US20210083455A1 - Vertical-cavity surface-emitting laser for near-field illumination of an eye - Google Patents
Vertical-cavity surface-emitting laser for near-field illumination of an eye Download PDFInfo
- Publication number
- US20210083455A1 US20210083455A1 US17/108,429 US202017108429A US2021083455A1 US 20210083455 A1 US20210083455 A1 US 20210083455A1 US 202017108429 A US202017108429 A US 202017108429A US 2021083455 A1 US2021083455 A1 US 2021083455A1
- Authority
- US
- United States
- Prior art keywords
- vcsel
- reflector
- semiconductor substrate
- disposed
- electrical contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18386—Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
- H01S5/18394—Apertures, e.g. defined by the shape of the upper electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18344—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
- H01S5/18347—Mesa comprising active layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0179—Display position adjusting means not related to the information to be displayed
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/013—Eye tracking input arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0425—Electrodes, e.g. characterised by the structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0425—Electrodes, e.g. characterised by the structure
- H01S5/04256—Electrodes, e.g. characterised by the structure characterised by the configuration
- H01S5/04257—Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18344—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18361—Structure of the reflectors, e.g. hybrid mirrors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18386—Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
- H01S5/18388—Lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/42—Arrays of surface emitting lasers
- H01S5/423—Arrays of surface emitting lasers having a vertical cavity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0179—Display position adjusting means not related to the information to be displayed
- G02B2027/0187—Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2301/00—Functional characteristics
- H01S2301/17—Semiconductor lasers comprising special layers
- H01S2301/176—Specific passivation layers on surfaces other than the emission facet
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18386—Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
Definitions
- a head mounted device is a wearable electronic device, typically worn on the head of a user.
- Head mounted devices may include one or more electronic components for use in a variety of applications, such as gaming, aviation, engineering, medicine, entertainment, activity tracking, and so on.
- Some head mounted devices may perform eye-tracking which may enhance the user's viewing experience. Eye-tracking may be aided, in some cases, by illuminating the eye of the user.
- some conventional head mounted devices may incorporate an eye-tracking system that includes an illumination source as well as a camera for tracking movements of the user's eye.
- a vertical-cavity surface-emitting laser may be utilized as the illumination source of the eye-tracking system.
- VCSEL vertical-cavity surface-emitting laser
- conventional VCSEL structures are typically designed for applications other than eye-tracking, such as for fiber optic communications and laser printers. The design requirements for these other applications often results in a VCSEL structure that is less than optimal or less effective when incorporated into an eye-tracking system.
- FIG. 1A illustrates a head mounted display (HMD), in accordance with aspects of the present disclosure.
- HMD head mounted display
- FIG. 1B illustrates a footprint of a vertical-cavity surface-emitting laser (VCSEL), in accordance with aspects of the present disclosure.
- VCSEL vertical-cavity surface-emitting laser
- FIG. 2 illustrates an eye-tracking system, in accordance with aspects of the present disclosure.
- FIG. 3 illustrates an example block diagram of a VCSEL structure, in accordance with aspects of the present disclosure.
- FIG. 4 illustrates an example block diagram of a VCSEL structure, in accordance with aspects of the present disclosure.
- FIG. 5 illustrates an example block diagram of a VCSEL structure, in accordance with aspects of the present disclosure.
- FIG. 1A illustrates an example head mounted display (HMD) 100 that includes an array of VCSELs 150 emitting infrared light in an eyebox direction, in accordance with an embodiment of the disclosure.
- HMD 100 includes frame 114 coupled to arms 111 A and 111 B.
- Lenses 121 A and 121 B are mounted to frame 114 .
- Lenses 121 A and 121 B may be prescription lenses matched to a particular wearer of HMD or non-prescription lenses.
- An HMD such as HMD 100 is one type of head mounted device, typically worn on the head of a user to provide artificial reality content to a user.
- Artificial reality is a form of reality that has been adjusted in some manner before presentation to the user, which may include, e.g., virtual reality (VR), augmented reality (AR), mixed reality (MR), hybrid reality, or some combination and/or derivative thereof.
- VR virtual reality
- AR augmented reality
- MR mixed reality
- hybrid reality or some combination and/or derivative thereof.
- each lens 121 A/ 121 B includes a waveguide 160 A/ 160 B to direct image light generated by a display 130 A/ 130 B to an eyebox area for viewing by a wearer of HMD 100 .
- Display 130 A/ 130 B may include an LCD, an organic light emitting diode (OLED) display, micro-LED display, quantum dot display, pico-projector, or liquid crystal on silicon (LCOS) display for directing image light to a wearer of HMD 100 .
- OLED organic light emitting diode
- micro-LED micro-LED display
- quantum dot display quantum dot display
- pico-projector pico-projector
- LCOS liquid crystal on silicon
- the frame 114 and arms 111 A/ 111 B of the HMD may include supporting hardware of HMD 100 .
- HMD 100 may include any of processing logic, wired and/or wireless data interface for sending and receiving data, graphic processors, and one or more memories for storing data and computer-executable instructions.
- HMD 100 may be configured to receive wired power.
- HMD 100 is configured to be powered by one or more batteries.
- HMD 100 may be configured to receive wired data including video data via a wired communication channel.
- HMD 100 is configured to receive wireless data including video data via a wireless communication channel.
- Lenses 121 A/ 121 B may appear transparent to a user to facilitate augmented reality or mixed reality where a user can view scene light from the environment around her while also receiving image light directed to her eye(s) by waveguide(s) 160 .
- Lenses 121 A/ 121 B may include an optical combiner 170 for directing reflected infrared light (emitted by VCSELs 150 ) to an eye-tracking camera (e.g. camera 190 ).
- the array of VCSELs 150 may be disposed on a transparent substrate and could also be included advantageously in a VR headset where the transparent nature of the optical structure allows a user to view a display in the VR headset.
- image light is only directed into one eye of the wearer of HMD 100 .
- both displays 130 A and 130 B are included to direct image light into waveguides 160 A and 160 B, respectively.
- Lens 121 B includes an array of VCSELs 150 arranged in an example 5 ⁇ 5 array.
- the VCSELs 150 in the array may be unevenly spaced, in some embodiments.
- VCSELs 150 may be infrared light sources directing their emitted light in an eyeward direction to an eyebox area of a wearer of HMD 100 .
- VCSELs 150 may emit an infrared light having a wavelength of 850 nm or 940 nm, for example.
- Very small metal traces or transparent conductive layers e.g. indium tin oxide
- Lens 121 A may be configured similarly to the illustrated lens 121 B.
- VCSELs 150 may introduce occlusions into an optical system included in an HMD 100
- VCSELs 150 and corresponding routing may be so small as to be unnoticeable or optically insignificant to a wearer of an HMD. Additionally, any occlusion from VCSELs 150 will be placed so close to the eye as to be unfocusable by the human eye and therefore assist in the VCSELs 150 being not noticeable. In addition to a wearer of HMD 100 noticing VCSELs 150 , it may be preferable for an outside observer of HMD 100 to not notice VCSELs 150 .
- FIG. 1B illustrates a footprint of a VCSEL in accordance with embodiments of the disclosure.
- each VCSEL 150 has a footprint where the “x” dimension is less than 125 microns and the “y” dimension is less than 125 microns.
- each VCSEL 150 has a footprint where the “x” dimension is less than 75 microns and the “y” dimension is less than 75 microns.
- the VCSELs 150 may not only be unnoticeable to a wearer of an HMD 100 , the VCSELs 150 may be unnoticeable to an outside observer of HMD 100 at a distance that is outside of the user's personal space (0.45 m)
- FIG. 2 illustrates an eye-tracking system 200 that includes a side view of an array of VCSELs 250 A-E illuminating an eyebox area, in accordance with an embodiment of the disclosure.
- the array of VCSELs includes VCSELs 250 A, 250 B, 250 C, 250 D, and 250 E, in the illustrated embodiment.
- the array of VCSELs 250 A- 250 C are disposed on a transparent substrate 204 that includes an emission side 205 and a non-emission side 207 .
- the emission side 205 is opposite the non-emission side 207 , where the emission side is the side from which the VCSELs 250 A- 250 C emit infrared light.
- VCSEL 250 C illuminates eye 202 with infrared beam 261 .
- infrared beam 261 is a diverging infrared beam.
- VCSELs 250 A, 250 B, 250 D, and 250 E may also illuminate eye 202 with respective infrared beams (not illustrated).
- Infrared light emitted by VCSEL 250 C propagates along optical path 271 and reflects off eye 202 propagating along optical path 272 .
- the infrared light propagating along optical path 272 travels through transparent substrate 204 and encounters optical combiner 230 .
- Optical combiner 230 directs the infrared light to camera 210 along optical path 273 .
- Optical combiner 230 may be a holographic combiner or Fresnel combiner. Optical combiner 230 may transmit visible light while reflecting or diffracting infrared light. Therefore, eye-tracking system 200 shows how VCSELs 250 A-E may perform near-eye illumination by illuminating eye 202 with infrared light and how camera 210 may capture infrared images of eye 202 by capturing the infrared light. In some aspects, each of the VCSELs 250 A-E are configured to generate infrared light for illuminating the eye 202 at distance of less than 25 mm from the eye 202 .
- camera 210 may be configured with a bandpass filter that accepts a narrow-band infrared light that is the same as the narrow-band emitted by VCSELs 250 A-E while the filter rejects other wavelengths.
- VCSELs 250 A-E may emit narrow-band infrared light centered around 940 nm while camera 210 may include a filter that accepts infrared light around 940 nm while rejecting other light wavelengths.
- FIG. 3 illustrates an example block diagram of VCSEL structure 300 having a semiconductor substrate 310 , an N doped Distributed Bragg Reflector (DBR) 320 , and a mesa region 380 that includes an active region 330 , an aperture definition layer 340 , and a P doped DBR 360 .
- VCSEL structure 300 may be used as VCSELs 150 / 250 .
- Structure 300 may also optionally include a polarization layer 390 and a wafer level optic 372 .
- Polarization layer 390 may include a circular or linear polarizer, for example.
- Wafer level optic 372 may be a refractive element or a diffractive element (not illustrated).
- wafer level optic 372 may be formed from a high index material such as Gallium arsenide (GaAs). Wafer level optic 372 may be configured to scatter, tilt and/or focus (e.g. converge or diverge) the infrared beam 359 that is generated by VCSEL structure 300 . In the illustrated embodiment, infrared beam 359 is a diverging infrared beam, where wafer level optic 372 is configured to direct the diverging infrared beam 359 to illuminate the eye of the user (e.g., eye 202 of FIG. 2 ). In FIG. 3 , semiconductor substrate 310 has been thinned to further reduce the size of VCSEL structure 300 to have a total thickness 388 of less than 125 microns.
- GaAs Gallium arsenide
- the VCSEL structure 300 has a total thickness 388 of less than 100 microns.
- a conventionally-sized VCSEL may have a sufficiently small structure for the application.
- thinning semiconductor substrate 310 using known substrate thinning techniques may further reduce the size of VCSEL structure 300 to reduce the noticeability of the structure 300 by both wearers of an HMD and outside observers.
- an electrical contact 382 facilitates the electrical connection with N-doped DBR 320 by way of semiconductor substrate 310 .
- Semiconductor substrate 310 may be gallium arsenide (GaAs) in some embodiments.
- An electrical contact 381 facilitates the electrical connection with P-doped DBR 360 .
- an isolation layer 384 is disposed between the electrical contact 381 and the semiconductor substrate 310 to insulate the electrical contact 381 from making an electrical connection with N-doped DBR 320 .
- a through hole via 386 electrically couples P-doped DBR 360 with electrical contact 381 .
- Through hole via 386 may include a dielectric layer surrounding a conductive cylinder (e.g. metal) so that the dielectric layer isolates the conductive cylinder from layers 320 , 330 , and 340 .
- an electrical connection between electrical contact 381 and P-doped DBR 360 may be established by disposing a conductive trace 486 on the outside of VCSEL structure 400 where the conductive trace 486 is isolated from layers 310 , 320 , 330 , and 340 by an isolation layer 484 (e.g. dielectric).
- FIG. 4 illustrates an example of a VCSEL structure 400 that includes conductive trace 486 (e.g., deposited metal) for electrically connecting the electrical contact 381 to the P-doped DBR 360 .
- FIG. 4 illustrates an example of a VCSEL structure 400 that includes conductive trace 486 (e.g., deposited metal) for electrically connecting the electrical contact 381 to the P-doped DBR 360 .
- the isolation layer 484 also illustrates the isolation layer 484 disposed between the semiconductor substrate 310 and the electrical contact 381 for electrically insulating the electrical contact 381 from the N-doped DBR 320 .
- the isolation layer 484 is shown as further being disposed between the conductive trace 486 and a side-edge 402 of layers 310 , 320 , and 330 .
- electrical contacts 381 and 382 of FIGS. 3 and 4 are configured to be disposed (e.g., mounted) on a transparent substrate, such as transparent substrate 204 of FIG. 2 .
- Conventional VCSEL structures are configured in a flip chip arrangement where the two contacts may be on the same side as the emission beam. Or, one contact may be disposed on the bottom of a conventional VCSEL structure while a second top contact allows for a wire bond to establish the second electrical connection.
- the two contacts are arranged on one side of the VCSEL structure 300 / 400 that is opposite of the emission side of beam 359 .
- N-doped DBR 320 is shown as being disposed on a first side 305 of the semiconductor substrate 310 , whereas both electrical contacts 381 and 382 are disposed on a second side 307 of the semiconductor substrate 310 (e.g., second side 307 is opposite the first side 305 ).
- VCSEL 300 and/or VCSEL 400 may be configured to generate a diverging infrared beam 359 .
- a narrow beam is desirable.
- a converging narrow beam assists to increase optical efficiency of fiber optic propagation where the VCSEL is coupled to the fiber optic.
- an optical element e.g., wafer level lens
- the diverging beam may be advantageous to broadly illuminate an eye which is in the near-field (e.g. within 50 mm of the VCSEL).
- the epitaxial layer of the VCSEL structure 300 / 400 may be customized to achieve a broad emission cone, for example.
- the spacing of the P-doped DBR 360 with respect to the N-doped DBR 320 may be changed to manipulate the beam shape of beam 359 , in some embodiments.
- the aperture definition layer 340 may be adjusted to narrow or expand the aperture 370 to manipulate the beam shape of diverging infrared beam 359 to the desired diverging beam.
- the illustrated examples of VCSEL structure 300 / 400 are shown as including a wafer-level optic 372 , which may be configured to direct the diverging infrared beam 359 to illuminate the eye of the user. That is, even with wafer level optic 372 , the resultant light generated by the VCSEL structure 300 / 400 is diverging.
- VCSEL structure 300 / 400 may be configured as a single mode emitter or a multi-mode emitter.
- the width 392 of mesa region 380 is approximately 20 microns to generate a multi-mode emitter. In one embodiment, the width 392 of mesa region 380 is much narrower to generate a single mode emitter. In some examples, the width 394 of the VCSEL 300 / 400 is less than 75 microns, which provides a footprint of less than 75 microns by 75 microns.
- FIG. 5 illustrates an example block diagram of VCSEL structure 500 having a semiconductor structure 504 and electrical contacts 506 and 508 .
- VCSEL structure 500 may be used as VCSELs 150 / 250 .
- Semiconductor structure 504 may optically include one or more of a polarization layer, a wafer level optic, a Distributed Bragg Reflector (DBR), an aperture definition layer, a mesa region, an active region, a via, an isolation layer, a conductive trace, and the like.
- DBR Distributed Bragg Reflector
- semiconductor structure 504 is configured to generate a diverging infrared beam 510 .
- the VCSEL structure 500 is disposed on the non-emission side 207 of the transparent substrate 204 .
- the transparent substrate 204 is part of a near-eye optical element such as the lenses 121 A/ 121 B and/or the optical combiner 170 of FIG. 1A .
- the semiconductor structure 504 is configured to generate the diverging infrared beam 510 through the transparent substrate 204 to the emission side 205 of the transparent substrate for near-field illumination of an eye of the user.
- near-field illumination includes the VCSEL structure 500 illuminating the eye of the user at distance of less than 25 mm from the eye.
- FIG. 5 further illustrates VCSEL structure 500 as including electrical contacts 506 / 508 disposed between the semiconductor structure 504 and the transparent substrate 204 .
- the electrical contacts 506 / 508 are disposed to electrically couple the semiconductor structure 504 to the non-emission side 207 of the transparent substrate 204 .
- the VCSEL structure 500 has a total thickness 388 of less than 125 microns. In another embodiment, the VCSEL structure 300 has a total thickness 388 of less than 100 microns. In some embodiments, the VCSEL structure 500 has a width 394 that is less than 125 microns to provide a footprint that is less than 125 microns by 125 microns. In another embodiment, each VCSEL structure 500 has a width 394 that is less than 75 microns to provide a footprint that is less than 75 microns by 75 microns.
- Embodiments of the invention may include or be implemented in conjunction with an artificial reality system.
- Artificial reality is a form of reality that has been adjusted in some manner before presentation to a user, which may include, e.g., a virtual reality (VR), an augmented reality (AR), a mixed reality (MR), a hybrid reality, or some combination and/or derivatives thereof.
- Artificial reality content may include completely generated content or generated content combined with captured (e.g., real-world) content.
- the artificial reality content may include video, audio, haptic feedback, or some combination thereof, and any of which may be presented in a single channel or in multiple channels (such as stereo video that produces a three-dimensional effect to the viewer).
- artificial reality may also be associated with applications, products, accessories, services, or some combination thereof, that are used to, e.g., create content in an artificial reality and/or are otherwise used in (e.g., perform activities in) an artificial reality.
- the artificial reality system that provides the artificial reality content may be implemented on various platforms, including a head-mounted display (HMD) connected to a host computer system, a standalone HMD, a mobile device or computing system, or any other hardware platform capable of providing artificial reality content to one or more viewers.
- HMD head-mounted display
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 16/517,186, filed Jul. 19, 2019, which claims the benefit of both U.S. Provisional Application No. 62/858,858, filed Jun. 7, 2019 and U.S. Provisional Application No. 62/758,459, filed Nov. 9, 2018. U.S. application Ser. No. 16/517,186, U.S. Provisional Application No. 62/858,858, and U.S. Provisional Application No. 62/758,459 are expressly incorporated herein by reference in their entirety.
- A head mounted device is a wearable electronic device, typically worn on the head of a user. Head mounted devices may include one or more electronic components for use in a variety of applications, such as gaming, aviation, engineering, medicine, entertainment, activity tracking, and so on. Some head mounted devices may perform eye-tracking which may enhance the user's viewing experience. Eye-tracking may be aided, in some cases, by illuminating the eye of the user. Thus, some conventional head mounted devices may incorporate an eye-tracking system that includes an illumination source as well as a camera for tracking movements of the user's eye.
- In some instances, a vertical-cavity surface-emitting laser (VCSEL) may be utilized as the illumination source of the eye-tracking system. However, conventional VCSEL structures are typically designed for applications other than eye-tracking, such as for fiber optic communications and laser printers. The design requirements for these other applications often results in a VCSEL structure that is less than optimal or less effective when incorporated into an eye-tracking system.
- Non-limiting and non-exhaustive aspects of the present disclosure are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
-
FIG. 1A illustrates a head mounted display (HMD), in accordance with aspects of the present disclosure. -
FIG. 1B illustrates a footprint of a vertical-cavity surface-emitting laser (VCSEL), in accordance with aspects of the present disclosure. -
FIG. 2 illustrates an eye-tracking system, in accordance with aspects of the present disclosure. -
FIG. 3 illustrates an example block diagram of a VCSEL structure, in accordance with aspects of the present disclosure. -
FIG. 4 illustrates an example block diagram of a VCSEL structure, in accordance with aspects of the present disclosure. -
FIG. 5 illustrates an example block diagram of a VCSEL structure, in accordance with aspects of the present disclosure. - Various aspects and embodiments are disclosed in the following description and related drawings to show specific examples relating to vertical-cavity surface-emitting laser (VCSEL) for near-field illumination of an eye of a user of a head mounted device. Alternate aspects and embodiments will be apparent to those skilled in the pertinent art upon reading this disclosure and may be constructed and practiced without departing from the scope or spirit of the disclosure. Additionally, well-known elements will not be described in detail or may be omitted so as to not obscure the relevant details of the aspects and embodiments disclosed herein.
- Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
-
FIG. 1A illustrates an example head mounted display (HMD) 100 that includes an array ofVCSELs 150 emitting infrared light in an eyebox direction, in accordance with an embodiment of the disclosure. HMD 100 includesframe 114 coupled to 111A and 111B.arms 121A and 121B are mounted toLenses frame 114. 121A and 121B may be prescription lenses matched to a particular wearer of HMD or non-prescription lenses.Lenses - An HMD, such as HMD 100 is one type of head mounted device, typically worn on the head of a user to provide artificial reality content to a user. Artificial reality is a form of reality that has been adjusted in some manner before presentation to the user, which may include, e.g., virtual reality (VR), augmented reality (AR), mixed reality (MR), hybrid reality, or some combination and/or derivative thereof.
- In
FIG. 1A , eachlens 121A/121B includes awaveguide 160A/160B to direct image light generated by a display 130A/130B to an eyebox area for viewing by a wearer of HMD 100. Display 130A/130B may include an LCD, an organic light emitting diode (OLED) display, micro-LED display, quantum dot display, pico-projector, or liquid crystal on silicon (LCOS) display for directing image light to a wearer of HMD 100. - The
frame 114 andarms 111A/111B of the HMD may include supporting hardware of HMD 100. HMD 100 may include any of processing logic, wired and/or wireless data interface for sending and receiving data, graphic processors, and one or more memories for storing data and computer-executable instructions. In one embodiment, HMD 100 may be configured to receive wired power. In one embodiment, HMD 100 is configured to be powered by one or more batteries. In one embodiment, HMD 100 may be configured to receive wired data including video data via a wired communication channel. In one embodiment, HMD 100 is configured to receive wireless data including video data via a wireless communication channel. -
Lenses 121A/121B may appear transparent to a user to facilitate augmented reality or mixed reality where a user can view scene light from the environment around her while also receiving image light directed to her eye(s) by waveguide(s) 160.Lenses 121A/121B may include anoptical combiner 170 for directing reflected infrared light (emitted by VCSELs 150) to an eye-tracking camera (e.g. camera 190). The array of VCSELs 150 may be disposed on a transparent substrate and could also be included advantageously in a VR headset where the transparent nature of the optical structure allows a user to view a display in the VR headset. In some embodiments ofFIG. 1A , image light is only directed into one eye of the wearer of HMD 100. In an embodiment, both displays 130A and 130B are included to direct image light into 160A and 160B, respectively.waveguides -
Lens 121B includes an array ofVCSELs 150 arranged in an example 5×5 array. The VCSELs 150 in the array may be unevenly spaced, in some embodiments. VCSELs 150 may be infrared light sources directing their emitted light in an eyeward direction to an eyebox area of a wearer of HMD 100.VCSELs 150 may emit an infrared light having a wavelength of 850 nm or 940 nm, for example. Very small metal traces or transparent conductive layers (e.g. indium tin oxide) may run throughlens 121B to facilitate selective illumination of eachVCSEL 150.Lens 121A may be configured similarly to the illustratedlens 121B. - While VCSELs 150 may introduce occlusions into an optical system included in an
HMD 100, VCSELs 150 and corresponding routing may be so small as to be unnoticeable or optically insignificant to a wearer of an HMD. Additionally, any occlusion from VCSELs 150 will be placed so close to the eye as to be unfocusable by the human eye and therefore assist in theVCSELs 150 being not noticeable. In addition to a wearer of HMD 100 noticingVCSELs 150, it may be preferable for an outside observer of HMD 100 to not noticeVCSELs 150. -
FIG. 1B illustrates a footprint of a VCSEL in accordance with embodiments of the disclosure. In some embodiments, each VCSEL 150 has a footprint where the “x” dimension is less than 125 microns and the “y” dimension is less than 125 microns. In some embodiments, eachVCSEL 150 has a footprint where the “x” dimension is less than 75 microns and the “y” dimension is less than 75 microns. At these dimensions, theVCSELs 150 may not only be unnoticeable to a wearer of anHMD 100, theVCSELs 150 may be unnoticeable to an outside observer ofHMD 100 at a distance that is outside of the user's personal space (0.45 m) -
FIG. 2 illustrates an eye-trackingsystem 200 that includes a side view of an array ofVCSELs 250A-E illuminating an eyebox area, in accordance with an embodiment of the disclosure. The array of VCSELs includes 250A, 250B, 250C, 250D, and 250E, in the illustrated embodiment. As shown inVCSELs FIG. 2 , the array ofVCSELs 250A-250C are disposed on atransparent substrate 204 that includes anemission side 205 and anon-emission side 207. In the illustrated example, theemission side 205 is opposite thenon-emission side 207, where the emission side is the side from which theVCSELs 250A-250C emit infrared light. For example,VCSEL 250C illuminateseye 202 withinfrared beam 261. In some examples,infrared beam 261 is a diverging infrared beam. 250A, 250B, 250D, and 250E may also illuminateVCSELs eye 202 with respective infrared beams (not illustrated). Infrared light emitted byVCSEL 250C propagates alongoptical path 271 and reflects offeye 202 propagating alongoptical path 272. The infrared light propagating alongoptical path 272 travels throughtransparent substrate 204 and encountersoptical combiner 230.Optical combiner 230 directs the infrared light tocamera 210 along optical path 273.Optical combiner 230 may be a holographic combiner or Fresnel combiner.Optical combiner 230 may transmit visible light while reflecting or diffracting infrared light. Therefore, eye-trackingsystem 200 shows howVCSELs 250A-E may perform near-eye illumination by illuminatingeye 202 with infrared light and howcamera 210 may capture infrared images ofeye 202 by capturing the infrared light. In some aspects, each of theVCSELs 250A-E are configured to generate infrared light for illuminating theeye 202 at distance of less than 25 mm from theeye 202. - In some embodiments,
camera 210 may be configured with a bandpass filter that accepts a narrow-band infrared light that is the same as the narrow-band emitted byVCSELs 250A-E while the filter rejects other wavelengths. For example,VCSELs 250A-E may emit narrow-band infrared light centered around 940 nm whilecamera 210 may include a filter that accepts infrared light around 940 nm while rejecting other light wavelengths. -
FIG. 3 illustrates an example block diagram ofVCSEL structure 300 having asemiconductor substrate 310, an N doped Distributed Bragg Reflector (DBR) 320, and amesa region 380 that includes anactive region 330, anaperture definition layer 340, and a P dopedDBR 360.VCSEL structure 300 may be used asVCSELs 150/250.Structure 300 may also optionally include apolarization layer 390 and awafer level optic 372.Polarization layer 390 may include a circular or linear polarizer, for example.Wafer level optic 372 may be a refractive element or a diffractive element (not illustrated). In some examples,wafer level optic 372 may be formed from a high index material such as Gallium arsenide (GaAs).Wafer level optic 372 may be configured to scatter, tilt and/or focus (e.g. converge or diverge) theinfrared beam 359 that is generated byVCSEL structure 300. In the illustrated embodiment,infrared beam 359 is a diverging infrared beam, wherewafer level optic 372 is configured to direct the diverginginfrared beam 359 to illuminate the eye of the user (e.g.,eye 202 ofFIG. 2 ). InFIG. 3 ,semiconductor substrate 310 has been thinned to further reduce the size ofVCSEL structure 300 to have atotal thickness 388 of less than 125 microns. In one embodiment, theVCSEL structure 300 has atotal thickness 388 of less than 100 microns. In conventional applications, a conventionally-sized VCSEL may have a sufficiently small structure for the application. However, in an eye-tracking application where the VCSEL is positioned in the field of view of a user, thinningsemiconductor substrate 310 using known substrate thinning techniques may further reduce the size ofVCSEL structure 300 to reduce the noticeability of thestructure 300 by both wearers of an HMD and outside observers. - In
FIG. 3 , anelectrical contact 382 facilitates the electrical connection with N-dopedDBR 320 by way ofsemiconductor substrate 310.Semiconductor substrate 310 may be gallium arsenide (GaAs) in some embodiments. Anelectrical contact 381 facilitates the electrical connection with P-dopedDBR 360. In some examples, anisolation layer 384 is disposed between theelectrical contact 381 and thesemiconductor substrate 310 to insulate theelectrical contact 381 from making an electrical connection with N-dopedDBR 320. In the illustrated embodiment, a through hole via 386 electrically couples P-dopedDBR 360 withelectrical contact 381. Through hole via 386 may include a dielectric layer surrounding a conductive cylinder (e.g. metal) so that the dielectric layer isolates the conductive cylinder from 320, 330, and 340.layers - In another embodiment (shown in
FIG. 4 ), an electrical connection betweenelectrical contact 381 and P-dopedDBR 360 may be established by disposing aconductive trace 486 on the outside ofVCSEL structure 400 where theconductive trace 486 is isolated from 310, 320, 330, and 340 by an isolation layer 484 (e.g. dielectric). In particular,layers FIG. 4 illustrates an example of aVCSEL structure 400 that includes conductive trace 486 (e.g., deposited metal) for electrically connecting theelectrical contact 381 to the P-dopedDBR 360.FIG. 4 also illustrates theisolation layer 484 disposed between thesemiconductor substrate 310 and theelectrical contact 381 for electrically insulating theelectrical contact 381 from the N-dopedDBR 320. Theisolation layer 484 is shown as further being disposed between theconductive trace 486 and a side-edge 402 of 310, 320, and 330.layers - In some examples,
381 and 382 ofelectrical contacts FIGS. 3 and 4 are configured to be disposed (e.g., mounted) on a transparent substrate, such astransparent substrate 204 ofFIG. 2 . - Conventional VCSEL structures are configured in a flip chip arrangement where the two contacts may be on the same side as the emission beam. Or, one contact may be disposed on the bottom of a conventional VCSEL structure while a second top contact allows for a wire bond to establish the second electrical connection. Notably, in the illustrated embodiments of
FIGS. 3 and 4 , the two contacts are arranged on one side of theVCSEL structure 300/400 that is opposite of the emission side ofbeam 359. For example, N-dopedDBR 320 is shown as being disposed on afirst side 305 of thesemiconductor substrate 310, whereas both 381 and 382 are disposed on aelectrical contacts second side 307 of the semiconductor substrate 310 (e.g.,second side 307 is opposite the first side 305). - In different embodiments,
VCSEL 300 and/orVCSEL 400 may be configured to generate a diverginginfrared beam 359. In conventional applications of VCSELs, a narrow beam is desirable. For example, in telecommunication applications, a converging narrow beam assists to increase optical efficiency of fiber optic propagation where the VCSEL is coupled to the fiber optic. Thus, in some conventional applications, an optical element (e.g., wafer level lens) may be incorporated into the conventional VCSEL to produce a narrow or converging beam. However, in eye-tracking applications, the diverging beam may be advantageous to broadly illuminate an eye which is in the near-field (e.g. within 50 mm of the VCSEL). The epitaxial layer of theVCSEL structure 300/400 may be customized to achieve a broad emission cone, for example. The spacing of the P-dopedDBR 360 with respect to the N-dopedDBR 320 may be changed to manipulate the beam shape ofbeam 359, in some embodiments. In one embodiment, theaperture definition layer 340 may be adjusted to narrow or expand theaperture 370 to manipulate the beam shape of diverginginfrared beam 359 to the desired diverging beam. In addition, the illustrated examples ofVCSEL structure 300/400 are shown as including a wafer-level optic 372, which may be configured to direct the diverginginfrared beam 359 to illuminate the eye of the user. That is, even withwafer level optic 372, the resultant light generated by theVCSEL structure 300/400 is diverging. -
VCSEL structure 300/400 may be configured as a single mode emitter or a multi-mode emitter. In one embodiment, thewidth 392 ofmesa region 380 is approximately 20 microns to generate a multi-mode emitter. In one embodiment, thewidth 392 ofmesa region 380 is much narrower to generate a single mode emitter. In some examples, thewidth 394 of theVCSEL 300/400 is less than 75 microns, which provides a footprint of less than 75 microns by 75 microns. -
FIG. 5 illustrates an example block diagram ofVCSEL structure 500 having asemiconductor structure 504 and 506 and 508.electrical contacts VCSEL structure 500 may be used asVCSELs 150/250.Semiconductor structure 504 may optically include one or more of a polarization layer, a wafer level optic, a Distributed Bragg Reflector (DBR), an aperture definition layer, a mesa region, an active region, a via, an isolation layer, a conductive trace, and the like. In some examples,semiconductor structure 504 is configured to generate a diverginginfrared beam 510. - As shown in
FIG. 5 , theVCSEL structure 500 is disposed on thenon-emission side 207 of thetransparent substrate 204. In some aspects, thetransparent substrate 204 is part of a near-eye optical element such as thelenses 121A/121B and/or theoptical combiner 170 ofFIG. 1A . Thus, in some examples, thesemiconductor structure 504 is configured to generate the diverginginfrared beam 510 through thetransparent substrate 204 to theemission side 205 of the transparent substrate for near-field illumination of an eye of the user. In some implementations, near-field illumination includes theVCSEL structure 500 illuminating the eye of the user at distance of less than 25 mm from the eye. -
FIG. 5 further illustratesVCSEL structure 500 as includingelectrical contacts 506/508 disposed between thesemiconductor structure 504 and thetransparent substrate 204. Theelectrical contacts 506/508 are disposed to electrically couple thesemiconductor structure 504 to thenon-emission side 207 of thetransparent substrate 204. - In some aspects, the
VCSEL structure 500 has atotal thickness 388 of less than 125 microns. In another embodiment, theVCSEL structure 300 has atotal thickness 388 of less than 100 microns. In some embodiments, theVCSEL structure 500 has awidth 394 that is less than 125 microns to provide a footprint that is less than 125 microns by 125 microns. In another embodiment, eachVCSEL structure 500 has awidth 394 that is less than 75 microns to provide a footprint that is less than 75 microns by 75 microns. - Embodiments of the invention may include or be implemented in conjunction with an artificial reality system. Artificial reality is a form of reality that has been adjusted in some manner before presentation to a user, which may include, e.g., a virtual reality (VR), an augmented reality (AR), a mixed reality (MR), a hybrid reality, or some combination and/or derivatives thereof. Artificial reality content may include completely generated content or generated content combined with captured (e.g., real-world) content. The artificial reality content may include video, audio, haptic feedback, or some combination thereof, and any of which may be presented in a single channel or in multiple channels (such as stereo video that produces a three-dimensional effect to the viewer). Additionally, in some embodiments, artificial reality may also be associated with applications, products, accessories, services, or some combination thereof, that are used to, e.g., create content in an artificial reality and/or are otherwise used in (e.g., perform activities in) an artificial reality. The artificial reality system that provides the artificial reality content may be implemented on various platforms, including a head-mounted display (HMD) connected to a host computer system, a standalone HMD, a mobile device or computing system, or any other hardware platform capable of providing artificial reality content to one or more viewers.
- The above description of illustrated embodiments of the invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize.
- These modifications can be made to the invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification. Rather, the scope of the invention is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/108,429 US20210083455A1 (en) | 2018-11-09 | 2020-12-01 | Vertical-cavity surface-emitting laser for near-field illumination of an eye |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862758459P | 2018-11-09 | 2018-11-09 | |
| US201962858858P | 2019-06-07 | 2019-06-07 | |
| US16/517,186 US10886702B2 (en) | 2018-11-09 | 2019-07-19 | Vertical-cavity surface-emitting laser for near-field illumination of an eye |
| US17/108,429 US20210083455A1 (en) | 2018-11-09 | 2020-12-01 | Vertical-cavity surface-emitting laser for near-field illumination of an eye |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/517,186 Continuation US10886702B2 (en) | 2018-11-09 | 2019-07-19 | Vertical-cavity surface-emitting laser for near-field illumination of an eye |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20210083455A1 true US20210083455A1 (en) | 2021-03-18 |
Family
ID=70549989
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/517,186 Active US10886702B2 (en) | 2018-11-09 | 2019-07-19 | Vertical-cavity surface-emitting laser for near-field illumination of an eye |
| US17/108,429 Abandoned US20210083455A1 (en) | 2018-11-09 | 2020-12-01 | Vertical-cavity surface-emitting laser for near-field illumination of an eye |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/517,186 Active US10886702B2 (en) | 2018-11-09 | 2019-07-19 | Vertical-cavity surface-emitting laser for near-field illumination of an eye |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US10886702B2 (en) |
| EP (1) | EP3878068A2 (en) |
| CN (1) | CN112970157A (en) |
| WO (1) | WO2020096851A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20230305321A1 (en) * | 2020-09-08 | 2023-09-28 | Apple Inc. | Devices With Near-Field Communications |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11650403B2 (en) | 2019-02-08 | 2023-05-16 | Meta Platforms Technologies, Llc | Optical elements for beam-shaping and illumination |
| US11415808B1 (en) | 2019-02-08 | 2022-08-16 | Facebook Technologies, Llc | Illumination device with encapsulated lens |
| CN115176392A (en) * | 2020-02-25 | 2022-10-11 | 株式会社理光 | Mirror, vertical cavity surface emitting laser array, projector, head-up display, movable body, head-mounted display, optometry apparatus, and illumination apparatus |
| WO2021188926A1 (en) * | 2020-03-20 | 2021-09-23 | Magic Leap, Inc. | Systems and methods for retinal imaging and tracking |
| US12025771B2 (en) | 2021-03-30 | 2024-07-02 | Meta Platforms Technologies, Llc | Dynamic beam steering with metasurface |
| US11937478B2 (en) * | 2021-07-16 | 2024-03-19 | Avalon Holographics Inc. | Multi-colored microcavity OLED array having DBR for high aperture display and method of fabricating the same |
| DE102021128135A1 (en) | 2021-10-28 | 2023-05-04 | Robert Bosch Gesellschaft mit beschränkter Haftung | Laser device, scanning device and a method for manufacturing a laser device |
| TWI855273B (en) * | 2021-10-28 | 2024-09-11 | 鴻海精密工業股份有限公司 | Photonic-crystal surface-emitting laser and optical system |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010050934A1 (en) * | 2000-05-31 | 2001-12-13 | Choquette Kent D. | Long wavelength vertical cavity surface emitting laser |
| US20150311673A1 (en) * | 2014-04-29 | 2015-10-29 | Princeton Optronics Inc. | Polarization Control in High Peak Power, High Brightness VCSEL |
| US20160295202A1 (en) * | 2015-04-03 | 2016-10-06 | Avegant Corporation | System, apparatus, and method for displaying an image using focal modulation |
| US10013055B2 (en) * | 2015-11-06 | 2018-07-03 | Oculus Vr, Llc | Eye tracking using optical flow |
| WO2018133084A1 (en) * | 2017-01-23 | 2018-07-26 | Shenzhen Genorivision Technology Co. Ltd. | A laser radar |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6014400A (en) * | 1996-09-02 | 2000-01-11 | Matsushita Electric Industrial Co., Ltd | Surface-emitting laser and a fabrication method thereof |
| US6542530B1 (en) * | 2000-10-27 | 2003-04-01 | Chan-Long Shieh | Electrically pumped long-wavelength VCSEL and methods of fabrication |
| JP4062983B2 (en) * | 2002-06-20 | 2008-03-19 | 富士ゼロックス株式会社 | Surface emitting semiconductor laser and manufacturing method thereof |
| TWI403053B (en) * | 2010-01-07 | 2013-07-21 | Univ Nat Central | Optoelectronic components |
| US8998414B2 (en) * | 2011-09-26 | 2015-04-07 | Microsoft Technology Licensing, Llc | Integrated eye tracking and display system |
| US10231614B2 (en) * | 2014-07-08 | 2019-03-19 | Wesley W. O. Krueger | Systems and methods for using virtual reality, augmented reality, and/or a synthetic 3-dimensional information for the measurement of human ocular performance |
| US10072815B2 (en) * | 2016-06-23 | 2018-09-11 | Apple Inc. | Top-emission VCSEL-array with integrated diffuser |
| CN206412341U (en) * | 2017-01-19 | 2017-08-15 | 深圳奥比中光科技有限公司 | Chip flush mounting |
| US11128100B2 (en) | 2017-02-08 | 2021-09-21 | Princeton Optronics, Inc. | VCSEL illuminator package including an optical structure integrated in the encapsulant |
| US10866418B2 (en) * | 2017-02-21 | 2020-12-15 | Facebook Technologies, Llc | Focus adjusting multiplanar head mounted display |
| JP7273720B2 (en) * | 2017-03-21 | 2023-05-15 | マジック リープ, インコーポレイテッド | Method and system for eye movement tracking in conjunction with an optical scanning projector |
| US20190018483A1 (en) * | 2017-07-17 | 2019-01-17 | Thalmic Labs Inc. | Dynamic calibration systems and methods for wearable heads-up displays |
| US10394034B2 (en) * | 2017-08-15 | 2019-08-27 | Microsoft Technology Licensing, Llc | Eye-tracking with MEMS scanning and optical relay |
| US10725537B2 (en) * | 2017-10-02 | 2020-07-28 | Facebook Technologies, Llc | Eye tracking system using dense structured light patterns |
-
2019
- 2019-07-19 US US16/517,186 patent/US10886702B2/en active Active
- 2019-10-31 EP EP19836629.6A patent/EP3878068A2/en active Pending
- 2019-10-31 CN CN201980074040.1A patent/CN112970157A/en active Pending
- 2019-10-31 WO PCT/US2019/059060 patent/WO2020096851A2/en not_active Ceased
-
2020
- 2020-12-01 US US17/108,429 patent/US20210083455A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010050934A1 (en) * | 2000-05-31 | 2001-12-13 | Choquette Kent D. | Long wavelength vertical cavity surface emitting laser |
| US20150311673A1 (en) * | 2014-04-29 | 2015-10-29 | Princeton Optronics Inc. | Polarization Control in High Peak Power, High Brightness VCSEL |
| US20160295202A1 (en) * | 2015-04-03 | 2016-10-06 | Avegant Corporation | System, apparatus, and method for displaying an image using focal modulation |
| US10013055B2 (en) * | 2015-11-06 | 2018-07-03 | Oculus Vr, Llc | Eye tracking using optical flow |
| WO2018133084A1 (en) * | 2017-01-23 | 2018-07-26 | Shenzhen Genorivision Technology Co. Ltd. | A laser radar |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20230305321A1 (en) * | 2020-09-08 | 2023-09-28 | Apple Inc. | Devices With Near-Field Communications |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2020096851A2 (en) | 2020-05-14 |
| US10886702B2 (en) | 2021-01-05 |
| US20200153204A1 (en) | 2020-05-14 |
| WO2020096851A3 (en) | 2020-07-30 |
| EP3878068A2 (en) | 2021-09-15 |
| CN112970157A (en) | 2021-06-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10886702B2 (en) | Vertical-cavity surface-emitting laser for near-field illumination of an eye | |
| US20230135756A1 (en) | Components with wafer level optics | |
| US11649935B2 (en) | Coupling light source to photonic integrated circuit | |
| US12164140B2 (en) | Waveguide structure and outcoupling elements | |
| JP2023513869A (en) | Dual-wavelength eye imaging | |
| KR20230053607A (en) | Enhanced light outcoupling of micro LEDs using plasmon scattering of metal nanoparticles | |
| US11631784B2 (en) | 3-D structure for increasing contact surface area for LEDs | |
| KR20230025653A (en) | Monolithic light source with integrated optics based on nonlinear frequency conversion | |
| US10989735B2 (en) | Atomic force microscopy tips for interconnection | |
| WO2022115794A1 (en) | Low resistance current spreading to n-contacts of micro-led array | |
| US11349053B1 (en) | Flexible interconnect using conductive adhesive | |
| US20230352437A1 (en) | Hybrid interconnect for laser bonding using nanoporous metal tips | |
| US20240019646A1 (en) | Vertical cavity surface emitting laser (vcsel) integration on a photonic integrated circuit (pic) | |
| US10690919B1 (en) | Superluminous LED array for waveguide display | |
| WO2023129585A1 (en) | Light emitting diode with angle-dependent optical filter | |
| US11239400B1 (en) | Curved pillar interconnects | |
| US20240230988A9 (en) | Waveguide coupler for coupling laser beam into photonic integrated circuit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
| AS | Assignment |
Owner name: FACEBOOK TECHNOLOGIES, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HATZILIAS, KAROL CONSTANTINE;LIAO, CHRISTOPHER YUAN-TING;SHARMA, ROBIN;AND OTHERS;REEL/FRAME:054685/0400 Effective date: 20190722 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: META PLATFORMS TECHNOLOGIES, LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:FACEBOOK TECHNOLOGIES, LLC;REEL/FRAME:060246/0845 Effective date: 20220318 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |