[go: up one dir, main page]

US20210087399A1 - Thermoplastic elastomer-silicone composition - Google Patents

Thermoplastic elastomer-silicone composition Download PDF

Info

Publication number
US20210087399A1
US20210087399A1 US16/961,984 US201916961984A US2021087399A1 US 20210087399 A1 US20210087399 A1 US 20210087399A1 US 201916961984 A US201916961984 A US 201916961984A US 2021087399 A1 US2021087399 A1 US 2021087399A1
Authority
US
United States
Prior art keywords
blocks
mol
article
composition
copolymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/961,984
Inventor
Sebastien Merzlic
Philippe Blondel
Florent Abgrall
Katherine LOYEN
Damien Rauline
Sebastien-Jun Mougnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of US20210087399A1 publication Critical patent/US20210087399A1/en
Assigned to ARKEMA FRANCE reassignment ARKEMA FRANCE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOYEN, KARINE, RAULINE, DAMIEN, BLONDEL, PHILIPPE, ABGRALL, Florent, MERZLIC, SEBASTIEN, MOUGNIER, SEBASTIEN-JUN
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • C08L87/005Block or graft polymers not provided for in groups C08L1/00 - C08L85/04
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/458Block-or graft-polymers containing polysiloxane sequences containing polyurethane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • C08G77/448Block-or graft-polymers containing polysiloxane sequences containing polyester sequences containing polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the present invention relates to thermoplastic elastomer polymer-silicone compositions and to articles manufactured from these compositions.
  • TPEs thermoplastic polyurethanes
  • PEBAs polyamide blocks and polyether blocks
  • TPUs thermoplastic polyurethanes
  • PEBAs polyamide blocks and polyether blocks
  • Their typical hardness is from 25 to 80 Shore D.
  • Their main advantages are their processability (that is to say, ease of use in injection molding and extrusion), their elastomeric mechanical properties, their high resilience, their good impact strength and their low density.
  • silicone-based materials are generally used in mass consumption applications due to a number of advantages:
  • the flexibility and durability of the TPE material abrasion resistance and tear strength, chemical resistance and mechanical strength which are sufficient for repeated everyday use, and
  • a subject matter of the present invention is thus a composition comprising:
  • said rigid blocks comprise at least one block chosen from: polyamide, polyurethane, polyester and their copolymers.
  • said flexible blocks comprise at least one block chosen from: polyether, polyester, polysiloxane, polyolefin, polycarbonate and their copolymers.
  • the block copolymer is chosen from copolymers having polyester blocks and polyether blocks, copolymers having polyurethane blocks and polyether blocks and copolymers having polyamide blocks and polyether blocks, and preferably it is a copolymer having polyamide blocks and polyether blocks.
  • the ratio by weight of TPE (A) with respect to the silicone (B) is from 10:90 to 95:5, preferably 50:50 to 90:10, indeed even better still from 60:40 to 85:15.
  • composition of the invention comprises, by weight:
  • the percentage by weight of silicone is thus fixed in order to improve the abrasion resistance, feel and soiling resistance properties of the product.
  • This solution also makes it possible to eliminate the phenomena of exudation observed with regard to the most flexible TPEs and to facilitate the use of the product, the silicone limiting the adhesion of the mixture to metal walls.
  • the flexible blocks are polyether blocks in the copolymer (A), and are preferably polytetramethylene glycol blocks.
  • the rigid blocks are polyamide blocks in the copolymer (A), and are preferably PA 11 or PA 12 blocks.
  • the number-average molar mass Mn of the flexible blocks, in particular polyether blocks is greater than 800 g/mol, preferably greater than 1000 g/mol, preferably greater than 1200 g/mol, preferably greater than 1400 g/mol, preferably greater than 1600 g/mol, preferably greater than 1800 g/mol and preferably greater than or equal to 2000 g/mol.
  • the ratio by weight of the rigid blocks, in particular polyamide blocks, to the flexible blocks, in particular polyether blocks, in the copolymer (A) is less than or equal to 1.2, preferably less than or equal to 1, preferably less than or equal to 0.8 and preferably less than or equal to 0.5.
  • composition of the invention additionally comprises one or more additives (D).
  • the invention also relates to a process for the manufacture of the above composition, comprising the production of the mixture of at least one block copolymer (A) and of a non-crosslinked silicone.
  • the process is carried out in a device for mixing in the molten state, preferably in a twin-screw extruder, preferably at a temperature of the order of 150° C. to 250° C., preferably 160° C. to 220° C.
  • the invention also relates to an article comprising at least one part having a composition in accordance with the present invention.
  • the article is manufactured by a manufacturing process involving a stage of injection molding, overmolding, extrusion or co-extrusion of the composition according to the invention.
  • composition according to the invention advantageously comprise fast-moving consumer products containing a flexible part exposed to daily wear and tear (footwear, interior decorative parts in motor cars), a part in regular contact with the skin (glasses, medical, electronics) or industry (conveyor belts).
  • the article is an electrical or electronic article comprising a casing or protective casing manufactured from the composition according to the invention, said article preferably being a portable computer, a portable telephone or a tablet.
  • the present invention makes it possible to overcome the disadvantages of the prior art.
  • the invention provides compositions combining the advantageous properties of TPEs and silicones and in particular:
  • thermoplastic elastomer in the form of a composition according to the invention, based on TPE, preferably based on PEBA, and on non-crosslinked silicone.
  • copolymer (A) in which the flexible blocks, preferably polyether blocks, have a relatively high molar mass.
  • the polyether blocks aid compatibility with the non-crosslinked silicones of the composition according to the invention.
  • the percentages expressed are percentages by weight. Unless otherwise mentioned, the parameters to which reference is made are measured at atmospheric pressure and ambient temperature (20-25° C., generally 23° C.).
  • composition of the present invention is a thermoplastic elastomer, obtained by mixing a TPE (A) and a non-crosslinked silicone (B), and optionally a compatibilizing polymer (C), improving the compatibility between the TPE and the silicone.
  • composition according to the invention is an intimate mixture or alloy of polymers, that is to say a macroscopically homogeneous mixture of at least two polymers (A) and (B), indeed even polymers (A), (B) and (C).
  • Additional components such as various additives (D), can also be added to the composition according to the invention.
  • Block copolymer according to the invention is understood to mean thermoplastic elastomer polymers (TPEs), which alternately comprise “hard” or “rigid” blocks or segments (with a rather thermoplastic behavior) and “flexible” or “supple” blocks or segments (with a rather elastomeric behavior).
  • TPEs thermoplastic elastomer polymers
  • polyamide blocks are known to be “rigid” segments with a melting point (M.p.) or glass transition temperature (Tg) which are higher than the working temperature of the polymer
  • polyether blocks are “flexible” segments with an M.p. or Tg which are lower than the working temperature of said polymer.
  • a block is said to be “flexible” if it exhibits a low glass transition temperature (Tg).
  • Tg glass transition temperature
  • Low glass transition temperature is understood to mean a glass transition temperature Tg of less than 15° C., preferably of less than 0° C., advantageously of less than ⁇ 15° C., more advantageously still of less than ⁇ 30° C., optionally of less than ⁇ 50° C.
  • Flexible or soft blocks which can be envisaged in the copolymer according to the invention is understood to mean in particular those chosen from polyether blocks, polyester blocks, polysiloxane blocks, such as polydimethylsiloxane or PDMS blocks, polyolefin blocks, polycarbonate blocks and their mixtures.
  • the flexible blocks which can be envisaged are described, for example, in French patent application No. 0 950 637, page 32, line 3, to page 38, line 23.
  • the polyether blocks are chosen from poly(ethylene glycol) (PEG), poly(1,2-propylene glycol) (PPG), poly(1,3-propylene glycol) (PO3G), poly(tetramethylene glycol) (PTMG) and their copolymers or mixtures.
  • the rigid blocks can be based on polyamide, on polyurethane, on polyester or on a mixture of these polymers. These blocks are described in particular in French patent application No. 0 856 752.
  • the rigid blocks are preferably polyamide-based.
  • the polyamide (abbreviated to PA) blocks can comprise homopolyamides or copolyamides.
  • the polyamide blocks which can be envisaged in the composition of the invention are in particular those defined in application FR 0 950 637 from page 27, line 18, to page 31, line 14.
  • said at least one block copolymer comprises at least one block chosen from: polyether blocks, polyester blocks, polyamide blocks, polyurethane blocks and their mixtures.
  • copolymers having rigid blocks and flexible blocks respectively of (a) copolymers having polyester blocks and polyether blocks (also known as COPEs or copolyetheresters), (b) copolymers having polyurethane blocks and polyether blocks (also known as TPUs, the abbreviation for thermoplastic polyurethanes) and (c) copolymers having polyamide blocks and polyether blocks (also known as PEBAs according to the IUPAC, or also polyether-block-amide).
  • said at least one block copolymer (A) comprises a copolymer having polyamide blocks and polyether blocks (PEBAs).
  • PEBAs polyether blocks
  • PEBAs result from the polycondensation of polyamide blocks having reactive ends with polyether blocks having reactive ends, such as, inter alia, the polycondensation:
  • polyamide blocks having diamine chain ends with polyoxyalkylene blocks having dicarboxyl chain ends 1) of polyamide blocks having diamine chain ends with polyoxyalkylene blocks having dicarboxyl chain ends; 2) of polyamide blocks having dicarboxyl chain ends with polyoxyalkylene blocks having diamine chain ends, obtained, for example, by cyanoethylation and hydrogenation of ⁇ , ⁇ -dihydroxylated aliphatic polyoxyalkylene blocks, known as polyetherdiols; 3) of polyamide blocks having dicarboxyl chain ends with polyetherdiols, the products obtained being, in this specific case, polyetheresteramides.
  • the polyamide blocks having dicarboxyl chain ends originate, for example, from the condensation of polyamide precursors in the presence of a chain-limiting dicarboxylic acid.
  • the polyamide blocks having diamine chain ends originate, for example, from the condensation of polyamide precursors in the presence of a chain-limiting diamine.
  • Three types of polyamide blocks can advantageously be used.
  • the polyamide blocks originate from the condensation of a dicarboxylic acid, in particular those having from 4 to 20 carbon atoms, preferably those having from 6 to 18 carbon atoms, and of an aliphatic or aromatic diamine, in particular those having from 2 to 20 carbon atoms, preferably those having from 6 to 14 carbon atoms.
  • a dicarboxylic acid in particular those having from 4 to 20 carbon atoms, preferably those having from 6 to 18 carbon atoms
  • an aliphatic or aromatic diamine in particular those having from 2 to 20 carbon atoms, preferably those having from 6 to 14 carbon atoms.
  • dicarboxylic acids of 1,4-cyclohexanedicarboxylic acid, butanedioic acid, adipic acid, azelaic acid, suberic acid, sebacic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid and terephthalic and isophthalic acids, but also dimerized fatty acids.
  • BCM bis(4-aminocyclohexyl)methane
  • BMACM bis(3-methyl-4-aminocyclohexyl)methane
  • BMACP 2,2-bis(3-methyl
  • polyamide blocks PA 4.12, PA 4.14, PA 4.18, PA 6.10, PA 6.12, PA 6.14, PA 6.18, PA 9.12, PA 10.10, PA 10.12, PA 10.14 and PA 10.18 are used.
  • PA X.Y notation X represents the number of carbon atoms resulting from the diamine residues and Y represents the number of carbon atoms resulting from the diacid residues, in a conventional way.
  • the polyamide blocks result from the condensation of one or more ⁇ , ⁇ -aminocarboxylic acids and/or of one or more lactams having from 6 to 12 carbon atoms in the presence of a dicarboxylic acid having from 4 to 12 carbon atoms or of a diamine.
  • lactams of caprolactam, oenantholactam and lauryllactam.
  • ⁇ , ⁇ -aminocarboxylic acids of aminocaproic acid, 7-aminoheptanoic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid.
  • the polyamide blocks of the second type are PA 11 (polyundecanamide), PA 12 (polydodecanamide) or PA 6 (polycaprolactam) blocks.
  • PA 11 polyundecanamide
  • PA 12 polydodecanamide
  • PA 6 polycaprolactam
  • the polyamide blocks result from the condensation of at least one ⁇ , ⁇ -aminocarboxylic acid (or one lactam), at least one diamine and at least one dicarboxylic acid.
  • polyamide PA blocks are prepared by polycondensation:
  • said comonomer(s) ⁇ Z ⁇ being introduced in a proportion by weight advantageously ranging up to 50%, preferably up to 20%, more advantageously still up to 10%, with respect to the combined polyamide precursor monomers;
  • the dicarboxylic acid having Y carbon atoms is used as chain stopper, which acid is introduced in excess with respect to the stoichiometry of the diamine(s).
  • the polyamide blocks result from the condensation of at least two ⁇ , ⁇ -aminocarboxylic acids or of at least two lactams having from 6 to 12 carbon atoms or of a lactam and of an aminocarboxylic acid not having the same number of carbon atoms, in the optional presence of a chain stopper.
  • Mention may be made, as examples of aliphatic ⁇ , ⁇ -aminocarboxylic acids, of aminocaproic acid, 7-aminoheptanoic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid.
  • dimerized fatty acids preferably have a dimer content of at least 98%; preferably, they are hydrogenated; they are, for example, the products marketed under the Pripol brand by Croda or under the Empol brand by BASF or under the Radiacid brand by Oleon, and polyoxyalkylene- ⁇ , ⁇ -diacids. Mention may be made, as examples of aromatic diacids, of terephthalic acid (T) and isophthalic acid (I).
  • cycloaliphatic diamines Mention may be made, as examples of cycloaliphatic diamines, of the isomers of bis(4-aminocyclohexyl)methane (BACM), bis(3-methyl-4-aminocyclohexyl)methane (BMACM) and 2,2-bis(3-methyl-4-aminocyclohexyl)propane (BMACP), and para-aminodicyclohexylmethane (PACM).
  • the other diamines commonly used can be isophoronediamine (IPDA), 2,6-bis(aminomethyl)norbornane (BAMN) and piperazine.
  • PA 6.6/6 where 6.6 denotes hexamethylenediamine units condensed with adipic acid and 6 denotes units resulting from the condensation of caprolactam;
  • PA 6.6/6.10/11/12 where 6.6 denotes hexamethylenediamine condensed with adipic acid, 6.10 denotes hexamethylenediamine condensed with sebacic acid, 11 denotes units resulting from the condensation of aminoundecanoic acid and 12 denotes units resulting from the condensation of lauryllactam.
  • PA X/Y, PA X/Y/Z, and the like relate to copolyamides in which X, Y, Z, and the like, represent homopolyamide units as described above.
  • the polyamide blocks of the copolymer used in the invention comprise blocks of polyamide PA 6, PA 11, PA 12, PA 5.4, PA 5.9, PA 5.10, PA 5.12, PA 5.13, PA 5.14, PA 5.16, PA 5.18, PA 5.36, PA 6.4, PA 6.9, PA 6.10, PA 6.12, PA 6.13, PA 6.14, PA 6.16, PA 6.18, PA 6.36, PA 10.4, PA 10.9, PA 10.10, PA 10.12, PA 10.13, PA 10.14, PA 10.16, PA 10.18, PA 10.36, PA 10.T, PA 12.4, PA 12.9, PA 12.10, PA 12.12, PA 12.13, PA 12.14, PA 12.16, PA 12.18, PA 12.36, PA 12.T, or mixtures or copolymers of these; and preferably comprise blocks of polyamide PA 6, PA 11, PA 12, PA 6.10, PA 10.10, PA 10.12, or mixtures or copolymers of these.
  • the polyether blocks consist of alkylene oxide units.
  • the polyether blocks can in particular be PEG (polyethylene glycol) blocks, that is to say consisting of ethylene oxide units, and/or PPG (propylene glycol) blocks, that is to say consisting of propylene oxide units, and/or PO3G (polytrimethylene glycol) blocks, that is to say consisting of polytrimethylene ether glycol units, and/or PTMG blocks, that is to say consisting of tetramethylene glycol units, also called polytetrahydrofuran.
  • the PEBA copolymers can comprise several types of polyethers in their chain, it being possible for the copolyethers to be block or random.
  • the polyether blocks can also consist of ethoxylated primary amines. Mention may be made, as examples of ethoxylated primary amines, of the products of formula:
  • m and n are integers between 1 and 20 and x is an integer between 8 and 18.
  • These products are, for example, commercially available under the Noramox® brand from CECA and under the Genamin® brand from Clariant.
  • the flexible polyether blocks can comprise polyoxyalkylene blocks having NH 2 chain ends, it being possible for such blocks to be obtained by cyanoacetylation of aliphatic ⁇ , ⁇ -dihydroxylated polyoxyalkylene blocks called polyetherdiols.
  • the Jeffamine or Elastamine commercial products can be used (for example Jeffamine® D400, D2000, ED 2003, XTJ 542, commercial products from Huntsman, also described in the documents JP 2004346274, JP 2004352794 and EP 1 482 011).
  • the polyetherdiol blocks are either used as is and copolycondensed with polyamide blocks having carboxyl end groups, or aminated in order to be converted into polyetherdiamines and condensed with polyamide blocks having carboxyl end groups.
  • the general method for the two-stage preparation of the PEBA copolymers having ester bonds between the PA blocks and the PE blocks is known and is described, for example, in the document FR 2 846 332.
  • the general method for the preparation of the PEBA copolymers of the invention having amide bonds between the PA blocks and the PE blocks is known and is described, for example, in the document EP 1 482 011.
  • the polyether blocks can also be mixed with polyamide precursors and a diacid chain stopper in order to prepare polymers having polyamide blocks and polyether blocks possessing randomly distributed units (one-stage process).
  • PEBA in the present description of the invention relates just as well to the PEBAX® products sold by Arkema, to the Vestamid® products sold by Evonik®, to the Grilamid® products, to the Griflex products sold by EMS, as to the PEBA-type Pelestat® products sold by Sanyo or to any other PEBA from other suppliers.
  • block copolymers described above generally comprise at least one polyamide block and at least one polyether block
  • the present invention also covers all the copolymer alloys comprising two, three, four (indeed even more) different blocks chosen from those described in this description.
  • the copolymer according to the invention can be a segmented block copolymer comprising three different types of blocks (or “triblock”), which results from the condensation of several of the blocks described above.
  • Said triblock is preferably chosen from copolyetheresteramides and copolyetheramideurethanes.
  • PEBA copolymers which are particularly preferred in the context of the invention are: PA12-PEG, PA6-PEG, PA6/12-PEG, PA11-PEG, PA12-PTMG, PA6-PTMG, PA6/12-PTMG, PA11-PTMG, PA12-PEG/PPG, PA6-PEG/PPG, PA6/12-PEG/PPG, PA11-PEG/PPG, PA11/PO3G, PA6.10/PO3G and/or PA10.10/PO3G.
  • the PA blocks comprise at least 30%, preferably at least 50%, preferably at least 75%, preferably 100%, by weight of PA 11 and/or PA 12, as regards the total weight of the PA blocks.
  • the polyether blocks preferably represent from 50% to 80% of the total weight of the block copolymer (A) used in the composition according to the invention.
  • the number-average molar mass of the polyamide blocks in the PEBA copolymer has a value from 200 to 2000 g/mol; the number-average molar mass of the polyether blocks has a value from 800 to 2500 g/mol; and the ratio by weight of the polyamide blocks with respect to the polyether blocks of the copolymer is from 0.1 to 1.2.
  • the number-average molar mass is fixed by the content of chain stopper. It can be calculated according to the relationship:
  • Mn ( n monomer/ n stopper)* M repeat unit+ M stopper
  • nmonomer number of moles of monomer
  • nstopper number of moles of diacid in excess
  • Mrepeat unit molar mass of the repeat unit
  • the copolymers are defined by the following ranges of number-average molar masses M n :
  • the ratio by weight of the polyamide blocks with respect to the polyether blocks of the copolymer is from 0.1 to 1.2; preferably 0.1 to 1; preferably from 0.2 to 0.5.
  • This ratio by weight can be calculated by dividing the number-average molar mass of the polyamide blocks by the number-average molar mass of the polyether blocks.
  • this ratio has a value from 0.1 to 0.2; or from 0.2 to 0.3; or from 0.3 to 0.4; or from 0.4 to 0.5; or from 0.5 to 0.6; or from 0.6 to 0.7; or from 0.7 to 0.8; or from 0.8 to 0.9.
  • the copolymer used in the invention exhibits an instantaneous hardness of less than or equal to 45 Shore D, more preferably of less than or equal to 35 Shore D, more preferably of less than or equal to 25 Shore D.
  • the hardness measurements can be carried out according to the standard ISO 868.
  • the copolymer has an inherent viscosity of 2 or less; preferably of 1.5 or less; preferably of 1.4 or less; preferably of 1.3 or less; preferably of 1.2 or less.
  • the inherent viscosity is determined according to the standard ISO 307:2007 in m-cresol at a temperature of 20° C., at a polymer concentration of 0.5% by weight in solution in meta-cresol with respect to the total weight of the solution, using an Ubbelohde viscometer.
  • the silicone or “polysiloxane” used in the composition of the present invention is non-crosslinked and non-crosslinkable. It can advantageously be polyorganosiloxane by comprising one or more organic chains, indeed even comprise groups, preferably polar functional groups, which promote its compatibility or its mixing with the other components, in particular the TPE, of the present composition.
  • non-crosslinked silicone is understood to mean a silicone which is neither crosslinked nor crosslinkable, even in situ, in the composition according to the invention or during its use in order to obtain the final product.
  • non-crosslinked/non-crosslinkable silicone is understood to mean a silicone not containing alkenyl groups having from 2 to 20 carbon atoms in the molecule, in particular a silicone not containing a vinyl, allyl, butenyl, pentenyl, hexenyl or decenyl group capable of causing the silicone to crosslink.
  • polysiloxane is understood to mean a polymer comprising a polymeric backbone composed of siloxy —(Si(R 2 )—O—)— repeat units which can be cyclic, linear or branched units, for example lower dialkylsiloxy units, such as in particular dimethylsiloxy units, and optionally organic side groups.
  • the organic groups (that is to say, non-alkenyl groups) bonded by the silicon are preferably independently drawn from hydrocarbons or from halogenated hydrocarbon groups which contain no aliphatic unsaturation. These can be specifically illustrated by alkyl groups having from 1 to 20 carbon atoms, such as methyl, ethyl, propyl, butyl, pentyl and hexyl; cycloalkyl groups such as cyclohexyl and cycloheptyl; aryl groups of 6 to 12 carbon atoms, such as phenyl, tolyl and xylyl; aralkyl groups of 7 to 20 carbon atoms, such as benzyl and phenethyl; and halogenated alkyl groups having from 1 to 20 carbon atoms, such as 3,3,3-trifluoropropyl and chloromethyl.
  • PDMS linear polydimethylsiloxane
  • polyorganosiloxane is understood to mean a polymer which combines siloxy —(Si(R 2 )—O—)— repeat units of silicones with hydrocarbons or repeat units having a hydrocarbon main chain. It can then concern copolymers.
  • polysiloxane-co-urethane for example in the Carbosil® range from DSM. It can also concern a branched copolymer.
  • CoatOSil® range from Momentive, which carries a pendent polyether group on a silicone backbone.
  • a hydrocarbon backbone branched with silicone chain can also be envisaged and included in the definition of the polyorganosiloxane which can be used in the composition according to the invention.
  • poly(organo)siloxane having a polar functional group is understood to mean a poly(organo)siloxane having at least one polar radical, the polar radical being present at one of the ends of the poly(organo)siloxane backbone or on the poly(organo)siloxane backbone.
  • polar radical is understood to mean a radical which confers polar properties on the organopolysiloxane.
  • polar radicals according to the present invention are: hydroxy, hydroxyl, urea, amine, amide, carboxylate, ester, ether, acrylate, thiol, sulfonate, sulfate and phosphate. Mention may be made, by way of example, of the Baysilone® range from Momentive, which in particular comprises an amine-functionalized polyorganosiloxane.
  • the compatibilizer advantageously consists of a polymer exhibiting a flexural modulus of less than 100 MPa, measured according to the standard ISO 178, and a Tg of less than 0° C. (measured according to the standard 11357-2 at the inflection point of the DSC thermogram), in particular a polyolefin.
  • the polyolefin of the compatibilizer can be functionalized or nonfunctionalized or be a mixture of at least one functionalized and/or of at least one nonfunctionalized.
  • the polyolefin has been denoted by (C), and functionalized polyolefins (C1) and nonfunctionalized polyolefins (C2) have been described below.
  • a nonfunctionalized polyolefin (C2) is conventionally a homopolymer or copolymer of ⁇ -olefins or of diolefins, such as, for example, ethylene, propylene, 1-butene, 1-octene or butadiene. Mention may be made, by way of example, of:
  • the functionalized polyolefin (C1) can be a polymer of ⁇ -olefins having reactive units (the functionalities); such reactive units are acid, anhydride or epoxy functional groups. Mention may be made, by way of example, of the preceding polyolefins (C2) grafted or copolymerized or terpolymerized by unsaturated epoxides, such as glycidyl (meth)acrylate, or by carboxylic acids or the corresponding salts or esters, such as (meth)acrylic acid (it being possible for the latter to be completely or partially neutralized by metals such as Zn, and the like), or else by carboxylic acid anhydrides, such as maleic anhydride.
  • unsaturated epoxides such as glycidyl (meth)acrylate
  • carboxylic acids or the corresponding salts or esters such as (meth)acrylic acid (it being possible for the latter to be completely or partially neutralized by metals such as Zn
  • a functionalized polyolefin is, for example, a PE/EPR mixture, the ratio by weight of which can vary within broad limits, for example between 40/60 and 90/10, said mixture being cografted with an anhydride, in particular maleic anhydride, according to a degree of grafting, for example, from 0.01% to 5% by weight.
  • the functionalized polyolefin (C1) can be chosen from the following (co)polymers, grafted with maleic anhydride or glycidyl methacrylate, in which the degree of grafting is, for example, from 0.01% to 5% by weight:
  • PE polystyrene
  • PP polystyrene
  • ethylene/ ⁇ -olefin copolymers such as ethylene/propylene, EPRs (abbreviation of ethylene/propylene rubbers) and ethylene/propylene/dienes (EPDMs),
  • SEBS styrene/ethylene-butene/styrene
  • SBS styrene/butadiene/styrene
  • SIS styrene/isoprene/styrene
  • SEPS styrene/ethylene-propylene/styrene
  • copolymers of ethylene and vinyl acetate containing up to 40% by weight of vinyl acetate;
  • copolymers of ethylene and alkyl (meth)acrylate containing up to 40% by weight of alkyl (meth)acrylate;
  • copolymers of ethylene and vinyl acetate (EVA) and alkyl (meth)acrylate containing up to 40% by weight of comonomers.
  • the functionalized polyolefin (C1) can also be chosen from ethylene/propylene copolymers, predominant in propylene, grafted by maleic anhydride and then condensed with monoaminated polyamide (or a polyamide oligomer) (products described in EP-A-0 342 066).
  • the functionalized polyolefin (C1) can also be a copolymer or terpolymer of at least the following units: (1) ethylene, (2) alkyl (meth)acrylate or saturated carboxylic acid vinyl ester and (3) anhydride, such as maleic or (meth)acrylic acid anhydride, or epoxy, such as glycidyl (meth)acrylate.
  • the (meth)acrylic acid can be salified with Zn or Li.
  • alkyl (meth)acrylate in (C1) or (C2) denotes C 1 to C 8 alkyl methacrylates and acrylates and can be chosen from methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, methyl methacrylate and ethyl methacrylate.
  • copolymers (C1) and (C2) can be copolymerized in random or block fashion and can exhibit a linear or branched structure.
  • MFI Melt Flow Index
  • the nonfunctionalized polyolefins (C2) are advantageously chosen from polypropylene homopolymers or copolymers, and any ethylene homopolymer, or copolymer of ethylene and of a comonomer of higher ⁇ -olefin type, such as butene, hexene, octene or 4-methyl-1-pentene. Mention may be made, for example, of PPs, high density PEs, medium density PEs, linear low density PEs, low density PEs or ultra low density PEs. These polyethylenes are known by a person skilled in the art as being produced according to a “radical” process, according to a “Ziegler” type catalysis or, more recently, according to a “metallocene” catalysis.
  • the functionalized polyolefins (C1) are advantageously chosen from any polymer comprising ⁇ -olefin units and units carrying reactive polar functional groups, such as epoxy, carboxylic acid or carboxylic acid anhydride functional groups. Mention may be made, by way of example of such polymers, of terpolymers of ethylene, of alkyl acrylate and of maleic anhydride or of glycidyl methacrylate, such as the Lotader® products of the applicant company, or polyolefins grafted by maleic anhydride, such as the Orevac® products of the applicant company, and also terpolymers of ethylene, of alkyl acrylate and of (meth)acrylic acid. Mention may also be made of homopolymers or copolymers of polypropylene grafted by a carboxylic acid anhydride and then condensed with polyamides or oligomers, which are monoaminated, of polyamide.
  • the MFI of the copolymer (A) and the MFI of the compatibilizer (C) can be chosen within a wide range. However, to facilitate the dispersion of (C), it is recommended that the MFI of the copolymer (A) be greater than that of (C).
  • the composition of the invention comprises at least one additive selected from organic or inorganic fillers, reinforcing agents, plasticizers, stabilizers, antioxidants, UV stabilizers, flame retardants, carbon black, carbon nanotubes, pigments, dyes, mold-release agents, lubricants, foaming agents, impact-resistant agents, nucleating agents, surface-modifying agents and their mixtures.
  • additives selected from organic or inorganic fillers, reinforcing agents, plasticizers, stabilizers, antioxidants, UV stabilizers, flame retardants, carbon black, carbon nanotubes, pigments, dyes, mold-release agents, lubricants, foaming agents, impact-resistant agents, nucleating agents, surface-modifying agents and their mixtures.
  • the process for the manufacture of the composition according to the invention comprises carrying out the mixing of block copolymer (A) and of non-crosslinked silicone (B), and of the optional other components (C) and/or (D).
  • the mixing is preferably carried out in a device for mixing in the molten state, such as a twin-screw or single-screw extruder, or else in a device using Buss co-kneaders.
  • a device for mixing in the molten state such as a twin-screw or single-screw extruder, or else in a device using Buss co-kneaders.
  • said mixing is carried out in a twin-screw extruder.
  • thermoplastic elastomer composition according to the invention can then be processed by conventional techniques, such as extrusion, vacuum forming, injection molding, blow molding, overmolding or compression molding.
  • compositions according to the invention can be retransformed (recycled) with little or no deterioration in the mechanical properties.
  • novel thermoplastic elastomers with a composition in accordance with the present invention can be used to manufacture insulators of wires and cables; sound and vibration dampening components; electrical connectors; automotive components and appliances, such as belts, hoses, air lines, bellows, gaskets and fuel line components; furniture components; soft-feel handles for portable devices (for example, tool handles); seals for architecture; bottle closures; medical devices; sports equipment; and other parts of components generally of rubber appearance which can be replaced by components with a composition according to the invention.
  • a subject-matter of the present invention is in particular an article or an article part chosen from a footwear sole, in particular a sports footwear sole, such as an insole, midsole or outer sole, a ski boot liner, a sock, a racket, an inflatable ball, a solid ball, a floater, gloves, personal protection equipment, a helmet, a rail foot, a motor vehicle part, a pushchair part, a tire, a wheel, a smooth-riding wheel, such as a tire, a handle, a seat element, a child car seat part, a construction part, an electrical and/or electronic equipment part, an electronic protection part, an audio equipment, acoustic insulation and/or heat insulation part, a part targeted at dampening impacts and/or vibrations, such as those generated by a means of transport, a padding element, a toy, a medical object, such as a splint, an orthosis, a cervical collar, a dressing, in particular an antimicrobial foam dressing, an
  • thermoplastic elastomers of the present invention are particularly useful for manufacturing the following articles:
  • compositions of the invention are used for the manufacture of a casing or protective casing in items of electrical or electronic equipment, such as in particular a portable computer, a portable telephone or a tablet.
  • PEBA 2+30% of polyorganosiloxane polycarbonate polyurethane copolymer Carbosil® 20 80A silicone from DSM.
  • PEBA 4 PA12-PTMG (Mn: 2000-1000), copolymer having PA 12 blocks and PTMG blocks with respective number-average molecular weights (Mn) 2000-1000.
  • the ratio by weight: PA blocks/PE blocks 2)+15% of polyorganosiloxane polycarbonate polyurethane copolymer (Carbosil® 20 80A from DSM)+15% of styrene/ethylene-butylene/styrene block copolymer grafted by maleic anhydride (Kraton® FG-1924).
  • PEBA 1 PA 12-PTMG (Mn: 600-2000)
  • PEBA 1 is a copolymer having PA 12 blocks and PTMG blocks with respective number-average molecular weights (Mn) 600-2000.
  • PEBA 2 is a copolymer according to the invention having PA 12 blocks and PTMG blocks with respective number-average molecular weights (Mn) 850-2000.
  • PEBA 3 PA 12-PTMG (Mn: 2000-2000)
  • PEBA 3 is a copolymer according to the invention having PA 12 blocks and PTMG blocks with respective number-average molecular weights (Mn) 2000-2000.
  • thermoplastic crosslinked silicone (TPSiV® 4000-75A SR, Multibase)
  • Formulations A to I are prepared (by mixing in the case of A, B, C and D) in a twin-screw extruder at a temperature of 210° C.
  • the characterizations are carried out on samples conditioned at 23° C., 50% relative humidity, for 2 weeks.
  • compositions of the invention exhibit a low Shore A hardness, especially formulations A and B, exhibiting a Shore A hardness of less than or equal to 70 after 15 s, while retaining good transformability in injection molding, and no exudation.
  • These formulations show the haptic properties required by mass consumption applications, such as sports devices, portable devices, for example in items of electronic equipment, or optical accessories, such as glasses.
  • compositions of the invention also combine a low flexural modulus while retaining very good transformability in injection molding and no exudation, as well as good resistance to high temperatures.
  • compositions of the invention in the composition B comprising a maleated SEBS compatibilizer, exhibit a better abrasion resistance than the PEBA materials and than the TPSiV® products resulting from TPU.
  • the surface characteristics after abrasion are improved: the surface remains smooth and homogeneous without deep scratches. The visual appearance is retained after abrasion, and there is no risk of injury on contact with the skin, which is necessary for the materials used in footwear components, such as footwear heels, for example, or for sports equipment.
  • the formulations of the invention are a solution for avoiding the bonding stage necessary today to adhesively bond the thermosetting rubber outer sole to the thermoplastic components of the ski boot.
  • This bonding stage takes time, requires the use of primer and adhesive which may contain solvents, and requires a crosslinking stage at high temperature.
  • thermoplastics used in ski boots such as PEBA or TPU.
  • compositions of the invention have a more mat surface and a softer feel than the PEBA reference materials.
  • compositions of the invention do not exhibit visible exudation, unlike PEBAs.
  • compositions of the invention have a lower absorption of moisture than the PEBA reference materials. This contributes to giving a greater resistance to stains, especially toward hydrophilic stains (coffee, tea, wine, and the like).
  • compositions of the invention have a lower compressive residual strain compared with PEBAs (comparative examples E, F and G) and with TPSiV® (H) resulting from TPUs, especially at 70° C. This contributes to obtaining better performance qualities under stress, for example in sports equipment or industrial applications, such as sealants.
  • composition comprising silicone
  • the composition is a solution for solving this injection-molding problem while retaining the various advantageous properties of PEBAs, this being the case for materials which are even more flexible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention relates to a composition comprising:
    • (A) a copolymer having rigid blocks and flexible blocks (TPE),
    • (B) a non-crosslinked polysiloxane silicone, preferably a non-crosslinked polyorganosiloxane,
    • optionally (C) a compatibilizer, improving the compatibility between the TPE and the silicone, the compatibilizer (C) being chosen from a polyolefin or a mixture of several polyolefins.

Description

    TECHNICAL FIELD
  • The present invention relates to thermoplastic elastomer polymer-silicone compositions and to articles manufactured from these compositions.
  • TECHNICAL BACKGROUND
  • Thermoplastic elastomer polymers (TPEs), such as thermoplastic polyurethanes (TPUs) or copolymers having polyamide blocks and polyether blocks (PEBAs), are used in various applications, such as sports, electronics, optics, motor vehicles and household electrical appliances. Their typical hardness is from 25 to 80 Shore D. Their main advantages are their processability (that is to say, ease of use in injection molding and extrusion), their elastomeric mechanical properties, their high resilience, their good impact strength and their low density.
  • However, existing TPEs have certain limitations:
      • it is not possible to target a hardness (in Shore D) less than 25 Shore D, that is (in Shore A) a hardness of less than 80 Shore A, while retaining good processability, especially in injection molding;
      • the exudation of low molecular weight components is observed, in particular for the flexible grades, with a high content of flexible polyether blocks, in particular due to the limited compatibility between the hard polyamide blocks and the flexible polyether blocks;
      • they exhibit a limited abrasion resistance;
      • they exhibit a low chemical resistance to oily components, such as sebum;
      • they exhibit a limited resistance to soiling, that is to say to the transfer of color resulting from an external product;
      • they have limited thermomechanical resistance;
      • their haptic properties are not entirely satisfactory.
  • In contrast, silicone-based materials are generally used in mass consumption applications due to a number of advantages:
      • low hardness (<80 Shore A);
      • good haptic properties;
      • good chemical resistance, in particular to sebum;
      • good thermomechanical properties.
  • Their processability is their main disadvantage, because of the long cycle times required. Their mechanical properties (tear strength, abrasion resistance) are limited. In addition, their bonding or their compatibility with other thermoplastics is generally weak or requires the use of a primer or a compatibilizer.
  • There thus exists a need for polymer systems without the various disadvantages mentioned above, for the manufacture of a material exhibiting a good compromise between:
  • the flexibility and durability of the TPE material: abrasion resistance and tear strength, chemical resistance and mechanical strength which are sufficient for repeated everyday use, and
  • the attractiveness and the soft and silky feel (in particular “peachskin”), expected by the users. The present invention is targeted at at least some, indeed even most, of the following properties, the measurement standards for which are specified below in table 2 of this description:
  • Hardness, instantaneous (Shore A) <80
    Hardness, 15 s (Shore A) <75
    Tensile tests, stress at 25% strain (MPa) <2.0
    Tensile test, stress at 100% strain (MPa) <4.0
    Tensile test, breaking stress (MPa) >10
    Tensile test, elongation at break (%) >500
    Flexural modulus (MPa) < or =12
    Tear strength (kN/m) >40
    Taber abrasion resistance - H18 grinding wheel <50
    (weight loss in mg/1000 revolutions)
    Taber abrasion resistance - CS10 grinding wheel
    (weight loss in mg/1000 revolutions)
    Compressive residual strain at 23° C. (%) <20
    Ease of processing, and of removal from the mold.
    Recyclability
    Density <1.00
    Resistance to exudation
    Chemical resistance (including sebum)
    Resistance to stains and soiling.
  • SUMMARY OF THE INVENTION
  • A subject matter of the present invention is thus a composition comprising:
      • (A) a copolymer having rigid blocks and flexible blocks (TPE),
      • (B) a non-crosslinked silicone, that is to say polysiloxane, such as linear polydimethylsiloxane, preferably a polyorganosiloxane,
      • optionally (C) a compatibilizer, improving the compatibility between the TPE and the silicone, and advantageously chosen from a polyolefin or a mixture of several polyolefins.
  • Advantageously, said rigid blocks comprise at least one block chosen from: polyamide, polyurethane, polyester and their copolymers. Advantageously, said flexible blocks comprise at least one block chosen from: polyether, polyester, polysiloxane, polyolefin, polycarbonate and their copolymers.
  • Preferably, the block copolymer is chosen from copolymers having polyester blocks and polyether blocks, copolymers having polyurethane blocks and polyether blocks and copolymers having polyamide blocks and polyether blocks, and preferably it is a copolymer having polyamide blocks and polyether blocks.
  • According to one embodiment, the ratio by weight of TPE (A) with respect to the silicone (B) is from 10:90 to 95:5, preferably 50:50 to 90:10, indeed even better still from 60:40 to 85:15.
  • Preferably, the composition of the invention comprises, by weight:
      • from 55% to 95% of copolymer (A), preferably from 60% to 80%,
      • from 5% to 45% of silicone (B), preferably from 10% to 40%, optionally
      • from 0% to 45% of compatibilizer (C), preferably from 5% to 30%,
      • from 0% to 15% of additives (D), preferably from 0.1% to 10%, with regard to the total weight of the composition, this being 100%.
  • The percentage by weight of silicone is thus fixed in order to improve the abrasion resistance, feel and soiling resistance properties of the product. This solution also makes it possible to eliminate the phenomena of exudation observed with regard to the most flexible TPEs and to facilitate the use of the product, the silicone limiting the adhesion of the mixture to metal walls.
  • According to one embodiment, the flexible blocks are polyether blocks in the copolymer (A), and are preferably polytetramethylene glycol blocks.
  • According to one embodiment, the rigid blocks are polyamide blocks in the copolymer (A), and are preferably PA 11 or PA 12 blocks.
  • According to one embodiment, the number-average molar mass Mn of the flexible blocks, in particular polyether blocks, is greater than 800 g/mol, preferably greater than 1000 g/mol, preferably greater than 1200 g/mol, preferably greater than 1400 g/mol, preferably greater than 1600 g/mol, preferably greater than 1800 g/mol and preferably greater than or equal to 2000 g/mol.
  • Advantageously, the ratio by weight of the rigid blocks, in particular polyamide blocks, to the flexible blocks, in particular polyether blocks, in the copolymer (A) is less than or equal to 1.2, preferably less than or equal to 1, preferably less than or equal to 0.8 and preferably less than or equal to 0.5.
  • According to one embodiment, the composition of the invention additionally comprises one or more additives (D).
  • The invention also relates to a process for the manufacture of the above composition, comprising the production of the mixture of at least one block copolymer (A) and of a non-crosslinked silicone. According to one embodiment, the process is carried out in a device for mixing in the molten state, preferably in a twin-screw extruder, preferably at a temperature of the order of 150° C. to 250° C., preferably 160° C. to 220° C.
  • The invention also relates to an article comprising at least one part having a composition in accordance with the present invention.
  • According to one embodiment, the article is manufactured by a manufacturing process involving a stage of injection molding, overmolding, extrusion or co-extrusion of the composition according to the invention.
  • The applications of the composition according to the invention advantageously comprise fast-moving consumer products containing a flexible part exposed to daily wear and tear (footwear, interior decorative parts in motor cars), a part in regular contact with the skin (glasses, medical, electronics) or industry (conveyor belts).
  • According to one embodiment, the article is an electrical or electronic article comprising a casing or protective casing manufactured from the composition according to the invention, said article preferably being a portable computer, a portable telephone or a tablet.
  • The present invention makes it possible to overcome the disadvantages of the prior art. In particular, the invention provides compositions combining the advantageous properties of TPEs and silicones and in particular:
      • good formability (in injection molding and extrusion),
      • elastomeric mechanical properties,
      • high resilience,
      • low density,
      • low hardness,
      • good abrasion resistance,
      • good compressive properties,
      • good haptic and esthetic properties;
      • good chemical resistance, in particular to sebum;
      • high thermomechanical properties;
      • good properties of adhesion to other materials, such as polyamides, including polyamides mixed with fillers, such as glass fibers, polyether-block-amides (PEBAs), copolyetheresters (COPEs), thermoplastic polyurethanes (TPUs), polycarbonate (PC), ABS and PC/ABS.
  • This is achieved by providing a thermoplastic elastomer in the form of a composition according to the invention, based on TPE, preferably based on PEBA, and on non-crosslinked silicone.
  • It has proven particularly advantageous to use a copolymer (A) in which the flexible blocks, preferably polyether blocks, have a relatively high molar mass. Without wishing to be bound by theory, it is assumed that the polyether blocks aid compatibility with the non-crosslinked silicones of the composition according to the invention.
  • DESCRIPTION OF EMBODIMENTS
  • The invention is now described in greater detail and in a nonlimiting way in the description which follows.
  • In the present description, it is specified that, when reference is made to intervals, the expressions of the type “ranging from . . . to”, “extending from . . . to” or “comprising from . . . to” include the limits of the interval. Conversely, the expressions of the type “between . . . and . . . ” exclude the limits of the interval.
  • Unless otherwise mentioned, the percentages expressed are percentages by weight. Unless otherwise mentioned, the parameters to which reference is made are measured at atmospheric pressure and ambient temperature (20-25° C., generally 23° C.).
  • The composition of the present invention is a thermoplastic elastomer, obtained by mixing a TPE (A) and a non-crosslinked silicone (B), and optionally a compatibilizing polymer (C), improving the compatibility between the TPE and the silicone.
  • The composition according to the invention is an intimate mixture or alloy of polymers, that is to say a macroscopically homogeneous mixture of at least two polymers (A) and (B), indeed even polymers (A), (B) and (C).
  • Additional components, such as various additives (D), can also be added to the composition according to the invention.
  • Copolymer (A):
  • Block copolymer according to the invention is understood to mean thermoplastic elastomer polymers (TPEs), which alternately comprise “hard” or “rigid” blocks or segments (with a rather thermoplastic behavior) and “flexible” or “supple” blocks or segments (with a rather elastomeric behavior). For example, polyamide blocks are known to be “rigid” segments with a melting point (M.p.) or glass transition temperature (Tg) which are higher than the working temperature of the polymer, whereas polyether blocks are “flexible” segments with an M.p. or Tg which are lower than the working temperature of said polymer.
  • More specifically, a block is said to be “flexible” if it exhibits a low glass transition temperature (Tg). Low glass transition temperature is understood to mean a glass transition temperature Tg of less than 15° C., preferably of less than 0° C., advantageously of less than −15° C., more advantageously still of less than −30° C., optionally of less than −50° C.
  • Flexible or soft blocks which can be envisaged in the copolymer according to the invention is understood to mean in particular those chosen from polyether blocks, polyester blocks, polysiloxane blocks, such as polydimethylsiloxane or PDMS blocks, polyolefin blocks, polycarbonate blocks and their mixtures. The flexible blocks which can be envisaged are described, for example, in French patent application No. 0 950 637, page 32, line 3, to page 38, line 23. By way of example, the polyether blocks are chosen from poly(ethylene glycol) (PEG), poly(1,2-propylene glycol) (PPG), poly(1,3-propylene glycol) (PO3G), poly(tetramethylene glycol) (PTMG) and their copolymers or mixtures.
  • The rigid blocks can be based on polyamide, on polyurethane, on polyester or on a mixture of these polymers. These blocks are described in particular in French patent application No. 0 856 752. The rigid blocks are preferably polyamide-based. The polyamide (abbreviated to PA) blocks can comprise homopolyamides or copolyamides. The polyamide blocks which can be envisaged in the composition of the invention are in particular those defined in application FR 0 950 637 from page 27, line 18, to page 31, line 14.
  • Advantageously, said at least one block copolymer comprises at least one block chosen from: polyether blocks, polyester blocks, polyamide blocks, polyurethane blocks and their mixtures. Mention may be made, as examples of copolymers having rigid blocks and flexible blocks, respectively of (a) copolymers having polyester blocks and polyether blocks (also known as COPEs or copolyetheresters), (b) copolymers having polyurethane blocks and polyether blocks (also known as TPUs, the abbreviation for thermoplastic polyurethanes) and (c) copolymers having polyamide blocks and polyether blocks (also known as PEBAs according to the IUPAC, or also polyether-block-amide).
  • Preferably, said at least one block copolymer (A) comprises a copolymer having polyamide blocks and polyether blocks (PEBAs).
  • PEBAs result from the polycondensation of polyamide blocks having reactive ends with polyether blocks having reactive ends, such as, inter alia, the polycondensation:
  • 1) of polyamide blocks having diamine chain ends with polyoxyalkylene blocks having dicarboxyl chain ends;
    2) of polyamide blocks having dicarboxyl chain ends with polyoxyalkylene blocks having diamine chain ends, obtained, for example, by cyanoethylation and hydrogenation of α,ω-dihydroxylated aliphatic polyoxyalkylene blocks, known as polyetherdiols;
    3) of polyamide blocks having dicarboxyl chain ends with polyetherdiols, the products obtained being, in this specific case, polyetheresteramides.
  • The polyamide blocks having dicarboxyl chain ends originate, for example, from the condensation of polyamide precursors in the presence of a chain-limiting dicarboxylic acid.
  • The polyamide blocks having diamine chain ends originate, for example, from the condensation of polyamide precursors in the presence of a chain-limiting diamine.
  • Three types of polyamide blocks can advantageously be used.
  • According to a first type, the polyamide blocks originate from the condensation of a dicarboxylic acid, in particular those having from 4 to 20 carbon atoms, preferably those having from 6 to 18 carbon atoms, and of an aliphatic or aromatic diamine, in particular those having from 2 to 20 carbon atoms, preferably those having from 6 to 14 carbon atoms.
  • Mention may be made, as examples of dicarboxylic acids, of 1,4-cyclohexanedicarboxylic acid, butanedioic acid, adipic acid, azelaic acid, suberic acid, sebacic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid and terephthalic and isophthalic acids, but also dimerized fatty acids.
  • Mention may be made, as examples of diamines, of tetramethylenediamine, hexamethylenediamine, 1,10-decamethylenediamine, dodecamethylenediamine, trimethylhexamethylenediamine, the isomers of bis(4-aminocyclohexyl)methane (BACM), bis(3-methyl-4-aminocyclohexyl)methane (BMACM) and 2,2-bis(3-methyl-4-aminocyclohexyl)propane (BMACP), para-aminodicyclohexylmethane (PACM), isophoronediamine (IPDA), 2,6-bis(aminomethyl)norbornane (BAMN) and piperazine (Pip). Advantageously, polyamide blocks PA 4.12, PA 4.14, PA 4.18, PA 6.10, PA 6.12, PA 6.14, PA 6.18, PA 9.12, PA 10.10, PA 10.12, PA 10.14 and PA 10.18 are used. In the PA X.Y notation, X represents the number of carbon atoms resulting from the diamine residues and Y represents the number of carbon atoms resulting from the diacid residues, in a conventional way.
  • According to a second type, the polyamide blocks result from the condensation of one or more α,ω-aminocarboxylic acids and/or of one or more lactams having from 6 to 12 carbon atoms in the presence of a dicarboxylic acid having from 4 to 12 carbon atoms or of a diamine. Mention may be made, as examples of lactams, of caprolactam, oenantholactam and lauryllactam. Mention may be made, as examples of α,ω-aminocarboxylic acids, of aminocaproic acid, 7-aminoheptanoic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid.
  • Advantageously, the polyamide blocks of the second type are PA 11 (polyundecanamide), PA 12 (polydodecanamide) or PA 6 (polycaprolactam) blocks. In the PA X notation, X represents the number of carbon atoms resulting from the amino acid residues.
  • According to a third type, the polyamide blocks result from the condensation of at least one α,ω-aminocarboxylic acid (or one lactam), at least one diamine and at least one dicarboxylic acid.
  • In this case, the polyamide PA blocks are prepared by polycondensation:
      • of the linear aliphatic or aromatic diamine(s) having X carbon atoms;
  • of the dicarboxylic acid(s) having Y carbon atoms; and
      • of the comonomer(s) {Z}, chosen from lactams and α,ω-aminocarboxylic acids having Z carbon atoms and equimolar mixtures of at least one diamine having X1 carbon atoms and of at least one dicarboxylic acid having Y1 carbon atoms, (X1, Y1) being different from (X, Y);
  • said comonomer(s) {Z} being introduced in a proportion by weight advantageously ranging up to 50%, preferably up to 20%, more advantageously still up to 10%, with respect to the combined polyamide precursor monomers;
  • in the presence of a chain stopper chosen from dicarboxylic acids.
  • Advantageously, the dicarboxylic acid having Y carbon atoms is used as chain stopper, which acid is introduced in excess with respect to the stoichiometry of the diamine(s).
  • According to an alternative form of this third type, the polyamide blocks result from the condensation of at least two α,ω-aminocarboxylic acids or of at least two lactams having from 6 to 12 carbon atoms or of a lactam and of an aminocarboxylic acid not having the same number of carbon atoms, in the optional presence of a chain stopper. Mention may be made, as examples of aliphatic α,ω-aminocarboxylic acids, of aminocaproic acid, 7-aminoheptanoic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid. Mention may be made, as examples of lactams, of caprolactam, oenantholactam and lauryllactam. Mention may be made, as examples of aliphatic diamines, of hexamethylenediamine, dodecamethylenediamine and trimethylhexamethylenediamine. Mention may be made, as examples of cycloaliphatic diacids, of 1,4-cyclohexanedicarboxylic acid. Mention may be made, as examples of aliphatic diacids, of butanedioic acid, adipic acid, azelaic acid, suberic acid, sebacic acid, dodecanedicarboxylic acid or dimerized fatty acids. These dimerized fatty acids preferably have a dimer content of at least 98%; preferably, they are hydrogenated; they are, for example, the products marketed under the Pripol brand by Croda or under the Empol brand by BASF or under the Radiacid brand by Oleon, and polyoxyalkylene-α,ω-diacids. Mention may be made, as examples of aromatic diacids, of terephthalic acid (T) and isophthalic acid (I). Mention may be made, as examples of cycloaliphatic diamines, of the isomers of bis(4-aminocyclohexyl)methane (BACM), bis(3-methyl-4-aminocyclohexyl)methane (BMACM) and 2,2-bis(3-methyl-4-aminocyclohexyl)propane (BMACP), and para-aminodicyclohexylmethane (PACM). The other diamines commonly used can be isophoronediamine (IPDA), 2,6-bis(aminomethyl)norbornane (BAMN) and piperazine.
  • Mention may be made, as examples of polyamide blocks of the third type, of the following:
  • PA 6.6/6, where 6.6 denotes hexamethylenediamine units condensed with adipic acid and 6 denotes units resulting from the condensation of caprolactam;
  • PA 6.6/6.10/11/12, where 6.6 denotes hexamethylenediamine condensed with adipic acid, 6.10 denotes hexamethylenediamine condensed with sebacic acid, 11 denotes units resulting from the condensation of aminoundecanoic acid and 12 denotes units resulting from the condensation of lauryllactam.
  • The notations PA X/Y, PA X/Y/Z, and the like, relate to copolyamides in which X, Y, Z, and the like, represent homopolyamide units as described above.
  • Advantageously, the polyamide blocks of the copolymer used in the invention comprise blocks of polyamide PA 6, PA 11, PA 12, PA 5.4, PA 5.9, PA 5.10, PA 5.12, PA 5.13, PA 5.14, PA 5.16, PA 5.18, PA 5.36, PA 6.4, PA 6.9, PA 6.10, PA 6.12, PA 6.13, PA 6.14, PA 6.16, PA 6.18, PA 6.36, PA 10.4, PA 10.9, PA 10.10, PA 10.12, PA 10.13, PA 10.14, PA 10.16, PA 10.18, PA 10.36, PA 10.T, PA 12.4, PA 12.9, PA 12.10, PA 12.12, PA 12.13, PA 12.14, PA 12.16, PA 12.18, PA 12.36, PA 12.T, or mixtures or copolymers of these; and preferably comprise blocks of polyamide PA 6, PA 11, PA 12, PA 6.10, PA 10.10, PA 10.12, or mixtures or copolymers of these.
  • The polyether blocks consist of alkylene oxide units. The polyether blocks can in particular be PEG (polyethylene glycol) blocks, that is to say consisting of ethylene oxide units, and/or PPG (propylene glycol) blocks, that is to say consisting of propylene oxide units, and/or PO3G (polytrimethylene glycol) blocks, that is to say consisting of polytrimethylene ether glycol units, and/or PTMG blocks, that is to say consisting of tetramethylene glycol units, also called polytetrahydrofuran. The PEBA copolymers can comprise several types of polyethers in their chain, it being possible for the copolyethers to be block or random.
  • Use may also be made of blocks obtained by oxyethylation of bisphenols, such as, for example, bisphenol A. The latter products are described in particular in the document EP 613 919.
  • The polyether blocks can also consist of ethoxylated primary amines. Mention may be made, as examples of ethoxylated primary amines, of the products of formula:
  • Figure US20210087399A1-20210325-C00001
  • in which m and n are integers between 1 and 20 and x is an integer between 8 and 18. These products are, for example, commercially available under the Noramox® brand from CECA and under the Genamin® brand from Clariant.
  • The flexible polyether blocks can comprise polyoxyalkylene blocks having NH2 chain ends, it being possible for such blocks to be obtained by cyanoacetylation of aliphatic α,ω-dihydroxylated polyoxyalkylene blocks called polyetherdiols. More particularly, the Jeffamine or Elastamine commercial products can be used (for example Jeffamine® D400, D2000, ED 2003, XTJ 542, commercial products from Huntsman, also described in the documents JP 2004346274, JP 2004352794 and EP 1 482 011).
  • The polyetherdiol blocks are either used as is and copolycondensed with polyamide blocks having carboxyl end groups, or aminated in order to be converted into polyetherdiamines and condensed with polyamide blocks having carboxyl end groups. The general method for the two-stage preparation of the PEBA copolymers having ester bonds between the PA blocks and the PE blocks is known and is described, for example, in the document FR 2 846 332. The general method for the preparation of the PEBA copolymers of the invention having amide bonds between the PA blocks and the PE blocks is known and is described, for example, in the document EP 1 482 011. The polyether blocks can also be mixed with polyamide precursors and a diacid chain stopper in order to prepare polymers having polyamide blocks and polyether blocks possessing randomly distributed units (one-stage process).
  • Of course, the designation PEBA in the present description of the invention relates just as well to the PEBAX® products sold by Arkema, to the Vestamid® products sold by Evonik®, to the Grilamid® products, to the Griflex products sold by EMS, as to the PEBA-type Pelestat® products sold by Sanyo or to any other PEBA from other suppliers.
  • While the block copolymers described above generally comprise at least one polyamide block and at least one polyether block, the present invention also covers all the copolymer alloys comprising two, three, four (indeed even more) different blocks chosen from those described in this description.
  • For example, the copolymer according to the invention can be a segmented block copolymer comprising three different types of blocks (or “triblock”), which results from the condensation of several of the blocks described above. Said triblock is preferably chosen from copolyetheresteramides and copolyetheramideurethanes.
  • PEBA copolymers which are particularly preferred in the context of the invention are: PA12-PEG, PA6-PEG, PA6/12-PEG, PA11-PEG, PA12-PTMG, PA6-PTMG, PA6/12-PTMG, PA11-PTMG, PA12-PEG/PPG, PA6-PEG/PPG, PA6/12-PEG/PPG, PA11-PEG/PPG, PA11/PO3G, PA6.10/PO3G and/or PA10.10/PO3G.
  • Preferably, the PA blocks comprise at least 30%, preferably at least 50%, preferably at least 75%, preferably 100%, by weight of PA 11 and/or PA 12, as regards the total weight of the PA blocks.
  • The polyether blocks preferably represent from 50% to 80% of the total weight of the block copolymer (A) used in the composition according to the invention.
  • Advantageously, the number-average molar mass of the polyamide blocks in the PEBA copolymer has a value from 200 to 2000 g/mol; the number-average molar mass of the polyether blocks has a value from 800 to 2500 g/mol; and the ratio by weight of the polyamide blocks with respect to the polyether blocks of the copolymer is from 0.1 to 1.2.
  • The number-average molar mass is fixed by the content of chain stopper. It can be calculated according to the relationship:

  • Mn=(nmonomer/nstopper)*Mrepeat unit+Mstopper
  • nmonomer=number of moles of monomer
  • nstopper=number of moles of diacid in excess
  • Mrepeat unit=molar mass of the repeat unit
  • Mstopper=molar mass of the diacid in excess
  • According to specific embodiments, the copolymers are defined by the following ranges of number-average molar masses Mn:
  • Mn of block polyamides Mn of polyether blocks
    No. 1 200 to 300 g/mol 800 to 1000 g/mol
    No. 2 300 to 400 g/mol 800 to 1000 g/mol
    No. 3 400 to 500 g/mol 800 to 1000 g/mol
    No. 4 500 to 600 g/mol 800 to 1000 g/mol
    No. 5 600 to 700 g/mol 800 to 1000 g/mol
    No. 6 700 to 800 g/mol 800 to 1000 g/mol
    No. 7 800 to 900 g/mol 800 to 1000 g/mol
    No. 8 900 to 1000 g/mol 800 to 1000 g/mol
    No. 9 200 to 300 g/mol 1000 to 1200 g/mol
    No. 10 300 to 400 g/mol 1000 to 1200 g/mol
    No. 11 400 to 500 g/mol 1000 to 1200 g/mol
    No. 12 500 to 600 g/mol 1000 to 1200 g/mol
    No. 13 600 to 700 g/mol 1000 to 1200 g/mol
    No. 14 700 to 800 g/mol 1000 to 1200 g/mol
    No. 15 800 to 900 g/mol 1000 to 1200 g/mol
    No. 16 900 to 1000 g/mol 1000 to 1200 g/mol
    No. 17 1000 to 1100 g/mol 1000 to 1200 g/mol
    No. 18 200 to 300 g/mol 1200 to 1400 g/mol
    No. 19 300 to 400 g/mol 1200 to 1400 g/mol
    No. 20 400 to 500 g/mol 1200 to 1400 g/mol
    No. 21 500 to 600 g/mol 1200 to 1400 g/mol
    No. 22 600 to 700 g/mol 1200 to 1400 g/mol
    No. 23 700 to 800 g/mol 1200 to 1400 g/mol
    No. 24 800 to 900 g/mol 1200 to 1400 g/mol
    No. 25 900 to 1000 g/mol 1200 to 1400 g/mol
    No. 26 1000 to 1100 g/mol 1200 to 1400 g/mol
    No. 27 1100 to 1200 g/mol 1200 to 1400 g/mol
    No. 28 1200 to 1300 g/mol 1200 to 1400 g/mol
    No. 29 200 to 300 g/mol 1400 to 1600 g/mol
    No. 30 300 to 400 g/mol 1400 to 1600 g/mol
    No. 31 400 to 500 g/mol 1400 to 1600 g/mol
    No. 32 500 to 600 g/mol 1400 to 1600 g/mol
    No. 33 600 to 700 g/mol 1400 to 1600 g/mol
    No. 34 700 to 800 g/mol 1400 to 1600 g/mol
    No. 35 800 to 900 g/mol 1400 to 1600 g/mol
    No. 36 900 to 1000 g/mol 1400 to 1600 g/mol
    No. 37 1000 to 1100 g/mol 1400 to 1600 g/mol
    No. 38 1100 to 1200 g/mol 1400 to 1600 g/mol
    No. 39 1200 to 1300 g/mol 1400 to 1600 g/mol
    No. 40 1300 to 1400 g/mol 1400 to 1600 g/mol
    No. 41 1400 to 1500 g/mol 1400 to 1600 g/mol
    No. 42 200 to 300 g/mol 1600 to 1800 g/mol
    No. 43 300 to 400 g/mol 1600 to 1800 g/mol
    No. 44 400 to 500 g/mol 1600 to 1800 g/mol
    No. 45 500 to 600 g/mol 1600 to 1800 g/mol
    No. 46 600 to 700 g/mol 1600 to 1800 g/mol
    No. 47 700 to 800 g/mol 1600 to 1800 g/mol
    No. 48 800 to 900 g/mol 1600 to 1800 g/mol
    No. 49 900 to 1000 g/mol 1600 to 1800 g/mol
    No. 50 1000 to 1100 g/mol 1600 to 1800 g/mol
    No. 51 1100 to 1200 g/mol 1600 to 1800 g/mol
    No. 52 1200 to 1300 g/mol 1600 to 1800 g/mol
    No. 53 1300 to 1400 g/mol 1600 to 1800 g/mol
    No. 54 1400 to 1500 g/mol 1600 to 1800 g/mol
    No. 55 200 to 300 g/mol 1800 to 2000 g/mol
    No. 56 300 to 400 g/mol 1800 to 2000 g/mol
    No. 57 400 to 500 g/mol 1800 to 2000 g/mol
    No. 58 500 to 600 g/mol 1800 to 2000 g/mol
    No. 59 600 to 700 g/mol 1800 to 2000 g/mol
    No. 60 700 to 800 g/mol 1800 to 2000 g/mol
    No. 61 800 to 900 g/mol 1800 to 2000 g/mol
    No. 62 900 to 1000 g/mol 1800 to 2000 g/mol
    No. 63 1000 to 1100 g/mol 1800 to 2000 g/mol
    No. 64 1100 to 1200 g/mol 1800 to 2000 g/mol
    No. 65 1200 to 1300 g/mol 1800 to 2000 g/mol
    No. 66 1300 to 1400 g/mol 1800 to 2000 g/mol
    No. 67 1400 to 1500 g/mol 1800 to 2000 g/mol
    No. 68 200 to 300 g/mol 2000 to 2200 g/mol
    No. 69 300 to 400 g/mol 2000 to 2200 g/mol
    No. 70 400 to 500 g/mol 2000 to 2200 g/mol
    No. 71 500 to 600 g/mol 2000 to 2200 g/mol
    No. 72 600 to 700 g/mol 2000 to 2200 g/mol
    No. 73 700 to 800 g/mol 2000 to 2200 g/mol
    No. 74 800 to 900 g/mol 2000 to 2200 g/mol
    No. 75 900 to 1000 g/mol 2000 to 2200 g/mol
    No. 76 1000 to 1100 g/mol 2000 to 2200 g/mol
    No. 77 1100 to 1200 g/mol 2000 to 2200 g/mol
    No. 78 1200 to 1300 g/mol 2000 to 2200 g/mol
    No. 79 1300 to 1400 g/mol 2000 to 2200 g/mol
    No. 80 1400 to 1500 g/mol 2000 to 2200 g/mol
    No. 81 200 to 300 g/mol 2200 to 2500 g/mol
    No. 82 300 to 400 g/mol 2200 to 2500 g/mol
    No. 83 400 to 500 g/mol 2200 to 2500 g/mol
    No. 84 500 to 600 g/mol 2200 to 2500 g/mol
    No. 85 600 to 700 g/mol 2200 to 2500 g/mol
    No. 86 700 to 800 g/mol 2200 to 2500 g/mol
    No. 87 800 to 900 g/mol 2200 to 2500 g/mol
    No. 88 900 to 1000 g/mol 2200 to 2500 g/mol
    No. 89 1000 to 1100 g/mol 2200 to 2500 g/mol
    No. 90 1100 to 1200 g/mol 2200 to 2500 g/mol
    No. 91 1200 to 1300 g/mol 2200 to 2500 g/mol
    No. 92 1300 to 1400 g/mol 2200 to 2500 g/mol
    No. 93 1400 to 1500 g/mol 2200 to 2500 g/mol
  • Preferably, the ratio by weight of the polyamide blocks with respect to the polyether blocks of the copolymer is from 0.1 to 1.2; preferably 0.1 to 1; preferably from 0.2 to 0.5. This ratio by weight can be calculated by dividing the number-average molar mass of the polyamide blocks by the number-average molar mass of the polyether blocks.
  • According to specific embodiments, this ratio has a value from 0.1 to 0.2; or from 0.2 to 0.3; or from 0.3 to 0.4; or from 0.4 to 0.5; or from 0.5 to 0.6; or from 0.6 to 0.7; or from 0.7 to 0.8; or from 0.8 to 0.9.
  • Preferably, the copolymer used in the invention exhibits an instantaneous hardness of less than or equal to 45 Shore D, more preferably of less than or equal to 35 Shore D, more preferably of less than or equal to 25 Shore D. The hardness measurements can be carried out according to the standard ISO 868.
  • Advantageously, the copolymer has an inherent viscosity of 2 or less; preferably of 1.5 or less; preferably of 1.4 or less; preferably of 1.3 or less; preferably of 1.2 or less. In the present description, the inherent viscosity is determined according to the standard ISO 307:2007 in m-cresol at a temperature of 20° C., at a polymer concentration of 0.5% by weight in solution in meta-cresol with respect to the total weight of the solution, using an Ubbelohde viscometer.
  • The Silicone (B)
  • The silicone or “polysiloxane” used in the composition of the present invention is non-crosslinked and non-crosslinkable. It can advantageously be polyorganosiloxane by comprising one or more organic chains, indeed even comprise groups, preferably polar functional groups, which promote its compatibility or its mixing with the other components, in particular the TPE, of the present composition.
  • Within the meaning the present invention:
  • “non-crosslinked silicone” is understood to mean a silicone which is neither crosslinked nor crosslinkable, even in situ, in the composition according to the invention or during its use in order to obtain the final product. In particular, non-crosslinked/non-crosslinkable silicone is understood to mean a silicone not containing alkenyl groups having from 2 to 20 carbon atoms in the molecule, in particular a silicone not containing a vinyl, allyl, butenyl, pentenyl, hexenyl or decenyl group capable of causing the silicone to crosslink.
  • This requirement for the silicone of the present composition not only ensures the ability for transformation (processability), the ease of use, but also the recyclability of the composition according to the invention.
  • “polysiloxane” is understood to mean a polymer comprising a polymeric backbone composed of siloxy —(Si(R2)—O—)— repeat units which can be cyclic, linear or branched units, for example lower dialkylsiloxy units, such as in particular dimethylsiloxy units, and optionally organic side groups.
  • The organic groups (that is to say, non-alkenyl groups) bonded by the silicon are preferably independently drawn from hydrocarbons or from halogenated hydrocarbon groups which contain no aliphatic unsaturation. These can be specifically illustrated by alkyl groups having from 1 to 20 carbon atoms, such as methyl, ethyl, propyl, butyl, pentyl and hexyl; cycloalkyl groups such as cyclohexyl and cycloheptyl; aryl groups of 6 to 12 carbon atoms, such as phenyl, tolyl and xylyl; aralkyl groups of 7 to 20 carbon atoms, such as benzyl and phenethyl; and halogenated alkyl groups having from 1 to 20 carbon atoms, such as 3,3,3-trifluoropropyl and chloromethyl.
  • Mention may in particular very simply be made of linear polydimethylsiloxane (PDMS).
  • “polyorganosiloxane” is understood to mean a polymer which combines siloxy —(Si(R2)—O—)— repeat units of silicones with hydrocarbons or repeat units having a hydrocarbon main chain. It can then concern copolymers. One advantageous example is polysiloxane-co-urethane (for example in the Carbosil® range from DSM). It can also concern a branched copolymer. An example is the CoatOSil® range from Momentive, which carries a pendent polyether group on a silicone backbone. Conversely, a hydrocarbon backbone branched with silicone chain can also be envisaged and included in the definition of the polyorganosiloxane which can be used in the composition according to the invention.
  • “poly(organo)siloxane having a polar functional group” is understood to mean a poly(organo)siloxane having at least one polar radical, the polar radical being present at one of the ends of the poly(organo)siloxane backbone or on the poly(organo)siloxane backbone.
  • “polar radical” is understood to mean a radical which confers polar properties on the organopolysiloxane. Examples of polar radicals according to the present invention are: hydroxy, hydroxyl, urea, amine, amide, carboxylate, ester, ether, acrylate, thiol, sulfonate, sulfate and phosphate. Mention may be made, by way of example, of the Baysilone® range from Momentive, which in particular comprises an amine-functionalized polyorganosiloxane.
  • The Compatibilizer (C):
  • The compatibilizer advantageously consists of a polymer exhibiting a flexural modulus of less than 100 MPa, measured according to the standard ISO 178, and a Tg of less than 0° C. (measured according to the standard 11357-2 at the inflection point of the DSC thermogram), in particular a polyolefin.
  • The polyolefin of the compatibilizer can be functionalized or nonfunctionalized or be a mixture of at least one functionalized and/or of at least one nonfunctionalized. To simplify, the polyolefin has been denoted by (C), and functionalized polyolefins (C1) and nonfunctionalized polyolefins (C2) have been described below.
  • A nonfunctionalized polyolefin (C2) is conventionally a homopolymer or copolymer of α-olefins or of diolefins, such as, for example, ethylene, propylene, 1-butene, 1-octene or butadiene. Mention may be made, by way of example, of:
      • polyethylene homopolymers and copolymers, in particular LDPE, HDPE, LLDPE (linear low density polyethylene), VLDPE (very low density polyethylene) and metallocene polyethylene,
      • propylene homopolymers or copolymers,
      • ethylene/α-olefin copolymers, such as ethylene/propylene, EPRs (abbreviation of ethylene/propylene rubbers) and ethylene/propylene/dienes (EPDMs),
      • styrene/ethylene-butene/styrene (SEBS), styrene/butadiene/styrene (SBS), styrene/isoprene/styrene (SIS) or styrene/ethylene-propylene/styrene (SEPS) block copolymers,
      • copolymers of ethylene with at least one product chosen from salts or esters of unsaturated carboxylic acids, such as alkyl (meth)acrylate (for example methyl acrylate), or vinyl esters of saturated carboxylic acids, such as vinyl acetate (EVA), it being possible for the proportion of comonomer to reach 40% by weight.
  • The functionalized polyolefin (C1) can be a polymer of α-olefins having reactive units (the functionalities); such reactive units are acid, anhydride or epoxy functional groups. Mention may be made, by way of example, of the preceding polyolefins (C2) grafted or copolymerized or terpolymerized by unsaturated epoxides, such as glycidyl (meth)acrylate, or by carboxylic acids or the corresponding salts or esters, such as (meth)acrylic acid (it being possible for the latter to be completely or partially neutralized by metals such as Zn, and the like), or else by carboxylic acid anhydrides, such as maleic anhydride. A functionalized polyolefin is, for example, a PE/EPR mixture, the ratio by weight of which can vary within broad limits, for example between 40/60 and 90/10, said mixture being cografted with an anhydride, in particular maleic anhydride, according to a degree of grafting, for example, from 0.01% to 5% by weight.
  • The functionalized polyolefin (C1) can be chosen from the following (co)polymers, grafted with maleic anhydride or glycidyl methacrylate, in which the degree of grafting is, for example, from 0.01% to 5% by weight:
  • PE, PP, copolymers of ethylene with propylene, butene, hexene or octene containing, for example, from 35% to 80% by weight of ethylene;
  • ethylene/α-olefin copolymers, such as ethylene/propylene, EPRs (abbreviation of ethylene/propylene rubbers) and ethylene/propylene/dienes (EPDMs),
  • styrene/ethylene-butene/styrene (SEBS), styrene/butadiene/styrene (SBS), styrene/isoprene/styrene (SIS) or styrene/ethylene-propylene/styrene (SEPS) block copolymers,
  • copolymers of ethylene and vinyl acetate (EVA), containing up to 40% by weight of vinyl acetate;
  • copolymers of ethylene and alkyl (meth)acrylate, containing up to 40% by weight of alkyl (meth)acrylate;
  • copolymers of ethylene and vinyl acetate (EVA) and alkyl (meth)acrylate, containing up to 40% by weight of comonomers.
  • The functionalized polyolefin (C1) can also be chosen from ethylene/propylene copolymers, predominant in propylene, grafted by maleic anhydride and then condensed with monoaminated polyamide (or a polyamide oligomer) (products described in EP-A-0 342 066).
  • The functionalized polyolefin (C1) can also be a copolymer or terpolymer of at least the following units: (1) ethylene, (2) alkyl (meth)acrylate or saturated carboxylic acid vinyl ester and (3) anhydride, such as maleic or (meth)acrylic acid anhydride, or epoxy, such as glycidyl (meth)acrylate.
  • Mention may be made, as examples of functionalized polyolefins of the latter type, of the following copolymers, where ethylene preferably represents at least 60% by weight and where the termonomer (the functional group) represents, for example, from 0.1% to 10% by weight of the copolymer:
      • ethylene/alkyl (meth)acrylate/(meth)acrylic acid or maleic anhydride or glycidyl methacrylate copolymers;
      • ethylene/vinyl acetate/maleic anhydride or glycidyl methacrylate copolymers;
      • ethylene/vinyl acetate or alkyl (meth)acrylate/(meth)acrylic acid or maleic anhydride or glycidyl methacrylate copolymers.
  • In the preceding copolymers, the (meth)acrylic acid can be salified with Zn or Li.
  • The term “alkyl (meth)acrylate” in (C1) or (C2) denotes C1 to C8 alkyl methacrylates and acrylates and can be chosen from methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, methyl methacrylate and ethyl methacrylate.
  • The abovementioned copolymers, (C1) and (C2), can be copolymerized in random or block fashion and can exhibit a linear or branched structure.
  • The molecular weight, the MFI index and the density of these polyolefins can also vary within a broad range, which will be perceived by a person skilled in the art. MFI is the abbreviation for Melt Flow Index. It is measured according to the standard ISO 1133.
  • The nonfunctionalized polyolefins (C2) are advantageously chosen from polypropylene homopolymers or copolymers, and any ethylene homopolymer, or copolymer of ethylene and of a comonomer of higher α-olefin type, such as butene, hexene, octene or 4-methyl-1-pentene. Mention may be made, for example, of PPs, high density PEs, medium density PEs, linear low density PEs, low density PEs or ultra low density PEs. These polyethylenes are known by a person skilled in the art as being produced according to a “radical” process, according to a “Ziegler” type catalysis or, more recently, according to a “metallocene” catalysis.
  • The functionalized polyolefins (C1) are advantageously chosen from any polymer comprising α-olefin units and units carrying reactive polar functional groups, such as epoxy, carboxylic acid or carboxylic acid anhydride functional groups. Mention may be made, by way of example of such polymers, of terpolymers of ethylene, of alkyl acrylate and of maleic anhydride or of glycidyl methacrylate, such as the Lotader® products of the applicant company, or polyolefins grafted by maleic anhydride, such as the Orevac® products of the applicant company, and also terpolymers of ethylene, of alkyl acrylate and of (meth)acrylic acid. Mention may also be made of homopolymers or copolymers of polypropylene grafted by a carboxylic acid anhydride and then condensed with polyamides or oligomers, which are monoaminated, of polyamide.
  • The MFI of the copolymer (A) and the MFI of the compatibilizer (C) can be chosen within a wide range. However, to facilitate the dispersion of (C), it is recommended that the MFI of the copolymer (A) be greater than that of (C).
  • Additives
  • Advantageously, the composition of the invention comprises at least one additive selected from organic or inorganic fillers, reinforcing agents, plasticizers, stabilizers, antioxidants, UV stabilizers, flame retardants, carbon black, carbon nanotubes, pigments, dyes, mold-release agents, lubricants, foaming agents, impact-resistant agents, nucleating agents, surface-modifying agents and their mixtures.
  • Manufacturing Process
  • The process for the manufacture of the composition according to the invention comprises carrying out the mixing of block copolymer (A) and of non-crosslinked silicone (B), and of the optional other components (C) and/or (D).
  • The mixing is preferably carried out in a device for mixing in the molten state, such as a twin-screw or single-screw extruder, or else in a device using Buss co-kneaders.
  • Preferably, said mixing is carried out in a twin-screw extruder.
  • It is preferably carried out at a temperature of the order of 150° C. to 250° C., preferably of 160° C. to 220° C.
  • The thermoplastic elastomer composition according to the invention can then be processed by conventional techniques, such as extrusion, vacuum forming, injection molding, blow molding, overmolding or compression molding. In addition, the compositions according to the invention can be retransformed (recycled) with little or no deterioration in the mechanical properties.
  • Applications
  • The novel thermoplastic elastomers with a composition in accordance with the present invention can be used to manufacture insulators of wires and cables; sound and vibration dampening components; electrical connectors; automotive components and appliances, such as belts, hoses, air lines, bellows, gaskets and fuel line components; furniture components; soft-feel handles for portable devices (for example, tool handles); seals for architecture; bottle closures; medical devices; sports equipment; and other parts of components generally of rubber appearance which can be replaced by components with a composition according to the invention.
  • A subject-matter of the present invention is in particular an article or an article part chosen from a footwear sole, in particular a sports footwear sole, such as an insole, midsole or outer sole, a ski boot liner, a sock, a racket, an inflatable ball, a solid ball, a floater, gloves, personal protection equipment, a helmet, a rail foot, a motor vehicle part, a pushchair part, a tire, a wheel, a smooth-riding wheel, such as a tire, a handle, a seat element, a child car seat part, a construction part, an electrical and/or electronic equipment part, an electronic protection part, an audio equipment, acoustic insulation and/or heat insulation part, a part targeted at dampening impacts and/or vibrations, such as those generated by a means of transport, a padding element, a toy, a medical object, such as a splint, an orthosis, a cervical collar, a dressing, in particular an antimicrobial foam dressing, an art or handicraft object, a life jacket, a backpack, a membrane, a carpet, a sports mat, a sports floor covering, a carpet underlay, and any article comprising a mixture of these articles.
  • The thermoplastic elastomers of the present invention are particularly useful for manufacturing the following articles:
      • footwear and especially sports footwear, in particular the soles, outer soles, insoles or midsoles; this is because the compositions of the invention have properties of good adhesion to PEBA and to polyamide, in particular by overmolding, good abrasion resistance and they can be easily transformed into footwear components;
      • in the optical industry: components of spectacle frames, nose pads or nosepieces, protective elements on frames; this is because the compositions of the invention have a soft-silky feel, adhere well to polyamide and more specifically to transparent polyamide by overmolding, and resistant to sebum;
      • in the automotive industry: interior decorative elements; this is because the compositions of the invention have a soft feel, good haptic properties, adhere perfectly by overmolding, are resistant to sebum and resistant to abrasion;
      • in manufacturing industry: transmission or conveyor belts, silent gears; this is because the compositions of the invention are resistant to heat, resistant to abrasion, and easy to process by overmolding;
      • in the medical sector: patches, biofeedback patches, drug delivery systems, sensors;
      • in the electronics industry: headsets, earphones, Bluetooth® jewelry and watches, display screens, connected watches, connected glasses, interactive game components and devices, GPS, connected footwear, bioactivity monitors and sensors, interactive belts and bracelets, child or pet tracker, pocket scanner or palmtop, location sensors, trackers or vision assist.
  • In a preferred embodiment, the compositions of the invention are used for the manufacture of a casing or protective casing in items of electrical or electronic equipment, such as in particular a portable computer, a portable telephone or a tablet.
  • Examples
  • The following examples illustrate the invention without limiting it.
  • Materials Used in the Examples: Compositions According to the Invention A:
  • PEBA 2+30% of polyorganosiloxane polycarbonate polyurethane copolymer (Carbosil® 20 80A silicone from DSM).
  • B:
  • PEBA 2+15% of polyorganosiloxane polycarbonate polyurethane copolymer (Carbosil® 20 80A from DSM)+15% of styrene/ethylene-butylene/styrene block copolymer grafted by maleic anhydride (Kraton® FG-1924).
  • C
  • PEBA 3+15% of polyorganosiloxane polycarbonate polyurethane copolymer (Carbosil® 20 80A from DSM)+15% of styrene/ethylene-butylene/styrene block copolymer grafted by maleic anhydride (Kraton® FG-1924).
  • D:
  • PEBA 4 (PA12-PTMG (Mn: 2000-1000), copolymer having PA 12 blocks and PTMG blocks with respective number-average molecular weights (Mn) 2000-1000. The ratio by weight: PA blocks/PE blocks=2)+15% of polyorganosiloxane polycarbonate polyurethane copolymer (Carbosil® 20 80A from DSM)+15% of styrene/ethylene-butylene/styrene block copolymer grafted by maleic anhydride (Kraton® FG-1924).
  • Comparative Examples E:
  • PEBA 1: PA 12-PTMG (Mn: 600-2000)
  • PEBA 1 is a copolymer having PA 12 blocks and PTMG blocks with respective number-average molecular weights (Mn) 600-2000.
  • The ratio by weight: PA blocks/PE blocks=0.3
  • F:
  • PEBA 2: PA 12-PTMG (Mn: 850-2000)
  • PEBA 2 is a copolymer according to the invention having PA 12 blocks and PTMG blocks with respective number-average molecular weights (Mn) 850-2000.
  • The ratio by weight: PA blocks/PE blocks=0.4
  • G:
  • PEBA 3: PA 12-PTMG (Mn: 2000-2000)
  • PEBA 3 is a copolymer according to the invention having PA 12 blocks and PTMG blocks with respective number-average molecular weights (Mn) 2000-2000.
  • The ratio by weight: PA blocks/PE blocks=1
  • H:
  • TPU-based thermoplastic crosslinked silicone (TPSiV® 4000-75A SR, Multibase)
  • I:
  • TPU (Desmopan® 9370AU, Covestro)
  • Formulations A to I are prepared (by mixing in the case of A, B, C and D) in a twin-screw extruder at a temperature of 210° C.
  • Tensile testing plaques and bars are produced by injection molding at 200° C. in a mold at 30° C. The results of measurement of the properties of these plaques and bars, with respective compositions A to I, are shown in the following table 1.
  • TABLE 1
    Target values sought by the invention and results of measurement of the properties
    measured on dumbbells (plaques or bars) with compositions A to I
    Target A B C D
    Physicochemical properties
    Density <1.0 0.96 0.98 1.00 1.00
    Resistance to exudation
    Chemical resistance (++) ++ ++ ++ ++
    (including sebum)
    Resistance to (++) ++ ++ ++ +
    stains/to soiling
    “Peachskin” feel 5 5 5 5 4
    Mechanical properties
    Hardness, instantaneous <80 75 75 83 91
    (Shore A)
    Hardness, 15 s <75 70 70 82 90
    (Shore A)
    Tensile test, stress at 25% strain <2.0 1.7 1.8 5.9 8.7
    (MPa)
    Tensile test, stress at 100% strain <4.0 2.9 3.1 7.4 10.9
    (MPa)
    Tensile test, breaking stress >10 >10 >11
    (MPa)
    Tensile test, elongation at break >500 >500 >500
    (%)
    Flexural modulus (MPa) < or = 12 10 10
    Tear strength (kN/m) >40 35 45 47
    Taber abrasion resistance - H18 <50 70 40 80 106
    grinding wheel (weight loss in
    mg/1000 revolutions)
    Taber abrasion resistance - CS10 <50 50 19
    grinding wheel (weight loss in
    mg/1000 revolutions)
    Compressive residual strain (%) <20 20 20 34
    at 23° C.
    Compressive residual strain (%) 73 72 22 13
    at 70° C.
    Ease of processing
    Melt Flow Index at 235° C., >10
    1 kg (g/10 min)
    Ease of injection
    Ease of removal from the mold
    Recyclability
    Target E F G H: I
    Physicochemical properties
    Density <1.0 1.00 1.00 1.00 1.1 1.06
    Resistance to exudation X: X: X:
    Chemical resistance (++) −− + ++
    (including sebum)
    Resistance to (++) ++
    stains/to soiling
    “Peachskin” feel 5 1 1 1 4 3
    Mechanical properties
    Hardness, instantaneous <80 77 85 90 80 75
    (Shore A)
    Hardness, 15 s <75 74 80 89 79 72
    (Shore A)
    Tensile test, stress at <2.0 2.6 1.7
    25% strain (MPa)
    Tensile test, stress at <4.0 4.2 3.0
    100% strain (MPa)
    Tensile test, breaking stress >10 32 39 40 >10 >10
    (MPa)
    Tensile test, elongation >500 >750 >600 >450 >500 >500
    at break (%)
    Flexural modulus < or = 12 12 21 77 23 9
    (MPa)
    Tear strength >40 66 78 116 47 45
    (kN/m)
    Taber abrasion resistance - <50 99 77 62 33 7
    H18 grinding wheel (weight
    loss in mg/1000 revolutions)
    Taber abrasion resistance - <50
    CS10 grinding wheel (weight
    loss in mg/1000 revolutions)
    Compressive residual strain at <20 19 22 32 19 18
    23° C. (%)
    Compressive residual strain at 62 54 21 70 69
    70° C. (%)
    Ease of processing
    Melt Flow Index at 235° C., >10 10 8 5
    1 kg (g/10 min)
    Ease of injection X
    Ease of removal from the mold X X
    Recyclability X
  • The protocols for measuring the properties characterized according to the present invention and measured according to the examples are described in Table 2 below:
  • TABLE 2
    Methods and standards for measurement of the properties
    Property measured Standard/method Specifications
    Density ISO 1183-3 Measured at 23° C.
    Resistance to Internal method Measured after conditioning in a Blinder
    exudation container at 70° C. and 62% relative humidity
    (RH) for 7 days. The samples were
    100 × 100 × 2 mm plaques.
    Classification by visual observation:
    ◯ = No exudation
    X = Exudation at the surface
    Resistance to Internal method Measured after conditioning in an oven at
    stains/to soiling 23° C. and 50% RH for 7 days. The change in
    color is evaluated by measurement of the
    chromatic aberration before and after exposure
    to chemicals and everyday products,
    generating a Delta E value. The samples are
    100 × 100 × 2 mm plaques.
    Classification by visual observation
    ◯ = No change in color at the surface
    2 = Slight change in color at the surface
    5 = Significant coloration at the surface
    Chemical resistance Internal method Measured after conditioning in an oven at
    to sebum 23° C. and 50% RH for 7 days. A given weight
    of sebum is spread at the surface of the samples
    and then removed after conditioning. The
    samples thus exposed are weighed after
    cleaning and the uptake in weight (%) of the
    sample during the test is calculated. The
    possible visual changes are also recorded.
    The samples are 50 × 50 × 2 mm plaques.
    Classification scale:
    (++) = low uptake in weight, no visual changes
    (+) = low uptake in weight, slight visual
    changes
    (−) = high uptake in weight, slight visual
    changes
    “Peachskin” feel Internal method The feel was evaluated by a trained sensory
    panel made up of 10 people, on a scale ranging
    from 1 to 5. On this scale, “1” represents
    inferior properties of feel (no “peachskin”
    sensation), while “5” represents superior
    properties of “peachskin feel”.
    Soft-silky feel or “peachskin” feel: Definition:
    Characterizes a velvety effect to the touch,
    such as the velvety skin of the peach.
    Protocol: Take a sample and make small
    movements at the surface of the sample with
    the fingers without pressure.
    Evaluation: Note the velvety sensation or
    “peachskin” feel.
    Hardness ISO 868 23° C.
    Tensile test ISO527 50 mm/min at 23° C.
    Flexural modulus ISO 178 23° C.
    Tear strength ISO 34-B 500 mm/min, unnotched samples
    Taber abrasion ISO 9352 1000 g load, CS10 abrasive grinding wheel,
    resistance 1000 revolutions per cycle. The samples are
    100 × 100 × 2 mm plaques.
    Compressive ISO 815 Constant strain of 25% applied for 72 hours at
    residual strain 23° C. or for 22 hours at 70° C. Measurement of
    the residual strain after 24 h of relaxation. The
    samples are type B cylinders.
    Melt Flow Index ISO 1133 235° C., 1 kg
    (MFI)
    Ease of injection Internal method Classification according to:
    ◯ = high-speed thin part injection molding
    without deformation of the final object
    X = high-speed thin part injection molding
    which exhibits deformations or defects in
    surface appearance
    Ease of removal Internal method Classification according to:
    from the mold ◯ = easy removal from the mold, no sticking
    X = difficult removal from the mold, sticky
    material
    Recyclability Internal method The recyclability is defined as the possibility
    of reprocessing an already molded component,
    by melting and again molding the material,
    without impacting the quality of the
    reprocessed component.
    Classification according to:
    X = nonrecyclable
    ◯ = recyclable
  • The characterizations are carried out on samples conditioned at 23° C., 50% relative humidity, for 2 weeks.
  • The compositions of the invention exhibit a low Shore A hardness, especially formulations A and B, exhibiting a Shore A hardness of less than or equal to 70 after 15 s, while retaining good transformability in injection molding, and no exudation. These formulations show the haptic properties required by mass consumption applications, such as sports devices, portable devices, for example in items of electronic equipment, or optical accessories, such as glasses.
  • The compositions of the invention also combine a low flexural modulus while retaining very good transformability in injection molding and no exudation, as well as good resistance to high temperatures.
  • The compositions of the invention, in the composition B comprising a maleated SEBS compatibilizer, exhibit a better abrasion resistance than the PEBA materials and than the TPSiV® products resulting from TPU. The surface characteristics after abrasion are improved: the surface remains smooth and homogeneous without deep scratches. The visual appearance is retained after abrasion, and there is no risk of injury on contact with the skin, which is necessary for the materials used in footwear components, such as footwear heels, for example, or for sports equipment.
  • The formulations of the invention are a solution for avoiding the bonding stage necessary today to adhesively bond the thermosetting rubber outer sole to the thermoplastic components of the ski boot. This bonding stage takes time, requires the use of primer and adhesive which may contain solvents, and requires a crosslinking stage at high temperature.
  • On the contrary, the formulations of the invention can be combined directly with the thermoplastics used in ski boots, such as PEBA or TPU.
  • The compositions of the invention have a more mat surface and a softer feel than the PEBA reference materials.
  • The compositions of the invention do not exhibit visible exudation, unlike PEBAs.
  • The compositions of the invention have a lower absorption of moisture than the PEBA reference materials. This contributes to giving a greater resistance to stains, especially toward hydrophilic stains (coffee, tea, wine, and the like).
  • The compositions of the invention have a lower compressive residual strain compared with PEBAs (comparative examples E, F and G) and with TPSiV® (H) resulting from TPUs, especially at 70° C. This contributes to obtaining better performance qualities under stress, for example in sports equipment or industrial applications, such as sealants.
  • It has been observed that soft PEBA materials (typical materials with a hardness of less than 35 Shore D) are difficult to injection mold because they tend to stick to the mold and to deform during removal from the mold. The composition (comprising silicone) of the invention is a solution for solving this injection-molding problem while retaining the various advantageous properties of PEBAs, this being the case for materials which are even more flexible.
  • In addition, when the design of the mold becomes complex, the standard PEBA cannot be injected (because of its stiffness), while there is no problem in injecting the composition (PEBA-silicone) according to the invention.

Claims (21)

1. A composition comprising:
(A) a block copolymer having rigid blocks and flexible blocks (TPE), and
(B) a non-crosslinked polysiloxane silicone.
2. The composition as claimed in claim 1, wherein the silicone is a non-crosslinked polyorganosiloxane.
3. The composition as claimed in claim 1, additionally comprising:
(C) a compatibilizer, improving the compatibility between the TPE and the silicone, chosen from a polyolefin or a mixture of several polyolefins.
4. The composition as claimed in claim 1, wherein said rigid blocks comprise at least one block chosen from: polyamide, polyurethane, polyester and their copolymers.
5. The composition as claimed in claim 1, wherein said flexible blocks comprise at least one block chosen from: polyether, polyester, polysiloxane, polyolefin, polycarbonate and their copolymers.
6. The composition as claimed in claim 1, wherein the block copolymer is chosen from copolymers having polyester blocks and polyether blocks, copolymers having polyurethane blocks and polyether blocks and copolymers having polyamide blocks and polyether blocks.
7. The composition as claimed in claim 1, wherein the flexible blocks in the copolymer (A) are polyether blocks chosen from PTMG, PPG, PO3G and/or PEG.
8. The composition as claimed in claim 4, wherein the polyamide blocks in the block copolymer (A) are PA 11 and/or PA 12 blocks.
9. The composition as claimed in claim 1, wherein the ratio by weight of TPE (A) with respect to the silicone (B) is from 10:90 to 95:5.
10. The composition as claimed in claim 1, comprising, by weight:
from 55% to 95% of copolymer (A),
from 5% to 45% of silicone (B),
optionally
from 0% to 45% of compatibilizer (C),
from 0% to 15% of additives (D),
with regard to the total weight of the composition, this being 100%.
11. The composition as claimed in claim 1, wherein the number-average molar mass Mn of the flexible blocks, is greater than 800 g/mol.
12. The composition as claimed in claim 1, wherein the ratio by weight of the rigid blocks, to the flexible blocks, in the copolymer (A) is less than or equal to 1.2.
13. The composition as claimed in claim 3, wherein the polyolefin or the mixture of polyolefins of the compatibilizer (C) carries a functional group chosen from maleic anhydride, carboxylic acid, carboxylic anhydride and epoxide functional groups.
14. The composition as claimed in claim 1, additionally comprising at least one additive (D) selected from the group consisting of: organic or inorganic fillers, reinforcing agents, plasticizers, stabilizers, antioxidants, UV stabilizers, flame retardants, carbon black, carbon nanotubes, pigments, dyes, mold-release agents, lubricants, foaming agents, impact-resistant agents, flame retardants, nucleating agents, surface-modifying agents and their mixtures.
15. A process for the manufacture of the composition as claimed in claim 1, comprising the step of mixing of block copolymer (A) and of non-crosslinked silicone (B), and of the optional components (C) and/or (D).
16. The process as claimed in claim 15, wherein the mixing is carried out in a device for mixing in the molten state, at a temperature of 150° C. to 250° C.
17. An article comprising at least one part comprising the composition as claimed in claim 1.
18. The article as claimed in claim 17, wherein said article is manufactured by a process involving at least one of the following stages: injection molding, overmolding, extrusion or co-extrusion.
19. The article as claimed in claim 17, wherein said article is selected from the group consisting of a footwear sole, a sports footwear sole, an insole, midsole or outer sole, a ski boot liner, a sock, a racket, an inflatable ball, a solid ball, a floater, gloves, personal protection equipment, a helmet, a rail foot, a motor vehicle part, a pushchair part, a tire, a wheel, a smooth-riding wheel, a tire, a handle, a seat element, a child car seat part, a construction part, an electrical and/or electronic equipment part, an electronic protection part, an audio equipment, acoustic insulation and/or heat insulation part, a part targeted at dampening impacts and/or vibrations, an article of transport, a padding element, a toy, a medical object, a splint, an orthosis, a cervical collar, a dressing, an antimicrobial foam dressing, an art or handicraft object, a life jacket, a backpack, a membrane, a carpet, a sports mat, a sports floor covering, a carpet underlay, and any article comprising a mixture of these articles.
20. The article as claimed in claim 17, the article being selected from the group consisting of:
an article or article element of footwear;
an optical article or article element: components of spectacle frames, nose pads or nosepieces, protective elements on frames;
an automotive article or article element: interior decorative element;
an article or article element of manufacturing industry: transmission or conveyor belt, silent gear;
a medical article or article element: patch, drug delivery system, sensor;
an electronic article or article element: headset, earphone, Bluetooth® jewelry or watch, display screen, connected watch, connected glasses, interactive game component or device, GPS, connected footwear, bioactivity monitor or sensor, interactive belt or bracelet, child or pet tracker, pocket scanner or palmtop, location sensors, and tracker or vision assist device.
21. The article as claimed in claim 17, the article being an electrical or electronic article comprising a casing or protective casing, a portable computer, a portable telephone or a tablet.
US16/961,984 2018-01-15 2019-01-15 Thermoplastic elastomer-silicone composition Abandoned US20210087399A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1850303 2018-01-15
FR1850303A FR3076834B1 (en) 2018-01-15 2018-01-15 ELASTOMERIC THERMOPLASTIC COMPOSITION - SILICONE
PCT/FR2019/050075 WO2019138202A1 (en) 2018-01-15 2019-01-15 Thermoplastic elastomer-silicone composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050075 A-371-Of-International WO2019138202A1 (en) 2018-01-15 2019-01-15 Thermoplastic elastomer-silicone composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/509,456 Division US20240084140A1 (en) 2018-01-15 2023-11-15 Thermoplastic elastomer-silicone composition

Publications (1)

Publication Number Publication Date
US20210087399A1 true US20210087399A1 (en) 2021-03-25

Family

ID=62528535

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/961,984 Abandoned US20210087399A1 (en) 2018-01-15 2019-01-15 Thermoplastic elastomer-silicone composition
US18/509,456 Pending US20240084140A1 (en) 2018-01-15 2023-11-15 Thermoplastic elastomer-silicone composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/509,456 Pending US20240084140A1 (en) 2018-01-15 2023-11-15 Thermoplastic elastomer-silicone composition

Country Status (6)

Country Link
US (2) US20210087399A1 (en)
EP (1) EP3740535A1 (en)
KR (2) KR20200108052A (en)
CN (1) CN111601852B (en)
FR (1) FR3076834B1 (en)
WO (1) WO2019138202A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12269923B2 (en) * 2018-12-19 2025-04-08 Evonik Operations Gmbh Molding compound containing polyether block amide (PEBA)
CN111763418B (en) * 2020-07-02 2022-05-03 西安匹克玄铠新材料有限公司 High-elasticity nylon and preparation method thereof
CN113444243A (en) * 2021-06-18 2021-09-28 山东东辰瑞森新材料科技有限公司 Polyether-organic silicon composite nylon elastomer and preparation method thereof
CN114058187A (en) * 2021-12-03 2022-02-18 东莞市蔚美硅材料科技有限公司 Silicone rubber with low permanent deformation at break and preparation method thereof
KR102708938B1 (en) * 2023-05-31 2024-09-25 모스포츠 주식회사 Porous shoes
FR3151001A1 (en) * 2023-07-11 2025-01-17 Treves Products, Services & Innovation Carpet for covering the floor of a motor vehicle
CN119823565B (en) * 2025-01-10 2025-09-23 阿尔法(广东)高新材料有限公司 A skin-friendly antibacterial foaming material and its application in footwear products

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399599A (en) * 1993-04-06 1995-03-21 Thiokol Corporation Thermoplastic elastomeric internal insulation for rocket motors for low temperature applications
US5672400A (en) * 1995-12-21 1997-09-30 Minnesota Mining And Manufacturing Company Electronic assembly with semi-crystalline copolymer adhesive
US20020006998A1 (en) * 2000-06-12 2002-01-17 Haruhiko Furukawa Thermoplastic elastomer composition, method of preparation, and molded products thereof
US20020018866A1 (en) * 1997-09-17 2002-02-14 Advanced Cardiovascular Systems, Inc. Polyether block amide catheter balloons
WO2018065072A1 (en) * 2016-10-07 2018-04-12 Wacker Chemie Ag Polymer compositions containing siloxane-organo-copolymers
US20190060845A1 (en) * 2017-08-30 2019-02-28 Saudi Arabian Oil Company Crosslinked polymeric blended membranes for gas separation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR856752A (en) 1939-03-09 1940-08-07 Massiot & Cie G Vibratory motion radiography anti-scattering grid
FR950637A (en) 1947-07-28 1949-10-03 Run-resistant knit
DE3714267A1 (en) * 1987-04-29 1988-11-10 Degussa IMPACT TOOL POLYOXYMETHYLENE MOLDS
FR2629090B1 (en) 1988-03-24 1990-11-23 Atochem GRAFT COPOLYMER BASED ON ALPHA-MONO-OLEFIN, ITS MANUFACTURING PROCESS, ITS APPLICATION TO THE MANUFACTURE OF THERMOPLASTIC ALLOYS, THERMOPLASTIC ALLOYS OBTAINED
US5652326A (en) 1993-03-03 1997-07-29 Sanyo Chemical Industries, Ltd. Polyetheresteramide and antistatic resin composition
US7166656B2 (en) * 2001-11-13 2007-01-23 Eastman Kodak Company Smectite clay intercalated with polyether block polyamide copolymer
FR2846332B1 (en) 2002-10-23 2004-12-03 Atofina TRANSPARENT COPOLYMERS WITH POLYAMIDE BLOCKS AND POLYETHER BLOCKS
JP4193588B2 (en) 2003-05-26 2008-12-10 宇部興産株式会社 Polyamide elastomer
JP4161802B2 (en) 2003-05-27 2008-10-08 宇部興産株式会社 Polyamide composition
US7056975B2 (en) 2003-05-27 2006-06-06 Ube Industries, Ltd. Thermoplastic resin composition having improved resistance to hydrolysis
FR2941700B1 (en) * 2009-02-02 2012-03-16 Arkema France PROCESS FOR THE SYNTHESIS OF A BLOCK COPOLYMER ALLOY HAVING IMPROVED ANTISTATIC PROPERTIES
FR2963624B1 (en) * 2010-08-04 2014-02-21 Hutchinson PROCESS FOR PREPARING A REINFORCED AND REACTIVE THERMOPLASTIC COMPOSITION, THIS COMPOSITION AND THE USE THEREOF
CN104277322A (en) * 2013-07-03 2015-01-14 合肥杰事杰新材料股份有限公司 Antistatic high-luster polypropylene composite material and preparation method thereof
CN106750251B (en) * 2016-11-11 2019-05-28 中国科学院化学研究所 A kind of new material and its application containing polyether amide block copolymer with inierpeneirating network structure
CN107298825A (en) * 2017-07-27 2017-10-27 深圳市塑源实业有限公司 A kind of high temperature resistant, oil resistant, scratch-resistant TPE new-energy automobile charging pile cable materials and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399599A (en) * 1993-04-06 1995-03-21 Thiokol Corporation Thermoplastic elastomeric internal insulation for rocket motors for low temperature applications
US5672400A (en) * 1995-12-21 1997-09-30 Minnesota Mining And Manufacturing Company Electronic assembly with semi-crystalline copolymer adhesive
US20020018866A1 (en) * 1997-09-17 2002-02-14 Advanced Cardiovascular Systems, Inc. Polyether block amide catheter balloons
US20020006998A1 (en) * 2000-06-12 2002-01-17 Haruhiko Furukawa Thermoplastic elastomer composition, method of preparation, and molded products thereof
WO2018065072A1 (en) * 2016-10-07 2018-04-12 Wacker Chemie Ag Polymer compositions containing siloxane-organo-copolymers
US20190225802A1 (en) * 2016-10-07 2019-07-25 Wacker Chemie Ag Polymer compositions comprising siloxane-organo-copolymers
US20190060845A1 (en) * 2017-08-30 2019-02-28 Saudi Arabian Oil Company Crosslinked polymeric blended membranes for gas separation

Also Published As

Publication number Publication date
WO2019138202A1 (en) 2019-07-18
US20240084140A1 (en) 2024-03-14
KR20200108052A (en) 2020-09-16
FR3076834A1 (en) 2019-07-19
EP3740535A1 (en) 2020-11-25
FR3076834B1 (en) 2020-08-21
CN111601852B (en) 2024-03-26
KR20250026408A (en) 2025-02-25
CN111601852A (en) 2020-08-28

Similar Documents

Publication Publication Date Title
US20240084140A1 (en) Thermoplastic elastomer-silicone composition
US12312444B2 (en) Block-copolymer-based stretchable, flexible, waterproof and breathable film
US20190153277A1 (en) Peba for direct adhesion to tpe
EP3577158B1 (en) Thermoplastic composition
US11993714B2 (en) Block copolymer exhibiting improved abrasion resistance and improved tear resistance
US11332618B2 (en) Thermoplastic copolymer block polyamide silicone elastomers
US11384214B2 (en) Block copolymer foam
US11578163B2 (en) Hydrolysis-resistant, CO2-permeable block copolymer
KR20240119151A (en) Composition comprising polyamide block and polyether block copolymers and crosslinked rubber powder
US20250051557A1 (en) Composition comprising a thermoplastic elastomer and a crosslinked rubber powder

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: ARKEMA FRANCE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MERZLIC, SEBASTIEN;BLONDEL, PHILIPPE;ABGRALL, FLORENT;AND OTHERS;SIGNING DATES FROM 20230711 TO 20231012;REEL/FRAME:065568/0919

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION