acid tolerance (AT) is calculated by dividing the amount of acid used for the titration (mL) with the amount of sample (mL):

  • AT=(Used titration volume (mL))/(Sample volume (mL))
  • Using the urea-modified phenol-formaldehyde resin obtained, a binder is made by addition of 25% aq. ammonia (90 mL) and ammonium sulfate (13.2 g) followed by water (1.30 kg). The binder solids were then measured as described above and the mixture was diluted with the required amount of water and silane (Momentive VS-142) for mechanical strength studies (15% binder solids solution, 0.5% silane of binder solids).
  • Test Methods for Binder Compositions According to the Present Invention and Reference Binders
  • The following properties were determined for the binders according the present invention and reference binders.
  • Reagents
  • Speisegelatines, type A, porcine (120 bloom and 180 bloom) were obtained from Gelita AG. Tannorouge chestnut tree tannin was obtained from Brouwland bvba. TI Transglutaminase formula was obtained from Modernist Pantry. Coconut oil, hemp oil, olive oil, rapeseed oil and sunflower oil were obtained from Urtekram International A/S. Linseed oil was obtained from Borup Kemi I/S. Medium gel strength gelatin from porcine skin (170-195 g Bloom), sodium hydroxide, tung oil and all other components were obtained from Sigma-Aldrich. Unless stated otherwise, these components were assumed completely pure and anhydrous.
  • Binder Component Solids Content—Definition
  • The content of each of the components in a given binder solution before curing is based on the anhydrous mass of the components. The following formula can be used:
  • Binder component solids content ( % ) = binder component A solids ( g ) + binder component B solids ( g ) + total weight of mixture ( g ) × 100 %
  • Mechanical Strength Studies (Bar Tests)—Procedure
  • The mechanical strength of the binders was tested in a bar test. For each binder, 16-20 bars were manufactured from a mixture of the binder and stone wool shots from the stone wool spinning production. The shots are particles which have the same melt composition as the stone wool fibers, and the shots are normally considered a waste product from the spinning process. The shots used for the bar composition have a size of 0.25-0.50 mm.
  • A binder solution with approx. 15% binder component solids was obtained as described in the examples below. A sample of the binder solution (16.0 g) was mixed well with shots (80.0 g; pre-heated to 40° C. when used in combination with comparatively fast setting binders). The resulting mixture was then filled into four slots in a heat resistant silicone form for making small bars (4×5 slots per form; slot top dimension: length=5.6 cm, width=2.5 cm; slot bottom dimension: length=5.3 cm, width=2.2 cm; slot height=1.1 cm). During the manufacture of each bar, the mixtures placed in the slots were pressed as required and then evened out with a plastic spatula to generate an even bar surface. 16-20 bars from each binder were made in this fashion. The resulting bars were then cured at room temperature for 1-2 days. The bars were then carefully taken out of the containers, turned upside down and left for a day at room temperature to cure completely. Five of the bars were aged in a water bath at 80° C. for 3 h or in an autoclave (15 min/120° C./1.2 bar).
  • After drying for 1-2 days, the aged bars as well as five unaged bars were broken in a 3 point bending test (test speed: 10.0 mm/min; rupture level: 50%; nominal strength: 30 N/mm2; support distance: 40 mm; max deflection 20 mm; nominal e-module 10000 N/mm2) on a Bent Tram machine to investigate their mechanical strengths. The bars were placed with the “top face” up (i.e. the face with the dimensions length=5.6 cm, width=2.5 cm) in the machine.
  • Loss of Ignition (LOI) of Bars
  • The loss of ignition (LOI) of bars was measured in small tin foil containers by treatment at 580° C. For each measurement, a tin foil container was first heat-treated at 580° C. for 15 minutes to remove all organics. The tin foil container was allowed to cool to ambient temperature, and was then weighed. Four bars (usually after being broken in the 3 point bending test) were placed into the tin foil container and the ensemble was weighed. The tin foil container containing bars was then heat-treated at 580° C. for 30 minutes, allowed to cool to ambient temperature, and finally weighed again. The LOI was then calculated using the following formula:
  • LOI ( % ) = Weight of bars before heat treatment ( g ) - Weight of bars after heat treatment ( g ) Weight of bars before heat treatment ( g ) × 100 ( % )
  • Water Absorption Measurements
  • The water absorption of the binders was measured by weighing three bars and then submerging the bars in water (approx. 250 mL) in a beaker (565 mL, bottom Ø=9.5 cm; top Ø=10.5 cm; height=7.5 cm) for 3 h or 24 h. The bars were placed next to each other on the bottom of the beaker with the “top face” down (i.e. the face with the dimensions length=5.6 cm, width=2.5 cm). After the designated amount of time, the bars were lifted up one by one and allowed to drip off for one minute. The bars were held (gently) with the length side almost vertical so that the droplets would drip from a corner of the bar. The bars were then weighed and the water absorption was calculated using the following formula:
  • Waterabs . ( % ) = Weight of bars after water treatment ( g ) - Weight of bars before water treatment ( g ) Weight of bars before water treatment ( g ) × 100 ( % )
  • Binder Compositions According to the Present Invention and Reference Binders
  • Binder Example, Entry B
  • To 1M NaOH (15.75 g) stirred at room temperature was added chestnut tree tannin (4.50 g). Stirring was continued at room temperature for 5-10 min further, yielding a deep red-brown solution.
  • A mixture of gelatin (Speisegelatine, type A, porcine, 120 bloom, 12.0 g) in water (68.0 g) was stirred at 50° C. for approx. 15-30 min until a clear solution was obtained (pH 5.0). 1M NaOH (4.37 g) was then added (pH 9.1) followed by a portion of the above chestnut tree tannin solution (5.40 g; thus efficiently 1.20 g chestnut tree tannin). After stirring for 1-2 minutes further at 50° C., the resulting brown mixture (pH 9.1) was used in the subsequent experiments.
  • Binder Example, Entry 3
  • To 1M NaOH (15.75 g) stirred at room temperature was added chestnut tree tannin (4.50 g). Stirring was continued at room temperature for 5-10 min further, yielding a deep red-brown solution.
  • A mixture of gelatin (Speisegelatine, type A, porcine, 120 bloom, 10.0 g) in water (56.7 g) was stirred at 50° C. for approx. 15-30 min until a clear solution was obtained (pH 5.1). 1M NaOH (4.00 g) was added (pH 9.3) followed by a portion of the above chestnut tree tannin solution (4.50 g; thus efficiently 1.00 g chestnut tree tannin). Coconut oil (0.65 g) was then added under vigorous stirring. After stirring vigorously for approx. 1 minute at 50° C., the stirring speed was slowed down again and the resulting brown mixture (pH 9.3) was used in the subsequent experiments.
  • Binder Example, Entry 5
  • To 1M NaOH (15.75 g) stirred at room temperature was added chestnut tree tannin (4.50 g). Stirring was continued at room temperature for 5-10 min further, yielding a deep red-brown solution.
  • A mixture of gelatin (Speisegelatine, type A, porcine, 120 bloom, 10.0 g) in water (56.7 g) was stirred at 50° C. for approx. 15-30 min until a clear solution was obtained (pH 4.8). 1M NaOH (4.00 g) was added (pH 9.2) followed by a portion of the above chestnut tree tannin solution (4.50 g; thus efficiently 1.00 g chestnut tree tannin). Linseed oil (0.65 g) was then added under vigorous stirring. After stirring vigorously for approx. 1 minute at 50° C., the stirring speed was slowed down again and the resulting brown mixture (pH 9.2) was used in the subsequent experiments.
  • Binder Example, Entry 6
  • To 1M NaOH (15.75 g) stirred at room temperature was added chestnut tree tannin (4.50 g). Stirring was continued at room temperature for 5-10 min further, yielding a deep red-brown solution.
  • A mixture of gelatin (Speisegelatine, type A, porcine, 120 bloom, 10.0 g) in water (56.7 g) was stirred at 50° C. for approx. 15-30 min until a clear solution was obtained (pH 4.8). 1M NaOH (4.00 g) was added (pH 9.2) followed by a portion of the above chestnut tree tannin solution (4.50 g; thus efficiently 1.00 g chestnut tree tannin). Olive oil (0.65 g) was then added under vigorous stirring. After stirring vigorously for approx. 1 minute at 50° C., the stirring speed was slowed down again and the resulting brown mixture (pH 9.1) was used in the subsequent experiments.
  • Binder Example, Entry 9
  • To 1M NaOH (15.75 g) stirred at room temperature was added chestnut tree tannin (4.50 g). Stirring was continued at room temperature for 5-10 min further, yielding a deep red-brown solution.
  • A mixture of gelatin (Speisegelatine, type A, porcine, 120 bloom, 10.0 g) in water (56.7 g) was stirred at 50° C. for approx. 15-30 min until a clear solution was obtained (pH 4.8). 1M NaOH (4.00 g) was added (pH 9.3) followed by a portion of the above chestnut tree tannin solution (4.50 g; thus efficiently 1.00 g chestnut tree tannin). Tung oil (0.16 g) was then added under vigorous stirring. After stirring vigorously for approx. 1 minute at 50° C., the stirring speed was slowed down again and the resulting brown mixture (pH 9.4) was used in the subsequent experiments.
  • Binder Example, Entry 11
  • To 1M NaOH (15.75 g) stirred at room temperature was added chestnut tree tannin (4.50 g). Stirring was continued at room temperature for 5-10 min further, yielding a deep red-brown solution.
  • A mixture of gelatin (Speisegelatine, type A, porcine, 120 bloom, 10.0 g) in water (56.7 g) was stirred at 50° C. for approx. 15-30 min until a clear solution was obtained (pH 5.0). 1M NaOH (4.00 g) was added (pH 9.1) followed by a portion of the above chestnut tree tannin solution (4.50 g; thus efficiently 1.00 g chestnut tree tannin). Tung oil (1.13 g) was then added under vigorous stirring. After stirring vigorously for approx. 1 minute at 50° C., the stirring speed was slowed down again and the resulting brown mixture (pH 9.1) was used in the subsequent experiments.
  • Binder Example, Entry C
  • To 1M NaOH (15.75 g) stirred at room temperature was added chestnut tree tannin (4.50 g). Stirring was continued at room temperature for 5-10 min further, yielding a deep red-brown solution.
  • A mixture of gelatin (Speisegelatine, type A, porcine, 180 bloom, 12.0 g) in water (68.0 g) was stirred at 50° C. for approx. 15-30 min until a clear solution was obtained (pH 5.0). 1M NaOH (3.81 g) was then added (pH 9.1) followed by a portion of the above chestnut tree tannin solution (5.40 g; thus efficiently 1.20 g chestnut tree tannin). After stirring for 1-2 minutes further at 50° C., the resulting brown mixture (pH 9.3) was used in the subsequent experiments.
  • Binder Example, Entry 12
  • To 1M NaOH (15.75 g) stirred at room temperature was added chestnut tree tannin (4.50 g). Stirring was continued at room temperature for 5-10 min further, yielding a deep red-brown solution.
  • A mixture of gelatin (Speisegelatine, type A, porcine, 180 bloom, 10.0 g) in water (56.7 g) was stirred at 50° C. for approx. 15-30 min until a clear solution was obtained (pH 5.0). 1M NaOH (3.28 g) was added (pH 9.2) followed by a portion of the above chestnut tree tannin solution (4.50 g; thus efficiently 1.00 g chestnut tree tannin). Tung oil (0.65 g) was then added under vigorous stirring. After stirring vigorously for approx. 1 minute at 50° C., the stirring speed was slowed down again and the resulting brown mixture (pH 9.1) was used in the subsequent experiments.
  • Binder Example, Entry D
  • A mixture of gelatin (Porcine skin, medium gel strength, 12.0 g) in water (62.0 g) was stirred at 37° C. for approx. 15-30 min until a clear solution was obtained (pH 5.5). A solution of TI transglutaminase (0.60 g) in water (6.0 g) was then added. After stirring for 1-2 minutes further at 37° C., the resulting tan mixture (pH 5.5) was used in the subsequent experiments.
  • Binder Example, Entry 13
  • A mixture of gelatin (Porcine skin, medium gel strength, 12.0 g) in water (62.0 g) was stirred at 37° C. for approx. 15-30 min until a clear solution was obtained (pH 5.5). A solution of TI transglutaminase (0.60 g) in water (6.0 g) was added. Linseed oil (0.63 g) was then added under more vigorous stirring. After stirring more vigorously for approx. 1 minute at 37° C., the stirring speed was slowed down again and the resulting tan mixture (pH 5.5) was used in the subsequent experiments.
  • Binder Example, Entry E
  • A mixture of gelatin (Speisegelatine, type A, porcine, 120 bloom, 12.0 g) in water (68.0 g) was stirred at 50° C. for approx. 15-30 min until a clear solution was obtained (pH 4.8). 1M NaOH (4.42 g) was then added. After stirring for 1-2 minutes further at 50° C., the resulting tan mixture (pH 9.0) was used in the subsequent experiments.
  • Binder Example, Entry 14
  • A mixture of gelatin (Speisegelatine, type A, porcine, 120 bloom, 10.0 g) in water (56.7 g) was stirred at 50° C. for approx. 15-30 min until a clear solution was obtained (pH 5.1). 1M NaOH (4.00 g) was added (pH 9.4). Tung oil (0.65 g) was then added under vigorous stirring. After stirring vigorously for approx. 1 minute at 50° C., the stirring speed was slowed down again and the resulting tan mixture (pH 9.1) was used in the subsequent experiments.
  • Binder Example, Entry 15
  • A mixture of gelatin (Speisegelatine, type A, porcine, 120 bloom, 10.0 g) in water (56.7 g) was stirred at 50° C. for approx. 15-30 min until a clear solution was obtained (pH 5.1). 1M NaOH (4.00 g) was added (pH 9.3). Tung oil (1.13 g) was then added under vigorous stirring. After stirring vigorously for approx. 1 minute at 50° C., the stirring speed was slowed down again and the resulting tan mixture (pH 9.1) was used in the subsequent experiments.
  • TABLE 1-1
    Reference binder according to the prior art
    Example A
    Binder properties
    Binder solids (%) 15.0
    Reaction loss (%) 28.5
    pH 9.6
    Bar curing conditions
    Temperature (° C./1 h) 200
    Bar properties
    Mechanical strength, unaged (kN) 0.39
    Mechanical strength, water bath aged (kN) 0.28
    Mechanical strength, autoclave aged (kN) 0.28
    LOI, unaged (%) 2.8
    LOI, water bath aged (%) 2.8
    Water absorption, 3 h (%) 4
    Water absorption, 24 h (%) 8
  • TABLE 1-2
    Hydrocolloid, crosslinker, mineral oil or fatty acid ester of glycerol
    Example B 1 2 3 4 5 6
    Binder composition
    Hydrocolloid (%-wt.)
    Gelatin, Speisegelatine, 120 100 100 100 100 100 100 100
    bloom
    Gelatin, Speisegelatine, 180
    bloom
    Crosslinker (%-wt.) [a]
    Chestnut tree tannin 10 10 10 10 10 10 10
    Fatty acid ester of glycerol
    (%-wt.) [a]
    Mineral oil 1.6 6.5
    Coconut oil (iodine 6.5
    number 7 to 10)
    Hemp oil (iodine 6.5
    number 140 to 170)
    Linseed oil (iodine 6.5
    number 136 to 178)
    Olive oil (iodine 6.5
    number 80 to 88)
    Base (%-wt.) [b]
    Sodium hydroxide 2.5 2.6 2.5 2.5 2.5 2.5 2.5
    Binder mixing and bar
    manufacture
    Binder component solids 15.1 15.2 15.7 15.7 15.7 15.7 15.7
    content (%)
    pH of binder mixture 9.1 9.1 9.1 9.3 9.1 9.2 9.1
    Curing temperature (° C.) rt rt rt rt rt rt rt
    Bar properties
    Mechanical strength, 0.22 0.19 0.18 0.31 0.31 0.34 0.34
    unaged (kN)
    Mechanical strength, 0.17 0.12 0.12 0.25 0.24 0.30 0.28
    aged (kN)
    LOI, unaged (%) 2.9 2.9 2.9 3.0 3.0 3.0 3.0
    LOI, water bath aged (%) 2.6 2.6 2.7 2.8 2.8 2.8 2.8
    Water absorption, 3 h (%) 16 18 16 10 10 9 10
    Water absorption, 24 h (%) 31 31 32 23 24 23 22
    [a] Of hydrocolloid.
    [b] Of hydrocolloid + crosslinker.
  • TABLE 1-3
    Hydrocolloid, crosslinker, fatty acid ester of glycerol
    Example B 7 8 9 10 11 C 12
    Binder composition
    Hydrocolloid (%-wt.)
    Gelatin, Speisegelatine, 100 100 100 100 100 100
    120 bloom
    Gelatin, Speisegelatine, 100 100
    180 bloom
    Crosslinker (%-wt.) [a]
    Chestnut tree tannin 10 10 10 10 10 10 10 10
    Fatty acid ester of glycerol
    (%-wt.) [a]
    Rapeseed oil (iodine 6.5
    number 94 to 120)
    Sunflower oil (iodine 6.5
    number 118 to 144)
    Tung oil (iodine 1.6 6.5 11.3 6.5
    number 163 to 173)
    Base (%-wt.) [b]
    Sodium hydroxide 2.5 2.5 2.5 2.6 2.5 2.4 2.3 2.2
    Binder mixing and bar
    manufacture
    Binder component solids 15.1 15.7 15.7 15.2 15.7 16.3 15.1 15.9
    content (%)
    pH of binder mixture 9.1 9.1 9.2 9.4 9.1 9.1 9.3 9.1
    Curing temperature (° C.) rt rt rt rt rt rt rt rt
    Bar properties
    Mechanical strength, 0.22 0.28 0.26 0.29 0.32 0.28 0.24 0.37
    unaged (kN)
    Mechanical strength, 0.17 0.25 0.21 0.22 0.22 0.21 0.17 0.34
    aged (kN)
    LOI, unaged (%). 2.9 2.9 3.0 2.9 3.0 3.1 2.9 3.0
    LOI, water bath aged (%) 2.6 2.8 2.8 2.7 2.9 3.0 2.8 2.9
    Water absorption, 3 h (%) 16 11 10 11 8 8 13 9
    Water absorption, 24 h (%) 31 25 24 24 23 20 25 22
    [a] Of hydrocolloid.
    [b] Of hydrocolloid + crosslinker.
  • TABLE 1-4
    Hydrocolloid, crosslinker, fatty acid ester of glycerol
    Example D 13 E 14 15
    Binder composition
    Hydrocolloid (%-wt.)
    Gelatin (porcine skin), 100 100
    medium gel strength
    Gelatin, Speisegelatine, 100 100 100
    120 bloom
    Crosslinker (%-wt.) [a]
    TI transglutaminase 5 5
    Fatty acid ester of
    glycerol (%-wt.) [a]
    Tung oil (iodine number 6.5 11.3
    163 to 173)
    Linseed oil (iodine 5.3
    number 136 to 178)
    Base (%-wt.) [b]
    Sodium hydroxide 1.4 1.5 1.5
    Binder mixing and bar
    manufacture
    Binder component 15.6 16.3 14.4 15.1 15.7
    solids content (%)
    pH of binder mixture 5.5 5.5 9.0 9.1 9.0
    Curing temperature rt rt rt rt rt
    (° C.)
    Bar properties
    Mechanical strength, 0.28 0.29 0.16 0.22 0.19
    unaged (kN)
    Mechanical strength, 0.20 0.20
    water bath aged (kN)
    Mechanical strength, 0.16 0.28 0.24
    autoclave aged (kN)
    LOI, unaged (%) 3.0 3.2 2.7 3.0 3.1
    LOI, water bath aged (%) 2.7 2.8
    Water absorption, 6 5
    3 h (%)
    Water absorption, 9 10
    24 h (%)
    [a] Of hydrocolloid.
    [b] Of hydrocolloid + crosslinker.
  • As can be seen from the above results, the binder composition used in the present invention cures at room temperature. This means that temperature-sensitive additives i.e. superabsorbent polymers may be added to the MMVF before curing occurs.

Claims (38)

1. A method of producing a coherent growth substrate product formed of man-made vitreous fibres (MMVF), comprising the steps of:
I. providing MMVF;
II. providing an uncured binder composition;
III. providing a superabsorbent polymer;
IV. forming a mixture of the MMVF, the uncured binder composition and the superabsorbent polymer;
V. curing the uncured binder composition in the mixture to form the coherent growth substrate product;
wherein the uncured binder composition comprises at least one hydrocolloid;
and wherein the uncured binder composition comprises:
proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and the binder composition further comprises at least one phenol and/or quinone containing compound such as tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups;
and/or
proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and wherein the binder composition further comprises at least one enzyme selected from the group consisting of transglutaminase (EC 2.3.2.13), protein disulfide isomerase (EC 5.3.4.1), thiol oxidase (EC 1.8.3.2), polyphenol oxidase (EC 1.14.18.1), in particular catechol oxidase, tyrosine oxidase, and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
2. The method according to claim 1, wherein the uncured binder composition further comprises at least one fatty acid ester of glycerol.
3. The method according to claim 2, wherein the uncured binder composition and the superabsorbent polymer are added simultaneously.
4. The method according to claim 1, wherein the mixture in step (iv) is formed by adding the uncured binder composition and the superabsorbent polymer to the MMVF after the fibres are formed.
5. The method according to claim 4, wherein the uncured binder composition and the superabsorbent polymer are added simultaneously.
6. The method according to claim 1, wherein the superabsorbent polymer is a solid, preferably solid particles.
7. The method according to claim 1, wherein of 0.1 wt % to 10 wt % of superabsorbent polymer, based on the weight the growth substrate is provided, preferably 0.5 wt % to 7 wt %, preferably 1 wt % to 5 wt %.
8. The method according to claim 1, further comprising the step of providing an additive before the uncured binder composition is cured, wherein the additive is selected from clay, fertilisers, pesticides, micro-organisms, biologically active additives, pigments, wetting agents and mixtures thereof.
9. (canceled)
10. (canceled)
11. (canceled)
12. The method according to claim 1, wherein the uncured binder composition comprises at least two hydrocolloids, wherein one hydrocolloid is gelatin and the at least one other hydrocolloid is selected from the group consisting of pectin, starch, alginate, agar agar, carrageenan, gellan gum, guar gum, gum arabic, locust bean gum, xanthan gum, cellulose derivatives such as carboxymethylcellulose, arabinoxylan, cellulose, curdlan, β-glucan.
13. The method according to claim 8, wherein the gelatin is present in the binder composition in an amount of 10 to 95 wt.-%, such as 20 to 80 wt.-%, such as 30 to 70 wt.-%, such as 40 to 60 wt.-%, based on the weight of the hydrocolloids.
14. (canceled)
15. The method according to claim 2, wherein the at least one fatty acid ester of glycerol is in form of a plant oil and/or animal oil.
16. The method according to claim 2, wherein the at least one fatty acid ester of glycerol is a plant-based oil.
17. The method according to claim 2, wherein the at least one fatty acid ester of glycerol is selected from one or more components from the group consisting of linseed oil, olive oil, tung oil, coconut oil, hemp oil, rapeseed oil, and sunflower oil.
18. The method according to claim 2, wherein the at least one fatty acid ester of glycerol is in form of an animal oil, such as fish oil.
19. The method according to claim 2, wherein the at least one fatty acid ester of glycerol comprises a plant oil and/or animal oil having a iodine number of such as 75 to 180, such as 130, such as 130 to 180.
20. The method according to claim 2, wherein the at least one fatty acid ester of glycerol comprises a plant oil and/or animal oil having a iodine number of ≤100, such as ≤25.
21. The method according to claim 2, wherein the content of the fatty acid ester of glycerol is 0.5 to 40, such as 1 to 30, such as 1.5 to 15, such as 3 to 10, such as 4 to 7.5 wt. %, based on dry hydrocolloid basis.
22. The method according to claim 1, wherein the step (v) of curing occurs at a temperature of not more than 95° C., such as 5-95° C., such as 10-80° C., such as 20-60° C., such as 40-50° C.
23. The method according to claim 1, wherein the binder composition is not a thermoset binder composition.
24. (canceled)
25. (canceled)
26. The method according to claim 1, wherein the binder composition is formaldehyde-free.
27. The method according to claim 1, wherein the binder composition consists essentially of:
at least one hydrocolloid;
at least one fatty acid ester of glycerol;
optionally at least one pH-adjuster;
optionally at least one crosslinker;
optionally at least one anti-swelling agent
optionally at least one anti-fouling agent;
water.
28. (canceled)
29. (canceled)
30. A coherent growth substrate product comprising;
man-made vitreous fibres (MMVF) bonded with a cured binder composition; and
a superabsorbent polymer;
wherein the binder composition prior to curing comprises at least one hydrocolloid, and
wherein the uncured binder composition comprises:
proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and the binder composition further composes at least one phenol end/or quinone containing compound, such as tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups;
and/or
proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and wherein the binder composition further comprises at least one enzyme selected front the group consisting of transglutaminase (EC 2.3.2.13), protein disulfide isomerase (EC 5.3.4.1), thiol oxidase (EC 1.8.3.2), polyphenol oxidase (EC 1.14.18.1), in particular catechol oxidase, tyrosine oxidase, and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
31. The coherent growth substrate product according to claim 30, wherein the loss on ignition (LOI) is within the range of 0.1 to 25.0%, such as 0.3 to 18.0%, such as 0.5 to 12.0%, such as 0.7 to 8.0% by weight.
32. (canceled)
33. Use of a coherent growth substrate product as a substrate for growing plants or for propagating seeds;
wherein the coherent growth substrate product comprises;
man-made vitreous fibres (MMVF) bonded with a cured binder composition; and
a superabsorbent polymer;
wherein the binder composition prior to curing comprises at least one hydrocolloid, and
wherein the binder composition comprises:
proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and the binder composition further composes at least one phenol and/or quinone containing compound, such as tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cups;
and/or
proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and wherein the binder composition further comprises at least one enzyme selected from the group consisting of transglutaminase (EC 2.3.2.13V protein disulfide isomerase (EC 5.3.4.1); thiol oxidase (EC 1.8.3.2), polyphenol oxidase (EC 1.14.18.1), in particular catechol oxidase, tyrosine oxidase, and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
34. (canceled)
35. A method of growing plants or propagating seeds in a coherent growth substrate product, the method comprising:
(i) providing at least one growth substrate product;
(ii) positioning one or more plants or one or more seeds for growth in the growth substrate product; and
(iii) irrigating the growth substrate product;
wherein the coherent growth substrate product comprises;
man-made vitreous fibres (MMVF) bonded with a cured binder composition; and
a superabsorbent polymer;
wherein the binder composition prior to curing comprises at least one hydrocolloid, and
wherein the binder composition comprises:
proteins from animal sources, inducting collagen, gelatin, and hydrolysed gelatin, and the binder composition further comprises at least one phenol and/or quinone containing compound, such as tannin selected from one or more components from the group consisting of tannic acid, condensed tannins (proanthocyanidins), hydrolysable tannins, gallotannins, ellagitannins, complex tannins, and/or tannin originating from one or more of oak, chestnut, staghorn sumac and fringe cuds;
and/or
proteins from animal sources, including collagen, gelatin, and hydrolysed gelatin, and wherein the binder composition further comprises at least one enzyme selected from the group consisting of transglutaminase (EC 2.3.2.13), protein disulfide 1.14.18.1), in particular catechol oxidase, tyrosine oxidase and phenoloxidase, lysyl oxidase (EC 1.4.3.13), and peroxidase (EC 1.11.1.7).
36. (canceled)
37. (canceled)
38. (canceled)
US16/611,706 2016-05-13 2017-11-13 Method of producing a plant growth substrate Abandoned US20210137031A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
EP16169641 2016-05-13
EP16169638 2016-05-13
EP16169635 2016-05-13
EPPCT/EP2017/061418 2017-05-11
EPPCT/EP2017/061419 2017-05-11
PCT/EP2017/061419 WO2017194725A2 (en) 2016-05-13 2017-05-11 Binder composition
PCT/EP2017/061418 WO2017194724A2 (en) 2016-05-13 2017-05-11 Binder composition
PCT/EP2017/079089 WO2018206130A1 (en) 2017-05-11 2017-11-13 Method of producing a plant growth substrate

Publications (1)

Publication Number Publication Date
US20210137031A1 true US20210137031A1 (en) 2021-05-13

Family

ID=58671714

Family Applications (14)

Application Number Title Priority Date Filing Date
US16/099,317 Active 2040-07-14 US12070929B2 (en) 2016-05-13 2017-05-11 Mineral wool product
US16/301,232 Active 2037-07-27 US11590747B2 (en) 2016-05-13 2017-05-11 Method of producing a mineral wool product comprising a multiple of lamellae and a product of such kind
US16/099,321 Active 2040-10-15 US11820116B2 (en) 2016-05-13 2017-05-11 Binder composition
US16/099,314 Pending US20190135688A1 (en) 2016-05-13 2017-05-11 Mineral wool binder
US16/099,308 Abandoned US20190211486A1 (en) 2016-05-13 2017-05-11 Mineral wool products
US16/300,608 Active 2041-07-03 US11919283B2 (en) 2016-05-13 2017-05-11 Method of providing insulation to a structure
US16/301,371 Active 2037-06-15 US11174578B2 (en) 2016-05-13 2017-05-11 Method of bonding together surfaces of two or more elements and a product made by said method
US16/611,321 Active US12397537B2 (en) 2016-05-13 2017-11-13 Fire-protecting insulation product and use of such product
US16/611,706 Abandoned US20210137031A1 (en) 2016-05-13 2017-11-13 Method of producing a plant growth substrate
US18/160,130 Active US11865826B2 (en) 2016-05-13 2023-01-26 Method of producing a mineral wool product comprising a multiple of lamellae and a product of such kind
US18/367,132 Pending US20230415468A1 (en) 2016-05-13 2023-09-12 Mineral wool binder
US18/367,130 Pending US20230415467A1 (en) 2016-05-13 2023-09-12 Binder composition
US18/779,304 Pending US20240375393A1 (en) 2016-05-13 2024-07-22 Mineral wool product
US19/258,981 Pending US20250326217A1 (en) 2016-05-13 2025-07-03 Mineral wool products

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US16/099,317 Active 2040-07-14 US12070929B2 (en) 2016-05-13 2017-05-11 Mineral wool product
US16/301,232 Active 2037-07-27 US11590747B2 (en) 2016-05-13 2017-05-11 Method of producing a mineral wool product comprising a multiple of lamellae and a product of such kind
US16/099,321 Active 2040-10-15 US11820116B2 (en) 2016-05-13 2017-05-11 Binder composition
US16/099,314 Pending US20190135688A1 (en) 2016-05-13 2017-05-11 Mineral wool binder
US16/099,308 Abandoned US20190211486A1 (en) 2016-05-13 2017-05-11 Mineral wool products
US16/300,608 Active 2041-07-03 US11919283B2 (en) 2016-05-13 2017-05-11 Method of providing insulation to a structure
US16/301,371 Active 2037-06-15 US11174578B2 (en) 2016-05-13 2017-05-11 Method of bonding together surfaces of two or more elements and a product made by said method
US16/611,321 Active US12397537B2 (en) 2016-05-13 2017-11-13 Fire-protecting insulation product and use of such product

Family Applications After (5)

Application Number Title Priority Date Filing Date
US18/160,130 Active US11865826B2 (en) 2016-05-13 2023-01-26 Method of producing a mineral wool product comprising a multiple of lamellae and a product of such kind
US18/367,132 Pending US20230415468A1 (en) 2016-05-13 2023-09-12 Mineral wool binder
US18/367,130 Pending US20230415467A1 (en) 2016-05-13 2023-09-12 Binder composition
US18/779,304 Pending US20240375393A1 (en) 2016-05-13 2024-07-22 Mineral wool product
US19/258,981 Pending US20250326217A1 (en) 2016-05-13 2025-07-03 Mineral wool products

Country Status (14)

Country Link
US (14) US12070929B2 (en)
EP (9) EP3455067B8 (en)
CN (15) CN109154155A (en)
CA (7) CA3023189C (en)
DK (1) DK3455425T3 (en)
ES (6) ES2896749T3 (en)
FI (2) FI3621933T3 (en)
HR (1) HRP20210683T1 (en)
LT (1) LT3455184T (en)
PL (7) PL3455185T3 (en)
RS (4) RS62834B1 (en)
RU (4) RU2739066C2 (en)
SI (9) SI3455183T1 (en)
WO (10) WO2017194720A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12398070B2 (en) 2019-08-16 2025-08-26 Rockwool A/S Mineral wool binder

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX364841B (en) * 2013-03-07 2019-05-08 Rockwool Int Method for growing plants.
WO2018206131A1 (en) 2017-05-11 2018-11-15 Rockwool International A/S A fire-protecting insulation product and use of such product
CN109154155A (en) 2016-05-13 2019-01-04 洛科威国际有限公司 A way to provide isolation to a structure
GB201721306D0 (en) * 2017-12-19 2018-01-31 Knauf Insulation Ltd Mineral fiber based composites
WO2019147759A2 (en) * 2018-01-25 2019-08-01 Jiffy International As Additives for enhanced binding in growing media
TWI672412B (en) * 2018-02-14 2019-09-21 集盛實業股份有限公司 Blend composition of peptide and nylon and manufacturing method thereof
TWI809075B (en) 2018-03-30 2023-07-21 美商非結晶公司 Electronic device and a display with the same
GB2574206B (en) * 2018-05-29 2023-01-04 Knauf Insulation Sprl Briquettes
CN112384667B (en) * 2018-07-12 2023-01-13 扎伊罗技术股份公司 Mineral wool board with filler
EP4474419A3 (en) * 2018-07-12 2025-03-05 Lignum Technologies AG Method to produce mineral wool boards
CN109588368B (en) * 2018-11-29 2021-11-16 哈尔滨天齐人类第二基因组技术开发应用科技有限责任公司 Biotransformation method of enterodiol and/or enterolactone
WO2020118268A1 (en) 2018-12-07 2020-06-11 Amorphyx, Incorporated Methods and circuits for diode-based display backplanes and electronic displays
CN112494710B (en) * 2019-09-16 2021-12-14 天津大学 Transglutamineenzymatic crosslinked double-network adhesive and preparation method thereof
CN110665050B (en) * 2019-11-08 2021-02-26 江南大学 Biological adhesive and preparation method thereof
WO2021130178A1 (en) 2019-12-23 2021-07-01 Rockwool International A/S A flood defence barrier
PL4081685T3 (en) 2019-12-23 2025-02-24 Rockwool A/S STORM WATER MANAGEMENT SYSTEM
EP4087828B1 (en) * 2020-01-09 2024-03-13 Saint-Gobain Isover Method for manufacturing insulation products based on mineral wool
CN111302392B (en) * 2020-04-02 2022-07-05 郑州大学 A kind of organic binder and method for preparing small pellets for boiling chlorination furnace
CN111302391B (en) * 2020-04-02 2022-07-29 郑州大学 A kind of method for preparing small pellets for boiling chlorination furnace with full high titanium slag
JP7583060B2 (en) * 2020-04-03 2024-11-13 ロックウール アクティーゼルスカブ How plants grow
PL4127341T3 (en) 2020-04-03 2025-04-14 Rockwool A/S Method of draining water
CA3174099A1 (en) 2020-04-03 2021-10-07 Dorte BARTNIK JOHANSSON Method for producing oxidized lignins and system for producing oxidized lignins
JP2023534611A (en) 2020-06-12 2023-08-10 アモルフィックス・インコーポレイテッド Circuits containing nonlinear components for electronic devices
CN111704819A (en) * 2020-07-17 2020-09-25 江苏兴达文具集团有限公司 Washable gold powder adhesive and preparation method thereof
CN112239206B (en) * 2020-11-11 2021-05-28 江苏浦士达环保科技股份有限公司 Preparation method of low-ash pressed coal activated carbon
WO2022101163A1 (en) * 2020-11-12 2022-05-19 Freudenberg Performance Materials Se & Co. Kg Bituminous membranes with biodegradable binder
CN112616404B (en) * 2020-12-03 2022-11-25 山东省葡萄研究院 Foliage application method for supplementing boron and calcium elements to grapes
CN114683627A (en) * 2020-12-11 2022-07-01 包城吉 Heat insulation composite board and manufacturing method thereof
EP4274941A1 (en) * 2021-01-05 2023-11-15 I4F Licensing Nv Decorative panel and decorative floor covering consisting of said panels
CN116802050A (en) * 2021-01-05 2023-09-22 I4F许可有限责任公司 Decorative panels and decorative floor coverings consisting of said panels
NL2027270B1 (en) * 2021-01-05 2022-07-22 I4F Licensing Nv Decorative panel and decorative floor covering consisting of said panels
WO2022175310A1 (en) * 2021-02-16 2022-08-25 Rockwool A/S Method for producing a mineral wool product
CN117203172A (en) * 2021-02-16 2023-12-08 洛科威有限公司 Mineral wool binder
EP4047070A1 (en) * 2021-02-23 2022-08-24 Foresa Technologies, S.L.U. Adhesive compositions comprising bio-based adhesives from renewable resources, and their use for manufacturing plywood
CN113024846B (en) * 2021-03-17 2021-12-14 北京大学 Hydrogel material capable of regulating and controlling adhesion interface, preparation method and application thereof
CN113061420B (en) * 2021-03-31 2022-05-20 北京林业大学 A kind of preparation method of high-performance soybean protein adhesive
CN113769155A (en) * 2021-08-12 2021-12-10 中国人民解放军海军军医大学 A kind of bioadhesive based on bioengineered protein and preparation method thereof
CN114249557B (en) * 2022-01-05 2023-04-18 北京金隅节能保温科技(大厂)有限公司 Environment-friendly rock wool and production process thereof
CN114315197B (en) * 2022-01-07 2023-02-07 同济大学 A kind of fiber concrete interface modifier and modification method
BR102022012591A2 (en) * 2022-06-23 2024-01-02 Inst Hercilio Randon Composition for adhesion of metals and composite materials, process for their preparation, friction composite, friction composite forming process
CN115558301B (en) * 2022-09-28 2023-09-15 闽江学院 High-flexibility high-ionic-conductivity anti-freezing hydrogel and preparation method thereof
US20240164542A1 (en) * 2022-11-23 2024-05-23 L&P Property Management Company Antimicrobial adhesive for cushioning
EP4634448A1 (en) * 2022-12-16 2025-10-22 Saint-Gobain Adfors Textile bonded by a binder based on polyelectrolytes having opposite charge polarities
EP4638375A1 (en) 2022-12-23 2025-10-29 Rockwool A/S Mineral wool binder based on phenol formaldehyde resin and protein
CN116038984A (en) * 2022-12-23 2023-05-02 重庆泛锐科技有限公司 A kind of ultra-light honeycomb plate and its preparation method and application
FR3145939B1 (en) * 2023-02-21 2025-03-21 Saint Gobain Isover Improving adhesion between insulation and coating in external thermal insulation systems for buildings
WO2025019962A1 (en) * 2023-07-26 2025-01-30 Fontecilla Figueroa Tomas Indoor acoustic material composition comprising recycled textile material and preparation thereof
WO2025046040A1 (en) * 2023-09-01 2025-03-06 Rockwool A/S Mineral wool binder based on phenol formaldehyde resin and carbohydrate
EP4556778A1 (en) * 2023-11-15 2025-05-21 Smofir Trading Ltd A metal ventilation duct to prevent the spread of fire, smoke and heat
CN117859561A (en) * 2023-12-28 2024-04-12 福建农科沃土生物科技有限公司 Method for preventing and controlling insect disease by interplanting green manure in citrus orchard
EP4643895A1 (en) 2024-05-03 2025-11-05 Ptscience, Unipessoal, Lda Bio-based binder formulation applied in orthotics and orthopaedic devices
WO2025242787A1 (en) 2024-05-24 2025-11-27 Rockwool A/S Mineral fibre binder based on proteins, saccharides and a crosslinker, a method for making mineral fibre products and uses thereof
CN120208549B (en) * 2025-03-05 2025-11-04 广东自立环保有限公司 Method for preparing slag cotton by recycling secondary aluminum ash and fly ash

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110003522A1 (en) * 2009-05-15 2011-01-06 Liang Chen Bio-based aqueous binder for fiberglass insulation materials and non-woven mats
US20150373924A1 (en) * 2013-03-07 2015-12-31 Rockwool International A/S Method for growing plants

Family Cites Families (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849833A (en) * 1956-05-11 1960-09-28 Saint Gobain Improved mats, boards or shaped pieces made from glass fibre or other thermoplastic mineral materials
NL275294A (en) 1961-03-08 1900-01-01
US3411972A (en) * 1966-06-30 1968-11-19 Monsanto Res Corp Method for molding gelatin products
FR1599521A (en) 1968-03-06 1970-07-15
US3824086A (en) 1972-03-02 1974-07-16 W M Perry By-pass fiber collection system
SU431139A1 (en) 1972-04-19 1974-06-05 Л. А. Гужва, Л. А. Пономарева, В. Н. Петрухина METHOD OF MANUFACTURING ACOUSTIC PRODUCTS
FR2307858A1 (en) * 1975-04-16 1976-11-12 Vicart Roland Base compsn. for in-situ prepn. of coatings and adhesives - comprising quartz or silica, methyl cellulose, gelatine, PVA and asbestos, for building industry
US4040213A (en) * 1975-08-22 1977-08-09 Capaul Raymond W Unitary structural panel for ceiling and wall installations
US4283457A (en) 1979-11-05 1981-08-11 Huyck Corporation Laminate structures for acoustical applications and method of making them
DE3105099A1 (en) 1981-02-12 1982-09-09 Kroll, Walter, 7141 Kirchberg COMBUSTION DEVICE
AT370470B (en) 1981-06-24 1983-04-11 Oesterr Heraklith Ag MULTILAYER INSULATION PANEL AND METHOD FOR THEIR PRODUCTION
SU1025705A1 (en) 1981-10-14 1983-06-30 Предприятие П/Я А-3483 Method for producing acoustical and heat insulating materials
US4463048A (en) 1982-03-04 1984-07-31 Owens-Corning Fiberglas Corporation Manufacturing a laminated pack of mineral fibers and resulting product
US4613627A (en) 1982-12-13 1986-09-23 Usg Acoustical Products Company Process for the manufacture of shaped fibrous products and the resultant product
CA1209893A (en) 1983-10-24 1986-08-19 Neil M. Cameron Reoriented glass fiber board product and method and apparatus for making same
US4822679A (en) * 1985-08-26 1989-04-18 Stemcor Corporation Spray-applied ceramic fiber insulation
US4773960A (en) * 1986-11-06 1988-09-27 Suncoast Insulation Manufacturing, Co. Apparatus for installing fast setting insulation
DK156965C (en) * 1987-03-25 1990-03-19 Rockwool Int EXTERIOR, WATER-REJECTIVE BUILDING COVER.
NL8801724A (en) 1988-07-07 1990-02-01 Rockwool Lapinus Bv AGROPLUG, AGROPLUG SYSTEM AND A PLUGSTRIP THEREFOR.
US5100802A (en) 1989-12-05 1992-03-31 The Dow Chemical Company Fluorescent monitoring method for polymerization reactions
DK165926B (en) * 1990-12-07 1993-02-08 Rockwool Int PROCEDURE FOR THE MANUFACTURE OF INSULATION PLATES COMPOSED BY INVOLVED CONNECTED STABLE MINERAL FIBER ELEMENTS
DE4130077A1 (en) * 1991-09-06 1993-03-11 Zentralinstitut Fuer Organisch Coating compsn. for glass fibres - comprising aq. protein soln. e.g. casein contg. hardener e.g. aliphatic aldehyde, for improved resistance to aggressive media e.g. acid
DE4208733A1 (en) 1992-03-18 1993-09-23 Gruenzweig & Hartmann GROWING MEDIUM FOR PLANTS AND METHOD FOR THE PRODUCTION THEREOF
US5298205A (en) 1992-05-11 1994-03-29 Polyceramics, Inc. Ceramic filter process
RU2017770C1 (en) 1992-06-24 1994-08-15 Мордовский государственный университет им.Н.П.Огарева Press-mass for wood plate making
US5661213A (en) 1992-08-06 1997-08-26 Rohm And Haas Company Curable aqueous composition and use as fiberglass nonwoven binder
US5318990A (en) 1993-06-21 1994-06-07 Owens-Corning Fiberglas Technology Inc. Fibrous glass binders
EP0670669B1 (en) 1993-09-25 1997-12-03 Isover Saint-Gobain Sheet of mineral wool for sustaining vegetation on roofs
FR2725210B1 (en) 1994-09-29 1996-12-13 Alquier Colles Et Gelatines Sa METHOD FOR HOT ASSEMBLY AND BONDING OF SUBSTRATES OF WHICH AT LEAST ONE IS POROUS AND HOT-MELTING GLUE IN AQUEOUS MEDIUM BASED ON GELATIN
US5430070A (en) 1994-12-16 1995-07-04 Ryusuke Kono Functional insulation resin composition
JP3669390B2 (en) 1995-02-09 2005-07-06 味の素株式会社 Transglutaminase from Bacillus bacteria
DE29507498U1 (en) 1995-05-05 1995-07-13 SAINT-GOBAIN ISOVER G+H AG, 67059 Ludwigshafen Fire protection element with a layered structure, in particular as an insert for fire protection doors, and semi-finished products therefor
NL1001508C2 (en) * 1995-10-26 1997-05-02 Drukkerij Stadler & Sauerbier Water soluble adhesive for attaching labels to containers
GB9523581D0 (en) 1995-11-17 1996-01-17 British Textile Tech Cross-linking
GB9524606D0 (en) 1995-12-01 1996-01-31 Rockwool Int Man-made vitreous fibre products and their use in fire protection systems
US5800676A (en) * 1996-08-26 1998-09-01 Nitto Boseki Co., Ltd. Method for manufacturing a mineral fiber panel
RU2125029C1 (en) * 1997-07-16 1999-01-20 Акционерное общество "Авангард" Composition for fibrous heat- and sound-insulation material and method of manufacturing thereof
NL1008041C2 (en) 1998-01-16 1999-07-19 Tidis B V I O Application of a water-soluble binder system for the production of glass or rock wool.
DK1086055T4 (en) 1998-04-06 2011-08-01 Rockwool Int Man-made, glassy fiber insulation mats and their manufacture
GB2336156B (en) * 1998-04-09 2003-05-07 Mars Uk Ltd Adhesives
WO2000017121A1 (en) 1998-09-24 2000-03-30 Rockwool International A/S Man-made vitreous fibre products for use in thermal insulation, and their production
EP0990727A1 (en) 1998-10-02 2000-04-05 Johns Manville International Inc. Polycarboxy/polyol fiberglass binder
US6878385B2 (en) 1999-01-12 2005-04-12 Jentec, Inc. Wrinkle-resistant dressing and gently adhesive composition thereof
EP1086932A1 (en) 1999-07-16 2001-03-28 Rockwool International A/S Resin for a mineral wool binder comprising the reaction product of an amine with a first and second anhydride
CA2400747A1 (en) 2000-02-11 2001-08-16 Heartland Resource Technologies Llc Vegetable protein adhesive compositions
EP1155617A1 (en) 2000-05-17 2001-11-21 Rockwool International A/S Mineral wool plant substrate
EP1164163A1 (en) 2000-06-16 2001-12-19 Rockwool International A/S Binder for mineral wool products
EP1170265A1 (en) 2000-07-04 2002-01-09 Rockwool International A/S Binder for mineral wool products
EP1184033A1 (en) 2000-09-01 2002-03-06 Warner-Lambert Company Pectin film compositions
US7141284B2 (en) 2002-03-20 2006-11-28 Saint-Gobain Technical Fabrics Canada, Ltd. Drywall tape and joint
JP5068930B2 (en) * 2002-05-15 2012-11-07 キャボット コーポレイション Composition of airgel and hollow particle binder, insulating composite material, and production method thereof
CN101433719A (en) * 2002-05-21 2009-05-20 徐荣祥 External-use substrate for skin
EP1382642A1 (en) 2002-07-15 2004-01-21 Rockwool International A/S Formaldehyde-free aqueous binder composition for mineral fibers
US20040069770A1 (en) 2002-10-11 2004-04-15 Schott Corporation Glass/metal laminate for appliances
WO2004093827A2 (en) 2003-03-25 2004-11-04 Kiel Laboratories, Inc. Phenolic acid salts of gabapentin in solid dosage forms and methods of use
FR2853903B1 (en) 2003-04-16 2005-05-27 Saint Gobain Isover MINERAL FIBER SIZING COMPOSITION COMPRISING A CARBOXYLIC POLYACIDE AND A POLYAMINE, PROCESS FOR PREPARATION, AND RESULTING PRODUCTS
DE10342858A1 (en) 2003-09-15 2005-04-21 Basf Ag Use of formaldehyde-free aqueous binders for substrates
PL1709132T5 (en) 2004-01-19 2016-06-30 Rockwool Int Process for manufacturing panels of mineral wool
CA2458159A1 (en) * 2004-01-22 2005-07-22 The State Of Oregon Acting By And Through The State Board Of Higher Educ Ation On Behalf Of Oregon State University Formaldehyde-free adhesives and lignocellulosic composites made from the adhesives
EP1747329A4 (en) * 2004-04-15 2010-10-27 Doneux Philippe Pierre Marie J Construction elements
EP1669396A1 (en) 2004-12-10 2006-06-14 Rockwool International A/S Aqueous binder for mineral fibers
US8034450B2 (en) * 2005-01-21 2011-10-11 Ocean Nutrition Canada Limited Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof
GB2425282A (en) 2005-04-22 2006-10-25 Celotex Ltd A laminate structure for use in insulation boards
EP1741726A1 (en) 2005-07-08 2007-01-10 Rohm and Haas France SAS Curable aqueous composition and use as water repellant fiberglass nonwoven binder
KR20210107900A (en) * 2005-07-26 2021-09-01 크나우프 인설레이션, 인크. Binders and materials made therewith
US20070036975A1 (en) 2005-08-09 2007-02-15 Miele Philip F Glass fiber composite and method of making glass fiber composites using a binder derived from renewable resources
EP1928796B1 (en) * 2005-08-19 2017-04-12 Rockwool International A/S Method and apparatus for the production of man-made vitreous fibre products
JP2009523510A (en) 2006-01-18 2009-06-25 コロプラスト アクティーゼルスカブ Layered adhesive structure comprising adhesive layers having different hydrocolloid compositions
CA2637453A1 (en) 2006-01-26 2007-08-02 Rock-Wool International A/S Sandwich element
US7989367B2 (en) 2006-06-30 2011-08-02 Georgia-Pacific Chemicals Llc Reducing formaldehyde emissions from fiberglass insulation
EP1880598A1 (en) * 2006-07-20 2008-01-23 Rockwool International A/S Growth substrates, their production and their use
EP1892225A1 (en) 2006-08-23 2008-02-27 Rockwool International A/S Aqueous urea-modified binder for mineral fibres
FR2910481B1 (en) 2006-12-22 2009-02-06 Saint Gobain Isover Sa SIZING COMPSITION FOR MINERAL FIBERS COMPRISING A PHENOLIC RESIN, AND RESULTING PRODUCTS
US10383347B2 (en) 2006-12-28 2019-08-20 Purina Animal Nutrition Llc Extruded animal feed with gelatin binder and low starch content and method of making
DE102007036346A1 (en) 2007-02-23 2008-08-28 Deutsche Rockwool Mineralwoll Gmbh + Co Ohg Method and device for producing a molded part and molded part as a heat and / or sound insulation element
WO2008127936A2 (en) 2007-04-13 2008-10-23 Knauf Insulation Gmbh Composite maillard-resole binders
GB0715100D0 (en) * 2007-08-03 2007-09-12 Knauf Insulation Ltd Binders
JP4077026B1 (en) * 2007-11-02 2008-04-16 株式会社原子力エンジニアリング Biodegradable composition, biodegradable processed product such as food container, and production method thereof
FR2924719B1 (en) 2007-12-05 2010-09-10 Saint Gobain Isover SIZING COMPOSITION FOR MINERAL WOOL COMPRISING MONOSACCHARIDE AND / OR POLYSACCHARIDE AND POLYCARBOXYLIC ORGANIC ACID, AND INSULATING PRODUCTS OBTAINED
CN101945928B (en) 2007-12-21 2013-07-17 阿克佐诺贝尔股份有限公司 Thermosetting polysaccharides
JP4927066B2 (en) * 2007-12-26 2012-05-09 ローム アンド ハース カンパニー Curable composition
FR2929953B1 (en) 2008-04-11 2011-02-11 Saint Gobain Isover SIZING COMPOSITION FOR MINERAL FIBERS AND RESULTING PRODUCTS
CN100567432C (en) 2008-06-04 2009-12-09 江南大学 A kind of preparation method of graft modified protein-based adhesive
EP2364192A4 (en) 2008-11-19 2014-03-12 Exxonmobil Chem Patents Inc Separation process
FR2940648B1 (en) 2008-12-30 2011-10-21 Saint Gobain Isover FIRE RESISTANT MINERAL WOOL INSULATION PRODUCT, PROCESS FOR PRODUCING THE SAME, AND ADAPTIVE SIZING COMPOSITION
EP2230222A1 (en) * 2009-03-19 2010-09-22 Rockwool International A/S Aqueous binder composition for mineral fibres
EP2429948A4 (en) * 2009-04-27 2017-09-06 Cabot Corporation Aerogel compositions and methods of making and using them
GB0907323D0 (en) 2009-04-29 2009-06-10 Dynea Oy Composite material comprising crosslinkable resin of proteinous material
FI125456B (en) 2009-04-29 2015-10-15 Paroc Group Oy Insulating product piece of mineral wool, raw mineral wool mat and their manufacturing processes
US9718729B2 (en) * 2009-05-15 2017-08-01 Owens Corning Intellectual Capital, Llc Biocides for bio-based binders, fibrous insulation products and wash water systems
FR2946352B1 (en) * 2009-06-04 2012-11-09 Saint Gobain Isover MINERAL WOOL SIZING COMPOSITION COMPRISING A SACCHARIDE, A POLYCARBOXYLIC ORGANIC ACID AND A REACTIVE SILICONE, AND INSULATING PRODUCTS OBTAINED
US20110021101A1 (en) 2009-06-29 2011-01-27 Hawkins Christopher M Modified starch based binder
US9163342B2 (en) 2009-07-31 2015-10-20 Rockwool International A/S Method for manufacturing a mineral fiber-containing element and element produced by that method
WO2011028964A1 (en) 2009-09-02 2011-03-10 Georgia-Pacific Chemicals Llc Dedusting agents for fiberglass products and methods for making and using same
US20110223364A1 (en) 2009-10-09 2011-09-15 Hawkins Christopher M Insulative products having bio-based binders
CA2777078C (en) 2009-10-09 2017-11-21 Owens Corning Intellectual Capital, Llc Bio-based binders for insulation and non-woven mats
US8680224B2 (en) * 2010-02-01 2014-03-25 Johns Manville Formaldehyde-free protein-containing binder compositions
US9683085B2 (en) 2010-02-01 2017-06-20 Johns Manville Formaldehyde-free protein-containing binders for spunbond products
US20110230111A1 (en) 2010-03-19 2011-09-22 Weir Charles R Fibers containing additives for use in fibrous insulation
EP2386605B1 (en) 2010-04-22 2017-08-23 Rohm and Haas Company Durable thermosets from reducing sugars and primary polyamines
PL2386394T3 (en) 2010-04-22 2020-11-16 Rohm And Haas Company Durable thermoset binder compositions from 5-carbon reducing sugars and use as wood binders
EP3922655A1 (en) 2010-05-07 2021-12-15 Knauf Insulation Carbohydrate polyamine binders and materials made therewith
JP5616291B2 (en) * 2010-06-11 2014-10-29 ローム アンド ハース カンパニーRohm And Haas Company Fast-curing thermosetting materials from 5- and 6-membered cyclic enamine compounds prepared from dialdehydes
EP4574914A3 (en) 2010-07-23 2025-07-30 Rockwool A/S Use of a bonded mineral fibre product for improving fire and punking resistance
EP2415721A1 (en) 2010-07-30 2012-02-08 Rockwool International A/S Compacted body for use as mineral charge in the production of mineral wool
FR2964012B1 (en) * 2010-08-31 2017-07-21 Rockwool Int PLANT CULTURE IN A MINERAL WOOL SUBSTRATE COMPRISING A BINDER
CN102068008B (en) 2010-10-19 2013-04-03 天津春发生物科技集团有限公司 Smoked and cooked sausage and preparation method thereof
FR2968008B1 (en) * 2010-11-30 2014-01-31 Saint Gobain Isover SIZING COMPOSITION FOR FIBERS, ESPECIALLY MINERAL, COMPRISING NON-REDUCING SUGAR AND AMMONIUM SALT OF INORGANIC ACID, AND RESULTING PRODUCTS
WO2012098040A1 (en) 2011-01-17 2012-07-26 Construction Research & Technology Gmbh Composite thermal insulation system
US20120244337A1 (en) * 2011-03-23 2012-09-27 Owens Corning Intellectual Capital, Llc Fiberized thermoset binder and method of using
ES1074717Y (en) * 2011-04-15 2011-08-30 Ability Diseno Grafico S L SHEET
US20120301546A1 (en) * 2011-05-26 2012-11-29 Hassan Emadeldin M Acid-resistant soft gel compositions
CA2837073C (en) 2011-05-27 2020-04-07 Cargill, Incorporated Bio-based binder systems
FR2976582B1 (en) 2011-06-17 2014-12-26 Saint Gobain Isover SOWING COMPOSITION FOR MINERAL WOOL WITH LOW EMISSION OF VOLATILE ORGANIC COMPOUNDS, AND INSULATING PRODUCTS OBTAINED.
US20140141057A1 (en) 2011-06-24 2014-05-22 Avery Dennison Corporation Adhesive or Hydrocolloid Containing Vegetable Oil
CH706380A1 (en) * 2012-04-13 2013-10-15 Fluid Solids Ag C O Studio Beat Karrer A degradable material from biological components.
IN2014KN02616A (en) * 2012-04-27 2015-05-08 Georgia Pacific Chemicals Llc
US20130287993A1 (en) * 2012-04-27 2013-10-31 Georgia-Pacific Chemicals Llc Composite products made with binder compositions that include tannins and multifunctional aldehydes
CN104350112B (en) 2012-06-01 2017-07-14 Stm技术公司 The cementing compositions without formaldehyde for mineral fibres
US10815593B2 (en) 2012-11-13 2020-10-27 Johns Manville Viscosity modified formaldehyde-free binder compositions
US10208414B2 (en) 2012-11-13 2019-02-19 Johns Manville Soy protein and carbohydrate containing binder compositions
DK2738232T3 (en) * 2012-11-29 2015-08-17 Omura Consulting Gmbh Adherent composition.
FR3010404B1 (en) 2013-09-09 2015-10-09 Saint Gobain Isover SIZING COMPOSITION FOR MINERAL WOOL AND INSULATING PRODUCTS OBTAINED.
CN103627366B (en) * 2013-11-15 2016-01-13 湖南科技大学 A kind of preparation method of gelatin-based tackiness agent
CA2933438C (en) 2013-12-20 2023-02-14 New Zealand Forest Research Institute Limited Adhesive composition comprising macromolecular complex
CN103740326A (en) * 2014-01-13 2014-04-23 阎肖华 Protein-based wood adhesive and preparation method thereof
PL3148319T3 (en) * 2014-05-29 2022-02-21 Rockwool International A/S Growth substrate product
GB201412335D0 (en) * 2014-07-11 2014-08-27 Knauf Insulation Ltd And Knauf Insulation Binder
GB201412706D0 (en) * 2014-07-17 2014-09-03 Knauf Insulation And Knauf Insulation Ltd Improved binder compositions and uses thereof
HUE031364T2 (en) 2014-08-25 2017-07-28 Rockwool Int Biobinder
CN105274706B (en) * 2014-09-10 2017-01-04 江苏理工学院 A kind of preparation method of polyurethane fiberglass composite fiber cloth
CN107207337B (en) 2014-12-23 2024-05-31 洛科威有限公司 Improved adhesive
US11841106B2 (en) 2015-04-21 2023-12-12 Johns Manville Formaldehyde free composites made with carbohydrate and alpha-carbon nucleophile binder compositions
CN105123314B (en) * 2015-07-20 2018-02-06 陈洪凯 Rocky Desertification Region arbor planting unit and prepare implantation methods
FR3041356B1 (en) * 2015-09-21 2019-06-07 Universite Amiens Picardie Jules Verne ADHESIVE COMPOSITION COMPRISING A SILICATE ESTER
US9777472B2 (en) * 2015-10-28 2017-10-03 Awi Licensing Llc Scrim attachment system
GB201523032D0 (en) 2015-12-29 2016-02-10 Knauf Insulation Doo Skofja Loka Insulation panel
CN105601128A (en) * 2015-12-30 2016-05-25 神州富盛科技(北京)有限公司 Starch film forming agent for wetting glass fibers
CN109154155A (en) * 2016-05-13 2019-01-04 洛科威国际有限公司 A way to provide isolation to a structure
WO2017201211A1 (en) * 2016-05-18 2017-11-23 Solenis Technologies, L.P. Method of enhancing adhesion of liquid toner printed on a substrate, and products therefrom
FR3055622B1 (en) * 2016-09-02 2022-04-01 Saint Gobain Isover PROCESS FOR MANUFACTURING MINERAL WOOL
US20190024303A1 (en) * 2017-07-18 2019-01-24 Modern Meadow, Inc. Biofabricated leather articles, and methods thereof
EP4231286A4 (en) 2020-12-11 2024-03-27 Samsung Electronics Co., Ltd. ELECTRONIC DEVICE AND ASSOCIATED CONTROL METHOD

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110003522A1 (en) * 2009-05-15 2011-01-06 Liang Chen Bio-based aqueous binder for fiberglass insulation materials and non-woven mats
US20150373924A1 (en) * 2013-03-07 2015-12-31 Rockwool International A/S Method for growing plants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12398070B2 (en) 2019-08-16 2025-08-26 Rockwool A/S Mineral wool binder

Also Published As

Publication number Publication date
FI3621934T3 (en) 2023-03-17
CA3214502A1 (en) 2017-11-16
WO2017194720A1 (en) 2017-11-16
CN109153194A (en) 2019-01-04
CA3023189A1 (en) 2017-11-16
RU2738155C2 (en) 2020-12-08
PL3455185T3 (en) 2021-09-06
RU2771125C2 (en) 2022-04-26
ES2875844T3 (en) 2021-11-11
RU2018144083A (en) 2020-06-15
RU2018138634A (en) 2020-06-15
WO2017194723A1 (en) 2017-11-16
WO2017194724A2 (en) 2017-11-16
PL3455182T3 (en) 2021-09-13
CA3023970A1 (en) 2017-11-16
WO2017194721A1 (en) 2017-11-16
ES2906193T3 (en) 2022-04-13
EP3455067B1 (en) 2022-12-07
RS61928B1 (en) 2021-06-30
CA3023973A1 (en) 2017-11-16
CN110809618A (en) 2020-02-18
WO2017194725A3 (en) 2017-12-21
US11865826B2 (en) 2024-01-09
CA3023740A1 (en) 2017-11-16
HRP20210683T1 (en) 2021-06-11
RU2018144074A (en) 2020-06-15
EP3455184A1 (en) 2019-03-20
EP3455186B1 (en) 2020-07-08
WO2017194719A1 (en) 2017-11-16
RU2018144079A (en) 2020-06-15
EP3455185B1 (en) 2021-03-17
WO2017194722A1 (en) 2017-11-16
ES2937709T3 (en) 2023-03-30
PL3455058T3 (en) 2021-10-04
FI3621933T3 (en) 2023-03-09
RU2018144072A3 (en) 2020-09-01
RU2018142771A3 (en) 2020-10-06
US11919283B2 (en) 2024-03-05
RU2018144079A3 (en) 2020-10-06
US11174578B2 (en) 2021-11-16
EP3455058B1 (en) 2021-04-07
SI3455185T1 (en) 2021-08-31
EP3455182A1 (en) 2019-03-20
EP3455067A1 (en) 2019-03-20
CN109153603A (en) 2019-01-04
RU2739066C2 (en) 2020-12-21
EP3455179B1 (en) 2020-07-08
PL3455425T3 (en) 2021-12-27
SI3621934T1 (en) 2023-04-28
PL3455067T3 (en) 2023-02-06
US20190135688A1 (en) 2019-05-09
EP3455425A1 (en) 2019-03-20
EP3455186A1 (en) 2019-03-20
CN110809618B (en) 2022-03-01
CN117164251A (en) 2023-12-05
US20230166492A1 (en) 2023-06-01
RU2018138634A3 (en) 2020-07-08
DK3455425T3 (en) 2021-10-25
SI3455184T1 (en) 2022-04-29
EP3455067B8 (en) 2023-01-11
CN109562988A (en) 2019-04-02
SI3621933T1 (en) 2023-04-28
CA3023963A1 (en) 2017-11-16
SI3455058T1 (en) 2021-08-31
CA3023739A1 (en) 2017-11-16
EP3455179A1 (en) 2019-03-20
RU2018142771A (en) 2020-06-18
EP3455182B1 (en) 2021-03-31
CA3023967A1 (en) 2017-11-16
US20200308355A1 (en) 2020-10-01
US20190136427A1 (en) 2019-05-09
US11590747B2 (en) 2023-02-28
CN109153605A (en) 2019-01-04
US20200308408A1 (en) 2020-10-01
CN109153604A (en) 2019-01-04
EP3455058A1 (en) 2019-03-20
EP3455425B1 (en) 2021-08-11
ES2896749T3 (en) 2022-02-25
RU2018144069A (en) 2020-06-15
WO2017194725A2 (en) 2017-11-16
US20200317921A1 (en) 2020-10-08
US20230415468A1 (en) 2023-12-28
US20190210323A1 (en) 2019-07-11
RS62324B1 (en) 2021-10-29
CN109476536A (en) 2019-03-15
SI3455179T1 (en) 2020-11-30
SI3455425T1 (en) 2021-11-30
EP3455184B1 (en) 2021-12-08
SI3455183T1 (en) 2021-11-30
US20240375393A1 (en) 2024-11-14
CN109154155A (en) 2019-01-04
SI3455182T1 (en) 2021-08-31
CA3023189C (en) 2024-10-29
US12397537B2 (en) 2025-08-26
US20200047478A1 (en) 2020-02-13
LT3455184T (en) 2022-02-10
EP3455183A2 (en) 2019-03-20
US20230415467A1 (en) 2023-12-28
PL3455184T3 (en) 2022-02-21
WO2017194718A1 (en) 2017-11-16
US20250326217A1 (en) 2025-10-23
CN116733120A (en) 2023-09-12
CN110678066A (en) 2020-01-10
US20190211486A1 (en) 2019-07-11
US11820116B2 (en) 2023-11-21
EP3455185A2 (en) 2019-03-20
RU2018144072A (en) 2020-06-15
WO2017194717A1 (en) 2017-11-16
US20200165399A1 (en) 2020-05-28
RU2757920C1 (en) 2021-10-22
RS61867B1 (en) 2021-06-30
CN110650928A (en) 2020-01-03
RS62834B1 (en) 2022-02-28
RU2018144069A3 (en) 2020-08-31
US12070929B2 (en) 2024-08-27
PL3455183T3 (en) 2021-12-06
CN110730765A (en) 2020-01-24
RU2018144083A3 (en) 2020-09-03
ES2939173T3 (en) 2023-04-19
ES2939342T3 (en) 2023-04-21
RU2018144074A3 (en) 2020-10-08
EP3455183B1 (en) 2021-07-07
WO2017194724A3 (en) 2017-12-21
CA3023997A1 (en) 2017-11-16
WO2017194726A1 (en) 2017-11-16
CN110709365A (en) 2020-01-17
CN109153224A (en) 2019-01-04

Similar Documents

Publication Publication Date Title
US20210137031A1 (en) Method of producing a plant growth substrate
WO2018206130A1 (en) Method of producing a plant growth substrate
CA3062718C (en) A fire-protecting insulation product and use of such product
US12502879B2 (en) Binder composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCKWOOL INTERNATIONAL A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIND, CHARLOTTE;HJELMGAARD, THOMAS;SIGNING DATES FROM 20191112 TO 20191113;REEL/FRAME:051583/0324

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION