US20210002673A1 - Microorganisms for producing 4c-5c compounds with unsaturation and methods related thereto - Google Patents
Microorganisms for producing 4c-5c compounds with unsaturation and methods related thereto Download PDFInfo
- Publication number
- US20210002673A1 US20210002673A1 US16/888,339 US202016888339A US2021002673A1 US 20210002673 A1 US20210002673 A1 US 20210002673A1 US 202016888339 A US202016888339 A US 202016888339A US 2021002673 A1 US2021002673 A1 US 2021002673A1
- Authority
- US
- United States
- Prior art keywords
- coa
- enzyme
- buten
- hydroxypent
- butadiene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 244000005700 microbiome Species 0.000 title claims description 30
- 150000001875 compounds Chemical class 0.000 title description 9
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims abstract description 282
- 102000004190 Enzymes Human genes 0.000 claims abstract description 280
- 108090000790 Enzymes Proteins 0.000 claims abstract description 280
- MKUWVMRNQOOSAT-UHFFFAOYSA-N methylvinylmethanol Natural products CC(O)C=C MKUWVMRNQOOSAT-UHFFFAOYSA-N 0.000 claims abstract description 205
- 230000037361 pathway Effects 0.000 claims abstract description 131
- WCASXYBKJHWFMY-UHFFFAOYSA-N gamma-methylallyl alcohol Natural products CC=CCO WCASXYBKJHWFMY-UHFFFAOYSA-N 0.000 claims abstract description 104
- WCASXYBKJHWFMY-NSCUHMNNSA-N 2-Buten-1-ol Chemical compound C\C=C\CO WCASXYBKJHWFMY-NSCUHMNNSA-N 0.000 claims abstract description 103
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 91
- SDVVLIIVFBKBMG-UHFFFAOYSA-N penta-2,4-dienoic acid Chemical compound OC(=O)C=CC=C SDVVLIIVFBKBMG-UHFFFAOYSA-N 0.000 claims abstract description 91
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 84
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 84
- 230000000813 microbial effect Effects 0.000 claims abstract description 83
- ZSPTYLOMNJNZNG-UHFFFAOYSA-N 3-Buten-1-ol Chemical compound OCCC=C ZSPTYLOMNJNZNG-UHFFFAOYSA-N 0.000 claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 claims abstract description 31
- 238000012258 culturing Methods 0.000 claims abstract description 11
- 102000004867 Hydro-Lyases Human genes 0.000 claims description 69
- 108090001042 Hydro-Lyases Proteins 0.000 claims description 69
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 claims description 56
- 102000004357 Transferases Human genes 0.000 claims description 40
- 108090000992 Transferases Proteins 0.000 claims description 40
- 102000003960 Ligases Human genes 0.000 claims description 35
- 108090000364 Ligases Proteins 0.000 claims description 35
- HFKQINMYQUXOCH-UHFFFAOYSA-N 4-hydroxy-2-oxopentanoic acid Chemical compound CC(O)CC(=O)C(O)=O HFKQINMYQUXOCH-UHFFFAOYSA-N 0.000 claims description 30
- 102000004157 Hydrolases Human genes 0.000 claims description 24
- 108090000604 Hydrolases Proteins 0.000 claims description 24
- VFSVBYJVPHDQQC-UHFFFAOYSA-N 2-hydroxypent-4-enoic acid Chemical compound OC(=O)C(O)CC=C VFSVBYJVPHDQQC-UHFFFAOYSA-N 0.000 claims description 23
- 102000004195 Isomerases Human genes 0.000 claims description 21
- 108090000769 Isomerases Proteins 0.000 claims description 21
- CUBSYRCTISCQAF-UHFFFAOYSA-N 5-hydroxypent-2-enoic acid Chemical compound OCCC=CC(O)=O CUBSYRCTISCQAF-UHFFFAOYSA-N 0.000 claims description 20
- 108010021809 Alcohol dehydrogenase Proteins 0.000 claims description 19
- 102000004316 Oxidoreductases Human genes 0.000 claims description 18
- 108090000854 Oxidoreductases Proteins 0.000 claims description 18
- 102000007698 Alcohol dehydrogenase Human genes 0.000 claims description 17
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 claims description 15
- AINRQBNLOBQURT-UHFFFAOYSA-N 3-hydroxypent-4-enoic acid Chemical compound C=CC(O)CC(O)=O AINRQBNLOBQURT-UHFFFAOYSA-N 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 13
- 108010065064 acetaldehyde dehydrogenase (acylating) Proteins 0.000 claims description 11
- 108010029348 4-hydroxy-2-oxovalerate aldolase Proteins 0.000 claims description 10
- NOXRYJAWRSNUJD-UHFFFAOYSA-N 2-oxopent-4-enoic acid Chemical compound OC(=O)C(=O)CC=C NOXRYJAWRSNUJD-UHFFFAOYSA-N 0.000 claims description 9
- KDOCIZRMPUBINQ-XMWLYHNJSA-N s-[2-[3-[[(2r)-4-[[[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-hydroxypent-4-enethioate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)C=C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 KDOCIZRMPUBINQ-XMWLYHNJSA-N 0.000 claims description 9
- UFQKATWGZBQOMS-UHFFFAOYSA-N 3,4-dihydroxypentanoic acid Chemical compound CC(O)C(O)CC(O)=O UFQKATWGZBQOMS-UHFFFAOYSA-N 0.000 claims description 8
- WGZDAAMGYDWBJN-QTTLMPKLSA-N s-[2-[3-[[(2r)-4-[[[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3,4-dihydroxypentanethioate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)C(O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 WGZDAAMGYDWBJN-QTTLMPKLSA-N 0.000 claims description 6
- 108090001018 hexadecanal dehydrogenase (acylating) Proteins 0.000 claims description 5
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 claims description 4
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 claims description 4
- YANJKPZKTWMMOF-NSCUHMNNSA-N (e)-4-hydroxypent-2-enoic acid Chemical compound CC(O)\C=C\C(O)=O YANJKPZKTWMMOF-NSCUHMNNSA-N 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 description 205
- 241000588724 Escherichia coli Species 0.000 description 122
- 230000000694 effects Effects 0.000 description 86
- 102000004169 proteins and genes Human genes 0.000 description 81
- 235000018102 proteins Nutrition 0.000 description 76
- 238000006243 chemical reaction Methods 0.000 description 70
- 239000000047 product Substances 0.000 description 67
- 239000000543 intermediate Substances 0.000 description 51
- 239000000758 substrate Substances 0.000 description 51
- 108091000080 Phosphotransferase Proteins 0.000 description 46
- 102000020233 phosphotransferase Human genes 0.000 description 46
- 102000004031 Carboxy-Lyases Human genes 0.000 description 44
- 241000894007 species Species 0.000 description 44
- 108090000489 Carboxy-Lyases Proteins 0.000 description 43
- 230000014509 gene expression Effects 0.000 description 42
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 34
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 32
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 31
- 230000015572 biosynthetic process Effects 0.000 description 29
- 241000589776 Pseudomonas putida Species 0.000 description 28
- YANJKPZKTWMMOF-UHFFFAOYSA-N 4-hydroxypent-2-enoic acid Chemical compound CC(O)C=CC(O)=O YANJKPZKTWMMOF-UHFFFAOYSA-N 0.000 description 24
- 241000252867 Cupriavidus metallidurans Species 0.000 description 23
- 238000006297 dehydration reaction Methods 0.000 description 22
- 229910019142 PO4 Inorganic materials 0.000 description 21
- 229910052799 carbon Inorganic materials 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 20
- 238000006114 decarboxylation reaction Methods 0.000 description 20
- 230000018044 dehydration Effects 0.000 description 20
- 239000010452 phosphate Substances 0.000 description 20
- CISWUHBXRKFIDA-UHFFFAOYSA-N 2-hydroxypent-3-enoic acid Chemical compound CC=CC(O)C(O)=O CISWUHBXRKFIDA-UHFFFAOYSA-N 0.000 description 19
- IWARWSDDJHGZOW-UHFFFAOYSA-N 2-oxopent-3-enoic acid Chemical compound CC=CC(=O)C(O)=O IWARWSDDJHGZOW-UHFFFAOYSA-N 0.000 description 18
- HSJKGGMUJITCBW-UHFFFAOYSA-N 3-hydroxybutanal Chemical compound CC(O)CC=O HSJKGGMUJITCBW-UHFFFAOYSA-N 0.000 description 18
- 241000193401 Clostridium acetobutylicum Species 0.000 description 18
- 241001646716 Escherichia coli K-12 Species 0.000 description 18
- 239000013612 plasmid Substances 0.000 description 18
- 230000009466 transformation Effects 0.000 description 18
- 230000002503 metabolic effect Effects 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 16
- 241000282414 Homo sapiens Species 0.000 description 16
- 230000006870 function Effects 0.000 description 16
- 230000009467 reduction Effects 0.000 description 15
- 238000006722 reduction reaction Methods 0.000 description 15
- 241000196324 Embryophyta Species 0.000 description 14
- 241000589774 Pseudomonas sp. Species 0.000 description 14
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 14
- 230000001105 regulatory effect Effects 0.000 description 14
- 244000063299 Bacillus subtilis Species 0.000 description 13
- 235000014469 Bacillus subtilis Nutrition 0.000 description 13
- 230000001419 dependent effect Effects 0.000 description 13
- 230000002255 enzymatic effect Effects 0.000 description 13
- 238000000855 fermentation Methods 0.000 description 13
- 230000004151 fermentation Effects 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- -1 styrene Chemical class 0.000 description 13
- 241000604450 Acidaminococcus fermentans Species 0.000 description 12
- 101150031273 BDH1 gene Proteins 0.000 description 12
- 241000894006 Bacteria Species 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 108010065958 Isopentenyl-diphosphate Delta-isomerase Proteins 0.000 description 12
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 241000186570 Clostridium kluyveri Species 0.000 description 11
- 241000589540 Pseudomonas fluorescens Species 0.000 description 11
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 11
- 239000001177 diphosphate Substances 0.000 description 11
- 238000006317 isomerization reaction Methods 0.000 description 11
- 108010023922 Enoyl-CoA hydratase Proteins 0.000 description 10
- 102000011426 Enoyl-CoA hydratase Human genes 0.000 description 10
- 102100027665 Isopentenyl-diphosphate Delta-isomerase 1 Human genes 0.000 description 10
- 102000001253 Protein Kinase Human genes 0.000 description 10
- 102100037495 Thiamin pyrophosphokinase 1 Human genes 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- 230000001588 bifunctional effect Effects 0.000 description 10
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 10
- 108010075483 isoprene synthase Proteins 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 108010049926 Acetate-CoA ligase Proteins 0.000 description 9
- 241000219195 Arabidopsis thaliana Species 0.000 description 9
- 108010052919 Hydroxyethylthiazole kinase Proteins 0.000 description 9
- 241000203407 Methanocaldococcus jannaschii Species 0.000 description 9
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 9
- 150000001336 alkenes Chemical class 0.000 description 9
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 9
- 229960003669 carbenicillin Drugs 0.000 description 9
- 239000013592 cell lysate Substances 0.000 description 9
- QMZRXYCCCYYMHF-UHFFFAOYSA-N isopentenyl phosphate Chemical compound CC(=C)CCOP(O)(O)=O QMZRXYCCCYYMHF-UHFFFAOYSA-N 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- CBIDRCWHNCKSTO-UHFFFAOYSA-N prenyl diphosphate Chemical compound CC(C)=CCO[P@](O)(=O)OP(O)(O)=O CBIDRCWHNCKSTO-UHFFFAOYSA-N 0.000 description 9
- RECPWADZDPGZMO-JYDXGTDNSA-N s-[2-[3-[[(2r)-4-[[[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 4-hydroxy-3-oxopentanethioate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)C(O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RECPWADZDPGZMO-JYDXGTDNSA-N 0.000 description 9
- 238000000844 transformation Methods 0.000 description 9
- 102100035709 Acetyl-coenzyme A synthetase, cytoplasmic Human genes 0.000 description 8
- 241000205042 Archaeoglobus fulgidus Species 0.000 description 8
- 241000228245 Aspergillus niger Species 0.000 description 8
- 241001277508 Castellaniella defragrans Species 0.000 description 8
- 102100038248 Cis-aconitate decarboxylase Human genes 0.000 description 8
- 241000605986 Fusobacterium nucleatum Species 0.000 description 8
- 241000589625 Ralstonia pickettii Species 0.000 description 8
- 150000001413 amino acids Chemical group 0.000 description 8
- 230000003115 biocidal effect Effects 0.000 description 8
- 230000001851 biosynthetic effect Effects 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 8
- 230000004077 genetic alteration Effects 0.000 description 8
- 231100000118 genetic alteration Toxicity 0.000 description 8
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 8
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 8
- 239000004334 sorbic acid Substances 0.000 description 8
- 229940075582 sorbic acid Drugs 0.000 description 8
- 235000010199 sorbic acid Nutrition 0.000 description 8
- 101150054688 thiM gene Proteins 0.000 description 8
- JVNVHNHITFVWIX-KZKUDURGSA-N (E)-cinnamoyl-CoA Chemical compound O=C([C@H](O)C(C)(COP(O)(=O)OP(O)(=O)OC[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C2=NC=NC(N)=C2N=C1)OP(O)(O)=O)C)NCCC(=O)NCCSC(=O)\C=C\C1=CC=CC=C1 JVNVHNHITFVWIX-KZKUDURGSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 7
- 108010046716 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) Proteins 0.000 description 7
- 241001465318 Aspergillus terreus Species 0.000 description 7
- JVNVHNHITFVWIX-WBHAVQPBSA-N Cinnamoyl-CoA Natural products S(C(=O)/C=C/c1ccccc1)CCNC(=O)CCNC(=O)[C@@H](O)C(CO[P@](=O)(O[P@@](=O)(OC[C@H]1[C@@H](OP(=O)(O)O)[C@@H](O)[C@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C JVNVHNHITFVWIX-WBHAVQPBSA-N 0.000 description 7
- 101100506210 Clostridioides difficile hadC gene Proteins 0.000 description 7
- 241000193403 Clostridium Species 0.000 description 7
- 241001508458 Clostridium saccharoperbutylacetonicum Species 0.000 description 7
- 101710088194 Dehydrogenase Proteins 0.000 description 7
- 108700040132 Mevalonate kinases Proteins 0.000 description 7
- 101100297400 Rhizobium meliloti (strain 1021) phaAB gene Proteins 0.000 description 7
- 244000057717 Streptococcus lactis Species 0.000 description 7
- 235000014897 Streptococcus lactis Nutrition 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 108060004127 isopentenyl phosphate kinase Proteins 0.000 description 7
- VIWKEBOLLIEAIL-FBMOWMAESA-N lactoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C(O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VIWKEBOLLIEAIL-FBMOWMAESA-N 0.000 description 7
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 239000000376 reactant Substances 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- 101710118140 Alpha-keto-acid decarboxylase Proteins 0.000 description 6
- 240000006439 Aspergillus oryzae Species 0.000 description 6
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 6
- 239000002028 Biomass Substances 0.000 description 6
- 108030001549 Cis-aconitate decarboxylases Proteins 0.000 description 6
- 241000186226 Corynebacterium glutamicum Species 0.000 description 6
- 108010019870 Dimethylmaleate hydratase Proteins 0.000 description 6
- 108020002908 Epoxide hydrolase Proteins 0.000 description 6
- 101100037853 Escherichia coli (strain K12) rnhA gene Proteins 0.000 description 6
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 102000057621 Glycerol kinases Human genes 0.000 description 6
- 108700016170 Glycerol kinases Proteins 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 6
- 108010021592 Pantothenate kinase Proteins 0.000 description 6
- 102100024122 Pantothenate kinase 1 Human genes 0.000 description 6
- 101100350716 Pseudomonas putida paaK gene Proteins 0.000 description 6
- 241000700157 Rattus norvegicus Species 0.000 description 6
- 241000235070 Saccharomyces Species 0.000 description 6
- 241000191967 Staphylococcus aureus Species 0.000 description 6
- 241000222057 Xanthophyllomyces dendrorhous Species 0.000 description 6
- KCUTZTDKOSEILP-NSCUHMNNSA-N [(e)-but-2-enyl] dihydrogen phosphate Chemical compound C\C=C\COP(O)(O)=O KCUTZTDKOSEILP-NSCUHMNNSA-N 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 101150014383 adhE gene Proteins 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 6
- UAHWPYUMFXYFJY-UHFFFAOYSA-N beta-myrcene Chemical compound CC(C)=CCCC(=C)C=C UAHWPYUMFXYFJY-UHFFFAOYSA-N 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 6
- 150000001720 carbohydrates Chemical class 0.000 description 6
- 235000014633 carbohydrates Nutrition 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 239000013613 expression plasmid Substances 0.000 description 6
- 239000013604 expression vector Substances 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 6
- 102000002678 mevalonate kinase Human genes 0.000 description 6
- 230000002438 mitochondrial effect Effects 0.000 description 6
- 101150110984 phaB gene Proteins 0.000 description 6
- 235000021317 phosphate Nutrition 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 101150034321 thiK gene Proteins 0.000 description 6
- 108020000423 thiamine kinase Proteins 0.000 description 6
- WBYWAXJHAXSJNI-VOTSOKGWSA-M trans-cinnamate Chemical compound [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 6
- 230000002103 transcriptional effect Effects 0.000 description 6
- JSNRRGGBADWTMC-UHFFFAOYSA-N (6E)-7,11-dimethyl-3-methylene-1,6,10-dodecatriene Chemical compound CC(C)=CCCC(C)=CCCC(=C)C=C JSNRRGGBADWTMC-UHFFFAOYSA-N 0.000 description 5
- OKZYCXHTTZZYSK-ZCFIWIBFSA-N (R)-5-phosphomevalonic acid Chemical compound OC(=O)C[C@@](O)(C)CCOP(O)(O)=O OKZYCXHTTZZYSK-ZCFIWIBFSA-N 0.000 description 5
- HNVRRHSXBLFLIG-UHFFFAOYSA-N 3-hydroxy-3-methylbut-1-ene Chemical compound CC(C)(O)C=C HNVRRHSXBLFLIG-UHFFFAOYSA-N 0.000 description 5
- 101100070612 Acidaminococcus fermentans (strain ATCC 25085 / DSM 20731 / CCUG 9996 / CIP 106432 / VR4) hgdA gene Proteins 0.000 description 5
- 101100070613 Acidaminococcus fermentans (strain ATCC 25085 / DSM 20731 / CCUG 9996 / CIP 106432 / VR4) hgdB gene Proteins 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 5
- 102100031065 Choline kinase alpha Human genes 0.000 description 5
- 241000193454 Clostridium beijerinckii Species 0.000 description 5
- 241001312295 Colletotrichum gloeosporioides Nara gc5 Species 0.000 description 5
- 102000005486 Epoxide hydrolase Human genes 0.000 description 5
- 101100350708 Escherichia coli (strain K12) paaF gene Proteins 0.000 description 5
- 241000193456 Eubacterium barkeri Species 0.000 description 5
- 241000233866 Fungi Species 0.000 description 5
- 241000588749 Klebsiella oxytoca Species 0.000 description 5
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 5
- 108010048581 Lysine decarboxylase Proteins 0.000 description 5
- 108030001129 Methylitaconate Delta-isomerases Proteins 0.000 description 5
- 108030004881 Myrcene synthases Proteins 0.000 description 5
- ACFIXJIJDZMPPO-NNYOXOHSSA-N NADPH Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](OP(O)(O)=O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 ACFIXJIJDZMPPO-NNYOXOHSSA-N 0.000 description 5
- 241001509383 Paraburkholderia xenovorans Species 0.000 description 5
- 241000582164 Phaeoacremonium minimum UCRPA7 Species 0.000 description 5
- 102100024279 Phosphomevalonate kinase Human genes 0.000 description 5
- LOWDQRQCDWPARB-XMWLYHNJSA-N S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 4-hydroxypent-2-enethioate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C=CC(O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 LOWDQRQCDWPARB-XMWLYHNJSA-N 0.000 description 5
- 241000193998 Streptococcus pneumoniae Species 0.000 description 5
- 102000002932 Thiolase Human genes 0.000 description 5
- 108060008225 Thiolase Proteins 0.000 description 5
- 108010093991 Vinylacetyl-CoA Delta-isomerase Proteins 0.000 description 5
- 108010081577 aldehyde dehydrogenase (NAD(P)+) Proteins 0.000 description 5
- 150000001299 aldehydes Chemical class 0.000 description 5
- 229940024606 amino acid Drugs 0.000 description 5
- 235000001014 amino acid Nutrition 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 229940114081 cinnamate Drugs 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000009089 cytolysis Effects 0.000 description 5
- 101150069125 fadB gene Proteins 0.000 description 5
- 239000012467 final product Substances 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 238000012239 gene modification Methods 0.000 description 5
- 230000005017 genetic modification Effects 0.000 description 5
- 235000013617 genetically modified food Nutrition 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 108010084715 isopropanol dehydrogenase (NADP) Proteins 0.000 description 5
- 239000006166 lysate Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 238000006241 metabolic reaction Methods 0.000 description 5
- VBPSVYDSYVJIPX-UHFFFAOYSA-N methylbutenol Natural products CCC=C(C)O VBPSVYDSYVJIPX-UHFFFAOYSA-N 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 108091000116 phosphomevalonate kinase Proteins 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 108091000042 riboflavin kinase Proteins 0.000 description 5
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 5
- VNOYUJKHFWYWIR-ITIYDSSPSA-N succinyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VNOYUJKHFWYWIR-ITIYDSSPSA-N 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 4
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 4
- 108010024812 (S)-2-methylmalate dehydratase Proteins 0.000 description 4
- KDVFRMMRZOCFLS-UHFFFAOYSA-N 2-oxopentanoic acid Chemical compound CCCC(=O)C(O)=O KDVFRMMRZOCFLS-UHFFFAOYSA-N 0.000 description 4
- 102000052553 3-Hydroxyacyl CoA Dehydrogenase Human genes 0.000 description 4
- 108700020831 3-Hydroxyacyl-CoA Dehydrogenase Proteins 0.000 description 4
- 102100039358 3-hydroxyacyl-CoA dehydrogenase type-2 Human genes 0.000 description 4
- 108090000124 3-hydroxybutyrate dehydrogenases Proteins 0.000 description 4
- 102000034279 3-hydroxybutyrate dehydrogenases Human genes 0.000 description 4
- 108010027577 3-oxoadipyl-coenzyme A thiolase Proteins 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- 108010003902 Acetyl-CoA C-acyltransferase Proteins 0.000 description 4
- 101100070614 Acidaminococcus fermentans (strain ATCC 25085 / DSM 20731 / CCUG 9996 / CIP 106432 / VR4) hgdC gene Proteins 0.000 description 4
- 102000016912 Aldehyde Reductase Human genes 0.000 description 4
- 108010053754 Aldehyde reductase Proteins 0.000 description 4
- 241000203069 Archaea Species 0.000 description 4
- 241001507865 Aspergillus fischeri Species 0.000 description 4
- 108010071778 Benzoylformate decarboxylase Proteins 0.000 description 4
- 101100174521 Bradyrhizobium diazoefficiens (strain JCM 10833 / BCRC 13528 / IAM 13628 / NBRC 14792 / USDA 110) fumC2 gene Proteins 0.000 description 4
- 101150116295 CAT2 gene Proteins 0.000 description 4
- 101100326920 Caenorhabditis elegans ctl-1 gene Proteins 0.000 description 4
- 108010018888 Choline kinase Proteins 0.000 description 4
- 101100277683 Citrobacter freundii dhaB gene Proteins 0.000 description 4
- 241000193163 Clostridioides difficile Species 0.000 description 4
- 241001468165 Clostridium aminobutyricum Species 0.000 description 4
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 4
- 241000304138 Enterococcus faecalis V583 Species 0.000 description 4
- 101100398755 Escherichia coli (strain K12) ldcC gene Proteins 0.000 description 4
- 108010036781 Fumarate Hydratase Proteins 0.000 description 4
- 102100036160 Fumarate hydratase, mitochondrial Human genes 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- 108010025885 Glycerol dehydratase Proteins 0.000 description 4
- 241000205063 Haloarcula marismortui Species 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 241001138401 Kluyveromyces lactis Species 0.000 description 4
- 108090000324 L-fuculokinases Proteins 0.000 description 4
- 240000006024 Lactobacillus plantarum Species 0.000 description 4
- 235000013965 Lactobacillus plantarum Nutrition 0.000 description 4
- 239000006137 Luria-Bertani broth Substances 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 4
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 4
- 241000157876 Metallosphaera sedula Species 0.000 description 4
- 101100451349 Mycobacterium tuberculosis (strain ATCC 25177 / H37Ra) hsaF gene Proteins 0.000 description 4
- 241001646725 Mycobacterium tuberculosis H37Rv Species 0.000 description 4
- 108700035964 Mycobacterium tuberculosis HsaD Proteins 0.000 description 4
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 4
- 241000582033 Neofusicoccum parvum UCRNP2 Species 0.000 description 4
- 101100126846 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) katG gene Proteins 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 108700005126 Ornithine decarboxylases Proteins 0.000 description 4
- 102000052812 Ornithine decarboxylases Human genes 0.000 description 4
- 241000218657 Picea Species 0.000 description 4
- 235000008124 Picea excelsa Nutrition 0.000 description 4
- 241000079829 Ralstonia eutropha JMP134 Species 0.000 description 4
- 102000048125 Riboflavin kinases Human genes 0.000 description 4
- JDAJNQAFBJVBMC-DJVIHCHSSA-N S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 2-oxopent-3-enethioate Chemical compound O=C(C(=O)SCCNC(CCNC([C@@H](C(COP(OP(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=NC=2C(N)=NC=NC1=2)O)OP(=O)(O)O)(=O)O)(=O)O)(C)C)O)=O)=O)C=CC JDAJNQAFBJVBMC-DJVIHCHSSA-N 0.000 description 4
- 241001138501 Salmonella enterica Species 0.000 description 4
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 4
- 101100280476 Streptococcus pneumoniae (strain ATCC BAA-255 / R6) fabM gene Proteins 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 241000192581 Synechocystis sp. Species 0.000 description 4
- 241000204673 Thermoplasma acidophilum Species 0.000 description 4
- 241000607265 Vibrio vulnificus Species 0.000 description 4
- 241000589153 Zoogloea ramigera Species 0.000 description 4
- 241000588902 Zymomonas mobilis Species 0.000 description 4
- VPTVZDVITVNLTM-NSCUHMNNSA-N [(e)-but-2-enyl] phosphono hydrogen phosphate Chemical compound C\C=C\COP(O)(=O)OP(O)(O)=O VPTVZDVITVNLTM-NSCUHMNNSA-N 0.000 description 4
- OJFDKHTZOUZBOS-CITAKDKDSA-N acetoacetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 OJFDKHTZOUZBOS-CITAKDKDSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 101150019439 aldB gene Proteins 0.000 description 4
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 4
- 101150051452 bphI gene Proteins 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 101150056052 dmpF gene Proteins 0.000 description 4
- 101150092019 fadJ gene Proteins 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 101150028420 fumC gene Proteins 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 108010072869 indolepyruvate decarboxylase Proteins 0.000 description 4
- 108020001983 isochorismate synthase Proteins 0.000 description 4
- NUHSROFQTUXZQQ-UHFFFAOYSA-N isopentenyl diphosphate Chemical compound CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 4
- 101150068863 ispE gene Proteins 0.000 description 4
- 229940072205 lactobacillus plantarum Drugs 0.000 description 4
- 229930007744 linalool Natural products 0.000 description 4
- 101150017274 menF gene Proteins 0.000 description 4
- 230000006680 metabolic alteration Effects 0.000 description 4
- 230000037353 metabolic pathway Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 210000003470 mitochondria Anatomy 0.000 description 4
- 150000004712 monophosphates Chemical class 0.000 description 4
- 108060005675 oleate hydratase Proteins 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 101150046540 phaA gene Proteins 0.000 description 4
- QAQREVBBADEHPA-IEXPHMLFSA-N propionyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QAQREVBBADEHPA-IEXPHMLFSA-N 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- FQTLCLSUCSAZDY-UHFFFAOYSA-N (+) E(S) nerolidol Natural products CC(C)=CCCC(C)=CCCC(C)(O)C=C FQTLCLSUCSAZDY-UHFFFAOYSA-N 0.000 description 3
- CXENHBSYCFFKJS-UHFFFAOYSA-N (3E,6E)-3,7,11-Trimethyl-1,3,6,10-dodecatetraene Natural products CC(C)=CCCC(C)=CCC=C(C)C=C CXENHBSYCFFKJS-UHFFFAOYSA-N 0.000 description 3
- 108030004924 (3S,6E)-nerolidol synthases Proteins 0.000 description 3
- 101710195549 (S)-beta-macrocarpene synthase Proteins 0.000 description 3
- 108010021680 2-oxoglutarate decarboxylase Proteins 0.000 description 3
- VWFJDQUYCIWHTN-YFVJMOTDSA-N 2-trans,6-trans-farnesyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-YFVJMOTDSA-N 0.000 description 3
- 102100026105 3-ketoacyl-CoA thiolase, mitochondrial Human genes 0.000 description 3
- 108030003683 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinases Proteins 0.000 description 3
- 101710166309 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase Proteins 0.000 description 3
- SUOCJCZSKFWWLQ-UHFFFAOYSA-N 4-hydroxy-3-oxopentanoic acid Chemical compound CC(O)C(=O)CC(O)=O SUOCJCZSKFWWLQ-UHFFFAOYSA-N 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- SJZRECIVHVDYJC-UHFFFAOYSA-M 4-hydroxybutyrate Chemical compound OCCCC([O-])=O SJZRECIVHVDYJC-UHFFFAOYSA-M 0.000 description 3
- 241000589220 Acetobacter Species 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 108010006229 Acetyl-CoA C-acetyltransferase Proteins 0.000 description 3
- 241000194103 Bacillus pumilus Species 0.000 description 3
- 101000782236 Bothrops leucurus Thrombin-like enzyme leucurobin Proteins 0.000 description 3
- 241000193764 Brevibacillus brevis Species 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 3
- 241000107405 Cutibacterium acnes KPA171202 Species 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 102100029588 Deoxycytidine kinase Human genes 0.000 description 3
- 108010033174 Deoxycytidine kinase Proteins 0.000 description 3
- 108010006731 Dimethylallyltranstransferase Proteins 0.000 description 3
- 241000194032 Enterococcus faecalis Species 0.000 description 3
- VWFJDQUYCIWHTN-FBXUGWQNSA-N Farnesyl diphosphate Natural products CC(C)=CCC\C(C)=C/CC\C(C)=C/COP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-FBXUGWQNSA-N 0.000 description 3
- 208000033962 Fontaine progeroid syndrome Diseases 0.000 description 3
- 239000005792 Geraniol Substances 0.000 description 3
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 3
- 108030004852 Geraniol isomerases Proteins 0.000 description 3
- 101001035740 Homo sapiens 3-hydroxyacyl-CoA dehydrogenase type-2 Proteins 0.000 description 3
- 101000958922 Homo sapiens Diphosphomevalonate decarboxylase Proteins 0.000 description 3
- 101001033820 Homo sapiens Malate dehydrogenase, mitochondrial Proteins 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 3
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 3
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 3
- 244000185256 Lactobacillus plantarum WCFS1 Species 0.000 description 3
- 235000011227 Lactobacillus plantarum WCFS1 Nutrition 0.000 description 3
- 241000186610 Lactobacillus sp. Species 0.000 description 3
- 101710114132 Linalool dehydratase/isomerase Proteins 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 102100026475 Malate dehydrogenase, cytoplasmic Human genes 0.000 description 3
- 102100039742 Malate dehydrogenase, mitochondrial Human genes 0.000 description 3
- LTYOQGRJFJAKNA-KKIMTKSISA-N Malonyl CoA Natural products S(C(=O)CC(=O)O)CCNC(=O)CCNC(=O)[C@@H](O)C(CO[P@](=O)(O[P@](=O)(OC[C@H]1[C@@H](OP(=O)(O)O)[C@@H](O)[C@@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C LTYOQGRJFJAKNA-KKIMTKSISA-N 0.000 description 3
- 241000205274 Methanosarcina mazei Species 0.000 description 3
- 241001302042 Methanothermobacter thermautotrophicus Species 0.000 description 3
- 241000186367 Mycobacterium avium Species 0.000 description 3
- 101100276041 Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) ctpD gene Proteins 0.000 description 3
- RFMMMVDNIPUKGG-YFKPBYRVSA-N N-acetyl-L-glutamic acid Chemical compound CC(=O)N[C@H](C(O)=O)CCC(O)=O RFMMMVDNIPUKGG-YFKPBYRVSA-N 0.000 description 3
- FQTLCLSUCSAZDY-ATGUSINASA-N Nerolidol Chemical compound CC(C)=CCC\C(C)=C\CC[C@](C)(O)C=C FQTLCLSUCSAZDY-ATGUSINASA-N 0.000 description 3
- 244000061176 Nicotiana tabacum Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- 241000168036 Populus alba Species 0.000 description 3
- 241001600128 Populus tremula x Populus alba Species 0.000 description 3
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 3
- 101100463818 Pseudomonas oleovorans phaC1 gene Proteins 0.000 description 3
- 241000205156 Pyrococcus furiosus Species 0.000 description 3
- 241000589194 Rhizobium leguminosarum Species 0.000 description 3
- 241000191043 Rhodobacter sphaeroides Species 0.000 description 3
- 241000190950 Rhodopseudomonas palustris Species 0.000 description 3
- LBVNRNVDZZLRMP-XGXNYEOVSA-N S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 2-hydroxypent-3-enethioate Chemical compound OC(C(=O)SCCNC(CCNC([C@@H](C(COP(OP(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=NC=2C(N)=NC=NC1=2)O)OP(=O)(O)O)(=O)O)(=O)O)(C)C)O)=O)=O)C=CC LBVNRNVDZZLRMP-XGXNYEOVSA-N 0.000 description 3
- GQLBISHKIZPYFT-ZMHDXICWSA-N S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 5-hydroxypent-2-enethioate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C=CCCO)O[C@H]1N1C2=NC=NC(N)=C2N=C1 GQLBISHKIZPYFT-ZMHDXICWSA-N 0.000 description 3
- UQKJYFKDKOHSJF-ZMHDXICWSA-N S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] penta-2,4-dienethioate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C=CC=C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 UQKJYFKDKOHSJF-ZMHDXICWSA-N 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108030004889 Thiamine diphosphokinases Proteins 0.000 description 3
- 102100033451 Thyroid hormone receptor beta Human genes 0.000 description 3
- 241000223105 Trypanosoma brucei Species 0.000 description 3
- WIOQNWTZBOQTEU-UHFFFAOYSA-J [5-(6-aminopurin-9-yl)-4-hydroxy-2-[[[[3-hydroxy-2,2-dimethyl-4-oxo-4-[[3-oxo-3-[2-(3-oxopentanoylsulfanyl)ethylamino]propyl]amino]butoxy]-oxidophosphoryl]oxy-oxidophosphoryl]oxymethyl]oxolan-3-yl] phosphate Chemical compound OC1C(OP([O-])([O-])=O)C(COP([O-])(=O)OP([O-])(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)CC)OC1N1C2=NC=NC(N)=C2N=C1 WIOQNWTZBOQTEU-UHFFFAOYSA-J 0.000 description 3
- 101150024743 adhA gene Proteins 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 101150016301 bioW gene Proteins 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- CRFNGMNYKDXRTN-CITAKDKDSA-N butyryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 CRFNGMNYKDXRTN-CITAKDKDSA-N 0.000 description 3
- 101150008667 cadA gene Proteins 0.000 description 3
- 238000012824 chemical production Methods 0.000 description 3
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 3
- KFWWCMJSYSSPSK-PAXLJYGASA-N crotonoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)/C=C/C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 KFWWCMJSYSSPSK-PAXLJYGASA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229940032049 enterococcus faecalis Drugs 0.000 description 3
- 101150041588 eutE gene Proteins 0.000 description 3
- 239000012847 fine chemical Substances 0.000 description 3
- 229940113087 geraniol Drugs 0.000 description 3
- 101150040073 glpK2 gene Proteins 0.000 description 3
- 101150003440 hibch gene Proteins 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 108010071598 homoserine kinase Proteins 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 150000004715 keto acids Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- LTYOQGRJFJAKNA-DVVLENMVSA-N malonyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 LTYOQGRJFJAKNA-DVVLENMVSA-N 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- WASNIKZYIWZQIP-AWEZNQCLSA-N nerolidol Natural products CC(=CCCC(=CCC[C@@H](O)C=C)C)C WASNIKZYIWZQIP-AWEZNQCLSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000004952 protein activity Effects 0.000 description 3
- 238000002864 sequence alignment Methods 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 108020002120 tryptophan dimethylallyltransferase Proteins 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 2
- WTIIULQJLZEHGZ-AWFVSMACSA-N (2R,3S)-2,3-dimethylmalic acid Chemical compound OC(=O)[C@@H](C)[C@@](C)(O)C(O)=O WTIIULQJLZEHGZ-AWFVSMACSA-N 0.000 description 2
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical compound OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 description 2
- CDOSHBSSFJOMGT-SNVBAGLBSA-N (S)-linalool Chemical compound CC(C)=CCC[C@](C)(O)C=C CDOSHBSSFJOMGT-SNVBAGLBSA-N 0.000 description 2
- 108010012839 (deoxy)nucleoside-phosphate kinase Proteins 0.000 description 2
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 2
- NMDWGEGFJUBKLB-UHFFFAOYSA-N 2-acetyllactic acid Chemical compound CC(=O)C(C)(O)C(O)=O NMDWGEGFJUBKLB-UHFFFAOYSA-N 0.000 description 2
- 108010065780 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase Proteins 0.000 description 2
- 108010077111 2-hydroxypentadienoic acid hydratase Proteins 0.000 description 2
- 108010072455 2-ketoadipate reductase Proteins 0.000 description 2
- FGSBNBBHOZHUBO-UHFFFAOYSA-N 2-oxoadipic acid Chemical compound OC(=O)CCCC(=O)C(O)=O FGSBNBBHOZHUBO-UHFFFAOYSA-N 0.000 description 2
- TYEYBOSBBBHJIV-UHFFFAOYSA-N 2-oxobutanoic acid Chemical compound CCC(=O)C(O)=O TYEYBOSBBBHJIV-UHFFFAOYSA-N 0.000 description 2
- RSTKLPZEZYGQPY-UHFFFAOYSA-N 3-(indol-3-yl)pyruvic acid Chemical compound C1=CC=C2C(CC(=O)C(=O)O)=CNC2=C1 RSTKLPZEZYGQPY-UHFFFAOYSA-N 0.000 description 2
- 108030006979 3-hydroxy-2-methylbutyryl-CoA dehydrogenases Proteins 0.000 description 2
- WHBMMWSBFZVSSR-UHFFFAOYSA-M 3-hydroxybutyrate Chemical compound CC(O)CC([O-])=O WHBMMWSBFZVSSR-UHFFFAOYSA-M 0.000 description 2
- 108020003281 3-hydroxyisobutyrate dehydrogenase Proteins 0.000 description 2
- 102000006027 3-hydroxyisobutyrate dehydrogenase Human genes 0.000 description 2
- QHKABHOOEWYVLI-UHFFFAOYSA-N 3-methyl-2-oxobutanoic acid Chemical compound CC(C)C(=O)C(O)=O QHKABHOOEWYVLI-UHFFFAOYSA-N 0.000 description 2
- RTGHRDFWYQHVFW-UHFFFAOYSA-N 3-oxoadipic acid Chemical compound OC(=O)CCC(=O)CC(O)=O RTGHRDFWYQHVFW-UHFFFAOYSA-N 0.000 description 2
- VKKKAAPGXHWXOO-BIEWRJSYSA-N 3-oxoadipyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)CCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VKKKAAPGXHWXOO-BIEWRJSYSA-N 0.000 description 2
- VOXXWSYKYCBWHO-UHFFFAOYSA-M 3-phenyllactate Chemical compound [O-]C(=O)C(O)CC1=CC=CC=C1 VOXXWSYKYCBWHO-UHFFFAOYSA-M 0.000 description 2
- BAMBWCGEVIAQBF-CITAKDKDSA-N 4-hydroxybutyryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCO)O[C@H]1N1C2=NC=NC(N)=C2N=C1 BAMBWCGEVIAQBF-CITAKDKDSA-N 0.000 description 2
- 108010087327 4-oxalocrotonate decarboxylase Proteins 0.000 description 2
- 244000178606 Abies grandis Species 0.000 description 2
- 235000017894 Abies grandis Nutrition 0.000 description 2
- 244000283763 Acetobacter aceti Species 0.000 description 2
- 235000007847 Acetobacter aceti Nutrition 0.000 description 2
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 description 2
- 241000588624 Acinetobacter calcoaceticus Species 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- 102100032534 Adenosine kinase Human genes 0.000 description 2
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 2
- 102000005751 Alcohol Oxidoreductases Human genes 0.000 description 2
- 108010031132 Alcohol Oxidoreductases Proteins 0.000 description 2
- 108030001557 Allyl-alcohol dehydrogenases Proteins 0.000 description 2
- 108030004920 Alpha-farnesene synthases Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000722954 Anaerobiospirillum succiniciproducens Species 0.000 description 2
- 241001136167 Anaerotignum propionicum Species 0.000 description 2
- 101100425919 Arabidopsis thaliana TPS03 gene Proteins 0.000 description 2
- 108010005694 Aspartate 4-decarboxylase Proteins 0.000 description 2
- 101100162204 Aspergillus parasiticus (strain ATCC 56775 / NRRL 5862 / SRRC 143 / SU-1) aflH gene Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 101001027074 Azotobacter chroococcum mcd 1 Flavodoxin A Proteins 0.000 description 2
- 101000931938 Azotobacter chroococcum mcd 1 Flavodoxin B Proteins 0.000 description 2
- 241000193755 Bacillus cereus Species 0.000 description 2
- 101100170446 Bacillus subtilis (strain 168) dhbC gene Proteins 0.000 description 2
- 101100228546 Bacillus subtilis (strain 168) folE2 gene Proteins 0.000 description 2
- 101100310362 Bacillus subtilis (strain 168) skfF gene Proteins 0.000 description 2
- 101100098786 Bacillus subtilis (strain 168) tapA gene Proteins 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 101100494773 Caenorhabditis elegans ctl-2 gene Proteins 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 241000222173 Candida parapsilosis Species 0.000 description 2
- 108010043334 Carotenoid 1,2-hydratase Proteins 0.000 description 2
- 241000260546 Carpoglyphus lactis Species 0.000 description 2
- 241001643775 Chloroflexus aggregans Species 0.000 description 2
- 241000192731 Chloroflexus aurantiacus Species 0.000 description 2
- 241000588919 Citrobacter freundii Species 0.000 description 2
- 241001557688 Citrobacter freundii ATCC 8090 = MTCC 1658 Species 0.000 description 2
- 241000949031 Citrobacter rodentium Species 0.000 description 2
- 241001508790 Clarkia breweri Species 0.000 description 2
- 101100506213 Clostridioides difficile hadI gene Proteins 0.000 description 2
- 101100338533 Clostridium aminobutyricum abfD gene Proteins 0.000 description 2
- RGJOEKWQDUBAIZ-IBOSZNHHSA-N CoASH Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-IBOSZNHHSA-N 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241000186216 Corynebacterium Species 0.000 description 2
- 240000008067 Cucumis sativus Species 0.000 description 2
- 235000009849 Cucumis sativus Nutrition 0.000 description 2
- 101100326160 Cupriavidus necator (strain ATCC 17699 / DSM 428 / KCTC 22496 / NCIMB 10442 / H16 / Stanier 337) bktB gene Proteins 0.000 description 2
- 102100023044 Cytosolic acyl coenzyme A thioester hydrolase Human genes 0.000 description 2
- 101710152190 Cytosolic acyl coenzyme A thioester hydrolase Proteins 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 description 2
- 101100269671 Dictyostelium discoideum alrA gene Proteins 0.000 description 2
- 101100243777 Dictyostelium discoideum phbB gene Proteins 0.000 description 2
- 102000057412 Diphosphomevalonate decarboxylases Human genes 0.000 description 2
- 101150051269 ERG10 gene Proteins 0.000 description 2
- 101150071502 ERG12 gene Proteins 0.000 description 2
- 241000589566 Elizabethkingia meningoseptica Species 0.000 description 2
- 101100172445 Escherichia coli (strain K12) entH gene Proteins 0.000 description 2
- 101100447155 Escherichia coli (strain K12) fre gene Proteins 0.000 description 2
- 101100215028 Escherichia coli (strain K12) mhpF gene Proteins 0.000 description 2
- 101100350700 Escherichia coli (strain K12) paaB gene Proteins 0.000 description 2
- 101100350701 Escherichia coli (strain K12) paaC gene Proteins 0.000 description 2
- 101100350709 Escherichia coli (strain K12) paaG gene Proteins 0.000 description 2
- 101100350711 Escherichia coli (strain K12) paaI gene Proteins 0.000 description 2
- 101100082074 Escherichia coli (strain K12) paaZ gene Proteins 0.000 description 2
- 101100319874 Escherichia coli (strain K12) yahK gene Proteins 0.000 description 2
- 101100321116 Escherichia coli (strain K12) yqhD gene Proteins 0.000 description 2
- 101100545037 Escherichia coli (strain K12) yuaF gene Proteins 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 102100026859 FAD-AMP lyase (cyclizing) Human genes 0.000 description 2
- 102100035111 Farnesyl pyrophosphate synthase Human genes 0.000 description 2
- 101100112369 Fasciola hepatica Cat-1 gene Proteins 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 241000223195 Fusarium graminearum Species 0.000 description 2
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 2
- GVVPGTZRZFNKDS-YFHOEESVSA-N Geranyl diphosphate Natural products CC(C)=CCC\C(C)=C/COP(O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-YFHOEESVSA-N 0.000 description 2
- 241000168517 Haematococcus lacustris Species 0.000 description 2
- 101100342039 Halobacterium salinarum (strain ATCC 29341 / DSM 671 / R1) kdpQ gene Proteins 0.000 description 2
- 101000597680 Homo sapiens 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial Proteins 0.000 description 2
- 101001056308 Homo sapiens Malate dehydrogenase, cytoplasmic Proteins 0.000 description 2
- 101000880439 Homo sapiens Serine/threonine-protein kinase 3 Proteins 0.000 description 2
- 101000795074 Homo sapiens Tryptase alpha/beta-1 Proteins 0.000 description 2
- 241000425024 Hoyosella subflava DQS3-9A1 Species 0.000 description 2
- 108010066338 Inositol-tetrakisphosphate 1-kinase Proteins 0.000 description 2
- 102100022296 Inositol-tetrakisphosphate 1-kinase Human genes 0.000 description 2
- 102000005385 Intramolecular Transferases Human genes 0.000 description 2
- 108010031311 Intramolecular Transferases Proteins 0.000 description 2
- 102100023418 Ketohexokinase Human genes 0.000 description 2
- 241000588915 Klebsiella aerogenes Species 0.000 description 2
- 101100269572 Klebsiella aerogenes budA gene Proteins 0.000 description 2
- 101100236497 Klebsiella aerogenes maoC gene Proteins 0.000 description 2
- 241000588747 Klebsiella pneumoniae Species 0.000 description 2
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 108010043075 L-threonine 3-dehydrogenase Proteins 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 241000589902 Leptospira Species 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 241000192130 Leuconostoc mesenteroides Species 0.000 description 2
- 108030005936 Linalool dehydratases Proteins 0.000 description 2
- 102000004317 Lyases Human genes 0.000 description 2
- 108090000856 Lyases Proteins 0.000 description 2
- 101150084262 MDH3 gene Proteins 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 241000219828 Medicago truncatula Species 0.000 description 2
- 244000007703 Mentha citrata Species 0.000 description 2
- 235000007421 Mentha citrata Nutrition 0.000 description 2
- 241000589195 Mesorhizobium loti Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241001148172 Microlunatus phosphovorus Species 0.000 description 2
- 102000004232 Mitogen-Activated Protein Kinase Kinases Human genes 0.000 description 2
- 241000187480 Mycobacterium smegmatis Species 0.000 description 2
- 101100269700 Mycolicibacterium smegmatis alr gene Proteins 0.000 description 2
- 241000432072 Mycoplasma pneumoniae M129 Species 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 101100445407 Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) erg10B gene Proteins 0.000 description 2
- 101100005271 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cat-1 gene Proteins 0.000 description 2
- 101100028920 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cfp gene Proteins 0.000 description 2
- 241001495644 Nicotiana glutinosa Species 0.000 description 2
- 235000010676 Ocimum basilicum Nutrition 0.000 description 2
- 240000007926 Ocimum gratissimum Species 0.000 description 2
- 101100268785 Paraburkholderia xenovorans (strain LB400) bphJ gene Proteins 0.000 description 2
- 241000097438 Paraburkholderia xenovorans LB400 Species 0.000 description 2
- 241000228150 Penicillium chrysogenum Species 0.000 description 2
- 101000662819 Physarum polycephalum Terpene synthase 1 Proteins 0.000 description 2
- 244000113943 Pinus sabiniana Species 0.000 description 2
- 235000006237 Pinus sabiniana Nutrition 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 241000589538 Pseudomonas fragi Species 0.000 description 2
- 241000922540 Pseudomonas knackmussii Species 0.000 description 2
- 101100451328 Pseudomonas putida (strain ATCC 700007 / DSM 6899 / BCRC 17059 / F1) todH gene Proteins 0.000 description 2
- 241000320117 Pseudomonas putida KT2440 Species 0.000 description 2
- 101100063536 Pseudomonas sp. (strain CF600) dmpH gene Proteins 0.000 description 2
- 241000589614 Pseudomonas stutzeri Species 0.000 description 2
- 241000736843 Pyrobaculum aerophilum Species 0.000 description 2
- 241000777575 Pyrobaculum aerophilum str. IM2 Species 0.000 description 2
- 241001223147 Pyrobaculum neutrophilum Species 0.000 description 2
- WHBMMWSBFZVSSR-UHFFFAOYSA-N R3HBA Natural products CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 241000589180 Rhizobium Species 0.000 description 2
- 241001607432 Rhizobium leguminosarum bv. viciae 3841 Species 0.000 description 2
- 240000005384 Rhizopus oryzae Species 0.000 description 2
- 235000013752 Rhizopus oryzae Nutrition 0.000 description 2
- 101100332697 Rhodobacter capsulatus (strain ATCC BAA-309 / NBRC 16581 / SB1003) fadB1 gene Proteins 0.000 description 2
- 241000187563 Rhodococcus ruber Species 0.000 description 2
- 108030004891 Ribose-phosphate diphosphokinases Proteins 0.000 description 2
- 241001134684 Rubrivivax gelatinosus Species 0.000 description 2
- 108010018903 S-linalool synthase Proteins 0.000 description 2
- 241000426680 Salinispora arenicola Species 0.000 description 2
- 241001659130 Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S Species 0.000 description 2
- 241000405383 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 Species 0.000 description 2
- 241000235060 Scheffersomyces stipitis Species 0.000 description 2
- 241000605031 Selenomonas ruminantium Species 0.000 description 2
- 102100037628 Serine/threonine-protein kinase 3 Human genes 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 235000002560 Solanum lycopersicum Nutrition 0.000 description 2
- 241000043488 Staphylococcus aureus subsp. aureus Mu50 Species 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 241000123055 Stereum hirsutum Species 0.000 description 2
- 101100398785 Streptococcus agalactiae serotype V (strain ATCC BAA-611 / 2603 V/R) ldhD gene Proteins 0.000 description 2
- 241000058406 Streptococcus pneumoniae SPNA45 Species 0.000 description 2
- 241000194020 Streptococcus thermophilus Species 0.000 description 2
- 101100322937 Streptococcus thermophilus aldC gene Proteins 0.000 description 2
- 241000187747 Streptomyces Species 0.000 description 2
- 241000187180 Streptomyces sp. Species 0.000 description 2
- 108010075728 Succinate-CoA Ligases Proteins 0.000 description 2
- 102000011929 Succinate-CoA Ligases Human genes 0.000 description 2
- 241000192560 Synechococcus sp. Species 0.000 description 2
- 101150014906 TPS10 gene Proteins 0.000 description 2
- 108030003514 Tartrate decarboxylases Proteins 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 241000204652 Thermotoga Species 0.000 description 2
- 241000999856 Thermotoga maritima MSB8 Species 0.000 description 2
- 241000589499 Thermus thermophilus Species 0.000 description 2
- 102000005488 Thioesterase Human genes 0.000 description 2
- 241000224527 Trichomonas vaginalis Species 0.000 description 2
- 241000975677 Trichomonas vaginalis G3 Species 0.000 description 2
- 102100029639 Tryptase alpha/beta-1 Human genes 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 241000607272 Vibrio parahaemolyticus Species 0.000 description 2
- 241000235015 Yarrowia lipolytica Species 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000007244 Zea mays Nutrition 0.000 description 2
- 241000588901 Zymomonas Species 0.000 description 2
- 101100386830 Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) ddh gene Proteins 0.000 description 2
- ALEWCKXBHSDCCT-FBXUGWQNSA-N [(2z,6z)-3,7,11-trimethyldodeca-2,6,10-trienyl] dihydrogen phosphate Chemical compound CC(C)=CCC\C(C)=C/CC\C(C)=C/COP(O)(O)=O ALEWCKXBHSDCCT-FBXUGWQNSA-N 0.000 description 2
- 241000193450 [Clostridium] symbiosum Species 0.000 description 2
- 241001231403 [Nectria] haematococca Species 0.000 description 2
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 2
- IPBVNPXQWQGGJP-UHFFFAOYSA-N acetic acid phenyl ester Natural products CC(=O)OC1=CC=CC=C1 IPBVNPXQWQGGJP-UHFFFAOYSA-N 0.000 description 2
- 108010084631 acetolactate decarboxylase Proteins 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 108010048430 aconitate decarboxylase Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 101150049512 ald gene Proteins 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- VYBREYKSZAROCT-UHFFFAOYSA-N alpha-myrcene Natural products CC(=C)CCCC(=C)C=C VYBREYKSZAROCT-UHFFFAOYSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 101150063145 atoA gene Proteins 0.000 description 2
- 101150006429 atoB gene Proteins 0.000 description 2
- 101150008413 atoD gene Proteins 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 108010080115 beta-farnesene synthase Proteins 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 230000036983 biotransformation Effects 0.000 description 2
- 101150008745 bphG gene Proteins 0.000 description 2
- 101150015366 budA gene Proteins 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- 229940055022 candida parapsilosis Drugs 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 2
- 101150057969 cmtG gene Proteins 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- 230000000911 decarboxylating effect Effects 0.000 description 2
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 2
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical group OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 2
- 101150012368 dmdA gene Proteins 0.000 description 2
- 101150105331 dmpG gene Proteins 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229940092559 enterobacter aerogenes Drugs 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 101150004992 fadA gene Proteins 0.000 description 2
- 101150027774 fadI gene Proteins 0.000 description 2
- 101150115959 fadR gene Proteins 0.000 description 2
- 238000012262 fermentative production Methods 0.000 description 2
- YMDXZJFXQJVXBF-STHAYSLISA-N fosfomycin Chemical compound C[C@@H]1O[C@@H]1P(O)(O)=O YMDXZJFXQJVXBF-STHAYSLISA-N 0.000 description 2
- 229960000308 fosfomycin Drugs 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 101150030625 fucO gene Proteins 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- GVVPGTZRZFNKDS-JXMROGBWSA-N geranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-JXMROGBWSA-N 0.000 description 2
- 101150080232 glpK1 gene Proteins 0.000 description 2
- SYKWLIJQEHRDNH-CKRMAKSASA-N glutaryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 SYKWLIJQEHRDNH-CKRMAKSASA-N 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 101150003679 hsaG gene Proteins 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-M isovalerate Chemical compound CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 2
- 108010067653 lactate dehydratase Proteins 0.000 description 2
- 101150026107 ldh1 gene Proteins 0.000 description 2
- 101150041530 ldha gene Proteins 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 101150080950 mdlC gene Proteins 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- ZIYVHBGGAOATLY-UHFFFAOYSA-N methylmalonic acid Chemical compound OC(=O)C(C)C(O)=O ZIYVHBGGAOATLY-UHFFFAOYSA-N 0.000 description 2
- MZFOKIKEPGUZEN-FBMOWMAESA-N methylmalonyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C(C(O)=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MZFOKIKEPGUZEN-FBMOWMAESA-N 0.000 description 2
- 101150087346 mhpE gene Proteins 0.000 description 2
- 101150024975 mhpF gene Proteins 0.000 description 2
- 239000006151 minimal media Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 101150037784 paaA gene Proteins 0.000 description 2
- 101150001292 padC gene Proteins 0.000 description 2
- 101150023648 pcaF gene Proteins 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N pentanoic acid group Chemical group C(CCCC)(=O)O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 101150048611 phaC gene Proteins 0.000 description 2
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 2
- 229940049953 phenylacetate Drugs 0.000 description 2
- 108010056979 phenylacrylic acid decarboxylase Proteins 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- ASUAYTHWZCLXAN-UHFFFAOYSA-N prenol Chemical compound CC(C)=CCO ASUAYTHWZCLXAN-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 244000209700 shan ge teng Species 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 101150026728 tesB gene Proteins 0.000 description 2
- 108020002982 thioesterase Proteins 0.000 description 2
- 101150096860 thlA gene Proteins 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- UATIGEHITDTAGF-CITAKDKDSA-N vinylacetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC=C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 UATIGEHITDTAGF-CITAKDKDSA-N 0.000 description 2
- 101150062998 xylI gene Proteins 0.000 description 2
- 101150102457 ybgC gene Proteins 0.000 description 2
- 101150103853 yciA gene Proteins 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- 229920001791 ((R)-3-Hydroxybutanoyl)(n-2) Polymers 0.000 description 1
- WTFXTQVDAKGDEY-UHFFFAOYSA-N (-)-chorismic acid Natural products OC1C=CC(C(O)=O)=CC1OC(=C)C(O)=O WTFXTQVDAKGDEY-UHFFFAOYSA-N 0.000 description 1
- PYBVXNWDSBYQSA-BYPYZUCNSA-N (2s)-2-aminobutane-1,4-diol Chemical compound OC[C@@H](N)CCO PYBVXNWDSBYQSA-BYPYZUCNSA-N 0.000 description 1
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- JSNRRGGBADWTMC-QINSGFPZSA-N (E)-beta-Farnesene Natural products CC(C)=CCC\C(C)=C/CCC(=C)C=C JSNRRGGBADWTMC-QINSGFPZSA-N 0.000 description 1
- SIGQQUBJQXSAMW-ZCFIWIBFSA-N (R)-5-diphosphomevalonic acid Chemical compound OC(=O)C[C@@](O)(C)CCOP(O)(=O)OP(O)(O)=O SIGQQUBJQXSAMW-ZCFIWIBFSA-N 0.000 description 1
- PHIQHXFUZVPYII-ZCFIWIBFSA-N (R)-carnitine Chemical compound C[N+](C)(C)C[C@H](O)CC([O-])=O PHIQHXFUZVPYII-ZCFIWIBFSA-N 0.000 description 1
- OOEDHTCVMHDXRH-IWQZZHSRSA-N (Z)-5-oxohex-2-enedioic acid Chemical compound OC(=O)\C=C/CC(=O)C(O)=O OOEDHTCVMHDXRH-IWQZZHSRSA-N 0.000 description 1
- 108010026367 (deoxy)adenylate kinase Proteins 0.000 description 1
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 1
- 102000001556 1-Phosphatidylinositol 4-Kinase Human genes 0.000 description 1
- 108010029190 1-Phosphatidylinositol 4-Kinase Proteins 0.000 description 1
- IGBRRSIHEGCUEN-UHFFFAOYSA-N 1-cyclohexyl-4-(1,2-diphenylethyl)piperazine Chemical compound C=1C=CC=CC=1CC(C=1C=CC=CC=1)N(CC1)CCN1C1CCCCC1 IGBRRSIHEGCUEN-UHFFFAOYSA-N 0.000 description 1
- 102100038028 1-phosphatidylinositol 3-phosphate 5-kinase Human genes 0.000 description 1
- 108030003698 1-phosphatidylinositol-3-phosphate 5-kinases Proteins 0.000 description 1
- 108010052341 1-phosphatidylinositol-4-phosphate 5-kinase Proteins 0.000 description 1
- 108030003684 1-phosphatidylinositol-5-phosphate 4-kinases Proteins 0.000 description 1
- 108010023317 1-phosphofructokinase Proteins 0.000 description 1
- 102100024341 10 kDa heat shock protein, mitochondrial Human genes 0.000 description 1
- JXBSHSBNOVLGHF-UHFFFAOYSA-N 10-cis-Dihydrofarnesen Natural products CC=C(C)CCC=C(C)CCC=C(C)C JXBSHSBNOVLGHF-UHFFFAOYSA-N 0.000 description 1
- 108030003727 2'-phosphotransferases Proteins 0.000 description 1
- AUFZRCJENRSRLY-UHFFFAOYSA-N 2,3,5-trimethylhydroquinone Chemical compound CC1=CC(O)=C(C)C(C)=C1O AUFZRCJENRSRLY-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 108030004887 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinases Proteins 0.000 description 1
- JUQLUIFNNFIIKC-UHFFFAOYSA-N 2-aminopimelic acid Chemical compound OC(=O)C(N)CCCCC(O)=O JUQLUIFNNFIIKC-UHFFFAOYSA-N 0.000 description 1
- MCRZWYDXIGCFKO-UHFFFAOYSA-N 2-butylpropanedioic acid Chemical compound CCCCC(C(O)=O)C(O)=O MCRZWYDXIGCFKO-UHFFFAOYSA-N 0.000 description 1
- 108010052911 2-dehydro-3-deoxygalactonokinase Proteins 0.000 description 1
- 108030003739 2-dehydro-3-deoxygluconokinases Proteins 0.000 description 1
- RMHHUKGVZFVHED-UHFFFAOYSA-N 2-hydroxy-3-oxosuccinic acid Chemical compound OC(=O)C(O)C(=O)C(O)=O RMHHUKGVZFVHED-UHFFFAOYSA-N 0.000 description 1
- OTTXIFWBPRRYOG-UHFFFAOYSA-N 2-hydroxyadipic acid Chemical compound OC(=O)C(O)CCCC(O)=O OTTXIFWBPRRYOG-UHFFFAOYSA-N 0.000 description 1
- 108010006027 2-hydroxyglutaryl-CoA dehydratase Proteins 0.000 description 1
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical group CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 1
- GIEGKXINITVUOO-UHFFFAOYSA-N 2-methylidenebutanedioic acid Chemical compound OC(=O)CC(=C)C(O)=O.OC(=O)CC(=C)C(O)=O GIEGKXINITVUOO-UHFFFAOYSA-N 0.000 description 1
- TYEYBOSBBBHJIV-UHFFFAOYSA-M 2-oxobutanoate Chemical compound CCC(=O)C([O-])=O TYEYBOSBBBHJIV-UHFFFAOYSA-M 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-L 2-oxoglutarate(2-) Chemical compound [O-]C(=O)CCC(=O)C([O-])=O KPGXRSRHYNQIFN-UHFFFAOYSA-L 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- XNIHZNNZJHYHLC-UHFFFAOYSA-N 2-oxohexanoic acid Chemical compound CCCCC(=O)C(O)=O XNIHZNNZJHYHLC-UHFFFAOYSA-N 0.000 description 1
- 102100035315 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial Human genes 0.000 description 1
- 108010008415 2-oxopent-4-enoate hydratase Proteins 0.000 description 1
- KDVFRMMRZOCFLS-UHFFFAOYSA-M 2-oxopentanoate Chemical compound CCCC(=O)C([O-])=O KDVFRMMRZOCFLS-UHFFFAOYSA-M 0.000 description 1
- WWYDYZMNFQIYPT-UHFFFAOYSA-L 2-phenylpropanedioate Chemical compound [O-]C(=O)C(C([O-])=O)C1=CC=CC=C1 WWYDYZMNFQIYPT-UHFFFAOYSA-L 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 102100032282 26S proteasome non-ATPase regulatory subunit 14 Human genes 0.000 description 1
- AKXKFZDCRYJKTF-UHFFFAOYSA-N 3-Hydroxypropionaldehyde Chemical compound OCCC=O AKXKFZDCRYJKTF-UHFFFAOYSA-N 0.000 description 1
- NSPPRYXGGYQMPY-UHFFFAOYSA-N 3-Methylbuten-2-ol-1 Natural products CC(C)C(O)=C NSPPRYXGGYQMPY-UHFFFAOYSA-N 0.000 description 1
- XTPJLNSARGBDNC-UHFFFAOYSA-N 3-[diethyl(prop-2-ynyl)azaniumyl]propane-1-sulfonate Chemical compound C#CC[N+](CC)(CC)CCCS([O-])(=O)=O XTPJLNSARGBDNC-UHFFFAOYSA-N 0.000 description 1
- AXPZIVKEZRHGAS-UHFFFAOYSA-N 3-benzyl-5-[(2-nitrophenoxy)methyl]oxolan-2-one Chemical compound [O-][N+](=O)C1=CC=CC=C1OCC1OC(=O)C(CC=2C=CC=CC=2)C1 AXPZIVKEZRHGAS-UHFFFAOYSA-N 0.000 description 1
- DXJCKZJNLGWSTI-UHFFFAOYSA-N 3-dimethylsulfonio-2-methylpropanoate Chemical compound [O-]C(=O)C(C)C[S+](C)C DXJCKZJNLGWSTI-UHFFFAOYSA-N 0.000 description 1
- WWEOGFZEFHPUAM-MIZDRFBCSA-N 3-hydroxy-2-methylpropanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C(CO)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 WWEOGFZEFHPUAM-MIZDRFBCSA-N 0.000 description 1
- OTEACGAEDCIMBS-FOLKQPSDSA-N 3-hydroxyadipyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)CCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 OTEACGAEDCIMBS-FOLKQPSDSA-N 0.000 description 1
- QHHKKMYHDBRONY-RMNRSTNRSA-N 3-hydroxybutanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QHHKKMYHDBRONY-RMNRSTNRSA-N 0.000 description 1
- DBXBTMSZEOQQDU-UHFFFAOYSA-N 3-hydroxyisobutyric acid Chemical compound OCC(C)C(O)=O DBXBTMSZEOQQDU-UHFFFAOYSA-N 0.000 description 1
- 108010077268 3-hydroxyisobutyryl-CoA hydrolase Proteins 0.000 description 1
- 102100034767 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial Human genes 0.000 description 1
- ALRHLSYJTWAHJZ-UHFFFAOYSA-M 3-hydroxypropionate Chemical compound OCCC([O-])=O ALRHLSYJTWAHJZ-UHFFFAOYSA-M 0.000 description 1
- 108030001569 3-hydroxypropionate dehydrogenases Proteins 0.000 description 1
- HHDDCCUIIUWNGJ-UHFFFAOYSA-M 3-hydroxypyruvate Chemical compound OCC(=O)C([O-])=O HHDDCCUIIUWNGJ-UHFFFAOYSA-M 0.000 description 1
- 101710186512 3-ketoacyl-CoA thiolase Proteins 0.000 description 1
- JSGVZVOGOQILFM-UHFFFAOYSA-N 3-methoxy-1-butanol Chemical compound COC(C)CCO JSGVZVOGOQILFM-UHFFFAOYSA-N 0.000 description 1
- 108010073639 3-methylitaconate delta-isomerase Proteins 0.000 description 1
- FHSUFDYFOHSYHI-UHFFFAOYSA-N 3-oxopentanoic acid Chemical compound CCC(=O)CC(O)=O FHSUFDYFOHSYHI-UHFFFAOYSA-N 0.000 description 1
- NMEYBPUHJHMRHU-IEXPHMLFSA-N 3-oxopropanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 NMEYBPUHJHMRHU-IEXPHMLFSA-N 0.000 description 1
- 108030007077 3-phosphoglyceroyl-phosphate-polyphosphate phosphotransferases Proteins 0.000 description 1
- GSNHKUDZZFZSJB-HLMSNRGBSA-N 4,4-Difluoro-N-[(1S)-3-[(1R,5S)-3-[3-methyl-5-(propan-2-yl)-4H-1,2,4-triazol-4-yl]-8-azabicyclo[3.2.1]octan-8-yl]-1-phenylpropyl]cyclohexane-1-carboximidic acid Chemical compound CC(C)C1=NN=C(C)N1C1C[C@H](N2CC[C@H](NC(=O)C3CCC(F)(F)CC3)C=3C=CC=CC=3)CC[C@H]2C1 GSNHKUDZZFZSJB-HLMSNRGBSA-N 0.000 description 1
- OOEDHTCVMHDXRH-HNQUOIGGSA-N 4-Oxalocrotonate Natural products OC(=O)\C=C\CC(=O)C(O)=O OOEDHTCVMHDXRH-HNQUOIGGSA-N 0.000 description 1
- 108010076069 4-hydroxy-2-ketovalerate aldolase Proteins 0.000 description 1
- FMHKPLXYWVCLME-UHFFFAOYSA-N 4-hydroxy-valeric acid Chemical compound CC(O)CCC(O)=O FMHKPLXYWVCLME-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- LVSQXDHWDCMMRJ-UHFFFAOYSA-N 4-hydroxybutan-2-one Chemical compound CC(=O)CCO LVSQXDHWDCMMRJ-UHFFFAOYSA-N 0.000 description 1
- OOXNYFKPOPJIOT-UHFFFAOYSA-N 5-(3-bromophenyl)-7-(6-morpholin-4-ylpyridin-3-yl)pyrido[2,3-d]pyrimidin-4-amine;dihydrochloride Chemical compound Cl.Cl.C=12C(N)=NC=NC2=NC(C=2C=NC(=CC=2)N2CCOCC2)=CC=1C1=CC=CC(Br)=C1 OOXNYFKPOPJIOT-UHFFFAOYSA-N 0.000 description 1
- 108010038076 5-carboxymethyl-2-hydroxymuconate Delta-isomerase Proteins 0.000 description 1
- 108090000713 5-dehydro-2-deoxygluconokinases Proteins 0.000 description 1
- MBVFKGVJFYAREM-UHFFFAOYSA-N 5-hydroxypent-4-enoic acid Chemical compound OC=CCCC(O)=O MBVFKGVJFYAREM-UHFFFAOYSA-N 0.000 description 1
- 108030007076 5-methyldeoxycytidine-5'-phosphate kinases Proteins 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- 102100038222 60 kDa heat shock protein, mitochondrial Human genes 0.000 description 1
- YXABPEFHTDVSNN-UHFFFAOYSA-N 9-[4-aminobutyl(ethyl)amino]-2,3-dihydrobenzo[f]phthalazine-1,4-dione Chemical compound O=C1NNC(=O)C2=C1C1=CC(N(CCCCN)CC)=CC=C1C=C2 YXABPEFHTDVSNN-UHFFFAOYSA-N 0.000 description 1
- LEOJISUPFSWNMA-UHFFFAOYSA-N ABEI Chemical compound O=C1NNC(=O)C=2C1=CC(N(CCCCN)CC)=CC=2 LEOJISUPFSWNMA-UHFFFAOYSA-N 0.000 description 1
- 101150103244 ACT1 gene Proteins 0.000 description 1
- 108010062854 ADP D-fructose-6-phosphate 1-phosphotransferase Proteins 0.000 description 1
- 102100026381 ADP-dependent glucokinase Human genes 0.000 description 1
- 108010058598 ADP-dependent glucokinase Proteins 0.000 description 1
- 108010002988 ADP-thymidine kinase Proteins 0.000 description 1
- 108030003841 AMP-thymidine kinases Proteins 0.000 description 1
- 101710157736 ATP-dependent 6-phosphofructokinase Proteins 0.000 description 1
- 101710200244 ATP-dependent 6-phosphofructokinase isozyme 2 Proteins 0.000 description 1
- 102100022523 Acetoacetyl-CoA synthetase Human genes 0.000 description 1
- 108010000700 Acetolactate synthase Proteins 0.000 description 1
- 102000005345 Acetyl-CoA C-acetyltransferase Human genes 0.000 description 1
- 108010023941 Acetyl-CoA Hydrolase Proteins 0.000 description 1
- 102100037768 Acetyl-CoA acetyltransferase, mitochondrial Human genes 0.000 description 1
- 101800001241 Acetylglutamate kinase Proteins 0.000 description 1
- 108700021045 Acetylglutamate kinase Proteins 0.000 description 1
- 241001673062 Achromobacter xylosoxidans Species 0.000 description 1
- 101001058938 Acidaminococcus fermentans (strain ATCC 25085 / DSM 20731 / CCUG 9996 / CIP 106432 / VR4) Glutaconyl-CoA decarboxylase subunit beta Proteins 0.000 description 1
- 101100228725 Acidaminococcus fermentans (strain ATCC 25085 / DSM 20731 / CCUG 9996 / CIP 106432 / VR4) gctA gene Proteins 0.000 description 1
- 101100228726 Acidaminococcus fermentans (strain ATCC 25085 / DSM 20731 / CCUG 9996 / CIP 106432 / VR4) gctB gene Proteins 0.000 description 1
- 108700026751 Acidaminococcus fermentans hgdC Proteins 0.000 description 1
- 241000186426 Acidipropionibacterium acidipropionici Species 0.000 description 1
- 241000432536 Acidipropionibacterium acidipropionici ATCC 4875 Species 0.000 description 1
- 101100273316 Acinetobacter baylyi (strain ATCC 33305 / BD413 / ADP1) catF gene Proteins 0.000 description 1
- 241000588625 Acinetobacter sp. Species 0.000 description 1
- 108010066833 Aconitate Delta-isomerase Proteins 0.000 description 1
- 241000948980 Actinobacillus succinogenes Species 0.000 description 1
- 108010001058 Acyl-CoA Dehydrogenase Proteins 0.000 description 1
- 102000002296 Acyl-CoA Dehydrogenases Human genes 0.000 description 1
- 108010058621 Acyl-phosphate-hexose phosphotransferase Proteins 0.000 description 1
- 102100022388 Acylglycerol kinase, mitochondrial Human genes 0.000 description 1
- 108010076278 Adenosine kinase Proteins 0.000 description 1
- 108030003722 Adenosylcobinamide kinases Proteins 0.000 description 1
- 108020000543 Adenylate kinase Proteins 0.000 description 1
- 102100040149 Adenylyl-sulfate kinase Human genes 0.000 description 1
- 108010054404 Adenylyl-sulfate kinase Proteins 0.000 description 1
- 241000588813 Alcaligenes faecalis Species 0.000 description 1
- 102100026608 Aldehyde dehydrogenase family 3 member A2 Human genes 0.000 description 1
- 102000003677 Aldehyde-Lyases Human genes 0.000 description 1
- 108090000072 Aldehyde-Lyases Proteins 0.000 description 1
- 108010061730 Alkylglycerol kinase Proteins 0.000 description 1
- 108030003878 Alkylglycerone kinases Proteins 0.000 description 1
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 1
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 1
- 108030003773 Allose kinases Proteins 0.000 description 1
- 101100171005 Amycolatopsis orientalis dpgB gene Proteins 0.000 description 1
- 101100288531 Anaerotignum propionicum lcdB gene Proteins 0.000 description 1
- 108010006591 Apoenzymes Proteins 0.000 description 1
- 241000848220 Aquincola tertiaricarbonis Species 0.000 description 1
- 101100134840 Arabidopsis thaliana TPS02 gene Proteins 0.000 description 1
- 108030003579 Aspartate 1-decarboxylases Proteins 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000194107 Bacillus megaterium Species 0.000 description 1
- 101100480629 Bacillus subtilis (strain 168) tatAy gene Proteins 0.000 description 1
- 101100267415 Bacillus subtilis (strain 168) yjgB gene Proteins 0.000 description 1
- 101150101337 Bdh2 gene Proteins 0.000 description 1
- 108030006818 Benzyl-2-methyl-hydroxybutyrate dehydrogenases Proteins 0.000 description 1
- 108010015248 Beta-glucoside kinase Proteins 0.000 description 1
- 101100518148 Bos taurus BCKDHA gene Proteins 0.000 description 1
- 241000274790 Bradyrhizobium diazoefficiens USDA 110 Species 0.000 description 1
- 241000589174 Bradyrhizobium japonicum Species 0.000 description 1
- 101150010856 CRT gene Proteins 0.000 description 1
- 101150097247 CRT1 gene Proteins 0.000 description 1
- 241000222128 Candida maltosa Species 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- 241001161418 Candida tropicalis MYA-3404 Species 0.000 description 1
- 102000003732 Carbon-oxygen lyases Human genes 0.000 description 1
- 108090000023 Carbon-oxygen lyases Proteins 0.000 description 1
- 241000229225 Carnobacterium sp. Species 0.000 description 1
- 101100448273 Carpoglyphus lactis gedh gene Proteins 0.000 description 1
- 241001489161 Castellaniella defragrans 65Phen Species 0.000 description 1
- 102100036158 Ceramide kinase Human genes 0.000 description 1
- 108010017573 Ceramide kinase Proteins 0.000 description 1
- 108010059013 Chaperonin 10 Proteins 0.000 description 1
- 108010058432 Chaperonin 60 Proteins 0.000 description 1
- 108050001186 Chaperonin Cpn60 Proteins 0.000 description 1
- 102000052603 Chaperonins Human genes 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000003118 Chloroflexus aggregans DSM 9485 Species 0.000 description 1
- 241001665089 Chloroflexus aurantiacus J-10-fl Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241001112695 Clostridiales Species 0.000 description 1
- 241000904825 Clostridiales bacterium Species 0.000 description 1
- 101100385572 Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / VKM B-1787) ctfA gene Proteins 0.000 description 1
- 101100385573 Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / VKM B-1787) ctfB gene Proteins 0.000 description 1
- 108700001698 Clostridium acetobutylicum ctfA Proteins 0.000 description 1
- 108700001699 Clostridium acetobutylicum ctfB Proteins 0.000 description 1
- 241000186566 Clostridium ljungdahlii Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108010077385 Coenzyme A-Transferases Proteins 0.000 description 1
- 102000010079 Coenzyme A-Transferases Human genes 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 241001485655 Corynebacterium glutamicum ATCC 13032 Species 0.000 description 1
- 241000030491 Corynebacterium terpenotabidum Species 0.000 description 1
- 101100490368 Cupriavidus necator (strain ATCC 17699 / DSM 428 / KCTC 22496 / NCIMB 10442 / H16 / Stanier 337) acsA gene Proteins 0.000 description 1
- 241000366859 Cupriavidus taiwanensis Species 0.000 description 1
- 238000006969 Curtius rearrangement reaction Methods 0.000 description 1
- 101100534596 Cutibacterium acnes (strain DSM 16379 / KPA171202) sucC gene Proteins 0.000 description 1
- 108030003774 D-arabinokinases Proteins 0.000 description 1
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 1
- 108010000214 D-ribulokinase Proteins 0.000 description 1
- 108030003652 Dehydrogluconokinases Proteins 0.000 description 1
- 108010058222 Deoxyguanosine kinase Proteins 0.000 description 1
- 108030003689 Deoxynucleoside kinases Proteins 0.000 description 1
- 102100037458 Dephospho-CoA kinase Human genes 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 102000011107 Diacylglycerol Kinase Human genes 0.000 description 1
- 108010062677 Diacylglycerol Kinase Proteins 0.000 description 1
- 101100243766 Dictyostelium discoideum phbA gene Proteins 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- 102000005454 Dimethylallyltranstransferase Human genes 0.000 description 1
- 108030003830 Diphosphate-glycerol phosphotransferases Proteins 0.000 description 1
- 108030003664 Diphosphate-purine nucleoside kinases Proteins 0.000 description 1
- 108010065057 Diphosphate-serine phosphotransferase Proteins 0.000 description 1
- 108010078491 Diphosphoinositol-pentakisphosphate kinase Proteins 0.000 description 1
- 108700040484 Diphosphomevalonate decarboxylases Proteins 0.000 description 1
- 108010042091 Dodecenoyl-CoA Isomerase Proteins 0.000 description 1
- 108700023189 Dolichol kinases Proteins 0.000 description 1
- 102000048188 Dolichol kinases Human genes 0.000 description 1
- 108030007154 Dolichyl-diphosphate-polyphosphate phosphotransferases Proteins 0.000 description 1
- 108700036404 EC 1.1.1.298 Proteins 0.000 description 1
- 108700034280 EC 2.7.1.37 Proteins 0.000 description 1
- 101150045041 ERG8 gene Proteins 0.000 description 1
- WQXNXVUDBPYKBA-UHFFFAOYSA-N Ectoine Natural products CC1=NCCC(C(O)=O)N1 WQXNXVUDBPYKBA-UHFFFAOYSA-N 0.000 description 1
- 101100242091 Elizabethkingia meningoseptica ohyA gene Proteins 0.000 description 1
- 102100021821 Enoyl-CoA delta isomerase 1, mitochondrial Human genes 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 101100001273 Escherichia coli (strain K12) ahr gene Proteins 0.000 description 1
- 101100022866 Escherichia coli (strain K12) menI gene Proteins 0.000 description 1
- 101100350710 Escherichia coli (strain K12) paaH gene Proteins 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 101100465372 Escherichia coli prsA gene Proteins 0.000 description 1
- 241000588720 Escherichia fergusonii Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 101100277924 Eubacterium barkeri DmdB gene Proteins 0.000 description 1
- 241000195619 Euglena gracilis Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- YPZRHBJKEMOYQH-UYBVJOGSSA-N FADH2 Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C(NC(=O)NC2=O)=C2NC2=C1C=C(C)C(C)=C2 YPZRHBJKEMOYQH-UYBVJOGSSA-N 0.000 description 1
- 102100027267 FERM, ARHGEF and pleckstrin domain-containing protein 1 Human genes 0.000 description 1
- 108010074122 Ferredoxins Proteins 0.000 description 1
- 101001076781 Fructilactobacillus sanfranciscensis (strain ATCC 27651 / DSM 20451 / JCM 5668 / CCUG 30143 / KCTC 3205 / NCIMB 702811 / NRRL B-3934 / L-12) Ribose-5-phosphate isomerase A Proteins 0.000 description 1
- 108090000156 Fructokinases Proteins 0.000 description 1
- 102100022633 Fructose-2,6-bisphosphatase Human genes 0.000 description 1
- 241000605909 Fusobacterium Species 0.000 description 1
- 241000605956 Fusobacterium mortiferum Species 0.000 description 1
- 108030004901 GTP diphosphokinases Proteins 0.000 description 1
- 102000048120 Galactokinases Human genes 0.000 description 1
- 108700023157 Galactokinases Proteins 0.000 description 1
- 108030003736 Galacturonokinases Proteins 0.000 description 1
- 241000719997 Gemmatimonas aurantiaca Species 0.000 description 1
- 241001135750 Geobacter Species 0.000 description 1
- 101710086727 Geraniol dehydrogenase Proteins 0.000 description 1
- 102000034354 Gi proteins Human genes 0.000 description 1
- 108091006101 Gi proteins Proteins 0.000 description 1
- 102000030595 Glucokinase Human genes 0.000 description 1
- 108010021582 Glucokinase Proteins 0.000 description 1
- 241000589232 Gluconobacter oxydans Species 0.000 description 1
- 108010021382 Gluconokinase Proteins 0.000 description 1
- 108030006685 Glucosamine kinases Proteins 0.000 description 1
- 102100036636 Glucose 1,6-bisphosphate synthase Human genes 0.000 description 1
- 108010038489 Glucose-1,6-bisphosphate synthase Proteins 0.000 description 1
- 108010002196 Glucuronokinase Proteins 0.000 description 1
- 102100025591 Glycerate kinase Human genes 0.000 description 1
- 108010015895 Glycerone kinase Proteins 0.000 description 1
- 101100161918 Glycine max SAC1 gene Proteins 0.000 description 1
- 101710101729 Glyoxylate/hydroxypyruvate reductase A Proteins 0.000 description 1
- 108020004202 Guanylate Kinase Proteins 0.000 description 1
- 102100040468 Guanylate kinase Human genes 0.000 description 1
- 101100007776 Haloarcula japonica (strain ATCC 49778 / DSM 6131 / JCM 7785 / NBRC 101032 / NCIMB 13157 / TR-1) cruF gene Proteins 0.000 description 1
- 241000204933 Haloferax volcanii Species 0.000 description 1
- 108010032043 Hamamelose kinase Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 101000597665 Homo sapiens 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial Proteins 0.000 description 1
- 101000590281 Homo sapiens 26S proteasome non-ATPase regulatory subunit 14 Proteins 0.000 description 1
- 101000872461 Homo sapiens 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial Proteins 0.000 description 1
- 101000678027 Homo sapiens Acetoacetyl-CoA synthetase Proteins 0.000 description 1
- 101000720381 Homo sapiens Acyl-coenzyme A thioesterase 8 Proteins 0.000 description 1
- 101000914701 Homo sapiens FERM, ARHGEF and pleckstrin domain-containing protein 1 Proteins 0.000 description 1
- 101001046529 Homo sapiens Mevalonate kinase Proteins 0.000 description 1
- 101000716763 Homo sapiens Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial Proteins 0.000 description 1
- 101001138544 Homo sapiens UMP-CMP kinase Proteins 0.000 description 1
- 241000088373 Hydrogenobacter thermophilus TK-6 Species 0.000 description 1
- LCWXJXMHJVIJFK-UHFFFAOYSA-N Hydroxylysine Natural products NCC(O)CC(N)CC(O)=O LCWXJXMHJVIJFK-UHFFFAOYSA-N 0.000 description 1
- 108010003207 Hydroxylysine kinase Proteins 0.000 description 1
- 102100021101 Hydroxylysine kinase Human genes 0.000 description 1
- 108010027436 Hydroxymethylpyrimidine kinase Proteins 0.000 description 1
- 108030003726 Hygromycin B 4-O-kinases Proteins 0.000 description 1
- 108030003831 Hygromycin-B 7''-O-kinases Proteins 0.000 description 1
- 108010001139 Inosine kinase Proteins 0.000 description 1
- 108030003815 Inositol 3-kinases Proteins 0.000 description 1
- 102100025479 Inositol polyphosphate multikinase Human genes 0.000 description 1
- 108010012621 Inositol-hexakisphosphate kinase Proteins 0.000 description 1
- 102100031525 Inositol-pentakisphosphate 2-kinase Human genes 0.000 description 1
- 108030003720 Inositol-pentakisphosphate 2-kinases Proteins 0.000 description 1
- 108010071021 Inositol-polyphosphate multikinase Proteins 0.000 description 1
- 108030003665 Inositol-tetrakisphosphate 5-kinases Proteins 0.000 description 1
- 108030003860 Inositol-trisphosphate 3-kinases Proteins 0.000 description 1
- 108010084764 Intramolecular Oxidoreductases Proteins 0.000 description 1
- 102000005629 Intramolecular Oxidoreductases Human genes 0.000 description 1
- YPCJAJNWGKHVRO-YFKPBYRVSA-N Isochorismate Natural products O=C(O[C@@H]1C(O)=C(C(=O)O)C=CC1)C(=O)O YPCJAJNWGKHVRO-YFKPBYRVSA-N 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 108010033079 Isopiperitenone Delta-isomerase Proteins 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 108010062852 Ketohexokinase Proteins 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241000798864 Kluyveromyces lactis NRRL Y-1140 Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- CZWARROQQFCFJB-UHFFFAOYSA-N L-2-Amino-5-hydroxypentanoic acid Chemical compound OC(=O)C(N)CCCO CZWARROQQFCFJB-UHFFFAOYSA-N 0.000 description 1
- 235000019766 L-Lysine Nutrition 0.000 description 1
- 108030003738 L-arabinokinases Proteins 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 102100040648 L-fucose kinase Human genes 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- HXEACLLIILLPRG-YFKPBYRVSA-N L-pipecolic acid Chemical compound [O-]C(=O)[C@@H]1CCCC[NH2+]1 HXEACLLIILLPRG-YFKPBYRVSA-N 0.000 description 1
- CMUNUTVVOOHQPW-LURJTMIESA-N L-proline betaine Chemical compound C[N+]1(C)CCC[C@H]1C([O-])=O CMUNUTVVOOHQPW-LURJTMIESA-N 0.000 description 1
- GHSJKUNUIHUPDF-BYPYZUCNSA-N L-thialysine Chemical compound NCCSC[C@H](N)C(O)=O GHSJKUNUIHUPDF-BYPYZUCNSA-N 0.000 description 1
- 108030003782 L-xylulokinases Proteins 0.000 description 1
- 101150072399 LSC1 gene Proteins 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 241000192129 Leuconostoc lactis Species 0.000 description 1
- 102100025357 Lipid-phosphate phosphatase Human genes 0.000 description 1
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 description 1
- JEVVKJMRZMXFBT-XWDZUXABSA-N Lycophyll Natural products OC/C(=C/CC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(/CO)\C)\C)/C)\C)/C)\C)/C)/C JEVVKJMRZMXFBT-XWDZUXABSA-N 0.000 description 1
- 241000193386 Lysinibacillus sphaericus Species 0.000 description 1
- 108010043901 Macrolide 2'-kinase Proteins 0.000 description 1
- 101710185553 Malate dehydrogenase, cytoplasmic Proteins 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 102100026665 Malonate-CoA ligase ACSF3, mitochondrial Human genes 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 241000220225 Malus Species 0.000 description 1
- 244000141359 Malus pumila Species 0.000 description 1
- 235000011430 Malus pumila Nutrition 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010015328 Mannokinase Proteins 0.000 description 1
- 241000202974 Methanobacterium Species 0.000 description 1
- 241001486996 Methanocaldococcus Species 0.000 description 1
- 241001003007 Methanocaldococcus jannaschii DSM 2661 Species 0.000 description 1
- 241000921850 Methanocella paludicola SANAE Species 0.000 description 1
- 241000134675 Methanosarcina barkeri str. Fusaro Species 0.000 description 1
- 241001302035 Methanothermobacter Species 0.000 description 1
- 102100022259 Mevalonate kinase Human genes 0.000 description 1
- 241001148170 Microlunatus Species 0.000 description 1
- 241000869291 Micromonas pusilla CCMP1545 Species 0.000 description 1
- 108010093369 Multienzyme Complexes Proteins 0.000 description 1
- 102000002568 Multienzyme Complexes Human genes 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100000270 Mus musculus Aacs gene Proteins 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 102100035286 N-acetyl-D-glucosamine kinase Human genes 0.000 description 1
- 102100037774 N-acetylgalactosamine kinase Human genes 0.000 description 1
- 108030003719 N-acetylgalactosamine kinases Proteins 0.000 description 1
- 108010032040 N-acetylglucosamine kinase Proteins 0.000 description 1
- 108030003725 N-acetylhexosamine 1-kinases Proteins 0.000 description 1
- 108010029147 N-acylmannosamine kinase Proteins 0.000 description 1
- 108030003884 NADH kinases Proteins 0.000 description 1
- 101001041023 Nicotiana tabacum 2-alkenal reductase (NADP(+)-dependent) Proteins 0.000 description 1
- 102100029562 Nicotinamide riboside kinase 1 Human genes 0.000 description 1
- 241001503696 Nocardia brasiliensis Species 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108010011356 Nucleoside phosphotransferase Proteins 0.000 description 1
- 108010044790 Nucleoside-Phosphate Kinase Proteins 0.000 description 1
- 102000005811 Nucleoside-phosphate kinase Human genes 0.000 description 1
- 108010011026 Nucleoside-triphosphate-adenylate kinase Proteins 0.000 description 1
- 108030004903 Nucleotide diphosphokinases Proteins 0.000 description 1
- QDFKDDCKKXSMEJ-UHFFFAOYSA-N OC(=O)C=CC1=CC=CC=C1.OC(=O)C(=C)C1=CC=CC=C1 Chemical compound OC(=O)C=CC1=CC=CC=C1.OC(=O)C(=C)C1=CC=CC=C1 QDFKDDCKKXSMEJ-UHFFFAOYSA-N 0.000 description 1
- CFNPCSNXESBNGR-XGGCCDIMSA-N O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C(O)CC(C)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C(O)CC(C)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 CFNPCSNXESBNGR-XGGCCDIMSA-N 0.000 description 1
- 101100448271 Ocimum basilicum GEDH1 gene Proteins 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 108010035473 Palmitoyl-CoA Hydrolase Proteins 0.000 description 1
- 102000008172 Palmitoyl-CoA Hydrolase Human genes 0.000 description 1
- 101000958925 Panax ginseng Diphosphomevalonate decarboxylase 1 Proteins 0.000 description 1
- 108030003716 Pantetheine kinases Proteins 0.000 description 1
- 241001343907 Paraburkholderia phymatum Species 0.000 description 1
- 241000589597 Paracoccus denitrificans Species 0.000 description 1
- ZIGIFDRJFZYEEQ-ZBWAGTGGSA-N Phenylacetyl coenzyme A Natural products S(C(=O)Cc1ccccc1)CCNC(=O)CCNC(=O)[C@H](O)C(CO[P@](=O)(O[P@](=O)(OC[C@H]1[C@@H](OP(=O)(O)O)[C@H](O)[C@@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C ZIGIFDRJFZYEEQ-ZBWAGTGGSA-N 0.000 description 1
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 1
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 1
- 108030003690 Phosphatidylinositol-4,5-bisphosphate 3-kinases Proteins 0.000 description 1
- 102000013576 Phosphatidylinositol-4-Phosphate 3-Kinase Human genes 0.000 description 1
- 108010051404 Phosphatidylinositol-4-Phosphate 3-Kinase Proteins 0.000 description 1
- 108010022684 Phosphofructokinase-1 Proteins 0.000 description 1
- 102000012435 Phosphofructokinase-1 Human genes 0.000 description 1
- 108010022678 Phosphofructokinase-2 Proteins 0.000 description 1
- 108030003811 Phosphoramidate-hexose phosphotransferases Proteins 0.000 description 1
- 241000218594 Picea pungens Species 0.000 description 1
- 108010057761 Polyenoic fatty acid isomerase Proteins 0.000 description 1
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 1
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 1
- 108010042149 Polyphosphate-glucose phosphotransferase Proteins 0.000 description 1
- 101100287363 Populus alba ISPS gene Proteins 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- 241000218976 Populus trichocarpa Species 0.000 description 1
- 241000605862 Porphyromonas gingivalis Species 0.000 description 1
- 241000986839 Porphyromonas gingivalis W83 Species 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 241000186429 Propionibacterium Species 0.000 description 1
- 241001528479 Pseudoflavonifractor capillosus Species 0.000 description 1
- 101100296558 Pseudomonas knackmussii (strain DSM 6978 / LMG 23759 / B13) pcaF gene Proteins 0.000 description 1
- 241000589755 Pseudomonas mendocina Species 0.000 description 1
- 241000218904 Pseudomonas oryzihabitans Species 0.000 description 1
- 101100183313 Pseudomonas putida mdlC gene Proteins 0.000 description 1
- 101100296559 Pseudomonas putida pcaF gene Proteins 0.000 description 1
- 101100494806 Pseudomonas syringae pv. syringae katB gene Proteins 0.000 description 1
- 108030003881 Pseudouridine kinases Proteins 0.000 description 1
- 241001256940 Psychroflexus torquis ATCC 700755 Species 0.000 description 1
- 101710148009 Putative uracil phosphoribosyltransferase Proteins 0.000 description 1
- 108010070648 Pyridoxal Kinase Proteins 0.000 description 1
- 102100038517 Pyridoxal kinase Human genes 0.000 description 1
- 241000514899 Pyrobaculum islandicum DSM 4184 Species 0.000 description 1
- 241000205160 Pyrococcus Species 0.000 description 1
- 241000432808 Pyrococcus abyssi GE5 Species 0.000 description 1
- 241001222730 Pyrococcus horikoshii OT3 Species 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 108030004957 R-linalool synthases Proteins 0.000 description 1
- 241000232299 Ralstonia Species 0.000 description 1
- 241000481518 Ralstonia eutropha H16 Species 0.000 description 1
- 101100123959 Rattus norvegicus Hibch gene Proteins 0.000 description 1
- 108010041974 Rhamnulokinase Proteins 0.000 description 1
- 241001148115 Rhizobium etli Species 0.000 description 1
- 108030003763 Riboflavin phosphotransferases Proteins 0.000 description 1
- 102000046755 Ribokinases Human genes 0.000 description 1
- 108030007153 Ribose 1,5-bisphosphate phosphokinases Proteins 0.000 description 1
- 241000516659 Roseiflexus Species 0.000 description 1
- 101100443340 Ruegeria pomeroyi (strain ATCC 700808 / DSM 15171 / DSS-3) dmdB gene Proteins 0.000 description 1
- DFPOZTRSOAQFIK-UHFFFAOYSA-N S,S-dimethyl-beta-propiothetin Chemical compound C[S+](C)CCC([O-])=O DFPOZTRSOAQFIK-UHFFFAOYSA-N 0.000 description 1
- YDPLQAVNQYFFIJ-XMWLYHNJSA-N S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-methyl-2-oxopentanethioate Chemical compound CC(C(C(=O)SCCNC(CCNC([C@@H](C(COP(OP(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=NC=2C(N)=NC=NC1=2)O)OP(=O)(O)O)(=O)O)(=O)O)(C)C)O)=O)=O)=O)CC YDPLQAVNQYFFIJ-XMWLYHNJSA-N 0.000 description 1
- 108030003800 S-methyl-5-thioribose kinases Proteins 0.000 description 1
- 101100367016 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) LSC2 gene Proteins 0.000 description 1
- 244000253911 Saccharomyces fragilis Species 0.000 description 1
- 235000018368 Saccharomyces fragilis Nutrition 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 108010082318 Scyllo-inosamine 4-kinase Proteins 0.000 description 1
- 102100029990 Sedoheptulokinase Human genes 0.000 description 1
- 108030003645 Sedoheptulokinases Proteins 0.000 description 1
- 101100352050 Serratia liquefaciens phlB gene Proteins 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 241000863430 Shewanella Species 0.000 description 1
- 241001223867 Shewanella oneidensis Species 0.000 description 1
- 241000490596 Shewanella sp. Species 0.000 description 1
- 241001135312 Sinorhizobium Species 0.000 description 1
- 241000204376 Sporomusa ovata Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 241000187432 Streptomyces coelicolor Species 0.000 description 1
- 241000158606 Streptomyces wedmorensis Species 0.000 description 1
- 102100020868 Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial Human genes 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 101150038925 TPK2 gene Proteins 0.000 description 1
- 101150019402 TPS02 gene Proteins 0.000 description 1
- 108010092220 Tetraacyldisaccharide 4'-kinase Proteins 0.000 description 1
- 241001147775 Thermoanaerobacter brockii Species 0.000 description 1
- 241000204666 Thermotoga maritima Species 0.000 description 1
- 101710203399 Thiamin pyrophosphokinase 1 Proteins 0.000 description 1
- 108030007080 Thiamine-phosphate kinases Proteins 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102100037357 Thymidylate kinase Human genes 0.000 description 1
- 108030003285 Trans-2-decenoyl-[acyl-carrier-protein] isomerases Proteins 0.000 description 1
- 102100035100 Transcription factor p65 Human genes 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 108010071199 Triokinase Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108020000553 UMP kinase Proteins 0.000 description 1
- 102100020797 UMP-CMP kinase Human genes 0.000 description 1
- 101710100179 UMP-CMP kinase Proteins 0.000 description 1
- 102100032947 UMP-CMP kinase 2, mitochondrial Human genes 0.000 description 1
- 101710119674 UMP-CMP kinase 2, mitochondrial Proteins 0.000 description 1
- 108700024326 Undecaprenol kinases Proteins 0.000 description 1
- 102000007410 Uridine kinase Human genes 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 108010030681 Viomycin kinase Proteins 0.000 description 1
- 101100277160 Xenopus laevis odc1-a gene Proteins 0.000 description 1
- 108030003863 Xylitol kinases Proteins 0.000 description 1
- 102100029089 Xylulose kinase Human genes 0.000 description 1
- 101100463817 Zoogloea ramigera phaB gene Proteins 0.000 description 1
- 241000029538 [Mannheimia] succiniciproducens Species 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- WDJHALXBUFZDSR-UHFFFAOYSA-M acetoacetate Chemical compound CC(=O)CC([O-])=O WDJHALXBUFZDSR-UHFFFAOYSA-M 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- POODSGUMUCVRTR-IEXPHMLFSA-N acryloyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C=C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 POODSGUMUCVRTR-IEXPHMLFSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 108010069175 acyl-CoA transferase Proteins 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 108010016133 acylglycerol kinase Proteins 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- SPNAEHGLBRRCGL-BIEWRJSYSA-N adipoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 SPNAEHGLBRRCGL-BIEWRJSYSA-N 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 229940005347 alcaligenes faecalis Drugs 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000004808 allyl alcohols Chemical class 0.000 description 1
- 150000004716 alpha keto acids Chemical class 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009604 anaerobic growth Effects 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- JGGLZQUGOKVDGS-VYTIMWRQSA-N aspartate semialdehyde Chemical compound O[C@@H]1[C@@H](NC(=O)C)CO[C@H](CO)[C@H]1O[C@@H]1[C@@H](NC(C)=O)[C@H](O)[C@H](O[C@@H]2[C@H]([C@@H](O[C@@H]3[C@@H]([C@H](O)[C@@H](O)[C@H](CO)O3)O[C@@H]3[C@@H]([C@H](O)[C@@H](O)[C@H](CO)O3)O[C@@H]3[C@H]([C@H](O)[C@@H](O)[C@H](CO)O3)O)[C@@H](O)[C@H](CO[C@@H]3[C@H]([C@H](O[C@@H]4[C@H]([C@H](O)[C@@H](O)[C@H](CO)O4)O)[C@@H](O)[C@H](CO)O3)O)O2)O)[C@H](CO)O1 JGGLZQUGOKVDGS-VYTIMWRQSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 101150050729 bdhA gene Proteins 0.000 description 1
- VDARBCCMTDKLBW-UHFFFAOYSA-N benzyl 2-methyl-3-hydroxybutanoate Chemical compound CC(O)C(C)C(=O)OCC1=CC=CC=C1 VDARBCCMTDKLBW-UHFFFAOYSA-N 0.000 description 1
- 150000001277 beta hydroxy acids Chemical class 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- YSNRTFFURISHOU-UHFFFAOYSA-N beta-farnesene Natural products C=CC(C)CCC=C(C)CCC=C(C)C YSNRTFFURISHOU-UHFFFAOYSA-N 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 150000005693 branched-chain amino acids Chemical class 0.000 description 1
- 101150006870 cadC gene Proteins 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- WTFXTQVDAKGDEY-HTQZYQBOSA-N chorismic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1OC(=C)C(O)=O WTFXTQVDAKGDEY-HTQZYQBOSA-N 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- VHTQQDXPNUTMNB-ONEGZZNKSA-N cis-2-hydroxypenta-2,4-dienoic acid Chemical compound OC(=O)C(\O)=C/C=C VHTQQDXPNUTMNB-ONEGZZNKSA-N 0.000 description 1
- 229940018560 citraconate Drugs 0.000 description 1
- XFTRTWQBIOMVPK-UHFFFAOYSA-N citramalic acid Chemical compound OC(=O)C(O)(C)CC(O)=O XFTRTWQBIOMVPK-UHFFFAOYSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- RGJOEKWQDUBAIZ-UHFFFAOYSA-N coenzime A Natural products OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-UHFFFAOYSA-N 0.000 description 1
- 239000005516 coenzyme A Substances 0.000 description 1
- 229940093530 coenzyme a Drugs 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- 101150024388 crtC gene Proteins 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 108010000742 dTMP kinase Proteins 0.000 description 1
- JZXNELIZHJCEFA-PVMJKYSESA-N decanedioyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 JZXNELIZHJCEFA-PVMJKYSESA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 108010007340 deoxyadenosine kinase Proteins 0.000 description 1
- 108010049285 dephospho-CoA kinase Proteins 0.000 description 1
- KDTSHFARGAKYJN-UHFFFAOYSA-N dephosphocoenzyme A Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 KDTSHFARGAKYJN-UHFFFAOYSA-N 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- DCRWHJGCOKPJBN-TWBNDLJKSA-N dihydrostreptomycin 6-phosphate Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](CO)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](OP(O)(O)=O)[C@H]1O DCRWHJGCOKPJBN-TWBNDLJKSA-N 0.000 description 1
- 229940120503 dihydroxyacetone Drugs 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- AWMCEAXIMVYOKU-HTKIKNFPSA-N dodecanedioyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCCCCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 AWMCEAXIMVYOKU-HTKIKNFPSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 101150046913 ecpA gene Proteins 0.000 description 1
- WQXNXVUDBPYKBA-YFKPBYRVSA-N ectoine Chemical compound CC1=[NH+][C@H](C([O-])=O)CCN1 WQXNXVUDBPYKBA-YFKPBYRVSA-N 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000009483 enzymatic pathway Effects 0.000 description 1
- 108010031246 erythritol kinase Proteins 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 108010044215 ethanolamine kinase Proteins 0.000 description 1
- RWKCDDCAHAIGTR-MRVPVSSYSA-N ethenyl (3R)-3,5-dihydroxy-3-methylpentanoate Chemical compound OCC[C@](O)(C)CC(=O)OC=C RWKCDDCAHAIGTR-MRVPVSSYSA-N 0.000 description 1
- UVQYAPGVIRJEBY-DDWIOCJRSA-N ethenyl (3R)-3,5-dihydroxy-3-methylpentanoate phosphoric acid Chemical compound OP(O)(O)=O.OCC[C@](O)(C)CC(=O)OC=C UVQYAPGVIRJEBY-DDWIOCJRSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- UKFXDFUAPNAMPJ-UHFFFAOYSA-N ethylmalonic acid Chemical compound CCC(C(O)=O)C(O)=O UKFXDFUAPNAMPJ-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930009668 farnesene Natural products 0.000 description 1
- 230000004133 fatty acid degradation Effects 0.000 description 1
- 230000004136 fatty acid synthesis Effects 0.000 description 1
- 102000005970 fatty acyl-CoA reductase Human genes 0.000 description 1
- 150000002185 fatty acyl-CoAs Chemical class 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 108010083136 fucokinase Proteins 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 101150117554 geoA gene Proteins 0.000 description 1
- 108010049772 geranylgeranyl phosphate kinase Proteins 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 101150056064 glpK gene Proteins 0.000 description 1
- 230000004190 glucose uptake Effects 0.000 description 1
- 108010079972 glucose-1-phosphate phosphodismutase Proteins 0.000 description 1
- 108010087331 glutaconate CoA-transferase Proteins 0.000 description 1
- 108010086476 glycerate kinase Proteins 0.000 description 1
- 108010013826 glycerol-3-phosphate - glucose phosphotransferase Proteins 0.000 description 1
- 101150008488 hadB gene Proteins 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid group Chemical group C(CCCCCC)(=O)O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid group Chemical group C(CCCCC)(=O)O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- OEXFMSFODMQEPE-HDRQGHTBSA-N hexanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 OEXFMSFODMQEPE-HDRQGHTBSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- QJHBJHUKURJDLG-UHFFFAOYSA-N hydroxy-L-lysine Natural products NCCCCC(NO)C(O)=O QJHBJHUKURJDLG-UHFFFAOYSA-N 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- GFAZHVHNLUBROE-UHFFFAOYSA-N hydroxymethyl propionaldehyde Natural products CCC(=O)CO GFAZHVHNLUBROE-UHFFFAOYSA-N 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- WHOOUMGHGSPMGR-UHFFFAOYSA-N indol-3-ylacetaldehyde Chemical compound C1=CC=C2C(CC=O)=CNC2=C1 WHOOUMGHGSPMGR-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- AEWHYWSPVRZHCT-NDZSKPAWSA-N isobutyryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C(C)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 AEWHYWSPVRZHCT-NDZSKPAWSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- NTGWPRCCOQCMGE-YUMQZZPRSA-N isochorismic acid Chemical compound O[C@@H]1[C@@H](OC(=C)C(O)=O)C=CC=C1C(O)=O NTGWPRCCOQCMGE-YUMQZZPRSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N itaconic acid Chemical compound OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 229940031154 kluyveromyces marxianus Drugs 0.000 description 1
- HXEACLLIILLPRG-RXMQYKEDSA-N l-pipecolic acid Natural products OC(=O)[C@H]1CCCCN1 HXEACLLIILLPRG-RXMQYKEDSA-N 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 229960004999 lycopene Drugs 0.000 description 1
- OAIJSZIZWZSQBC-GYZMGTAESA-N lycopene Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCC=C(C)C OAIJSZIZWZSQBC-GYZMGTAESA-N 0.000 description 1
- 235000012661 lycopene Nutrition 0.000 description 1
- 239000001751 lycopene Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 108010089734 malonyl-CoA synthetase Proteins 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000003228 microsomal effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 108010021066 nicotinamide riboside kinase Proteins 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- DBCRIBJPCBKAME-NOQDIWQESA-N octanedioyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 DBCRIBJPCBKAME-NOQDIWQESA-N 0.000 description 1
- 125000005473 octanoic acid group Chemical class 0.000 description 1
- XDUHQPOXLUAVEE-BPMMELMSSA-N oleoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCC\C=C/CCCCCCCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 XDUHQPOXLUAVEE-BPMMELMSSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000000065 osmolyte Effects 0.000 description 1
- 230000008723 osmotic stress Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 101150006816 paaH gene Proteins 0.000 description 1
- MNBKLUUYKPBKDU-BBECNAHFSA-N palmitoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCCCCCCCCCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MNBKLUUYKPBKDU-BBECNAHFSA-N 0.000 description 1
- 229940014662 pantothenate Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- FDSSYPNUQHQSIQ-UHFFFAOYSA-N penta-2,4-dienamide Chemical class NC(=O)C=CC=C FDSSYPNUQHQSIQ-UHFFFAOYSA-N 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- 238000005373 pervaporation Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- LCPDWSOZIOUXRV-UHFFFAOYSA-N phenoxyacetic acid Chemical class OC(=O)COC1=CC=CC=C1 LCPDWSOZIOUXRV-UHFFFAOYSA-N 0.000 description 1
- ZIGIFDRJFZYEEQ-CECATXLMSA-N phenylacetyl-CoA Chemical compound O=C([C@H](O)C(C)(COP(O)(=O)OP(O)(=O)OC[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C2=NC=NC(N)=C2N=C1)OP(O)(O)=O)C)NCCC(=O)NCCSC(=O)CC1=CC=CC=C1 ZIGIFDRJFZYEEQ-CECATXLMSA-N 0.000 description 1
- 108010064607 phosphoglucokinase Proteins 0.000 description 1
- 108010006451 phosphomethylpyrimidine kinase Proteins 0.000 description 1
- GWNZDVLCWHAMGQ-RWOHWRPJSA-N phosphono dihydrogen phosphate;[(2r,3r,4s)-2,3,4,6-tetrahydroxy-5-oxohexyl] dihydrogen phosphate Chemical compound OP(O)(=O)OP(O)(O)=O.OCC(=O)[C@@H](O)[C@H](O)[C@H](O)COP(O)(O)=O GWNZDVLCWHAMGQ-RWOHWRPJSA-N 0.000 description 1
- 108010060366 phosphoribokinase Proteins 0.000 description 1
- 108010080971 phosphoribulokinase Proteins 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 101150090310 pimF gene Proteins 0.000 description 1
- LYCRXMTYUZDUGA-UYRKPTJQSA-N pimeloyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 LYCRXMTYUZDUGA-UYRKPTJQSA-N 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 108020000161 polyphosphate kinase Proteins 0.000 description 1
- 230000019525 primary metabolic process Effects 0.000 description 1
- 108010054697 propionyl-CoA reductase Proteins 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 101150108007 prs gene Proteins 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000035806 respiratory chain Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 108020002667 ribulokinase Proteins 0.000 description 1
- 102200036751 rs778336949 Human genes 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 108020001482 shikimate kinase Proteins 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 244000000000 soil microbiome Species 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 108010086290 sphinganine kinase Proteins 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 108010008664 streptomycin 3''-kinase Proteins 0.000 description 1
- 108010041757 streptomycin 6-kinase Proteins 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 101150031436 sucD gene Proteins 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 108010018787 tagatose kinase Proteins 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 101150087812 tesA gene Proteins 0.000 description 1
- 108010073742 thiamin-diphosphate kinase Proteins 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 101150072448 thrB gene Proteins 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- ZCIHMQAPACOQHT-ZGMPDRQDSA-N trans-isorenieratene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/c1c(C)ccc(C)c1C)C=CC=C(/C)C=Cc2c(C)ccc(C)c2C ZCIHMQAPACOQHT-ZGMPDRQDSA-N 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
- 108091022915 xylulokinase Proteins 0.000 description 1
- 101150026301 ybfF gene Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
- C12P5/026—Unsaturated compounds, i.e. alkenes, alkynes or allenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the present invention relates generally to metabolic and biosynthetic processes and microbial organisms capable of producing organic compounds, and more specifically to non-naturally occurring microbial organisms having an organic compound pathway, such as butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and 2,4-pentadienoate.
- organic compound pathway such as butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and 2,4-pentadienoate.
- butadiene 1,3-butadiene, “BD”) are produced annually and is applied in the manufacture of polymers such as synthetic rubbers and ABS resins, and chemicals such as hexamethylenediamine and 1,4-butanediol.
- BD butadiene
- alkenes e.g. styrene
- SBR styrene-1,3-butadiene
- Butadiene is typically produced as a by-product of the steam cracking process for conversion of petroleum feedstocks such as naphtha, liquefied petroleum gas, ethane or natural gas to ethylene and other olefins.
- butadiene renewably involves fermentation of sugars or other feedstocks to produce diols, such as 1,4-butanediol or 1,3-butanediol, which are separated, purified, and then dehydrated to butadiene in a second step involving metal-based catalysis.
- diols such as 1,4-butanediol or 1,3-butanediol
- Crotyl alcohol also referred to as 2-buten-1-ol
- Crotyl alcohol also referred to as 2-buten-1-ol
- It serves as a precursor to crotyl halides, esters, and ethers, which in turn are chemical intermediates in the production of monomers, fine chemicals, agricultural chemicals, and pharmaceuticals.
- Exemplary fine chemical products include sorbic acid, trimethylhydroquinone, crotonic acid and 3-methoxybutanol.
- CrotOH is also a precursor to 1,3-butadiene. CrotOH is currently produced exclusively from petroleum feedstocks. For example Japanese Patent 47-013009 and U.S. Pat. Nos.
- 3,090,815, 3,090,816, and 3,542,883 describe a method of producing CrotOH by isomerization of 1,2-epoxybutane.
- the ability to manufacture CrotOH from alternative and/or renewable feedstocks would represent a major advance in the quest for more sustainable chemical production processes.
- 3-Buten-2-ol (also referenced to as methyl vinyl carbinol (“MVC”)) is an intermediate that can be used to produce butadiene.
- MVC methyl vinyl carbinol
- MVC can also be used as a solvent, a monomer for polymer production, or a precursor to fine chemicals. Accordingly, the ability to manufacture MVC from alternative and/or renewable feedstock would again present a significant advantage for sustainable chemical production processes.
- 2,4-Pentadienoate is a useful substituted butadiene derivative in its own right and a valuable intermediate en route to other substituted 1,3-butadiene derivatives, including, for example, 1-carbamoyl-1,3-butadienes which are accessible via Curtius rearrangement.
- the resultant N-protected-1,3-butadiene derivatives can be used in Diels alder reactions for the preparation of substituted anilines.
- 2,4-Pentadienoate can be used in the preparation of various polymers and co-polymers.
- the invention provides a non-naturally occurring microbial organism having a pathway to butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-2-ol, said microbial organism comprising at least one exogenous nucleic acid encoding a pathway enzyme, wherein the enzyme is selected from the group consisting of (1E) 4-hydroxy 2-oxovalerate decarboxylase, (1 D) 3-hydroxybutyraldehyde dehydratase, (1N) 2-oxopent-3-enoyl-CoA synthetase or transferase, (1O) 2-oxopent-3-enoyl-CoA reductase, (1P) 2-hydroxypent-3-enoyl-CoA dehydratase/vinylisomerase, (1R) 2-hydroxypent-3-enoyl-CoA synthetase or transferase, (1F) 2-oxopent-3-enoate reductase, (1E)
- One or more additional pathway enzymes may be included in the microbial organism.
- the invention also provides methods for the production of butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-2-ol, comprising culturing the non-naturally occurring microorganism.
- the invention provides a non-naturally occurring microbial organism having a pathway to butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-1-ol, said microbial organism comprising at least one exogenous nucleic acid encoding a pathway enzyme, the enzyme selected from the group consisting of (2E) 2-hydroxypent-4-enoate vinylisomerase, (2H) 2-hydroxypent-4-enoate mutase, and (2M) 3-hydroxypent-4-enoyl-CoA vinylisomerase.
- One or more additional pathway enzymes may be included in the microbial organism.
- the invention also provides methods for the production of butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-1-ol, comprising culturing the non-naturally occurring microorganism.
- the invention provides a non-naturally occurring microbial organism having a pathway to butadiene, 2,4-pentadienoate, or 3-buten-2-ol, said microbial organism comprising at least one exogenous nucleic acid encoding a pathway enzyme, the enzyme selected from the group consisting of (3D) 3,4-dihydroxypentanoate dehydratase, (3E) 4-hydroxypent-2-enoate decarboxylase (3H) 3,4-dihydroxypentanoyl-CoA dehydratase, and (3J) 4-hydroxypent-2-enoyl-CoA transferase.
- the invention also provides methods for the production of butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-2-ol, comprising culturing the non-naturally occurring microorganism.
- the invention provides a non-naturally occurring microbial organism having a pathway to convert crotyl alcohol to butadiene or 3-buten-2-ol, said microbial organism comprising at least one exogenous nucleic acid encoding a pathway enzyme, wherein the enzyme is selected from the group consisting of (4D) 3-buten-2-ol synthase, (4E) 3-buten-2-ol synthase, or (4F) crotyl alcohol isomerase.
- FIG. 1 shows pathways to butadiene from pyruvate and acetyl-CoA.
- Enzymes are A. acetyl-CoA reductase, B. 4-hydroxy 2-oxovalerate aldolase, C. 4-hydroxy 2-oxovalerate decarboxylase, D. 3-hydroxybutyraldehyde dehydratase, E. 4-hydroxy-2-oxovalerate 3-dehydratase, F. 2-oxopent-3-enoate reductase, G. 2-hydroxypent-3-enoate dehydratase/vinylisomerase, H. 2,4-pentadienoate decarboxylase, I. 2-oxopent-3-enoate decarboxylase, J.
- crotyl aldehyde reductase K. crotyl alcohol vinylisomerase, L. 3-buten-2-ol dehydratase, M. crotyl alcohol dehydratase/vinylisomerase, N. 2-oxopent-3-enoyl-CoA synthetase or transferase, O. 2-oxopent-3-enoyl-CoA reductase, P. 2-hydroxypent-3-enoyl-CoA dehydratase/vinylisomerase, Q. 2,4-pentadienoyl-CoA synthetase, transferase or hydrolase, R.
- 2-hydroxypent-3-enoyl-CoA synthetase or transferase S. 2-hydroxypent-3-enoate decarboxylase, T. 4-hydroxypent-2-enoate decarboxylase, U. 2-hydroxypent-3-enoate vinylisomerase, V. 4-hydroxypent-2-enoate dehydratase, W. vinylisomerase.
- FIG. 2 shows pathways to butadiene from pyruvate and acetyl-CoA.
- Acetyl-CoA reductase B. 4-hydroxy 2-oxovalerate aldolase, C. 4-hydroxy 2-oxovalerate dehydratase, D. 2-oxopent-4-enoate reductase, E. 2-hydroxypent-4-enoate vinylisomerase, F. 5-hydroxypent-2-enoate dehydratase, G. 2,4-pentadienoate decarboxylase, H. 2-hydroxypent-4-enoate mutase, I. 5-hydroxypent-2-enoyl-CoA synthetase, transferase or hydrolase, J.
- FIG. 3 shows pathways to but-3-enol and/or butadiene from lactoyl-CoA and acetyl-CoA.
- Enzymes are A. 3-Oxo-4-hydroxypentanoyl-CoA thiolase, B. 3-oxo-4-hydroxypentanoyl-CoA transferase, synthetase or hydrolase, C. 3-oxo-4-hydroxypentanoate reductase, D. 3,4-dihydroxypentanoate dehydratase, E. 4-hydroxypent-2-enoate decarboxylase, F. 3-buten-2-ol dehydratase, G.
- 3-oxo-4-hydroxypentanoyl-CoA reductase H. 3,4-dihydroxypentanoyl-CoA dehydratase, I. 3,4-dihydroxypentanoyl-CoA transferase, synthetase or hydrolase, J. 4-hydroxypent-2-enoyl-CoA transferase, synthetase or hydrolase, K. 4-hydroxypent-2-enoate dehydratase, L. 2,4-pentadienoate decarboxylase, M. 4-hydroxypent-2-enoyl-CoA dehydratase, N. 2,4-pentadienoyl-CoA hydrolase, transferase or synthetase, O. vinylisomerase.
- FIG. 4 shows pathways for converting crotyl alcohol (2-Buten-1-ol) to 3-buten-2-ol and/or butadiene.
- Enzymes are A. crotyl alcohol kinase, B. 2-butenyl-4-phosphate kinase, C. butadiene synthase, D. 3-buten-2-ol synthase, E. 3-buten-2-ol synthase, F. crotyl alcohol isomerase, G. 3-buten-2-ol dehydratase, H. crotyl alcohol dehydratase, I. crotyl alcohol diphosphokinase, J. butadiene synthase (from 2-butenyl-4-phosphate).
- FIG. 5 shows the GCMS analysis of an authentic sample of MVC or 3-buten-2-ol.
- FIG. 6 shows the GCMS chromatograms obtained for the enzymatic (blue) assay with 50 mM CrotOH after 16 hours and 1 mM standard of MVC or 3-buten-2-ol dissolved in minimal media.
- FIG. 7 is a graph showing activity measurements for assessing the NADPH-dependent reduction of crotonaldehyde to crotonol.
- FIG. 8 is a graph of in vitro formation of crotyl phosphate (CrPi) and ADP over time from a composition including ATP, crotyl alcohol, and hydroxyethylthiazole kinase.
- product pathways described herein are specifically contemplated for use in the organisms, compositions and their uses, such as in methods to make the target products of 1,3-butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol or 2,4-pentadienoate or other product, and other embodiments as taught herein.
- Embodiments of the disclosure are directed to the design of metabolic pathways, and the production and use of non-naturally occurring microbial organisms capable of producing butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol and/or 2,4-pentadienoate.
- metabolic pathways can be designed and recombinantly engineered to achieve the biosynthesis of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate in microbial organisms such as Escherichia coli and other cells or organisms.
- Biosynthetic production of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can be performed by construction and fermentation of strains having the designed metabolic genotype.
- FIG. 1 provides exemplary pathways to butadiene from acetyl-CoA and pyruvate via intermediate 2-oxopent-3-enoate (step E) or 3-hydroxybutyraldehyde (step C). Also shown are pathways to the intermediate products (which may be desirably obtained as final products) of crotol alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate, which in certain pathway routes, can be intermediates in butadiene synthesis.
- acetyl-CoA is converted to acetaldehyde by acetyl-CoA reductase, and pyruvate and acetaldehyde are then converted to 4-hydroxy-2-oxovalerate by 4-hydroxy 2-oxovalerate aldolase.
- the intermediate 4-hydroxy-2-oxovalerate can be promoted to enter different pathways depending on the metabolic design.
- 4-hydroxy-2-oxovalerate can be converted to 2-oxopent-3-enoate in the presence of 4-hydroxy-2-oxovalerate 3-dehydratase.
- Pathway “E” can branch off into one or more different pathways depending on the metabolic design. For example, in pathway “E ⁇ N” 2-oxopent-3-enoate is converted to 2-oxopent-3-enoyl-CoA in the presence of 2-oxopent-3-enoyl-CoA synthetase or transferase (N); subsequent enzymatic conversions of intermediates can occur.
- pathway “E ⁇ F” 2-oxopent-3-enoate is converted to 2-hydroxypent-3-enoate in the presence of 2-oxopent-3-enoate reductase (F); subsequent enzymatic conversions of intermediates can occur.
- the intermediate 2,4-pentadienoate can be obtained further downstream in the E ⁇ F branch of the pathway.
- pathway “E ⁇ I” 2-oxopent-3-enoate is converted to crotyl aldehyde in the presence of 2-oxopent-3-enoate decarboxylase (I); subsequent enzymatic conversions of intermediates can occur.
- the intermediates such as crotol alcohol and/or 3-buten-2-ol can be obtained further downstream in the E ⁇ I branch of the pathway.
- the intermediate 4-hydroxy-2-oxovalerate can also be promoted to enter pathway (“C”), where 4-hydroxy-2-oxovalerate can be converted to 3-hydroxy butyraldehyde in the presence of 4-hydroxy 2-oxovalerate decarboxylase.
- 4-hydroxy 2-oxovalerate decarboxylase can be converted to crotyl aldehyde in the presence of 3-hydroxybutyraldehyde dehydratase (D).
- Crotyl aldehyde can be converted to crotyl alcohol, which can be an intermediate in the pathway, or can be obtained as a final product, by crotyl aldehyde reductase (J).
- crotyl alcohol can be converted to 3-buten-2-ol, which can be an intermediate in the pathway, or can be obtained as a final product, by crotyl alcohol vinylisomerase (K).
- 3-buten-2-ol from steps K or T can be isolated or from step T converted to crotyl alcohol enzymatically (W) or chemically.
- Crotyl alcohol can enter FIG. 4 or be isolated.
- the non-naturally occurring microbial organism can have any one of the following pathways.
- the pathway enzymes is encoded by nucleic acid that is heterologous to the host species.
- the heterologous nucleic acid can be obtained from a microbial species other than the host species, such as a nucleic acid from a bacteria other than E. coli (i.e., a non- E. coli bacteria), wherein the heterologous nucleic acid is transformed into E. coli host organism to create any of the pathways of the disclosure.
- two, three, four, five, six, etc., heterologous nucleic acids from one or more bacteria other than the host bacteria are transformed into the bacterial host organism to create any of the pathways of the disclosure.
- a pathway such as BEFUVH in a host organism one can first determine what, if any, enzymes of the BEFUVH are naturally present in a desired host species. If B is native to the host species, but not EFUVH, the host can then be transformed with heterologous nucleic acids encoding EFUVH to create a pathway in the cell to form butadiene.
- This approach can be used to create a non-naturally occurring microbial organism having a pathway to butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-2-ol, having any of the pathways of the disclosure.
- FIG. 2 provides exemplary pathways to butadiene from acetyl-CoA and pyruvate via intermediate 5-hydroxypent-2-enoate (step E) or 3-hydroxypent-4-enoate (step H). Also shown are pathways to the intermediate products (which may be desirably obtained as final products) of crotol alcohol, 3-buten-1-ol and/or 2,4-pentadienoate, which in certain pathway routes, can be intermediates in butadiene synthesis.
- acetyl-CoA is converted to acetaldehyde by acetyl-CoA reductase (A), and pyruvate and acetaldehyde then converted to 4-hydroxy-2-oxovalerate by 4-hydroxy 2-oxovalerate aldolase (B).
- 4-hydroxy-2-oxovalerate is converted to 2-oxopent-4-enoate by 4-hydroxy 2-oxovalerate dehydratase (C), and then 2-oxopent-4-enoate is converted to 2-hydroxypent-4-enoate by 2-oxopent-4-enoate reductase (D).
- the intermediate 2-hydroxypent-4-enoate can enter pathway branch “E” or “H.”
- pathway branch E 2-hydroxypent-4-enoate is converted to 5-hydroxypent-2-enoate in the presence of 2-hydroxypent-4-enoate vinylisomerase.
- the intermediate 5-hydroxypent-2-enoate can then enter one or more of pathway branches (P, F, and/or I) before conversion to butadiene.
- 3-buten-1-ol can be converted to crotyl alcohol (S), which can be an intermediate in the pathway (entering FIG. 4 ), or can be obtained as a final product.
- S crotyl alcohol
- pathway branch H 2-hydroxypent-4-enoate is converted to 3-hydroxypent-4-enoate in the presence of 2-hydroxypent-4-enoate mutase.
- the intermediate 3-hydroxypent-4-enoate can then enter one or more of pathway branches (R, K, and/or L) before conversion to butadiene.
- the non-naturally occurring microbial organism can have any one of the following pathways. E; DE; CDE; BCDE; ABCDE; EF; EFG; EP; EPQ; EI; EIN; EINJ; EINJG; ABCDEF; ABCDEFG; ABCDEP; ABCDEPQ; ABCDEI; ABCDEIN; ABCDEINJ; ABCDEINJG; BCDEF; BCDEFG; BCDEP; BCDEPQ; BCDEI; BCDEIN; BCDEINJ; BCDEINJG; CDEF; CDEFG; CDEP; CDEPQ; CDEI; CDEIN; CDEINJ; CDEINJG; DEF; DEFG; DEP; DEPQ; DEI; DEIN; DEINJ; DEINJG; H; DH; CDH; BCDH; ABCDH; HL; HLM; HLMN; HLMNJ; HLMNJG; HLO; HLOJ; HLOJG; HLMI; HLMIF;
- Step S conversion to crotyl alcohol.
- BCDEPS BCDEPS; CDEPS; DEPS; HLMIPS; ABCDHLMIPS; BCDHLMIPS; CDHLMIPS and DHLMIPS.
- FIG. 3 provides exemplary pathways to butadiene from lactoyl-CoA and acetyl-CoA via intermediate 4-hydroxypent-2-enoate, 3-buten-2-ol, 4-hydroxypent-2-enoyl-CoA, 4-hydroxypent-2-enoate; enzymes such as 3,4-dihydroxypentanoate dehydratase (step D), 4-hydroxypent-2-enoate decarboxylase (step E), 3,4-dihydroxypentanoyl-CoA dehydratase (step H), and 4-hydroxypent-2-enoyl-CoA transferase (step J) can be used.
- 3-buten-2-ol from step E can be isolated as final product or converted to crotyl alcohol enzymatically (O) or chemically. Crotyl alcohol can be isolated or enter FIG. 4 .
- the non-naturally occurring microbial organism can have any one of the following pathways: E; EF; D; DE; DEF; DK; DKL; J; JE; JEF; JK; JKL; H; HJ; HJE; HJEF; HJK; HJKL; HM; HMN; HMNL; GH; GHJ; GHJE; GHJEF; GHJK; GHJKL; GHM; GHMN; GHMIL; AGH; AGHJ; AGHJE; AGHJEF; AGHJK AGHJKL; AGHM; AGHMN; AGHMNL; ID; IDE; IDEF; IDK; IDKL; GID; GIDE; GIDEF; GIDK; GIDKL; AGID; AGIDE; AGIDEF; AGIDK; AGIDKL; CD; CDE; CDEF; CDK; CDKL; BCD; BCDE; BCDEF; BCDK; BCDKL; CD; CDE; CD
- Step O conversion to crotyl alcohol.
- EO DEO
- JEO JEO
- HJEO AGHJEO
- IDEO GIDEO
- AGIDEO CDEO
- BCDEO BCDEO
- ABCDEO ABCDEO
- GHJEO GHJEO
- FIG. 4 provides exemplary pathways to butadiene from crotyl alcohol via one or more of the following intermediates: 2-butenyl-4-phosphate, 2-butenyl-4-diphosphate, and/or 3-buten-2-ol.
- crotyl alcohol can be introduced into this pathway via any crotyl alcohol-producing pathway known in the art, or as described herein (e.g., from precursors crotyl aldehyde as converted to crotyl alcohol in the presence of crotyl aldehyde reductase (1J); or 2-hydroxypent-3-enoate converted to crotyl alcohol in the presence of 2-hydroxypent-3-enoate decarboxylase (1S) and including conversion from 3-buten-1-ol or 3-buten-2-ol).
- the crotyl alcohol is produced by a pathway of FIG. 1, 2 or 3 and then introduced into a pathway of FIG. 4 .
- step A of FIG. 4 uses a hydroxyethylthiazole kinase, a thiamine kinase, a pantothenate kinase, a 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, a riboflavin kinase, a L-fuculokinase, and/or a choline kinase, such as those described herein.
- step B of FIG. 4 subset of kinases of the EC 2.7.1.a class suitable for FIG. 4 Step B include 2.7.4.a Phosphokinases listed below.
- 2-Butenyl-4-phosphate kinase enzymes catalyze the transfer of a phosphate group to the phosphate group of 2-butenyl-4-phosphate ( FIG. 4B ).
- the non-naturally occurring microbial organism can have any one of the following pathways: D; DG; AD; ADG; E; EG; BE; BEG; ABE; ABEG; IE; IEG; F; FG; G; H; J; AJ; A; AB; ABC and each combination of any one or more of steps D, E, F with any one or more of steps of FIG. 4 , wherein when at least one of 4A, 4B, 4C, 4G or 4H is present then (i) at least one other unique step or pathway is present, such as step 4D, 4E, any unique step or pathway from FIG. 1 (e.g.
- Step 4A, 4B, 4C, 4G or 4H or (ii) at least one of A, B, C, G or H consists of a specific sub-group of enzyme classes or enzymes described herein as A for Step A, as B for Step B, as C for Step C, as G for Step G or as H for Step H.
- each pathway or step above is also contemplated the substitution of any one or more of subsets of enzymes described as Steps 1L, 1V, 1M, 2C, 2F, 2O, 2N, 2Q, 2R, 3F, 3K, 3M, 4A, 4B, 4C, 4G and 4H for its corresponding step (e.g. replace enzymes described for Step 1L with those described for Step 1L*).
- crotyl alcohol or 3-buten-2-ol is produced by a pathway of FIG. 1 (e.g., a pathway such as: ABCDJ; ABEIJ; ABEFS; BCDJ; BEIJ: BEFS; CDJ; EIJ; EFS; and DJ, optionally further with step W), or is produced by a pathway of FIG. 3 , and then introduced into a pathway of FIG. 4 by combining with a pathway of FIG. 4 selected from: A; AB; ABC; AJ; AD; ADG; ABE; ABEG; F; FG; I; IC; IE; IEG; H; and G.
- a pathway of FIG. 1 e.g., a pathway such as: ABCDJ; ABEIJ; ABEFS; BCDJ; BEIJ: BEFS; CDJ; EIJ; EFS; and DJ, optionally further with step W
- a pathway of FIG. 3 e.g., a pathway such as: ABCDJ; ABEIJ
- pathway having substitution of any one or more of subsets of enzymes described in Steps 4G and 4H for its corresponding step e.g. FIG. 1 ABCDJ plus FIG. 4 IEG becomes FIG. 1 ABCDJ plus FIG. 4 IEG*).
- crotyl alcohol or 3-buten-1-ol is produced by a pathway of FIG. 2 and then introduced into a pathway of FIG. 4 by combining with a pathway of FIG. 4 selected from: A; AB; ABC; AJ; AD; ADG; ABE; ABEG; F; FG; I; IC; IE; IEG; H; and G.
- pathway having substitution of any one or more of subsets of enzymes described in Steps 4G and 4H for its corresponding step e.g. FIG. 2 ABCDEPS plus FIG. 4 IEG becomes FIG. 2 ABCDEPS plus FIG. 4 IEG*).
- Steps 1N, 1O, 1P, 1R, 1F, U and 1K are also specifically contemplated herein as unique transformations of FIG. 2 in addition to Step 2H and 2E.
- Step 2M Also specifically contemplated herein as unique transformations of FIG. 4 in addition to Step 4D and 4E is Step 4F.
- Steps 1L, 1V, 1M, 2C, 2F, 2O, 2N, 2Q, 2R, 3F, 3K, 3M, 4A, 4B, 4C, 4G and 4H are unique. Accordingly, all subject matter specifically expressed herein applies equally to these additional unique steps.
- a non-naturally occurring microbial organism having a pathway to butadiene, crotyl alcohol, 2,4-pentadienoate, 3-buten-1-ol, 3-buten-2-ol, or other product said microbial organism comprising a nucleic acid encoding a pathway enzyme for the unique step, as well as methods of use described herein.
- a step A subset of kinases of FIG. 4 Step A include enzymes exemplified in the tables below for hydroxyethylthiazole kinase, thiamine kinase, pantothenate kinase, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, riboflavin kinase, L-fuculokinase and choline kinase.
- the table below provides hydroxyethyl thiazole kinases, including EC 2.7.1.50 class, for FIG. 4 , Step A:
- Exemplary candidate thiamine kinases for FIG. 4 , Step A are:
- Exemplary fuculokinases for FIG. 4 , Step A are:
- Step A Exemplary 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase for FIG. 4 , Step A are:
- Exemplary pantothenate kinases for FIG. 4 , Step A are:
- Step A Exemplary 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinases (2.7.1.148) for FIG. 4 , Step A are:
- Step A subset of synthases (alkene forming) for FIG. 4 Step C include 4-dimethylallyltryptophan synthase (class EC 2.5.1.34) and dimethylallyltranstransferase (class EC 2.5.1.1) that catalyze the conversion of 2-butenyl-4-diphosphate to 1,3-butadiene (Butadiene Synthase (BDS).
- BDS butadiene Synthase
- the enzymes in these classes naturally possess such activity or can be engineered to exhibit or enhance this activity.
- the enzyme-subsets designated as steps 1L, 1V, 1M, 2C, 2F, 2O, 2N, 2Q, 2R, 3F, 3K, 3M, 4G and 4H of dehydratase of the EC 4.2.1.a class for their respective Steps 1L, 1V, 1M, 2C, 2F, 2O, 2N, 2Q, 2R, 3F, 3K, 3M, 4G and 4H include the exemplary dehydratases of the 4.2.1.a class shown in the table below as well as a dehydratase class that dehydrates phenyllactyl-CoA to cinnamoyl-CoA exemplified by the dehydratase found in Clostridium sporogens that dehydrates phenyllactyl-CoA to cinnamoyl-CoA.
- This enzyme is composed of three subunits, one of which is a CoA transferase.
- the first step comprises of a CoA transfer from cinnamoyl-CoA to phenyllactate leading to the formation of phenyllactyl-CoA and cinnamate.
- the product cinnamate is released.
- the dehydratase then converts phenyllactyl-CoA into cinnamoyl-CoA.
- the FldA is the CoA transferase and FldBC are alpha and beta subunits of the dehydratase, which are related to component D from A. fermentans .
- FIG. 4G and FIG. 4H subsets and FIG. 1 Step L, V and M subsets and FIG. 2 Step C, F, N, O, Q and R subsets, and FIG. 3 Steps F, K and M subsets are subsets of dehydratases for their respective Steps 1L, 1V, 1M, 2C, 2F, 2O, 2N, 2Q, 2R, 3F, 3K, 3M, 4G and 4H are listed in the following table.
- FIG. 4G and FIG. 4H subsets and FIG. 1 Step L, V and M subsets and FIG. 2 Step C, F, N, O, Q and R subsets, and FIG. 3 Steps F, K and M subsets include dimethylmaleate hydratases that catalyze the dehydration of (2R,3S)-2,3-dimethylmalate into dimethylmaleate (EC 4.2.1.85) shown in the table below.
- Enzymes with dehydratase and vinylisomerase activity suitable for FIG. 1 Steps G and M subsets and FIG. 4 Steps G and H subsets include bifunctional enzymes with dehydratase and isomerase activities exemplified below.
- non-naturally occurring when used in reference to a microbial organism or microorganism of the invention is intended to mean that the microbial organism has at least one genetic alteration not normally found in a naturally occurring strain of the referenced species, including wild-type strains of the referenced species.
- Genetic alterations include, for example, modifications introducing expressible nucleic acids encoding metabolic polypeptides, other nucleic acid additions, nucleic acid deletions and/or other functional disruption of the microbial organism's genetic material. Such modifications include, for example, coding regions and functional fragments thereof, for heterologous, homologous or both heterologous and homologous polypeptides for the referenced species.
- Additional modifications include, for example, non-coding regulatory regions in which the modifications alter expression of a gene or operon.
- Exemplary metabolic polypeptides include enzymes or proteins within a butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate biosynthetic pathway.
- a metabolic modification refers to a biochemical reaction that is altered from its naturally occurring state. Therefore, non-naturally occurring microorganisms can have genetic modifications to nucleic acids encoding metabolic polypeptides, or functional fragments thereof. Exemplary metabolic modifications are disclosed herein.
- the term “isolated” when used in reference to a microbial organism is intended to mean an organism that is substantially free of at least one component as the referenced microbial organism is found in nature.
- the term includes a microbial organism that is removed from some or all components as it is found in its natural environment.
- the term also includes a microbial organism that is removed from some or all components as the microbial organism is found in non-naturally occurring environments. Therefore, an isolated microbial organism is partly or completely separated from other substances as it is found in nature or as it is grown, stored or subsisted in non-naturally occurring environments.
- Specific examples of isolated microbial organisms include partially pure microbes, substantially pure microbes and microbes cultured in a medium that is non-naturally occurring.
- microbial As used herein, the terms “microbial,” “microbial organism” or “microorganism” are intended to mean any organism that exists as a microscopic cell that is included within the domains of archaea, bacteria or eukarya. Therefore, the term is intended to encompass prokaryotic or eukaryotic cells or organisms having a microscopic size and includes bacteria, archaea and eubacteria of all species as well as eukaryotic microorganisms such as yeast and fungi. The term also includes cell cultures of any species that can be cultured for the production of a biochemical.
- CoA or “coenzyme A” is intended to mean an organic cofactor or prosthetic group (nonprotein portion of an enzyme) whose presence is required for the activity of many enzymes (the apoenzyme) to form an active enzyme system.
- Coenzyme A functions in certain condensing enzymes, acts in acetyl or other acyl group transfer and in fatty acid synthesis and oxidation, pyruvate oxidation and in other acetylation.
- substantially anaerobic when used in reference to a culture or growth condition is intended to mean that the amount of oxygen is less than about 10% of saturation for dissolved oxygen in liquid media.
- the term also is intended to include sealed chambers of liquid or solid medium maintained with an atmosphere of less than about 1% oxygen.
- Exogenous as it is used herein is intended to mean that the referenced molecule or the referenced activity is introduced into the host microbial organism.
- the molecule can be introduced, for example, by introduction of an encoding nucleic acid into the host genetic material such as by integration into a host chromosome or as non-chromosomal genetic material such as a plasmid. Therefore, the term as it is used in reference to expression of an encoding nucleic acid refers to introduction of the encoding nucleic acid in an expressible form into the microbial organism. When used in reference to a biosynthetic activity, the term refers to an activity that is introduced into the host reference organism.
- the source can be, for example, a homologous or heterologous encoding nucleic acid that expresses the referenced activity following introduction into the host microbial organism. Therefore, the term “endogenous” refers to a referenced molecule or activity that is present in the host. Similarly, the term when used in reference to expression of an encoding nucleic acid refers to expression of an encoding nucleic acid contained within the microbial organism. The term “heterologous” refers to a molecule or activity derived from a source other than the referenced species whereas “homologous” refers to a molecule or activity derived from the host microbial organism. Accordingly, exogenous expression of an encoding nucleic acid of the invention can utilize either or both a heterologous or homologous encoding nucleic acid.
- the more than one exogenous nucleic acids refers to the referenced encoding nucleic acid or biosynthetic activity, as discussed above. It is further understood, as disclosed herein, that such more than one exogenous nucleic acids can be introduced into the host microbial organism on separate nucleic acid molecules, on polycistronic nucleic acid molecules, or a combination thereof, and still be considered as more than one exogenous nucleic acid.
- a microbial organism can be engineered to express two or more exogenous nucleic acids encoding a desired pathway enzyme or protein.
- two exogenous nucleic acids encoding a desired activity are introduced into a host microbial organism
- the two exogenous nucleic acids can be introduced as a single nucleic acid, for example, on a single plasmid, on separate plasmids, can be integrated into the host chromosome at a single site or multiple sites, and still be considered as two exogenous nucleic acids.
- exogenous nucleic acids can be introduced into a host organism in any desired combination, for example, on a single plasmid, on separate plasmids, can be integrated into the host chromosome at a single site or multiple sites, and still be considered as two or more exogenous nucleic acids, for example three exogenous nucleic acids.
- the number of referenced exogenous nucleic acids or biosynthetic activities refers to the number of encoding nucleic acids or the number of biosynthetic activities, not the number of separate nucleic acids introduced into the host organism.
- the non-naturally occurring microbal organisms of the invention can contain stable genetic alterations, which refers to microorganisms that can be cultured for greater than five generations without loss of the alteration.
- stable genetic alterations include modifications that persist greater than 10 generations, particularly stable modifications will persist more than about 25 generations, and more particularly, stable genetic modifications will be greater than 50 generations, including indefinitely.
- E. coli metabolic modifications are described with reference to a suitable host organism such as E. coli and their corresponding metabolic reactions or a suitable source organism for desired genetic material such as genes for a desired metabolic pathway.
- a suitable host organism such as E. coli and their corresponding metabolic reactions or a suitable source organism for desired genetic material such as genes for a desired metabolic pathway.
- desired genetic material such as genes for a desired metabolic pathway.
- the E. coli metabolic alterations exemplified herein can readily be applied to other species by incorporating the same or analogous encoding nucleic acid from species other than the referenced species.
- Such genetic alterations include, for example, genetic alterations of species homologs, in general, and in particular, orthologs, paralogs or nonorthologous gene displacements.
- ortholog is a gene or genes that are related by vertical descent and are responsible for substantially the same or identical functions in different organisms.
- mouse epoxide hydrolase and human epoxide hydrolase can be considered orthologs for the biological function of hydrolysis of epoxides.
- Genes are related by vertical descent when, for example, they share sequence similarity of sufficient amount to indicate they are homologous, or related by evolution from a common ancestor.
- Genes can also be considered orthologs if they share three-dimensional structure but not necessarily sequence similarity, of a sufficient amount to indicate that they have evolved from a common ancestor to the extent that the primary sequence similarity is not identifiable.
- Genes that are orthologous can encode proteins with sequence similarity of about 25% to 100% amino acid sequence identity. Genes encoding proteins sharing an amino acid similarity less that 25% can also be considered to have arisen by vertical descent if their three-dimensional structure also shows similarities.
- Orthologs include genes or their encoded gene products that through, for example, evolution, have diverged in structure or overall activity. For example, where one species encodes a gene product exhibiting two functions and where such functions have been separated into distinct genes in a second species, the three genes and their corresponding products are considered to be orthologs. For the production of a biochemical product, those skilled in the art will understand that the orthologous gene harboring the metabolic activity to be introduced or disrupted is to be chosen for construction of the non-naturally occurring microorganism.
- An example of orthologs exhibiting separable activities is where distinct activities have been separated into distinct gene products between two or more species or within a single species.
- paralogs are homologs related by, for example, duplication followed by evolutionary divergence and have similar or common, but not identical functions.
- Paralogs can originate or derive from, for example, the same species or from a different species.
- microsomal epoxide hydrolase epoxide hydrolase I
- soluble epoxide hydrolase epoxide hydrolase II
- Paralogs are proteins from the same species with significant sequence similarity to each other suggesting that they are homologous, or related through co-evolution from a common ancestor.
- a nonorthologous gene displacement is a nonorthologous gene from one species that can substitute for a referenced gene function in a different species. Substitution includes, for example, being able to perform substantially the same or a similar function in the species of origin compared to the referenced function in the different species.
- a nonorthologous gene displacement will be identifiable as structurally related to a known gene encoding the referenced function, less structurally related but functionally similar genes and their corresponding gene products nevertheless will still fall within the meaning of the term as it is used herein.
- Functional similarity requires, for example, at least some structural similarity in the active site or binding region of a nonorthologous gene product compared to a gene encoding the function sought to be substituted. Therefore, a nonorthologous gene includes, for example, a paralog or an unrelated gene.
- Orthologs, paralogs and nonorthologous gene displacements can be determined by methods well known to those skilled in the art. For example, inspection of nucleic acid or amino acid sequences for two polypeptides will reveal sequence identity and similarities between the compared sequences. Based on such similarities, one skilled in the art can determine if the similarity is sufficiently high to indicate the proteins are related through evolution from a common ancestor. Algorithms well known to those skilled in the art, such as Align, BLAST, Clustal W and others compare and determine a raw sequence similarity or identity, and also determine the presence or significance of gaps in the sequence which can be assigned a weight or score. Such algorithms also are known in the art and are similarly applicable for determining nucleotide sequence similarity or identity.
- Parameters for sufficient similarity to determine relatedness are computed based on well known methods for calculating statistical similarity, or the chance of finding a similar match in a random polypeptide, and the significance of the match determined.
- a computer comparison of two or more sequences can, if desired, also be optimized visually by those skilled in the art.
- Related gene products or proteins can be expected to have a high similarity, for example, 25% to 100% sequence identity. Proteins that are unrelated can have an identity which is essentially the same as would be expected to occur by chance, if a database of sufficient size is scanned (about 5%). Sequences between 5% and 24% may or may not represent sufficient homology to conclude that the compared sequences are related. Additional statistical analysis to determine the significance of such matches given the size of the data set can be carried out to determine the relevance of these sequences.
- Exemplary parameters for determining relatedness of two or more sequences using the BLAST algorithm can be as set forth below. Briefly, amino acid sequence alignments can be performed using BLASTP version 2.0.8 (Jan. 5, 1999) and the following parameters: Matrix: 0 BLOSUM62; gap open: 11; gap extension: 1; x_dropoff: 50; expect: 10.0; wordsize: 3; filter: on. Nucleic acid sequence alignments can be performed using BLASTN version 2.0.6 (Sep. 16, 1998) and the following parameters: Match: 1; mismatch: ⁇ 2; gap open: 5; gap extension: 2; x_dropoff: 50; expect: 10.0; wordsize: 11; filter: off. Those skilled in the art will know what modifications can be made to the above parameters to either increase or decrease the stringency of the comparison, for example, and determine the relatedness of two or more sequences.
- a microbial organism that produces an intermediate can be used in combination with another microbial organism expressing downstream pathway enzymes to produce a desired product.
- a non-naturally occurring microbial organism that produces a butadiene pathway intermediate can be utilized to produce the intermediate as a desired product.
- This invention is also directed, in part to engineered biosynthetic pathways to improve carbon flux through a central metabolism intermediate en route to butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate.
- the present invention provides non-naturally occurring microbial organisms having one or more exogenous genes encoding enzymes that can catalyze various enzymatic transformations en route to butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate. In some embodiments, these enzymatic transformations are used to improve product yields, including but not limited to, from carbohydrate-based carbon feedstock.
- the one or more exogenous genes encoding enzymes that can catalyze various enzymatic transformations en route to butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can be used in combination with genetic modifications that improve the amount of reducing equivalents available to the biosynthetic pathways, or that minimize loss of reducing equivalents and/or carbon to byproducts.
- the one or more exogenous genes encoding enzymes that can catalyze various enzymatic transformations en route to butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can be used in combination with genetic modifications that (i) enhance carbon fixation, and/or (ii) accessing additional reducing equivalents from carbon sources.
- Reducing equivalents can come in the form of NADH, NADPH, FADH, reduced quinones, reduced ferredoxins, reduced flavodoxins and thioredoxins.
- the invention is described herein with general reference to the metabolic reaction, reactant or product thereof, or with specific reference to one or more nucleic acids or genes encoding an enzyme associated with or catalyzing, or a protein associated with, the referenced metabolic reaction, reactant or product. Unless otherwise expressly stated herein, those skilled in the art will understand that reference to a reaction also constitutes reference to the reactants and products of the reaction. Similarly, unless otherwise expressly stated herein, reference to a reactant or product also references the reaction, and reference to any of these metabolic constituents also references the gene or genes encoding the enzymes that catalyze or proteins involved in the referenced reaction, reactant or product.
- reference herein to a gene or encoding nucleic acid also constitutes a reference to the corresponding encoded enzyme and the reaction it catalyzes or a protein associated with the reaction as well as the reactants and products of the reaction.
- the non-naturally occurring microbial organisms of the invention can be produced by introducing expressible nucleic acids encoding one or more of the enzymes or proteins participating in one or more butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate biosynthetic pathways.
- nucleic acids for some or all of a particular butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate acid biosynthetic pathway can be expressed.
- a chosen host is deficient in one or more enzymes or proteins for a desired biosynthetic pathway, then expressible nucleic acids for the deficient enzyme(s) or protein(s) are introduced into the host for subsequent exogenous expression.
- the chosen host exhibits endogenous expression of some pathway genes, but is deficient in others, then an encoding nucleic acid is needed for the deficient enzyme(s) or protein(s) to achieve butadiene, crotyl alcohol, 3-buten-1-ol, 3-buten-2-ol, and/or 2,4-pentadienoate biosynthesis.
- a non-naturally occurring microbial organism of the invention can be produced by introducing exogenous enzyme or protein activities to obtain a desired biosynthetic pathway or a desired biosynthetic pathway can be obtained by introducing one or more exogenous enzyme or protein activities that, together with one or more endogenous enzymes or proteins, produces a desired product such as butadiene.
- Host microbial organisms can be selected from, and the non-naturally occurring microbial organisms generated in, for example, bacteria, yeast, fungus or any of a variety of other microorganisms applicable to fermentation processes.
- Exemplary bacteria include species selected from Escherichia coli, Klebsiella oxytoca, Anaerobiospirillum succiniciproducens, Actinobacillus succinogenes, Mannheimia succiniciproducens, Rhizobium etli, Bacillus subtilis, Corynebacterium glutamicum, Gluconobacter oxydans, Zymomonas mobilis, Lactococcus lactis, Lactobacillus plantarum, Streptomyces coelicolor, Clostridium acetobutylicum, Pseudomonas fluorescens , and Pseudomonas putida .
- Exemplary yeasts or fungi include species selected from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Kluyveromyces marxianus, Aspergillus terreus, Aspergillus niger, Pichia pastoris, Rhizopus arrhizus, Rhizopus oryzae, Yarrowia lipolytica , and the like.
- E. coli is a particularly useful host organism since it is a well characterized microbial organism suitable for genetic engineering.
- Other particularly useful host organisms include yeast such as Saccharomyces cerevisiae . It is understood that any suitable microbial host organism can be used to introduce metabolic and/or genetic modifications to produce a desired product.
- E. coli host organisms include any non-pathogenic E. coli strain, including E. coli strains falling within taxonomic lineages such as A, B1, and B2.
- E. coli K-12 strains are in subgroup A.
- Host organisms include derivatives and variants of E. coli K-12, such as W3110 and MG1655. See, for example, Kuhnert, P., et at. (1995) Rapid and accurate identification of Escherichia coli K-12 strains. Applied and Environmental Microbiology 61:4135-4139; Bachmann, B. J. (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol. Rev. 36 525-57; and Bachmann, B.
- a heterologous nucleic acid encoding a pathway enzyme of the disclosure can be described as obtained from an organism (such as a bacteria) that is other than the organisms of the host group.
- the heterologous nucleic acid can be from a bacterial organism other than an organism selected from the group consisting of E. coli, K. oxytoca, A. succiniciproducens , etc.
- exogenous expression of the encoding nucleic acids is employed.
- Exogenous expression confers the ability to custom tailor the expression and/or regulatory elements to the host and application to achieve a desired expression level that is controlled by the user.
- endogenous expression also can be utilized in other embodiments such as by removing a negative regulatory effector or induction of the gene's promoter when linked to an inducible promoter or other regulatory element.
- an endogenous gene having a naturally occurring inducible promoter can be up-regulated by providing the appropriate inducing agent, or the regulatory region of an endogenous gene can be engineered to incorporate an inducible regulatory element, thereby allowing the regulation of increased expression of an endogenous gene at a desired time.
- an inducible promoter can be included as a regulatory element for an exogenous gene introduced into a non-naturally occurring microbial organism.
- Sources of encoding nucleic acids for a butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol and/or 2,4-pentadienoate pathway enzyme or protein can include, for example, any species where the encoded gene product is capable of catalyzing the referenced reaction.
- species include both prokaryotic and eukaryotic organisms including, but not limited to, bacteria, including archaea and eubacteria, and eukaryotes, including yeast, plant, insect, animal, and mammal, including human.
- Exemplary species for such sources include, for example, Escherichia species, including Escherichia coli, Escherichia fergusonii, Methanocaldococcus jannaschii, Leptospira interrrogans, Geobacter sultrreducens, Chloroflexus aurantiacus, Roseiflexus sp.
- Escherichia species including Escherichia coli, Escherichia fergusonii, Methanocaldococcus jannaschii, Leptospira interrrogans, Geobacter sultrreducens, Chloroflexus aurantiacus, Roseiflexus sp.
- RS-1 Chloroflexus aggregans, Achromobacter xylosoxydans, Clostrdia species, including Clostridium kluyveri, Clostridium symbiosum, Clostridium acetobutylicum, Clostridium saccharoperbutylacetonicum, Clostridium ljungdahlii, Trichomonas vaginalis G3, Trypanosoma brucei, Acidaminococcus fermentans, Fusobacterium species, including Fusobacterium nucleatum, Fusobacterium mortiferum, Corynebacterium glutamicum, Rattus norvegicus, Homo sapiens, Saccharomyces species, including Saccharomyces cerevisiae, Apsergillus species, including Aspergillus terreus, Aspergillus oryzae, Aspergillus niger, Gibberella zeae, Pichia stipitis, Mycobacterium
- MR-4 Alcaligenes faecalis, Geobacillus stearothermophilus, Serratia marcescens, Vibrio cholerae, Eubacterium barkeri, Bacteroides capillosus, Archaeoglobus fulgidus, Archaeoglobus fulgidus, Haloarcula marismortui, Pyrobaculum aerophilum str.
- IM2 Rhizobium species, including Rhizobium leguminosarum , as well as other exemplary species disclosed herein or available as source organisms for corresponding genes.
- the metabolic alterations allowing biosynthesis of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate described herein with reference to a particular organism such as E. coli can be readily applied to other microorganisms, including prokaryotic and eukaryotic organisms alike. Given the teachings and guidance provided herein, those skilled in the art will know that a metabolic alteration exemplified in one organism can be applied equally to other organisms.
- teachings and methods of the invention can be applied to all microbial organisms using the cognate metabolic alterations to those exemplified herein to construct a microbial organism in a species of interest that will synthesize butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol and/or 2,4-pentadienoate.
- Methods for constructing and testing the expression levels of a non-naturally occurring butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol and/or 2,4-pentadienoate-producing host can be performed, for example, by recombinant and detection methods well known in the art. Such methods can be found described in, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual , Third Ed., Cold Spring Harbor Laboratory, New York (2001); and Ausubel et al., Current Protocols in Molecular Biology , John Wiley and Sons, Baltimore, Md. (1999).
- Exogenous nucleic acid sequences involved in a pathway for production of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol and/or 2,4-pentadienoate can be introduced stably or transiently into a host cell using techniques well known in the art including, but not limited to, conjugation, electroporation, chemical transformation, transduction, transfection, and ultrasound transformation.
- some nucleic acid sequences in the genes or cDNAs of eukaryotic nucleic acids can encode targeting signals such as an N-terminal mitochondrial or other targeting signal, which can be removed before transformation into prokaryotic host cells, if desired.
- genes can be expressed in the cytosol without the addition of leader sequence, or can be targeted to mitochondrion or other organelles, or targeted for secretion, by the addition of a suitable targeting sequence such as a mitochondrial targeting or secretion signal suitable for the host cells.
- a suitable targeting sequence such as a mitochondrial targeting or secretion signal suitable for the host cells.
- An expression vector or vectors can be constructed to include one or more butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate biosynthetic pathway encoding nucleic acids as exemplified herein operably linked to expression control sequences functional in the host organism.
- Expression vectors applicable for use in the microbial host organisms of the invention include, for example, plasmids, phage vectors, viral vectors, episomes and artificial chromosomes, including vectors and selection sequences or markers operable for stable integration into a host chromosome. Additionally, the expression vectors can include one or more selectable marker genes and appropriate expression control sequences.
- Selection control sequences can include constitutive and inducible promoters, transcription enhancers, transcription terminators, and the like which are well known in the art.
- both nucleic acids can be inserted, for example, into a single expression vector or in separate expression vectors.
- the encoding nucleic acids can be operationally linked to one common expression control sequence or linked to different expression control sequences, such as one inducible promoter and one constitutive promoter.
- exogenous nucleic acid sequences involved in a metabolic or synthetic pathway can be confirmed using methods well known in the art. Such methods include, for example, nucleic acid analysis such as Northern blots or polymerase chain reaction (PCR) amplification of mRNA, or immunoblotting for expression of gene products, or other suitable analytical methods to test the expression of an introduced nucleic acid sequence or its corresponding gene product. It is understood by those skilled in the art that the exogenous nucleic acid is expressed in a sufficient amount to produce the desired product, and it is further understood that expression levels can be optimized to obtain sufficient expression using methods well known in the art and as disclosed herein.
- the invention additionally provides methods of producing butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate using the microbial organisms of the invention comprising one or more pathway gene(s).
- the invention provides a method for producing a target compound by culturing a non-naturally occurring microbial organism, comprising a microbial organism having a butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate pathway comprising at least one exogenous nucleic acid encoding a pathway enzyme expressed in a sufficient amount to produce butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate, under conditions and for a sufficient period of time.
- Suitable purification and/or assays to test for the production of producing butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can be performed using well known methods. Suitable replicates such as triplicate cultures can be grown for each engineered strain to be tested. For example, product and byproduct formation in the engineered production host can be monitored. The final product and intermediates, and other organic compounds, can be analyzed by methods such as HPLC (High Performance Liquid Chromatography), GC-MS (Gas Chromatography-Mass Spectroscopy) and LC-MS (Liquid Chromatography-Mass Spectroscopy) or other suitable analytical methods using routine procedures well known in the art.
- HPLC High Performance Liquid Chromatography
- GC-MS Gas Chromatography-Mass Spectroscopy
- LC-MS Liquid Chromatography-Mass Spectroscopy
- the release of product in the fermentation broth can also be tested with the culture supernatant.
- Byproducts and residual glucose can be quantified by HPLC using, for example, a refractive index detector for glucose and alcohols, and a UV detector for organic acids (Lin et al., Biotechnol. Bioeng. 90:775-779 (2005)), or other suitable assay and detection methods well known in the art.
- the individual enzyme or protein activities from the exogenous DNA sequences can also be assayed using methods well known in the art.
- the butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can be separated from other components in the culture using a variety of methods well known in the art.
- separation methods include, for example, extraction procedures as well as methods that include continuous liquid-liquid extraction, pervaporation, membrane filtration, membrane separation, reverse osmosis, electrodialysis, distillation, crystallization, centrifugation, extractive filtration, ion exchange chromatography, size exclusion chromatography, adsorption chromatography, and ultrafiltration. All of the above methods are well known in the art.
- any of the non-naturally occurring microbial organisms described herein can be cultured to produce and/or secrete the biosynthetic products of the invention.
- the butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate producers can be cultured for the biosynthetic production of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate.
- the recombinant strains are cultured in a medium with carbon source and other essential nutrients. It is sometimes desirable and can be highly desirable to maintain anaerobic conditions in the fermenter to reduce the cost of the overall process. Such conditions can be obtained, for example, by first sparging the medium with nitrogen and then sealing the flasks with a septum and crimp-cap. For strains where growth is not observed anaerobically, microaerobic or substantially anaerobic conditions can be applied by perforating the septum with a small hole for limited aeration.
- Exemplary anaerobic conditions have been described previously and are well-known in the art. Exemplary aerobic and anaerobic conditions are described, for example, in United State publication 2009/0047719, filed Aug. 10, 2007. Fermentations can be performed in a batch, fed-batch or continuous manner, as disclosed herein.
- the pH of the medium can be maintained at a desired pH, in particular neutral pH, such as a pH of around 7 by addition of a base, such as NaOH or other bases, or acid, as needed to maintain the culture medium at a desirable pH.
- the growth rate can be determined by measuring optical density using a spectrophotometer (600 nm), and the glucose uptake rate by monitoring carbon source depletion over time.
- the growth medium can include, for example, any carbohydrate source which can supply a source of carbon to the non-naturally occurring microorganism.
- Such sources include, for example, sugars such as glucose, xylose, arabinose, galactose, mannose, fructose, sucrose and starch.
- Other sources of carbohydrate include, for example, renewable feedstocks and biomass.
- Exemplary types of biomasses that can be used as feedstocks in the methods of the invention include cellulosic biomass, hemicellulosic biomass and lignin feedstocks or portions of feedstocks.
- Such biomass feedstocks contain, for example, carbohydrate substrates useful as carbon sources such as glucose, xylose, arabinose, galactose, mannose, fructose and starch.
- Other non-carbohydrate feedstocks include alcohols such as methanol, ethanol and glycerol and gaseous carbon substrates such as methane and syngas.
- renewable feedstocks and biomass other than those exemplified above also can be used for culturing the microbial organisms of the invention for the production of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate.
- culture conditions include anaerobic or substantially anaerobic growth or maintenance conditions.
- Exemplary anaerobic conditions have been described previously and are well known in the art.
- Exemplary anaerobic conditions for fermentation processes are described herein and are described, for example, in U.S. publication 2009/0047719, filed Aug. 10, 2007. Any of these conditions can be employed with the non-naturally occurring microbial organisms as well as other anaerobic conditions well known in the art.
- butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate producers can synthesize butadiene, crotyl alcohol, 3-buten-1-ol, 3-buten-2-ol, and/or 2,4-pentadienoate at intracellular concentrations of 5-10 mM or more as well as all other concentrations exemplified herein.
- butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate producing microbial organisms can butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate intracellularly and/or secrete the product into the culture medium.
- growth condition for achieving biosynthesis of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can include the addition of an osmoprotectant to the culturing conditions.
- the non-naturally occurring microbial organisms of the invention can be sustained, cultured or fermented as described herein in the presence of an osmoprotectant.
- an osmoprotectant refers to a compound that acts as an osmolyte and helps a microbial organism as described herein survive osmotic stress.
- Osmoprotectants include, but are not limited to, betaines, amino acids, and the sugar trehalose.
- Non-limiting examples of such are glycine betaine, proline betaine, dimethylthetin, dimethylsulfoniopropionate, 3-dimethylsulfonio-2-methylpropionate, pipecolic acid, dimethylsulfonioacetate, choline, L-carnitine and ectoine.
- the osmoprotectant is glycine betaine.
- the carbon feedstock and other cellular uptake sources such as phosphate, ammonia, sulfate, chloride and other halogens can be chosen to alter the isotopic distribution of the atoms present in butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate or any pathway intermediate.
- uptake sources The various carbon feedstock and other uptake sources enumerated above will be referred to herein, collectively, as “uptake sources.”
- bioderived means derived from or synthesized by a biological organism and can be considered a renewable resource since it can be generated by a biological organism.
- a biological organism in particular the microbial organisms of the invention disclosed herein, can utilize feedstock or biomass, such as, sugars or carbohydrates obtained from an agricultural, plant, bacterial, or animal source.
- the biological organism can utilize atmospheric carbon.
- biobased means a product as described above that is composed, in whole or in part, of a bioderived compound of the invention.
- a biobased or bioderived product is in contrast to a petroleum derived product, wherein such a product is derived from or synthesized from petroleum or a petrochemical feedstock.
- the culture conditions can include, for example, liquid culture procedures as well as fermentation and other large scale culture procedures. As described herein, particularly useful yields of the biosynthetic products of the invention can be obtained under anaerobic or substantially anaerobic culture conditions.
- one exemplary growth condition for achieving biosynthesis of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate includes anaerobic culture or fermentation conditions.
- the non-naturally occurring microbial organisms of the invention can be sustained, cultured or fermented under anaerobic or substantially anaerobic conditions.
- Anaerobic conditions refer to an environment devoid of oxygen.
- the culture conditions described herein can be scaled up and grown continuously for manufacturing of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate.
- Exemplary growth procedures include, for example, fed-batch fermentation and batch separation; fed-batch fermentation and continuous separation, or continuous fermentation and continuous separation.
- FIGS. 1-2 Several pathways are shown in FIGS. 1-2 for converting pyruvate and acetaldehyde to butadiene and butadiene precursors.
- Acetaldehyde is formed via reduction of acetyl-CoA by acetyl-CoA reductase, also called acetaldehyde dehydrogenase (Step 1A and 2A). Pyruvate and acetaldehyde are condensed to 4-hydroxy-2-oxovalerate by 4-hydroxy-2-ketovalerate aldolase (Step 1B and 2B).
- the acetaldehyde intermediate can be formed by other enzymes or metabolic pathways known in the art, such as pyruvate decarboxylase.
- Steps A and B of FIGS. 1 and 2 are catalyzed by a bifunctional enzyme with aldolase and dehydrogenase activities.
- the 4-hydroxy-2-oxovalerate product is subsequently dehydrated to 2-oxopent-3-enoate (Step 1E).
- Step 1F Reduction of 2-oxopent-3-enoate to its corresponding hydroxyacid (Step 1F) is catalyzed by a secondary alcohol dehydrogenase.
- Isomerization of 2-hydroxypent-3-enoate to 4-hydroxypent-2-enoate (1U), followed by dehydration (1V) yields 2,4-pentadienoate.
- These two reactions can be catalyzed by two different enzymes (1U, 1V) or by a bifunctional isomerase/dehydratase (1G).
- Decarboxylation of 2,4-pentadienoate to butadiene is catalyzed by a pentadienoate decarboxylase (1H).
- the conversion of the 2-oxopent-3-enoate or 2-hydroxypent-3-enoate intermediates to 2,4-pentadienoate proceeds via acyl-CoA intermediates (Steps 1N, 1O, 1P, 1Q, 1R).
- the conversion of an acid to an acyl-CoA is catalyzed by CoA transferases and CoA synthetases.
- Acyl-CoA to acid conversion is catalyzed by CoA synthetases, transferases or hydrolases.
- FIG. 2 also shows pathways derived from the 4-hydroxy 2-oxovalerate intermediate.
- 4-hydroxy 2-oxovalerate is dehydrated to 2-oxopent-4-enoate (also called 2-hydroxypenta-2,4-dienoate) by 4-hydroxy-2-oxopentanoate dehydratase, also called 2-oxopent-4-enoate hydratase (2C).
- An alcohol dehydrogenase with 2-oxopent-4-enoate reductase activity forms 2-hydroxypent-4-enoate.
- Multiple enzymatic routes are shown in FIG. 2 for converting 2-hydroxypent-4-enoate to butadiene and butadiene precursors.
- One route entails isomerization of 2-hydroxypent-4-enoate to 5-hydroxypent-2-enoate (2E). This intermediate is then decarboxylated to 3-buten-1-ol (2P) and dehydrated to butadiene (2Q). Alternately, the 5-hydroxypent-2-enoate is further dehydrated to pentadienoate (2F) and subsequently decarboxylated to butadiene (2G). In yet another pathway, the 5-hydroxypent-2-enoate intermediate is activated to its corresponding acyl-CoA (2I), dehydrated to pentadienoyl-CoA (2N), and further hydrolyzed to 2,4-pentadienoate (2J).
- Conversion of 3-HPE-CoA to 2,4-pentadienoyl-CoA is catalyzed by an acyl-CoA dehydratase (2O) or an isomerase and dehydratase (2M, 2N).
- Useful products shown in FIG. 2 include butadiene, 3-buten-1-ol, 4-hydroxy-2-oxovalerate, 2-oxopent-4-enoate, 2-hydroxypent-4-enoate, 4-hydroxypent-2-enoate, 3HPE and 2,4-pentadienoate. Enzymes for catalyzing each step are described below.
- FIG. 3 Pathways converting lactoyl-CoA to 4-hydroxypent-2-enoate, and further to 3-buten-2-ol and butadiene, are shown in FIG. 3 .
- the conversion of lactoyl-CoA to 4-hydroxypent-2-enoate is accomplished in four or more enzymatic steps shown in FIG. 3 .
- Lactoyl-CoA and acetyl-CoA are first condensed to 3-oxo-4-hydroxypentanoyl-CoA by 3-oxo-4-hydroxypentanoyl-CoA thiolase, a beta-ketothiolase (Step 3A).
- the 3-oxo-4-hydroxypentanoyl-CoA intermediate is converted to its corresponding acid by a CoA hydrolase, transferase or synthetase (3B).
- Reduction of the 3-oxo ketone by an alcohol dehydrogenase yields 3,4-dihydroxypentanoate (3C).
- Dehydration of the dihydroxyacid yields 4-hydroxypent-2-enoate (3D).
- 4-Hydroxypent-2-enoate decarboxylase converts 4-hydroxypent-2-enoate to 3-buten-2-ol (3E). Isomerization of 3-buten-2-ol to butadiene is catalyzed by a vinylisomerase (3F).
- Decarboxylation and dehydration of 4-hydroxypent-2-enoate to butadiene can instead proceed with dehydration first (3K) followed by decarboxylation of 2,4-pentadienoate (3L).
- Further alternate pathways shown in FIG. 3 entail reduction of the 3-oxo-4-hydroxypentanoyl-CoA to its 3-hydroxyacyl-CoA (3G), and optional dehydration of the 3-hydroxyacyl-CoA to 4-hydroxypent-2-enoyl-CoA (3H).
- Conversion of the acyl-CoA intermediates to their corresponding acids by CoA hydrolases, synthases and transferases is shown in steps 3I and 3J.
- FIG. 4 shows enzymatic pathways for converting CrotOH to butadiene.
- CrotOH is phosphorylated to 2-butenyl-4-phosphate by a CrotOH kinase (Step A).
- the 2-butenyl-4-phosphate intermediate is again phosphorylated to 2-butenyl-4-diphosphate (Step B).
- a butadiene synthase (BDS) enzyme catalyzes the conversion of 2-butenyl-4-diphosphate to butadiene (Step C).
- BDS butadiene synthase
- Such a BDS can be derived from a phosphate lyase enzyme such as isoprene synthase using methods, such as directed evolution, as described herein.
- CrotOH is directly converted to 2-butenyl-4-diphosphate by a diphosphokinase (step I).
- CrotOH can be converted to butadiene by a CrotOH dehydratase or a bifunctional dehydratase/isomerase (step H).
- the 2-butenyl-4-phosphate intermediate is directly converted to butadiene by a BDS (monophosphate) (step J). Further are shown pathways that proceed through a 3-buten-2-ol (MVC) intermediate.
- Crotyl alcohol is isomerized to MC by an enzyme with vinylisomerase activity (step F).
- 3-Buten-2-ol synthase enzymes catalyze the conversion of 2-butenyl-4-phosphate or 2-butenyl-4-diphosphate to 3-buten-2-ol (Steps 4D and 4E, respectively).
- the 3-buten-2-ol intermediate is then dehydrated to butadiene (4G).
- the enzyme activities required for the reactions shown in FIGS. 1-4 are listed in the table and described in further detail below.
- the reduction of 2-oxopent-3-enoate, 2-oxopent-4-enoate to corresponding 2-hydroxyacids (1F, 2D) are catalyzed by secondary alcohol dehydrogenases with 2-ketoacid reductase activity.
- Exemplary secondary alcohol dehydrogenases include malate dehydrogenase, lactate dehydrogenase, 2-ketoadipate reductase, isopropanol dehydrogenase, methyl ethyl ketone reductase, and others described below and known in the art.
- Two secondary alcohol dehydrogenase enzymes from E are described below and known in the art.
- malate dehydrogenase EC 1.1.1.37, 1.1.1.82, 1.1.1.299
- lactate dehydrogenase ldhA
- S. cerevisiae encodes three copies of malate dehydrogenase, MDH1 (McAlister-Henn and Thompson, J. Bacteriol. 169:5157-5166 (1987), MDH2 (Minard and McAlister-Henn, Mol. Cell. Biol. 11:370-380 (1991); Gibson and McAlister-Henn, J. Biol. Chem. 278:25628-25636 (2003)), and MDH3 (Steffan and McAlister-Henn, J. Biol. Chem.
- alpha-ketoadipate into alpha-hydroxyadipate can be catalyzed by 2-ketoadipate reductase, an enzyme reported to be found in rat and in human placenta (Suda et al., Arch. Biochem. Biophys. 176:610-620 (1976); Suda et al., Biochem. Biophys. Res. Commun. 77:586-591 (1977)).
- Alcohol dehydrogenase enzymes of C. beijerinckii Ismaiel et al., J. Bacteriol. 175:5097-5105 (1993)
- T. brockii Lamed et al., Biochem. J.
- Methyl ethyl ketone reductase catalyzes the reduction of MEK to 2-butanol.
- Exemplary MEK reductase enzymes can be found in Rhodococcus ruber (Kosjek et al., Biotechnol Bioeng. 86:55-62 (2004)) and Pyrococcus furiosus (van der Oost et al., Eur. J. Biochem. 268:3062-3068 (2001)).
- Rhizobium Sinorhizobium
- meliloti 3-hydroxybutyrate as a carbon source
- Additional candidates can be found in Pseudomonas fragi (Ito et al., J. Mol. Biol. 355(4) 722-733 (2006)) and Ralstonia pickettii (Takanashi et al., Antonie van Leeuwenoek, 95(3):249-262 (2009)).
- 3-hydroxybutyrate dehydrogenase EC 1.1.1.30
- 3-hydroxyisobutyrate dehydrogenase EC 1.1.1.31
- threonine dehydrogenase EC 1.1.1.103
- 3-hydroxypropionate dehydrogenase EC 1.1.1.298
- Alcohol dehydrogenase enzymes active on allyl alcohols are suitable for reducing crotyl aldehyde to crotyl alcohol (1J). Crotyl aldehyde reductase activity has been demonstrated by mdr of Synechocystis sp. PCC 6803 (Shimakawa et al, Biosci Biotechnol Biochem 77:2441-8 (2013)).
- An exemplary allyl alcohol dehydrogenase is the NtRed-1 enzyme from Nicotiana tabacum (Matsushima et al, Bioorg Chem 36: 23-8 (2008)).
- a similar enzyme has been characterized in Pseudomonas putida MB1 but the enzyme has not been associated with a gene to date (Malone et al, AEM 65: 2622-30 (1999)).
- Yet another allyl alcohol dehydrogenase is the geraniol dehydrogenase enzymes of Castellaniella defragrans, Carpoglyphus lactis and Ocimum basilicum (Lueddeke et al, AEM 78:2128-36 (2012)).
- Alcohol dehydrogenase enzymes with broad substrate specificity are also applicable here, such as include alrA encoding a medium-chain alcohol dehydrogenase for C2-C14 (Tani et al., Appl.
- coli catalyzes the reduction of a wide range of aldehydes using NADPH as the cofactor, with a preference for chain lengths longer than C(3) (Sulzenbacher et al, J Mol Biol 342:489-502 (2004); Perez et al., J Biol. Chem. 283:7346-7353 (2008)).
- the adhA gene product from Zymomonas mobilis has been demonstrated to have activity on a number of aldehydes including formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and acrolein (Kinoshita et al., Appl Microbiol Biotechnol 22:249-254 (1985)).
- Alcohol dehydrogenases active on 3-hydroxyacyl-CoA and 2-hydroxyacyl-CoA substrates catalyze the reduction of 2-oxopent-3-enoyl-CoA ( FIG. 1O ) and 3-oxo-4-hydroxypentanoyl-CoA ( FIG. 3G ) to their corresponding hydroxyacyl-CoA products.
- 3-Oxoacyl-CoA reductase enzymes (EC 1.1.1.35) convert 3-oxoacyl-CoA molecules into 3-hydroxyacyl-CoA molecules and are often involved in fatty acid beta-oxidation or phenylacetate catabolism. For example, subunits of two fatty acid oxidation complexes in E.
- coli encoded by fadB and fadJ, function as 3-hydroxyacyl-CoA dehydrogenases (Binstock et al., Methods Enzymol. 71 Pt C:403-411 (1981)).
- the paaH gene product has a similar activity (Nogales et al., 153:357-365 (2007)).
- Additional 3-oxoacyl-CoA enzymes include the gene products of phaC in Pseudomonas putida (Olivera et al., Proc. Natl. Acad. Sci.
- An exemplary 2-oxoacyl-CoA reductase is the 3-hydroxy-2-methylbutyryl-CoA dehydrogenase (EC 1.1.1.178) of Pseudomonas putida , which catalyzes the reduction of 3-methyl-2-oxopentanoyl-CoA, in addition to its native activity (Conrad et al, J Bacteriol 118:103-11 (1974)).
- Acetyl-CoA reductase catalyzes the reduction of acetyl-CoA to acetaldehyde.
- acyl-CoA dehydrogenases reduce an acyl-CoA to its corresponding aldehyde and represent suitable enzyme candidates for catalyzing step A of FIGS. 1 and 2 .
- the NAD(P)H dependent reduction of acetyl-CoA to acetaldehyde is catalyzed by acylating acetaldehyde dehydrogenase (EC 1.2.1.10).
- coli are encoded by adhE and mhpF (Ferrandez et al, J Bacteriol 179:2573-81 (1997)).
- the Pseudomonas sp. CF600 enzyme encoded by dmpF, participates in meta-cleavage pathways and forms a complex with 4-hydroxy-2-oxovalerate aldolase (Shingler et al, J Bacteriol 174:711-24 (1992)).
- Solventogenic organisms such as Clostridium acetobutylicum encode bifunctional enzymes with alcohol dehydrogenase and acetaldehyde dehydrogenase activities. The bifunctional C.
- acetobutylicum enzymes are encoded by bdh I and adhE2 (Walter, et al., J. Bacteriol. 174:7149-7158 (1992); Fontaine et al., J. Bacteriol. 184:821-830 (2002)).
- Yet another candidate for acylating acetaldehyde dehydrogenase is the ald gene from Clostridium beijerinckii (Toth, Appl. Environ. Microbiol. 65:4973-4980 (1999). This gene is very similar to the eutE acetaldehyde dehydrogenase genes of Salmonella typhimurium and E. coli (Toth, Appl. Environ. Microbiol.
- exemplary enzymes with acetyl-CoA reductase activity are found in the EC 1.2.1.-enzyme class including fatty acyl-CoA reductase, succinyl-CoA reductase (EC 1.2.1.76), acetyl-CoA reductase, butyryl-CoA reductase and propionyl-CoA reductase (EC 1.2.1.3).
- Such enzymes include bphG of Pseudomonas sp (Powlowski, J. Bacteriol.
- Beta-ketothiolase enzymes are required for the conversion of lactoyl-CoA and acetyl-CoA to 3-oxo-4-hydroxypentanoyl-CoA, shown in FIG. 3A .
- Suitable enzymes are found in EC class 2.3.1, and include beta-ketovaleryl-CoA thiolase, acetoacetyl-CoA thiolase and beta-ketoadipyl-CoA thiolase.
- Beta-ketovaleryl-CoA thiolase catalyzes the formation of beta-ketovalerate from acetyl-CoA and propionyl-CoA.
- Zoogloea ramigera possesses two ketothiolases that can form beta-ketovaleryl-CoA from propionyl-CoA and acetyl-CoA and R. eutropha has a beta-oxidation ketothiolase that is also capable of catalyzing this transformation (Gruys et al., U.S. Pat. No. 5,958,745).
- the sequences of these genes or their translated proteins have not been reported, but several genes in R. eutropha, Z. ramigera , or other organisms can be identified based on sequence homology to bktB from R. eutropha .
- Acetoacetyl-CoA thiolase converts two molecules of acetyl-CoA into acetoacetyl-CoA (EC 2.1.3.9).
- Exemplary acetoacetyl-CoA thiolase enzymes include the gene products of atoB from E. coli (Martin et al., Nat. Biotechnol. 21:796-802 (2003)), thlA and thlB from C. acetobutylicum (Hanai et al., Appl. Environ. Microbiol. 73:7814-7818 (2007); Winzer et al., J. Mol. Microbiol. Biotechnol. 2:531-541 (2000)), and ERG10 from S.
- Beta-ketoadipyl-CoA thiolase (EC 2.3.1.174), also called 3-oxoadipyl-CoA thiolase, converts beta-ketoadipyl-CoA to succinyl-CoA and acetyl-CoA, and is a key enzyme of the beta-ketoadipate pathway for aromatic compound degradation.
- the enzyme is widespread in soil bacteria and fungi including Pseudomonas putida (Harwood et al., J. Bacteriol.
- the P. putida enzyme is a homotetramer bearing 45% sequence homology to beta-ketothiolases involved in PHB synthesis in Ralstonia eutropha , fatty acid degradation by human mitochondria and butyrate production by Clostridium acetobutylicum (Harwood et al., supra).
- a beta-ketoadipyl-CoA thiolase in Pseudomonas knackmussii (formerly sp. B13) has also been characterized (Gobel et al., J. Bacteriol. 184:216-223 (2002); Kaschabek et al., supra). BKT encoding genes and associated identifiers are shown in the table below.
- CrotOH kinase enzymes catalyze the transfer of a phosphate group to the hydroxyl group of CrotOH, shown in step A of FIG. 4 .
- the enzymes described below naturally possess such activity or can be engineered to exhibit this activity.
- Kinases that catalyze transfer of a phosphate group to an alcohol group are members of the EC 2.7.1 enzyme class.
- the table below lists several useful kinase enzymes in the EC 2.7.1 enzyme class.
- Mevalonate kinase (EC 2.7.1.36) phosphorylates the terminal hydroxyl group of mevalonate.
- Gene candidates for this step include erg12 from S. cerevisiae , mvk from Methanocaldococcus jannaschi , MVK from Homo sapeins , and mvk from Arabidopsis thaliana col.
- Additional mevalonate kinase candidates include the feedback-resistant mevalonate kinase from the archeon Methanosarcina mazei (Primak et al, AEM , in press (2011)) and the Mvk protein from Streptococcus pneumoniae (Andreassi et al, Protein Sci, 16:983-9 (2007)).
- Mvk proteins from S. cerevisiae, S. pneumoniae and M. mazei were heterologously expressed and characterized in E. coli (Primak et al, supra).
- the S. pneumoniae mevalonate kinase was active on several alternate substrates including cylopropylmevalonate, vinylmevalonate and ethynylmevalonate (Kudoh et al, Bioorg Med Chem 18:1124-34 (2010)), and a subsequent study determined that the ligand binding site is selective for compact, electron-rich C(3)-substituents (Lefurgy et al, J Biol Chem 285:20654-63 (2010)).
- Glycerol kinase also phosphorylates the terminal hydroxyl group in glycerol to form glycerol-3-phosphate. This reaction occurs in several species, including Escherichia coli, Saccharomyces cerevisiae , and Thermotoga maritima .
- Escherichia coli Saccharomyces cerevisiae
- Thermotoga maritima The E. coli glycerol kinase has been shown to accept alternate substrates such as dihydroxyacetone and glyceraldehyde (Hayashi et al., J Biol. Chem. 242:1030-1035 (1967)).
- T maritime has two glycerol kinases (Nelson et al., Nature 399:323-329 (1999)).
- Glycerol kinases have been shown to have a wide range of substrate specificity. Crans and Whiteside studied glycerol kinases from four different organisms ( Escherichia coli, S. cerevisiae, Bacillus stearothermophilus , and Candida mycoderma ) (Crans et al., J. Am. Chem. Soc. 107:7008-7018 (2010); Nelson et al., supra, (1999)). They studied 66 different analogs of glycerol and concluded that the enzyme could accept a range of substituents in place of one terminal hydroxyl group and that the hydrogen atom at C2 could be replaced by a methyl group. Interestingly, the kinetic constants of the enzyme from all four organisms were very similar.
- Homoserine kinase is another possible candidate. This enzyme is also present in a number of organisms including E. coli, Streptomyces sp, and S. cerevisiae . Homoserine kinase from E. coli has been shown to have activity on numerous substrates, including, L-2-amino,1,4-butanediol, aspartate semialdehyde, and 2-amino-5-hydroxyvalerate (Huo et al., Biochemistry 35:16180-16185 (1996); Huo et al., Arch. Biochem. Biophys. 330:373-379 (1996)). This enzyme can act on substrates where the carboxyl group at the alpha position has been replaced by an ester or by a hydroxymethyl group.
- FIG. 8 is a graph of in vitro formation of crotyl phosphate (CrPi) and ADP over time from a composition including ATP, crotyl alcohol, and hydroxyethylthiazole kinase), thiamine kinase, pantothenate kinase, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, riboflavin kinase, L-fuculokinase and choline kinase. Exemplary gene candidates for each of these classes are shown below.
- 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase can also carry the described transformation. Gene candidates from this class are listed below.
- Pantothenate kinases that can catalyze the transformation are:
- Yet another candidate enzyme class of interest is 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinase (2.7.1.148).
- Gene candidates from this class are:
- 2-Butenyl-4-phosphate kinase enzymes catalyze the transfer of a phosphate group to the phosphate group of 2-butenyl-4-phosphate ( FIG. 4B ).
- the enzymes described below naturally possess such activity or can be engineered to exhibit this activity.
- Kinases that catalyze transfer of a phosphate group to another phosphate group are members of the EC 2.7.4 enzyme class.
- Phosphomevalonate kinase enzymes are of particular interest.
- Phosphomevalonate kinase (EC 2.7.4.2) catalyzes the analogous transformation to 2-butenyl-4-phosphate kinase.
- This enzyme is encoded by erg8 in Saccharomyces cerevisiae (Tsay et al., Mol. Cell Biol. 11:620-631 (1991)) and mvaK2 in Streptococcus pneumoniae, Staphylococcus aureus and Enterococcus faecalis (Doun et al., Protein Sci. 14:1134-1139 (2005); Wilding et al., J Bacteriol. 182:4319-4327 (2000)).
- the Streptococcus pneumoniae and Enterococcus faecalis enzymes were cloned and characterized in E. coli (Pilloff et al., J Biol. Chem. 278:4510-4515 (2003); Doun et al., Protein Sci. 14:1134-1139 (2005)).
- the S. pneumoniae phosphomevalonate kinase was active on several alternate substrates including cylopropylmevalonate phosphate, vinylmevalonate phosphate and ethynylmevalonate phosphate (Kudoh et al, Bioorg Med Chem 18:1124-34 (2010)). These and related enzymes are shown in the table below.
- Corynebacterium terpenotabidum kinase Y-11 isopentenyl phosphate NP_247007.1 15668214
- Methanocaldococcus jannaschii kinase isopentenyl phosphate NP_393581.1 16081271
- Thermoplasma acidophilum DSM kinase 1728 isopentenyl phosphate NP_275190.1 15678076
- Methanothermobacter kinase thermautotrophicus isopentenyl phosphate YP_003356693.1 282164308 Methanocella paludicola SANAE kinase isopentenyl phosphate YP_3049
- Additional kinase enzymes include fosfomycin kinase (FomA) which is highly homologous to isopentenyl phosphate kinase and is an antibiotic resistance enzyme found in a few strains of Streptomyces and Pseudomonas (Mabangalo et al. Biochemistry 51(4):917-925 (2012)).
- FomA Thermoplasma acidophilum
- IPK and FomA structures aligns their respective substrates and catalytic residues. These residues are conserved only in the IPK and FomA members of the phosphate subdivision of the amino acid kinase superfamily.
- IPK from Thermoplasma acidophilum has been shown to have activity on fosmomycin.
- An exemplary fosfomycin kinase is that from Streptomyces wedmorensis , Genbank ID BAA32493.1 and GI number 3452580.
- Farnesyl monophosphate kinase enzymes catalyze the CTP dependent phosphorylation of farnesyl monophosphate to farnesyl diphosphate.
- geranylgeranyl phosphate kinase catalyzes CTP dependent phosphorylation. Enzymes with these activities were identified in the microsomal fraction of cultured Nicotiana tabacum (Thai et al, PNAS 96:13080-5 (1999)). However, the associated genes have not been identified to date.
- Additional enzymes include those of the EC 2.7.2.8 class. This class is exemplified by acetylglutamate kinase, including the exemplary enzymes below:
- CrotOH diphosphokinase enzymes catalyze the transfer of a diphosphate group to the hydroxyl group of CrotOH, shown in step I of FIG. 1 .
- the enzymes described below naturally possess such activity or can be engineered to exhibit this activity.
- Kinases that catalyze transfer of a diphosphate group are members of the EC 2.7.6 enzyme class.
- the table below lists several useful kinase enzymes in the EC 2.7.6 enzyme class.
- ribose-phosphate diphosphokinase enzymes which have been identified in Escherichia coli (Hove-Jenson et al., J Biol Chem, 1986, 261(15); 6765-71) and Mycoplasma pneumoniae M129 (McElwain et al, International Journal of Systematic Bacteriology, 1988, 38:417-423) as well as thiamine diphosphokinase enzymes.
- Exemplary thiamine diphosphokinase enzymes are found in Arabidopsis thaliana (Ajjawi, Plant Mol Biol, 2007, 65(1-2); 151-62).
- Olefin-forming decarboxylase enzymes suitable for converting 3-hydroxypent-4-enoate to butadiene include mevalonate diphosphate decarboxylase (MDD, EC 4.1.1.33) and similar enzymes. MDD participates in the mevalonate pathway for isoprenoid biosynthesis, where it catalyzes the ATP-dependent decarboxylation of mevalonate diphosphate to isopentenyl diphosphate. The MDD enzyme of S. cerevisiae was heterologously expressed in E.
- MDD genes are MVD in Homo sapiens and MDD in Staphylococcus aureus and Trypsonoma brucei (Toth et al., J Biol. Chem. 271:7895-7898 (1996); Byres et al., J Mol. Biol. 371:540-553 (2007)).
- Step B of FIGS. 1 and 2 The condensation of pyruvate and acetaldehyde to 4-hydroxy-2-oxovalerate (Step B of FIGS. 1 and 2 ) is catalyzed by 4-hydroxy-2-oxovalerate aldolase (EC 4.1.3.39). This enzyme participates in pathways for the degradation of phenols, cresols and catechols.
- the E. coli enzyme, encoded by mhpE, is highly specific for acetaldehyde as an acceptor (Pollard et al., Appl Environ Microbiol 64:4093-4094 (1998)).
- Substrate channeling provides the advantage of reduced cellular concentrations of acetaldehyde, toxic to some cells, and may also reduce acetaldehyde-derived byproducts such as ethanol and acetate.
- a similar aldolase-dehydrogenase complex is encoded by BphIJ of Burkholderia xenovorans (Baker et al, Biochem 48:6551-8 (2009)).
- Butadiene Synthase (BDS), shown in Step C of FIG. 4 , catalyzes the conversion of 2-butenyl-4-diphosphate to 1,3-butadiene.
- the enzymes described below naturally possess such activity or can be engineered to exhibit this activity.
- Carbon-oxygen lyases that operate on phosphates are found in the EC 4.2.3 enzyme class.
- the table below lists several useful enzymes in EC class 4.2.3.
- enzymes include isoprene synthase, myrcene synthase and farnesene synthase. Enzyme candidates are described below, and in the enzymes and classes for FIG. 15 , Step F.
- Isoprene synthase naturally catalyzes the conversion of dimethylallyl diphosphate to isoprene, but can also catalyze the synthesis of 1,3-butadiene from 2-butenyl-4-diphosphate.
- Isoprene synthases can be found in several organisms including Populus alba (Sasaki et al., FEBS Letters, 2005, 579 (11), 2514-2518), Pueraria montana (Lindberg et al., Metabolic Eng, 12(1):70-79 (2010); Sharkey et al., Plant Physiol., 137(2):700-712 (2005)), and Populus tremula x Populus alba , also called Populus canescens (Miller et al., Planta, 2001, 213 (3), 483-487).
- Myrcene synthase enzymes catalyze the dephosphorylation of geranyl diphosphate to beta-myrcene (EC 4.2.3.15).
- Exemplary myrcene synthases are encoded by MST2 of Solanum lycopersicum (van Schie et al, Plant Mol Biol 64:D473-79 (2007)), TPS-Myr of Picea abies (Martin et al, Plant Physiol 135:1908-27 (2004)) g-myr of Abies grandis (Bohlmann et al, J Biol Chem 272:21784-92 (1997)) and TPS10 of Arabidopsis thaliana (Bohlmann et al, Arch Biochem Biophys 375:261-9 (2000)). These enzymes were heterologously expressed in E. coli .
- Farnesyl diphosphate is converted to alpha-farnesene and beta-farnesene by alpha-farnesene synthase and beta-farnesene synthase, respectively.
- alpha-farnesene synthase enzymes include TPS03 and TPS02 of Arabidopsis thaliana (Faldt et al, Planta 216:745-51 (2003); Huang et al, Plant Physiol 153:1293-310 (2010)), afs of Cucumis sativus (Mercke et al, Plant Physiol 135:2012-14 (2004), eafar of Malus x domestica (Green et al, Phytochem 68:176-88 (2007)) and TPS-Far of Picea abies (Martin, supra).
- An exemplary beta-farnesene synthase enzyme is encoded by TPS1 of Zea mays (Schnee et al, Plant Physiol 130:2049-60 (2002)).
- pathway intermediates such as 2-oxopent-3-enoate (1N), 2-hydroxypent-3-enoate (1R), 5-hydroxypent-4-enoate (2I), 2,4-pentadienoate (2J), 3-hydroxypent-4-enoate (2L) can be catalyzed by ADP and AMP-forming CoA ligases (6.2.1). These enzymes can also function in the reverse direction to convert the CoA-derivatives to their acid counterparts as shown in Steps 1Q, 3B, 3I, 3J and 3N.
- ADP-forming acetyl-CoA synthetase (ACD, EC 6.2.1.13) from Archaeoglobus fulgidus , encoded by AF1211, was shown to operate on a variety of linear and branched-chain substrates including isobutyrate, isopentanoate, and fumarate (Musfeldt et al., J Bacteriol. 184:636-644 (2002)).
- a second reversible ACD in Archaeoglobus fulgidus encoded by AF1983, was also indicated to have a broad substrate range (Musfeldt et al., supra).
- the enzyme from Haloarcula marismortui annotated as a succinyl-CoA synthetase, accepts propionate, butyrate, and branched-chain acids (isovalerate and isobutyrate) as substrates, and was shown to operate in the forward and reverse directions (Brasen et al., Arch. Microbiol 182:277-287 (2004)).
- the ACD encoded by PAE3250 from hyperthermophilic crenarchaeon Pyrobaculum aerophilum showed the broadest substrate range of all characterized ACDs, reacting with acetyl-CoA, isobutyryl-CoA (preferred substrate) and phenylacetyl-CoA (Brasen and Schonheit, Arch.
- Microbiol 182:277-287 (2004) Directed evolution or engineering can be used to modify this enzyme to operate at the physiological temperature of the host organism.
- the enzymes from A. fulgidus, H. marismortui and P. aerophilum have all been cloned, functionally expressed, and characterized in E. coli (Brasen and Schonheit, Arch. Microbiol 182:277-287 (2004); Musfeldt and Schonheit, J Bacteriol. 184:636-644 (2002)).
- An additional enzyme is encoded by sucCD in E.
- acyl CoA ligase from Pseudomonas putida has been indicated to work on several aliphatic substrates including acetic, propionic, butyric, valeric, hexanoic, heptanoic, and octanoic acids and on aromatic compounds such as phenylacetic and phenoxyacetic acids (Fernandez-Valverde et al., Appl. Environ. Microbiol.
- a related enzyme, malonyl CoA synthetase (6.3.4.9) from Rhizobium leguminosarum could convert several diacids, namely, ethyl-, propyl-, allyl-, isopropyl-, dimethyl-, cyclopropyl-, cyclopropylmethylene-, cyclobutyl-, and benzyl-malonate into their corresponding monothioesters (Pohl et al., J. Am. Chem. Soc. 123:5822-5823 (2001)).
- acylation of acetate to acetyl-CoA is catalyzed by enzymes with acetyl-CoA synthetase activity.
- Two enzymes that catalyze this reaction are AMP-forming acetyl-CoA synthetase (EC 6.2.1.1) and ADP-forming acetyl-CoA synthetase (EC 6.2.1.13).
- AMP-forming acetyl-CoA synthetase (ACS) is the predominant enzyme for activation of acetate to acetyl-CoA.
- Exemplary ACS enzymes are found in E. coli (Brown et al., J. Gen.
- Methylmalonyl-CoA synthetase from Rhodopseudomonas palustris converts methylmalonate and malonate to methylmalonyl-CoA and malonyl-CoA, respectively.
- Structure-based mutagenesis of this enzyme improved CoA synthetase activity with the alternate substrates ethylmalonate and butylmalonate (Crosby et al, AEM, in press (2012)).
- 4HB-CoA synthetase catalyzes the ATP-dependent conversion of 4-hydroxybutyrate to 4-hydroxybutyryl-CoA.
- AMP-forming 4-HB-CoA synthetase enzymes are found in organisms that assimilate carbon via the dicarboxylate/hydroxybutyrate cycle or the 3-hydroxypropionate/4-hydroxybutyrate cycle. Enzymes with this activity have been characterized in Thermoproteus neutrophilus and Metallosphaera sedula (Ramos-Vera et al, J Bacteriol 192:5329-40 (2010); Berg et al, Science 318:1782-6 (2007)). Others can be inferred by sequence homology.
- CoA hydrolysis as described in Steps 1Q, 2J and 2I can be catalyzed by CoA hydrolases or thioesterases in the EC class 3.1.2. Additionally, intermediates such as 3-oxo-4-hydroxypentanoyl-CoA, 3,4-dihydroxypentanoyl-CoA, 4-hydroxypent-2-enoyl-COA, 2,4-pentadienoyl-CoA can be converted into their acid counterparts via thes enzymes as shown in steps 3B, 3I, 3J, 3N respectively. Several CoA hydrolases with broad substrate ranges are suitable enzymes for hydrolyzing these intermediates.
- the enzyme encoded by acot12 from Rattus norvegicus brain can react with butyryl-CoA, hexanoyl-CoA and malonyl-CoA.
- the human dicarboxylic acid thioesterase, encoded by acot8 exhibits activity on glutaryl-CoA, adipyl-CoA, suberyl-CoA, sebacyl-CoA, and dodecanedioyl-CoA (Westin et al., J. Biol. Chem. 280:38125-38132 (2005)). The closest E.
- coli homolog to this enzyme, tesB can also hydrolyze a range of CoA thiolesters (Naggert et al., J Biol Chem 266:11044-11050 (1991)).
- a similar enzyme has also been characterized in the rat liver (Deana R., Biochem Int 26:767-773 (1992)).
- Additional enzymes with hydrolase activity in E. coli include ybgC, paaI, yciA, and ybdB (Kuznetsova, et al., FEMS Microbiol Rev, 2005, 29(2):263-279; Song et al., J Biol Chem, 2006, 281(16):11028-38).
- the enzyme from the mitochondrion of the pea leaf has a broad substrate specificity, with demonstrated activity on acetyl-CoA, propionyl-CoA, butyryl-CoA, palmitoyl-CoA, oleoyl-CoA, succinyl-CoA, and crotonyl-CoA (Zeiher et al., Plant. Physiol. 94:20-27 (1990))
- the acetyl-CoA hydrolase, ACH1 from S. cerevisiae represents another candidate hydrolase (Buu et al., J. Biol. Chem. 278:17203-17209 (2003)).
- Yet another candidate hydrolase is the glutaconate CoA-transferase from Acidaminococcus fermentans .
- This enzyme was transformed by site-directed mutagenesis into an acyl-CoA hydrolase with activity on glutaryl-CoA, acetyl-CoA and 3-butenoyl-CoA (Mack et al., FEBS. Lett. 405:209-212 (1997)).
- succinyl-CoA:3-ketoacid-CoA transferases and acetoacetyl-CoA:acetyl-CoA transferases may also serve as candidates for this reaction step but would require certain mutations to change their function.
- Additional hydrolase enzymes include 3-hydroxyisobutyryl-CoA hydrolase which has been described to efficiently catalyze the conversion of 3-hydroxyisobutyryl-CoA to 3-hydroxyisobutyrate during valine degradation (Shimomura et al., J Biol Chem. 269:14248-14253 (1994)). Genes encoding this enzyme include hibch of Rattus norvegicus (Shimomura et al., Methods Enzymol. 324:229-240 (2000)) and Homo sapiens (Shimomura et al., supra). Similar gene candidates can also be identified by sequence homology, including hibch of Saccharomyces cerevisiae and BC_2292 of Bacillus cereus .
- Methylmalonyl-CoA is converted to methylmalonate by methylmalonyl-CoA hydrolase (EC 3.1.2.7).
- This enzyme isolated from Rattus norvegicus liver, is also active on malonyl-CoA and propionyl-CoA as alternative substrates (Kovachy et al., J. Biol. Chem., 258: 11415-11421 (1983)). The gene associated with this enzyme is not known.
- FIGS. 1, 2 and 3 require a CoA transferase to activate carboxylic acids to their corresponding acyl-CoA derivatives and vice versa.
- the specific transformations are shown in steps 1N, 1R, 1Q, 2I, 2J, 2L, 3B, 3I, 3J.
- CoA transferase enzymes have been described in the open literature and represent suitable candidates for these steps. These are described below.
- the gene products of cat1, cat2, and cat3 of Clostridium kluyveri have been shown to exhibit succinyl-CoA, 4-hydroxybutyryl-CoA, and butyryl-CoA transferase activity, respectively (Seedorf et al., Proc. Natl. Acad. Sci U.S.A 105:2128-2133 (2008); Sohling et al., J Bacteriol. 178:871-880 (1996)).
- a fatty acyl-CoA transferase that utilizes acetyl-CoA as the CoA donor is acetoacetyl-CoA transferase, encoded by the E. coli atoA (alpha subunit) and atoD (beta subunit) genes (Korolev et al., Acta Crystallogr. D. Biol. Crystallogr. 58:2116-2121 (2002); Vanderwinkel et al., 33:902-908 (1968)).
- This enzyme has a broad substrate range on substrates of chain length C3-C6 (Sramek et al., Arch Biochem Biophys 171:14-26 (1975)) and has been shown to transfer the CoA moiety to acetate from a variety of branched and linear 3-oxo and acyl-CoA substrates, including isobutyrate (Matthies et al., Appl Environ. Microbiol 58:1435-1439 (1992)), valerate (Vanderwinkel et al., Biochem. Biophys. Res. Commun. 33:902-908 (1968)) and butanoate (Vanderwinkel et al., Biochem. Biophys. Res. Commun.
- Exemplary enzymes for catalyzing the decarboxylation of 2,4-pentadienoate (1H, 2G, 3L), 4-hydroxypent-2-enoate (1T), 5-hydroxypent-2-enoate (2P) and 4-hydroxypent-2-enoate (3E) are sorbic acid decarboxylase, aconitate decarboxylase, 4-oxalocrotonate decarboxylase and cinnamate decarboxylase.
- Sorbic acid decarboxylase converts sorbic acid to 1,3-pentadiene. Sorbic acid decarboxylation by Aspergillus niger requires three genes: padA1, ohbA1, and sdrA (Plumridge et al. Fung. Genet. Bio, 47:683-692 (2010). PadA1 is annotated as a phenylacrylic acid decarboxylase, ohbA1 is a putative 4-hydroxybenzoic acid decarboxylase, and sdrA is a sorbic acid decarboxylase regulator.
- decarboxylate sorbic acid including several fungal and yeast species (Kinderlerler and Hatton, Food Addit Contam., 7(5):657-69 (1990); Casas et al., Int J Food Micro., 94(1):93-96 (2004); Pinches and Apps, Int. J. Food Microbiol. 116: 182-185 (2007)).
- Aspergillus oryzae and Neosartorya fischeri have been shown to decarboxylate sorbic acid and have close homologs to padA1, ohbA1, and sdrA.
- Aconitate decarboxylase (EC 4.1.1.6) catalyzes the final step in itaconate biosynthesis in a strain of Candida and also in the filamentous fungus Aspergillus terreus (Bonnarme et al. J Bacteriol. 177:3573-3578 (1995); Willke and Vorlop, Appl Microbiol. Biotechnol 56:289-295 (2001)).
- a cis-aconitate decarboxylase (CAD) (EC 4.1.16) has been purified and characterized from Aspergillus terreus (Dwiarti et al., J. Biosci. Bioeng. 94(1): 29-33 (2002)).
- decarboxylases catalyze the conversion of cinnamate (phenylacrylate) and substituted cinnamate derivatives to the corresponding styrene derivatives. These enzymes are common in a variety of organisms and specific genes encoding these enzymes that have been cloned and expressed in E.
- coli are: pad 1 from Saccharomyces cerevisae (Clausen et al., Gene 142:107-112 (1994)), pdc from Lactobacillus plantarum (Barthelmebs et al., 67:1063-1069 (2001); Qi et al., Metab Eng 9:268-276 (2007); Rodriguez et al., J. Agric. Food Chem. 56:3068-3072 (2008)), pofK (pad) from Klebsiella oxytoca (Uchiyama et al., Biosci. Biotechnol. Biochem. 72:116-123 (2008); Hashidoko et al., Biosci. Biotech. Biochem.
- this class of enzymes have been shown to be stable and do not require either exogenous or internally bound co-factors, thus making these enzymes ideally suitable for biotransformations (Sariaslani, Annu. Rev. Microbiol. 61:51-69 (2007)).
- 4-Oxalocronate decarboxylase catalyzes the decarboxylation of 4-oxalocrotonate to 2-oxopentanoate.
- This enzyme has been isolated from numerous organisms and characterized.
- the decarboxylase typically functions in a complex with vinylpyruvate hydratase. Genes encoding this enzyme include dmpH and dmpE in Pseudomonas sp. (strain 600) (Shingler et al., 174:711-724 (1992)), xylII and xylIII from Pseudomonas putida (Kato et al., Arch.
- the 4-oxalocrotonate decarboxylase encoded by xylI in Pseudomonas putida functions in a complex with vinylpyruvate hydratase.
- a recombinant form of this enzyme devoid of the hydratase activity and retaining wild type decarboxylase activity has been characterized (Stanley et al., Biochem. 39:718-26 (2000)).
- a similar enzyme is found in Ralstonia pickettii (formerly Pseudomonas pickettii ) (Kukor et al., J Bacteriol. 173:4587-94 (1991)).
- Aspartate decarboxylase (EC 4.1.1.11) decarboxylates aspartate to form beta-alanine. This enzyme participates in pantothenate biosynthesis and is encoded by gene panD in Escherichia coli (Dusch et al., Appl. Environ. Microbiol 65:1530-1539 (1999); Ramjee et al., Biochem. J 323 (Pt 3):661-669 (1997); Merkel et al., FEMS Microbiol Lett.
- Lysine decarboxylase (EC 4.1.1.18) catalyzes the decarboxylation of lysine to cadaverine.
- Two isozymes of this enzyme are encoded in the E. coli genome by genes cadA and ldcC.
- CadA is involved in acid resistance and is subject to positive regulation by the cadC gene product (Lemonnier et al., Microbiology 144 (Pt 3):751-760 (1998)).
- CadC accepts hydroxylysine and S-aminoethylcysteine as alternate substrates, and 2-aminopimelate and 6-aminocaproate act as competitive inhibitors to this enzyme (Sabo et al., Biochemistry 13:662-670 (1974)).
- the constitutively expressed lde gene product is less active than CadA (Lemonnier and Lane, Microbiology 144 (Pt 3):751-760 (1998)).
- a lysine decarboxylase analogous to CadA was recently identified in Vibrio parahaemolyticus (Tanaka et al., J Appl Microbiol 104:1283-1293 (2008)).
- the lysine decarboxylase from Selenomonas ruminantium encoded by ldc, bears sequence similarity to eukaryotic ornithine decarboxylases, and accepts both L-lysine and L-ornithine as substrates (Takatsuka et al., Biosci.
- acetolactate decarboxylase (4.1.1.5) which participates in citrate catabolism and branched-chain amino acid biosynthesis, converting the 2-hydroxyacid, 2-acetolactate, to acetoin.
- Lactococcus lactis the enzyme is composed of six subunits, encoded by gene aldB, and is activated by valine, leucine and isoleucine (Goupil-Feuillerat et al., J. Bacteriol. 182:5399-5408 (2000); Goupil et al., Appl. Environ. Microbiol. 62:2636-2640 (1996)).
- Tartrate decarboxylase (EC 4.1.1.73) carries out an alpha,beta-hydroxyacid decarboxylation reaction.
- the enzyme characterized in Pseudomonas sp. group Ve-2, is NAD+ dependent and catalyzes coupled oxidation-reduction reaction that proceeds through an oxaloglycolate intermediate (Furuyoshi et al., J Biochem. 110:520-525 (1991)).
- a side reaction catalyzed by this enzyme is the NAD+ dependent oxidation of tartrate (1% of activity).
- a gene has not been associated with this enzyme activity to date.
- keto-acids such as 4-hydroxy 2-oxovalerate, 2-oxopent-3-enoate as shown in Steps 1C and 1I
- pyruvate decarboxylase EC 4.1.1.1
- benzoylformate decarboxylase EC 4.1.1.7
- alpha-ketoglutarate decarboxylase EC 4.1.1.7
- alpha-ketoglutarate decarboxylase EC branched-chain alpha-ketoacid decarboxylase.
- PDC Pyruvate decarboxylase
- keto-acid decarboxylase is a key enzyme in alcoholic fermentation, catalyzing the decarboxylation of pyruvate to acetaldehyde.
- the enzyme from Saccharomyces cerevisiae has a broad substrate range for aliphatic 2-keto acids including 2-ketobutyrate, 2-ketovalerate, 3-hydroxypyruvate and 2-phenylpyruvate (22).
- This enzyme has been extensively studied, engineered for altered activity, and functionally expressed in E. coli (Killenberg-Jabs et al., Eur. J. Biochem. 268:1698-1704 (2001); Li et al., Biochemistry. 38:10004-10012 (1999); ter Schure et al., Appl. Environ. Microbiol. 64:1303-1307 (1998)).
- the PDC from Zymomonas mobilus also has a broad substrate range and has been a subject of directed engineering studies to alter the affinity for different substrates (Siegert et al., Protein Eng Des Sel 18:345-357 (2005)).
- the crystal structure of this enzyme is available (Killenberg-Jabs et al., Eur. J. Biochem. 268:1698-1704 (2001)).
- Other well-characterized PDC candidates include the enzymes from Acetobacter pasteurians (Chandra et al., 176:443-451 (2001)) and Kluyveromyces lactis (Krieger et al., 269:3256-3263 (2002)).
- benzoylformate decarboxylase (EC 4.1.1.7) has a broad substrate range and has been the target of enzyme engineering studies.
- the enzyme from Pseudomonas putida has been extensively studied and crystal structures of this enzyme are available (Polovnikova et al., 42:1820-1830 (2003); Hasson et al., 37:9918-9930 (1998)).
- Site-directed mutagenesis of two residues in the active site of the Pseudomonas putida enzyme altered the affinity (Km) of naturally and non-naturally occurring substrates (Siegert et al., Protein Eng Des Sel 18:345-357 (2005)).
- This enzyme has been further modified by directed engineering (Lingen et al., Chembiochem. 4:721-726 (2003); Lingen et al., Protein Eng 15:585-593 (2002)).
- the enzyme from Pseudomonas aeruginosa encoded by mdlC, has also been characterized experimentally (Barrowman et al., 34:57-60 (1986)). Additional gene candidates from Pseudomonas stutzeri, Pseudomonas fluorescens and other organisms can be inferred by sequence homology or identified using a growth selection system developed in Pseudomonas putida (Henning et al., Appl. Environ. Microbiol. 72:7510-7517 (2006)).
- a third enzyme capable of decarboxylating 2-oxoacids is alpha-ketoglutarate decarboxylase (KGD, EC 4.1.1.71).
- the substrate range of this class of enzymes has not been studied to date.
- An exemplarly KDC is encoded by kgd in Mycobacterium tuberculosis (Tian et al., PNAS 102:10670-10675 (2005)).
- KDC enzyme activity has also been detected in several species of rhizobia including Bradyrhizobium japonicum and Mesorhizobium loti (Green et al., J Bacteriol 182:2838-2844 (2000)).
- KDC-encoding gene(s) have not been isolated in these organisms, the genome sequences are available and several genes in each genome are annotated as putative KDCs.
- a KDC from Euglena gracilis has also been characterized but the gene associated with this activity has not been identified to date (Shigeoka et al., Arch. Biochem. Biophys. 288:22-28 (1991)).
- the first twenty amino acids starting from the N-terminus were sequenced MTYKAPVKDVKFLLDKVFKV (Shigeoka and Nakano, Arch. Biochem. Biophys. 288:22-28 (1991)).
- the gene could be identified by testing candidate genes containing this N-terminal sequence for KDC activity.
- BCKA branched chain alpha-ketoacid decarboxylase
- Lactococcus lactis has been characterized on a variety of branched and linear substrates including 2-oxobutanoate, 2-oxohexanoate, 2-oxopentanoate, 3-methyl-2-oxobutanoate, 4-methyl-2-oxobutanoate and isocaproate (Smit et al., Appl Environ Microbiol 71:303-311 (2005)).
- the enzyme has been structurally characterized (Berg et al., Science. 318:1782-1786 (2007)).
- IPDA Indolepyruvate decarboxylase
- Recombinant branched chain alpha-keto acid decarboxylase enzymes derived from the E1 subunits of the mitochondrial branched-chain keto acid dehydrogenase complex from Homo sapiens and Bos taurus have been cloned and functionally expressed in E. coli (Davie et al., J. Biol. Chem. 267:16601-16606 (1992); Wynn et al., J. Biol. Chem. 267:12400-12403 (1992); Wynn et al., J. Biol. Chem. 267:1881-1887 (1992)).
- An additional example is 2-hydroxyglutaryl-CoA dehydratase encoded by hgdABC from Acidaminococcus fermentans (Mueller and Buckel, Eur. J. Biochem. 230:698-704 (1995); Schweiger et al., Eur. J. Biochem. 169:441-448 (1987)).
- Purification of the dehydratase from A. fermentans yielded two components, A and D.
- Component A HgdC
- Component D is the actual dehydratase and is encoded by HgdAB.
- Component A the activator, from A. fermentans is active with the actual dehydratse (component D) from C. symbiosum and is reported to have a specific activity of 60 per second, as compared to 10 per second with the component D from A. fermentans .
- component D the actual dehydratse
- Yet another example is the 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile catalyzed by hadBC and activated by hadI (Darley et al., FEBS J. 272:550-61 (2005)). The sequence of the complete C.
- propionicium lactoyl-CoA dehydratase is not yet listed in publicly available databases.
- sequence of the beta-subunit corresponds to the GenBank accession number AJ276553 (Selmer et al, Eur J Biochem, 269:372-80 (2002)).
- the dehydratase from Clostridium sporogens that dehydrates phenyllactyl-CoA to cinnamoyl-CoA is also a potential candidate for this step.
- This enzyme is composed of three subunits, one of which is a CoA transferase.
- the first step comprises of a CoA transfer from cinnamoyl-CoA to phenyllactate leading to the formation of phenyllactyl-CoA and cinnamate.
- the product cinnamate is released.
- the dehydratase then converts phenyllactyl-CoA into cinnamoyl-CoA.
- FldA is the CoA transferase and FldBC are related to the alpha and beta subunits of the dehydratase, component D, from A. fermentans .
- Another dehydratase that can potentially conduct such a biotransformation is the enoyl-CoA hydratase (4.2.1.17) of Pseudomonas putida , encoded by ech that catalyzes the conversion of 3-hydroxybutyryl-CoA to crotonyl-CoA (Roberts et al., Arch. Microbiol 117:99-108 (1978)).
- This transformation is also catalyzed by the crt gene product of Clostridium acetobutylicum , the crt1 gene product of C.
- the E. coli gene products of fadA and fadB encode a multienzyme complex involved in fatty acid oxidation that exhibits enoyl-CoA hydratase activity (Yang et al., Biochemistry 30:6788-6795 (1991); Yang, J Bacteriol. 173:7405-7406 (1991); Nakahigashi et al., Nucleic Acids Res. 18:4937 (1990)).
- Knocking out a negative regulator encoded by fadR can be utilized to activate the fadB gene product (Sato et al., J Biosci. Bioeng 103:38-44 (2007)).
- the fadI and fadJ genes encode similar functions and are naturally expressed under anaerobic conditions (Campbell et al., Mol. Microbiol 47:793-805 (2003)).
- crotyl alcohol (1M, 4H), methyl vinyl carbinol (1L, 2Q, 3F, 4G), 3-hydroxybutyraldehyde (1D), 4-hydroxy-2-oxovalerate (1E, 2C), 2-hydroxy pent3-enoate (1G), 4-hydroxypent-2-enoate (1V, 3K), 5-hydroxypent-2-enoate (2F), 3-hydroxypent-4-enoate (2R) and 3,4-dihydroxypentanoate (3D) can be catalyzed exemplary dehydratases including oleate hydratase, acyclic 1,2-hydratase, linalool dehydratase, dimethylmaleate hydratase, (S)-2-methylmalate dehydratase, fumarate hydratase, glycerol dehydratase and enoyl-CoA hydratase enzymes. Enzyme candidates are described below.
- crotyl alcohol, 3-buten-2-ol and 3-buten-1-ol produced by culturing the non-naturally occurring microbial organisms described herein can be converted to butadiene by chemical dehydration in the presence of a chemical catalyst.
- a chemical catalyst for example see international patent application publication WO2012106516A1.
- Oleate hydratases catalyze the reversible hydration of non-activated alkenes to their corresponding alcohols.
- Oleate hydratase enzymes disclosed in WO2011/076691 and WO 2008/119735 are incorporated by reference herein.
- Oleate hydratases from Elizabethkingia meningoseptica and Streptococcus pyogenes are encoded by ohyA and HMPREF0841_1446.
- Acyclic 1,2-hydratase enzymes (eg. EC 4.2.1.131) catalyze the dehydration of linear secondary alcohols, and are thus suitable candidates for the dehydration of MVC to butadiene.
- Exemplary 1,2-hydratase enzymes include carotenoid 1,2-hydratase, encoded by crtC of Rubrivivax gelatinosus (Steiger et al, Arch Biochem Biophys 414:51-8 (2003)), and lycopene 1,2-hydratase, encoded by cruF of Synechococcus sp. PCC 7002 and Gemmatimonas aurantiaca (Graham and Bryant, J Bacteriol 191: 2392-300 (2009); Takaichi et al, Microbiol 156: 756-63 (2010)).
- Linalool dehydratase/isomerase of Castellaniella defragrans catalyzes the dehydration of linalool to myrcene (Brodkorb et al, J Biol Chem 285:30436-42 (2010)). Enzyme accession numbers and homologs are listed in the table below.
- Dimethylmaleate hydratases catalyze the dehydration of (2R,3S)-2,3-dimethylmalate into dimethylmaleate (EC 4.2.1.85).
- Dimethylmaleate hydratases from Eubacterium barkeri are encoded by dmdA and dmdB (Alhapel et al., Proc Natl Acad Sci 103:12341-6 (2006)).
- (S)-2-methylmalate dehydratases catalyze the reversible hydration of mesaconate to citramalate (EC 4.2.1.34).
- An exemplary (S)-2-methylmalate dehydratase is encoded by LeuC and LeuD of Methanococcus jannaschii and has been shown to catalyze the second step in the leucine biosynthesis pathway (Lee et al, Biochem Biophys Res Commun 419(2):160-4 (2012)). Fumarate hydratases catalyze the interconversion of fumarate to malate (EC 4.2.1.2). Two classes of fumarate hydratases exist, where classification is dependent upon the arrangement of subunits and metal requirements.
- Exemplary class I and class II fumarate dehydratases are encoded by fumA and fumC of Escherichia coli (Tseng et al, J Bacteriol 183(2):461-7 (2001)), and fumC of Corynebacterium glutamicum (Genda et al, Biosci Biotechnol Biochem 70(5):1102-9 (2006)).
- Glycerol dehydratases (EC 4.2.1.30) catalyze the conversion of glycerol to 3-hydroxy-propionaldehyde and water.
- Exemplary glycerol dehydratases are encoded by dhaB of Klebsiella pneumoniae (Wang et al, Biotechnol J.
- Enoyl-CoA hydratases catalyze the hydration of the double bond between the second and third carbons on acyl-CoA (EC 4.2.1.17). Enoyl-CoA hydratases are involved in the breakdown of fatty acids. Exemplary enoyl-CoA hydratases are encoded by phaJ1 of Pseudomonas putida (Vo et al, J. Biosci. Bioeng. 106 (1), 95-98 (2008)), and paaF of Escherichia coli (Teufel et al, Proc Natl Acad Sci USA. 107(32):14390-5 (2010)).
- FIG. 1 Steps G, M
- FIG. 4 Steps F, G and H
- Bifunctional enzymes with dehydratase and isomerase activities are suitable for dehydrating and rearranging alcohols to alkenes as shown in FIGS. 1-4 .
- This type of enzyme is required to convert 2-hydroxypent-3-enoate to 2,4-pentadienoate (Step G of FIG. 1 ) and crotyl alcohol to butadiene ( FIG. 1M and FIG. 4H ).
- transformation 1 G can be catalyzed by the isomerization of 2-hydroxypent-3-enoate to 4-hydroxypent-2-enoate, followed by a dehydration of 4-hydroxypent-2-enoate to 2,4-pentadienoate.
- An exemplary bifunctional enzyme with isomerase and dehydratase activities is the linalool dehydratase/isomerase of Castellaniella defragrans .
- This enzyme catalyzes the isomerization of geraniol to linalool and the dehydration of linalool to myrcene, reactants similar in structure to CrotOH, MVC, 2-hydroxypent-3-enoate, butadiene and 2,4-pentadienoate and is also active on crotyl alcohol (Brodkorb et al, J Biol Chem 285:30436-42 (2010)). Enzyme accession numbers and homologs are listed in the table below.
- a fusion protein or protein conjugate can be generated using well know methods in the art to generate a bi-functional (dual-functional) enzyme having both the isomerase and dehydratase activities.
- the fusion protein or protein conjugate can include at least the active domains of the enzymes (or respective genes) of the isomerase and dehydratase reactions.
- enzymatic conversion can be catalyzed by a CrotOH or 2-hydroxypent-3-enoate isomerase (classified as EC 5.3.3 and EC 5.4.4).
- Linalool dehydratase/isomerase Genbank ID number 403399445
- E. coli variants were transformed with the expression plasmid and selected and maintained using antibiotic selection with carbenicillin.
- Vinylisomerase catalyzes the conversion of Crotyl alcohol to MVC (1K, 4F), 2-hydroxypent-3-enoate to 4-hydroxypent-2-enoate (1U), 3-hydroxypent-4-enoyl-CoA to 5-hydroxypent-2-enoyl-CoA (2M) and 2-hydroxypent-4-enoate to 5-hydroxypent-2-enoate (2E).
- the conversion of 3-buten-1-ol to crotyl alcohol can be carried out by vinyl-isomerases (see FIG. 2 Step S).
- the conversion of 3-buten-2-ol to crotyl alcohol can be carried out by vinyl-isomerases (see FIG. 1 Step W and FIG. 3 Step O).
- enzymes include isopentenyl-diphosphate ⁇ -isomerase, vinylacetyl-CoA ⁇ -isomerase and methylitaconate ⁇ -isomerase. Enzymes candidates are described below. Also useful is the vinylisomerase activity of linalool dehydratase.
- Isopentenyl diphophaste isomerases catalyze the interconversion of isopentenyl diphosphate and dimethylallyl diphosphate, but can also catalyze the interconversion of CrotOH to MC (EC 5.3.3.2).
- Exemplary isopentenyl diphophaste isomerases are encoded by IDI-2 of Thermus thermophilus (Sharma et al, Biochemistry 49(29): 6228-6233 (2010)), idi of Xanthophyllomyces dendrorhous and idi of Haematococcus pluvialis (Kajiwara et al, Biochem J 324(Pt 2): 421-426 (1997)).
- Crystal structures have been determined for the isopentenyl diphophaste isomerases from Escherichia coli (Durbecq et al, EMBO J 20(7): 1530-1537 (2001)) and from Methanocaldococcus jannaschii (Hoshino et al, Acta Crystallogr Sect F Struct Biol Cryst Commun 67(Pt 1): 101-103 (2011)). Enzyme accession numbers and homologs are listed in the table below.
- Vinylacetyl-CoA ⁇ -isomerases catalyze the conversion of vinylacetyl-CoA to crotonyl-CoA (EC 5.3.3.3).
- Exemplary vinylacetyl-CoA ⁇ -isomerases are encoded by AbfD of Clostridium kluyveri (Scherf et al, Arch Microbiol 161(3):239-45 (1994)), abfD of Clostridium aminobutyricum (Scherf et al, Eur J Biochem 215(2):421-9 (1993)), and Msed_1321 of Metallosphaera sedula (Auemik et al, Appl Environ Microbiol 74(3):682-92 (2008)).
- Methylitaconate ⁇ -isomerases catalyze the isomerization of itaconate (methylenesuccinate) to citraconate (methylmaleate) (EC 5.3.3.6).
- An exemplary methylitaconate ⁇ -isomerase is encoded by mii from Eubacterium barkeri (Alhapel et al, Proc Natl Acad Sci USA 103(33):12341-6 (2006)) and the crystal structure of this 3-methylitaconate-delta-isomerase has been determined (Velarde et al, J Mol Biol 391(3):609-20 (2009)). Enzyme accession numbers and homologs are listed in the table below.
- Alcohol mutases that catalyze the conversion of 2-hydroxypent-4-enoate to 5-hydroxypent-2-enoate (2E) and 2-hydroxypent-4-enoate to 3-hydroxypent-4-enoate (2H) are found in the EC 5.4.4 enzyme class, which include isomerases that transfer hydroxyl groups.
- Exemplary isomerase enzymes suitable for the conversion of 2-hydroxypent-4-enoate to 5-hydroxypent-2-enoate include isochorismate synthase (EC 5.4.4.2) and geraniol isosmerase (EC 5.4.4.4). Isochorismate synthase catalyzes the isomerization of chorismate to isochorismate and encodes for essential components of the respiratory chain.
- Exemplary isochorismate synthases are encoded by menF and dhbC of Bacillus subtilis (Rowland et al, J Bacteriol. 178(3):854-61 (1996)) and by menF of Escherichia coli (Daruwala et al, J Bacteriol. 179(10):3133-8 (1997)).
- Geraniol isomerase catalyzes the isomerization of (3S)-linalool to geraniol.
- Exemplary geraniol isomerase is encoded by Ldi of Castellaniella defragrans (Brodkorb et al, J Biol Chem 285:30436-42 (2010)). Enzyme accession numbers and homologs are listed in the table below.
- Alkenol synthase catalyzes the conversion of 2-butenyl-4-phosphate and 2-butenyl-4-diphosphate to 3-buten-2-ol or MVC (4D and 4E respectively).
- the enzymes described below naturally possess such activity or can be engineered to exhibit this activity.
- Particularly useful enzymes include methylbutenol (MBO) synthase, linalool synthase and nerolidol synthase. Enzyme candidates are described below and found within EC 4.2.3.
- Methylbutenol synthase naturally catalyzes the conversion of dimethylallyl diphosphate to methylbutenol, but can also catalyze the synthesis of 3-buten-2-ol or MVC from 2-butenyl-4-phosphate and 2-butenyl-4-diphosphate.
- An exemplary methylbutenol synthase is encoded by Tps-MBO1 of Pinus sabiniana (Gray et al, J Biol Chem. 286(23):20582-90 (2011)). Linalool synthases catalyze the conversion of geranyl diphosphate to linalool.
- Exemplary R- (EC 4.2.3.26) and S-linalool synthases (EC 4.2.3.25) are encoded by AY083653 of Mentha citrata (Crowell et al, Arch Biochem Biophys., 405(1):112-21 (2002)) and by Lis of Clarkia breweri (Dudareva et al, Plant Cell. 8(7): 1137-1148 (1996)), respectively.
- (3S, 6E)-nerolidol synthase (EC 4.2.3.48) catalyze the conversion of farnesyl diphosphate to nerolidol.
- BDS (monophosphate) catalyzes the conversion of 2-butenyl-4-phosphate to 1,3-butadiene (Step 4J).
- BDS enzymes described above for Step C in the EC 4.2.3 enzyme class may possess such activity or can be engineered to exhibit this activity.
- Example 2 Decarboxylation of 2,4-Pentadienoate to Butadiene by a Phenylacrylate Decarboxylase
- PadA1 (GI number: 1165293) and OhbA1 (GI number: 188496963) encoding phenylacrylate decarboxylase from S. cerevisiae were codon optimized by DNA 2.0 and were cloned by DNA 2.0 into the following vectors suitable for expression in E. coli , pD424-NH and pD441-NH respectively (DNA 2.0 Inc.).
- the genes were tested for decarboxylation of 2,4-pentadienoate and the enzymatic reactions were carried out under the following conditions:
- butadiene was measured when 2,4-PD was added as a substrate.
- Example 3 Demonstration of Acetyl-CoA Reductase (1A Ad 2A), 4-Hydroxy 2-Oxovalerate Aldolase (1B and 2B), 4-Hydroxy 2-Oxovalerate Decarboxylase (1C)
- acetyl-CoA reductase (bphJ from Burkholderia xenovorans LB400, GI no: 520923), 4-hydroxy 2-oxovalerate aldolase (bphI from Burkholderia xenovorans LB400, GI no: 520924), 4-hydroxy 2-oxovalerate decarboxylase (kdc from Mycobacterium tuberculosis BcG H37Rv, GI no: 614088617), and alcohol dehydrogenase (yjgB from Chronobacter sakazakii , GI no: 387852894) were cloned into a plasmid suitable for expression in E.
- coli plasmid pZA23S (kanamycin resistance marker, p15A origin of replication) obtained from R. Lutz (Expressys, Germany) and are based on the pZ Expression System (Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-12 regulatory elements. Nucleic Acids Res. 25, 1203-1210 (1997)).
- E. coli (MG1655 variants) cells were transformed with the expression plasmid and selected and maintained using antibiotic selection with Kanamycin. Cells were grown for 72 hours in LB media with kanamycin and IPTG at 37° C. then harvested by centrifugation. The formation of a 4-carbon diol derived from 3-hydroxybutyraldehyde using glucose as the carbon substrate was measured (data not shown) while the empty vector control did not make any 4-carbon diol.
- Isoprene synthase E.C. 4.2.3.27, Genbank ID number 63108310, was cloned from Populus alba into a plasmid suitable for expression in E. coli , plasmid pZS*13S (Expressys, Germany).
- E. coli (MG1655 variants) were transformed with the expression plasmid and selected and maintained using antibiotic selection with carbenicillin.
- Cells were grown in Terrific Broth with carbenicillin to an OD of 0.8 and then gene expression induced by IPTG addition then harvested by centrifugation. Lysis was performed using microfluidization at 0° C. Streptactin-tagged isoprene synthase was isolated from the cell lysate using Streptactin-Sepharose purification.
- Purified enzyme was tested for its ability to convert its native substrate, dimethylallyl diphosphate, into isoprene, and for its ability to convert crotyl diphosphate into 1, 3-butadiene, by incubating purified enzyme with each substrate in sealed screw-cap vials for a period of time before analysis of product in headspace of vial by GC-MS. Fidelity of purified enzyme was confirmed by detection of isoprene. Activity on crotyl diphosphate was confirmed by detection of butadiene. In the absence of enzyme, no butadiene was formed (data not shown).
- Isopentenyl phosphate kinase E.C. 2.7.4.26, Genbank ID number 2621082, was cloned from Methanobacterium thermoautotrophicum gi12621082 into a plasmid suitable for expression in E. coli , plasmid pZS*13S obtained from R. Lutz (Expressys, Germany) and are based on the pZ Expression System (Lutz, R. & Bujard, H., Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203-1210 (1997)).
- E. coli (MG1655 variants) were transformed with the expression plasmid and selected and maintained using antibiotic selection with carbenicillin.
- Cells were grown in LB media with carbenicillin and IPTG at 37° C. then harvested by centrifugation. Lysis was performed using a chemical lysis procedure, and lysate the cooled to 4° C. Streptactin-tagged isopentenyl phosphate kinase was isolated from the cell lysate using Streptactin-Sepharose purification.
- Isopentenyl-diphosphate DELTA-isomerase (IPP isomerase), E.C. 5.3.3.2, Genbank ID number 3790386, was cloned from Xanthophyllomyces dendrorhous into a plasmid suitable for expression in E. coli , plasmid pZS*13S obtained from R. Lutz (Expressys, Germany) and are based on the pZ Expression System (Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203-1210 (1997)).
- E. coli (MG1655 variants) were transformed with the expression plasmid and selected and maintained using antibiotic selection with carbenicillin.
- Cells were grown in LB media with carbenicillin and IPTG at 37° C. then harvested by centrifugation.
- Cell lysates containing the IPP isomerase from Xanthophyllomyces dendrorhous were generated by sonicating cells resuspended in 100 mM Tris, 50 mM KCl, 5 mM MgSO4, pH 7.2, and 5 mM DTT. 50 mM CrotOH was added to resulting cell lysate at 2.3 mg/ml total protein, and the reaction mixture incubated at 25° C. for 16 hours.
- MVC or 3-buten-2-ol was measured using headspace analysis on an Agilent 7890A GC equipped with a CTC-PAL autosampler and a MSD (5975C). Samples were diluted 2-fold in 100% methanol to a total volume of 0.100 mL, and transferred into glass inserts in 1.5 mL GC vials. Samples were injected by a Combi PAL CTC autosampler operated in direct injection mode with an injection volume of 1.0 ⁇ L (split ratio 20:1) and 200° C. inlet temperature. Helium was used as a carrier gas, and the flow rate maintained at 1.28 mL/min. The oven temperature is initially held at 100° C. for 1 minute, then ramping 100° C./min to 230° C., for 3 minutes. The MVC or 3-buten-2-ol concentration in samples were calculated from calibration curves generated from diluted MVC standards analyzed under the same GCMS method.
- Alcohol dehydrogenase Genbank ID number 407959257 was cloned from Synechocystis sp. PCC 6803 into a plasmid suitable for expression in E. coli , plasmid pZS*13S obtained from R. Lutz (Expressys, Germany) and are based on the pZ Expression System (Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203-1210 (1997)).
- E. coli (MG1655 variants) were transformed with the expression plasmid and selected and maintained using antibiotic selection with carbenicillin.
- Cells were grown in LB media with carbenicillin and IPTG at 37° C. then harvested by centrifugation. Lysis was performed using a chemical lysis procedure, and lysate was then cooled to 4° C.
- Streptactin-tagged alcohol dehydrogenase was isolated from the cell lysate using Streptactin-Sepharose purification.
- Activity measurements assessing the NADPH-dependent reduction of crotonaldehyde to crotonol were performed.
- the alcohol dehydrogenase from Synechocystis sp. PCC 6803 was found to have a KM value of 0.16 mM and a Kcat of at least 36 s-1. In the absence of enzyme, no reduction of crotonaldehyde to crotonol was observed.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention provides a non-naturally occurring microbial organism having a butadiene, crotyl alcohol, 2,4-pentadienoate, 3-buten-2-ol, or 3-buten-1-ol, pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in a pathway. The invention additionally provides a method for producing butadiene, crotyl alcohol, 2,4-pentadienoate, 3-buten-2-ol, or 3-buten-1-ol. The method can include culturing a butadiene, crotyl alcohol, 2,4-pentadienoate, 3-buten-2-ol, or 3-buten-1-ol-producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a pathway enzyme in a sufficient amount, and under conditions and for a sufficient period of time to produce butadiene, crotyl alcohol, 2,4-pentadienoate, 3-buten-2-ol, or 3-buten-1-ol.
Description
- This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/020,901 filed Jul. 3, 2014, and U.S. Provisional Patent Application Ser. No. 62/082,747 filed Nov. 21, 2014, both applications entitled MICROORGANISMS FOR PRODUCING 4C-5C COMPOUNDS WITH UNSATURATION AND METHODS RELATED THERETO, the disclosures of which are incorporated herein by reference.
- The present invention relates generally to metabolic and biosynthetic processes and microbial organisms capable of producing organic compounds, and more specifically to non-naturally occurring microbial organisms having an organic compound pathway, such as butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and 2,4-pentadienoate.
- Over 25 billion pounds of butadiene (1,3-butadiene, “BD”) are produced annually and is applied in the manufacture of polymers such as synthetic rubbers and ABS resins, and chemicals such as hexamethylenediamine and 1,4-butanediol. For example, butadiene can be reacted with numerous other chemicals, such as other alkenes, e.g. styrene, to manufacture numerous copolymers,
e.g. acrylonitrile 1,3-butadiene styrene (ABS), styrene-1,3-butadiene (SBR) rubber, styrene-1,3-butadiene latex. These materials are used in rubber, plastic, insulation, fiberglass, pipes, automobile and boat parts, food containers, and carpet backing. Butadiene is typically produced as a by-product of the steam cracking process for conversion of petroleum feedstocks such as naphtha, liquefied petroleum gas, ethane or natural gas to ethylene and other olefins. - The ability to manufacture butadiene from alternative and/or renewable feedstocks would represent a major advance in the quest for more sustainable chemical production processes.
- One possible way to produce butadiene renewably involves fermentation of sugars or other feedstocks to produce diols, such as 1,4-butanediol or 1,3-butanediol, which are separated, purified, and then dehydrated to butadiene in a second step involving metal-based catalysis.
- Direct fermentative production of butadiene from renewable feedstocks would obviate the need for dehydration steps and butadiene gas (bp −4.4° C.) would be continuously emitted from the fermenter and readily condensed and collected. Developing a fermentative production process would eliminate the need for fossil-based butadiene and would allow substantial savings in cost, energy, and harmful waste and emissions relative to petrochemically-derived butadiene.
- Crotyl alcohol (“CrotOH”), also referred to as 2-buten-1-ol, is a valuable chemical intermediate. It serves as a precursor to crotyl halides, esters, and ethers, which in turn are chemical intermediates in the production of monomers, fine chemicals, agricultural chemicals, and pharmaceuticals. Exemplary fine chemical products include sorbic acid, trimethylhydroquinone, crotonic acid and 3-methoxybutanol. CrotOH is also a precursor to 1,3-butadiene. CrotOH is currently produced exclusively from petroleum feedstocks. For example Japanese Patent 47-013009 and U.S. Pat. Nos. 3,090,815, 3,090,816, and 3,542,883 describe a method of producing CrotOH by isomerization of 1,2-epoxybutane. The ability to manufacture CrotOH from alternative and/or renewable feedstocks would represent a major advance in the quest for more sustainable chemical production processes.
- 3-Buten-2-ol (also referenced to as methyl vinyl carbinol (“MVC”)) is an intermediate that can be used to produce butadiene. There are significant advantages to use of MVC over 1,3-BDO because there are fewer separation steps and only one dehydration step. MVC can also be used as a solvent, a monomer for polymer production, or a precursor to fine chemicals. Accordingly, the ability to manufacture MVC from alternative and/or renewable feedstock would again present a significant advantage for sustainable chemical production processes.
- 2,4-Pentadienoate is a useful substituted butadiene derivative in its own right and a valuable intermediate en route to other substituted 1,3-butadiene derivatives, including, for example, 1-carbamoyl-1,3-butadienes which are accessible via Curtius rearrangement. The resultant N-protected-1,3-butadiene derivatives can be used in Diels alder reactions for the preparation of substituted anilines. 2,4-Pentadienoate can be used in the preparation of various polymers and co-polymers.
- Thus, there exists a need for alternative methods for effectively producing commercial quantities of compounds such as butadiene, CrotOH, MVC or 2,4-pentadienoate. The present invention satisfies this need and provides related advantages as well.
- In embodiments the invention provides a non-naturally occurring microbial organism having a pathway to butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-2-ol, said microbial organism comprising at least one exogenous nucleic acid encoding a pathway enzyme, wherein the enzyme is selected from the group consisting of (1E) 4-hydroxy 2-oxovalerate decarboxylase, (1 D) 3-hydroxybutyraldehyde dehydratase, (1N) 2-oxopent-3-enoyl-CoA synthetase or transferase, (1O) 2-oxopent-3-enoyl-CoA reductase, (1P) 2-hydroxypent-3-enoyl-CoA dehydratase/vinylisomerase, (1R) 2-hydroxypent-3-enoyl-CoA synthetase or transferase, (1F) 2-oxopent-3-enoate reductase, (1U) 2-hydroxypent-3-enoate vinylisomerase, and (1K) crotyl alcohol vinylisomerase. One or more additional pathway enzymes may be included in the microbial organism. The invention also provides methods for the production of butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-2-ol, comprising culturing the non-naturally occurring microorganism.
- In other embodiments the invention provides a non-naturally occurring microbial organism having a pathway to butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-1-ol, said microbial organism comprising at least one exogenous nucleic acid encoding a pathway enzyme, the enzyme selected from the group consisting of (2E) 2-hydroxypent-4-enoate vinylisomerase, (2H) 2-hydroxypent-4-enoate mutase, and (2M) 3-hydroxypent-4-enoyl-CoA vinylisomerase. One or more additional pathway enzymes may be included in the microbial organism. The invention also provides methods for the production of butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-1-ol, comprising culturing the non-naturally occurring microorganism.
- In other embodiments the invention provides a non-naturally occurring microbial organism having a pathway to butadiene, 2,4-pentadienoate, or 3-buten-2-ol, said microbial organism comprising at least one exogenous nucleic acid encoding a pathway enzyme, the enzyme selected from the group consisting of (3D) 3,4-dihydroxypentanoate dehydratase, (3E) 4-hydroxypent-2-enoate decarboxylase (3H) 3,4-dihydroxypentanoyl-CoA dehydratase, and (3J) 4-hydroxypent-2-enoyl-CoA transferase. The invention also provides methods for the production of butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-2-ol, comprising culturing the non-naturally occurring microorganism.
- In other embodiments the invention provides a non-naturally occurring microbial organism having a pathway to convert crotyl alcohol to butadiene or 3-buten-2-ol, said microbial organism comprising at least one exogenous nucleic acid encoding a pathway enzyme, wherein the enzyme is selected from the group consisting of (4D) 3-buten-2-ol synthase, (4E) 3-buten-2-ol synthase, or (4F) crotyl alcohol isomerase.
-
FIG. 1 shows pathways to butadiene from pyruvate and acetyl-CoA. Enzymes are A. acetyl-CoA reductase, B. 4-hydroxy 2-oxovalerate aldolase, C. 4-hydroxy 2-oxovalerate decarboxylase, D. 3-hydroxybutyraldehyde dehydratase, E. 4-hydroxy-2-oxovalerate 3-dehydratase, F. 2-oxopent-3-enoate reductase, G. 2-hydroxypent-3-enoate dehydratase/vinylisomerase, H. 2,4-pentadienoate decarboxylase, I. 2-oxopent-3-enoate decarboxylase, J. crotyl aldehyde reductase, K. crotyl alcohol vinylisomerase, L. 3-buten-2-ol dehydratase, M. crotyl alcohol dehydratase/vinylisomerase, N. 2-oxopent-3-enoyl-CoA synthetase or transferase, O. 2-oxopent-3-enoyl-CoA reductase, P. 2-hydroxypent-3-enoyl-CoA dehydratase/vinylisomerase, Q. 2,4-pentadienoyl-CoA synthetase, transferase or hydrolase, R. 2-hydroxypent-3-enoyl-CoA synthetase or transferase, S. 2-hydroxypent-3-enoate decarboxylase, T. 4-hydroxypent-2-enoate decarboxylase, U. 2-hydroxypent-3-enoate vinylisomerase, V. 4-hydroxypent-2-enoate dehydratase, W. vinylisomerase. -
FIG. 2 shows pathways to butadiene from pyruvate and acetyl-CoA. Acetyl-CoA reductase, B. 4-hydroxy 2-oxovalerate aldolase, C. 4-hydroxy 2-oxovalerate dehydratase, D. 2-oxopent-4-enoate reductase, E. 2-hydroxypent-4-enoate vinylisomerase, F. 5-hydroxypent-2-enoate dehydratase, G. 2,4-pentadienoate decarboxylase, H. 2-hydroxypent-4-enoate mutase, I. 5-hydroxypent-2-enoyl-CoA synthetase, transferase or hydrolase, J. 2,4-pentadienoyl-CoA synthetase, transferase or hydrolase, K. 3-hydroxypent-4-enoate decarboxylase, L. 3-hydroxypent-4-enoyl-CoA synthetase or transferase, M. 3-hydroxypent-4-enoyl-CoA vinylisomerase, N. 2,4-pentadienoyl-CoA synthetase, hydrolase or transferase, O. 3-hydroxypent-4-enoyl-CoA dehydratase, P. 5-hydroxypent-2-enoate decarboxylase, Q. 3-buten-1-ol dehydratase, R. 3-hydroxypent-4-enoate dehydratase, S. vinylisomerase. -
FIG. 3 shows pathways to but-3-enol and/or butadiene from lactoyl-CoA and acetyl-CoA. Enzymes are A. 3-Oxo-4-hydroxypentanoyl-CoA thiolase, B. 3-oxo-4-hydroxypentanoyl-CoA transferase, synthetase or hydrolase, C. 3-oxo-4-hydroxypentanoate reductase, D. 3,4-dihydroxypentanoate dehydratase, E. 4-hydroxypent-2-enoate decarboxylase, F. 3-buten-2-ol dehydratase, G. 3-oxo-4-hydroxypentanoyl-CoA reductase, H. 3,4-dihydroxypentanoyl-CoA dehydratase, I. 3,4-dihydroxypentanoyl-CoA transferase, synthetase or hydrolase, J. 4-hydroxypent-2-enoyl-CoA transferase, synthetase or hydrolase, K. 4-hydroxypent-2-enoate dehydratase, L. 2,4-pentadienoate decarboxylase, M. 4-hydroxypent-2-enoyl-CoA dehydratase, N. 2,4-pentadienoyl-CoA hydrolase, transferase or synthetase, O. vinylisomerase. -
FIG. 4 shows pathways for converting crotyl alcohol (2-Buten-1-ol) to 3-buten-2-ol and/or butadiene. Enzymes are A. crotyl alcohol kinase, B. 2-butenyl-4-phosphate kinase, C. butadiene synthase, D. 3-buten-2-ol synthase, E. 3-buten-2-ol synthase, F. crotyl alcohol isomerase, G. 3-buten-2-ol dehydratase, H. crotyl alcohol dehydratase, I. crotyl alcohol diphosphokinase, J. butadiene synthase (from 2-butenyl-4-phosphate). -
FIG. 5 shows the GCMS analysis of an authentic sample of MVC or 3-buten-2-ol. -
FIG. 6 shows the GCMS chromatograms obtained for the enzymatic (blue) assay with 50 mM CrotOH after 16 hours and 1 mM standard of MVC or 3-buten-2-ol dissolved in minimal media. -
FIG. 7 is a graph showing activity measurements for assessing the NADPH-dependent reduction of crotonaldehyde to crotonol. -
FIG. 8 is a graph of in vitro formation of crotyl phosphate (CrPi) and ADP over time from a composition including ATP, crotyl alcohol, and hydroxyethylthiazole kinase. - The product pathways described herein are specifically contemplated for use in the organisms, compositions and their uses, such as in methods to make the target products of 1,3-butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol or 2,4-pentadienoate or other product, and other embodiments as taught herein.
- Embodiments of the disclosure are directed to the design of metabolic pathways, and the production and use of non-naturally occurring microbial organisms capable of producing butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol and/or 2,4-pentadienoate. As disclosed herein, metabolic pathways can be designed and recombinantly engineered to achieve the biosynthesis of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate in microbial organisms such as Escherichia coli and other cells or organisms. Biosynthetic production of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can be performed by construction and fermentation of strains having the designed metabolic genotype.
-
FIG. 1 provides exemplary pathways to butadiene from acetyl-CoA and pyruvate via intermediate 2-oxopent-3-enoate (step E) or 3-hydroxybutyraldehyde (step C). Also shown are pathways to the intermediate products (which may be desirably obtained as final products) of crotol alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate, which in certain pathway routes, can be intermediates in butadiene synthesis. In one pathway, acetyl-CoA is converted to acetaldehyde by acetyl-CoA reductase, and pyruvate and acetaldehyde are then converted to 4-hydroxy-2-oxovalerate by 4-hydroxy 2-oxovalerate aldolase. - With reference to
FIG. 1 , the intermediate 4-hydroxy-2-oxovalerate can be promoted to enter different pathways depending on the metabolic design. In one pathway (“E”), 4-hydroxy-2-oxovalerate can be converted to 2-oxopent-3-enoate in the presence of 4-hydroxy-2-oxovalerate 3-dehydratase. Pathway “E” can branch off into one or more different pathways depending on the metabolic design. For example, in pathway “E→N” 2-oxopent-3-enoate is converted to 2-oxopent-3-enoyl-CoA in the presence of 2-oxopent-3-enoyl-CoA synthetase or transferase (N); subsequent enzymatic conversions of intermediates can occur. As another example, in pathway “E→F” 2-oxopent-3-enoate is converted to 2-hydroxypent-3-enoate in the presence of 2-oxopent-3-enoate reductase (F); subsequent enzymatic conversions of intermediates can occur. If desired, the intermediate 2,4-pentadienoate can be obtained further downstream in the E→F branch of the pathway. As another example, in pathway “E→I” 2-oxopent-3-enoate is converted to crotyl aldehyde in the presence of 2-oxopent-3-enoate decarboxylase (I); subsequent enzymatic conversions of intermediates can occur. In desired, the intermediates such as crotol alcohol and/or 3-buten-2-ol can be obtained further downstream in the E→I branch of the pathway. - With reference to
FIG. 1 , the intermediate 4-hydroxy-2-oxovalerate can also be promoted to enter pathway (“C”), where 4-hydroxy-2-oxovalerate can be converted to 3-hydroxy butyraldehyde in the presence of 4-hydroxy 2-oxovalerate decarboxylase. Subsequently, 4-hydroxy 2-oxovalerate decarboxylase can be converted to crotyl aldehyde in the presence of 3-hydroxybutyraldehyde dehydratase (D). Crotyl aldehyde can be converted to crotyl alcohol, which can be an intermediate in the pathway, or can be obtained as a final product, by crotyl aldehyde reductase (J). Subsequently, crotyl alcohol can be converted to 3-buten-2-ol, which can be an intermediate in the pathway, or can be obtained as a final product, by crotyl alcohol vinylisomerase (K). 3-buten-2-ol from steps K or T can be isolated or from step T converted to crotyl alcohol enzymatically (W) or chemically. Crotyl alcohol can enterFIG. 4 or be isolated. - With reference to
FIG. 1 , the non-naturally occurring microbial organism can have any one of the following pathways. E; BE; ABE; EN; ENO; ENOP; ENOPQ; ENOPQH; EF; EFU; EFUV; EFUVH; EFR; EFRP; EFRPQ; EFRPQH; EFS; EFSK; EFSKL; EFSM; EFUT; EFUTL; EI; EIJ; EIJK; EIJKL; EIJM; BEN; BENO; BENOP; BENOPQ; BENOPQH; BEF; BEFU; BEFUV; BEFUVH; BEFR; BEFRP; BEFRPQ; BEFRPQH; BEF; BEFS; BEFSK; BEFSKL; BEFSM; BEFUT; BEFUTL; BEI; BEIJ; BEIJK; BEIJKL; BEIJM; ABEN; ABENO; ABENOP; ABENOPQ; ABENOPQH; ABEF; ABEFU; ABEFUV; ABEFUVH; ABEFR; ABEFRP; ABEFRPQ; ABEFRPQH; ABEF; ABEFS; ABEFSK; ABEFSKL; ABEFSM; ABEFUT; ABEFUTL; ABEI; ABEIJ; ABEIJK; ABEIJKL; ABEIJM; D; CD; BCD; ABCD; DJ; DJM; DJK; DJKL; CDJ; CDJM; CDJK; CDJKL; BCDJ; BCDJM; BCDJK; BCDJKL; ABCDJ; ABCDJM; ABCDJK; ABCDJKL; N; O; P; R; F; U; K; and each combination of any one or more of E, D, N, O, P, R, F, U and K with any one or more of steps ofFIG. 1 . In each of the embodiments of the above pathways where 3-buten-2-ol is produced from Step T it can be followed by Step W, conversion to crotyl alcohol. For example, EFUTW; BEFUTW; ABEFUTW. - In some embodiments, at least one of the pathway enzymes is encoded by nucleic acid that is heterologous to the host species. For example, the heterologous nucleic acid can be obtained from a microbial species other than the host species, such as a nucleic acid from a bacteria other than E. coli (i.e., a non-E. coli bacteria), wherein the heterologous nucleic acid is transformed into E. coli host organism to create any of the pathways of the disclosure. In some embodiments, two, three, four, five, six, etc., heterologous nucleic acids from one or more bacteria other than the host bacteria, are transformed into the bacterial host organism to create any of the pathways of the disclosure. For example, to create a pathway such as BEFUVH in a host organism, one can first determine what, if any, enzymes of the BEFUVH are naturally present in a desired host species. If B is native to the host species, but not EFUVH, the host can then be transformed with heterologous nucleic acids encoding EFUVH to create a pathway in the cell to form butadiene. This approach can be used to create a non-naturally occurring microbial organism having a pathway to butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-2-ol, having any of the pathways of the disclosure.
-
FIG. 2 provides exemplary pathways to butadiene from acetyl-CoA and pyruvate via intermediate 5-hydroxypent-2-enoate (step E) or 3-hydroxypent-4-enoate (step H). Also shown are pathways to the intermediate products (which may be desirably obtained as final products) of crotol alcohol, 3-buten-1-ol and/or 2,4-pentadienoate, which in certain pathway routes, can be intermediates in butadiene synthesis. In one pathway, acetyl-CoA is converted to acetaldehyde by acetyl-CoA reductase (A), and pyruvate and acetaldehyde then converted to 4-hydroxy-2-oxovalerate by 4-hydroxy 2-oxovalerate aldolase (B). 4-hydroxy-2-oxovalerate is converted to 2-oxopent-4-enoate by 4-hydroxy 2-oxovalerate dehydratase (C), and then 2-oxopent-4-enoate is converted to 2-hydroxypent-4-enoate by 2-oxopent-4-enoate reductase (D). - As shown in
FIG. 2 , the intermediate 2-hydroxypent-4-enoate can enter pathway branch “E” or “H.” In pathway branch E, 2-hydroxypent-4-enoate is converted to 5-hydroxypent-2-enoate in the presence of 2-hydroxypent-4-enoate vinylisomerase. The intermediate 5-hydroxypent-2-enoate can then enter one or more of pathway branches (P, F, and/or I) before conversion to butadiene. 3-buten-1-ol can be converted to crotyl alcohol (S), which can be an intermediate in the pathway (enteringFIG. 4 ), or can be obtained as a final product. In pathway branch H, 2-hydroxypent-4-enoate is converted to 3-hydroxypent-4-enoate in the presence of 2-hydroxypent-4-enoate mutase. The intermediate 3-hydroxypent-4-enoate can then enter one or more of pathway branches (R, K, and/or L) before conversion to butadiene. - With reference to
FIG. 2 , the non-naturally occurring microbial organism can have any one of the following pathways. E; DE; CDE; BCDE; ABCDE; EF; EFG; EP; EPQ; EI; EIN; EINJ; EINJG; ABCDEF; ABCDEFG; ABCDEP; ABCDEPQ; ABCDEI; ABCDEIN; ABCDEINJ; ABCDEINJG; BCDEF; BCDEFG; BCDEP; BCDEPQ; BCDEI; BCDEIN; BCDEINJ; BCDEINJG; CDEF; CDEFG; CDEP; CDEPQ; CDEI; CDEIN; CDEINJ; CDEINJG; DEF; DEFG; DEP; DEPQ; DEI; DEIN; DEINJ; DEINJG; H; DH; CDH; BCDH; ABCDH; HL; HLM; HLMN; HLMNJ; HLMNJG; HLO; HLOJ; HLOJG; HLMI; HLMIF; HLMIFG; HLMIP; HLMIPQ; HR; HRG; HK; ABCDHL; ABCDHLM; ABCDHLMN; ABCDHLMNJ; ABCDHLMNJG; ABCDHLO; ABCDHLOJ; ABCDHLOJG; ABCDHLMI; ABCDHLMIF; ABCDHLMIFG; ABCDHLMIP; ABCDHLMIPQ; ABCDHR; ABCDHRG; ABCDHK; BCDHL; BCDHLM; BCDHLMN; BCDHLMNJ; BCDHLMNJG; BCDHLO; BCDHLOJ; BCDHLOJG; BCDHLMI; BCDHLMIF; BCDHLMIFG; BCDHLMIP; BCDHLMIPQ; BCDHR; BCDHRG; BCDHK; CDHL; CDHLM; CDHLMN; CDHLMNJ; CDHLMNJG; CDHLO; CDHLOJ; CDHLOJG; CDHLMI; CDHLMIF; CDHLMIFG; CDHLMIP; CDHLMIPQ; CDHR; CDHRG; CDHK; DHL; DHLM; DHLMN; DHLMNJ; DHLMNJG; DHLO; DHLOJ; DHLOJG; DHLMI; DHLMIF; DHLMIFG; DHLMIP; DHLMIPQ; DHR; DHRG; DHK; M; and each combination of any one or more of E, H, and M with any one or more of steps ofFIG. 2 . In each of the embodiments of the above pathways where 3-buten-1-ol is produced from Step P it can be followed by Step S, conversion to crotyl alcohol. For example, BCDEPS; CDEPS; DEPS; HLMIPS; ABCDHLMIPS; BCDHLMIPS; CDHLMIPS and DHLMIPS. -
FIG. 3 provides exemplary pathways to butadiene from lactoyl-CoA and acetyl-CoA via intermediate 4-hydroxypent-2-enoate, 3-buten-2-ol, 4-hydroxypent-2-enoyl-CoA, 4-hydroxypent-2-enoate; enzymes such as 3,4-dihydroxypentanoate dehydratase (step D), 4-hydroxypent-2-enoate decarboxylase (step E), 3,4-dihydroxypentanoyl-CoA dehydratase (step H), and 4-hydroxypent-2-enoyl-CoA transferase (step J) can be used. 3-buten-2-ol from step E can be isolated as final product or converted to crotyl alcohol enzymatically (O) or chemically. Crotyl alcohol can be isolated or enterFIG. 4 . - With reference to
FIG. 3 , the non-naturally occurring microbial organism can have any one of the following pathways: E; EF; D; DE; DEF; DK; DKL; J; JE; JEF; JK; JKL; H; HJ; HJE; HJEF; HJK; HJKL; HM; HMN; HMNL; GH; GHJ; GHJE; GHJEF; GHJK; GHJKL; GHM; GHMN; GHMIL; AGH; AGHJ; AGHJE; AGHJEF; AGHJK AGHJKL; AGHM; AGHMN; AGHMNL; ID; IDE; IDEF; IDK; IDKL; GID; GIDE; GIDEF; GIDK; GIDKL; AGID; AGIDE; AGIDEF; AGIDK; AGIDKL; CD; CDE; CDEF; CDK; CDKL; BCD; BCDE; BCDEF; BCDK; BCDKL; ABCD; ABCDE; ABCDEF; ABCDK; ABCDKL; HJ; HJE; HJEF; HJK; HJKL; GHJ; GHJE; GHJEF; GHJK GHJKL; AGHJ; AGHJE; AGHJEF; AGHJK; and AGHJKL; and each combination of any one or more of D, H, J and E with any one or more of steps ofFIG. 3 . In each of the embodiments of the above pathways where 3-buten-2-ol is produced it can be followed by Step O, conversion to crotyl alcohol. For example, EO; DEO; JEO; HJEO; AGHJEO; IDEO; GIDEO; AGIDEO; CDEO; BCDEO; ABCDEO; and GHJEO. -
FIG. 4 provides exemplary pathways to butadiene from crotyl alcohol via one or more of the following intermediates: 2-butenyl-4-phosphate, 2-butenyl-4-diphosphate, and/or 3-buten-2-ol. Optionally, crotyl alcohol can be introduced into this pathway via any crotyl alcohol-producing pathway known in the art, or as described herein (e.g., from precursors crotyl aldehyde as converted to crotyl alcohol in the presence of crotyl aldehyde reductase (1J); or 2-hydroxypent-3-enoate converted to crotyl alcohol in the presence of 2-hydroxypent-3-enoate decarboxylase (1S) and including conversion from 3-buten-1-ol or 3-buten-2-ol). In some embodiments, the crotyl alcohol is produced by a pathway ofFIG. 1, 2 or 3 and then introduced into a pathway ofFIG. 4 . - For example, step A of
FIG. 4 uses a hydroxyethylthiazole kinase, a thiamine kinase, a pantothenate kinase, a 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, a riboflavin kinase, a L-fuculokinase, and/or a choline kinase, such as those described herein. - For example, step B of
FIG. 4 subset of kinases of the EC 2.7.1.a class suitable forFIG. 4 Step B include 2.7.4.a Phosphokinases listed below. 2-Butenyl-4-phosphate kinase enzymes catalyze the transfer of a phosphate group to the phosphate group of 2-butenyl-4-phosphate (FIG. 4B ). - With reference to
FIG. 4 , the non-naturally occurring microbial organism can have any one of the following pathways: D; DG; AD; ADG; E; EG; BE; BEG; ABE; ABEG; IE; IEG; F; FG; G; H; J; AJ; A; AB; ABC and each combination of any one or more of steps D, E, F with any one or more of steps ofFIG. 4 , wherein when at least one of 4A, 4B, 4C, 4G or 4H is present then (i) at least one other unique step or pathway is present, such as step 4D, 4E, any unique step or pathway fromFIG. 1 (e.g. 1D, 1E, 1F), or any one or more of Step 4A, 4B, 4C, 4G or 4H or (ii) at least one of A, B, C, G or H consists of a specific sub-group of enzyme classes or enzymes described herein as A for Step A, as B for Step B, as C for Step C, as G for Step G or as H for Step H. - In one embodiment for each pathway or step above is also contemplated the substitution of any one or more of subsets of enzymes described as Steps 1L, 1V, 1M, 2C, 2F, 2O, 2N, 2Q, 2R, 3F, 3K, 3M, 4A, 4B, 4C, 4G and 4H for its corresponding step (e.g. replace enzymes described for Step 1L with those described for Step 1L*).
- With reference to
FIGS. 1 and 4 , orFIGS. 3 and 4 , crotyl alcohol or 3-buten-2-ol is produced by a pathway ofFIG. 1 (e.g., a pathway such as: ABCDJ; ABEIJ; ABEFS; BCDJ; BEIJ: BEFS; CDJ; EIJ; EFS; and DJ, optionally further with step W), or is produced by a pathway ofFIG. 3 , and then introduced into a pathway ofFIG. 4 by combining with a pathway ofFIG. 4 selected from: A; AB; ABC; AJ; AD; ADG; ABE; ABEG; F; FG; I; IC; IE; IEG; H; and G. In a further specifically contemplated embodiment is pathway having substitution of any one or more of subsets of enzymes described in Steps 4G and 4H for its corresponding step (e.g.FIG. 1 ABCDJ plusFIG. 4 IEG becomesFIG. 1 ABCDJ plusFIG. 4 IEG*). - With reference to
FIGS. 2 and 4 , crotyl alcohol or 3-buten-1-ol is produced by a pathway ofFIG. 2 and then introduced into a pathway ofFIG. 4 by combining with a pathway ofFIG. 4 selected from: A; AB; ABC; AJ; AD; ADG; ABE; ABEG; F; FG; I; IC; IE; IEG; H; and G. In a further specifically contemplated embodiment is pathway having substitution of any one or more of subsets of enzymes described in Steps 4G and 4H for its corresponding step (e.g.FIG. 2 ABCDEPS plusFIG. 4 IEG becomesFIG. 2 ABCDEPS plusFIG. 4 IEG*). - Also specifically contemplated herein as unique transformations of
FIG. 1 in addition to Step 1D and 1E are Steps 1N, 1O, 1P, 1R, 1F, U and 1K. Also specifically contemplated herein as unique transformations ofFIG. 2 in addition to Step 2H and 2E is Step 2M. Also specifically contemplated herein as unique transformations ofFIG. 4 in addition to Step 4D and 4E is Step 4F. In addition, Steps 1L, 1V, 1M, 2C, 2F, 2O, 2N, 2Q, 2R, 3F, 3K, 3M, 4A, 4B, 4C, 4G and 4H are unique. Accordingly, all subject matter specifically expressed herein applies equally to these additional unique steps. For example are embodiments of a non-naturally occurring microbial organism having a pathway to butadiene, crotyl alcohol, 2,4-pentadienoate, 3-buten-1-ol, 3-buten-2-ol, or other product said microbial organism comprising a nucleic acid encoding a pathway enzyme for the unique step, as well as methods of use described herein. - With reference to
FIG. 4 , a step A subset of kinases ofFIG. 4 Step A include enzymes exemplified in the tables below for hydroxyethylthiazole kinase, thiamine kinase, pantothenate kinase, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, riboflavin kinase, L-fuculokinase and choline kinase. The table below provides hydroxyethyl thiazole kinases, including EC 2.7.1.50 class, forFIG. 4 , Step A: -
Protein GenBank ID GI Number Organism ThiM YP_007535827.1 16080881 Bacillus subtilis Thi6 CAA97929.1 1370444 Saccharomyces serevisiae ThiM NP_372616.1 15925082 Staphylococcus aureus PH1157, NP_143059.1 14590984 Pyrococcus horikoshii OT3 thiM (analogue of thiK) ThiM Q830K4 81585041 Enterococcus faecalis V583 ThiM YP_006701495 405760899 Streptococcus pneumoniae SPNA45 ThiM YP_004888181 380031190 Lactobacillus plantarum WCFS1 ThiM WP_012906431 502670591 Citrobacter rodentium ThiM NP_461091 16765476 Salmonella enterica subsp. Enterica LT2 ThiM YP_771477 116255644 Rhizobium leguminosarum bv. viciae 3841 ThiM AAC75165.1 1788421 Escherichia coli str. (b2104) K-12 substr. MG1655 - Exemplary candidate thiamine kinases for
FIG. 4 , Step A are: -
Protein GenBank ID GI Number Organism thiK AAC74190.1 1787349 Escherichia coli K12 thiK NP_460178.1 16764563 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 - Exemplary fuculokinases for
FIG. 4 , Step A are: -
Protein GenBank ID GI Number Organism b2803 AAC75845.1 1789168 Escherichia coli K12 MG1655 STM14_3591 ACY90002.1 267995117 Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S D186_16909 EKS55716.1 411772069 Citrobacter freundii ATCC 8090 = MTCC 1658 - Exemplary 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase for
FIG. 4 , Step A are: -
Protein GenBank ID GI Number Organism folK AAC73253.1 1786335 Escherichia coli K12 folK NP_816865.1 29377711 Enterococcus faecalis V583 - Exemplary pantothenate kinases for
FIG. 4 , Step A are: -
Protein GenBank ID GI Number Organism CoaA YP_006514461.1 397672926 Mycobacterium tuberculosis H37Rv CoaA YP_491482.1 388479290 Escherichia coli K12 CoaX Q9WZY5.1 81553296 Thermotoga maritima MSB8 Sav2130 NP_372654.1 15925120 Staphylococcus aureus subsp. aureus Mu50 - Exemplary 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinases (2.7.1.148) for
FIG. 4 , Step A are: -
Protein GenBank ID GI Number Organism ispE NP_415726.1 16129171 Escherichia coli K12 ispE KBJ36713.1 623367758 Mycobacterium tuberculosis H37Rv - Step A subset of synthases (alkene forming) for
FIG. 4 Step C include 4-dimethylallyltryptophan synthase (class EC 2.5.1.34) and dimethylallyltranstransferase (class EC 2.5.1.1) that catalyze the conversion of 2-butenyl-4-diphosphate to 1,3-butadiene (Butadiene Synthase (BDS). The enzymes in these classes naturally possess such activity or can be engineered to exhibit or enhance this activity. -
Enzyme Commission Number Enzyme Name 2.5.1.34 4-dimethylallyltryptophan synthase 2.5.1.1 dimethylallyltranstransferase - The enzyme-subsets designated as steps 1L, 1V, 1M, 2C, 2F, 2O, 2N, 2Q, 2R, 3F, 3K, 3M, 4G and 4H of dehydratase of the EC 4.2.1.a class for their respective Steps 1L, 1V, 1M, 2C, 2F, 2O, 2N, 2Q, 2R, 3F, 3K, 3M, 4G and 4H include the exemplary dehydratases of the 4.2.1.a class shown in the table below as well as a dehydratase class that dehydrates phenyllactyl-CoA to cinnamoyl-CoA exemplified by the dehydratase found in Clostridium sporogens that dehydrates phenyllactyl-CoA to cinnamoyl-CoA. This enzyme is composed of three subunits, one of which is a CoA transferase. The first step comprises of a CoA transfer from cinnamoyl-CoA to phenyllactate leading to the formation of phenyllactyl-CoA and cinnamate. The product cinnamate is released. The dehydratase then converts phenyllactyl-CoA into cinnamoyl-CoA. The FldA is the CoA transferase and FldBC are alpha and beta subunits of the dehydratase, which are related to component D from A. fermentans.
-
GenBank Gene Accession No. GI No. Organism hgdA AAD31676.1 4883832 Clostridum symbiosum hgdB AAD31677.1 4883833 Clostridum symbiosum hgdC AAD31675.1 4883831 Clostridum symbiosum hgdA EDK88042.1 148322792 Fusobacterium nucleatum hgdB EDK88043.1 148322793 Fusobacterium nucleatum hgdC EDK88041.1 148322791 Fusobacterium nucleatum FldB Q93AL9.1 75406928 Clostridium sporogens FldC Q93AL8.1 75406927 Clostridium sporogens -
FIG. 4G andFIG. 4H subsets andFIG. 1 Step L, V and M subsets andFIG. 2 Step C, F, N, O, Q and R subsets, andFIG. 3 Steps F, K and M subsets are subsets of dehydratases for their respective Steps 1L, 1V, 1M, 2C, 2F, 2O, 2N, 2Q, 2R, 3F, 3K, 3M, 4G and 4H are listed in the following table. -
Protein GenBank ID GI Number Organism CGGC5_10771 ELA28661.1 429853596 Colletotrichum gloeosporioides Nara gc5 UCRPA7_8726 EON95759.1 500251895 Togninia minima UCRPA7 UCRNP2_8820 EOD44468.1 485917493 Neofusicoccum parvum UCRNP2 - Further enzymes of
FIG. 4G andFIG. 4H subsets andFIG. 1 Step L, V and M subsets andFIG. 2 Step C, F, N, O, Q and R subsets, andFIG. 3 Steps F, K and M subsets include dimethylmaleate hydratases that catalyze the dehydration of (2R,3S)-2,3-dimethylmalate into dimethylmaleate (EC 4.2.1.85) shown in the table below. -
Protein GenBank ID GI Number Organism LeuC 4KP1_A 635576713 Methanococcus jannaschii phaJ1 ABP99034.1 145967354 Pseudomonas putida - Enzymes with dehydratase and vinylisomerase activity suitable for
FIG. 1 Steps G and M subsets andFIG. 4 Steps G and H subsets include bifunctional enzymes with dehydratase and isomerase activities exemplified below. -
Protein GenBank ID GI Number Organism CGGC5_10771 ELA28661.1 429853596 Colletotrichum gloeosporioides Nara gc5 UCRPA7_8726 EON95759.1 500251895 Togninia minima UCRPA7 UCRNP2_8820 EOD44468.1 485917493 Neofusicoccum parvum UCRNP 2 - As used herein, the term “non-naturally occurring” when used in reference to a microbial organism or microorganism of the invention is intended to mean that the microbial organism has at least one genetic alteration not normally found in a naturally occurring strain of the referenced species, including wild-type strains of the referenced species. Genetic alterations include, for example, modifications introducing expressible nucleic acids encoding metabolic polypeptides, other nucleic acid additions, nucleic acid deletions and/or other functional disruption of the microbial organism's genetic material. Such modifications include, for example, coding regions and functional fragments thereof, for heterologous, homologous or both heterologous and homologous polypeptides for the referenced species. Additional modifications include, for example, non-coding regulatory regions in which the modifications alter expression of a gene or operon. Exemplary metabolic polypeptides include enzymes or proteins within a butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate biosynthetic pathway.
- A metabolic modification refers to a biochemical reaction that is altered from its naturally occurring state. Therefore, non-naturally occurring microorganisms can have genetic modifications to nucleic acids encoding metabolic polypeptides, or functional fragments thereof. Exemplary metabolic modifications are disclosed herein.
- As used herein, the term “isolated” when used in reference to a microbial organism is intended to mean an organism that is substantially free of at least one component as the referenced microbial organism is found in nature. The term includes a microbial organism that is removed from some or all components as it is found in its natural environment. The term also includes a microbial organism that is removed from some or all components as the microbial organism is found in non-naturally occurring environments. Therefore, an isolated microbial organism is partly or completely separated from other substances as it is found in nature or as it is grown, stored or subsisted in non-naturally occurring environments. Specific examples of isolated microbial organisms include partially pure microbes, substantially pure microbes and microbes cultured in a medium that is non-naturally occurring.
- As used herein, the terms “microbial,” “microbial organism” or “microorganism” are intended to mean any organism that exists as a microscopic cell that is included within the domains of archaea, bacteria or eukarya. Therefore, the term is intended to encompass prokaryotic or eukaryotic cells or organisms having a microscopic size and includes bacteria, archaea and eubacteria of all species as well as eukaryotic microorganisms such as yeast and fungi. The term also includes cell cultures of any species that can be cultured for the production of a biochemical.
- As used herein, the term “CoA” or “coenzyme A” is intended to mean an organic cofactor or prosthetic group (nonprotein portion of an enzyme) whose presence is required for the activity of many enzymes (the apoenzyme) to form an active enzyme system. Coenzyme A functions in certain condensing enzymes, acts in acetyl or other acyl group transfer and in fatty acid synthesis and oxidation, pyruvate oxidation and in other acetylation.
- As used herein, the term “substantially anaerobic” when used in reference to a culture or growth condition is intended to mean that the amount of oxygen is less than about 10% of saturation for dissolved oxygen in liquid media. The term also is intended to include sealed chambers of liquid or solid medium maintained with an atmosphere of less than about 1% oxygen.
- “Exogenous” as it is used herein is intended to mean that the referenced molecule or the referenced activity is introduced into the host microbial organism. The molecule can be introduced, for example, by introduction of an encoding nucleic acid into the host genetic material such as by integration into a host chromosome or as non-chromosomal genetic material such as a plasmid. Therefore, the term as it is used in reference to expression of an encoding nucleic acid refers to introduction of the encoding nucleic acid in an expressible form into the microbial organism. When used in reference to a biosynthetic activity, the term refers to an activity that is introduced into the host reference organism. The source can be, for example, a homologous or heterologous encoding nucleic acid that expresses the referenced activity following introduction into the host microbial organism. Therefore, the term “endogenous” refers to a referenced molecule or activity that is present in the host. Similarly, the term when used in reference to expression of an encoding nucleic acid refers to expression of an encoding nucleic acid contained within the microbial organism. The term “heterologous” refers to a molecule or activity derived from a source other than the referenced species whereas “homologous” refers to a molecule or activity derived from the host microbial organism. Accordingly, exogenous expression of an encoding nucleic acid of the invention can utilize either or both a heterologous or homologous encoding nucleic acid.
- It is understood that when more than one exogenous nucleic acid is included in a microbial organism that the more than one exogenous nucleic acids refers to the referenced encoding nucleic acid or biosynthetic activity, as discussed above. It is further understood, as disclosed herein, that such more than one exogenous nucleic acids can be introduced into the host microbial organism on separate nucleic acid molecules, on polycistronic nucleic acid molecules, or a combination thereof, and still be considered as more than one exogenous nucleic acid. For example, as disclosed herein a microbial organism can be engineered to express two or more exogenous nucleic acids encoding a desired pathway enzyme or protein. In the case where two exogenous nucleic acids encoding a desired activity are introduced into a host microbial organism, it is understood that the two exogenous nucleic acids can be introduced as a single nucleic acid, for example, on a single plasmid, on separate plasmids, can be integrated into the host chromosome at a single site or multiple sites, and still be considered as two exogenous nucleic acids. Similarly, it is understood that more than two exogenous nucleic acids can be introduced into a host organism in any desired combination, for example, on a single plasmid, on separate plasmids, can be integrated into the host chromosome at a single site or multiple sites, and still be considered as two or more exogenous nucleic acids, for example three exogenous nucleic acids. Thus, the number of referenced exogenous nucleic acids or biosynthetic activities refers to the number of encoding nucleic acids or the number of biosynthetic activities, not the number of separate nucleic acids introduced into the host organism.
- The non-naturally occurring microbal organisms of the invention can contain stable genetic alterations, which refers to microorganisms that can be cultured for greater than five generations without loss of the alteration. Generally, stable genetic alterations include modifications that persist greater than 10 generations, particularly stable modifications will persist more than about 25 generations, and more particularly, stable genetic modifications will be greater than 50 generations, including indefinitely.
- Those skilled in the art will understand that the genetic alterations, including metabolic modifications exemplified herein, are described with reference to a suitable host organism such as E. coli and their corresponding metabolic reactions or a suitable source organism for desired genetic material such as genes for a desired metabolic pathway. However, given the complete genome sequencing of a wide variety of organisms and the high level of skill in the area of genomics, those skilled in the art will readily be able to apply the teachings and guidance provided herein to essentially all other organisms. For example, the E. coli metabolic alterations exemplified herein can readily be applied to other species by incorporating the same or analogous encoding nucleic acid from species other than the referenced species. Such genetic alterations include, for example, genetic alterations of species homologs, in general, and in particular, orthologs, paralogs or nonorthologous gene displacements.
- An ortholog is a gene or genes that are related by vertical descent and are responsible for substantially the same or identical functions in different organisms. For example, mouse epoxide hydrolase and human epoxide hydrolase can be considered orthologs for the biological function of hydrolysis of epoxides. Genes are related by vertical descent when, for example, they share sequence similarity of sufficient amount to indicate they are homologous, or related by evolution from a common ancestor. Genes can also be considered orthologs if they share three-dimensional structure but not necessarily sequence similarity, of a sufficient amount to indicate that they have evolved from a common ancestor to the extent that the primary sequence similarity is not identifiable. Genes that are orthologous can encode proteins with sequence similarity of about 25% to 100% amino acid sequence identity. Genes encoding proteins sharing an amino acid similarity less that 25% can also be considered to have arisen by vertical descent if their three-dimensional structure also shows similarities.
- Orthologs include genes or their encoded gene products that through, for example, evolution, have diverged in structure or overall activity. For example, where one species encodes a gene product exhibiting two functions and where such functions have been separated into distinct genes in a second species, the three genes and their corresponding products are considered to be orthologs. For the production of a biochemical product, those skilled in the art will understand that the orthologous gene harboring the metabolic activity to be introduced or disrupted is to be chosen for construction of the non-naturally occurring microorganism. An example of orthologs exhibiting separable activities is where distinct activities have been separated into distinct gene products between two or more species or within a single species.
- In contrast, paralogs are homologs related by, for example, duplication followed by evolutionary divergence and have similar or common, but not identical functions. Paralogs can originate or derive from, for example, the same species or from a different species. For example, microsomal epoxide hydrolase (epoxide hydrolase I) and soluble epoxide hydrolase (epoxide hydrolase II) can be considered paralogs because they represent two distinct enzymes, co-evolved from a common ancestor, that catalyze distinct reactions and have distinct functions in the same species. Paralogs are proteins from the same species with significant sequence similarity to each other suggesting that they are homologous, or related through co-evolution from a common ancestor.
- A nonorthologous gene displacement is a nonorthologous gene from one species that can substitute for a referenced gene function in a different species. Substitution includes, for example, being able to perform substantially the same or a similar function in the species of origin compared to the referenced function in the different species. Although generally, a nonorthologous gene displacement will be identifiable as structurally related to a known gene encoding the referenced function, less structurally related but functionally similar genes and their corresponding gene products nevertheless will still fall within the meaning of the term as it is used herein. Functional similarity requires, for example, at least some structural similarity in the active site or binding region of a nonorthologous gene product compared to a gene encoding the function sought to be substituted. Therefore, a nonorthologous gene includes, for example, a paralog or an unrelated gene.
- Therefore, in identifying and constructing the non-naturally occurring microbial organisms of the invention having biosynthetic capability, those skilled in the art will understand with applying the teaching and guidance provided herein to a particular species that the identification of metabolic modifications can include identification and inclusion or inactivation of orthologs. To the extent that paralogs and/or nonorthologous gene displacements are present in the referenced microorganism that encode an enzyme catalyzing a similar or substantially similar metabolic reaction, those skilled in the art also can utilize these evolutionally related genes.
- Orthologs, paralogs and nonorthologous gene displacements can be determined by methods well known to those skilled in the art. For example, inspection of nucleic acid or amino acid sequences for two polypeptides will reveal sequence identity and similarities between the compared sequences. Based on such similarities, one skilled in the art can determine if the similarity is sufficiently high to indicate the proteins are related through evolution from a common ancestor. Algorithms well known to those skilled in the art, such as Align, BLAST, Clustal W and others compare and determine a raw sequence similarity or identity, and also determine the presence or significance of gaps in the sequence which can be assigned a weight or score. Such algorithms also are known in the art and are similarly applicable for determining nucleotide sequence similarity or identity. Parameters for sufficient similarity to determine relatedness are computed based on well known methods for calculating statistical similarity, or the chance of finding a similar match in a random polypeptide, and the significance of the match determined. A computer comparison of two or more sequences can, if desired, also be optimized visually by those skilled in the art. Related gene products or proteins can be expected to have a high similarity, for example, 25% to 100% sequence identity. Proteins that are unrelated can have an identity which is essentially the same as would be expected to occur by chance, if a database of sufficient size is scanned (about 5%). Sequences between 5% and 24% may or may not represent sufficient homology to conclude that the compared sequences are related. Additional statistical analysis to determine the significance of such matches given the size of the data set can be carried out to determine the relevance of these sequences.
- Exemplary parameters for determining relatedness of two or more sequences using the BLAST algorithm, for example, can be as set forth below. Briefly, amino acid sequence alignments can be performed using BLASTP version 2.0.8 (Jan. 5, 1999) and the following parameters: Matrix: 0 BLOSUM62; gap open: 11; gap extension: 1; x_dropoff: 50; expect: 10.0; wordsize: 3; filter: on. Nucleic acid sequence alignments can be performed using BLASTN version 2.0.6 (Sep. 16, 1998) and the following parameters: Match: 1; mismatch: −2; gap open: 5; gap extension: 2; x_dropoff: 50; expect: 10.0; wordsize: 11; filter: off. Those skilled in the art will know what modifications can be made to the above parameters to either increase or decrease the stringency of the comparison, for example, and determine the relatedness of two or more sequences.
- It is understood that any of the pathways disclosed herein, as described in the Examples and exemplified in the pathways of
FIGS. 1-4 , can be utilized to generate a non-naturally occurring microbial organism that produces any pathway intermediate or product, as desired. As disclosed herein, such a microbial organism that produces an intermediate can be used in combination with another microbial organism expressing downstream pathway enzymes to produce a desired product. However, it is understood that a non-naturally occurring microbial organism that produces a butadiene pathway intermediate can be utilized to produce the intermediate as a desired product. - This invention is also directed, in part to engineered biosynthetic pathways to improve carbon flux through a central metabolism intermediate en route to butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate. The present invention provides non-naturally occurring microbial organisms having one or more exogenous genes encoding enzymes that can catalyze various enzymatic transformations en route to butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate. In some embodiments, these enzymatic transformations are used to improve product yields, including but not limited to, from carbohydrate-based carbon feedstock.
- The one or more exogenous genes encoding enzymes that can catalyze various enzymatic transformations en route to butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can be used in combination with genetic modifications that improve the amount of reducing equivalents available to the biosynthetic pathways, or that minimize loss of reducing equivalents and/or carbon to byproducts. In accordance with some embodiments, the one or more exogenous genes encoding enzymes that can catalyze various enzymatic transformations en route to butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can be used in combination with genetic modifications that (i) enhance carbon fixation, and/or (ii) accessing additional reducing equivalents from carbon sources.
- Reducing equivalents can come in the form of NADH, NADPH, FADH, reduced quinones, reduced ferredoxins, reduced flavodoxins and thioredoxins.
- It is understood by those skilled in the art that the pathways described herein for increasing product yield can be combined with any of the pathways disclosed herein, including those pathways depicted in the figures. One skilled in the art will understand that, depending on the pathway to a desired product and the precursors and intermediates of that pathway, a particular pathway for improving product yield, as discussed herein and in the examples, or combination of such pathways, can be used in combination with a pathway to a desired product to increase the yield of that product or a pathway intermediate.
- The invention is described herein with general reference to the metabolic reaction, reactant or product thereof, or with specific reference to one or more nucleic acids or genes encoding an enzyme associated with or catalyzing, or a protein associated with, the referenced metabolic reaction, reactant or product. Unless otherwise expressly stated herein, those skilled in the art will understand that reference to a reaction also constitutes reference to the reactants and products of the reaction. Similarly, unless otherwise expressly stated herein, reference to a reactant or product also references the reaction, and reference to any of these metabolic constituents also references the gene or genes encoding the enzymes that catalyze or proteins involved in the referenced reaction, reactant or product. Likewise, given the well-known fields of metabolic biochemistry, enzymology and genomics, reference herein to a gene or encoding nucleic acid also constitutes a reference to the corresponding encoded enzyme and the reaction it catalyzes or a protein associated with the reaction as well as the reactants and products of the reaction.
- The non-naturally occurring microbial organisms of the invention can be produced by introducing expressible nucleic acids encoding one or more of the enzymes or proteins participating in one or more butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate biosynthetic pathways. Depending on the host microbial organism chosen for biosynthesis, nucleic acids for some or all of a particular butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate acid biosynthetic pathway can be expressed. For example, if a chosen host is deficient in one or more enzymes or proteins for a desired biosynthetic pathway, then expressible nucleic acids for the deficient enzyme(s) or protein(s) are introduced into the host for subsequent exogenous expression. Alternatively, if the chosen host exhibits endogenous expression of some pathway genes, but is deficient in others, then an encoding nucleic acid is needed for the deficient enzyme(s) or protein(s) to achieve butadiene, crotyl alcohol, 3-buten-1-ol, 3-buten-2-ol, and/or 2,4-pentadienoate biosynthesis. Thus, a non-naturally occurring microbial organism of the invention can be produced by introducing exogenous enzyme or protein activities to obtain a desired biosynthetic pathway or a desired biosynthetic pathway can be obtained by introducing one or more exogenous enzyme or protein activities that, together with one or more endogenous enzymes or proteins, produces a desired product such as butadiene.
- Host microbial organisms can be selected from, and the non-naturally occurring microbial organisms generated in, for example, bacteria, yeast, fungus or any of a variety of other microorganisms applicable to fermentation processes. Exemplary bacteria include species selected from Escherichia coli, Klebsiella oxytoca, Anaerobiospirillum succiniciproducens, Actinobacillus succinogenes, Mannheimia succiniciproducens, Rhizobium etli, Bacillus subtilis, Corynebacterium glutamicum, Gluconobacter oxydans, Zymomonas mobilis, Lactococcus lactis, Lactobacillus plantarum, Streptomyces coelicolor, Clostridium acetobutylicum, Pseudomonas fluorescens, and Pseudomonas putida. Exemplary yeasts or fungi include species selected from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Kluyveromyces marxianus, Aspergillus terreus, Aspergillus niger, Pichia pastoris, Rhizopus arrhizus, Rhizopus oryzae, Yarrowia lipolytica, and the like. E. coli is a particularly useful host organism since it is a well characterized microbial organism suitable for genetic engineering. Other particularly useful host organisms include yeast such as Saccharomyces cerevisiae. It is understood that any suitable microbial host organism can be used to introduce metabolic and/or genetic modifications to produce a desired product.
- Examplary E. coli host organisms include any non-pathogenic E. coli strain, including E. coli strains falling within taxonomic lineages such as A, B1, and B2. E. coli K-12 strains are in subgroup A. Host organisms include derivatives and variants of E. coli K-12, such as W3110 and MG1655. See, for example, Kuhnert, P., et at. (1995) Rapid and accurate identification of Escherichia coli K-12 strains. Applied and Environmental Microbiology 61:4135-4139; Bachmann, B. J. (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol. Rev. 36 525-57; and Bachmann, B. J. Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In: Neidhardt, F. C. et al. (1996) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ASM Press, Washington, D.C.)
- In some embodiments, a heterologous nucleic acid encoding a pathway enzyme of the disclosure can be described as obtained from an organism (such as a bacteria) that is other than the organisms of the host group. For example, the heterologous nucleic acid can be from a bacterial organism other than an organism selected from the group consisting of E. coli, K. oxytoca, A. succiniciproducens, etc.
- In particularly useful embodiments, exogenous expression of the encoding nucleic acids is employed. Exogenous expression confers the ability to custom tailor the expression and/or regulatory elements to the host and application to achieve a desired expression level that is controlled by the user. However, endogenous expression also can be utilized in other embodiments such as by removing a negative regulatory effector or induction of the gene's promoter when linked to an inducible promoter or other regulatory element. Thus, an endogenous gene having a naturally occurring inducible promoter can be up-regulated by providing the appropriate inducing agent, or the regulatory region of an endogenous gene can be engineered to incorporate an inducible regulatory element, thereby allowing the regulation of increased expression of an endogenous gene at a desired time. Similarly, an inducible promoter can be included as a regulatory element for an exogenous gene introduced into a non-naturally occurring microbial organism.
- Sources of encoding nucleic acids for a butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol and/or 2,4-pentadienoate pathway enzyme or protein can include, for example, any species where the encoded gene product is capable of catalyzing the referenced reaction. Such species include both prokaryotic and eukaryotic organisms including, but not limited to, bacteria, including archaea and eubacteria, and eukaryotes, including yeast, plant, insect, animal, and mammal, including human. Exemplary species for such sources include, for example, Escherichia species, including Escherichia coli, Escherichia fergusonii, Methanocaldococcus jannaschii, Leptospira interrrogans, Geobacter sultrreducens, Chloroflexus aurantiacus, Roseiflexus sp. RS-1, Chloroflexus aggregans, Achromobacter xylosoxydans, Clostrdia species, including Clostridium kluyveri, Clostridium symbiosum, Clostridium acetobutylicum, Clostridium saccharoperbutylacetonicum, Clostridium ljungdahlii, Trichomonas vaginalis G3, Trypanosoma brucei, Acidaminococcus fermentans, Fusobacterium species, including Fusobacterium nucleatum, Fusobacterium mortiferum, Corynebacterium glutamicum, Rattus norvegicus, Homo sapiens, Saccharomyces species, including Saccharomyces cerevisiae, Apsergillus species, including Aspergillus terreus, Aspergillus oryzae, Aspergillus niger, Gibberella zeae, Pichia stipitis, Mycobacterium species, including Mycobacterium smegmatis, Mycobacterium avium, including subsp. pratuberculosis, Salinispora arenicola Pseudomonas species, including Pseudomonas sp. CF600, Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa, Ralstonia species, including Ralstonia eutropha, Ralstonia eutropha JMP134, Ralstonia eutropha H16, Ralstonia pickettii, Lactobacillus plantarum, Klebsiella oxytoca, Bacillus species, including Bacillus subtilis, Bacillus pumilus, Bacillus megaterium, Pedicoccus pentosaceus, Chlorofexus species, including Chloroflexus aurantiacus, Chloroflexus aggregans, Rhodobacter sphaeroides, Methanocaldococcus jannaschii, Leptospira interrrogans, Candida maltosa, Salmonella species, including Salmonella enterica serovar Typhimurium, Shewanella species, including Shewanella oneidensis, Shewanella sp. MR-4, Alcaligenes faecalis, Geobacillus stearothermophilus, Serratia marcescens, Vibrio cholerae, Eubacterium barkeri, Bacteroides capillosus, Archaeoglobus fulgidus, Archaeoglobus fulgidus, Haloarcula marismortui, Pyrobaculum aerophilum str. IM2, Rhizobium species, including Rhizobium leguminosarum, as well as other exemplary species disclosed herein or available as source organisms for corresponding genes. However, with the complete genome sequence available for now more than 550 species (with more than half of these available on public databases such as the NCBI), including 395 microorganism genomes and a variety of yeast, fungi, plant, and mammalian genomes, the identification of genes encoding the requisite butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate biosynthetic activity for one or more genes in related or distant species, including for example, homologues, orthologs, paralogs and nonorthologous gene displacements of known genes, and the interchange of genetic alterations between organisms is routine and well known in the art. Accordingly, the metabolic alterations allowing biosynthesis of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate described herein with reference to a particular organism such as E. coli can be readily applied to other microorganisms, including prokaryotic and eukaryotic organisms alike. Given the teachings and guidance provided herein, those skilled in the art will know that a metabolic alteration exemplified in one organism can be applied equally to other organisms.
- In some instances, such as when an alternative butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate biosynthetic pathway exists in an unrelated species butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate biosynthesis can be conferred onto the host species by, for example, exogenous expression of a paralog or paralogs from the unrelated species that catalyzes a similar, yet non-identical metabolic reaction to replace the referenced reaction. Because certain differences among metabolic networks exist between different organisms, those skilled in the art will understand that the actual gene usage between different organisms may differ. However, given the teachings and guidance provided herein, those skilled in the art also will understand that the teachings and methods of the invention can be applied to all microbial organisms using the cognate metabolic alterations to those exemplified herein to construct a microbial organism in a species of interest that will synthesize butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol and/or 2,4-pentadienoate.
- Methods for constructing and testing the expression levels of a non-naturally occurring butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol and/or 2,4-pentadienoate-producing host can be performed, for example, by recombinant and detection methods well known in the art. Such methods can be found described in, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Third Ed., Cold Spring Harbor Laboratory, New York (2001); and Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Md. (1999).
- Exogenous nucleic acid sequences involved in a pathway for production of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol and/or 2,4-pentadienoate can be introduced stably or transiently into a host cell using techniques well known in the art including, but not limited to, conjugation, electroporation, chemical transformation, transduction, transfection, and ultrasound transformation. For exogenous expression in E. coli or other prokaryotic cells, some nucleic acid sequences in the genes or cDNAs of eukaryotic nucleic acids can encode targeting signals such as an N-terminal mitochondrial or other targeting signal, which can be removed before transformation into prokaryotic host cells, if desired. For example, removal of a mitochondrial leader sequence led to increased expression in E. coli (Hoffmeister et al., J Biol. Chem. 280:4329-4338 (2005)). For exogenous expression in yeast or other eukaryotic cells, genes can be expressed in the cytosol without the addition of leader sequence, or can be targeted to mitochondrion or other organelles, or targeted for secretion, by the addition of a suitable targeting sequence such as a mitochondrial targeting or secretion signal suitable for the host cells. Thus, it is understood that appropriate modifications to a nucleic acid sequence to remove or include a targeting sequence can be incorporated into an exogenous nucleic acid sequence to impart desirable properties. Furthermore, genes can be subjected to codon optimization with techniques well known in the art to achieve optimized expression of the proteins.
- An expression vector or vectors can be constructed to include one or more butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate biosynthetic pathway encoding nucleic acids as exemplified herein operably linked to expression control sequences functional in the host organism. Expression vectors applicable for use in the microbial host organisms of the invention include, for example, plasmids, phage vectors, viral vectors, episomes and artificial chromosomes, including vectors and selection sequences or markers operable for stable integration into a host chromosome. Additionally, the expression vectors can include one or more selectable marker genes and appropriate expression control sequences. Selectable marker genes also can be included that, for example, provide resistance to antibiotics or toxins, complement auxotrophic deficiencies, or supply critical nutrients not in the culture media. Expression control sequences can include constitutive and inducible promoters, transcription enhancers, transcription terminators, and the like which are well known in the art. When two or more exogenous encoding nucleic acids are to be co-expressed, both nucleic acids can be inserted, for example, into a single expression vector or in separate expression vectors. For single vector expression, the encoding nucleic acids can be operationally linked to one common expression control sequence or linked to different expression control sequences, such as one inducible promoter and one constitutive promoter. The transformation of exogenous nucleic acid sequences involved in a metabolic or synthetic pathway can be confirmed using methods well known in the art. Such methods include, for example, nucleic acid analysis such as Northern blots or polymerase chain reaction (PCR) amplification of mRNA, or immunoblotting for expression of gene products, or other suitable analytical methods to test the expression of an introduced nucleic acid sequence or its corresponding gene product. It is understood by those skilled in the art that the exogenous nucleic acid is expressed in a sufficient amount to produce the desired product, and it is further understood that expression levels can be optimized to obtain sufficient expression using methods well known in the art and as disclosed herein.
- The invention additionally provides methods of producing butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate using the microbial organisms of the invention comprising one or more pathway gene(s). In a particular embodiment, the invention provides a method for producing a target compound by culturing a non-naturally occurring microbial organism, comprising a microbial organism having a butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate pathway comprising at least one exogenous nucleic acid encoding a pathway enzyme expressed in a sufficient amount to produce butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate, under conditions and for a sufficient period of time.
- Suitable purification and/or assays to test for the production of producing butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can be performed using well known methods. Suitable replicates such as triplicate cultures can be grown for each engineered strain to be tested. For example, product and byproduct formation in the engineered production host can be monitored. The final product and intermediates, and other organic compounds, can be analyzed by methods such as HPLC (High Performance Liquid Chromatography), GC-MS (Gas Chromatography-Mass Spectroscopy) and LC-MS (Liquid Chromatography-Mass Spectroscopy) or other suitable analytical methods using routine procedures well known in the art. The release of product in the fermentation broth can also be tested with the culture supernatant. Byproducts and residual glucose can be quantified by HPLC using, for example, a refractive index detector for glucose and alcohols, and a UV detector for organic acids (Lin et al., Biotechnol. Bioeng. 90:775-779 (2005)), or other suitable assay and detection methods well known in the art. The individual enzyme or protein activities from the exogenous DNA sequences can also be assayed using methods well known in the art.
- The butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can be separated from other components in the culture using a variety of methods well known in the art. Such separation methods include, for example, extraction procedures as well as methods that include continuous liquid-liquid extraction, pervaporation, membrane filtration, membrane separation, reverse osmosis, electrodialysis, distillation, crystallization, centrifugation, extractive filtration, ion exchange chromatography, size exclusion chromatography, adsorption chromatography, and ultrafiltration. All of the above methods are well known in the art.
- Any of the non-naturally occurring microbial organisms described herein can be cultured to produce and/or secrete the biosynthetic products of the invention. For example, the butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate producers can be cultured for the biosynthetic production of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate.
- For the production of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate, the recombinant strains are cultured in a medium with carbon source and other essential nutrients. It is sometimes desirable and can be highly desirable to maintain anaerobic conditions in the fermenter to reduce the cost of the overall process. Such conditions can be obtained, for example, by first sparging the medium with nitrogen and then sealing the flasks with a septum and crimp-cap. For strains where growth is not observed anaerobically, microaerobic or substantially anaerobic conditions can be applied by perforating the septum with a small hole for limited aeration. Exemplary anaerobic conditions have been described previously and are well-known in the art. Exemplary aerobic and anaerobic conditions are described, for example, in United State publication 2009/0047719, filed Aug. 10, 2007. Fermentations can be performed in a batch, fed-batch or continuous manner, as disclosed herein.
- If desired, the pH of the medium can be maintained at a desired pH, in particular neutral pH, such as a pH of around 7 by addition of a base, such as NaOH or other bases, or acid, as needed to maintain the culture medium at a desirable pH. The growth rate can be determined by measuring optical density using a spectrophotometer (600 nm), and the glucose uptake rate by monitoring carbon source depletion over time.
- The growth medium can include, for example, any carbohydrate source which can supply a source of carbon to the non-naturally occurring microorganism. Such sources include, for example, sugars such as glucose, xylose, arabinose, galactose, mannose, fructose, sucrose and starch. Other sources of carbohydrate include, for example, renewable feedstocks and biomass. Exemplary types of biomasses that can be used as feedstocks in the methods of the invention include cellulosic biomass, hemicellulosic biomass and lignin feedstocks or portions of feedstocks. Such biomass feedstocks contain, for example, carbohydrate substrates useful as carbon sources such as glucose, xylose, arabinose, galactose, mannose, fructose and starch. Other non-carbohydrate feedstocks include alcohols such as methanol, ethanol and glycerol and gaseous carbon substrates such as methane and syngas. Given the teachings and guidance provided herein, those skilled in the art will understand that renewable feedstocks and biomass other than those exemplified above also can be used for culturing the microbial organisms of the invention for the production of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate.
- In some embodiments, culture conditions include anaerobic or substantially anaerobic growth or maintenance conditions. Exemplary anaerobic conditions have been described previously and are well known in the art. Exemplary anaerobic conditions for fermentation processes are described herein and are described, for example, in U.S. publication 2009/0047719, filed Aug. 10, 2007. Any of these conditions can be employed with the non-naturally occurring microbial organisms as well as other anaerobic conditions well known in the art. Under such anaerobic or substantially anaerobic conditions, butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate producers can synthesize butadiene, crotyl alcohol, 3-buten-1-ol, 3-buten-2-ol, and/or 2,4-pentadienoate at intracellular concentrations of 5-10 mM or more as well as all other concentrations exemplified herein. It is understood that, even though the above description refers to intracellular concentrations, butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate producing microbial organisms can butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate intracellularly and/or secrete the product into the culture medium.
- In addition to the culturing and fermentation conditions disclosed herein, growth condition for achieving biosynthesis of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate can include the addition of an osmoprotectant to the culturing conditions. In certain embodiments, the non-naturally occurring microbial organisms of the invention can be sustained, cultured or fermented as described herein in the presence of an osmoprotectant. Briefly, an osmoprotectant refers to a compound that acts as an osmolyte and helps a microbial organism as described herein survive osmotic stress. Osmoprotectants include, but are not limited to, betaines, amino acids, and the sugar trehalose. Non-limiting examples of such are glycine betaine, proline betaine, dimethylthetin, dimethylsulfoniopropionate, 3-dimethylsulfonio-2-methylpropionate, pipecolic acid, dimethylsulfonioacetate, choline, L-carnitine and ectoine. In one aspect, the osmoprotectant is glycine betaine.
- In some embodiments, the carbon feedstock and other cellular uptake sources such as phosphate, ammonia, sulfate, chloride and other halogens can be chosen to alter the isotopic distribution of the atoms present in butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate or any pathway intermediate. The various carbon feedstock and other uptake sources enumerated above will be referred to herein, collectively, as “uptake sources.”
- As used herein, the term “bioderived” means derived from or synthesized by a biological organism and can be considered a renewable resource since it can be generated by a biological organism. Such a biological organism, in particular the microbial organisms of the invention disclosed herein, can utilize feedstock or biomass, such as, sugars or carbohydrates obtained from an agricultural, plant, bacterial, or animal source. Alternatively, the biological organism can utilize atmospheric carbon. As used herein, the term “biobased” means a product as described above that is composed, in whole or in part, of a bioderived compound of the invention. A biobased or bioderived product is in contrast to a petroleum derived product, wherein such a product is derived from or synthesized from petroleum or a petrochemical feedstock.
- The culture conditions can include, for example, liquid culture procedures as well as fermentation and other large scale culture procedures. As described herein, particularly useful yields of the biosynthetic products of the invention can be obtained under anaerobic or substantially anaerobic culture conditions.
- As described herein, one exemplary growth condition for achieving biosynthesis of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate includes anaerobic culture or fermentation conditions. In certain embodiments, the non-naturally occurring microbial organisms of the invention can be sustained, cultured or fermented under anaerobic or substantially anaerobic conditions. Anaerobic conditions refer to an environment devoid of oxygen.
- The culture conditions described herein can be scaled up and grown continuously for manufacturing of butadiene, crotyl alcohol, 3-buten-2-ol, 3-buten-1-ol, and/or 2,4-pentadienoate. Exemplary growth procedures include, for example, fed-batch fermentation and batch separation; fed-batch fermentation and continuous separation, or continuous fermentation and continuous separation.
- Several pathways are shown in
FIGS. 1-2 for converting pyruvate and acetaldehyde to butadiene and butadiene precursors. Acetaldehyde is formed via reduction of acetyl-CoA by acetyl-CoA reductase, also called acetaldehyde dehydrogenase (Step 1A and 2A). Pyruvate and acetaldehyde are condensed to 4-hydroxy-2-oxovalerate by 4-hydroxy-2-ketovalerate aldolase (Step 1B and 2B). Alternately, the acetaldehyde intermediate can be formed by other enzymes or metabolic pathways known in the art, such as pyruvate decarboxylase. In a particularly preferred embodiment, Steps A and B ofFIGS. 1 and 2 are catalyzed by a bifunctional enzyme with aldolase and dehydrogenase activities. - In
FIG. 1 , the 4-hydroxy-2-oxovalerate product is subsequently dehydrated to 2-oxopent-3-enoate (Step 1E). Reduction of 2-oxopent-3-enoate to its corresponding hydroxyacid (Step 1F) is catalyzed by a secondary alcohol dehydrogenase. Isomerization of 2-hydroxypent-3-enoate to 4-hydroxypent-2-enoate (1U), followed by dehydration (1V) yields 2,4-pentadienoate. These two reactions can be catalyzed by two different enzymes (1U, 1V) or by a bifunctional isomerase/dehydratase (1G). Decarboxylation of 2,4-pentadienoate to butadiene is catalyzed by a pentadienoate decarboxylase (1H). Alternately, the conversion of the 2-oxopent-3-enoate or 2-hydroxypent-3-enoate intermediates to 2,4-pentadienoate proceeds via acyl-CoA intermediates (Steps 1N, 1O, 1P, 1Q, 1R). The conversion of an acid to an acyl-CoA is catalyzed by CoA transferases and CoA synthetases. Acyl-CoA to acid conversion is catalyzed by CoA synthetases, transferases or hydrolases. In yet another alternate pathway, decarboxylation of 4-hydroxy-2-oxovalerate by a keto-acid decarboxylase yields 3-hydroxybutyraldehyde (1C). This intermediate can be dehydrated to crotyl aldehyde by a dehydratase and subsequently reduced to crotyl alcohol (1J). Crotyl alcohol can be isolated as a useful product or optionally be further converted to butadiene by one or more enzymes with dehydratase and vinylisomerase activities (1K, 1L, 1M). Additional alternative routes from the 2-oxopent-3-enoate, 2-hydroxypent-3-enoate or 4-hydroxypent-2-enoate intermediates to butadiene shown inFIG. 1 take advantage of enzymes in the decarboxylase class (EC 4.1.1.-; Steps 1C, 1I, 1S, 1T). In addition to butadiene, useful products described herein include crotyl alcohol, 3-buten-2-ol, 3-hydroxybutyrate (resulting from oxidation of 3-hydroxybutyraldehyde), crotonate (oxidation of crotyl aldehyde), 4-hydroxy-2-oxovalerate, 2-oxopent-3-enoate, 2-hydroxypent-3-enoate, 4-hydroxypent-2-enoate and pentadienoate. Enzymes for catalyzing each step are described below. -
FIG. 2 also shows pathways derived from the 4-hydroxy 2-oxovalerate intermediate. 4-hydroxy 2-oxovalerate is dehydrated to 2-oxopent-4-enoate (also called 2-hydroxypenta-2,4-dienoate) by 4-hydroxy-2-oxopentanoate dehydratase, also called 2-oxopent-4-enoate hydratase (2C). An alcohol dehydrogenase with 2-oxopent-4-enoate reductase activity forms 2-hydroxypent-4-enoate. Multiple enzymatic routes are shown inFIG. 2 for converting 2-hydroxypent-4-enoate to butadiene and butadiene precursors. One route entails isomerization of 2-hydroxypent-4-enoate to 5-hydroxypent-2-enoate (2E). This intermediate is then decarboxylated to 3-buten-1-ol (2P) and dehydrated to butadiene (2Q). Alternately, the 5-hydroxypent-2-enoate is further dehydrated to pentadienoate (2F) and subsequently decarboxylated to butadiene (2G). In yet another pathway, the 5-hydroxypent-2-enoate intermediate is activated to its corresponding acyl-CoA (2I), dehydrated to pentadienoyl-CoA (2N), and further hydrolyzed to 2,4-pentadienoate (2J). Yet another set of pathways results when 2-hydroxypent-4-enoate is converted to 3-hydroxypent-4-enoate (abbreviated as 3HPE) by a mutase (2H). Direct conversion of 3HPE to butadiene is catalyzed by an oxidative decarboxylase (2K). The two-step conversion of 3HPE to butadiene via 2,4-pentadienoate entails dehydration (2R) followed by decarboxylation (2G). In yet another route, 3HPE is activated to its acyl-CoA by a CoA synthetase or transferase. Conversion of 3-HPE-CoA to 2,4-pentadienoyl-CoA is catalyzed by an acyl-CoA dehydratase (2O) or an isomerase and dehydratase (2M, 2N). Useful products shown inFIG. 2 include butadiene, 3-buten-1-ol, 4-hydroxy-2-oxovalerate, 2-oxopent-4-enoate, 2-hydroxypent-4-enoate, 4-hydroxypent-2-enoate, 3HPE and 2,4-pentadienoate. Enzymes for catalyzing each step are described below. - Pathways converting lactoyl-CoA to 4-hydroxypent-2-enoate, and further to 3-buten-2-ol and butadiene, are shown in
FIG. 3 . The conversion of lactoyl-CoA to 4-hydroxypent-2-enoate is accomplished in four or more enzymatic steps shown inFIG. 3 . Lactoyl-CoA and acetyl-CoA are first condensed to 3-oxo-4-hydroxypentanoyl-CoA by 3-oxo-4-hydroxypentanoyl-CoA thiolase, a beta-ketothiolase (Step 3A). In one pathway, the 3-oxo-4-hydroxypentanoyl-CoA intermediate is converted to its corresponding acid by a CoA hydrolase, transferase or synthetase (3B). Reduction of the 3-oxo ketone by an alcohol dehydrogenase yields 3,4-dihydroxypentanoate (3C). Dehydration of the dihydroxyacid yields 4-hydroxypent-2-enoate (3D). 4-Hydroxypent-2-enoate decarboxylase converts 4-hydroxypent-2-enoate to 3-buten-2-ol (3E). Isomerization of 3-buten-2-ol to butadiene is catalyzed by a vinylisomerase (3F). Decarboxylation and dehydration of 4-hydroxypent-2-enoate to butadiene can instead proceed with dehydration first (3K) followed by decarboxylation of 2,4-pentadienoate (3L). Further alternate pathways shown inFIG. 3 entail reduction of the 3-oxo-4-hydroxypentanoyl-CoA to its 3-hydroxyacyl-CoA (3G), and optional dehydration of the 3-hydroxyacyl-CoA to 4-hydroxypent-2-enoyl-CoA (3H). Conversion of the acyl-CoA intermediates to their corresponding acids by CoA hydrolases, synthases and transferases is shown in steps 3I and 3J. Useful products shown inFIG. 3 include butadiene, 3-buten-2-ol, 3-oxo-4-hydroxypentanoate, 3,4-dihydroxypentanoate and 4-hydroxypentanoate. Enzymes and gene candidates for catalyzing but-3-en-2-ol and butadiene pathway reactions are described in further detail below -
FIG. 4 shows enzymatic pathways for converting CrotOH to butadiene. In one pathway, CrotOH is phosphorylated to 2-butenyl-4-phosphate by a CrotOH kinase (Step A). The 2-butenyl-4-phosphate intermediate is again phosphorylated to 2-butenyl-4-diphosphate (Step B). A butadiene synthase (BDS) enzyme catalyzes the conversion of 2-butenyl-4-diphosphate to butadiene (Step C). Such a BDS can be derived from a phosphate lyase enzyme such as isoprene synthase using methods, such as directed evolution, as described herein. In an alternate pathway, CrotOH is directly converted to 2-butenyl-4-diphosphate by a diphosphokinase (step I). In yet another alternative pathway, CrotOH can be converted to butadiene by a CrotOH dehydratase or a bifunctional dehydratase/isomerase (step H). In yet another pathway, the 2-butenyl-4-phosphate intermediate is directly converted to butadiene by a BDS (monophosphate) (step J). Further are shown pathways that proceed through a 3-buten-2-ol (MVC) intermediate. Crotyl alcohol is isomerized to MC by an enzyme with vinylisomerase activity (step F). 3-Buten-2-ol synthase enzymes catalyze the conversion of 2-butenyl-4-phosphate or 2-butenyl-4-diphosphate to 3-buten-2-ol (Steps 4D and 4E, respectively). The 3-buten-2-ol intermediate is then dehydrated to butadiene (4G). -
EC Description Step 1.1.1.a Alcohol dehydrogenase 1F, 1J, 1O, 2D, 3C, 3G 1.2.1.b Acyl-CoA reductase 1A, 2A (aldehyde forming) 2.3.1.a Thiolase 3A 2.7.1.a Kinase 4A 2.7.4.a Phosphokinase 4B 2.7.6.a Diphosphokinase 4I 2.8.3.a CoA transferase 1N, 1R, 1Q, 2I, 2J, 2L, 3B, 3I, 3J, 3N 3.2.1.a CoA hydrolase 1Q, 2J, 2I, 3B, 3I, 3J, 3N 4.1.1.a Decarboxylase 1C, 1H, 1I, 1S, 1T, 2G, 2P, 3E, 3L 4.1.1.b Decarboxylase (alkene 2K forming) 4.1.2.a Aldolase 1B, 2B 4.2.1.a Dehydratase 1D, 1E, 1L, 1P, 1V, 1M 2C, 2F, 2O, 2N, 2Q, 2R, 3D, 3F, 3H, 3K, 3M, 4G, 4H 4.2.1.c Dehydratase/vinylisomerase 1G, 1M, 4H 4.2.3.a Synthase (alkene-forming) 4C 5.3.3 Isomerase 1K, 1U, 2M, 1W, 2S, 3O 6.2.1.a CoA synthetase 1N, 1R, 1Q, 2I, 2J, 2L, 3B, 3I, 3J, 3N 5.4.4 Alcohol mutase 2H, 2E Alkenol Synthases 4D, 4E - The enzyme activities required for the reactions shown in
FIGS. 1-4 are listed in the table and described in further detail below. The reduction of 2-oxopent-3-enoate, 2-oxopent-4-enoate to corresponding 2-hydroxyacids (1F, 2D) are catalyzed by secondary alcohol dehydrogenases with 2-ketoacid reductase activity. Exemplary secondary alcohol dehydrogenases include malate dehydrogenase, lactate dehydrogenase, 2-ketoadipate reductase, isopropanol dehydrogenase, methyl ethyl ketone reductase, and others described below and known in the art. Two secondary alcohol dehydrogenase enzymes from E. coli are encoded by malate dehydrogenase (mdh: EC 1.1.1.37, 1.1.1.82, 1.1.1.299) and lactate dehydrogenase (ldhA). S. cerevisiae encodes three copies of malate dehydrogenase, MDH1 (McAlister-Henn and Thompson, J. Bacteriol. 169:5157-5166 (1987), MDH2 (Minard and McAlister-Henn, Mol. Cell. Biol. 11:370-380 (1991); Gibson and McAlister-Henn, J. Biol. Chem. 278:25628-25636 (2003)), and MDH3 (Steffan and McAlister-Henn, J. Biol. Chem. 267:24708-24715 (1992)), which localize to the mitochondrion, cytosol, and peroxisome, respectively. Close homologs to the cytosolic malate dehydrogenase, MDH2, from S. cerevisiae are found in several organisms including Kluyveromyces lactis and Candida tropicalis. The lactate dehydrogenase from Ralstonia eutropha has been shown to demonstrate high activities on 2-ketoacids of various chain lengths includings lactate, 2-oxobutyrate, 2-oxopentanoate and 2-oxoglutarate (Steinbuchel et al., Eur. J. Biochem. 130:329-334 (1983)). Conversion of alpha-ketoadipate into alpha-hydroxyadipate can be catalyzed by 2-ketoadipate reductase, an enzyme reported to be found in rat and in human placenta (Suda et al., Arch. Biochem. Biophys. 176:610-620 (1976); Suda et al., Biochem. Biophys. Res. Commun. 77:586-591 (1977)). Alcohol dehydrogenase enzymes of C. beijerinckii (Ismaiel et al., J. Bacteriol. 175:5097-5105 (1993)) and T. brockii (Lamed et al., Biochem. J. 195:183-190 (1981); Peretz et al., Biochemistry. 28:6549-6555 (1989)) convert acetone to isopropanol. Methyl ethyl ketone reductase catalyzes the reduction of MEK to 2-butanol. Exemplary MEK reductase enzymes can be found in Rhodococcus ruber (Kosjek et al., Biotechnol Bioeng. 86:55-62 (2004)) and Pyrococcus furiosus (van der Oost et al., Eur. J. Biochem. 268:3062-3068 (2001)). The cloning of the bdhA gene from Rhizobium (Sinorhizobium) meliloti into E. coli conferred the ability to utilize 3-hydroxybutyrate as a carbon source (Aneja and Charles, J. Bacteriol. 181(3):849-857 (1999)). Additional candidates can be found in Pseudomonas fragi (Ito et al., J. Mol. Biol. 355(4) 722-733 (2006)) and Ralstonia pickettii (Takanashi et al., Antonie van Leeuwenoek, 95(3):249-262 (2009)). Recombinant 3-ketoacid reductase enzymes with broad substrate range and high activity have been characterized in US Application 2011/0201072, and are incorporated by reference herein. The mitochondrial 3-hydroxybutyrate dehydrogenase (bdh) from the human heart which has been cloned and characterized (Marks et al., J. Biol. Chem. 267:15459-15463 (1992)). Yet another secondary ADH, sadH of Candida parapsilosis, demonstrated activity on 3-oxobutanol (Matsuyama et al. J Mol Cat B Enz, 11:513-521 (2001)). -
GenBank Gene Accession No. GI No. Organism mdh AAC76268.1 1789632 Escherichia coli ldhA NP_415898.1 16129341 Escherichia coli MDH1 NP_012838 6322765 Saccharomyces cerevisiae MDH2 NP_014515 116006499 Saccharomyces cerevisiae MDH3 NP_010205 6320125 Saccharomyces cerevisiae KLLA0E07525p XP_454288.1 50308571 Kluyveromyces lactis NRRL Y-1140 YALI0D16753g XP_502909.1 50550873 Yarrowia lipolytica CTRG 01021 XP_002546239.1 255722609 Candida tropicalis MYA-3404 ldh YP_725182.1 113866693 Ralstonia eutropha adh AAA23199.2 60592974 Clostridium beijerinckii NRRL B593 adh P14941.1 113443 Therm- anaerobacter brockii HTD4 sadh CAD36475 21615553 Rhodococcus ruber adhA AAC25556 3288810 Pyrococcus furiosus PRK13394 BAD86668.1 57506672 Pseudomonas fragi Bdh1 BAE72684.1 84570594 Ralstonia pickettii Bdh2 BAE72685.1 84570596 Ralstonia pickettii Bdh3 BAF91602.1 158937170 Ralstonia pickettii bdh AAA58352.1 177198 Homo sapiens sadh BAA24528.1 2815409 Candida parapsilosis - Alcohol dehydrogenases that reduce 3-ketoacids to their corresponding 3-hydroxyacids, required for the reduction of 3-oxo-4-hydroxypentanoate (3C), have also been characterized. These enzymes include 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30), 3-hydroxyisobutyrate dehydrogenase (EC 1.1.1.31), threonine dehydrogenase (EC 1.1.1.103), 3-hydroxypropionate dehydrogenase (EC 1.1.1.298) and benzyl-2-methyl-3-hydroxybutanoate dehydrogenase (EC 1.1.1.217). Recombinant 3-ketoacid reductase enzymes with broad substrate range and high activity have been characterized in US Application 2011/0201072, and are incorporated by reference herein. The mitochondrial 3-hydroxybutyrate dehydrogenase (bdh) from the human heart which has been cloned and characterized (Marks et al., J. Biol. Chem. 267:15459-15463 (1992)). Secondary alcohol dehydrogenases described above are also suitable here.
-
Gene GenBank Accession No. GI No. Organism Bdh AAA58352.1 177198 Homo sapiens - Alcohol dehydrogenase enzymes active on allyl alcohols are suitable for reducing crotyl aldehyde to crotyl alcohol (1J). Crotyl aldehyde reductase activity has been demonstrated by mdr of Synechocystis sp. PCC 6803 (Shimakawa et al, Biosci Biotechnol Biochem 77:2441-8 (2013)). An exemplary allyl alcohol dehydrogenase is the NtRed-1 enzyme from Nicotiana tabacum (Matsushima et al, Bioorg Chem 36: 23-8 (2008)). A similar enzyme has been characterized in Pseudomonas putida MB1 but the enzyme has not been associated with a gene to date (Malone et al, AEM 65: 2622-30 (1999)). Yet another allyl alcohol dehydrogenase is the geraniol dehydrogenase enzymes of Castellaniella defragrans, Carpoglyphus lactis and Ocimum basilicum (Lueddeke et al, AEM 78:2128-36 (2012)). Alcohol dehydrogenase enzymes with broad substrate specificity are also applicable here, such as include alrA encoding a medium-chain alcohol dehydrogenase for C2-C14 (Tani et al., Appl. Environ. Microbiol. 66:5231-5235 (2000)), yqhD, yahK, adhE and fucO from E. coli (Sulzenbacher et al., J Mol Biol 342:489-502 (2004)), and bdh I and bdh II from C. acetobutylicum which converts butyryaldehyde into butanol (Walter et al, J. Bacteriol 174:7149-7158 (1992)). YqhD of E. coli catalyzes the reduction of a wide range of aldehydes using NADPH as the cofactor, with a preference for chain lengths longer than C(3) (Sulzenbacher et al, J Mol Biol 342:489-502 (2004); Perez et al., J Biol. Chem. 283:7346-7353 (2008)). The adhA gene product from Zymomonas mobilis has been demonstrated to have activity on a number of aldehydes including formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and acrolein (Kinoshita et al., Appl Microbiol Biotechnol 22:249-254 (1985)).
-
GenBank Gene Accession No. GI No. Organism MDR BAM52497.1 407959257 Synechocystis sp. PCC 6803 NT-RED1 BAA89423 6692816 Nicotiana tabacum geoA CCF55024.1 372099287 Castellaniella defragrans GEDH1 Q2KNL6.1 122200955 Ocimum basilicum GEDH BAG32342.1 188219500 Carpoglyphus lactis alrA BAB12273.1 9967138 Acinetobacter sp. strain M-1 ADH2 NP_014032.1 6323961 Saccharomyces cerevisiae fucO NP_417279.1 16130706 Escherichia coli yqhD NP_417484.1 16130909 Escherichia coli yahK P75691.1 2492774 Escherichia coli adhE NP_415757.1 16129202 Escherichia coli bdh I NP_349892.1 15896543 Clostridium acetobutylicum bdh II NP_349891.1 15896542 Clostridium acetobutylicum adhA YP_162971.1 56552132 Zymomonas mobilis bdh BAF45463.1 124221917 Clostridium saccharoperbutylacetonicum - Alcohol dehydrogenases active on 3-hydroxyacyl-CoA and 2-hydroxyacyl-CoA substrates catalyze the reduction of 2-oxopent-3-enoyl-CoA (
FIG. 1O ) and 3-oxo-4-hydroxypentanoyl-CoA (FIG. 3G ) to their corresponding hydroxyacyl-CoA products. 3-Oxoacyl-CoA reductase enzymes (EC 1.1.1.35) convert 3-oxoacyl-CoA molecules into 3-hydroxyacyl-CoA molecules and are often involved in fatty acid beta-oxidation or phenylacetate catabolism. For example, subunits of two fatty acid oxidation complexes in E. coli, encoded by fadB and fadJ, function as 3-hydroxyacyl-CoA dehydrogenases (Binstock et al., Methods Enzymol. 71 Pt C:403-411 (1981)). The paaH gene product has a similar activity (Nogales et al., 153:357-365 (2007)). Additional 3-oxoacyl-CoA enzymes include the gene products of phaC in Pseudomonas putida (Olivera et al., Proc. Natl. Acad. Sci. U.S.A 95:6419-6424 (1998)) and paaC in Pseudomonas fluorescens (Di et al., 188:117-125 (2007)). These enzymes catalyze the reversible oxidation of 3-hydroxyadipyl-CoA to 3-oxoadipyl-CoA during the catabolism of phenylacetate or styrene. Acetyoacetyl-CoA reductase enzymes include hbd of Clostridium acetobutylicum (Youngleson et al., J Bacteriol. 171:6800-6807 (1989)), phbB from Zoogloea ramigera (Ploux et al., Eur. J Biochem. 174:177-182 (1988)) and phaB from Rhodobacter sphaeroides (Alber et al., Mol. Microbiol 61:297-309 (2006)). The former gene is NADPH-dependent, its nucleotide sequence has been determined (Peoples et al., Mol. Microbiol 3:349-357 (1989)) and the gene has been expressed in E. coli. Substrate specificity studies on the gene led to the conclusion that it could accept 3-oxopropionyl-CoA as a substrate besides acetoacetyl-CoA (Ploux et al., Eur. J Biochem. 174:177-182 (1988)). 3-Hydroxyacyl-CoA dehydrogenases that accept longer acyl-CoA substrates (eg. EC 1.1.1.35) are typically involved in beta-oxidation. An example is HSD17B10 in Bos taurus (WAKIL et al., J Biol. Chem. 207:631-638 (1954)). An exemplary 2-oxoacyl-CoA reductase is the 3-hydroxy-2-methylbutyryl-CoA dehydrogenase (EC 1.1.1.178) of Pseudomonas putida, which catalyzes the reduction of 3-methyl-2-oxopentanoyl-CoA, in addition to its native activity (Conrad et al, J Bacteriol 118:103-11 (1974)). -
Protein GENBANK ID GI NUMBER ORGANISM fadB P21177.2 119811 Escherichia coli fadJ P77399.1 3334437 Escherichia coli paaH NP_415913.1 16129356 Escherichia coli Hbd2 EDK34807.1 146348271 Clostridium kluyveri Hbd1 EDK32512.1 146345976 Clostridium kluyveri phaC NP_745425.1 26990000 Pseudomonas putida paaC ABF82235.1 106636095 Pseudomonas fluorescens HSD17B10 O02691.3 3183024 Bos taurus phbB P23238.1 130017 Zoogloea ramigera phaB YP_353825.1 77464321 Rhodobacter sphaeroides phaB BAA08358 675524 Paracoccus denitrificans Hbd NP_349314.1 15895965 Clostridium acetobutylicum Hbd AAM14586.1 20162442 Clostridium beijerinckii HSD17B10 O02691.3 3183024 Bos taurus - Acetyl-CoA reductase (an acyl-CoA reductase in EC class 1.2.1.-) catalyzes the reduction of acetyl-CoA to acetaldehyde. Several acyl-CoA dehydrogenases reduce an acyl-CoA to its corresponding aldehyde and represent suitable enzyme candidates for catalyzing step A of
FIGS. 1 and 2 . The NAD(P)H dependent reduction of acetyl-CoA to acetaldehyde is catalyzed by acylating acetaldehyde dehydrogenase (EC 1.2.1.10). Acylating acetaldehyde dehydrogenase enzymes of E. coli are encoded by adhE and mhpF (Ferrandez et al, J Bacteriol 179:2573-81 (1997)). The Pseudomonas sp. CF600 enzyme, encoded by dmpF, participates in meta-cleavage pathways and forms a complex with 4-hydroxy-2-oxovalerate aldolase (Shingler et al, J Bacteriol 174:711-24 (1992)). Solventogenic organisms such as Clostridium acetobutylicum encode bifunctional enzymes with alcohol dehydrogenase and acetaldehyde dehydrogenase activities. The bifunctional C. acetobutylicum enzymes are encoded by bdh I and adhE2 (Walter, et al., J. Bacteriol. 174:7149-7158 (1992); Fontaine et al., J. Bacteriol. 184:821-830 (2002)). Yet another candidate for acylating acetaldehyde dehydrogenase is the ald gene from Clostridium beijerinckii (Toth, Appl. Environ. Microbiol. 65:4973-4980 (1999). This gene is very similar to the eutE acetaldehyde dehydrogenase genes of Salmonella typhimurium and E. coli (Toth, Appl. Environ. Microbiol. 65:4973-4980 (1999). Other exemplary enzymes with acetyl-CoA reductase activity are found in the EC 1.2.1.-enzyme class including fatty acyl-CoA reductase, succinyl-CoA reductase (EC 1.2.1.76), acetyl-CoA reductase, butyryl-CoA reductase and propionyl-CoA reductase (EC 1.2.1.3). Such enzymes include bphG of Pseudomonas sp (Powlowski, J. Bacteriol. 175:377-385 (1993)), adhE in Leuconostoc mesenteroides and Escherichia coli (Kazahaya, J. Gen. Appl. Microbiol. 18:43-55 (1972); and Koo et al., Biotechnol Lett. 27:505-510 (2005)) and butyraldehyde dehydrogenase enzymes of solventogenic organisms such as Clostridium saccharoperbutylacetonicum (Kosaka et al., Biosci Biotechnol Biochem., 71:58-68 (2007)). Enzymes outside the EC class 1.2.1. which convert acetyl-CoA to acetaldehyde include bifunctional dehydrogenase/aldolases which degrade 4-hydroxy-2-oxovalerate to pyruvate and acetyl-CoA. -
Protein GenBank ID GI Number Organism adhE NP_415757.1 16129202 Escherichia coli mhpF NP_414885.1 16128336 Escherichia coli dmpF CAA43226.1 45683 Pseudomonas sp. CF600 adhE2 AAK09379.1 12958626 Clostridium acetobutylicum bdh I NP_349892.1 15896543 Clostridium acetobutylicum Ald AAT66436 49473535 Clostridium beijerinckii eutE NP_416950 16130380 Escherichia coli eutE AAA80209 687645 Salmonella typhimurium bphG BAA03892.1 425213 Pseudomonas sp adhE AAV66076.1 55818563 Leuconostoc mesenteroides bld AAP42563.1 31075383 Clostridium saccharoperbutylacetonicum dmpG CAA43227.1 45684 Pseudomonas sp. CF600 dmpF CAA43226.1 45683 Pseudomonas sp. CF600 bphI ABE37049.1 91693852 Burkholderia xenovorans bphJ ABE37050.1 91693853 Burkholderia xenovorans - Beta-ketothiolase enzymes are required for the conversion of lactoyl-CoA and acetyl-CoA to 3-oxo-4-hydroxypentanoyl-CoA, shown in
FIG. 3A . Suitable enzymes are found in EC class 2.3.1, and include beta-ketovaleryl-CoA thiolase, acetoacetyl-CoA thiolase and beta-ketoadipyl-CoA thiolase. Beta-ketovaleryl-CoA thiolase catalyzes the formation of beta-ketovalerate from acetyl-CoA and propionyl-CoA. Zoogloea ramigera possesses two ketothiolases that can form beta-ketovaleryl-CoA from propionyl-CoA and acetyl-CoA and R. eutropha has a beta-oxidation ketothiolase that is also capable of catalyzing this transformation (Gruys et al., U.S. Pat. No. 5,958,745). The sequences of these genes or their translated proteins have not been reported, but several genes in R. eutropha, Z. ramigera, or other organisms can be identified based on sequence homology to bktB from R. eutropha. Acetoacetyl-CoA thiolase converts two molecules of acetyl-CoA into acetoacetyl-CoA (EC 2.1.3.9). Exemplary acetoacetyl-CoA thiolase enzymes include the gene products of atoB from E. coli (Martin et al., Nat. Biotechnol. 21:796-802 (2003)), thlA and thlB from C. acetobutylicum (Hanai et al., Appl. Environ. Microbiol. 73:7814-7818 (2007); Winzer et al., J. Mol. Microbiol. Biotechnol. 2:531-541 (2000)), and ERG10 from S. cerevisiae (Hiser et al., J. Biol. Chem. 269:31383-31389 (1994)). Beta-ketoadipyl-CoA thiolase (EC 2.3.1.174), also called 3-oxoadipyl-CoA thiolase, converts beta-ketoadipyl-CoA to succinyl-CoA and acetyl-CoA, and is a key enzyme of the beta-ketoadipate pathway for aromatic compound degradation. The enzyme is widespread in soil bacteria and fungi including Pseudomonas putida (Harwood et al., J. Bacteriol. 176-6479-6488 (1994)) and Acinetobacter calcoaceticus (Doten et al., J. Bacteriol. 169:3168-3174 (1987)). The P. putida enzyme is a homotetramer bearing 45% sequence homology to beta-ketothiolases involved in PHB synthesis in Ralstonia eutropha, fatty acid degradation by human mitochondria and butyrate production by Clostridium acetobutylicum (Harwood et al., supra). A beta-ketoadipyl-CoA thiolase in Pseudomonas knackmussii (formerly sp. B13) has also been characterized (Gobel et al., J. Bacteriol. 184:216-223 (2002); Kaschabek et al., supra). BKT encoding genes and associated identifiers are shown in the table below. -
Protein GenBank ID GI Number Organism phaA YP_725941.1 113867452 Ralstonia eutropha h16_A1713 YP_726205.1 113867716 Ralstonia eutropha pcaF YP_728366.1 116694155 Ralstonia eutropha h16_B1369 YP_840888.1 116695312 Ralstonia eutropha h16_A0170 YP_724690.1 113866201 Ralstonia eutropha h16_A0462 YP_724980.1 113866491 Ralstonia eutropha h16_A1528 YP_726028.1 113867539 Ralstonia eutropha h16_B0381 YP_728545.1 116694334 Ralstonia eutropha h16_B0662 YP_728824.1 116694613 Ralstonia eutropha h16_B0759 YP_728921.1 116694710 Ralstonia eutropha h16_B0668 YP_728830.1 116694619 Ralstonia eutropha h16_A1720 YP_726212.1 113867723 Ralstonia eutropha h16_A1887 YP_726356.1 113867867 Ralstonia eutropha phbA P07097.4 135759 Zoogloea ramigera bktB YP_002005382.1 194289475 Cupriavidus taiwanensis Rmet_1362 YP_583514.1 94310304 Ralstonia metallidurans Bphy_0975 YP_001857210.1 186475740 Burkholderia phymatum atoB NP_416728 16130161 Escherichia coli thlA NP_349476.1 15896127 Clostridium acetobutylicum thlB NP_149242.1 15004782 Clostridium acetobutylicum ERG10 NP_015297 6325229 Saccharomyces cerevisiae pcaF NP_743536.1 506695 Pseudomonas putida pcaF AAC37148.1 141777 Acinetobacter calcoaceticus catF Q8VPF1.1 75404581 Pseudomonas knackmussii - CrotOH kinase enzymes catalyze the transfer of a phosphate group to the hydroxyl group of CrotOH, shown in step A of
FIG. 4 . The enzymes described below naturally possess such activity or can be engineered to exhibit this activity. Kinases that catalyze transfer of a phosphate group to an alcohol group are members of the EC 2.7.1 enzyme class. The table below lists several useful kinase enzymes in the EC 2.7.1 enzyme class. -
Enzyme Commission Number Enzyme Name 2.7.1.1 hexokinase 2.7.1.2 glucokinase 2.7.1.3 ketohexokinase 2.7.1.4 fructokinase 2.7.1.5 rhamnulokinase 2.7.1.6 Galactokinase 2.7.1.7 Mannokinase 2.7.1.8 glucosamine kinase 2.7.1.10 phosphoglucokinase 2.7.1.11 6-phosphofructokinase 2.7.1.12 gluconokinase 2.7.1.13 dehydrogluconokinase 2.7.1.14 sedoheptulokinase 2.7.1.15 ribokinase 2.7.1.16 ribulokinase 2.7.1.17 xylulokinase 2.7.1.18 phosphoribokinase 2.7.1.19 phosphoribulokinase 2.7.1.20 adenosine kinase 2.7.1.21 thymidine kinase 2.7.1.22 ribosylnicotinamide kinase 2.7.1.23 NAD+ kinase 2.7.1.24 dephospho-CoA kinase 2.7.1.25 adenylyl-sulfate kinase 2.7.1.26 riboflavin kinase 2.7.1.27 erythritol kinase 2.7.1.28 triokinase 2.7.1.29 glycerone kinase 2.7.1.30 glycerol kinase 2.7.1.31 glycerate kinase 2.7.1.32 choline kinase 2.7.1.33 pantothenate kinase 2.7.1.34 pantetheine kinase 2.7.1.35 pyridoxal kinase 2.7.1.36 mevalonate kinase 2.7.1.39 homoserine kinase 2.7.1.40 pyruvate kinase 2.7.1.41 glucose-1-phosphate phosphodismutase 2.7.1.42 riboflavin phosphotransferase 2.7.1.43 glucuronokinase 2.7.1.44 galacturonokinase 2.7.1.45 2-dehydro-3-deoxygluconokinase 2.7.1.46 L-arabinokinase 2.7.1.47 D-ribulokinase 2.7.1.48 uridine kinase 2.7.1.49 hydroxymethylpyrimidine kinase 2.7.1.50 hydroxyethylthiazole kinase 2.7.1.51 L-fuculokinase 2.7.1.52 fucokinase 2.7.1.53 L-xylulokinase 2.7.1.54 D-arabinokinase 2.7.1.55 allose kinase 2.7.1.56 1-phosphofructokinase 2.7.1.58 2-dehydro-3-deoxy galactonokinase 2.7.1.59 N-acetylglucosamine kinase 2.7.1.60 N-acylmannosamine kinase 2.7.1.61 acyl-phosphate-hexose phosphotransferase 2.7.1.62 phosphoramidate-hexose phosphotransferase 2.7.1.63 polyphosphate-glucose phosphotransferase 2.7.1.64 inositol 3-kinase 2.7.1.65 scyllo-inosamine 4-kinase 2.7.1.66 undecaprenol kinase 2.7.1.67 1-phosphatidylinositol 4-kinase 2.7.1.68 1-phosphatidylinositol-4-phosphate 5-kinase 2.7.1.69 protein-Np-phosphohistidine-sugar phosphotransferase 2.7.1.70 identical to EC 2.7.1.37. 2.7.1.71 shikimate kinase 2.7.1.72 streptomycin 6-kinase 2.7.1.73 inosine kinase 2.7.1.74 deoxycytidine kinase 2.7.1.76 deoxyadenosine kinase 2.7.1.77 nucleoside phosphotransferase 2.7.1.78 polynucleotide 5′-hydroxyl-kinase 2.7.1.79 diphosphate-glycerol phosphotransferase 2.7.1.80 diphosphate-serine phosphotransferase 2.7.1.81 hydroxylysine kinase 2.7.1.82 ethanolamine kinase 2.7.1.83 pseudouridine kinase 2.7.1.84 alkylglycerone kinase 2.7.1.85 β-glucoside kinase 2.7.1.86 NADH kinase 2.7.1.87 streptomycin 3″-kinase 2.7.1.88 dihydrostreptomycin-6-phosphate 3′a-kinase 2.7.1.89 thiamine kinase 2.7.1.90 diphosphate-fructose-6-phosphate phosphotransferase 2.7.1.91 sphinganine kinase 2.7.1.92 5-dehydro-2-deoxygluconokinase 2.7.1.93 alkylglycerol kinase 2.7.1.94 acylglycerol kinase 2.7.1.95 kanamycin kinase 2.7.1.100 S-methyl-5-thioribose kinase 2.7.1.101 tagatose kinase 2.7.1.102 hamamelose kinase 2.7.1.103 viomycin kinase 2.7.1.105 6-phosphofructo-2-kinase 2.7.1.106 glucose-1,6-bisphosphate synthase 2.7.1.107 diacylglycerol kinase 2.7.1.108 dolichol kinase 2.7.1.113 deoxyguanosine kinase 2.7.1.114 AMP-thymidine kinase 2.7.1.118 ADP-thymidine kinase 2.7.1.119 hygromycin-B 7″-O-kinase 2.7.1.121 phosphoenolpyruyate-glycerone phosphotransferase 2.7.1.122 xylitol kinase 2.7.1.127 inositol-trisphosphate 3-kinase 2.7.1.130 tetraacyldisaccharide 4′-kinase 2.7.1.134 inositol-tetrakisphosphate 1-kinase 2.7.1.136 macrolide 2′-kinase 2.7.1.137 phosphatidylinositol 3-kinase 2.7.1.138 ceramide kinase 2.7.1.140 inositol-tetrakisphosphate 5-kinase 2.7.1.142 glycerol-3-phosphate-glucose phosphotransferase 2.7.1.143 diphosphate-purine nucleoside kinase 2.7.1.144 tagatose-6-phosphate kinase 2.7.1.145 deoxynucleoside kinase 2.7.1.146 ADP-dependent phosphofructokinase 2.7.1.147 ADP-dependent glucokinase 2.7.1.148 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinase 2.7.1.149 1-phosphatidylinositol-5-phosphate 4-kinase 2.7.1.150 1-phosphatidylinositol-3-phosphate 5-kinase 2.7.1.151 inositol-polyphosphate multikinase 2.7.1.153 phosphatidylinositol-4,5-bisphosphate 3-kinase 2.7.1.154 phosphatidylinositol-4-phosphate 3-kinase 2.7.1.156 adenosylcobinamide kinase 2.7.1.157 N-acetylgalactosamine kinase 2.7.1.158 inositol-pentakisphosphate 2-kinase 2.7.1.159 inositol-1,3,4-trisphosphate 5/6-kinase 2.7.1.160 2′-phosphotransferase 2.7.1.161 CTP-dependent riboflavin kinase 2.7.1.162 N-acetylhexosamine 1-kinase 2.7.1.163 hygromycin B 4-O-kinase 2.7.1.164 O-phosphoseryl-tRNASec kinase - Mevalonate kinase (EC 2.7.1.36) phosphorylates the terminal hydroxyl group of mevalonate. Gene candidates for this step include erg12 from S. cerevisiae, mvk from Methanocaldococcus jannaschi, MVK from Homo sapeins, and mvk from Arabidopsis thaliana col. Additional mevalonate kinase candidates include the feedback-resistant mevalonate kinase from the archeon Methanosarcina mazei (Primak et al, AEM, in press (2011)) and the Mvk protein from Streptococcus pneumoniae (Andreassi et al, Protein Sci, 16:983-9 (2007)). Mvk proteins from S. cerevisiae, S. pneumoniae and M. mazei were heterologously expressed and characterized in E. coli (Primak et al, supra). The S. pneumoniae mevalonate kinase was active on several alternate substrates including cylopropylmevalonate, vinylmevalonate and ethynylmevalonate (Kudoh et al, Bioorg Med Chem 18:1124-34 (2010)), and a subsequent study determined that the ligand binding site is selective for compact, electron-rich C(3)-substituents (Lefurgy et al, J Biol Chem 285:20654-63 (2010)).
-
Protein GenBank ID GI Number Organism erg12 CAA39359.1 3684 Sachharomyces cerevisiae mvk Q58487.1 2497517 Methanocaldococcus jannaschii mvk AAH16140.1 16359371 Homo sapiens mvk NP_851084.1 30690651 Arabidopsis thaliana mvk NP_633786.1 21227864 Methanosarcina mazei mvk NP_357932.1 15902382 Streptococcus pneumoniae - Glycerol kinase also phosphorylates the terminal hydroxyl group in glycerol to form glycerol-3-phosphate. This reaction occurs in several species, including Escherichia coli, Saccharomyces cerevisiae, and Thermotoga maritima. The E. coli glycerol kinase has been shown to accept alternate substrates such as dihydroxyacetone and glyceraldehyde (Hayashi et al., J Biol. Chem. 242:1030-1035 (1967)). T, maritime has two glycerol kinases (Nelson et al., Nature 399:323-329 (1999)). Glycerol kinases have been shown to have a wide range of substrate specificity. Crans and Whiteside studied glycerol kinases from four different organisms (Escherichia coli, S. cerevisiae, Bacillus stearothermophilus, and Candida mycoderma) (Crans et al., J. Am. Chem. Soc. 107:7008-7018 (2010); Nelson et al., supra, (1999)). They studied 66 different analogs of glycerol and concluded that the enzyme could accept a range of substituents in place of one terminal hydroxyl group and that the hydrogen atom at C2 could be replaced by a methyl group. Interestingly, the kinetic constants of the enzyme from all four organisms were very similar.
-
Protein GenBank ID GI Number Organism glpK AP_003883.1 89110103 Escherichia coli K12 glpK1 NP_228760.1 15642775 Thermotoga maritime MSB8 glpK2 NP_229230.1 15642775 Thermotoga maritime MSB8 Gut1 NP_011831.1 82795252 Saccharomyces cerevisiae - Homoserine kinase is another possible candidate. This enzyme is also present in a number of organisms including E. coli, Streptomyces sp, and S. cerevisiae. Homoserine kinase from E. coli has been shown to have activity on numerous substrates, including, L-2-amino,1,4-butanediol, aspartate semialdehyde, and 2-amino-5-hydroxyvalerate (Huo et al., Biochemistry 35:16180-16185 (1996); Huo et al., Arch. Biochem. Biophys. 330:373-379 (1996)). This enzyme can act on substrates where the carboxyl group at the alpha position has been replaced by an ester or by a hydroxymethyl group.
-
Protein GenBank ID GI Number Organism thrB BAB96580.2 85674277 Escherichia coli K12 SACT1DRAFT_4809 ZP_06280784.1 282871792 Streptomyces sp. ACT-1 Thr1 AAA35154.1 172978 Saccharomyces serevisiae - Other classes of kinases that can catalyze the phosphorylation of crotyl alcohol are hydroxyethylthiazole kinase (
FIG. 8 is a graph of in vitro formation of crotyl phosphate (CrPi) and ADP over time from a composition including ATP, crotyl alcohol, and hydroxyethylthiazole kinase), thiamine kinase, pantothenate kinase, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, riboflavin kinase, L-fuculokinase and choline kinase. Exemplary gene candidates for each of these classes are shown below. - The table below provides gene candidates for hydroxyethyl thiazole kinases
-
Protein GenBank ID GI Number Organism ThiM YP_007535827.1 16080881 Bacillus subtilis Thi6 CAA97929.1 1370444 Saccharomyces serevisiae ThiM NP_372616.1 15925082 Staphylococcus aureus PH1157, thiM NP_143059.1 14590984 Pyrococcus (analogue of horikoshii OT3 thiK) ThiM Q830K4 81585041 Enterococcus faecalis V583 ThiM YP_006701495 405760899 Streptococcus pneumoniae SPNA45 ThiM YP_004888181 380031190 Lactobacillus plantarum WCFS1 ThiM WP_012906431 502670591 Citrobacter rodentium ThiM NP_461091 16765476 Salmonella enterica subsp. Enterica LT2 ThiM YP_771477 116255644 Rhizobium leguminosarum bv. viciae 3841 ThiM (b2104) AAC75165.1 1788421 Escherichia coli str. K- 12 substr. MG1655 - Some candidate thiamine kinases are:
-
Protein GenBank ID GI Number Organism thiK AAC74190.1 1787349 Escherichia coli K12 thiK NP_460178.1 16764563 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 - Examplary fuculokinases are:
-
Protein GenBank ID GI Number Organism b2803 AAC75845.1 1789168 Escherichia coli K12 MG1655 STM14_3591 ACY90002.1 267995117 Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S D186_16909 EKS55716.1 411772069 Citrobacter freundii ATCC 8090 = MTCC 1658 - 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase can also carry the described transformation. Gene candidates from this class are listed below.
-
Protein GenBank ID GI Number Organism folK AAC73253.1 1786335 Escherichia coli K12 folK NP_816865.1 29377711 Enterococcus faecalis V583 - Pantothenate kinases that can catalyze the transformation are:
-
Protein GenBank ID GI Number Organism CoaA YP_006514461.1 397672926 Mycobacterium tuberculosis H37Rv CoaA YP_491482.1 388479290 Escherichia coli K12 CoaX Q9WZY5.1 81553296 Thermotoga maritima MSB8 Sav2130 NP_372654.1 15925120 Staphylococcus aureus subsp. aureus Mu50 - Yet another candidate enzyme class of interest is 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinase (2.7.1.148). Gene candidates from this class are:
-
Protein GenBank ID GI Number Organism ispE NP_415726.1 16129171 Escherichia coli K12 ispE KBJ36713.1 623367758 Mycobacterium tuberculosis H37Rv - 2-Butenyl-4-phosphate kinase enzymes catalyze the transfer of a phosphate group to the phosphate group of 2-butenyl-4-phosphate (
FIG. 4B ). The enzymes described below naturally possess such activity or can be engineered to exhibit this activity. Kinases that catalyze transfer of a phosphate group to another phosphate group are members of the EC 2.7.4 enzyme class. The table below lists several useful kinase enzymes in the EC 2.7.4 enzyme class. -
Enzyme Commission Number Enzyme Name 2.7.4.1 polyphosphate kinase 2.7.4.2 phosphomevalonate kinase 2.7.4.3 adenylate kinase 2.7.4.4 nucleoside-phosphate kinase 2.7.4.6 nucleoside-diphosphate kinase 2.7.4.7 phosphomethylpyrimidine kinase 2.7.4.8 guanylate kinase 2.7.4.9 dTMP kinase 2.7.4.10 nucleoside-triphosphate—adenylate kinase 2.7.4.11 (deoxy)adenylate kinase 2.7.4.12 T2-induced deoxynucleotide kinase 2.7.4.13 (deoxy)nucleoside-phosphate kinase 2.7.4.14 cytidylate kinase 2.7.4.15 thiamine-diphosphate kinase 2.7.4.16 thiamine-phosphate kinase 2.7.4.17 3-phosphoglyceroyl-phosphate—polyphosphate phosphotransferase 2.7.4.18 famesyl-diphosphate kinase 2.7.4.19 5-methyldeoxycytidine-5′-phosphate kinase 2.7.4.20 dolichyl-diphosphate—polyphosphate phosphotransferase 2.7.4.21 inositol-hexakisphosphate kinase 2.7.4.22 UMP kinase 2.7.4.23 ribose 1,5-bisphosphate phosphokinase2.7.4.24 diphosphoinositol-pentakisphosphate kinase 2.7.4.— Famesyl monophosphate kinase 2.7.4.— Geranyl-geranyl monophosphate kinase 2.7.4.— Phytyl-phosphate kinase 2.7.4.26 isopentenyl phosphate kinase - Phosphomevalonate kinase enzymes are of particular interest. Phosphomevalonate kinase (EC 2.7.4.2) catalyzes the analogous transformation to 2-butenyl-4-phosphate kinase. This enzyme is encoded by erg8 in Saccharomyces cerevisiae (Tsay et al., Mol. Cell Biol. 11:620-631 (1991)) and mvaK2 in Streptococcus pneumoniae, Staphylococcus aureus and Enterococcus faecalis (Doun et al., Protein Sci. 14:1134-1139 (2005); Wilding et al., J Bacteriol. 182:4319-4327 (2000)). The Streptococcus pneumoniae and Enterococcus faecalis enzymes were cloned and characterized in E. coli (Pilloff et al., J Biol. Chem. 278:4510-4515 (2003); Doun et al., Protein Sci. 14:1134-1139 (2005)). The S. pneumoniae phosphomevalonate kinase was active on several alternate substrates including cylopropylmevalonate phosphate, vinylmevalonate phosphate and ethynylmevalonate phosphate (Kudoh et al, Bioorg Med Chem 18:1124-34 (2010)). These and related enzymes are shown in the table below.
-
GI Enzyme Genbank ID Number Organism Erg8 AAA34596.1 171479 Saccharomyces cerevisiae mvaK2 AAG02426.1 9937366 Staphylococcus aureus mvaK2 AAG02457.1 9937409 Streptococcus pneumoniae mvaK2 AAG02442.1 9937388 Enterococcus faecalis phosphomevalonate YP_008718968.1 554649894 Carnobacterium sp. WN1359 kinase phosphomevalonate YP_004889541.1 380032550 Lactobacillus plantarum WCFS1 kinase phosphomevalonate BAD86802.1 57753872 Streptomyces sp. KO-3988 kinase phosphomevalonate YP_006806525.1 407642766 Nocardia brasiliensis ATCC kinase 700358 phosphomevalonate YP_008165221.1 521188403 Corynebacterium terpenotabidum kinase Y-11 isopentenyl phosphate NP_247007.1 15668214 Methanocaldococcus jannaschii kinase isopentenyl phosphate NP_393581.1 16081271 Thermoplasma acidophilum DSM kinase 1728 isopentenyl phosphate NP_275190.1 15678076 Methanothermobacter kinase thermautotrophicus isopentenyl phosphate YP_003356693.1 282164308 Methanocella paludicola SANAE kinase isopentenyl phosphate YP_304959.1 73668944 Methanosarcina barkeri Fusaro kinase isopentenyl phosphate YP_007714098.1 478483448 Candidatus Methanomethylophilus- kinase alvus Mx1201 isopentenyl phosphate AAB84554.1 2621082 Methanobacterium kinase thermoautotrophicum Isopentenyl phosphate D4GWT7.1 635552533 Haloferax volcanii kinase (JFK) - Additional kinase enzymes include fosfomycin kinase (FomA) which is highly homologous to isopentenyl phosphate kinase and is an antibiotic resistance enzyme found in a few strains of Streptomyces and Pseudomonas (Mabangalo et al. Biochemistry 51(4):917-925 (2012)). Superposition of Thermoplasma acidophilum (THA) IPK and FomA structures aligns their respective substrates and catalytic residues. These residues are conserved only in the IPK and FomA members of the phosphate subdivision of the amino acid kinase superfamily. IPK from Thermoplasma acidophilum has been shown to have activity on fosmomycin. An exemplary fosfomycin kinase is that from Streptomyces wedmorensis, Genbank ID BAA32493.1 and GI number 3452580.
- Farnesyl monophosphate kinase enzymes catalyze the CTP dependent phosphorylation of farnesyl monophosphate to farnesyl diphosphate. Similarly, geranylgeranyl phosphate kinase catalyzes CTP dependent phosphorylation. Enzymes with these activities were identified in the microsomal fraction of cultured Nicotiana tabacum (Thai et al, PNAS 96:13080-5 (1999)). However, the associated genes have not been identified to date.
- Additional enzymes include those of the EC 2.7.2.8 class. This class is exemplified by acetylglutamate kinase, including the exemplary enzymes below:
-
acetylglutamate NP_126233.1 14520758 Pyrococcus abyssi GE5 kinase acetylglutamate NP_579365.1 18978008 Pyrococcus furiosus kinase DSM 3638 acetylglutamate AAB88966.1 2648231 Archaeoglobus fulgidus kinase DSM4304 - CrotOH diphosphokinase enzymes catalyze the transfer of a diphosphate group to the hydroxyl group of CrotOH, shown in step I of
FIG. 1 . The enzymes described below naturally possess such activity or can be engineered to exhibit this activity. Kinases that catalyze transfer of a diphosphate group are members of the EC 2.7.6 enzyme class. The table below lists several useful kinase enzymes in the EC 2.7.6 enzyme class. -
Enzyme Commission Number Enzyme Name 2.7.6.1 ribose-phosphate diphosphokinase 2.7.6.2 thiamine diphosphokinase 2.7.6.3 2-amino-4-hydroxy-6- hydroxymethyldihydropteridine diphosphokinase 2.7.6.4 nucleotide diphosphokinase 2.7.6.5 GTP diphosphokinase - Of particular interest are ribose-phosphate diphosphokinase enzymes which have been identified in Escherichia coli (Hove-Jenson et al., J Biol Chem, 1986, 261(15); 6765-71) and Mycoplasma pneumoniae M129 (McElwain et al, International Journal of Systematic Bacteriology, 1988, 38:417-423) as well as thiamine diphosphokinase enzymes. Exemplary thiamine diphosphokinase enzymes are found in Arabidopsis thaliana (Ajjawi, Plant Mol Biol, 2007, 65(1-2); 151-62).
-
Protein GenBank ID GI Number Organism prs NP_415725.1 16129170 Escherichia coli prsA NP_109761.1 13507812 Mycoplasma pneumoniae M129 TPK1 BAH19964.1 222424006 Arabidopsis thaliana col TPK2 BAH57065.1 227204427 Arabidopsis thaliana col - Olefin-forming decarboxylase enzymes suitable for converting 3-hydroxypent-4-enoate to butadiene (Step K of
FIG. 2 ) include mevalonate diphosphate decarboxylase (MDD, EC 4.1.1.33) and similar enzymes. MDD participates in the mevalonate pathway for isoprenoid biosynthesis, where it catalyzes the ATP-dependent decarboxylation of mevalonate diphosphate to isopentenyl diphosphate. The MDD enzyme of S. cerevisiae was heterologously expressed in E. coli, where it was shown to catalyze the decarboxylation of 3-hydroxyacids to their corresponding alkenes (WO 2010/001078; Gogerty and Bobik, Appl. Environ. Microbiol., p. 8004-8010, Vol. 76, No. 24 (2010)). Products formed by this enzyme include isobutylene, propylene and ethylene. Two evolved variants of the S. cerevisiae MDD, ScMDD1 (1145F) and ScMDD2 (R74H), achieved 19-fold and 38-fold increases in isobutylene-forming activity compared to the wild-type enzyme (WO 2010/001078). Other exemplary MDD genes are MVD in Homo sapiens and MDD in Staphylococcus aureus and Trypsonoma brucei (Toth et al., J Biol. Chem. 271:7895-7898 (1996); Byres et al., J Mol. Biol. 371:540-553 (2007)). -
Protein GenBank ID GI Number Organism MDD NP_014441.1 6324371 Saccharomyces cerevisiae MVD NP_002452.1 4505289 Homo sapiens MDD ABQ48418.1 147740120 Staphylococcus aureus MDD EAN78728.1 70833224 Trypsonoma brucei - The condensation of pyruvate and acetaldehyde to 4-hydroxy-2-oxovalerate (Step B of
FIGS. 1 and 2 ) is catalyzed by 4-hydroxy-2-oxovalerate aldolase (EC 4.1.3.39). This enzyme participates in pathways for the degradation of phenols, cresols and catechols. The E. coli enzyme, encoded by mhpE, is highly specific for acetaldehyde as an acceptor (Pollard et al., Appl Environ Microbiol 64:4093-4094 (1998)). Similar enzymes are encoded by the cmtG and todH genes of Pseudomonas putida (Lau et al., Gene 146:7-13 (1994); Eaton, J Bacteriol. 178:1351-1362 (1996)). In Pseudomonas CF600, this enzyme is part of a bifunctional aldolase-dehydrogenase heterodimer encoded by dmpFG (Manjasetty et al., Acta Crystallogr. D. Biol Crystallogr. 57:582-585 (2001)). The dehydrogenase functionality interconverts acetaldehyde and acetyl-CoA (Step A ofFIGS. 1 and 2 ) and channels the acetaldehyde intermediate to the aldolase. Substrate channeling provides the advantage of reduced cellular concentrations of acetaldehyde, toxic to some cells, and may also reduce acetaldehyde-derived byproducts such as ethanol and acetate. A similar aldolase-dehydrogenase complex is encoded by BphIJ of Burkholderia xenovorans (Baker et al, Biochem 48:6551-8 (2009)). -
Gene GenBank ID GI Number Organism mhpE AAC73455.1 1786548 Escherichia coli cmtG AAB62295.1 1263190 Pseudomonas putida todH AAA61944.1 485740 Pseudomonas putida dmpG CAA43227.1 45684 Pseudomonas sp. CF600 dmpF CAA43226.1 45683 Pseudomonas sp. CF600 bphI ABE37049.1 91693852 Burkholderia xenovorans bphI ABE37050.1 91693853 Burkholderia xenovorans - Butadiene Synthase (BDS), shown in Step C of
FIG. 4 , catalyzes the conversion of 2-butenyl-4-diphosphate to 1,3-butadiene. The enzymes described below naturally possess such activity or can be engineered to exhibit this activity. Carbon-oxygen lyases that operate on phosphates are found in the EC 4.2.3 enzyme class. The table below lists several useful enzymes in EC class 4.2.3. -
Enzyme Commission Number Enzyme Name 4.2.3.15 Myrcene synthase 4.2.3.26 Linalool synthase 4.2.3.27 Isoprene synthase 4.2.3.36 Teipentriene sythase 4.2.3.46 (E,E)-alpha-Famesene synthase 4.2.3.47 Beta-Famesene synthase 4.2.3.49 Nerolidol synthase - Particularly useful enzymes include isoprene synthase, myrcene synthase and farnesene synthase. Enzyme candidates are described below, and in the enzymes and classes for
FIG. 15 , Step F. - Isoprene synthase naturally catalyzes the conversion of dimethylallyl diphosphate to isoprene, but can also catalyze the synthesis of 1,3-butadiene from 2-butenyl-4-diphosphate. Isoprene synthases can be found in several organisms including Populus alba (Sasaki et al., FEBS Letters, 2005, 579 (11), 2514-2518), Pueraria montana (Lindberg et al., Metabolic Eng, 12(1):70-79 (2010); Sharkey et al., Plant Physiol., 137(2):700-712 (2005)), and Populus tremula x Populus alba, also called Populus canescens (Miller et al., Planta, 2001, 213 (3), 483-487). The crystal structure of the Populus canescens isoprene synthase was determined (Koksal et al, J Mol Biol 402:363-373 (2010)). Additional isoprene synthase enzymes are described in (Chotani et al., WO/2010/031079, Systems Using Cell Culture for Production of Isoprene; Cervin et al., US Patent Application 20100003716, Isoprene Synthase Variants for Improved Microbial Production of Isoprene).
-
Protein GenBank ID GI Number Organism ispS BAD98243.1 63108310 Populus alba ispS AAQ84170.1 35187004 Pueraria montana ispS CAC35696.1 13539551 Populus tremula × Populus alba - Myrcene synthase enzymes catalyze the dephosphorylation of geranyl diphosphate to beta-myrcene (EC 4.2.3.15). Exemplary myrcene synthases are encoded by MST2 of Solanum lycopersicum (van Schie et al, Plant Mol Biol 64:D473-79 (2007)), TPS-Myr of Picea abies (Martin et al, Plant Physiol 135:1908-27 (2004)) g-myr of Abies grandis (Bohlmann et al, J Biol Chem 272:21784-92 (1997)) and TPS10 of Arabidopsis thaliana (Bohlmann et al, Arch Biochem Biophys 375:261-9 (2000)). These enzymes were heterologously expressed in E. coli.
-
Protein GenBank ID GI Number Organism MST2 ACN58229.1 224579303 Solanum lycopersicum TPS-Myr AAS47690.2 77546864 Picea abies G-myr O24474.1 17367921 Abies grandis TPS10 EC07543.1 330252449 Arabidopsis thaliana - Farnesyl diphosphate is converted to alpha-farnesene and beta-farnesene by alpha-farnesene synthase and beta-farnesene synthase, respectively. Exemplary alpha-farnesene synthase enzymes include TPS03 and TPS02 of Arabidopsis thaliana (Faldt et al, Planta 216:745-51 (2003); Huang et al, Plant Physiol 153:1293-310 (2010)), afs of Cucumis sativus (Mercke et al, Plant Physiol 135:2012-14 (2004), eafar of Malus x domestica (Green et al, Phytochem 68:176-88 (2007)) and TPS-Far of Picea abies (Martin, supra). An exemplary beta-farnesene synthase enzyme is encoded by TPS1 of Zea mays (Schnee et al, Plant Physiol 130:2049-60 (2002)).
-
Protein GenBank ID GI Number Organism TPS03 A4FVP2.1 205829248 Arabidopsis thaliana TPS02 P0CJ43.1 317411866 Arabidopsis thaliana TPS-Far AAS47697.1 44804601 Picea abies afs AAU05951.1 51537953 Cucumis sativus eafar Q84LB2.2 75241161 Malus × domestica TPS1 Q84ZW8.1 75149279 Zea mays - The activation of pathway intermediates such as 2-oxopent-3-enoate (1N), 2-hydroxypent-3-enoate (1R), 5-hydroxypent-4-enoate (2I), 2,4-pentadienoate (2J), 3-hydroxypent-4-enoate (2L) can be catalyzed by ADP and AMP-forming CoA ligases (6.2.1). These enzymes can also function in the reverse direction to convert the CoA-derivatives to their acid counterparts as shown in Steps 1Q, 3B, 3I, 3J and 3N.
- Several enzymes with broad substrate specificities have been described in the literature. The ADP-forming acetyl-CoA synthetase (ACD, EC 6.2.1.13) from Archaeoglobus fulgidus, encoded by AF1211, was shown to operate on a variety of linear and branched-chain substrates including isobutyrate, isopentanoate, and fumarate (Musfeldt et al., J Bacteriol. 184:636-644 (2002)). A second reversible ACD in Archaeoglobus fulgidus, encoded by AF1983, was also indicated to have a broad substrate range (Musfeldt et al., supra). The enzyme from Haloarcula marismortui, annotated as a succinyl-CoA synthetase, accepts propionate, butyrate, and branched-chain acids (isovalerate and isobutyrate) as substrates, and was shown to operate in the forward and reverse directions (Brasen et al., Arch. Microbiol 182:277-287 (2004)). The ACD encoded by PAE3250 from hyperthermophilic crenarchaeon Pyrobaculum aerophilum showed the broadest substrate range of all characterized ACDs, reacting with acetyl-CoA, isobutyryl-CoA (preferred substrate) and phenylacetyl-CoA (Brasen and Schonheit, Arch. Microbiol 182:277-287 (2004)). Directed evolution or engineering can be used to modify this enzyme to operate at the physiological temperature of the host organism. The enzymes from A. fulgidus, H. marismortui and P. aerophilum have all been cloned, functionally expressed, and characterized in E. coli (Brasen and Schonheit, Arch. Microbiol 182:277-287 (2004); Musfeldt and Schonheit, J Bacteriol. 184:636-644 (2002)). An additional enzyme is encoded by sucCD in E. coli, which naturally catalyzes the formation of succinyl-CoA from succinate with the concomitant consumption of one ATP, a reaction which is reversible in vivo (Buck et al., Biochemistry 24:6245-6252 (1985)). The acyl CoA ligase from Pseudomonas putida has been indicated to work on several aliphatic substrates including acetic, propionic, butyric, valeric, hexanoic, heptanoic, and octanoic acids and on aromatic compounds such as phenylacetic and phenoxyacetic acids (Fernandez-Valverde et al., Appl. Environ. Microbiol. 59:1149-1154 (1993)). A related enzyme, malonyl CoA synthetase (6.3.4.9) from Rhizobium leguminosarum could convert several diacids, namely, ethyl-, propyl-, allyl-, isopropyl-, dimethyl-, cyclopropyl-, cyclopropylmethylene-, cyclobutyl-, and benzyl-malonate into their corresponding monothioesters (Pohl et al., J. Am. Chem. Soc. 123:5822-5823 (2001)). Recently, a CoA dependent acetyl-CoA ligase was also identified in Propionibacterium acidipropionici ATCC 4875 (Parizzi et al., BMC Genomics. 2012; 13: 562. The genome sequence of Propionibacterium acidipropionici provides insights into its biotechnological and industrial potential). This enzyme is distinct from the AMP-dependent acetyl-CoA synthetase and is instead related to the ADP-forming succinyl-CoA synthetase complex (SCSC). Genes related to the SCSC (α and β subunits) complex were also found in Propionibacterium acnes KPA171202 and Microlunatus phophovorus NM-1.
- The acylation of acetate to acetyl-CoA is catalyzed by enzymes with acetyl-CoA synthetase activity. Two enzymes that catalyze this reaction are AMP-forming acetyl-CoA synthetase (EC 6.2.1.1) and ADP-forming acetyl-CoA synthetase (EC 6.2.1.13). AMP-forming acetyl-CoA synthetase (ACS) is the predominant enzyme for activation of acetate to acetyl-CoA. Exemplary ACS enzymes are found in E. coli (Brown et al., J. Gen. Microbiol 102:327-336 (1977)), Ralstonia eutropha (Priefert et al., 174:6590-6599 (1992)), Methanothermobacter thermautotrophicus (Ingram-Smith et al., Archaea. 2:95-107 (2007)), Salmonella enterica (Gulick et al., 42:2866-2873 (2003)) and Saccharomyces cerevisiae (Jogl et al., 43:1425-1431 (2004)).
- Methylmalonyl-CoA synthetase from Rhodopseudomonas palustris (MatB) converts methylmalonate and malonate to methylmalonyl-CoA and malonyl-CoA, respectively. Structure-based mutagenesis of this enzyme improved CoA synthetase activity with the alternate substrates ethylmalonate and butylmalonate (Crosby et al, AEM, in press (2012)).
-
GenBank Accession Gene No. GI No. Organism AF1211 NP_070039.1 11498810 Archaeoglobus fulgidus AF1983 NP_070807.1 11499565 Archaeoglobus fulgidus Scs YP_135572.1 55377722 Haloarcula marismortui PAE3250 NP_560604.1 18313937 Pyrobaculum aerophilum str. IM2 sucC NP_415256.1 16128703 Escherichia coli sucD AAC73823.1 1786949 Escherichia coli paaF AAC24333.2 22711873 Pseudomonas putida matB AAC83455.1 3982573 Rhizobium leguminosarum Acs AAC77039.1 1790505 Escherichia coli acoE AAA21945.1 141890 Ralstonia eutropha acs1 ABC87079.1 86169671 Methanothermobacter thermautotrophicus acs1 AAL23099.1 16422835 Salmonella enterica ACS1 Q01574.2 257050994 Saccharomyces cerevisiae LSC1 NP_014785 6324716 Saccharomyces cerevisiae LSC2 NP_011760 6321683 Saccharomyces cerevisiae bioW NP_390902.2 50812281 Bacillus subtilis bioW CAA10043.1 3850837 Pseudomonas mendocina bioW P22822.1 115012 Bacillus sphaericus Phl CAJ15517.1 77019264 Penicillium chrysogenum phlB ABS19624.1 152002983 Penicillium chrysogenum paaF AAC24333.2 22711873 Pseudomonas putida PACID_ YP_006979420.1 410864809 Propionibacterium 02150 acidipropionici ATCC 4875 PPA1754 AAT83483.1 50840816 Propionibacterium acnes KPA171202 PPA1755 AAT83484.1 50840817 Propionibacterium acnes KPA171202 Subunit YP_004571669.1 336116902 Microlunatus phosphovorus alpha NM-1 Subunit YP_004571668.1 336116901 Microlunatus phosphovorus beta NM-1 AACS NP_084486.1 21313520 Mus musculus AACS NP_076417.2 31982927 Homo sapiens - 4HB-CoA synthetase catalyzes the ATP-dependent conversion of 4-hydroxybutyrate to 4-hydroxybutyryl-CoA. AMP-forming 4-HB-CoA synthetase enzymes are found in organisms that assimilate carbon via the dicarboxylate/hydroxybutyrate cycle or the 3-hydroxypropionate/4-hydroxybutyrate cycle. Enzymes with this activity have been characterized in Thermoproteus neutrophilus and Metallosphaera sedula (Ramos-Vera et al, J Bacteriol 192:5329-40 (2010); Berg et al, Science 318:1782-6 (2007)). Others can be inferred by sequence homology.
-
Protein GenBank ID GI Number Organism Tneu_0420 ACB39368.1 170934107 Thermoproteus neutrophilus Caur_0002 YP_001633649.1 163845605 Chloroflexus aurantiacus J-10-fl Cagg_3790 YP_002465062 219850629 Chloroflexus aggregans DSM 9485 Acs YP_003431745 288817398 Hydrogenobacter thermophilus TK-6 Pisl_0250 YP_929773.1 119871766 Pyrobaculum islandicum DSM 4184 Msed_1422 ABP95580.1 145702438 Metallosphaera sedula - CoA hydrolysis as described in Steps 1Q, 2J and 2I can be catalyzed by CoA hydrolases or thioesterases in the EC class 3.1.2. Additionally, intermediates such as 3-oxo-4-hydroxypentanoyl-CoA, 3,4-dihydroxypentanoyl-CoA, 4-hydroxypent-2-enoyl-COA, 2,4-pentadienoyl-CoA can be converted into their acid counterparts via thes enzymes as shown in steps 3B, 3I, 3J, 3N respectively. Several CoA hydrolases with broad substrate ranges are suitable enzymes for hydrolyzing these intermediates. For example, the enzyme encoded by acot12 from Rattus norvegicus brain (Robinson et al., Biochem. Biophys. Res. Commun. 71:959-965 (1976)) can react with butyryl-CoA, hexanoyl-CoA and malonyl-CoA. The human dicarboxylic acid thioesterase, encoded by acot8, exhibits activity on glutaryl-CoA, adipyl-CoA, suberyl-CoA, sebacyl-CoA, and dodecanedioyl-CoA (Westin et al., J. Biol. Chem. 280:38125-38132 (2005)). The closest E. coli homolog to this enzyme, tesB, can also hydrolyze a range of CoA thiolesters (Naggert et al., J Biol Chem 266:11044-11050 (1991)). A similar enzyme has also been characterized in the rat liver (Deana R., Biochem Int 26:767-773 (1992)). Additional enzymes with hydrolase activity in E. coli include ybgC, paaI, yciA, and ybdB (Kuznetsova, et al., FEMS Microbiol Rev, 2005, 29(2):263-279; Song et al., J Biol Chem, 2006, 281(16):11028-38). Though its sequence has not been reported, the enzyme from the mitochondrion of the pea leaf has a broad substrate specificity, with demonstrated activity on acetyl-CoA, propionyl-CoA, butyryl-CoA, palmitoyl-CoA, oleoyl-CoA, succinyl-CoA, and crotonyl-CoA (Zeiher et al., Plant. Physiol. 94:20-27 (1990)) The acetyl-CoA hydrolase, ACH1, from S. cerevisiae represents another candidate hydrolase (Buu et al., J. Biol. Chem. 278:17203-17209 (2003)).
-
Gene name GenBank Accession # GI # Organism acot12 NP_570103.1 18543355 Rattus norvegicus tesB NP_414986 16128437 Escherichia coli acot8 CAA15502 3191970 Homo sapiens acot8 NP_570112 51036669 Rattus norvegicus tesA NP_415027 16128478 Escherichia coli ybgC NP_415264 16128711 Escherichia coli paaI NP_415914 16129357 Escherichia coli ybdB NP_415129 16128580 Escherichia coli ACH1 NP_009538 6319456 Saccharomyces cerevisiae yciA NP_415769.1 16129214 Escherichia coli ydiI P77781.1 13878877 Escherichia coli ybfF P75736.1 2829622 Escherichia coli - Yet another candidate hydrolase is the glutaconate CoA-transferase from Acidaminococcus fermentans. This enzyme was transformed by site-directed mutagenesis into an acyl-CoA hydrolase with activity on glutaryl-CoA, acetyl-CoA and 3-butenoyl-CoA (Mack et al., FEBS. Lett. 405:209-212 (1997)). This suggests that the enzymes encoding succinyl-CoA:3-ketoacid-CoA transferases and acetoacetyl-CoA:acetyl-CoA transferases may also serve as candidates for this reaction step but would require certain mutations to change their function.
-
Gene name GenBank Accession # GI # Organism gctA CAA57199 559392 Acidaminococcus fermentans gctB CAA57200 559393 Acidaminococcus fermentans - Additional hydrolase enzymes include 3-hydroxyisobutyryl-CoA hydrolase which has been described to efficiently catalyze the conversion of 3-hydroxyisobutyryl-CoA to 3-hydroxyisobutyrate during valine degradation (Shimomura et al., J Biol Chem. 269:14248-14253 (1994)). Genes encoding this enzyme include hibch of Rattus norvegicus (Shimomura et al., Methods Enzymol. 324:229-240 (2000)) and Homo sapiens (Shimomura et al., supra). Similar gene candidates can also be identified by sequence homology, including hibch of Saccharomyces cerevisiae and BC_2292 of Bacillus cereus.
-
Gene name GenBank Accession # GI # Organism hibch Q5XIE6.2 146324906 Rattus norvegicus hibch Q6NVY1.2 146324905 Homo sapiens hibch P28817.2 2506374 Saccharomyces cerevisiae BC_2292 AP09256 29895975 Bacillus cereus - Methylmalonyl-CoA is converted to methylmalonate by methylmalonyl-CoA hydrolase (EC 3.1.2.7). This enzyme, isolated from Rattus norvegicus liver, is also active on malonyl-CoA and propionyl-CoA as alternative substrates (Kovachy et al., J. Biol. Chem., 258: 11415-11421 (1983)). The gene associated with this enzyme is not known.
- Several transformations outlined in
FIGS. 1, 2 and 3 require a CoA transferase to activate carboxylic acids to their corresponding acyl-CoA derivatives and vice versa. The specific transformations are shown in steps 1N, 1R, 1Q, 2I, 2J, 2L, 3B, 3I, 3J. - CoA transferase enzymes have been described in the open literature and represent suitable candidates for these steps. These are described below. The gene products of cat1, cat2, and cat3 of Clostridium kluyveri have been shown to exhibit succinyl-CoA, 4-hydroxybutyryl-CoA, and butyryl-CoA transferase activity, respectively (Seedorf et al., Proc. Natl. Acad. Sci U.S.A 105:2128-2133 (2008); Sohling et al., J Bacteriol. 178:871-880 (1996)). Similar CoA transferase activities are also present in Trichomonas vaginalis, Trypanosoma brucei, Clostridium aminobutyricum and Porphyromonas gingivalis (Riviere et al., J. Biol. Chem. 279:45337-45346 (2004); van Grinsven et al., J. Biol. Chem. 283:1411-1418 (2008)).
-
Protein GenBank ID GI Number Organism cat1 P38946.1 729048 Clostridium kluyveri cat2 P38942.2 172046066 Clostridium kluyveri cat3 EDK35586.1 146349050 Clostridium kluyveri TVAG_395550 XP_001330176 123975034 Trichomonas vaginalis G3 Tb11.02.0290 XP_828352 71754875 Trypanosoma brucei cat2 CAB60036.1 6249316 Clostridium aminobutyricum cat2 NP_906037.1 34541558 Porphyromonas gingivalis W83 - A fatty acyl-CoA transferase that utilizes acetyl-CoA as the CoA donor is acetoacetyl-CoA transferase, encoded by the E. coli atoA (alpha subunit) and atoD (beta subunit) genes (Korolev et al., Acta Crystallogr. D. Biol. Crystallogr. 58:2116-2121 (2002); Vanderwinkel et al., 33:902-908 (1968)). This enzyme has a broad substrate range on substrates of chain length C3-C6 (Sramek et al., Arch Biochem Biophys 171:14-26 (1975)) and has been shown to transfer the CoA moiety to acetate from a variety of branched and linear 3-oxo and acyl-CoA substrates, including isobutyrate (Matthies et al., Appl Environ. Microbiol 58:1435-1439 (1992)), valerate (Vanderwinkel et al., Biochem. Biophys. Res. Commun. 33:902-908 (1968)) and butanoate (Vanderwinkel et al., Biochem. Biophys. Res. Commun. 33:902-908 (1968)). This enzyme is induced at the transcriptional level by acetoacetate, so modification of regulatory control may be necessary for engineering this enzyme into a pathway (Pauli et al., Eur. J Biochem. 29:553-562 (1972)). Similar enzymes exist in Corynebacterium glutamicum ATCC 13032 (Duncan et al., 68:5186-5190 (2002)), Clostridium acetobutylicum (Cary et al., Appl Environ Microbiol 56:1576-1583 (1990); Wiesenborn et al., Appl Environ Microbiol 55:323-329 (1989)), and Clostridium saccharoperbutylacetonicum (Kosaka et al., Biosci. Biotechnol Biochem. 71:58-68 (2007)).
-
Gene GI # Accession No. Organism atoA 2492994 P76459.1 Escherichia coli atoD 2492990 P76458.1 Escherichia coli actA 62391407 YP_226809.1 Corynebacterium glutamicum cg0592 62389399 YP_224801.1 Corynebacterium glutamicum ctfA 15004866 NP_149326.1 Clostridium acetobutylicum ctfB 15004867 NP_149327.1 Clostridium acetobutylicum ctfA 31075384 AAP42564.1 Clostridium saccharoperbutylacetonicum ctfB 31075385 AAP42565.1 Clostridium saccharoperbutylacetonicum - Exemplary enzymes for catalyzing the decarboxylation of 2,4-pentadienoate (1H, 2G, 3L), 4-hydroxypent-2-enoate (1T), 5-hydroxypent-2-enoate (2P) and 4-hydroxypent-2-enoate (3E) are sorbic acid decarboxylase, aconitate decarboxylase, 4-oxalocrotonate decarboxylase and cinnamate decarboxylase.
- Sorbic acid decarboxylase converts sorbic acid to 1,3-pentadiene. Sorbic acid decarboxylation by Aspergillus niger requires three genes: padA1, ohbA1, and sdrA (Plumridge et al. Fung. Genet. Bio, 47:683-692 (2010). PadA1 is annotated as a phenylacrylic acid decarboxylase, ohbA1 is a putative 4-hydroxybenzoic acid decarboxylase, and sdrA is a sorbic acid decarboxylase regulator. Additional species have also been shown to decarboxylate sorbic acid including several fungal and yeast species (Kinderlerler and Hatton, Food Addit Contam., 7(5):657-69 (1990); Casas et al., Int J Food Micro., 94(1):93-96 (2004); Pinches and Apps, Int. J. Food Microbiol. 116: 182-185 (2007)). For example, Aspergillus oryzae and Neosartorya fischeri have been shown to decarboxylate sorbic acid and have close homologs to padA1, ohbA1, and sdrA.
-
Gene name GenBankID GI Number Organism padA1 XP_001390532.1 145235767 Aspergillus niger ohbA1 XP_001390534.1 145235771 Aspergillus niger sdrA XP_001390533.1 145235769 Aspergillus niger padA1 XP_001818651.1 169768362 Aspergillus oryzae ohbA1 XP_001818650.1 169768360 Aspergillus oryzae sdrA XP_001818649.1 169768358 Aspergillus oryzae padA1 XP_001261423.1 119482790 Neosartorya fischeri ohbA1 XP_001261424.1 119482792 Neosartorya fischeri sdrA XP_001261422.1 119482788 Neosartorya fischeri - Aconitate decarboxylase (EC 4.1.1.6) catalyzes the final step in itaconate biosynthesis in a strain of Candida and also in the filamentous fungus Aspergillus terreus (Bonnarme et al. J Bacteriol. 177:3573-3578 (1995); Willke and Vorlop, Appl Microbiol. Biotechnol 56:289-295 (2001)). A cis-aconitate decarboxylase (CAD) (EC 4.1.16) has been purified and characterized from Aspergillus terreus (Dwiarti et al., J. Biosci. Bioeng. 94(1): 29-33 (2002)). Recently, the gene has been cloned and functionally characterized (Kanamasa et al., Appl. Microbiol Biotechnol 80:223-229 (2008)) and (WO/2009/014437). Several close homologs of CAD are listed below (EP 2017344A1; WO 2009/014437 A1). The gene and protein sequence of CAD were reported previously (EP 2017344 A1; WO 2009/014437 A1), along with several close homologs listed in the table below.
-
Gene name GenBankID GI Number Organism CAD XP_001209273 115385453 Aspergillus terreus XP_001217495 115402837 Aspergillus terreus XP_001209946 115386810 Aspergillus terreus BAE66063 83775944 Aspergillus oryzae XP_001393934 145242722 Aspergillus niger XP_391316 46139251 Gibberella zeae XP_001389415 145230213 Aspergillus niger XP_001383451 126133853 Pichia stipitis YP_891060 118473159 Mycobacterium smegmatis NP_961187 41408351 Mycobacterium avium subsp. pratuberculosis YP_880968 118466464 Mycobacterium avium ZP_01648681 119882410 Salinispora arenicola - An additional class of decarboxylases has been characterized that catalyze the conversion of cinnamate (phenylacrylate) and substituted cinnamate derivatives to the corresponding styrene derivatives. These enzymes are common in a variety of organisms and specific genes encoding these enzymes that have been cloned and expressed in E. coli are:
pad 1 from Saccharomyces cerevisae (Clausen et al., Gene 142:107-112 (1994)), pdc from Lactobacillus plantarum (Barthelmebs et al., 67:1063-1069 (2001); Qi et al., Metab Eng 9:268-276 (2007); Rodriguez et al., J. Agric. Food Chem. 56:3068-3072 (2008)), pofK (pad) from Klebsiella oxytoca (Uchiyama et al., Biosci. Biotechnol. Biochem. 72:116-123 (2008); Hashidoko et al., Biosci. Biotech. Biochem. 58:217-218 (1994)), Pedicoccus pentosaceus (Barthelmebs et al., 67:1063-1069 (2001)), and padC from Bacillus subtilis and Bacillus pumilus (Shingler et al., 174:711-724 (1992)). A ferulic acid decarboxylase from Pseudomonas fluorescens also has been purified and characterized (Huang et al., J. Bacteriol. 176:5912-5918 (1994)). Importantly, this class of enzymes have been shown to be stable and do not require either exogenous or internally bound co-factors, thus making these enzymes ideally suitable for biotransformations (Sariaslani, Annu. Rev. Microbiol. 61:51-69 (2007)). -
Protein GenBank ID GI Number Organism pad1 AAB64980.1 1165293 Saccharomyces cerevisae ohbA1 BAG32379.1 188496963 Saccharomyces cerevisiae pdc AAC45282.1 1762616 Lactobacillus plantarum pad BAF65031.1 149941608 Klebsiella oxytoca padC NP_391320.1 16080493 Bacillus subtilis pad YP_804027.1 116492292 Pedicoccus pentosaceus pad CAC18719.1 11691810 Bacillus pumilus - 4-Oxalocronate decarboxylase catalyzes the decarboxylation of 4-oxalocrotonate to 2-oxopentanoate. This enzyme has been isolated from numerous organisms and characterized. The decarboxylase typically functions in a complex with vinylpyruvate hydratase. Genes encoding this enzyme include dmpH and dmpE in Pseudomonas sp. (strain 600) (Shingler et al., 174:711-724 (1992)), xylII and xylIII from Pseudomonas putida (Kato et al., Arch. Microbiol 168:457-463 (1997); Stanley et al., Biochemistry 39:3514 (2000); Lian et al., J. Am. Chem. Soc. 116:10403-10411 (1994)) and Reut_B5691 and Reut_B5692 from Ralstonia eutropha JMP134 (Hughes et al., J Bacteriol, 158:79-83 (1984)). The genes encoding the enzyme from Pseudomonas sp. (strain 600) have been cloned and expressed in E. coli (Shingler et al., J. Bacteriol. 174:711-724 (1992)). The 4-oxalocrotonate decarboxylase encoded by xylI in Pseudomonas putida functions in a complex with vinylpyruvate hydratase. A recombinant form of this enzyme devoid of the hydratase activity and retaining wild type decarboxylase activity has been characterized (Stanley et al., Biochem. 39:718-26 (2000)). A similar enzyme is found in Ralstonia pickettii (formerly Pseudomonas pickettii) (Kukor et al., J Bacteriol. 173:4587-94 (1991)).
-
Gene GenBank GI Number Organism dmpH CAA43228.1 45685 Pseudomonas sp. CF600 dmpE CAA43225.1 45682 Pseudomonas sp. CF600 xylII YP_709328.1 111116444 Pseudomonas putida xylIII YP_709353.1 111116469 Pseudomonas putida Reut_B5691 YP_299880.1 73539513 Ralstonia eutropha JMP134 Reut_B5692 YP_299881.1 73539514 Ralstonia eutropha JMP134 xylI P49155.1 1351446 Pseudomonas putida tbuI YP_002983475.1 241665116 Ralstonia pickettii nbaG BAC65309.1 28971626 Pseudomonas fluorescens KU-7 - Numerous characterized enzymes decarboxylate amino acids and similar compounds, including aspartate decarboxylase, lysine decarboxylase and ornithine decarboxylase. Aspartate decarboxylase (EC 4.1.1.11) decarboxylates aspartate to form beta-alanine. This enzyme participates in pantothenate biosynthesis and is encoded by gene panD in Escherichia coli (Dusch et al., Appl. Environ. Microbiol 65:1530-1539 (1999); Ramjee et al., Biochem. J 323 (Pt 3):661-669 (1997); Merkel et al., FEMS Microbiol Lett. 143:247-252 (1996); Schmitzberger et al., EMBO J 22:6193-6204 (2003)). The enzymes from Mycobacterium tuberculosis (Chopra et al., Protein Expr. Purif. 25:533-540 (2002)) and Corynebacterium glutanicum (Dusch et al., Appl. Environ. Microbiol 65:1530-1539 (1999)) have been expressed and characterized in E. coli.
-
Protein GenBank ID GI Number Organism panD P0A790 67470411 Escherichia coli K12 panD Q9X4N0 18203593 Corynebacterium glutanicum panD P65660.1 54041701 Mycobacterium tuberculosis - Lysine decarboxylase (EC 4.1.1.18) catalyzes the decarboxylation of lysine to cadaverine. Two isozymes of this enzyme are encoded in the E. coli genome by genes cadA and ldcC. CadA is involved in acid resistance and is subject to positive regulation by the cadC gene product (Lemonnier et al., Microbiology 144 (Pt 3):751-760 (1998)). CadC accepts hydroxylysine and S-aminoethylcysteine as alternate substrates, and 2-aminopimelate and 6-aminocaproate act as competitive inhibitors to this enzyme (Sabo et al., Biochemistry 13:662-670 (1974)). The constitutively expressed lde gene product is less active than CadA (Lemonnier and Lane, Microbiology 144 (Pt 3):751-760 (1998)). A lysine decarboxylase analogous to CadA was recently identified in Vibrio parahaemolyticus (Tanaka et al., J Appl Microbiol 104:1283-1293 (2008)). The lysine decarboxylase from Selenomonas ruminantium, encoded by ldc, bears sequence similarity to eukaryotic ornithine decarboxylases, and accepts both L-lysine and L-ornithine as substrates (Takatsuka et al., Biosci. Biotechnol Biochem. 63:1843-1846 (1999)). Active site residues were identified and engineered to alter the substrate specificity of the enzyme (Takatsuka et al., J Bacteriol. 182:6732-6741 (2000)). Several ornithine decarboxylase enzymes (EC 4.1.1.17) also exhibit activity on lysine and other similar compounds. Such enzymes are found in Nicotiana glutinosa (Lee et al., Biochem. J 360:657-665 (2001)), Lactobacillus sp. 30a (Guirard et al., J Biol. Chem. 255:5960-5964 (1980)) and Vibrio vulnificus (Lee et al., J Biol. Chem. 282:27115-27125 (2007)). The enzymes from Lactobacillus sp. 30a (Momany et al., J Mol. Biol. 252:643-655 (1995)) and V. vulnificus have been crystallized. The V. vulnificus enzyme efficiently catalyzes lysine decarboxylation and the residues involved in substrate specificity have been elucidated (Lee et al., J Biol. Chem. 282:27115-27125 (2007)). A similar enzyme has been characterized in Trichomonas vaginalis but the gene encoding this enzyme is not known (Yarlett et al., Biochem. J 293 (Pt 2):487-493 (1993)).
-
Protein GenBank ID GI Number Organism cadA AAA23536.1 145458 Escherichia coli ldcC AAC73297.1 1786384 Escherichia coli Ldc O50657.1 13124043 Selenomonas ruminantium cadA AB124819.1 44886078 Vibrio parahaemolyticus AF323910.1: AAG45222.1 12007488 Nicotiana glutinosa 1 . . . 1299 odc1 P43099.2 1169251 Lactobacillus sp. 30a VV2_1235 NP_763142.1 27367615 Vibrio vulnificus - An exemplary carboxy-lyase for decarboxylating 2-hydroxypent-3-enoate (1S) is acetolactate decarboxylase (4.1.1.5) which participates in citrate catabolism and branched-chain amino acid biosynthesis, converting the 2-hydroxyacid, 2-acetolactate, to acetoin. In Lactococcus lactis the enzyme is composed of six subunits, encoded by gene aldB, and is activated by valine, leucine and isoleucine (Goupil-Feuillerat et al., J. Bacteriol. 182:5399-5408 (2000); Goupil et al., Appl. Environ. Microbiol. 62:2636-2640 (1996)). This enzyme has been overexpressed and characterized in E. coli (Phalip et al., FEBS Lett. 351:95-99 (1994); Nielsen et al, Biotechnol J 5:274-84 (2010)). In other organisms the enzyme is a dimer, encoded by aldC in Streptococcus thermophilus (Monnet et al., Lett. Appl. Microbiol. 36:399-405 (2003)), aldB in Bacillus brevis (Najmudin et al., Acta Crystallogr. D. Biol. Crystallogr. 59:1073-1075 (2003); Diderichsen et al., J. Bacteriol. 172:4315-4321 (1990)) and budA from Enterobacter aerogenes (Diderichsen et al., J. Bacteriol. 172:4315-4321 (1990)). The enzyme from Bacillus brevis was cloned and overexpressed in Bacillus subtilis and characterized crystallographically (Najmudin et al., Acta Crystallogr. D. Biol. Crystallogr. 59:1073-1075 (2003)). The Acetobacter aceti acetolactate decarboxylase was cloned and heterologously expressed in brewer's yeast (Yamano et al, J Biotechnol 32:165-71 (1994)). Additionally, the enzyme from Leuconostoc lactis has been purified and characterized but the gene has not been isolated (O'Sullivan et al., FEMS Microbiol. Lett. 194:245-249 (2001)).
-
Gene name GenBank Accession # GI # Organism aldB AAB81923.1 2565161 Lactococcus lactis aldC Q8L208 Streptococcus thermophilus aldB P23616 Bacillus brevis budA P05361 Enterobacter aerogenes aldc AAC60472.1 545933 Acetobacter aceti - Tartrate decarboxylase (EC 4.1.1.73) carries out an alpha,beta-hydroxyacid decarboxylation reaction. The enzyme, characterized in Pseudomonas sp. group Ve-2, is NAD+ dependent and catalyzes coupled oxidation-reduction reaction that proceeds through an oxaloglycolate intermediate (Furuyoshi et al., J Biochem. 110:520-525 (1991)). A side reaction catalyzed by this enzyme is the NAD+ dependent oxidation of tartrate (1% of activity). A gene has not been associated with this enzyme activity to date.
- The decarboxylation of keto-acids such as 4-hydroxy 2-oxovalerate, 2-oxopent-3-enoate as shown in Steps 1C and 1I is catalyzed by a variety of enzymes with varied substrate specificities, including pyruvate decarboxylase (EC 4.1.1.1), benzoylformate decarboxylase (EC 4.1.1.7), alpha-ketoglutarate decarboxylase and branched-chain alpha-ketoacid decarboxylase. Pyruvate decarboxylase (PDC), also termed keto-acid decarboxylase, is a key enzyme in alcoholic fermentation, catalyzing the decarboxylation of pyruvate to acetaldehyde. The enzyme from Saccharomyces cerevisiae has a broad substrate range for aliphatic 2-keto acids including 2-ketobutyrate, 2-ketovalerate, 3-hydroxypyruvate and 2-phenylpyruvate (22). This enzyme has been extensively studied, engineered for altered activity, and functionally expressed in E. coli (Killenberg-Jabs et al., Eur. J. Biochem. 268:1698-1704 (2001); Li et al., Biochemistry. 38:10004-10012 (1999); ter Schure et al., Appl. Environ. Microbiol. 64:1303-1307 (1998)). The PDC from Zymomonas mobilus, encoded by pdc, also has a broad substrate range and has been a subject of directed engineering studies to alter the affinity for different substrates (Siegert et al., Protein Eng Des Sel 18:345-357 (2005)). The crystal structure of this enzyme is available (Killenberg-Jabs et al., Eur. J. Biochem. 268:1698-1704 (2001)). Other well-characterized PDC candidates include the enzymes from Acetobacter pasteurians (Chandra et al., 176:443-451 (2001)) and Kluyveromyces lactis (Krieger et al., 269:3256-3263 (2002)).
-
Protein GenBank ID GI Number Organism pdc P06672.1 118391 Zymomonas mobilis pdc1 P06169 30923172 Saccharomyces cerevisiae pdc Q8L388 20385191 Acetobacter pasteurians pdc1 Q12629 52788279 Kluyveromyces lactis - Like PDC, benzoylformate decarboxylase (EC 4.1.1.7) has a broad substrate range and has been the target of enzyme engineering studies. The enzyme from Pseudomonas putida has been extensively studied and crystal structures of this enzyme are available (Polovnikova et al., 42:1820-1830 (2003); Hasson et al., 37:9918-9930 (1998)). Site-directed mutagenesis of two residues in the active site of the Pseudomonas putida enzyme altered the affinity (Km) of naturally and non-naturally occurring substrates (Siegert et al., Protein Eng Des Sel 18:345-357 (2005)). The properties of this enzyme have been further modified by directed engineering (Lingen et al., Chembiochem. 4:721-726 (2003); Lingen et al., Protein Eng 15:585-593 (2002)). The enzyme from Pseudomonas aeruginosa, encoded by mdlC, has also been characterized experimentally (Barrowman et al., 34:57-60 (1986)). Additional gene candidates from Pseudomonas stutzeri, Pseudomonas fluorescens and other organisms can be inferred by sequence homology or identified using a growth selection system developed in Pseudomonas putida (Henning et al., Appl. Environ. Microbiol. 72:7510-7517 (2006)).
-
Protein GenBank ID GI Number Organism mdlC P20906.2 3915757 Pseudomonas putida mdlC Q9HUR2.1 81539678 Pseudomonas aeruginosa dpgB ABN80423.1 126202187 Pseudomonas stutzeri ilvB-1 YP_260581.1 70730840 Pseudomonas fluorescens - A third enzyme capable of decarboxylating 2-oxoacids is alpha-ketoglutarate decarboxylase (KGD, EC 4.1.1.71). The substrate range of this class of enzymes has not been studied to date. An exemplarly KDC is encoded by kgd in Mycobacterium tuberculosis (Tian et al., PNAS 102:10670-10675 (2005)). KDC enzyme activity has also been detected in several species of rhizobia including Bradyrhizobium japonicum and Mesorhizobium loti (Green et al., J Bacteriol 182:2838-2844 (2000)). Although the KDC-encoding gene(s) have not been isolated in these organisms, the genome sequences are available and several genes in each genome are annotated as putative KDCs. A KDC from Euglena gracilis has also been characterized but the gene associated with this activity has not been identified to date (Shigeoka et al., Arch. Biochem. Biophys. 288:22-28 (1991)). The first twenty amino acids starting from the N-terminus were sequenced MTYKAPVKDVKFLLDKVFKV (Shigeoka and Nakano, Arch. Biochem. Biophys. 288:22-28 (1991)). The gene could be identified by testing candidate genes containing this N-terminal sequence for KDC activity.
-
Protein GenBank ID GI Number Organism kgd O50463.4 160395583 Mycobacterium tuberculosis kgd NP_767092.1 27375563 Bradyrhizobium japonicum USDA110 kgd NP_105204.1 13473636 Mesorhizobium loti - A fourth candidate enzyme for catalyzing this reaction is branched chain alpha-ketoacid decarboxylase (BCKA). This class of enzyme has been shown to act on a variety of compounds varying in chain length from 3 to 6 carbons (Oku et al., J Biol Chem. 263:18386-18396 (1988); Smit et al., Appl Environ Microbiol 71:303-311 (2005)). The enzyme in Lactococcus lactis has been characterized on a variety of branched and linear substrates including 2-oxobutanoate, 2-oxohexanoate, 2-oxopentanoate, 3-methyl-2-oxobutanoate, 4-methyl-2-oxobutanoate and isocaproate (Smit et al., Appl Environ Microbiol 71:303-311 (2005)). The enzyme has been structurally characterized (Berg et al., Science. 318:1782-1786 (2007)). Sequence alignments between the Lactococcus lactis enzyme and the pyruvate decarboxylase of Zymomonas mobilus indicate that the catalytic and substrate recognition residues are nearly identical (Siegert et al., Protein Eng Des Sel 18:345-357 (2005)), so this enzyme would be a promising candidate for directed engineering. Decarboxylation of alpha-ketoglutarate by a BCKA was detected in Bacillus subtilis; however, this activity was low (5%) relative to activity on other branched-chain substrates (Oku and Kaneda, J Biol Chem. 263:18386-18396 (1988)) and the gene encoding this enzyme has not been identified to date. Additional BCKA gene candidates can be identified by homology to the Lactococcus lactis protein sequence. Many of the high-scoring BLASTp hits to this enzyme are annotated as indolepyruvate decarboxylases (EC 4.1.1.74). Indolepyruvate decarboxylase (IPDA) is an enzyme that catalyzes the decarboxylation of indolepyruvate to indoleacetaldehyde in plants and plant bacteria. Recombinant branched chain alpha-keto acid decarboxylase enzymes derived from the E1 subunits of the mitochondrial branched-chain keto acid dehydrogenase complex from Homo sapiens and Bos taurus have been cloned and functionally expressed in E. coli (Davie et al., J. Biol. Chem. 267:16601-16606 (1992); Wynn et al., J. Biol. Chem. 267:12400-12403 (1992); Wynn et al., J. Biol. Chem. 267:1881-1887 (1992)). In these studies, the authors found that co-expression of chaperonins GroEL and GroES enhanced the specific activity of the decarboxylase by 500-fold (Wynn et al., J. Biol. Chem. 267:12400-12403 (1992)). These enzymes are composed of two alpha and two beta subunits.
-
Protein GenBank ID GI Number Organism kdcA AAS49166.1 44921617 Lactococcus lactis kdc P9WG37.1 614088617 Mycobacterium tuberculosis BcG H37Rv BCKDHB NP_898871.1 34101272 Homo sapiens BCKDHA NP_000700.1 11386135 Homo sapiens BCKDHB P21839 115502434 Bos taurus BCKDHA P11178 129030 Bos taurus - The acetolactate synthase from Bacillus subtilis (AlsS), which naturally catalyzes the condensation of two molecules of pyruvate to form 2-acetolactate, is also able to catalyze the decarboxylation of 2-ketoisovalerate like KDC both in vivo and in vitro [PMID=19684168].
- The dehydration of 2-hydroxypent-3-enoyl-CoA (1P), 3-hydroxypent-4-enoyl-CoA (2O), 3,4-dihydroxypentanoyl-CoA (3H), 4-hydroxy pent-2-enoyl-CoA (3M) and 5-hydroxypent-2-enoyl-CoA (2N) can be catalyzed by a special class of oxygen-sensitive enzymes that dehydrate 2-hydroxyacyl-CoA derivatives by a radical-mechanism (Buckel and Golding, Annu. Rev. Microbiol. 60:27-49 (2006); Buckel et al., Curr. Opin. Chem. Biol. 8:462-467 (2004); Buckel et al., Biol. Chem. 386:951-959 (2005); Kim et al., FEBS J. 272:550-561 (2005); Kim et al., FEMS Microbiol. Rev. 28:455-468 (2004); Zhang et al., Microbiology 145 (Pt 9):2323-2334 (1999)). One example of such an enzyme is the lactyl-CoA dehydratase from Clostridium propionicum, which catalyzes the dehydration of lactoyl-CoA to form acryloyl-CoA (Kuchta and Abeles, J. Biol. Chem. 260:13181-13189 (1985); Hofmeister and Buckel, Eur. J. Biochem. 206:547-552 (1992)). An additional example is 2-hydroxyglutaryl-CoA dehydratase encoded by hgdABC from Acidaminococcus fermentans (Mueller and Buckel, Eur. J. Biochem. 230:698-704 (1995); Schweiger et al., Eur. J. Biochem. 169:441-448 (1987)). Purification of the dehydratase from A. fermentans yielded two components, A and D. Component A (HgdC) acts as an activator or initiator of dehydration. Component D is the actual dehydratase and is encoded by HgdAB. Variations of this enzyme have been found in Clostridum symbiosum and Fusobacterium nucleatum. Component A, the activator, from A. fermentans is active with the actual dehydratse (component D) from C. symbiosum and is reported to have a specific activity of 60 per second, as compared to 10 per second with the component D from A. fermentans. Yet another example is the 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile catalyzed by hadBC and activated by hadI (Darley et al., FEBS J. 272:550-61 (2005)). The sequence of the complete C. propionicium lactoyl-CoA dehydratase is not yet listed in publicly available databases. However, the sequence of the beta-subunit corresponds to the GenBank accession number AJ276553 (Selmer et al, Eur J Biochem, 269:372-80 (2002)). The dehydratase from Clostridium sporogens that dehydrates phenyllactyl-CoA to cinnamoyl-CoA is also a potential candidate for this step. This enzyme is composed of three subunits, one of which is a CoA transferase. The first step comprises of a CoA transfer from cinnamoyl-CoA to phenyllactate leading to the formation of phenyllactyl-CoA and cinnamate. The product cinnamate is released. The dehydratase then converts phenyllactyl-CoA into cinnamoyl-CoA. FldA is the CoA transferase and FldBC are related to the alpha and beta subunits of the dehydratase, component D, from A. fermentans.
-
GenBank Gene Accession No. GI No. Organism hgdA P11569 296439332 Acidaminococcus fermentans hgdB P11570 296439333 Acidaminococcus fermentans hgdC P11568 2506909 Acidaminococcus fermentans hgdA AAD31676.1 4883832 Clostridum symbiosum hgdB AAD31677.1 4883833 Clostridum symbiosum hgdC AAD31675.1 4883831 Clostridum symbiosum hgdA EDK88042.1 148322792 Fusobacterium nucleatum hgdB EDK88043.1 148322793 Fusobacterium nucleatum hgdC EDK88041.1 148322791 Fusobacterium nucleatum FldB Q93AL9.1 75406928 Clostridium sporogens FldC Q93AL8.1 75406927 Clostridium sporogens hadB YP_001086863 126697966 Clostridium difficile hadC YP_001086864 126697967 Clostridium difficile hadI YP_001086862 126697965 Clostridium difficile lcdB AJ276553 7242547 Clostridium propionicum - Another dehydratase that can potentially conduct such a biotransformation is the enoyl-CoA hydratase (4.2.1.17) of Pseudomonas putida, encoded by ech that catalyzes the conversion of 3-hydroxybutyryl-CoA to crotonyl-CoA (Roberts et al., Arch. Microbiol 117:99-108 (1978)). This transformation is also catalyzed by the crt gene product of Clostridium acetobutylicum, the crt1 gene product of C. kluyveri, and other clostridial organisms Atsumi et al., Metab Eng 10:305-311 (2008); Boynton et al., J Bacteriol. 178:3015-3024 (1996); Hillmer et al., FEBS Lett. 21:351-354 (1972)). Additional enoyl-CoA hydratase candidates are phaA and phaB, of P. putida, and paaA and paaB from P. fluorescens (Olivera et al., Proc. Natl. Acad. Sci U.S.A 95:6419-6424 (1998)). The gene product of pimF in Rhodopseudomonas palustris is predicted to encode an enoyl-CoA hydratase that participates in pimeloyl-CoA degradation (Harrison et al., Microbiology 151:727-736 (2005)). Lastly, a number of Escherichia coli genes have been shown to demonstrate enoyl-CoA hydratase functionality including maoC (Park et al., J Bacteriol. 185:5391-5397 (2003)), paaF (Ismail et al., Eur. J Biochem. 270:3047-3054 (2003); Park et al., Appl. Biochem. Biotechnol 113-116:335-346 (2004); Park et al., Biotechnol Bioeng 86:681-686 (2004)) and paaG (Ismail et al., Eur. J Biochem. 270:3047-3054 (2003); Park and Lee, Appl. Biochem. Biotechnol 113-116:335-346 (2004); Park and Yup, Biotechnol Bioeng 86:681-686 (2004)).
-
GenBank Gene Accession No. GI No. Organism ech NP_745498.1 26990073 Pseudomonas putida crt NP_349318.1 15895969 Clostridium acetobutylicum crtl YP_001393856 153953091 Clostridium kluyveri phaA NP_745427.1 26990002 Pseudomonas putida KT2440 phaB NP_745426.1 26990001 Pseudomonas putida KT2440 paaA ABF82233.1 106636093 Pseudomonas fluorescens paaB ABF82234.1 106636094 Pseudomonas fluorescens maoC NP_415905.1 16129348 Escherichia coli paaF NP_415911.1 16129354 Escherichia coli paaG NP_415912.1 16129355 Escherichia coli - Alternatively, the E. coli gene products of fadA and fadB encode a multienzyme complex involved in fatty acid oxidation that exhibits enoyl-CoA hydratase activity (Yang et al., Biochemistry 30:6788-6795 (1991); Yang, J Bacteriol. 173:7405-7406 (1991); Nakahigashi et al., Nucleic Acids Res. 18:4937 (1990)). Knocking out a negative regulator encoded by fadR can be utilized to activate the fadB gene product (Sato et al., J Biosci. Bioeng 103:38-44 (2007)). The fadI and fadJ genes encode similar functions and are naturally expressed under anaerobic conditions (Campbell et al., Mol. Microbiol 47:793-805 (2003)).
-
Protein GenBank ID GI Number Organism fadA YP_026272.1 49176430 Escherichia coli fadB NP_418288.1 16131692 Escherichia coli fadI NP_416844.1 16130275 Escherichia coli fadJ NP_416843.1 16130274 Escherichia coli fadR NP_415705.1 16129150 Escherichia coli - The dehydration of crotyl alcohol (1M, 4H), methyl vinyl carbinol (1L, 2Q, 3F, 4G), 3-hydroxybutyraldehyde (1D), 4-hydroxy-2-oxovalerate (1E, 2C), 2-hydroxy pent3-enoate (1G), 4-hydroxypent-2-enoate (1V, 3K), 5-hydroxypent-2-enoate (2F), 3-hydroxypent-4-enoate (2R) and 3,4-dihydroxypentanoate (3D) can be catalyzed exemplary dehydratases including oleate hydratase, acyclic 1,2-hydratase, linalool dehydratase, dimethylmaleate hydratase, (S)-2-methylmalate dehydratase, fumarate hydratase, glycerol dehydratase and enoyl-CoA hydratase enzymes. Enzyme candidates are described below.
- Alternatively, crotyl alcohol, 3-buten-2-ol and 3-buten-1-ol produced by culturing the non-naturally occurring microbial organisms described herein can be converted to butadiene by chemical dehydration in the presence of a chemical catalyst. For example see international patent application publication WO2012106516A1.
- Oleate hydratases catalyze the reversible hydration of non-activated alkenes to their corresponding alcohols. Oleate hydratase enzymes disclosed in WO2011/076691 and WO 2008/119735 are incorporated by reference herein. Oleate hydratases from Elizabethkingia meningoseptica and Streptococcus pyogenes are encoded by ohyA and HMPREF0841_1446. Acyclic 1,2-hydratase enzymes (eg. EC 4.2.1.131) catalyze the dehydration of linear secondary alcohols, and are thus suitable candidates for the dehydration of MVC to butadiene. Exemplary 1,2-hydratase enzymes include
carotenoid 1,2-hydratase, encoded by crtC of Rubrivivax gelatinosus (Steiger et al, Arch Biochem Biophys 414:51-8 (2003)), andlycopene 1,2-hydratase, encoded by cruF of Synechococcus sp. PCC 7002 and Gemmatimonas aurantiaca (Graham and Bryant, J Bacteriol 191: 2392-300 (2009); Takaichi et al, Microbiol 156: 756-63 (2010)). Dehydration of t-butyl alcohol, t-amyl alcohol and 2-methyl-MVC to isobutene, isoamylene and isoprene, respectively, is catalyzed by an unknown enzyme of Aquincola tertiaricarbonis L108 (Schaefer et al, AEM 78 (17): 6280-4 (2012); Schuster et al, J. Bacteriol 194:972-81 (2012); Schuster et al, J Bacteriol 194: 972-81 (2012)). Linalool dehydratase/isomerase of Castellaniella defragrans catalyzes the dehydration of linalool to myrcene (Brodkorb et al, J Biol Chem 285:30436-42 (2010)). Enzyme accession numbers and homologs are listed in the table below. -
Protein GenBank ID GI Number Organism OhyA ACT54545.1 254031735 Elizabethkingia meningoseptica HMPREF0841_ ZP_07461147.1 306827879 Streptococcus 1446 pyogenes ATCC 10782 P700755_13397 ZP_01252267.1 91215295 Psychroflexus torquis ATCC 700755 RPB_2430 YP_486046.1 86749550 Rhodopseudomonas palustris CrtC AA093124.1 29893494 Rubrivivax gelatinosus CruF YP_001735274.1 170078636 Synechococcus sp. PCC 7002 Ldi E1XUJ2.1 403399445 Castellaniella defragrans CGGC5_10771 ELA28661.1 429853596 Colletotrichum gloeosporioides Nara gc5 UCRPA7_8726 EON95759.1 500251895 Togninia minima UCRPA7 UCRNP2_8820 EOD44468.1 485917493 Neofusicoccum parvum UCRNP2 STEHIDRAFT_ EIM80109.1 389738914 Stereum hirsutum 68678 FP-91666 SS1 NECHADRAFT_ XP_003040778.1 302883759 Nectria haematococca 82460 mpVI 77-13-4 AS9A_2751 YP_004493998.1 333920417 Amycolicicoccus subflavus DQS3-9A1 - Dimethylmaleate hydratases catalyze the dehydration of (2R,3S)-2,3-dimethylmalate into dimethylmaleate (EC 4.2.1.85). Dimethylmaleate hydratases from Eubacterium barkeri are encoded by dmdA and dmdB (Alhapel et al., Proc Natl Acad Sci 103:12341-6 (2006)). (S)-2-methylmalate dehydratases catalyze the reversible hydration of mesaconate to citramalate (EC 4.2.1.34). An exemplary (S)-2-methylmalate dehydratase is encoded by LeuC and LeuD of Methanococcus jannaschii and has been shown to catalyze the second step in the leucine biosynthesis pathway (Lee et al, Biochem Biophys Res Commun 419(2):160-4 (2012)). Fumarate hydratases catalyze the interconversion of fumarate to malate (EC 4.2.1.2). Two classes of fumarate hydratases exist, where classification is dependent upon the arrangement of subunits and metal requirements. Exemplary class I and class II fumarate dehydratases are encoded by fumA and fumC of Escherichia coli (Tseng et al, J Bacteriol 183(2):461-7 (2001)), and fumC of Corynebacterium glutamicum (Genda et al, Biosci Biotechnol Biochem 70(5):1102-9 (2006)). Glycerol dehydratases (EC 4.2.1.30) catalyze the conversion of glycerol to 3-hydroxy-propionaldehyde and water. Exemplary glycerol dehydratases are encoded by dhaB of Klebsiella pneumoniae (Wang et al, Biotechnol J. 2(6):736-42, (2007)) and by dhaB of Citrobacter freundii (Seyfried et al, J Bacteriol. 178(19):5793-6 (1996)). Enoyl-CoA hydratases catalyze the hydration of the double bond between the second and third carbons on acyl-CoA (EC 4.2.1.17). Enoyl-CoA hydratases are involved in the breakdown of fatty acids. Exemplary enoyl-CoA hydratases are encoded by phaJ1 of Pseudomonas putida (Vo et al, J. Biosci. Bioeng. 106 (1), 95-98 (2008)), and paaF of Escherichia coli (Teufel et al, Proc Natl Acad Sci USA. 107(32):14390-5 (2010)).
-
Protein GenBank ID GI Number Organism dmdA ABC88408 86278276 Eubacterium barkeri dmdB ABC88409.1 86278277 Eubacterium barkeri LeuC 4KP1_A 635576713 Methanococcus jannaschii LeuD Q58673.1 3122345 Methanococcus jannaschii fumA NP_416129.1 16129570 Escherichia coli fumC NP_416128.1 16129569 Escherichia coli fumC BAB98403.1 21323777 Corynebacterium glutamicum phJl ABP99034.1 145967354 Pseudomonas putida paaF P76082.1 2494240 Escherichia coli dhaB YP_002236501.1 206579582 Klebsiella pneumoniae dhaB AAB48850.1 493087 Citrobacter freundii - Bifunctional enzymes with dehydratase and isomerase activities are suitable for dehydrating and rearranging alcohols to alkenes as shown in
FIGS. 1-4 . This type of enzyme is required to convert 2-hydroxypent-3-enoate to 2,4-pentadienoate (Step G ofFIG. 1 ) and crotyl alcohol to butadiene (FIG. 1M andFIG. 4H ). For example, transformation 1 G can be catalyzed by the isomerization of 2-hydroxypent-3-enoate to 4-hydroxypent-2-enoate, followed by a dehydration of 4-hydroxypent-2-enoate to 2,4-pentadienoate. An exemplary bifunctional enzyme with isomerase and dehydratase activities is the linalool dehydratase/isomerase of Castellaniella defragrans. This enzyme catalyzes the isomerization of geraniol to linalool and the dehydration of linalool to myrcene, reactants similar in structure to CrotOH, MVC, 2-hydroxypent-3-enoate, butadiene and 2,4-pentadienoate and is also active on crotyl alcohol (Brodkorb et al, J Biol Chem 285:30436-42 (2010)). Enzyme accession numbers and homologs are listed in the table below. -
GI Protein GenBank ID Number Organism Ldi E1XUJ2.1 403399445 Castellaniella defragrans CGGC5_10771 ELA28661.1 429853596 Colletotrichum gloeosporioides Nara gc5 UCRPA7_8726 EON95759.1 500251895 Togninia minima UCRPA7 UCRNP2_8820 EOD44468.1 485917493 Neofusicoccum parvum UCRNP2 STEHIDRAFT_ EIM80109.1 389738914 Stereum hirsutum 68678 FP-91666 SS1 NECHADRAFT_ XP_003040778.1 302883759 Nectria haematococca 82460 mpVI 77-13-4 AS9A_2751 YP_004493998.1 333920417 Amycolicicoccus subflavus DQS3-9A1 - Alternatively, a fusion protein or protein conjugate can be generated using well know methods in the art to generate a bi-functional (dual-functional) enzyme having both the isomerase and dehydratase activities. The fusion protein or protein conjugate can include at least the active domains of the enzymes (or respective genes) of the isomerase and dehydratase reactions. For the first step, the conversion of CrotOH to 3-buten-2-ol or 2-hydroxypent-3-enoate to 2,4-pentadienoate, enzymatic conversion can be catalyzed by a CrotOH or 2-hydroxypent-3-enoate isomerase (classified as EC 5.3.3 and EC 5.4.4). A similar isomerization, the conversion of 2-methyl-MVC to 3-methyl-2-buten-1-ol, is catalyzed by cell extracts of Pseudomonas putida MB-1 (Malone et al, AEM 65 (6): 2622-30 (1999)). The extract may be used in vitro, or the protein or gene(s) associated with the isomerase activity can be isolated and used, even though they have not been identified to date. Alternatively, either or both steps can be done by chemical conversion, or by enzymatic conversion (in vivo or in vitro), or any combination. Crotyl alcohol can be converted to butadiene by chemical dehydration in the presence of a chemical catalyst. For example see international patent application publication WO2012106516A1.
- Linalool dehydratase/isomerase, Genbank ID number 403399445, was cloned from Castellaniella defragrans 65Phen into a plasmid suitable for expression in E. coli, plasmid pZS*13S obtained from R. Lutz (Expressys, Germany) and are based on the pZ Expression System (Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-12 regulatory elements. Nucleic Acids Res. 25, 1203-1210 (1997)).
- E. coli variants were transformed with the expression plasmid and selected and maintained using antibiotic selection with carbenicillin. The day before the experiment, 1 mL overnight cultures in LB-antibiotic were inoculated and grown with a breathable seal in 24 well plate at 37° C. Overnight cultures were seeded at OD600=0.05 into fresh 2 mL M9+4% glucose+antibiotic+IPTG+10 mM crotyl alcohol into 10 ml screw-cap bottles. Bottles were incubated for 48 hours at 37° C. and 1,3-butadiene production was validated by headspace analysis by GC-MS. In the absence of enzyme, no production of 1,3-butadiene was observed.
- Vinylisomerase catalyzes the conversion of Crotyl alcohol to MVC (1K, 4F), 2-hydroxypent-3-enoate to 4-hydroxypent-2-enoate (1U), 3-hydroxypent-4-enoyl-CoA to 5-hydroxypent-2-enoyl-CoA (2M) and 2-hydroxypent-4-enoate to 5-hydroxypent-2-enoate (2E). The conversion of 3-buten-1-ol to crotyl alcohol can be carried out by vinyl-isomerases (see
FIG. 2 Step S). The conversion of 3-buten-2-ol to crotyl alcohol can be carried out by vinyl-isomerases (seeFIG. 1 Step W andFIG. 3 Step O). The enzymes described below naturally possess such activity or can be engineered to exhibit this activity. Intramolecular oxidoreductases that shift carbon-carbon double bonds from one position to another are found in the EC 5.3.3 enzyme class. The table below lists several useful enzymes in EC 5.3.3. -
Enzyme Commission No. Enzyme Name 5.3.3.2 Isopentenyl-diphosphate Δ-isomerase 5.3.3.3 Vinylacetyl-CoA Δ-isomerase 5.3.3.6 Methylitaconate Δ-isomerase 5.3.3.7 Aconitate Δ-isomerase 5.3.3.8 Dodecenoyl-CoA isomerase 5.3.3.10 5-carboxymethyl-2-hydroxymuconate Δ-isomerase 5.3.3.11 Isopiperitenone Δ-isomerase 5.3.3.13 Polyenoic fatty acid isomerase 5.3.3.14 Trans-2-decenoyl-[acyl-carrier-protein] isomerase - Particularly useful enzymes include isopentenyl-diphosphate Δ-isomerase, vinylacetyl-CoA Δ-isomerase and methylitaconate Δ-isomerase. Enzymes candidates are described below. Also useful is the vinylisomerase activity of linalool dehydratase.
- Isopentenyl diphophaste isomerases catalyze the interconversion of isopentenyl diphosphate and dimethylallyl diphosphate, but can also catalyze the interconversion of CrotOH to MC (EC 5.3.3.2). Exemplary isopentenyl diphophaste isomerases are encoded by IDI-2 of Thermus thermophilus (Sharma et al, Biochemistry 49(29): 6228-6233 (2010)), idi of Xanthophyllomyces dendrorhous and idi of Haematococcus pluvialis (Kajiwara et al, Biochem J 324(Pt 2): 421-426 (1997)). Crystal structures have been determined for the isopentenyl diphophaste isomerases from Escherichia coli (Durbecq et al, EMBO J 20(7): 1530-1537 (2001)) and from Methanocaldococcus jannaschii (Hoshino et al, Acta Crystallogr Sect F Struct Biol Cryst Commun 67(Pt 1): 101-103 (2011)). Enzyme accession numbers and homologs are listed in the table below.
-
Protein GenBank ID GI Number Organism IDI-2 YP_006050 46255138 Thermus thermophilus IDI NP_247857 15668172 Methanocaldococcus jannaschii DSM 2661 IDI NP_417365.1 16130791 Escherichia coli IDI AB019035.1 3790385 Xanthophyllomyces dendrorhous IDI BAA33978.1 3790384 Haematococcus pluvialis IPI XP 003063615 303289255 Micromonas pusilla CCMP1545 - Vinylacetyl-CoA Δ-isomerases catalyze the conversion of vinylacetyl-CoA to crotonyl-CoA (EC 5.3.3.3). Exemplary vinylacetyl-CoA Δ-isomerases are encoded by AbfD of Clostridium kluyveri (Scherf et al, Arch Microbiol 161(3):239-45 (1994)), abfD of Clostridium aminobutyricum (Scherf et al, Eur J Biochem 215(2):421-9 (1993)), and Msed_1321 of Metallosphaera sedula (Auemik et al, Appl Environ Microbiol 74(3):682-92 (2008)).
-
Protein GenBank ID GI Number Organism AbfD YP_001396399 153955634 Clostridium kluyveri abfD P55792.3 84028213 Clostridium aminobutyricum Msed_1321 ABP95479.1 145702337 Metallosphaera sedula - Methylitaconate Δ-isomerases catalyze the isomerization of itaconate (methylenesuccinate) to citraconate (methylmaleate) (EC 5.3.3.6). An exemplary methylitaconate Δ-isomerase is encoded by mii from Eubacterium barkeri (Alhapel et al, Proc Natl Acad Sci USA 103(33):12341-6 (2006)) and the crystal structure of this 3-methylitaconate-delta-isomerase has been determined (Velarde et al, J Mol Biol 391(3):609-20 (2009)). Enzyme accession numbers and homologs are listed in the table below.
-
Protein GenBank ID GI Number Organism Mii Q0QLE6.1 122953534 Eubacterium barkeri WP_024729903 WP_024729903.1 639739165 Clostridiales bacterium WP_021167098 WP_021167098.1 544738199 Sporomusa ovata - Alcohol mutases that catalyze the conversion of 2-hydroxypent-4-enoate to 5-hydroxypent-2-enoate (2E) and 2-hydroxypent-4-enoate to 3-hydroxypent-4-enoate (2H) are found in the EC 5.4.4 enzyme class, which include isomerases that transfer hydroxyl groups. Exemplary isomerase enzymes suitable for the conversion of 2-hydroxypent-4-enoate to 5-hydroxypent-2-enoate include isochorismate synthase (EC 5.4.4.2) and geraniol isosmerase (EC 5.4.4.4). Isochorismate synthase catalyzes the isomerization of chorismate to isochorismate and encodes for essential components of the respiratory chain. Exemplary isochorismate synthases are encoded by menF and dhbC of Bacillus subtilis (Rowland et al, J Bacteriol. 178(3):854-61 (1996)) and by menF of Escherichia coli (Daruwala et al, J Bacteriol. 179(10):3133-8 (1997)). Geraniol isomerase catalyzes the isomerization of (3S)-linalool to geraniol. Exemplary geraniol isomerase is encoded by Ldi of Castellaniella defragrans (Brodkorb et al, J Biol Chem 285:30436-42 (2010)). Enzyme accession numbers and homologs are listed in the table below.
-
Protein GenBank ID GI Number Organism menF NP_391077 16080250 Bacillus subtilis dhbC NP_391079 255767733 Bacillus subtilis menF NP_416768 90111411 Escherichia coli Ldi E1XUJ2.1 403399445 Castellaniella defragrans CGGC5_10771 ELA28661.1 429853596 Colletotrichum gloeosporioides Nara gc5 UCRPA7_8726 EON95759.1 500251895 Togninia minima UCRPA7 - Alkenol synthase catalyzes the conversion of 2-butenyl-4-phosphate and 2-butenyl-4-diphosphate to 3-buten-2-ol or MVC (4D and 4E respectively). The enzymes described below naturally possess such activity or can be engineered to exhibit this activity. Particularly useful enzymes include methylbutenol (MBO) synthase, linalool synthase and nerolidol synthase. Enzyme candidates are described below and found within EC 4.2.3.
- Methylbutenol synthase naturally catalyzes the conversion of dimethylallyl diphosphate to methylbutenol, but can also catalyze the synthesis of 3-buten-2-ol or MVC from 2-butenyl-4-phosphate and 2-butenyl-4-diphosphate. An exemplary methylbutenol synthase is encoded by Tps-MBO1 of Pinus sabiniana (Gray et al, J Biol Chem. 286(23):20582-90 (2011)). Linalool synthases catalyze the conversion of geranyl diphosphate to linalool. Exemplary R- (EC 4.2.3.26) and S-linalool synthases (EC 4.2.3.25) are encoded by AY083653 of Mentha citrata (Crowell et al, Arch Biochem Biophys., 405(1):112-21 (2002)) and by Lis of Clarkia breweri (Dudareva et al, Plant Cell. 8(7): 1137-1148 (1996)), respectively. (3S, 6E)-nerolidol synthase (EC 4.2.3.48) catalyze the conversion of farnesyl diphosphate to nerolidol. An exemplary (3S, 6E)-nerolidol synthase is encoded by MtTps3 of Medicago truncatula (Arimura et al, Planta. 227(2):453-64 (2008)). Enzyme accession numbers and homologs are listed in the table below.
-
Protein GenBank ID GI Number Organism Tps-MBO1 AEB53064 328834891 Pinus sabiniana Tps-MBO3 AFJ73583.1 387233228 Picea pungens AY083653 AY083653 22900831 Mentha citrata Lis Q96376 75251076 Clarkia breweri MtTps3 AAV36466 54634934 Medicago truncatula Pttps3 AEI52903 336318893 Populus trichocarpa - Butadiene Synthase (Monophosphate) or BDS
- BDS (monophosphate) catalyzes the conversion of 2-butenyl-4-phosphate to 1,3-butadiene (Step 4J). BDS enzymes described above for Step C in the EC 4.2.3 enzyme class may possess such activity or can be engineered to exhibit this activity.
- PadA1 (GI number: 1165293) and OhbA1 (GI number: 188496963) encoding phenylacrylate decarboxylase from S. cerevisiae were codon optimized by DNA 2.0 and were cloned by DNA 2.0 into the following vectors suitable for expression in E. coli, pD424-NH and pD441-NH respectively (DNA 2.0 Inc.). The genes were tested for decarboxylation of 2,4-pentadienoate and the enzymatic reactions were carried out under the following conditions:
- 1.5 mg/ml lysate of E. coli DH5α cells containing decarboxylase from S. cerevisiae
- The control reactions with lysate in the absence of substrate were conducted in parallel. 100 μL reactions were incubated overnight with shaking (175 rpm) at 25° C. in 1.5 ml gas-tight vials. Headspace GCMS analysis was carried out on a 7890A GC with 5975C inert MSD using a GS-GASPRO column, 30 m×0.32 mm (Agilent Technologies). Static headspace sample introduction was performed on a CombiPAL autosampler (CTC Analytics) following 2 min incubation at 45 C. The presence of 1,3-butadiene was evaluated and the enzymatic reaction product was identified by direct comparison with a standard of 1,3-butadiene (Sigma). GC/MS analysis showed the production of 1,3-butadiene from the enzymatic samples but not from the lysate alone controls.
- While no butadiene formation was detected with the no substrate-control, butadiene was measured when 2,4-PD was added as a substrate.
- Genes expressing acetyl-CoA reductase (bphJ from Burkholderia xenovorans LB400, GI no: 520923), 4-hydroxy 2-oxovalerate aldolase (bphI from Burkholderia xenovorans LB400, GI no: 520924), 4-hydroxy 2-oxovalerate decarboxylase (kdc from Mycobacterium tuberculosis BcG H37Rv, GI no: 614088617), and alcohol dehydrogenase (yjgB from Chronobacter sakazakii, GI no: 387852894) were cloned into a plasmid suitable for expression in E. coli, plasmid pZA23S (kanamycin resistance marker, p15A origin of replication) obtained from R. Lutz (Expressys, Germany) and are based on the pZ Expression System (Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-12 regulatory elements. Nucleic Acids Res. 25, 1203-1210 (1997)).
- E. coli (MG1655 variants) cells were transformed with the expression plasmid and selected and maintained using antibiotic selection with Kanamycin. Cells were grown for 72 hours in LB media with kanamycin and IPTG at 37° C. then harvested by centrifugation. The formation of a 4-carbon diol derived from 3-hydroxybutyraldehyde using glucose as the carbon substrate was measured (data not shown) while the empty vector control did not make any 4-carbon diol.
- Isoprene synthase, E.C. 4.2.3.27, Genbank ID number 63108310, was cloned from Populus alba into a plasmid suitable for expression in E. coli, plasmid pZS*13S (Expressys, Germany).
- E. coli (MG1655 variants) were transformed with the expression plasmid and selected and maintained using antibiotic selection with carbenicillin. Cells were grown in Terrific Broth with carbenicillin to an OD of 0.8 and then gene expression induced by IPTG addition then harvested by centrifugation. Lysis was performed using microfluidization at 0° C. Streptactin-tagged isoprene synthase was isolated from the cell lysate using Streptactin-Sepharose purification. Purified enzyme was tested for its ability to convert its native substrate, dimethylallyl diphosphate, into isoprene, and for its ability to convert crotyl diphosphate into 1, 3-butadiene, by incubating purified enzyme with each substrate in sealed screw-cap vials for a period of time before analysis of product in headspace of vial by GC-MS. Fidelity of purified enzyme was confirmed by detection of isoprene. Activity on crotyl diphosphate was confirmed by detection of butadiene. In the absence of enzyme, no butadiene was formed (data not shown).
- Isopentenyl phosphate kinase, E.C. 2.7.4.26, Genbank ID number 2621082, was cloned from Methanobacterium thermoautotrophicum gi12621082 into a plasmid suitable for expression in E. coli, plasmid pZS*13S obtained from R. Lutz (Expressys, Germany) and are based on the pZ Expression System (Lutz, R. & Bujard, H., Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203-1210 (1997)).
- E. coli (MG1655 variants) were transformed with the expression plasmid and selected and maintained using antibiotic selection with carbenicillin. Cells were grown in LB media with carbenicillin and IPTG at 37° C. then harvested by centrifugation. Lysis was performed using a chemical lysis procedure, and lysate the cooled to 4° C. Streptactin-tagged isopentenyl phosphate kinase was isolated from the cell lysate using Streptactin-Sepharose purification. Activity measurements on native substrate, isopentenyl phosphate, were performed to verify fidelity of the purified enzyme, using a pyruvate kinase-lactate dehydrogenase coupled assay to couple ADP formation from ATP to NADH oxidation. The same assay procedure was used to demonstrate robust activity on crotyl phosphate. In the absence of enzyme, no conversion of crotyl phosphate to crotyl diphosphate was observed (data not shown).
- Isopentenyl-diphosphate DELTA-isomerase (IPP isomerase), E.C. 5.3.3.2, Genbank ID number 3790386, was cloned from Xanthophyllomyces dendrorhous into a plasmid suitable for expression in E. coli, plasmid pZS*13S obtained from R. Lutz (Expressys, Germany) and are based on the pZ Expression System (Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203-1210 (1997)).
- E. coli (MG1655 variants) were transformed with the expression plasmid and selected and maintained using antibiotic selection with carbenicillin. Cells were grown in LB media with carbenicillin and IPTG at 37° C. then harvested by centrifugation. Cell lysates containing the IPP isomerase from Xanthophyllomyces dendrorhous were generated by sonicating cells resuspended in 100 mM Tris, 50 mM KCl, 5 mM MgSO4, pH 7.2, and 5 mM DTT. 50 mM CrotOH was added to resulting cell lysate at 2.3 mg/ml total protein, and the reaction mixture incubated at 25° C. for 16 hours. The product of the isomerization reaction, MVC or 3-buten-2-ol, was detected at 1.2 mM by GCMS. In cell lysates devoid of the IPP isomerase, there was no detectable conversion of CrotOH to 3-buten-2-ol.
- MVC or 3-buten-2-ol was measured using headspace analysis on an Agilent 7890A GC equipped with a CTC-PAL autosampler and a MSD (5975C). Samples were diluted 2-fold in 100% methanol to a total volume of 0.100 mL, and transferred into glass inserts in 1.5 mL GC vials. Samples were injected by a Combi PAL CTC autosampler operated in direct injection mode with an injection volume of 1.0 μL (split ratio 20:1) and 200° C. inlet temperature. Helium was used as a carrier gas, and the flow rate maintained at 1.28 mL/min. The oven temperature is initially held at 100° C. for 1 minute, then ramping 100° C./min to 230° C., for 3 minutes. The MVC or 3-buten-2-ol concentration in samples were calculated from calibration curves generated from diluted MVC standards analyzed under the same GCMS method.
- The results of this example are presented in
FIGS. 5 and 6 in the attached slide deck. Minimal media containing 1 mM MVC or 3-buten-2-ol without E. coli cells showed a peak at 3.24 minutes corresponding to MVC or 3-buten-2-ol. Cell lysates containing 50 mM CrotOH and the IPP isomerase from Xanthophyllomyces dendrorhous showed a peak at 3.24 minutes corresponding to MVC or 3-buten-2-ol (FIG. 6 ). In contrast, cell lysates devoid of the IPP isomerase show no detectable MVC or 3-buten-2-ol production (data not shown). These results demonstrate that cell lysates of E. coli harboring the IPP isomerase from Xanthophyllomyces dendrorhous, isomerize CrotOH to MC or 3-buten-2-ol. - Alcohol dehydrogenase, Genbank ID number 407959257, was cloned from Synechocystis sp. PCC 6803 into a plasmid suitable for expression in E. coli, plasmid pZS*13S obtained from R. Lutz (Expressys, Germany) and are based on the pZ Expression System (Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203-1210 (1997)).
- E. coli (MG1655 variants) were transformed with the expression plasmid and selected and maintained using antibiotic selection with carbenicillin. Cells were grown in LB media with carbenicillin and IPTG at 37° C. then harvested by centrifugation. Lysis was performed using a chemical lysis procedure, and lysate was then cooled to 4° C. Streptactin-tagged alcohol dehydrogenase was isolated from the cell lysate using Streptactin-Sepharose purification. Activity measurements assessing the NADPH-dependent reduction of crotonaldehyde to crotonol were performed. The alcohol dehydrogenase from Synechocystis sp. PCC 6803 was found to have a KM value of 0.16 mM and a Kcat of at least 36 s-1. In the absence of enzyme, no reduction of crotonaldehyde to crotonol was observed.
Claims (21)
1-23. (canceled)
24. A non-naturally occurring microbial organism having a pathway to butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-1-ol, said microbial organism comprising at least one exogenous nucleic acid encoding a pathway enzyme, the enzyme selected from the group consisting of (2E) 2-hydroxypent-4-enoate vinylisomerase, (2H) 2-hydroxypent-4-enoate mutase, and (2M) 3-hydroxypent-4-enoyl-CoA vinylisomerase.
25. The non-naturally occurring microorganism of claim 24 , further comprising a nucleic acid encoding an enzyme selected from an alcohol dehydrogenase, an acyl-CoA reductase, a CoA transferase, a CoA hydrolase, a decarboxylase, an aldolase, a dehydratase, an isomerase, a CoA synthetase, an alcohol mutase, or combinations thereof.
26. The non-naturally occurring microorganism of claim 24 , further comprising one or more nucleic acid(s) encoding an enzyme selected from (2A) acetyl-CoA reductase, (2B) 4-hydroxy 2-oxovalerate aldolase, (2C) 4-hydroxy 2-oxovalerate dehydratase, and (2D) 2-oxopent-4-enoate reductase.
27. The non-naturally occurring microorganism of claim 24 , wherein the enzyme is (2E) 2-hydroxypent-4-enoate vinylisomerase.
28. The non-naturally occurring microorganism of claim 27 , further comprising a nucleic acid encoding one or more enzyme(s) selected from (2P) 5-hydroxypent-2-enoate decarboxylase and (2Q) 3-buten-1-ol dehydratase or further comprising a nucleic acid encoding one or more enzyme(s) selected from (2P) 5-hydroxypent-2-enoate decarboxylase and (2S) vinylisomerase.
29. The non-naturally occurring microorganism of claim 27 , further comprising a nucleic acid encoding one or more enzyme(s) selected from (2F) 5-hydroxypent-2-enoate dehydratase and (2G) 2,4-pentadienoate decarboxylase.
30. The non-naturally occurring microorganism of claim 24 , wherein the enzyme is (2H) 2-hydroxypent-4-enoate mutase.
31. The non-naturally occurring microorganism of claim 30 , further comprising a nucleic acid encoding one or more enzyme(s) selected from (2R) 3-hydroxypent-4-enoate dehydratase and (2G) 2,4-pentadienoate decarboxylase.
32. The non-naturally occurring microorganism of claim 30 , further comprising a nucleic acid encoding (2K) 3-hydroxypent-4-enoate decarboxylase.
33. The non-naturally occurring microorganism of claim 30 , further comprising a nucleic acid encoding one or more enzyme(s) selected from (2L) 3-hydroxypent-4-enoyl-CoA synthetase or transferase, (2M) 3-hydroxypent-4-enoyl-CoA vinylisomerase, (2 I 5-hydroxypent-2-enoyl-CoA synthetase, transferase or hydrolase (2F) 5-hydroxypent-2-enoate dehydratase, and (2G) 2,4-pentadienoate decarboxylase.
34. The non-naturally occurring microorganism of claim 30 , further comprising a nucleic acid encoding one or more enzyme(s) selected from (2L) 3-hydroxypent-4-enoyl-CoA synthetase or transferase, (2M) 3-hydroxypent-4-enoyl-CoA vinylisomerase, (2N) 2,4-pentadienoyl-CoA synthetase, (2 J) 2,4-pentadienoyl-CoA synthetase, transferase or hydrolase, and (2G) 2,4-pentadienoate decarboxylase.
35. The non-naturally occurring microorganism of claim 30 , further comprising a nucleic acid encoding one or more enzyme(s) selected from (2L) 3-hydroxypent-4-enoyl-CoA synthetase or transferase, (2O) 3-hydroxypent-4-enoyl-CoA dehydratase, (2 J) 2,4-pentadienoyl-CoA synthetase, transferase or hydrolase, and (2G) 2,4-pentadienoate decarboxylase.
36. The non-naturally occurring microbial organism of claim 24 having a pathway to convert pyruvate and acetyl-CoA to butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-1-ol.
37. The non-naturally occurring microorganism of claim 24 wherein any one or more nucleic acid(s) is an exogenous nucleic acid.
38. A method for the production of butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-1-ol, comprising culturing the non-naturally occurring microorganism of claim 24 under conditions to produce butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-1-ol.
39. The method for the production of butadiene, crotyl alcohol, 2,4-pentadienoate, or 3-buten-1-ol of claim 38 , wherein the culturing comprises substantially anaerobic conditions.
40. A non-naturally occurring microbial organism having a pathway to butadiene, 2,4-pentadienoate, or 3-buten-2-ol, said microbial organism comprising at least one exogenous nucleic acid encoding a pathway enzyme, the enzyme selected from the group consisting of (3D) 3,4-dihydroxypentanoate dehydratase, (3E) 4-hydroxypent-2-enoate decarboxylase (3H) 3,4-dihydroxypentanoyl-CoA dehydratase, and (3J) 4-hydroxypent-2-enoyl-CoA transferase.
41-44. (canceled)
45. A non-naturally occurring microbial organism having a pathway to butadiene or 3-buten-2-ol, said microbial organism comprising at least one exogenous nucleic acid encoding a pathway enzyme, the enzyme selected from the group consisting of (4D) 3-buten-2-ol synthase, (4E) 3-buten-2-ol synthase, and (4F) crotyl alcohol isomerase.
46-72. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/888,339 US20210002673A1 (en) | 2014-07-03 | 2020-05-29 | Microorganisms for producing 4c-5c compounds with unsaturation and methods related thereto |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462020901P | 2014-07-03 | 2014-07-03 | |
| US201462082747P | 2014-11-21 | 2014-11-21 | |
| PCT/US2015/039037 WO2016004334A1 (en) | 2014-07-03 | 2015-07-02 | Microorganisms for producing 4c-5c compounds with unsaturation and methods related thereto |
| US201615323360A | 2016-12-30 | 2016-12-30 | |
| US16/888,339 US20210002673A1 (en) | 2014-07-03 | 2020-05-29 | Microorganisms for producing 4c-5c compounds with unsaturation and methods related thereto |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/039037 Continuation WO2016004334A1 (en) | 2014-07-03 | 2015-07-02 | Microorganisms for producing 4c-5c compounds with unsaturation and methods related thereto |
| US15/323,360 Continuation US10669561B2 (en) | 2014-07-03 | 2015-07-02 | Microorganisms for producing 4C-5C compounds with unsaturation and methods related thereto |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20210002673A1 true US20210002673A1 (en) | 2021-01-07 |
Family
ID=55020005
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/323,360 Active 2036-01-18 US10669561B2 (en) | 2014-07-03 | 2015-07-02 | Microorganisms for producing 4C-5C compounds with unsaturation and methods related thereto |
| US16/888,339 Abandoned US20210002673A1 (en) | 2014-07-03 | 2020-05-29 | Microorganisms for producing 4c-5c compounds with unsaturation and methods related thereto |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/323,360 Active 2036-01-18 US10669561B2 (en) | 2014-07-03 | 2015-07-02 | Microorganisms for producing 4C-5C compounds with unsaturation and methods related thereto |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US10669561B2 (en) |
| EP (2) | EP3164495B1 (en) |
| WO (1) | WO2016004334A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113122563A (en) * | 2021-04-22 | 2021-07-16 | 洛阳华荣生物技术有限公司 | Method for constructing R-3-aminobutyric acid production strain |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20190012145A (en) | 2016-03-29 | 2019-02-08 | 젤터, 인코포레이티드 | Expression of proteins in Gram-negative bacteria with a ratio of peripheral cytoplasmic volume to cytoplasmic volume of 0.5: 1 to 10: 1 |
| US11180541B2 (en) | 2017-09-28 | 2021-11-23 | Geltor, Inc. | Recombinant collagen and elastin molecules and uses thereof |
| CN113355367B (en) * | 2018-03-22 | 2024-03-26 | 浙江工业大学 | Application of keto acid reductase in the synthesis of chiral aromatic 2-hydroxy acids |
| JP7777451B2 (en) | 2019-04-12 | 2025-11-28 | ジェルター, インコーポレイテッド | Recombinant elastin and its production |
| CN112831427B (en) * | 2021-01-20 | 2022-08-23 | 山东大学 | Yarrowia lipolytica for high yield of beta-carotene and application thereof |
| CN116790698B (en) * | 2023-06-21 | 2024-06-18 | 南京大学 | Thialdehyde synthesis method based on oxidative decarboxylase and its application |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3090816A (en) | 1963-05-21 | Isomerization of alkylene oxide | ||
| US3090815A (en) | 1963-05-21 | Isomerization of alkylene oxide | ||
| US3542883A (en) | 1966-08-10 | 1970-11-24 | Costin Nenitescu | Process for isomerization of 1,2-alkylene oxides |
| US5958745A (en) | 1996-03-13 | 1999-09-28 | Monsanto Company | Methods of optimizing substrate pools and biosynthesis of poly-β-hydroxybutyrate-co-poly-β-hydroxyvalerate in bacteria and plants |
| WO2008119735A1 (en) | 2007-04-02 | 2008-10-09 | Georg-August-Universität Göttingen | Method of producing hydroxy fatty acids |
| EP2017344A1 (en) | 2007-07-20 | 2009-01-21 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Production of itaconic acid |
| US7947483B2 (en) | 2007-08-10 | 2011-05-24 | Genomatica, Inc. | Methods and organisms for the growth-coupled production of 1,4-butanediol |
| JP2011518564A (en) | 2008-04-23 | 2011-06-30 | ダニスコ・ユーエス・インク | Isoprene synthase mutants for isoprene production by improved microorganisms |
| US9909146B2 (en) | 2008-07-04 | 2018-03-06 | Scientist Of Fortune S.A. | Production of alkenes by enzymatic decarboxylation of 3-hydroxyalkanoic acids |
| WO2010031079A1 (en) | 2008-09-15 | 2010-03-18 | Danisco Us Inc. | Systems using cell culture for production of isoprene |
| JP5585098B2 (en) | 2009-03-06 | 2014-09-10 | 日産自動車株式会社 | Non-contact power supply apparatus and method |
| EP2336341A1 (en) | 2009-12-21 | 2011-06-22 | Philippe Marliere | Method for producing an alkene comprising the step of converting an alcohol by an enzymatic dehydration step |
| RU2012138943A (en) | 2010-02-12 | 2014-03-20 | Джево, Инк. | THE YEAST MICRO-ORGANISMS WITH THE REDUCED ACCUMULATION OF BY-PRODUCTS FOR THE IMPROVED PRODUCTION OF FUELS, CHEMICALS AND AMINO ACIDS |
| JP2013535203A (en) * | 2010-07-26 | 2013-09-12 | ジェノマティカ・インコーポレイテッド | Microorganisms and methods for biosynthesis of aromatic, 2,4-pentadienoate and 1,3-butadiene |
| MX348334B (en) | 2011-02-02 | 2017-06-07 | Genomatica Inc | Microorganisms and methods for the biosynthesis of butadiene. |
| US9663801B2 (en) | 2011-06-17 | 2017-05-30 | Invista North America S.A.R.L. | Methods of producing four carbon molecules |
| SG11201400113XA (en) * | 2011-08-19 | 2014-08-28 | Genomatica Inc | Microorganisms and methods for producing 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol and related alcohols |
| CN104321434A (en) * | 2011-12-02 | 2015-01-28 | 英威达技术有限责任公司 | Methods for biosynthesizing 1,3butadiene |
| JP2024013009A (en) | 2022-07-19 | 2024-01-31 | 清水建設株式会社 | Generation system, learning device, generation device, generation method, and program |
-
2015
- 2015-07-02 WO PCT/US2015/039037 patent/WO2016004334A1/en not_active Ceased
- 2015-07-02 EP EP15815561.4A patent/EP3164495B1/en active Active
- 2015-07-02 EP EP24159396.1A patent/EP4389904A3/en active Pending
- 2015-07-02 US US15/323,360 patent/US10669561B2/en active Active
-
2020
- 2020-05-29 US US16/888,339 patent/US20210002673A1/en not_active Abandoned
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113122563A (en) * | 2021-04-22 | 2021-07-16 | 洛阳华荣生物技术有限公司 | Method for constructing R-3-aminobutyric acid production strain |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3164495A4 (en) | 2017-12-13 |
| US20170166931A1 (en) | 2017-06-15 |
| EP4389904A3 (en) | 2024-10-30 |
| EP3164495B1 (en) | 2024-02-28 |
| EP4389904A2 (en) | 2024-06-26 |
| WO2016004334A1 (en) | 2016-01-07 |
| EP3164495A1 (en) | 2017-05-10 |
| US10669561B2 (en) | 2020-06-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20230126921A1 (en) | Non-natural microbial organisms with improved energetic efficiency | |
| US20200385763A1 (en) | Microorganisms and methods for producing 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol and related alcohols | |
| US20210002673A1 (en) | Microorganisms for producing 4c-5c compounds with unsaturation and methods related thereto | |
| EP2607340B1 (en) | Microorganisms and methods for the biosynthesis of aromatics, 2,4-pentadienoate and 1,3-butadiene | |
| US20210238609A1 (en) | Microorganisms and methods for producing butadiene and related compounds by formate assimilation | |
| US20220220511A1 (en) | Microorganisms and methods for producing butadiene and related compounds by formate assimilation | |
| AU2013202930B2 (en) | Microorganisms and methods for producing 1,3-butanediol and related alcohols |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |