US20200392270A1 - Sulfonate group-containing polymer and method of producing the same - Google Patents
Sulfonate group-containing polymer and method of producing the same Download PDFInfo
- Publication number
- US20200392270A1 US20200392270A1 US16/985,996 US202016985996A US2020392270A1 US 20200392270 A1 US20200392270 A1 US 20200392270A1 US 202016985996 A US202016985996 A US 202016985996A US 2020392270 A1 US2020392270 A1 US 2020392270A1
- Authority
- US
- United States
- Prior art keywords
- structural unit
- mass
- sulfonate group
- monomer
- copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 title claims abstract description 167
- 229920000642 polymer Polymers 0.000 title claims description 140
- 238000000034 method Methods 0.000 title description 36
- 239000000178 monomer Substances 0.000 claims abstract description 344
- 229920001577 copolymer Polymers 0.000 claims abstract description 294
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 75
- 125000005702 oxyalkylene group Chemical group 0.000 claims abstract description 74
- 239000002253 acid Substances 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 77
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 66
- 239000007787 solid Substances 0.000 claims description 56
- 238000006386 neutralization reaction Methods 0.000 claims description 55
- -1 polyoxyethylene Polymers 0.000 claims description 39
- 150000003839 salts Chemical class 0.000 claims description 37
- 238000012360 testing method Methods 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 21
- 239000002689 soil Substances 0.000 claims description 21
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 20
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 19
- 239000004094 surface-active agent Substances 0.000 claims description 18
- 125000002947 alkylene group Chemical group 0.000 claims description 17
- 238000005406 washing Methods 0.000 claims description 12
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 11
- 229910052708 sodium Inorganic materials 0.000 claims description 9
- 239000011734 sodium Substances 0.000 claims description 9
- 239000008233 hard water Substances 0.000 claims description 8
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 7
- 239000004744 fabric Substances 0.000 claims description 7
- 229910052700 potassium Inorganic materials 0.000 claims description 7
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 6
- 239000004927 clay Substances 0.000 claims description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 5
- 239000011976 maleic acid Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- DZSVIVLGBJKQAP-UHFFFAOYSA-N 1-(2-methyl-5-propan-2-ylcyclohex-2-en-1-yl)propan-1-one Chemical compound CCC(=O)C1CC(C(C)C)CC=C1C DZSVIVLGBJKQAP-UHFFFAOYSA-N 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- 229920000742 Cotton Polymers 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 claims description 2
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 claims description 2
- 229940052299 calcium chloride dihydrate Drugs 0.000 claims description 2
- 238000004737 colorimetric analysis Methods 0.000 claims description 2
- 239000000945 filler Substances 0.000 claims description 2
- 238000009499 grossing Methods 0.000 claims description 2
- 230000037303 wrinkles Effects 0.000 claims description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims 1
- 239000000243 solution Substances 0.000 description 151
- 230000000052 comparative effect Effects 0.000 description 104
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 96
- 239000003599 detergent Substances 0.000 description 85
- 239000000203 mixture Substances 0.000 description 72
- 238000006116 polymerization reaction Methods 0.000 description 67
- 238000006243 chemical reaction Methods 0.000 description 42
- 238000011282 treatment Methods 0.000 description 38
- 239000003795 chemical substances by application Substances 0.000 description 32
- 239000000047 product Substances 0.000 description 30
- 230000000379 polymerizing effect Effects 0.000 description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 27
- 229910001385 heavy metal Inorganic materials 0.000 description 26
- 239000000835 fiber Substances 0.000 description 22
- 239000003505 polymerization initiator Substances 0.000 description 21
- 239000007788 liquid Substances 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 19
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 17
- 238000003756 stirring Methods 0.000 description 17
- 239000011521 glass Substances 0.000 description 16
- 238000010992 reflux Methods 0.000 description 16
- 239000012986 chain transfer agent Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 239000001023 inorganic pigment Substances 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 13
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 13
- 229940048053 acrylate Drugs 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 13
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 13
- 239000002270 dispersing agent Substances 0.000 description 12
- 239000003513 alkali Substances 0.000 description 11
- 229910052742 iron Inorganic materials 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 125000006353 oxyethylene group Chemical group 0.000 description 10
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- 238000007334 copolymerization reaction Methods 0.000 description 9
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical group [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 9
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 0 [1*]C(=C)[2*]C Chemical compound [1*]C(=C)[2*]C 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 239000003999 initiator Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 150000002736 metal compounds Chemical class 0.000 description 8
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 8
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- 235000019441 ethanol Nutrition 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 229910021536 Zeolite Inorganic materials 0.000 description 6
- 150000008065 acid anhydrides Chemical class 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 6
- 125000000962 organic group Chemical group 0.000 description 6
- 239000010457 zeolite Substances 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- 239000005995 Aluminium silicate Substances 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 235000012211 aluminium silicate Nutrition 0.000 description 5
- 239000002280 amphoteric surfactant Substances 0.000 description 5
- 239000003945 anionic surfactant Substances 0.000 description 5
- 239000011203 carbon fibre reinforced carbon Chemical group 0.000 description 5
- 150000001735 carboxylic acids Chemical class 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 5
- 150000002978 peroxides Chemical class 0.000 description 5
- 150000003460 sulfonic acids Chemical class 0.000 description 5
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 4
- PMNLUUOXGOOLSP-UHFFFAOYSA-N 2-mercaptopropanoic acid Chemical compound CC(S)C(O)=O PMNLUUOXGOOLSP-UHFFFAOYSA-N 0.000 description 4
- OURSFPZPOXNNKX-UHFFFAOYSA-N 3-sulfopropanoic acid Chemical compound OC(=O)CCS(O)(=O)=O OURSFPZPOXNNKX-UHFFFAOYSA-N 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 150000003973 alkyl amines Chemical class 0.000 description 4
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 4
- 238000004061 bleaching Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 229940079826 hydrogen sulfite Drugs 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000002736 nonionic surfactant Substances 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 238000010526 radical polymerization reaction Methods 0.000 description 4
- 229940047670 sodium acrylate Drugs 0.000 description 4
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 4
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- IRLPACMLTUPBCL-KQYNXXCUSA-N 5'-adenylyl sulfate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OS(O)(=O)=O)[C@@H](O)[C@H]1O IRLPACMLTUPBCL-KQYNXXCUSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 239000003093 cationic surfactant Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 102000005575 Cellulases Human genes 0.000 description 2
- 108010084185 Cellulases Proteins 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- JEHKKBHWRAXMCH-UHFFFAOYSA-N benzenesulfinic acid Chemical compound O[S@@](=O)C1=CC=CC=C1 JEHKKBHWRAXMCH-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229960005069 calcium Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 2
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 238000009991 scouring Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 description 1
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 1
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- JKXQKGNGJVZKFA-UHFFFAOYSA-N 1-chloro-3-methylbut-2-ene Chemical compound CC(C)=CCCl JKXQKGNGJVZKFA-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical group CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- QPBYBLZYMNWGMO-UHFFFAOYSA-N 2,2,3-trimethyloxirane Chemical compound CC1OC1(C)C QPBYBLZYMNWGMO-UHFFFAOYSA-N 0.000 description 1
- GELKGHVAFRCJNA-UHFFFAOYSA-N 2,2-Dimethyloxirane Chemical compound CC1(C)CO1 GELKGHVAFRCJNA-UHFFFAOYSA-N 0.000 description 1
- PRLJMHVNHLTQJJ-UHFFFAOYSA-N 2,2-diphenyloxirane Chemical compound C1OC1(C=1C=CC=CC=1)C1=CC=CC=C1 PRLJMHVNHLTQJJ-UHFFFAOYSA-N 0.000 description 1
- PQXKWPLDPFFDJP-UHFFFAOYSA-N 2,3-dimethyloxirane Chemical compound CC1OC1C PQXKWPLDPFFDJP-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- QMYCJCOPYOPWTI-UHFFFAOYSA-N 2-[(1-amino-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidamide;hydron;chloride Chemical compound Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N QMYCJCOPYOPWTI-UHFFFAOYSA-N 0.000 description 1
- PFHOSZAOXCYAGJ-UHFFFAOYSA-N 2-[(2-cyano-4-methoxy-4-methylpentan-2-yl)diazenyl]-4-methoxy-2,4-dimethylpentanenitrile Chemical compound COC(C)(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)(C)OC PFHOSZAOXCYAGJ-UHFFFAOYSA-N 0.000 description 1
- DNYWXJPIRSNXIP-UHFFFAOYSA-N 2-bromo-1,1,1-trichloroethane Chemical compound ClC(Cl)(Cl)CBr DNYWXJPIRSNXIP-UHFFFAOYSA-N 0.000 description 1
- DILXLMRYFWFBGR-UHFFFAOYSA-N 2-formylbenzene-1,4-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(S(O)(=O)=O)C(C=O)=C1 DILXLMRYFWFBGR-UHFFFAOYSA-N 0.000 description 1
- GBHCABUWWQUMAJ-UHFFFAOYSA-N 2-hydrazinoethanol Chemical compound NNCCO GBHCABUWWQUMAJ-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 229940006193 2-mercaptoethanesulfonic acid Drugs 0.000 description 1
- CWNNYYIZGGDCHS-UHFFFAOYSA-N 2-methylideneglutaric acid Chemical compound OC(=O)CCC(=C)C(O)=O CWNNYYIZGGDCHS-UHFFFAOYSA-N 0.000 description 1
- BYDRTKVGBRTTIT-UHFFFAOYSA-N 2-methylprop-2-en-1-ol Chemical compound CC(=C)CO BYDRTKVGBRTTIT-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- OHXAOPZTJOUYKM-UHFFFAOYSA-N 3-Chloro-2-methylpropene Chemical compound CC(=C)CCl OHXAOPZTJOUYKM-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- UJTRCPVECIHPBG-UHFFFAOYSA-N 3-cyclohexylpyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C2CCCCC2)=C1 UJTRCPVECIHPBG-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- YGHRJJRRZDOVPD-UHFFFAOYSA-N 3-methylbutanal Chemical compound CC(C)CC=O YGHRJJRRZDOVPD-UHFFFAOYSA-N 0.000 description 1
- IYMZEPRSPLASMS-UHFFFAOYSA-N 3-phenylpyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C=2C=CC=CC=2)=C1 IYMZEPRSPLASMS-UHFFFAOYSA-N 0.000 description 1
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 1
- OQKITJICGXCHGS-UHFFFAOYSA-N 4-(3-formyl-4-nitrophenoxy)butanoic acid Chemical compound OC(=O)CCCOC1=CC=C([N+]([O-])=O)C(C=O)=C1 OQKITJICGXCHGS-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OSDWBNJEKMUWAV-UHFFFAOYSA-N Allyl chloride Chemical compound ClCC=C OSDWBNJEKMUWAV-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 244000233967 Anethum sowa Species 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 125000000739 C2-C30 alkenyl group Chemical group 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- PQUCIEFHOVEZAU-UHFFFAOYSA-N Diammonium sulfite Chemical compound [NH4+].[NH4+].[O-]S([O-])=O PQUCIEFHOVEZAU-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PDQAZBWRQCGBEV-UHFFFAOYSA-N Ethylenethiourea Chemical compound S=C1NCCN1 PDQAZBWRQCGBEV-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Substances FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- SKGVGRLWZVRZDC-UHFFFAOYSA-N butyl 2-sulfanylacetate Chemical compound CCCCOC(=O)CS SKGVGRLWZVRZDC-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 210000000692 cap cell Anatomy 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- ZNEWHQLOPFWXOF-UHFFFAOYSA-N coenzyme M Chemical compound OS(=O)(=O)CCS ZNEWHQLOPFWXOF-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000012718 coordination polymerization Methods 0.000 description 1
- 229940120693 copper naphthenate Drugs 0.000 description 1
- SEVNKWFHTNVOLD-UHFFFAOYSA-L copper;3-(4-ethylcyclohexyl)propanoate;3-(3-ethylcyclopentyl)propanoate Chemical compound [Cu+2].CCC1CCC(CCC([O-])=O)C1.CCC1CCC(CCC([O-])=O)CC1 SEVNKWFHTNVOLD-UHFFFAOYSA-L 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- HRKQOINLCJTGBK-UHFFFAOYSA-N dihydroxidosulfur Chemical class OSO HRKQOINLCJTGBK-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 238000004851 dishwashing Methods 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-N dithionous acid Chemical compound OS(=O)S(O)=O GRWZHXKQBITJKP-UHFFFAOYSA-N 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000004672 ethylcarbonyl group Chemical group [H]C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000004872 foam stabilizing agent Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- XNCMOUSLNOHBKY-UHFFFAOYSA-H iron(3+);trisulfate;heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O XNCMOUSLNOHBKY-UHFFFAOYSA-H 0.000 description 1
- CPJRRXSHAYUTGL-UHFFFAOYSA-N isopentenyl alcohol Chemical compound CC(=C)CCO CPJRRXSHAYUTGL-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- SGGOJYZMTYGPCH-UHFFFAOYSA-L manganese(2+);naphthalene-2-carboxylate Chemical compound [Mn+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 SGGOJYZMTYGPCH-UHFFFAOYSA-L 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- ZQMHJBXHRFJKOT-UHFFFAOYSA-N methyl 2-[(1-methoxy-2-methyl-1-oxopropan-2-yl)diazenyl]-2-methylpropanoate Chemical compound COC(=O)C(C)(C)N=NC(C)(C)C(=O)OC ZQMHJBXHRFJKOT-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 125000004674 methylcarbonyl group Chemical group CC(=O)* 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000010446 mirabilite Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- UCAOGXRUJFKQAP-UHFFFAOYSA-N n,n-dimethyl-5-nitropyridin-2-amine Chemical compound CN(C)C1=CC=C([N+]([O-])=O)C=N1 UCAOGXRUJFKQAP-UHFFFAOYSA-N 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- UIEKYBOPAVTZKW-UHFFFAOYSA-L naphthalene-2-carboxylate;nickel(2+) Chemical compound [Ni+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 UIEKYBOPAVTZKW-UHFFFAOYSA-L 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical class OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- MADOXCFISYCULS-UHFFFAOYSA-N octyl 2-sulfanylacetate Chemical compound CCCCCCCCOC(=O)CS MADOXCFISYCULS-UHFFFAOYSA-N 0.000 description 1
- LWNSNYBMYBWJDN-UHFFFAOYSA-N octyl 3-sulfanylpropanoate Chemical compound CCCCCCCCOC(=O)CCS LWNSNYBMYBWJDN-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- DJEHXEMURTVAOE-UHFFFAOYSA-M potassium bisulfite Chemical compound [K+].OS([O-])=O DJEHXEMURTVAOE-UHFFFAOYSA-M 0.000 description 1
- HEZHYQDYRPUXNJ-UHFFFAOYSA-L potassium dithionite Chemical compound [K+].[K+].[O-]S(=O)S([O-])=O HEZHYQDYRPUXNJ-UHFFFAOYSA-L 0.000 description 1
- 235000010259 potassium hydrogen sulphite Nutrition 0.000 description 1
- RWPGFSMJFRPDDP-UHFFFAOYSA-L potassium metabisulfite Chemical compound [K+].[K+].[O-]S(=O)S([O-])(=O)=O RWPGFSMJFRPDDP-UHFFFAOYSA-L 0.000 description 1
- 229940043349 potassium metabisulfite Drugs 0.000 description 1
- 235000010263 potassium metabisulphite Nutrition 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- RZKYDQNMAUSEDZ-UHFFFAOYSA-N prop-2-enylphosphonic acid Chemical compound OP(O)(=O)CC=C RZKYDQNMAUSEDZ-UHFFFAOYSA-N 0.000 description 1
- KOODSCBKXPPKHE-UHFFFAOYSA-N propanethioic s-acid Chemical compound CCC(S)=O KOODSCBKXPPKHE-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- CJGJYOBXQLCLRG-UHFFFAOYSA-M sodium;2-hydroxy-3-prop-2-enoxypropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)COCC=C CJGJYOBXQLCLRG-UHFFFAOYSA-M 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- BUUPQKDIAURBJP-UHFFFAOYSA-N sulfinic acid Chemical compound OS=O BUUPQKDIAURBJP-UHFFFAOYSA-N 0.000 description 1
- 229940117986 sulfobetaine Drugs 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- RILFGEIJJMTZLZ-UHFFFAOYSA-J tetrapotassium;dioxido-oxo-phosphonato-$l^{5}-phosphane Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)P([O-])([O-])=O RILFGEIJJMTZLZ-UHFFFAOYSA-J 0.000 description 1
- SDVHRXOTTYYKRY-UHFFFAOYSA-J tetrasodium;dioxido-oxo-phosphonato-$l^{5}-phosphane Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)P([O-])([O-])=O SDVHRXOTTYYKRY-UHFFFAOYSA-J 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229940035024 thioglycerol Drugs 0.000 description 1
- 150000003573 thiols Chemical group 0.000 description 1
- NJRXVEJTAYWCQJ-UHFFFAOYSA-N thiomalic acid Chemical compound OC(=O)CC(S)C(O)=O NJRXVEJTAYWCQJ-UHFFFAOYSA-N 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/12—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
- C08F216/14—Monomers containing only one unsaturated aliphatic radical
- C08F216/1416—Monomers containing oxygen in addition to the ether oxygen, e.g. allyl glycidyl ether
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/12—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
- C08F216/14—Monomers containing only one unsaturated aliphatic radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
- C08F220/58—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
- C08F220/58—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
- C08F220/585—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0036—Soil deposition preventing compositions; Antiredeposition agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
Definitions
- the present invention relates to a sulfonate group-containing polymer and a method of producing the sulfonate group-containing polymer. Specifically, the present invention relates to a sulfonate group-containing polymer useful as materials of detergent additives and the like, and a method of producing the sulfonate group-containing polymer.
- Detergents used for washing clothes have conventionally contained detergent builders (detergent aids) such as zeolite, carboxymethylcellulose, or polyethylene glycol for the purpose of improving the washing effects of detergents.
- detergent aids such as zeolite, carboxymethylcellulose, or polyethylene glycol for the purpose of improving the washing effects of detergents.
- detergent compositions have contained polymers as detergent builders in addition to the above various detergent builders.
- laundry using remaining hot water in a bath has a problem of more soil or hard components in the water. Further, a similar problem arises in an area where there is water with high hardness. For the above problem, agents having higher anti-redeposition properties than the conventional properties are required to further suppress redeposition of soil to fibers or the like during washing under high hardness condition.
- Patent Literature 1 JP 2010-111792 A
- Patent Literature 2 JP 2004-75977 A
- Patent Literature 3 JP 2002-138115 A
- Patent Literature 4 JP 2004-217891 A
- the present invention aims to provide a polymer having further improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition when the polymer is used for detergents; and a method of producing the polymer.
- the present inventors made various investigations on polymers suitable for detergent additives. As a result, the present inventors found that a sulfonate group-containing polymer with a specific weight average molecular weight having a structural unit derived from a carboxyl group-containing monomer, a structural unit derived from a (poly)oxyalkylene monomer, a structural unit derived from a sulfonate group-containing monomer in specific proportions has significantly improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition (higher water hardness tolerance).
- the above problems are admirably solved to achieve the present invention.
- a first aspect of the present invention is sulfonate group-containing copolymer, comprising:
- R 1 represents a hydrogen atom or a methyl group
- R 2 represents a direct bond, CH 2 , or CH 2 CH 2
- X 0 represents a structural unit represented by the following formula (2):
- Z may be the same or different and each represents a structural unit derived from a C 2 -C 20 alkylene oxide;
- R 0 represents hydrogen atom or a C 1 -C 30 organic group; and
- n is an integer of from 1 to 200;
- the sulfonate group-containing copolymer comprises from 20% to 90% by mass in an acid form equivalent of the structural unit (c) in 100% by mass of all the structural units constituting the sulfonate group-containing copolymer,
- a second aspect of the present invention is a sulfonate group-containing copolymer, comprising: a structural unit (a) derived from a sulfonate group-containing monomer (A); a structural unit (b) derived from a (poly)oxyalkylene monomer (B) represented by the following formula (1):
- R 1 represents a hydrogen atom or a methyl group
- R 2 represents a direct bond, CH 2 , or CH 2 CH 2
- X 0 represents a structural unit represented by the following formula (2):
- Z may be the same or different and each represents a structural unit derived from a C 2 -C 20 alkylene oxide; R 0 represents hydrogen atom or a C 1 -C 30 organic group; and n is an integer of from 1 to 200; and a structural unit (c) derived from a carboxyl group-containing monomer (C), wherein the sulfonate group-containing copolymer comprises from 20% to 90% by mass in acid form equivalent of the structural unit (c) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer, wherein the ratio by mass P of the structural unit (b) to the structural unit (a) is from 1.2 to 20, wherein the sulfonate group-containing copolymer has a weight average molecular weight Mw of from 20,000 to 200,000, and wherein the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw is 25,000 to 2,000,000.
- Preferred embodiments of the present invention include a combination of two or more of the preferred embodiments of the present invention described below.
- sulfonate group-containing copolymer herein shall apply to both the sulfonate group-containing copolymers of the first and the second aspects of the present invention, unless otherwise noted.
- sulfonate group-containing copolymer of the first aspect of the present invention or only the sulfonate group-containing copolymer of the second aspect of the present invention is described, this shall be noted.
- the copolymer of the present invention is a copolymer containing a structural unit (a) derived from a sulfonate group-containing monomer (A), a structural unit (b) derived from a (poly)oxyalkylene monomer (B), and a structural unit (c) derived from a carboxyl group-containing monomer (C).
- the sulfonate group-containing monomer (A) of the present invention is a monomer having a sulfonate group and a carbon-carbon double bond.
- the sulfonate group is intended to include sulfonic acids and their salts.
- the salts of sulfonic acids include, but are not particularly limited to, metal salts, ammonium salts, and organic amine salts of sulfonic acids.
- the metal atom of the metal salts is preferably, for example, an alkali metal such as sodium or potassium; an alkaline earth metal such as magnesium, calcium, strontium, or barium; aluminum; or iron.
- the organic amine group of the organic amine salt is preferably, for example, an alkanolamine such as monoethanolamine, diethanolamine, or triethanolamine; an alkylamine such as monoethylamine, diethylamine, or triethylamine; or a polyamine such as ethylenediamine or triethylenediamine.
- the salts of sulfonic acids are preferably potassium sulfonate, sodium sulfonate, ammonium sulfonate, or quaternary amines of sulfonic acids.
- the sulfonate group-containing monomer (A) may contain one or more sulfonate groups.
- Examples of the sulfonate group-containing monomer (A) include 2-acrylamide-2-methylpropanesulfonic acid, styrene sulfonic acid, allyl sulfonic acid, vinyl sulfonic acid, their salts, and compounds represented by the following formula (3):
- R 3 represents a hydrogen atom or a methyl group
- R 4 represents a direct bond, CH 2 , or CH 2 CH 2
- X and Y each represent hydroxy or SO 3 M where M represents hydrogen atom, Li, Na, or K, and at least one of X and Y is SO 3 M.
- the sulfonate group-containing monomer (A) is preferably 2-acrylamide-2-methylpropanesulfonic acid or a compound represented by the formula (3), and more preferably a compound represented by the formula (3).
- the copolymer of the present invention having a structure derived from a compound represented by the formula (3) has improved anti-redeposition properties.
- R 4 in the formula (3) is more preferably CH 2 because it is likely to improve the anti-redeposition properties of the copolymer.
- one of X and Y in the formula (3) is a SO 3 M and the other is a hydroxy group. It is more preferable that X is a hydroxy group and Y is a SO 3 M.
- Specific examples of the compound represented by the formula (3) include 3-(meth)allyloxy-2-hydroxypropanesulfonic acid (salts) and 3-(meth)allyloxy-1-hydroxypropanesulfonic acid (salts).
- the compound represented by the formula (3) is preferably 3-(meth)allyloxy-2-hydroxypropanesulfonic acid (salts).
- the sulfonate group-containing monomer (A) is preferably the compound represented by the formula (3) for increasing the preservation stability of the sulfonate group-containing copolymer.
- the sulfonate group-containing copolymer contains preferably from 2% to 38% by mass in an acid form equivalent of the structural unit (a) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer, more preferably from 2% to 30% by mass, still more preferably from 3% to 25% by mass, further more preferably from 4% to 20% by mass, particularly preferably from 5% to 18% by mass, and most preferably from 5% to 16% by mass.
- the sulfonate group-containing copolymer preferably contains not more than 1% by mass of the structural unit (a) derived from the sulfonate group-containing monomer (A) that has two or more sulfonate groups, in 100% by mass of all structural units constituting the sulfonate group-containing copolymer.
- the “acid form equivalent” herein means that the proportion (compositional ratio) of the mass of each of the sulfonate group-containing monomer, the carboxyl group-containing monomer, and other acid group-containing monomers is calculated as the proportion of the acid form of the each monomer.
- calculation of the proportion of the mass of sodium acrylate relative to the mass of all monomer components means calculation of the mass of acrylic acid as an acid of sodium acrylate.
- Calculation of the proportion of the mass of a structural unit derived from sodium acrylate relative to the mass of the structural units derived from all monomer components means calculation of the mass of the structural unit derived from acrylic acid as an acid of sodium acrylate.
- the proportions of the masses of an amine salt group-containing monomer and an amine salt structure-containing structural unit are also calculated as the proportions of the masses of an amine (amino group)-containing monomer and an amine structure (amino group structure)-containing structural unit, respectively.
- the copolymer of the present invention preferably contains the structural unit (a) derived from the sulfonate group-containing monomer (A) represented by the formula (3).
- the structural unit (a) derived from the sulfonate group-containing monomer represented by the formula (3) herein is a copolymerized structural unit formed by radical polymerization of the sulfonate group-containing monomer represented by the formula (3), and is represented by the following formula (4):
- R 3 represents a hydrogen atom or a methyl group
- R 4 represents a direct bond, CH 2 , or CH 2 CH 2
- X and Y each represent hydroxy or SO 3 M where M represents hydrogen atom, Li, Na, or K, and at least one of X and Y is SO 3 M.
- the (poly)oxyalkylene monomer (B) of the present invention is characterized by having a structure represented by the formula (1).
- R 1 and R 2 are preferably respectively a hydrogen atom and CH 2 , a methyl group and CH 2 , or a methyl group and CH 2 CH 2 ; more preferably respectively methyl and CH 2 or a methyl group and CH 2 CH 2 ; and still more preferably respectively a methyl group and CH 2 CH 2 .
- Z represents a structural unit derived from a C 2 -C 20 alkylene oxide
- R 0 represents a hydrogen atom or a C 1 -C 30 organic group
- n is the number of alkylene oxide-derived structure repeating units, and is an integer of from 1 to 200.
- Examples of the organic group in R 0 include C 1 -C 30 alkyl, C 2 -C 30 alkenyl, and C 6 -C 30 aryl. These may further have a substituent group.
- substituent group include hetero ring, alkoxy, aryloxy, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, sulfamoyl, acyl, acyloxy, amide, carbamoyl, ureido, alkylsulfonyl, arylsulfonyl, amino, halogen, fluorohydrocarbon, cyano, nitro, hydroxy, mercapto, and silyl.
- C 1 -C 30 organic group examples include methyl, ethyl, butyl, octyl, lauryl, cyclohexyl, phenyl, naphthyl, pyridyl, pyrimidyl, imidazolidyl, morpholyl, butenyl, pentenyl, hexenyl, heptenyl, methylcarbonyl, and ethylcarbonyl.
- R 0 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
- the “structural unit derived from an alkylene oxide” represents an oxyalkylene structure containing a ring-opening alkylene oxide.
- an alkylene oxide is ethylene oxide (EO)
- the “structural unit derived from an alkylene oxide” is —OCH 2 CH 2 — (oxyethylene) that is an oxyalkylene structure containing a ring-opening ethylene oxide.
- the oxyalkylene as the structural unit derived from an alkylene oxide has 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms, still more preferably 2 to 5 carbon atoms, particularly preferably 2 to 3 carbon atoms, and most preferably 2 carbon atoms.
- Examples of the structural unit derived from an alkylene oxide include structures derived from compounds such as ethylene oxide (EO), propylene oxide (PO), isobutylene oxide, 1-butene oxide, 2-butene oxide, trimethylethylene oxide, tetramethylene oxide, tetramethylethylene oxide, butadiene monoxide, octylene oxide, styrene oxide, and 1,1-diphenyl ethylene oxide.
- the structural unit derived from an alkylene oxide (oxyalkylene) is preferably a group derived from EO or PO (that is, oxyethylene or oxypropylene), and more preferably oxyethylene. Only one species of oxyalkylene may be contained, or two or more species of oxyalkylenes may be contained.
- a (poly)oxyalkylene glycol chain (group formed by oxyalkylene) contained in the (poly)oxyalkylene monomer of the present invention preferably mainly includes oxyethylene (—O—CH 2 —CH 2 —).
- the phrase “mainly includes oxyethylene” means that if two or more species of oxyalkylenes are present in the monomer, oxyethylene accounts for most of all oxyalkylenes. This allows smooth progress of polymerization in a production process, and provides excellent effects such as improvement in water solubility or anti-redeposition properties.
- the proportion of oxyethylene is preferably 50 to 100 mol % relative to 100 mol % of all oxyalkylenes. If the proportion of the oxyethylene is not less than 50 mol %, the hydrophilicity of the group formed by the oxyalkylene can be further improved.
- the proportion of the oxyethylene is more preferably not less than 60 mol %, still more preferably not less than 70 mol %, particularly preferably not less than 80 mol %, and most preferably not less than 90 mol %.
- n is the number of alkylene oxide-derived structure repeating units, and is an integer of from 1 to 200, preferably 5 to 100, more preferably 10 to 80, and still more preferably 25 to 75, and most preferably 40 to 60.
- n is in the above preferred ranges, the compatibility with liquid detergents and the anti-redeposition properties of the resulting sulfonate group-containing copolymer tend to be improved.
- the sulfonate group-containing copolymer of the present invention preferably contains from 9% to 76% by mass of the structural unit (b) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer, more preferably from 10% to 70% by mass, still more preferably from 12% to 65% by mass, further more preferably from 15% to 60% by mass, particularly preferably from 18% to 50% by mass, yet more preferably from 20% to 49% by mass, and most preferably from 30% to 45% by mass.
- the weights of the sulfonate group-containing monomer, the carboxyl group-containing monomer, and other acid group-containing monomers contained in all monomer components are calculated as the weights of their acids monomers.
- the copolymer of the present invention is characterized by having the structural unit (b) derived from the (poly)oxyalkylene monomer (B) represented by the formula (1).
- the structural unit (b) derived from the (poly)oxyalkylene monomer herein is a copolymerized structural unit formed by radical polymerization of the (poly)oxyalkylene monomer (B), and is represented by the following formula (5):
- R 1 represents a hydrogen atom or a methyl group
- R 2 represents a direct bond, CH 2 , or CH 2 CH 2
- X 0 represents a structural unit represented by the formula (2).
- the (poly)oxyalkylene monomer may be produced by any method.
- the (poly)oxyalkylene monomer (B) having a structure represented by the formula (1) is preferably produced by method (i) in which an alkylene oxide is added to an alcohol having a carbon-carbon double bond, such as allyl alcohol, methallyl alcohol, or isoprenol; or method (ii) in which a (poly)alkylene glycol is added to a halide having a carbon-carbon double bond, such as allyl chloride, methallyl chloride, isoprenyl chloride, or vinyl chloride.
- an alkylene oxide is added to an alcohol having a carbon-carbon double bond by, for example, 1) anionic polymerization in which a hydroxide of an alkali metal, a strong alkali such as an alkoxide, or alkylamine is used as a base catalyst, 2) cationic polymerization in which a halide of a metal or metalloid, mineral acid, or acetic acid is used as a catalyst, or 3) coordination polymerization in which a combination of an alkoxide of a metal such as aluminum, iron, or zinc, an alkaline-earth compound, and/or Lewis acid is used.
- the alkylene oxide is added to the hydroxy group of the alcohol.
- the (poly)oxyalkylene monomer (B) of the present invention having a structure represented by the formula (1) has good stability during polymerization. Accordingly, the anti-redeposition properties of the resulting polymer improve. Further, the (poly)oxyalkylene monomer (B) of the present invention having a structure represented by the formula (1) provides a polymer having favorable temporal stability. Further, when processed into various products (compositions) for various applications, the polymer (sulfonate group-containing copolymer) of the present invention shows excellent stability, and whereby the resulting product preferably has stable performance.
- the carboxyl group-containing monomer (C) of the present invention is a monomer having carboxyl and a carbon-carbon double bond.
- the carboxyl is intended to include carboxylic acids and their salts.
- the salts of the carboxylic acids include, but are not particularly limited to, metal salts, ammonium salts, and organic amine salts of carboxylic acids.
- Preferred examples of a metal atom of the metal salts include alkali metals such as sodium and potassium; alkaline earth metals such as magnesium, calcium, strontium, and barium; aluminum; and iron.
- an organic amine group of the organic amine salt include alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine; alkylamines such as monoethylamine, diethylamine, and triethylamine; polyamines such as ethylenediamine and triethylenediamine.
- alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine
- alkylamines such as monoethylamine, diethylamine, and triethylamine
- polyamines such as ethylenediamine and triethylenediamine.
- the salts of the carboxylic acids include lithium salts, potassium salts, sodium salts, ammonium salts, and quaternary amine salts.
- the carboxyl group-containing monomer examples include (meth)acrylic acid, maleic acid, anhydride thereof, fumaric acid, itaconic acid, crotonic acid, 2-methylene glutaric acid, and their salts.
- the carboxyl group-containing monomer is more preferably (meth)acrylic acid, maleic acid, anhydride thereof, or their salts, still more preferably acrylic acid, maleic acid, anhydride thereof, or their salts, and particularly preferably acrylic acid or its salt.
- the carboxyl group-containing monomer is a compound forming an acid anhydride, such as maleic acid
- the monomer may be in the acid anhydride form.
- carboxyl group-containing monomers may be used alone, or two or more of these may be used in combination.
- the proportion of the mass of the carboxyl group-containing monomer that corresponds to the (poly)oxyalkylene monomer of the present invention is calculated as the mass of the (poly)oxyalkylene monomer.
- the mass of the monomer is calculated as the mass of the dicarboxylic acid, which is an acid of the monomer, prepared from the acid anhydride by hydrolysis.
- the sulfonate group-containing copolymer of the present invention contains from 20% to 90% by mass in acid form equivalent of the structural unit (c) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer.
- the amount of the structural unit (c) is preferably from 25% to 85% by mass, more preferably from 30% to 80% by mass, still more preferably 35% to 75% by mass, particularly preferably from 40% to 73% by mass, and most preferably from 40% to 55% by mass.
- the sulfonate group-containing polymer of the present invention having a proportion of the structural unit (c) of 20% to 90% by mass has improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition.
- the proportion of the structural unit (c) is most preferably 40% to 55% by mass.
- the proportion of the mass of the carboxyl group-containing monomer that corresponds to a salt of an acid is calculated as the mass of acid.
- the mass of the monomer is calculated as the mass of the dicarboxylic acid, which is an acid of the monomer, prepared from the acid anhydride by hydrolysis.
- the sulfonate group-containing copolymer of the present invention contains preferably from 1% to 100% by mass, more preferably from 20% to 100% by mass, still more preferably from 50% to 100% by mass, particularly preferably from 80% to 100% by mass, and most preferably 100% by mass, in acid form equivalent of a structural unit derived from a monocarboxylic acid such as (meth)acrylic acid in 100% by mass of the total of the structural unit (c) derived from the carboxyl group-containing monomer (C).
- a monocarboxylic acid such as (meth)acrylic acid
- the copolymer of the present invention contains the structural unit (c) derived from the carboxyl group-containing monomer (C).
- the structural unit (c) is a copolymerized structural unit formed by radical polymerization of the carboxyl group-containing monomer (C).
- the structural unit (c) is the structure represented by —CH 2 —CH(COOH)—.
- the sulfonate group-containing copolymer of the present invention may contain a structural unit (e) derived from a monomer (E) other than the sulfonate group-containing monomer (A), the (poly)oxyalkylene monomer (B), and the carboxyl group-containing monomer (C).
- Examples of the monomer (E) include, but are not particularly limited to, hydroxy group-containing alkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and ⁇ -(hydroxymethyl)ethyl (meth)acrylate; alkyl (meth)acrylates prepared by esterification of (meth)acrylic acid with a C 1 -C 18 alcohol, such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, cyclohexyl (meth)acrylate, and lauryl (meth)acrylate; amino group-containing acrylates such as dimethylaminoethyl (meth)acrylate and quaternized dimethylaminoethyl (meth)acrylate; amide group-containing
- phosphonic acid (salt) group-containing monomers such as vinylphosphonic acid, (meth)allylphosphonic acid, and their salts; aldehyde group-containing vinyl monomers such as (meth)acrolein; alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, and butyl vinyl ether; other functional group-containing monomers such as vinyl chloride, vinylidene chloride, allyl alcohol, and vinyl pyrrolidone. These other monomers may be used alone, or two or more of these may be used in combination.
- the copolymer of the present invention contains preferably from 0% to 30% by mass, more preferably from 0% to 20% by mass, still more preferably from 0% to 10% by mass, and most preferably 0% by mass of the structural unit (e) derived from the monomer (E) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer.
- the structural unit (e) derived from the monomer (E) herein is a copolymerized structural unit formed by radical polymerization of the monomer (E).
- the structural unit (e) is a structural unit represented by —CH 2 —CH(COOCH 3 )—.
- the copolymer of the present invention containing a combination of the structural units (a), (b), (c) and (e) with the above preferred proportions is also a preferred embodiment of the copolymer of the present invention.
- the total of the proportions of the combination is 100% by mass.
- the sulfonate group-containing copolymer of the first aspect of the present invention is characterized in that the product (P ⁇ Mw ⁇ n) of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the sulfonate group-containing copolymer multiplied by the value n in the formula (2) is from 950,000 to 800,000,000.
- the value (P ⁇ Mw ⁇ n) is preferably not less than 1,000,000.
- the sulfonate group-containing copolymer of the present invention having such a product (P ⁇ Mw ⁇ n) further adsorbs hydrophilic soil, and improves particularly the anti-redeposition properties against hydrophilic soil under high hardness condition.
- the product (P ⁇ Mw ⁇ n) is more preferably not less than 1,500,000 and still more preferably not less than 2,000,000.
- the product (P ⁇ Mw ⁇ n) is preferably not larger than 500,000,000 and more preferably not larger than 100,000,000.
- the sulfonate group-containing copolymer of the second aspect of the present invention has the structural unit (a) derived from the sulfonate group-containing monomer (A), the structural unit (b) derived from the (poly)oxyalkylene monomer (B), and the structural unit (c) derived from the carboxyl group-containing monomer (C).
- the ratio by mass P of the structural unit (b) to the structural unit (a) is from 1.2 to 20.
- the ratio by mass P of the structural unit (b) to the structural unit (a) is preferably from 1.3 to 20, more preferably from 1.5 to 15, still more preferably 2 to 10, and most preferably 2.5 to 5.
- the masses of the structural unit (a) and the structural unit (b) are calculated as the masses of the acid-form structural unit of them.
- the ratio by mass is determined as a ratio of the acid-form structural unit of the structural unit (b) to the acid-form structural unit of the structural unit (a).
- the sulfonate group-containing polymer of the present invention having a ratio by mass P of the structural unit (b) to the structural unit (a) of from 1.2 to 20 has improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition. Further, in order to improve the compatibility with liquid detergents as well as the anti-redeposition properties, the ratio by mass P of the structural unit (b) to the structural unit (a) is particularly preferably 3 to 10.
- the sulfonate group-containing copolymer of the second aspect of the present invention has a weight average molecular weight Mw of from 20,000 to 200,000.
- the weight average molecular weight Mw is preferably from 22,000 to 150,000, more preferably from 25,000 to 100,000, and still more preferably from 30,000 to 80,000.
- the sulfonate group-containing polymer of the present invention having a weight average molecular weight Mw of from 20,000 to 200,000 has improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition. Further, in order to improve the compatibility with liquid detergents as well as the anti-redeposition properties, the weight average molecular weight Mw is particularly preferably 20,000 to 80,000 and most preferably 30,000 to 75,000.
- the weight average molecular weight Mw is larger than 200,000, the copolymer may become highly viscous and its handling may be complicated. On the contrary, if the weight average molecular weight Mw is smaller than 20,000, the anti-redeposition properties deteriorate and the sufficient performance as detergent builders may not be exerted.
- the value of the weight average molecular weight Mw of the sulfonate group-containing copolymer of the present invention is determined by the method according to examples described below.
- the sulfonate group-containing copolymer of the second aspect of the present invention enables to significantly improve the anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition by the synergistic effects of combination of the ratio by mass P of the structural unit (b) to the structural unit (a), the weight average molecular weight Mw, and the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw, in the above preferred ranges.
- combination of the ratio by mass P of the structural unit (b) to the structural unit (a), the weight average molecular weight Mw, and the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw, in the above preferred ranges, preferably provides synergistic effects.
- the number of alkylene oxide-derived structure repeating units in the formula (2) and the proportion of the structural unit (c) in the sulfonate group-containing copolymer contribute to the anti-redeposition properties and the compatibility with liquid detergents. Therefore, it is preferable to combine the preferable range of the number of the structure repeating units and the preferable range of the proportion.
- the ratio by mass P of the structural unit (b) to the structural unit (a) is preferably from 1.2 to 20, more preferably from 1.3 to 20, still more preferably from 1.5 to 15, and particularly preferably from 2 to 10.
- the weight average molecular weight Mw of the sulfonate group-containing copolymer is preferably from 20,000 to 200,000, more preferably from 22,000 to 150,000, still more preferably from 25,000 to 100,000, and particularly preferably from 30,000 to 80,000.
- the anti-redeposition properties of the sulfonate group-containing polymer when the ratio by mass P of the structural unit (b) to the structural unit (a) or the weight average molecular weight Mw is in the above preferred ranges, the anti-redeposition properties of the sulfonate group-containing polymer, particularly the anti-redeposition properties against hydrophilic soil under high hardness condition is improved. Further, when the weight average molecular weight Mw is in the above preferred ranges, the compatibility of the sulfonate group-containing polymer with liquid detergents is improved.
- one preferred embodiment of the sulfonate group-containing copolymer of the first aspect of the present invention is that the sulfonate group-containing copolymer of the first aspect of the present invention corresponds to the sulfonate group-containing copolymer of the second aspect of the present invention.
- the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw is 25,000 to 2,000,000, preferably 50,000 to 1,500,000, and more preferably 100,000 to 1,000,000.
- the sulfonate group-containing copolymer of the present invention having a product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of 25,000 to 2,000,000 further adsorbs hydrophilic soil, and particularly improves anti-redeposition properties against hydrophilic soil under high hardness condition.
- the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw is preferably 70,000 to 1,200,000, more preferably 100,000 to 1,000,000, still more preferably 120,000 to 1,000,000, and most preferably 130,000 to 1,200,000.
- the ratio by mass of the structural unit (a) to the structural unit (b) to the structural unit (c) is preferably (2 to 38)/(9 to 76)/(20 to 90), more preferably (2 to 30)/(10 to 70)/(25 to 85), still more preferably (3 to 25)/(12 to 65)/(30 to 80), further more preferably (4 to 20)/(15 to 60)/(35 to 75), particularly preferably (5 to 18)/(18 to 50)/(40 to 73), yet more preferably 5 to 16/20 to 49/43 to 70, and most preferably 5 to 16/30 to 45/40 to 55.
- the total of the proportions of the structural units (a), (b), and (c) is 100% by mass.
- the method of producing the sulfonate group-containing copolymer of the present invention is not particularly limited, is preferably the following [Method of producing sulfonate group-containing copolymer].
- the present invention is also a method of producing the sulfonate group-containing copolymer.
- the method of producing the sulfonate group-containing copolymer of the present invention is not particularly limited, and a known polymerization method or a modified known method can preferably be used.
- the production method preferably includes copolymerizing monomer components including a sulfonate group-containing monomer (A), a (poly)oxyalkylene monomer (B), and a carboxyl group-containing monomer (C), the monomer (B) being represented by the following formula (1):
- R 1 represents a hydrogen atom or a methyl group
- R 2 represents a direct bond, CH 2 , or CH 2 CH 2
- X 0 represents a structural unit represented by the following formula (2):
- Z may be the same or different and each represents a structural unit derived from a C 2 -C 20 alkylene oxide; R 0 represents a hydrogen atom or a C 1 -C 30 organic group; and n is an integer of from 1 to 200, wherein the monomer components comprise from 20% to 90% by mass in acid form equivalent of the carboxyl group-containing monomer (C) in 100% by mass of all the monomers in the monomer components, and wherein the product (P ⁇ Mw ⁇ n) of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the sulfonate group-containing copolymer multiplied by the value n in the formula (2) is from 950,000 to 800,000,000.
- Such a method of producing the sulfonate group-containing copolymer is also one aspect of the present invention.
- the sulfonate group-containing monomer (A), the (poly)oxyalkylene monomer (B), and the carboxyl group-containing monomer (C) are preferably the same monomers as listed above.
- the proportion of the sulfonate group-containing monomer (A) is, but not particularly limited to, preferably from 2% to 34% by mass, more preferably from 2% to 30% by mass, still more preferably from 3% to 25% by mass, further more preferably from 4% to 20% by mass, particularly preferably from 5% to 18% by mass, and most preferably from 5% to 16% by mass in acid form equivalent in 100% by mass of all the monomers.
- the proportion of the (poly)oxyalkylene monomer (B) is, but not particularly limited to, preferably from 9% to 76% by mass, more preferably 10% to 70% by mass, still more preferably from 12% to 65% by mass, further preferably from 15% to 60% by mass, particularly preferably from 18% to 50% by mass, yet more preferably from 20% to 49% by mass, and most preferably from 30% to 45% by mass in acid form equivalent in 100% by mass of all the monomers.
- the proportion of the carboxyl group-containing monomer (C) is preferably from 20% to 90% by mass, more preferably from 25% to 85% by mass, still more preferably from 30% to 80% by mass, further more preferably from 35% to 75% by mass, particularly preferably from 40% to 73% by mass, yet more preferably from 43% to 70% by mass, and most preferably from 40% to 55% by mass in acid form equivalent in 100% by mass of all the monomers.
- the monomer (E) other than the sulfonate group-containing monomer (A), the (poly)oxyalkylene monomer (B), and the carboxyl group-containing monomer (C) may be contained as the monomer component.
- Examples of the monomer (E) include, but are not particularly limited to, the same monomers as listed above.
- the proportion of the monomer (E) is preferably from 0% to 30% by mass, more preferably from 0% to 20% by mass, still more preferably from 0% to 10% by mass, and most preferably 0% by mass in 100% by mass of all the monomers.
- the monomer components preferably contain two or more of the sulfonate group-containing monomer (A), the (poly)oxyalkylene monomer (B), the carboxyl group-containing monomer (C), and the monomer (E) in the above preferred proportions. That is, combination of the sulfonate group-containing monomer (A), the (poly)oxyalkylene monomer (B), the carboxyl group-containing monomer (C), and the monomer (E) in the above preferred proportions in all the monomers is also a preferred embodiment of the method of producing the sulfonate group-containing copolymer of the present invention.
- the monomer components are preferably copolymerized using a polymerization initiator.
- Polymerization initiators known in the art may be used. Specifically, preferred examples thereof include hydrogen peroxide; persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; azo compounds such as dimethyl-2,2′-azobis(2-methylpropionate), 2,2′-azobis(2-amidinopropane) hydrochloride, 4,4′-azobis-4-cyanovaleric acid, azobisisobutyronitrile, and 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile); and organic peroxides such as benzoyl peroxide, lauroyl peroxide, peracetic acid, di-t-butyl peroxide, and cumene hydroperoxide.
- hydrogen peroxide and persulfates are preferred, and peroxide hydrochloride.
- the amount of the polymerization initiator to be used in the polymerization reaction may be appropriately controlled depending on the amount of the monomer components to be used, and is not particularly limited.
- the amount of the polymerization initiator is preferably not less than 0.001 parts by mass and not more than 20 parts by mass, more preferably not less than 0.005 parts by mass and not more than 15 parts by mass, and still more preferably not less than 0.01 parts by mass and not more than 10 parts by mass for 100 parts by mass of the monomers.
- a chain transfer agent is preferably used in addition to the polymerization initiator.
- the chain transfer agent to be used is not particularly limited as long as it is a compound that allows for control of the molecular weight. Known chain transfer agents in the art may be used.
- chain transfer agent thiol chain transfer agents such as mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, octyl thioglycolate, octyl 3-mercaptopropionate, 2-mercaptoethanesulfonic acid, n-dodecyl mercaptan, octyl mercaptan, and butyl thioglycolate; halides such as carbon tetrachloride, methylene chloride, bromoform, and bromotrichloroethane; secondary alcohols such as isopropanol and glycerin; and lower oxides and their salts such as phosphorous acid, hypophosphorous acid, and their salts (sodium hypophosphate, potassium hypophosphate, etc.), sulfurous acid, hydrogen sulfurous acid, dithionous acid, metabisul
- the amount of the chain transfer agent used in the method of producing the sulfonate group-containing copolymer of the present invention is 0.5 to 10 g relative to 1 mol of all the monomers.
- the chain transfer agent in such a proportion allows easy production of the sulfonate group-containing copolymer with a preferred molecular weight.
- the amount of the chain transfer agent used is preferably 1.0 to 7.0 g for 1 mol of all the monomers and more preferably 2.0 to 5.0 g for 1 mol of all the monomers.
- a reaction accelerator may be added for the purpose of reducing the amount of the initiator or the like to be used.
- the reaction accelerator include heavy metal ions.
- the term “heavy metal ions” herein is intended to include metals having a specific gravity of not less than 4 g/cm 3 .
- Preferred examples of the heavy metal ions include ions of iron, cobalt, manganese, chromium, molybdenum, tungsten, copper, silver, gold, lead, platinum, iridium, osmium, palladium, rhodium, and ruthenium.
- any of these heavy metal ions may be used alone, or two or more of these may be used in combination.
- iron is more preferred.
- the ionic valency of the heavy metal ion is not particularly limited.
- the initiator may include iron ion in the Fe 2+ form or Fe 3+ form, or may contain iron in both forms.
- the state of the above heavy metal ion is not particularly limited as long as it is present in an ionic form. It is preferable to use a solution prepared by dissolving a heavy metal compound because of the easy handling.
- the heavy metal compound used in this case may be any compound containing a heavy metal ion desired to be contained in the initiator, and it may be determined depending on the initiator to be used.
- the heavy metal ion used is iron
- preferred examples of the heavy metal compound to be used include Mohr's salt (Fe(NH 4 ) 2 (SO 4 ) 2 .6H 2 O), ferric sulfate heptahydrate, ferrous chloride, and ferric chloride.
- the heavy metal compound in cases where the heavy metal ion used is manganese, preferred examples of the heavy metal compound include manganese chloride. These heavy metal compounds are all water-soluble compounds. Therefore, it is possible to use them in the form of aqueous solutions, and consequently, the handleability is excellent.
- the solvents of the solutions of the heavy metal compounds dissolved thereto are not limited to water, and any solvent may be used as long as it does not interfere with the polymerization reaction and can dissolve the heavy metal compound in the production of hydrophobic group-containing copolymer of the present invention.
- the heavy metal ion content is preferably 0.1 to 10 ppm in the total mass of the polymerization reaction liquid at the time of the completion of the polymerization reaction.
- the heavy metal ion content is not less than 0.1 ppm, the effect of the heavy metal ion is sufficiently exhibited.
- the heavy metal ion content is not more than 10 ppm, the color of the polymer to be prepared can be further improved.
- too much heavy metal ion content may cause soil of detergent builders when a product polymer is used as a detergent builder.
- the heavy metal ion content in the above range enables to sufficiently suppress such a problem.
- the phrase “at the time of the completion of the polymerization reaction” means the time point when the polymerization reaction has been practically completed in the polymerization reaction solution, and the desired polymer has been prepared.
- the amount of the heavy metal ion is calculated based on the total mass of the polymerization reaction solution after neutralization.
- the total amount of the heavy metal ions may be set in the above range.
- a combination of the initiator and the chain transfer agent to be used is most preferably a combination of one or more of persulfates and one or more of sulfites.
- the persulfate and the sulfite may be mixed in any ratio. Specifically, 0.3 to 8 parts by mass of the sulfite is preferably used for 1 part by mass of the persulfate.
- the lower limit of the amount of the sulfite is more preferably 0.5 parts by mass and most preferably 0.7 parts by mass for 1 part by mass of the persulfate.
- the upper limit of the amount of the sulfite is more preferably 7 parts by mass and most preferably 6 parts by mass for 1 part by mass of the persulfate.
- Not less than 0.3 parts by mass of the sulfite enables to reduce the total amount of the initiator used for reducing the molecular weight. Further, not more than 8 parts by mass of the sulfite enables to sufficiently suppress side reactions and sufficiently reduce impurities caused by the side reactions.
- the combination of a chain-transfer agent, a polymerization initiator, and a reaction accelerator is not particularly limited, and these may be selected from those listed above.
- Examples of the combination of a chain-transfer agent, a polymerization initiator, and a reaction accelerator include sodium hydrogen sulfite (SES)/hydrogen peroxide (H 2 O 2 ), sodium hydrogen sulfite (SBS)/sodium persulfate (NaPS), sodium hydrogen sulfite (SBS)/Fe, sodium hydrogen sulfite (SBS)/hydrogen peroxide (H 2 O 2 )/Fe, sodium hydrogen sulfite (SBS)/sodium persulfate (NaPS)/Fe, sodium hydrogen sulfite (SBS)/sodium persulfate (NaPS)/hydrogen peroxide (H 2 O 2 ), and sodium hydrogen sulfite (SBS)/oxygen/Fe.
- SES sodium hydrogen s
- SBS sodium hydrogen sulfite
- NaPS sodium hydrogen sulfite
- SBS sodium hydrogen sulfite
- NaPS sodium hydrogen sulfite
- NaPS sodium hydrogen sulfite
- NaPS sodium hydrogen sulfite
- NaPS sodium hydrogen sulfite
- a catalyst for decomposing a polymerization initiator or a reducing compound may be added to the reaction system during polymerization in addition to the above described polymerization initiator.
- Examples of the catalyst for decomposing a polymerization initiator include halogenated metals such as lithium chloride and lithium bromide; metal oxides such as titanium oxide and silicon dioxide; metal salts of inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, sulfuric acid, and nitric acid; carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, benzoic acid, and their esters and metal salts; and heterocyclic amines and their derivatives such as pyridine, indole, imidazole, and carbazole. Any of these decomposition catalysts may be used alone, or two or more of these may be used in combination.
- the reducing compound examples include organic metal compounds such as ferrocene; metal naphthenates such as iron naphthenate, copper naphthenate, nickel naphthenate, cobalt naphthenate, and manganese naphthenate; inorganic compounds capable of generating metal ions such as iron, copper, nickel, cobalt, and manganese; inorganic compounds such as boron trifluoride ether adducts, potassium permanganate, and perchloric acid; sulfur-containing compounds such as sulfur dioxide, sulfites, sulfates, bisulfites, thiosulfates, sulfoxylates, benzene sulfinic acid and their substituted compounds, and homologues of cyclic sulfinic acid such as p-toluene sulfinic acid; mercapto compounds such as octyl mercaptan, dodecyl mercaptan, mercapto ethanol,
- the total amount of a chain transfer agent, an initiator, and a reaction accelerator to be used is preferably 2 to 20 g for 1 mol of all monomer components of the sulfonate group-containing monomer, the (poly)oxyalkylene monomer, the carboxyl group-containing monomer, and, if necessary, other monomers.
- the sulfonate group-containing copolymer of the present invention can be efficiently produced. Further, a desired molecular weight distribution of the sulfonate group-containing copolymer can be obtained.
- the total amount is more preferably 2 to 15 g and still more preferably 3 to 10 g.
- the polymerization initiator and the chain transfer agent are continuously charged into a reactor by, for example, dropping or adding in portions. Furthermore, the chain-transfer agent may be charged into a reactor alone, or it may be mixed in advance with the monomers, solvents, or the like.
- Examples of the method of charging the monomer components, the polymerization initiator, and the like into a reactor in the copolymerization method include: a method in which all monomer components are charged into a reactor, and a polymerization initiator is subsequently charged into the reactor to carry out copolymerization; a method in which a portion of the monomer components is charged into a reactor, and the remaining portion of the monomer components and a polymerization initiator are subsequently charged into the reactor continuously or in steps (preferably continuously) to carry out copolymerization; a method in which a polymerization solvent is charged into a reactor, and the monomer components and a polymerization initiator are all subsequently charged into the reactor; and a method in which a portion of one of the monomers (for example, (poly)oxyalkylene monomer) is charged into a reactor, and a polymerization initiator and the remaining monomers are (preferably continuously) added to the reactor to carry out copolymerization.
- copolymerization is preferably carried out by sequential dropping a polymerization initiator and monomer components to a reactor because it is possible to obtain a copolymer with a narrow (sharp) molecular weight distribution, and the dispersibility of the copolymer is improved when it is used as a detergent builder.
- the copolymerization may be carried out by any method, and may be carried out by a commonly used method such as solution polymerization, bulk polymerization, suspension polymerization, or emulsion polymerization.
- Solution polymerization is preferred.
- the solvent used in this case is preferably water or a solvent mixture containing water in an amount of 50% by mass of the total amount of the solvent. Use of only water is suitable because the step of removing the solvent can be eliminated.
- the copolymerization may be carried out in a batch or continuously.
- known solvents may be used as solvents used if necessary in the copolymerization.
- Preferred examples of the solvents include water; alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol; glycerin; polyethylene glycol; aromatic or aliphatic hydrocarbons such as benzene, toluene, xylene, cyclohexane, and n-heptane; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; amides such as dimethylformamide; and ethers such as diethyl ether and dioxane.
- any of these solvents may be used alone, or two or more of these may be used in combination.
- one or more solvents selected from the group consisting of water and C 1 -C 4 lower alcohols are preferably used in view of the solubility of the monomer components and the resulting copolymer.
- an arbitrary chain transfer agent, pH regulator, or buffer may be used if needed.
- the temperature in the polymerization is preferably not less than 70° C., more preferably 75° C. to 110° C., and still more preferably 80° C. to 100° C. At a temperature in the polymerization within the above range, the amount of the remaining monomer components tends to reduce, and the anti-redeposition properties of the polymer tend to improve.
- the temperature in the polymerization is not necessarily kept constant all the time while the polymerization reaction progresses. For example, the polymerization may be started from room temperature; the temperature may be raised to the setting temperature for a proper temperature rising time or at a proper temperature raising rate; and the setting temperature may be kept. Alternatively, the polymerization temperature may be changed (raised or reduced) according to the method of dropping the monomer components, the initiator, or the like with a lapse of time while the polymerization reaction progresses.
- the polymerization time is not particularly limited, and preferably 30 to 420 min, more preferably 45 to 390 min, still more preferably 60 to 360 min, and most preferably 90 to 240 min.
- the term “polymerization time” herein means the time required to add the monomer.
- the pressure in the reaction system may be any of normal pressure (atmospheric pressure), reduced pressure, and increased pressure. From the viewpoint of the molecular weight of the polymer to be obtained, the polymerization is preferably performed under normal pressure, or the reaction system is sealed and the polymerization is performed under increased pressure. The polymerization is preferably performed under normal pressure (atmospheric pressure) from the viewpoint of equipment such as pressuring and depressurizing apparatuses, a pressure-resistant reaction container, and pipes.
- the reaction system may be under air atmosphere, and may preferably be under inert atmosphere. For example, the air in the system is preferably replaced with an inert gas such as nitrogen before the polymerization is started.
- the solid content concentration (that is, the concentration of polymer solids made of the monomers) in an aqueous solution at the end of the polymerization reaction in the polymerization reaction system is preferably not less than 35% by mass and more preferably 40% to 70% by mass.
- Such a high solid content concentration of not less than 35% by mass at the end of the polymerization reaction enables one-step polymerization at high concentration.
- a condensation step which may be required in a conventional production method can be eliminated, so that the sulfonate group-containing copolymer composition can be efficiently obtained. Accordingly, as a result of significant improvement in production efficiency, the productivity of the sulfonate group-containing copolymer composition can be significantly improved and the production cost can be reduced.
- a suitable alkali component may be appropriately added for post treatment, if needed, and the degree of neutralization (final degree of neutralization) of the resulting sulfonate group-containing copolymer may be set within a predetermined range.
- the final degree of neutralization is not particularly limited. This is because the final degree of neutralization of the copolymer varies depending on intended use. Specifically, the copolymer does not need to be neutralized and may be in an acidic form when used as a detergent builder for weak acidic detergents, which are considered to be gentle to the skin, or the copolymer may be neutralized with an alkali component to a degree of neutralization of 90 mol % or higher in post treatment when used for neutral detergents or alkali detergents. Accordingly, the final degree of neutralization may be set to an extremely wide range of 1 to 100 mol %.
- the final degree of neutralization of the copolymer to be used as an acidic polymer composition is preferably 1 to 75 mol % and more preferably 5 to 70 mol %.
- the final degree of neutralization of the copolymer to be used as a neutral or alkaline polymer composition is preferably 70 to 99 mol % and more preferably 80 to 97 mol %.
- the final degree of neutralization of the copolymer to be used as a neutral or alkaline polymer composition is 99 mol % or lower, coloring of the aqueous polymer solution can be suppressed.
- alkali component examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, and organic amines such as ammonium, monoethanolamine, diethanolamine, and triethanolamine.
- alkali components may be used alone, or a mixture of two or more of these may be used.
- the polymer composition of the present invention essentially contains the sulfonate group-containing copolymer of the present invention.
- the polymer composition may contain an unreacted sulfonate group-containing monomer, an unreacted (poly)oxyalkylene monomer, an unreacted carboxyl group-containing monomer, an unreacted polymerization initiator, a decomposed polymerization initiator, a binary copolymer of a sulfonate group-containing monomer and a carboxyl group-containing monomer, a hydrogen sulfite adduct, which is an impurity derived from the carboxyl group-containing monomer which remains unpolymerized although the above hydrogen sulfite and/or the compound capable of producing a hydrogen sulfite as a chain transfer agent is added thereto, and the like.
- the hydrogen sulfite adduct include 3-sulfopropionic acid (salts) and the like.
- the polymer composition of the present invention is prepared by polymerization of a sulfonate group-containing monomer that is a feature of the present invention, as an essential component, whereby generation of the homopolymer of the carboxyl group-containing monomer as a side product can be reduced. Therefore, the precipitation of the polymer can be significantly suppressed during washing under high hardness condition.
- a liquid detergent containing the sulfonate group-containing copolymer composition has improved temporal stability (is suppressed from being phase-separated) as additional advantageous effects.
- each monomer is preferably contained in an amount of less than 5% by mass, more preferably less than 3% by mass and still more preferably less than 2% by mass based on 100% by mass of the solid content of the polymer composition.
- the polymer including the acid group-containing unsaturated monomer in the polymer composition is preferably contained in an amount of less than 1% by mass and more preferably less than 0.5% by mass based on 100% by mass of the solid content of the polymer composition.
- the monomer is preferably contained in an amount of not more than 5000 mass ppm, more preferably not more than 1000 mass ppm, and most preferably not more than 100 mass ppm based on 100% by mass of the solid content of the polymer composition.
- the unreacted (poly)oxyalkylene monomer, the unreacted sulfonate group-containing unsaturated monomer, the unreacted carboxyl group-containing monomer and 3-sulfopropionic acid (salts) can be quantified by liquid chromatography under the following conditions.
- Measuring device 8020 series (product of Tosoh Co., Ltd.)
- Detector RI detector, RI-8020 (product of Tosoh Co., Ltd.)
- Measuring device L-7000 series (product of Hitachi Ltd.) Detector: UV detector, L-7400 (product of Hitachi Ltd.) Column: SHODEX RSpak DE-413 (product of Showa Denko K. K.)
- Measuring device e2695 (product of Waters Co., Ltd.)
- Detector RI detector, 2414 (product of Waters Co., Ltd.)
- the polymer composition herein is not particularly limited, and is preferably prepared through no purification step for eliminating impurities in view of the production efficiency. Further, the polymer composition herein includes those obtained by diluting the resulting polymer composition with a small amount of water (adding approximately from 1% to 400% by mass of water based on the amount of the mixture obtained) after the polymerization step for easy handling.
- the polymer and the polymer composition of the present invention may be used as water treatment agents, fiber treatment agents, dispersants, or detergent builders (or detergent compositions).
- detergent builders or detergent compositions
- the polymer and the polymer composition are added to various detergents used for, for example, clothing, dish washing, house cleaning, hair washing, body washing, tooth-brushing, and car-cleaning.
- the polymer composition of the present invention may be used for a water treatment agent.
- a water treatment agent may contain other compounding agents such as polymerized phosphoric acid salts, phosphonic acid salts, anti-corrosion agents, slime control agents, and chelating agents, if needed.
- the water treatment agent is useful for scale inhibition of cooling water circulation systems, boiler water circulation systems, seawater desalination plants, pulp digesters, black liquor condensing kettles, and the like.
- any suitable water-soluble polymer may be included as long as it does not affect the performance and the effects of the water treatment agent.
- the polymer composition of the present invention can be used for a fiber treating agent.
- the fiber treating agent contains the polymer composition of the present invention and at least one selected from the group consisting of dyeing agents, peroxides, and surfactants.
- the fiber treating agent contains preferably from 1% to 100% by weight, and more preferably from 5% to 100% by weight of the polymer composition of the present invention based on the total amount of the fiber treating agent.
- any suitable water-soluble polymer may be contained as long as it does not affect the performance or the effects of the fiber treating agent.
- the fiber treating agent can be used in steps of scouring, dyeing, bleaching, and soaping in fiber treatment.
- dyeing agents, peroxides, and surfactants include those usually used in the fiber treating agent.
- a composition containing 0.1 to 100 parts by weight of at least one selected from the group consisting of coloring agents, peroxides, and surfactants for 1 part by weight of the polymer composition of the present invention in terms of pure fiber treating agent is preferably used as the fiber treating agent, for example, for improving whiteness and coloring fastness of fiber and prevent uneven coloring.
- the fiber treating agent is applicable to any optionally suitable fibers.
- the fibers include cellulose-based fibers such as cotton and hemp; synthetic fibers such as Nylon and polyester; animal fibers such as wool and silk; semi-synthetic fibers such as rayon; their fabrics; and their mixed spun products.
- the polymer composition of the present invention is preferably blended with an alkaline agent and a surfactant.
- the polymer composition of the present invention is preferably blended with a peroxide and a silicic acid-based chemical such as sodium silicate as an alkaline bleach decomposition inhibitor.
- the polymer composition of the present invention may be used as an inorganic pigment dispersant.
- the inorganic pigment dispersant may be compounded, if necessary, with other components such as condensed phosphoric acid or its salt, phosphonic acid or phosphonate, and poly(vinyl alcohol).
- the inorganic pigment dispersant preferably contains the polymer composition of the present invention in an amount of 5% to 100% by weight based on the total amount of the inorganic pigment dispersant.
- the dispersant may contain an optionally suitable water-soluble polymer as long as the performance and the effects are not affected.
- the inorganic pigment dispersant exhibits its excellent performance when used as a dispersant of inorganic pigments such as heavy or light calcium carbonate and clay used for paper coating.
- inorganic pigments such as heavy or light calcium carbonate and clay used for paper coating.
- a small amount of the inorganic pigment dispersant is added to an inorganic pigment to disperse the pigment in water, whereby high-concentration inorganic pigment slurry such as high concentration calcium carbonate slurry with low viscosity, high fluidity, and good stability with time for these properties can be produced.
- the amount of the inorganic pigment dispersant used for dispersing the inorganic pigment is preferably 0.05 to 2.0 parts by weight for 100 parts by weight of the inorganic pigment.
- Use of the inorganic pigment dispersant in an amount within the above range achieves a satisfactory dispersing effect to provide effects appropriately for the added amount and also provides an economical advantage.
- the polymer composition of the present invention may be added to a detergent composition.
- the polymer composition of the present invention contains the above sulfonate group-containing copolymer, and the amount of the sulfonate group-containing copolymer contained in the detergent composition is not particularly limited. From the viewpoint of demonstrating high builder performance, the sulfonate group-containing copolymer is contained in an amount of preferably from 0.1% to 15% by mass, more preferably from 0.3% to 10% by mass, and still more preferably from 0.5% to 5% by mass based on the total amount of the detergent composition.
- the detergent composition used for detergents usually contains a surfactant or an additive to be used in detergents.
- the specific forms of the surfactant and additive are not particularly limited, and are appropriately selected based on common knowledge in the field of detergents.
- the detergent composition may be in the form of a powder or liquid.
- One or more surfactants selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants are used.
- the total amount of an anionic surfactant and a nonionic surfactant is preferably not less than 50% by mass, more preferably not less than 60% by mass, further more preferably not less than 70% by mass, and particularly preferably not less than 80% by mass based on the amount of all the surfactants.
- anionic surfactants include alkylbenzene sulfonates, alkylether sulfates, alkenylether sulfates, alkyl sulfates, alkenyl sulfates, ⁇ -olefinsulfonates, ⁇ -sulfo fatty acid or ⁇ -sulfo fatty acid ester salts, alkane sulfonates, saturated fatty acid salts, unsaturated fatty acid salts, alkylether carboxylates, alkenylether carboxylates, amino acid-based surfactants, N-acylamino acid-based surfactants, alkyl phosphates or their salts, and alkenyl phosphates or their salts.
- An alkyl group and an alkenyl group in these anionic surfactants may have an alkyl side group such as a methyl side group.
- nonionic surfactants include polyoxyalkylene alkyl ether, polyoxyalkylene alkenyl ether, polyoxyethylene alkyl phenyl ether, higher-fatty-acid alkanol amide or their alkylene oxide adducts, sucrose fatty acid esters, alkyl glycoxydes, fatty acid glycerin monoesters, and alkylamine oxides.
- An alkyl group and an alkenyl group in these nonionic surfactants may have an alkyl side group such as a methyl side group.
- Suitable examples of cationic surfactants include quaternary ammonium salts.
- Suitable examples of amphoteric surfactants include carboxyl-based amphoteric surfactants and sulfobetaine-based amphoteric surfactants.
- An alkyl group and an alkenyl group in these cationic surfactants and amphoteric surfactants may have an alkyl side group such as a methyl side group.
- the surfactant is blended usually from 10% to 60% by mass, preferably 15% to 50% by mass, more preferably from 20% to 45% by mass, and particularly preferably from 25% to 40% by mass in the total amount of the detergent composition.
- An excessively small amount of the surfactant may prevent demonstration of sufficient washing performance.
- An excessively large amount of the surfactant may lead to disadvantages in terms of cost.
- additives include alkali builders, chelate builders, anti-redeposition agents for preventing redeposition of contaminants, such as sodium carboxymethylcellulose, soil inhibitors such as benzotriazole and ethylenethiourea, soil release agents, color migration inhibitors, softening agents, alkaline substances for pH adjustment, perfumes, solubilizing agents, fluorescent agents, coloring agents, foaming agents, foam stabilizers, lustering agents, bactericides, bleaching agents, bleaching assistants, enzymes, dyes, and solvents.
- Powder detergent compositions preferably contain zeolite.
- the detergent composition may contain other detergent builders in addition to the polymer composition of the present invention.
- the other detergent builder is not particularly limited.
- the other detergent builder include alkali builders such as carbonates, hydrogencarbonates, and silicates; chelate builders such as tripolyphosphates, pyrophosphates, Glauber's salt, nitrilotriacetates, ethylenediaminetetraacetate, citrates, a copolymer salt of (meth)acrylic acid, acrylic acid-maleic acid copolymers, fumarates, and zeolite; and carboxyl derivatives of polysaccharides such as carboxymethyl cellulose.
- counter salts used with the builder include alkali metals such as sodium and potassium, ammonium, and amine.
- the additive (s) and the other detergent builder are usually blended, in total, preferably from 0.1% to 50% by mass, more preferably from 0.2% to 40% by mass, still more preferably from 0.3% to 35% by mass, particularly preferably from 0.4% to 30% by mass, and most preferably from 0.5% to 20% by mass in 100% by mass of the detergent composition. If the total amount of the additive(s) and the other detergent builder is less than 0.1% by mass, detergent performance may not be sufficiently exhibited. If the total amount thereof is more than 50% by mass, economic efficiency may be reduced.
- detergent composition includes detergents used only for specific usages such as synthetic detergents of household detergents, detergents for industrial use such as detergents used in the textile industry, hard surface detergents, and bleaching detergents in which the performance delivered by one component is enhanced.
- water is usually contained in an amount of preferably from 0.1% to 75% by mass, more preferably from 0.2% to 70% by mass, still more preferably from 0.5% to 65% by mass, further still more preferably from 0.7% to 60% by mass, particularly preferably from 1% to 55% by mass, and most preferably from 1.5% to 50% by mass based on the total amount of the liquid detergent composition.
- the kaolin turbidity of the detergent composition is preferably not more than 200 mg/L, more preferably not more than 150 mg/L, still more preferably not more than 120 mg/L, particularly preferably not more than 100 mg/L, and most preferably not more than 50 mg/L.
- the amount of change (difference) between the kaolin turbidities when the polymer composition of the present invention is added to the liquid detergent composition as a detergent builder and when no polymer composition of the present invention is added to the liquid detergent composition as a detergent builder is preferably not more than 500 mg/L, more preferably not more than 400 mg/L, still more preferably not more than 300 mg/L, particularly preferably not more than 200 mg/L, and most preferably not more than 100 mg/L.
- the value of the kaolin turbidity is measured by the following method.
- a uniformly stirred sample (liquid detergent) is charged in a 50-mm square cell having a thickness of 10 mm, and bubbles are removed therefrom. Then, the sample is measured for turbidity (kaolin turbidity: mg/L) at 25° C. using an NDH2000 (trade name, turbidity meter) produced by Nippon Denshoku Industries Co., Ltd.
- Suitable examples of enzymes that can be blended with the detergent composition include proteases, lipases, and cellulases.
- proteases, alkali lipases, and alkali cellulases are preferable because these are highly active in alkali washing liquids.
- the amount of the enzyme is preferably not more than 5% by mass in 100% by mass of the detergent composition. If the amount of the enzyme is more than 5% by mass, the washing performance no longer improves, and disadvantages in cost may be caused.
- the detergent composition produces little salt precipitates and has a high washing effect even when used in an area where there is hard water with high concentrations of calcium ions and magnesium ions (for example, not less than 100 mg/L).
- the effect is particularly remarkable when the detergent composition contains an anion surfactant such as LAS.
- the sulfonate group-containing polymer of the present invention has the above features, and has anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition. Accordingly, the polymer can be suitably used for materials of detergent additives or the like.
- the weight average molecular weight Mw and number average molecular weight of the polymer of the present invention, and the solid content in the aqueous polymer solution were measured according to the following methods.
- the polymer composition (1.0 g of polymer composition+1.0 g of water) was oven dried at 130° C. for 1 hour under a nitrogen atmosphere.
- the solid content (%) and the volatile component (%) were calculated from the weight difference before and after drying.
- clay mentioned in the item (4) was used instead of carbon black as soil.
- a cotton cloth obtained from Testfabrics, Inc. was cut into 5 cm ⁇ 5 cm to prepare white clothes. Whiteness of each of the white clothes was previously measured as reflectance using colorimetry color difference meter SE6000 type produced by Nippon Denshoku Industries Co., Ltd.
- Pure water was added to calcium chloride dihydrate (5.0 g) to prepare hard water (17 kg).
- Pure water was added to polyoxyethylene (8) lauryl ether (4.0 g) to prepare an aqueous surfactant solution (100.0 g).
- the pH was controlled to 8.5 with sodium hydroxide.
- the temperature of a Terg-o-Tometer was set at 25° C.
- Detergents were prepared from the resulting novel copolymers according to the examples and the components listed below. Stirring was performed so that the components were uniformly dispersed. The turbidity at 25° C. was visually evaluated.
- a 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (49.7 g) and Mohr's salt (0.010 g), and the temperature was raised to 85° C. while stirring.
- the addition times for the respective solutions were 180 min for 80% AA, 150 min for 40% HAPS, 90 min for 80% IPN10, 190 min for 15% NaPS, and 175 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled, and neutralized with 48% sodium hydroxide (89.1 g) (hereinafter, abbreviated as 48% NaOH).
- 48% NaOH sodium hydroxide
- an aqueous copolymer solution (1) having a solid content concentration of 44% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (1)).
- the polymer (1) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- the addition times for the respective solutions were 180 min for 80% AA, 150 min for 40% HAPS, 150 min for 60% IPN25, 190 min for 15% NaPS, and 175 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (95.7 g).
- an aqueous copolymer solution (2) having a solid content concentration of 44% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (2)).
- the polymer (2) was subjected to the compatibility test, and the compatibility was evaluated as “Good”.
- the addition times for the respective solutions were 180 min for 80% AA, 150 min for 40% HAPS, 150 min for 60% IPN50, 190 min for 15% NaPS, and 175 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with pure water (56.3 g) and 48% NaOH (162.6 g). Thus, an aqueous copolymer solution (3) having a solid content concentration of 40% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (3)).
- the addition times for the respective solutions were 180 min for 80% AA, 150 min for 40% HAPS, 150 min for 60% IPN50, 190 min for 15% NaPS, and 175 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (126.6 g). Thus, an aqueous copolymer solution (4) having a solid content concentration of 40% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (4)).
- a 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (45.0 g), 60% IPN50 (60.0 g), and Mohr's salt (0.014 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (72.0 g), 40% HAPS (96.1 g) (162 mmol), 60% IPN50 (266.4 g), 15% NaPS (70.8 g), 35% SBS (10.3 g), and pure water (10.0 g) were added dropwise from different nozzles.
- the addition times for the respective solutions were 180 min for 80% AA, 30 min for 40% HAPS, 90 min for 60% IPN50, 210 min for 15% NaPS, and 200 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (51.2 g).
- an aqueous copolymer solution (9) having a solid content concentration of 47% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (9)).
- the polymer (9) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- the addition times for the respective solutions were 180 min for 80% AA and 48% NaOH, 100 min for 40% AMPS and 60% IPN50, 200 min for 15% NaPS, and 210 min for 35% SBS. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (49.3 g) and pure water (42.8 g).
- an aqueous copolymer solution (11) having a solid content concentration of 40% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (11)).
- the polymer (11) was subjected to the compatibility test, and the compatibility was evaluated as “Good”.
- An aqueous copolymer solution (12) (the copolymer was referred to as polymer (12)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.7, the weight average molecular weight (Mw) of the copolymer was 42,000, the product (hereinafter, referred to as P ⁇ Mw) of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the copolymer was 154,000, and the product (hereinafter, referred to as P ⁇ Mw ⁇ n) of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the copolymer multiplied by the value n in the formula (2) was 7,700,000.
- An aqueous copolymer solution (13) (the copolymer was referred to as polymer (13)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.5, the weight average molecular weight Mw of the copolymer was 23,000, (P ⁇ Mw) was 33,400, and (P ⁇ Mw ⁇ n) was 1,670,000.
- An aqueous copolymer solution (14) (the copolymer was referred to as polymer (14)) was prepared by polymerizing the monomers and performing the post treatments as in Example 1 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.1, the weight average molecular weight Mw of the copolymer was 36,000, (P ⁇ Mw) was 111,000, and (P ⁇ Mw ⁇ n) was 1,110,000.
- An aqueous copolymer solution (15) (the copolymer was referred to as polymer (15)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.1, the weight average molecular weight Mw of the copolymer was 44,000, (P ⁇ Mw) was 136,000, and (P ⁇ Mw ⁇ n) was 3,400,000.
- An aqueous copolymer solution (16) (the copolymer was referred to as polymer (16)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 0.55, the weight average molecular weight Mw of the copolymer was 50,000, (P ⁇ Mw) was 27,600, and (P ⁇ Mw ⁇ n) was 1,380,000.
- An aqueous copolymer solution (17) (the copolymer was referred to as polymer (17)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 0.77, the weight average molecular weight Mw of the copolymer was 29,000, (P ⁇ Mw) was 22,300, and (P ⁇ Mw ⁇ n) was 1,110,000.
- aqueous copolymer solution (18) (the copolymer was referred to as polymer (18)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.1, the weight average molecular weight Mw of the copolymer was 57,000, (P ⁇ Mw) was 62,200, and (P ⁇ Mw ⁇ n) was 3,110,000.
- An aqueous copolymer solution (19) (the copolymer was referred to as polymer (19)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.3, the weight average molecular weight Mw of the copolymer was 15,000, (P ⁇ Mw) was 19,400, and (P ⁇ Mw ⁇ n) was 972,000.
- the polymer (19) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- An aqueous copolymer solution (20) (the copolymer was referred to as polymer (20)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 2.1, the weight average molecular weight Mw of the copolymer was 12,000, (P ⁇ Mw) was 25,500, and (P ⁇ Mw ⁇ n) was 1,280,000.
- the polymer (20) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- An aqueous copolymer solution (21) (the copolymer was referred to as polymer (21)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 2.2, the weight average molecular weight Mw of the copolymer was 31,000, (P ⁇ Mw) was 68,900, and (P ⁇ Mw ⁇ n) was 3,440,000.
- An aqueous copolymer solution (22) (the copolymer was referred to as polymer (22)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.1, the weight average molecular weight Mw of the copolymer was 28,000, (P ⁇ Mw) was 86,500, and (P ⁇ Mw ⁇ n) was 4,330,000.
- the polymer (22) was subjected to the compatibility test, and the compatibility was evaluated as “Good”.
- An aqueous copolymer solution (23) (the copolymer was referred to as polymer (23)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.1, the weight average molecular weight Mw of the copolymer was 57,000, (P ⁇ Mw) was 176,000, and (P ⁇ Mw ⁇ n) was 8,810,000.
- An aqueous copolymer solution (24) (the copolymer was referred to as polymer (24)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.3, the weight average molecular weight Mw of the copolymer was 25,000, (P ⁇ Mw) was 83,300, and (P ⁇ Mw ⁇ n) was 4,170,000.
- the polymer (24) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- An aqueous copolymer solution (25) (the copolymer was referred to as polymer (25)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 4.0, the weight average molecular weight Mw of the copolymer was 36,000, (P ⁇ Mw) was 144,000, and (P ⁇ Mw ⁇ n) was 7,200,000.
- An aqueous copolymer solution (26) (the copolymer was referred to as polymer (26)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 4.5, the weight average molecular weight Mw of the copolymer was 65,000, (P ⁇ Mw) was 295,000, and (P ⁇ Mw ⁇ n) was 14,800,000.
- the temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (106.3 g).
- a comparative aqueous copolymer solution (1) having a solid content concentration of 48% by weight and a final degree of neutralization of 94 mol % was prepared (the copolymer was referred to as comparative polymer (1)).
- the comparative polymer (1) was subjected to the compatibility test, and the compatibility was evaluated as “Fair”.
- the addition times for the respective solutions were 180 min for 80% AA, 40 min for 40% HAPS, 90 min for IPN5, 190 min for 15% NaPS, and 120 min for 35% SBS and pure water.
- the solutions other than 35% SBS and pure water began to be added dropwise at the same time.
- Addition dropwise of the 35% SBS and the pure water was started 60 min after the addition dropwise of the 80% AA was started.
- the temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed.
- the reaction solution was cooled and neutralized with 48% NaOH (84.4 g).
- a comparative aqueous copolymer solution (2) having a solid content concentration of 40% by weight and a final degree of neutralization of 90 mol % was prepared (the comparative copolymer was referred to as comparative polymer (2)).
- the comparative polymer (2) was subjected to the compatibility test, and the compatibility was evaluated as “Fair”.
- the temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (141.7 g).
- a comparative aqueous copolymer solution (3) having a solid content concentration of 48% by weight and a final degree of neutralization of 92 mol % was prepared (the comparative copolymer was referred to as comparative polymer (3)).
- the comparative polymer (3) was subjected to the compatibility test, and the compatibility was evaluated as “Fair”.
- the temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (37.7 g).
- a comparative aqueous copolymer solution (4) having a solid content concentration of 40% by weight and a final degree of neutralization of 90 mol % was prepared (the comparative copolymer was referred to as comparative polymer (4)).
- the comparative polymer (4) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- a comparative aqueous copolymer solution (5) (the comparative copolymer was referred to as comparative polymer (5)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 2 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 0.59, the weight average molecular weight Mw of the copolymer was 7,000, (P ⁇ Mw) was 4,160, and (P ⁇ Mw ⁇ n) was 20,800.
- a comparative aqueous copolymer solution (6) (the comparative copolymer was referred to as comparative polymer (6)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 2 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 2.0, the weight average molecular weight Mw of the copolymer was 12,000, (P ⁇ Mw) was 24,000, and (P ⁇ Mw ⁇ n) was 120,000.
- the comparative polymer (6) was subjected to the compatibility test, and the compatibility was evaluated as “Fair”.
- the comparative polymer (7) was subjected to the compatibility test, and the compatibility was evaluated as “Good”.
- a comparative aqueous copolymer solution (8) (the comparative copolymer was referred to as comparative polymer (8)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 0.59, the weight average molecular weight Mw was 18,000, (P ⁇ Mw) was 10,700, and (P ⁇ Mw ⁇ n) was 107,000.
- a comparative aqueous copolymer solution (9) (the comparative copolymer was referred to as comparative polymer (9)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.0, the weight average molecular weight Mw was 33,000, (P ⁇ Mw) was 31,400, and (P ⁇ Mw ⁇ n) was 314,000.
- a comparative aqueous copolymer solution (10) (the comparative copolymer was referred to as comparative polymer (10)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.0, the weight average molecular weight Mw was 33,000, (P ⁇ Mw) was 33,000, and (P ⁇ Mw ⁇ n) was 330,000.
- a comparative aqueous copolymer solution (11) (the comparative copolymer was referred to as comparative polymer (11)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.1, the weight average molecular weight Mw of the copolymer was 24,000, (P ⁇ Mw) was 25,300, and (P ⁇ Mw ⁇ n) was 253,000.
- a comparative aqueous copolymer solution (12) (the comparative copolymer was referred to as comparative polymer (12)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.4, the weight average molecular weight Mw of the copolymer was 13,000, (P ⁇ Mw) was 18,400, and (P ⁇ Mw ⁇ n) was 184,000.
- a comparative aqueous copolymer solution (13) (the comparative copolymer was referred to as comparative polymer (13)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 4.0, the weight average molecular weight Mw of the copolymer was 15,000, (P ⁇ Mw) was 60,000, and (P ⁇ Mw ⁇ n) was 600,000.
- a comparative aqueous copolymer solution (14) (the comparative copolymer was referred to as comparative polymer (14)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 0.59, the weight average molecular weight Mw of the copolymer was 11,000, (P ⁇ Mw) was 6,530, and (P ⁇ Mw ⁇ n) was 163,000.
- a comparative aqueous copolymer solution (15) (the comparative copolymer was referred to as comparative polymer (15)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.0, the weight average molecular weight Mw of the copolymer was 9,000, (P ⁇ Mw) was 9,000, and (P ⁇ Mw ⁇ n) was 225,000.
- a comparative aqueous copolymer solution (16) (the comparative copolymer was referred to as comparative polymer (16)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.0, the weight average molecular weight Mw of the copolymer was 22,000, (P ⁇ Mw) was 22,000, and (P ⁇ Mw ⁇ n) was 550,000.
- a comparative aqueous copolymer solution (17) (the comparative copolymer was referred to as comparative polymer (17)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.1, the weight average molecular weight Mw of the copolymer was 23,000, (P ⁇ Mw) was 25,600, and (P ⁇ Mw ⁇ n) was 639,000.
- a comparative aqueous copolymer solution (18) (the comparative copolymer was referred to as comparative polymer (17)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed.
- the ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 2.0, the weight average molecular weight Mw of the copolymer was 9,000, (P ⁇ Mw) was 18,000, and (P ⁇ Mw ⁇ n) was 450,000.
- Table 1 shows monomer components, the proportions of the structural units (a), (b), and (c), the proportion of the structural unit (b) to the structural unit (a), the weight average molecular weight (Mw), the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw, the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the sulfonate group-containing copolymer multiplied by the value n in the formula (2), the results of evaluations of anti-redeposition properties of the polymers obtained in Examples and Comparative Examples and the results of test for compatibility with liquid detergents.
- the evaluation of anti-redeposition properties in the present invention is performed with detergent compositions that are intended for liquid detergents without zeolite.
- Zeolite is a water softener which catches metal ions such as calcium ions and magnesium ions contained in water to reduce hardness of water. Therefore, the tests are performed under a higher hardness condition than when a zeolite-containing detergent is used. Further, the tests are performed using dirt (test powder 1 (class 11 clay) according to JIS Z 8901) as typical hydrophilic particle soil. As a result, the evaluation of anti-redeposition properties shows that the polymer of the present invention has excellent anti-redeposition properties against hydrophilic particles under high hardness condition.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Detergent Compositions (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
A sulfonate group-containing copolymer is provided which comprising a structural unit (a) derived from a sulfonate group-containing monomer (A); a structural unit (b) derived from a (poly)oxyalkylene monomer (B); a structural unit (c) derived from a carboxyl group-containing monomer (C). The sulfonate group-containing copolymer comprises from 20% to 90% by mass in an acid form equivalent of the structural unit (c) in 100% by mass of all the structural units constituting the sulfonate group-containing copolymer. The product (P×Mw×n) of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the sulfonate group-containing copolymer multiplied by the value n is from 950,000 to 800,000,000.
Description
- The present invention relates to a sulfonate group-containing polymer and a method of producing the sulfonate group-containing polymer. Specifically, the present invention relates to a sulfonate group-containing polymer useful as materials of detergent additives and the like, and a method of producing the sulfonate group-containing polymer.
- Detergents used for washing clothes have conventionally contained detergent builders (detergent aids) such as zeolite, carboxymethylcellulose, or polyethylene glycol for the purpose of improving the washing effects of detergents.
- In recent years, detergent compositions have contained polymers as detergent builders in addition to the above various detergent builders.
- For example, use of water-soluble copolymers prepared from an unsaturated monocarboxylic acid monomer and an unsaturated polyalkylene glycol monomer and/or a sulfonate group-containing monomer, as detergent builders or the like, is disclosed (refer to Patent Literatures 1 to 4).
- In recent years, consumers have been aware of environmental issues, and the performance needed for detergent builders seems to be changing. Specifically, consumers have saved water by using remaining hot water in a bath for laundry, or have chosen detergents effective at a small amount (compacted detergent compositions) to reduce the amount of detergent components discharged in drainage water.
- However, laundry using remaining hot water in a bath has a problem of more soil or hard components in the water. Further, a similar problem arises in an area where there is water with high hardness. For the above problem, agents having higher anti-redeposition properties than the conventional properties are required to further suppress redeposition of soil to fibers or the like during washing under high hardness condition.
- As described above, various polymers are conventionally reported, but such polymers have room for improvement in anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil such as clay under a hard water condition. Further, detergent builders meeting the current consumer needs are required to be developed. In particular, there is still a need for polymeric detergent builders in Patent Literatures 1 with further improved anti-redeposition properties and higher water hardness tolerance.
- The present invention aims to provide a polymer having further improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition when the polymer is used for detergents; and a method of producing the polymer.
- The present inventors made various investigations on polymers suitable for detergent additives. As a result, the present inventors found that a sulfonate group-containing polymer with a specific weight average molecular weight having a structural unit derived from a carboxyl group-containing monomer, a structural unit derived from a (poly)oxyalkylene monomer, a structural unit derived from a sulfonate group-containing monomer in specific proportions has significantly improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition (higher water hardness tolerance). Thus, the above problems are admirably solved to achieve the present invention.
- That is, a first aspect of the present invention is sulfonate group-containing copolymer, comprising:
- a structural unit (a) derived from a sulfonate group-containing monomer (A);
- a structural unit (b) derived from a (poly)oxyalkylene monomer (B) represented by the following formula (1):
- wherein R1 represents a hydrogen atom or a methyl group; R2 represents a direct bond, CH2, or CH2CH2; and X0 represents a structural unit represented by the following formula (2):
-
—Zn—OR0 (2) - wherein Z may be the same or different and each represents a structural unit derived from a C2-C20 alkylene oxide; R0 represents hydrogen atom or a C1-C30 organic group; and n is an integer of from 1 to 200; and
- a structural unit (c) derived from a carboxyl group-containing monomer (C),
- wherein the sulfonate group-containing copolymer comprises from 20% to 90% by mass in an acid form equivalent of the structural unit (c) in 100% by mass of all the structural units constituting the sulfonate group-containing copolymer,
- wherein the product (P×Mw×n) of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the sulfonate group-containing copolymer multiplied by the value n in the formula (2) is from 950,000 to 800,000,000.
- A second aspect of the present invention is a sulfonate group-containing copolymer, comprising: a structural unit (a) derived from a sulfonate group-containing monomer (A); a structural unit (b) derived from a (poly)oxyalkylene monomer (B) represented by the following formula (1):
- wherein R1 represents a hydrogen atom or a methyl group; R2 represents a direct bond, CH2, or CH2CH2; and X0 represents a structural unit represented by the following formula (2):
-
—Zn—OR0 (2) - wherein Z may be the same or different and each represents a structural unit derived from a C2-C20 alkylene oxide; R0 represents hydrogen atom or a C1-C30 organic group; and n is an integer of from 1 to 200; and a structural unit (c) derived from a carboxyl group-containing monomer (C), wherein the sulfonate group-containing copolymer comprises from 20% to 90% by mass in acid form equivalent of the structural unit (c) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer, wherein the ratio by mass P of the structural unit (b) to the structural unit (a) is from 1.2 to 20, wherein the sulfonate group-containing copolymer has a weight average molecular weight Mw of from 20,000 to 200,000, and wherein the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw is 25,000 to 2,000,000.
- Hereinafter, the present invention will be specifically described.
- Preferred embodiments of the present invention include a combination of two or more of the preferred embodiments of the present invention described below.
- The description of “sulfonate group-containing copolymer” herein shall apply to both the sulfonate group-containing copolymers of the first and the second aspects of the present invention, unless otherwise noted. When only the sulfonate group-containing copolymer of the first aspect of the present invention or only the sulfonate group-containing copolymer of the second aspect of the present invention is described, this shall be noted.
- The copolymer of the present invention is a copolymer containing a structural unit (a) derived from a sulfonate group-containing monomer (A), a structural unit (b) derived from a (poly)oxyalkylene monomer (B), and a structural unit (c) derived from a carboxyl group-containing monomer (C).
- The sulfonate group-containing monomer (A) of the present invention is a monomer having a sulfonate group and a carbon-carbon double bond. The sulfonate group is intended to include sulfonic acids and their salts. Examples of the salts of sulfonic acids include, but are not particularly limited to, metal salts, ammonium salts, and organic amine salts of sulfonic acids. The metal atom of the metal salts is preferably, for example, an alkali metal such as sodium or potassium; an alkaline earth metal such as magnesium, calcium, strontium, or barium; aluminum; or iron. Further, the organic amine group of the organic amine salt is preferably, for example, an alkanolamine such as monoethanolamine, diethanolamine, or triethanolamine; an alkylamine such as monoethylamine, diethylamine, or triethylamine; or a polyamine such as ethylenediamine or triethylenediamine. The salts of sulfonic acids are preferably potassium sulfonate, sodium sulfonate, ammonium sulfonate, or quaternary amines of sulfonic acids. The sulfonate group-containing monomer (A) may contain one or more sulfonate groups.
- Examples of the sulfonate group-containing monomer (A) include 2-acrylamide-2-methylpropanesulfonic acid, styrene sulfonic acid, allyl sulfonic acid, vinyl sulfonic acid, their salts, and compounds represented by the following formula (3):
- wherein R3 represents a hydrogen atom or a methyl group; R4 represents a direct bond, CH2, or CH2CH2; X and Y each represent hydroxy or SO3M where M represents hydrogen atom, Li, Na, or K, and at least one of X and Y is SO3M.
- The sulfonate group-containing monomer (A) is preferably 2-acrylamide-2-methylpropanesulfonic acid or a compound represented by the formula (3), and more preferably a compound represented by the formula (3). The copolymer of the present invention having a structure derived from a compound represented by the formula (3) has improved anti-redeposition properties. R4 in the formula (3) is more preferably CH2 because it is likely to improve the anti-redeposition properties of the copolymer. It is preferable that one of X and Y in the formula (3) is a SO3M and the other is a hydroxy group. It is more preferable that X is a hydroxy group and Y is a SO3M. Specific examples of the compound represented by the formula (3) include 3-(meth)allyloxy-2-hydroxypropanesulfonic acid (salts) and 3-(meth)allyloxy-1-hydroxypropanesulfonic acid (salts). The compound represented by the formula (3) is preferably 3-(meth)allyloxy-2-hydroxypropanesulfonic acid (salts). The sulfonate group-containing monomer (A) is preferably the compound represented by the formula (3) for increasing the preservation stability of the sulfonate group-containing copolymer.
- The sulfonate group-containing copolymer contains preferably from 2% to 38% by mass in an acid form equivalent of the structural unit (a) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer, more preferably from 2% to 30% by mass, still more preferably from 3% to 25% by mass, further more preferably from 4% to 20% by mass, particularly preferably from 5% to 18% by mass, and most preferably from 5% to 16% by mass.
- Further, the sulfonate group-containing copolymer preferably contains not more than 1% by mass of the structural unit (a) derived from the sulfonate group-containing monomer (A) that has two or more sulfonate groups, in 100% by mass of all structural units constituting the sulfonate group-containing copolymer.
- The “acid form equivalent” herein means that the proportion (compositional ratio) of the mass of each of the sulfonate group-containing monomer, the carboxyl group-containing monomer, and other acid group-containing monomers is calculated as the proportion of the acid form of the each monomer. The same shall apply to calculation of the proportion of the mass of the structural unit derived from the monomer relative to the mass of the structural units derived from all monomers contained in the copolymer. Specifically, calculation of the proportion of the mass of sodium acrylate relative to the mass of all monomer components means calculation of the mass of acrylic acid as an acid of sodium acrylate. Calculation of the proportion of the mass of a structural unit derived from sodium acrylate relative to the mass of the structural units derived from all monomer components means calculation of the mass of the structural unit derived from acrylic acid as an acid of sodium acrylate. For example, the proportions of the masses of an amine salt group-containing monomer and an amine salt structure-containing structural unit are also calculated as the proportions of the masses of an amine (amino group)-containing monomer and an amine structure (amino group structure)-containing structural unit, respectively.
- The copolymer of the present invention preferably contains the structural unit (a) derived from the sulfonate group-containing monomer (A) represented by the formula (3). The structural unit (a) derived from the sulfonate group-containing monomer represented by the formula (3) herein is a copolymerized structural unit formed by radical polymerization of the sulfonate group-containing monomer represented by the formula (3), and is represented by the following formula (4):
- wherein R3 represents a hydrogen atom or a methyl group; R4 represents a direct bond, CH2, or CH2CH2; X and Y each represent hydroxy or SO3M where M represents hydrogen atom, Li, Na, or K, and at least one of X and Y is SO3M.
- The (poly)oxyalkylene monomer (B) of the present invention is characterized by having a structure represented by the formula (1).
- In the structure represented by the formula (1), R1 and R2 are preferably respectively a hydrogen atom and CH2, a methyl group and CH2, or a methyl group and CH2CH2; more preferably respectively methyl and CH2 or a methyl group and CH2CH2; and still more preferably respectively a methyl group and CH2CH2.
- In the formula (2), Z represents a structural unit derived from a C2-C20 alkylene oxide, R0 represents a hydrogen atom or a C1-C30 organic group, n is the number of alkylene oxide-derived structure repeating units, and is an integer of from 1 to 200.
- Examples of the organic group in R0 include C1-C30 alkyl, C2-C30 alkenyl, and C6-C30 aryl. These may further have a substituent group. Examples of the substituent group include hetero ring, alkoxy, aryloxy, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, sulfamoyl, acyl, acyloxy, amide, carbamoyl, ureido, alkylsulfonyl, arylsulfonyl, amino, halogen, fluorohydrocarbon, cyano, nitro, hydroxy, mercapto, and silyl. Specific examples of the C1-C30 organic group include methyl, ethyl, butyl, octyl, lauryl, cyclohexyl, phenyl, naphthyl, pyridyl, pyrimidyl, imidazolidyl, morpholyl, butenyl, pentenyl, hexenyl, heptenyl, methylcarbonyl, and ethylcarbonyl.
- R0 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
- In the formula (2), the “structural unit derived from an alkylene oxide” represents an oxyalkylene structure containing a ring-opening alkylene oxide. For example, in cases where an alkylene oxide is ethylene oxide (EO), the “structural unit derived from an alkylene oxide” is —OCH2CH2— (oxyethylene) that is an oxyalkylene structure containing a ring-opening ethylene oxide. The oxyalkylene as the structural unit derived from an alkylene oxide has 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms, still more preferably 2 to 5 carbon atoms, particularly preferably 2 to 3 carbon atoms, and most preferably 2 carbon atoms.
- Examples of the structural unit derived from an alkylene oxide include structures derived from compounds such as ethylene oxide (EO), propylene oxide (PO), isobutylene oxide, 1-butene oxide, 2-butene oxide, trimethylethylene oxide, tetramethylene oxide, tetramethylethylene oxide, butadiene monoxide, octylene oxide, styrene oxide, and 1,1-diphenyl ethylene oxide. In particular, the structural unit derived from an alkylene oxide (oxyalkylene) is preferably a group derived from EO or PO (that is, oxyethylene or oxypropylene), and more preferably oxyethylene. Only one species of oxyalkylene may be contained, or two or more species of oxyalkylenes may be contained.
- A (poly)oxyalkylene glycol chain (group formed by oxyalkylene) contained in the (poly)oxyalkylene monomer of the present invention preferably mainly includes oxyethylene (—O—CH2—CH2—). In this case, the phrase “mainly includes oxyethylene” means that if two or more species of oxyalkylenes are present in the monomer, oxyethylene accounts for most of all oxyalkylenes. This allows smooth progress of polymerization in a production process, and provides excellent effects such as improvement in water solubility or anti-redeposition properties.
- In the (poly)oxyalkylene glycol chain contained in the (poly)oxyalkylene monomer of the present invention “mainly including oxyethylene”, the proportion of oxyethylene is preferably 50 to 100 mol % relative to 100 mol % of all oxyalkylenes. If the proportion of the oxyethylene is not less than 50 mol %, the hydrophilicity of the group formed by the oxyalkylene can be further improved. The proportion of the oxyethylene is more preferably not less than 60 mol %, still more preferably not less than 70 mol %, particularly preferably not less than 80 mol %, and most preferably not less than 90 mol %.
- In the formula (2), n is the number of alkylene oxide-derived structure repeating units, and is an integer of from 1 to 200, preferably 5 to 100, more preferably 10 to 80, and still more preferably 25 to 75, and most preferably 40 to 60. When n is in the above preferred ranges, the compatibility with liquid detergents and the anti-redeposition properties of the resulting sulfonate group-containing copolymer tend to be improved.
- The sulfonate group-containing copolymer of the present invention preferably contains from 9% to 76% by mass of the structural unit (b) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer, more preferably from 10% to 70% by mass, still more preferably from 12% to 65% by mass, further more preferably from 15% to 60% by mass, particularly preferably from 18% to 50% by mass, yet more preferably from 20% to 49% by mass, and most preferably from 30% to 45% by mass. In the calculation of the total weight of all structural units derived from all monomers in the present invention, the weights of the sulfonate group-containing monomer, the carboxyl group-containing monomer, and other acid group-containing monomers contained in all monomer components are calculated as the weights of their acids monomers.
- The copolymer of the present invention is characterized by having the structural unit (b) derived from the (poly)oxyalkylene monomer (B) represented by the formula (1). The structural unit (b) derived from the (poly)oxyalkylene monomer herein is a copolymerized structural unit formed by radical polymerization of the (poly)oxyalkylene monomer (B), and is represented by the following formula (5):
- wherein R1 represents a hydrogen atom or a methyl group; R2 represents a direct bond, CH2, or CH2CH2; and X0 represents a structural unit represented by the formula (2).
- The (poly)oxyalkylene monomer may be produced by any method. The (poly)oxyalkylene monomer (B) having a structure represented by the formula (1) is preferably produced by method (i) in which an alkylene oxide is added to an alcohol having a carbon-carbon double bond, such as allyl alcohol, methallyl alcohol, or isoprenol; or method (ii) in which a (poly)alkylene glycol is added to a halide having a carbon-carbon double bond, such as allyl chloride, methallyl chloride, isoprenyl chloride, or vinyl chloride.
- In the method (i), an alkylene oxide is added to an alcohol having a carbon-carbon double bond by, for example, 1) anionic polymerization in which a hydroxide of an alkali metal, a strong alkali such as an alkoxide, or alkylamine is used as a base catalyst, 2) cationic polymerization in which a halide of a metal or metalloid, mineral acid, or acetic acid is used as a catalyst, or 3) coordination polymerization in which a combination of an alkoxide of a metal such as aluminum, iron, or zinc, an alkaline-earth compound, and/or Lewis acid is used. Thus, the alkylene oxide is added to the hydroxy group of the alcohol.
- The (poly)oxyalkylene monomer (B) of the present invention having a structure represented by the formula (1) has good stability during polymerization. Accordingly, the anti-redeposition properties of the resulting polymer improve. Further, the (poly)oxyalkylene monomer (B) of the present invention having a structure represented by the formula (1) provides a polymer having favorable temporal stability. Further, when processed into various products (compositions) for various applications, the polymer (sulfonate group-containing copolymer) of the present invention shows excellent stability, and whereby the resulting product preferably has stable performance.
- The carboxyl group-containing monomer (C) of the present invention is a monomer having carboxyl and a carbon-carbon double bond. The carboxyl is intended to include carboxylic acids and their salts. Examples of the salts of the carboxylic acids include, but are not particularly limited to, metal salts, ammonium salts, and organic amine salts of carboxylic acids. Preferred examples of a metal atom of the metal salts include alkali metals such as sodium and potassium; alkaline earth metals such as magnesium, calcium, strontium, and barium; aluminum; and iron. Further, preferred examples of an organic amine group of the organic amine salt include alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine; alkylamines such as monoethylamine, diethylamine, and triethylamine; polyamines such as ethylenediamine and triethylenediamine. Examples of the salts of the carboxylic acids include lithium salts, potassium salts, sodium salts, ammonium salts, and quaternary amine salts.
- Examples of the carboxyl group-containing monomer include (meth)acrylic acid, maleic acid, anhydride thereof, fumaric acid, itaconic acid, crotonic acid, 2-methylene glutaric acid, and their salts. In particular, in view of their high polymerizability and obtaining a copolymer having high anti-redeposition properties, the carboxyl group-containing monomer is more preferably (meth)acrylic acid, maleic acid, anhydride thereof, or their salts, still more preferably acrylic acid, maleic acid, anhydride thereof, or their salts, and particularly preferably acrylic acid or its salt. In cases where the carboxyl group-containing monomer is a compound forming an acid anhydride, such as maleic acid, the monomer may be in the acid anhydride form. These carboxyl group-containing monomers may be used alone, or two or more of these may be used in combination.
- In light of the structure, the proportion of the mass of the carboxyl group-containing monomer that corresponds to the (poly)oxyalkylene monomer of the present invention is calculated as the mass of the (poly)oxyalkylene monomer. In cases where the carboxyl group-containing monomer is an acid anhydride, the mass of the monomer is calculated as the mass of the dicarboxylic acid, which is an acid of the monomer, prepared from the acid anhydride by hydrolysis.
- The sulfonate group-containing copolymer of the present invention contains from 20% to 90% by mass in acid form equivalent of the structural unit (c) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer. The amount of the structural unit (c) is preferably from 25% to 85% by mass, more preferably from 30% to 80% by mass, still more preferably 35% to 75% by mass, particularly preferably from 40% to 73% by mass, and most preferably from 40% to 55% by mass. The sulfonate group-containing polymer of the present invention having a proportion of the structural unit (c) of 20% to 90% by mass has improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition. In order to improve the compatibility with liquid detergents as well as the anti-redeposition properties, the proportion of the structural unit (c) is most preferably 40% to 55% by mass. In light of the structure, the proportion of the mass of the carboxyl group-containing monomer that corresponds to a salt of an acid is calculated as the mass of acid. In cases where the carboxyl group-containing monomer is an acid anhydride, the mass of the monomer is calculated as the mass of the dicarboxylic acid, which is an acid of the monomer, prepared from the acid anhydride by hydrolysis.
- The sulfonate group-containing copolymer of the present invention contains preferably from 1% to 100% by mass, more preferably from 20% to 100% by mass, still more preferably from 50% to 100% by mass, particularly preferably from 80% to 100% by mass, and most preferably 100% by mass, in acid form equivalent of a structural unit derived from a monocarboxylic acid such as (meth)acrylic acid in 100% by mass of the total of the structural unit (c) derived from the carboxyl group-containing monomer (C).
- The copolymer of the present invention contains the structural unit (c) derived from the carboxyl group-containing monomer (C). The structural unit (c) is a copolymerized structural unit formed by radical polymerization of the carboxyl group-containing monomer (C). For example, in cases where the carboxyl group-containing monomer is acrylic acid, the structural unit (c) is the structure represented by —CH2—CH(COOH)—.
- The sulfonate group-containing copolymer of the present invention may contain a structural unit (e) derived from a monomer (E) other than the sulfonate group-containing monomer (A), the (poly)oxyalkylene monomer (B), and the carboxyl group-containing monomer (C). Examples of the monomer (E) include, but are not particularly limited to, hydroxy group-containing alkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and α-(hydroxymethyl)ethyl (meth)acrylate; alkyl (meth)acrylates prepared by esterification of (meth)acrylic acid with a C1-C18 alcohol, such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, cyclohexyl (meth)acrylate, and lauryl (meth)acrylate; amino group-containing acrylates such as dimethylaminoethyl (meth)acrylate and quaternized dimethylaminoethyl (meth)acrylate; amide group-containing monomers such as (meth)acrylamide, dimethyl acrylamide, and isopropyl acrylamide; vinyl esters such as vinyl acetate; alkenes such as ethylene and propylene; aromatic vinyl monomers such as styrene; maleimide derivertives such as maleimide, phenyl maleimide, and cyclohexyl maleimide; nitrile group-containing vinyl monomers such as (meth)acrylonitrile;
- phosphonic acid (salt) group-containing monomers such as vinylphosphonic acid, (meth)allylphosphonic acid, and their salts; aldehyde group-containing vinyl monomers such as (meth)acrolein; alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, and butyl vinyl ether; other functional group-containing monomers such as vinyl chloride, vinylidene chloride, allyl alcohol, and vinyl pyrrolidone. These other monomers may be used alone, or two or more of these may be used in combination.
- The copolymer of the present invention contains preferably from 0% to 30% by mass, more preferably from 0% to 20% by mass, still more preferably from 0% to 10% by mass, and most preferably 0% by mass of the structural unit (e) derived from the monomer (E) in 100% by mass of all structural units constituting the sulfonate group-containing copolymer.
- The structural unit (e) derived from the monomer (E) herein is a copolymerized structural unit formed by radical polymerization of the monomer (E). For example, in cases where the monomer (E) is methyl acrylate, the structural unit (e) is a structural unit represented by —CH2—CH(COOCH3)—.
- Two or more of the structural units (a), (b), (c), and (e) more preferably satisfy the above preferred proportions in the copolymer of the present invention. That is, the copolymer of the present invention containing a combination of the structural units (a), (b), (c) and (e) with the above preferred proportions is also a preferred embodiment of the copolymer of the present invention. The total of the proportions of the combination is 100% by mass.
- The sulfonate group-containing copolymer of the first aspect of the present invention is characterized in that the product (P×Mw×n) of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the sulfonate group-containing copolymer multiplied by the value n in the formula (2) is from 950,000 to 800,000,000. The value (P×Mw×n) is preferably not less than 1,000,000. The sulfonate group-containing copolymer of the present invention having such a product (P×Mw×n) further adsorbs hydrophilic soil, and improves particularly the anti-redeposition properties against hydrophilic soil under high hardness condition. The product (P×Mw×n) is more preferably not less than 1,500,000 and still more preferably not less than 2,000,000. The product (P×Mw×n) is preferably not larger than 500,000,000 and more preferably not larger than 100,000,000.
- The sulfonate group-containing copolymer of the second aspect of the present invention has the structural unit (a) derived from the sulfonate group-containing monomer (A), the structural unit (b) derived from the (poly)oxyalkylene monomer (B), and the structural unit (c) derived from the carboxyl group-containing monomer (C). The ratio by mass P of the structural unit (b) to the structural unit (a) is from 1.2 to 20. The ratio by mass P of the structural unit (b) to the structural unit (a) is preferably from 1.3 to 20, more preferably from 1.5 to 15, still more preferably 2 to 10, and most preferably 2.5 to 5.
- When the ratio by mass P is calculated, the masses of the structural unit (a) and the structural unit (b) are calculated as the masses of the acid-form structural unit of them.
- The ratio by mass is determined as a ratio of the acid-form structural unit of the structural unit (b) to the acid-form structural unit of the structural unit (a).
- The sulfonate group-containing polymer of the present invention having a ratio by mass P of the structural unit (b) to the structural unit (a) of from 1.2 to 20 has improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition. Further, in order to improve the compatibility with liquid detergents as well as the anti-redeposition properties, the ratio by mass P of the structural unit (b) to the structural unit (a) is particularly preferably 3 to 10.
- The sulfonate group-containing copolymer of the second aspect of the present invention has a weight average molecular weight Mw of from 20,000 to 200,000. The weight average molecular weight Mw is preferably from 22,000 to 150,000, more preferably from 25,000 to 100,000, and still more preferably from 30,000 to 80,000. The sulfonate group-containing polymer of the present invention having a weight average molecular weight Mw of from 20,000 to 200,000 has improved anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition. Further, in order to improve the compatibility with liquid detergents as well as the anti-redeposition properties, the weight average molecular weight Mw is particularly preferably 20,000 to 80,000 and most preferably 30,000 to 75,000.
- If the weight average molecular weight Mw is larger than 200,000, the copolymer may become highly viscous and its handling may be complicated. On the contrary, if the weight average molecular weight Mw is smaller than 20,000, the anti-redeposition properties deteriorate and the sufficient performance as detergent builders may not be exerted. The value of the weight average molecular weight Mw of the sulfonate group-containing copolymer of the present invention is determined by the method according to examples described below.
- The sulfonate group-containing copolymer of the second aspect of the present invention enables to significantly improve the anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition by the synergistic effects of combination of the ratio by mass P of the structural unit (b) to the structural unit (a), the weight average molecular weight Mw, and the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw, in the above preferred ranges. Further, in terms of improvement in the compatibility with liquid detergents as well as the anti-redeposition properties, combination of the ratio by mass P of the structural unit (b) to the structural unit (a), the weight average molecular weight Mw, and the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw, in the above preferred ranges, preferably provides synergistic effects.
- Further, the number of alkylene oxide-derived structure repeating units in the formula (2) and the proportion of the structural unit (c) in the sulfonate group-containing copolymer contribute to the anti-redeposition properties and the compatibility with liquid detergents. Therefore, it is preferable to combine the preferable range of the number of the structure repeating units and the preferable range of the proportion. That is, combination of the above preferred ranges of the ratio by mass P of the structural unit (b) to the structural unit (a), the weight average molecular weight Mw, the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw, the proportion of the structural unit (c) in the sulfonate group-containing copolymer, and the number of alkylene oxide-derived structure repeating units in the formula (2) is also a preferred embodiment of the present invention.
- Also in the sulfonate group-containing copolymer of the first aspect of the present invention, the ratio by mass P of the structural unit (b) to the structural unit (a) is preferably from 1.2 to 20, more preferably from 1.3 to 20, still more preferably from 1.5 to 15, and particularly preferably from 2 to 10.
- In addition, also in the sulfonate group-containing copolymer of the first aspect of the present invention, the weight average molecular weight Mw of the sulfonate group-containing copolymer is preferably from 20,000 to 200,000, more preferably from 22,000 to 150,000, still more preferably from 25,000 to 100,000, and particularly preferably from 30,000 to 80,000.
- Also in the sulfonate group-containing copolymer of the first aspect of the present invention, when the ratio by mass P of the structural unit (b) to the structural unit (a) or the weight average molecular weight Mw is in the above preferred ranges, the anti-redeposition properties of the sulfonate group-containing polymer, particularly the anti-redeposition properties against hydrophilic soil under high hardness condition is improved. Further, when the weight average molecular weight Mw is in the above preferred ranges, the compatibility of the sulfonate group-containing polymer with liquid detergents is improved.
- Further, when both the ratio by mass P of the structural unit (b) to the structural unit (a) and the weight average molecular weight Mw are in the above preferred ranges, also in the sulfonate group-containing copolymer of the first aspect of the present invention, the above-described synergistic effects of satisfying the both are exhibited.
- That is, one preferred embodiment of the sulfonate group-containing copolymer of the first aspect of the present invention is that the sulfonate group-containing copolymer of the first aspect of the present invention corresponds to the sulfonate group-containing copolymer of the second aspect of the present invention.
- In the sulfonate group-containing copolymer of the present invention, the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw is 25,000 to 2,000,000, preferably 50,000 to 1,500,000, and more preferably 100,000 to 1,000,000. The sulfonate group-containing copolymer of the present invention having a product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of 25,000 to 2,000,000 further adsorbs hydrophilic soil, and particularly improves anti-redeposition properties against hydrophilic soil under high hardness condition.
- In order to improve the compatibility with liquid detergents as well as the anti-redeposition properties, the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw is preferably 70,000 to 1,200,000, more preferably 100,000 to 1,000,000, still more preferably 120,000 to 1,000,000, and most preferably 130,000 to 1,200,000.
- In the sulfonate group-containing copolymer of the present invention, the ratio by mass of the structural unit (a) to the structural unit (b) to the structural unit (c) is preferably (2 to 38)/(9 to 76)/(20 to 90), more preferably (2 to 30)/(10 to 70)/(25 to 85), still more preferably (3 to 25)/(12 to 65)/(30 to 80), further more preferably (4 to 20)/(15 to 60)/(35 to 75), particularly preferably (5 to 18)/(18 to 50)/(40 to 73), yet more preferably 5 to 16/20 to 49/43 to 70, and most preferably 5 to 16/30 to 45/40 to 55.
- The total of the proportions of the structural units (a), (b), and (c) is 100% by mass.
- The method of producing the sulfonate group-containing copolymer of the present invention is not particularly limited, is preferably the following [Method of producing sulfonate group-containing copolymer].
- The present invention is also a method of producing the sulfonate group-containing copolymer. The method of producing the sulfonate group-containing copolymer of the present invention is not particularly limited, and a known polymerization method or a modified known method can preferably be used.
- The production method preferably includes copolymerizing monomer components including a sulfonate group-containing monomer (A), a (poly)oxyalkylene monomer (B), and a carboxyl group-containing monomer (C), the monomer (B) being represented by the following formula (1):
- wherein R1 represents a hydrogen atom or a methyl group; R2 represents a direct bond, CH2, or CH2CH2; and X0 represents a structural unit represented by the following formula (2):
-
—Zn—OR0 (2) - wherein Z may be the same or different and each represents a structural unit derived from a C2-C20 alkylene oxide; R0 represents a hydrogen atom or a C1-C30 organic group; and n is an integer of from 1 to 200, wherein the monomer components comprise from 20% to 90% by mass in acid form equivalent of the carboxyl group-containing monomer (C) in 100% by mass of all the monomers in the monomer components, and wherein the product (P×Mw×n) of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the sulfonate group-containing copolymer multiplied by the value n in the formula (2) is from 950,000 to 800,000,000. Such a method of producing the sulfonate group-containing copolymer is also one aspect of the present invention.
- The sulfonate group-containing monomer (A), the (poly)oxyalkylene monomer (B), and the carboxyl group-containing monomer (C) are preferably the same monomers as listed above.
- In order to sufficiently exert the effects of the present invention, the proportion of the sulfonate group-containing monomer (A) is, but not particularly limited to, preferably from 2% to 34% by mass, more preferably from 2% to 30% by mass, still more preferably from 3% to 25% by mass, further more preferably from 4% to 20% by mass, particularly preferably from 5% to 18% by mass, and most preferably from 5% to 16% by mass in acid form equivalent in 100% by mass of all the monomers.
- In order to sufficiently exert the effects of the present invention, the proportion of the (poly)oxyalkylene monomer (B) is, but not particularly limited to, preferably from 9% to 76% by mass, more preferably 10% to 70% by mass, still more preferably from 12% to 65% by mass, further preferably from 15% to 60% by mass, particularly preferably from 18% to 50% by mass, yet more preferably from 20% to 49% by mass, and most preferably from 30% to 45% by mass in acid form equivalent in 100% by mass of all the monomers.
- In order to sufficiently exert the effects of the present invention, the proportion of the carboxyl group-containing monomer (C) is preferably from 20% to 90% by mass, more preferably from 25% to 85% by mass, still more preferably from 30% to 80% by mass, further more preferably from 35% to 75% by mass, particularly preferably from 40% to 73% by mass, yet more preferably from 43% to 70% by mass, and most preferably from 40% to 55% by mass in acid form equivalent in 100% by mass of all the monomers.
- The monomer (E) other than the sulfonate group-containing monomer (A), the (poly)oxyalkylene monomer (B), and the carboxyl group-containing monomer (C) may be contained as the monomer component. Examples of the monomer (E) include, but are not particularly limited to, the same monomers as listed above. The proportion of the monomer (E) is preferably from 0% to 30% by mass, more preferably from 0% to 20% by mass, still more preferably from 0% to 10% by mass, and most preferably 0% by mass in 100% by mass of all the monomers.
- The monomer components preferably contain two or more of the sulfonate group-containing monomer (A), the (poly)oxyalkylene monomer (B), the carboxyl group-containing monomer (C), and the monomer (E) in the above preferred proportions. That is, combination of the sulfonate group-containing monomer (A), the (poly)oxyalkylene monomer (B), the carboxyl group-containing monomer (C), and the monomer (E) in the above preferred proportions in all the monomers is also a preferred embodiment of the method of producing the sulfonate group-containing copolymer of the present invention.
- In the copolymerization of the monomer components, the monomer components are preferably copolymerized using a polymerization initiator. Polymerization initiators known in the art may be used. Specifically, preferred examples thereof include hydrogen peroxide; persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; azo compounds such as dimethyl-2,2′-azobis(2-methylpropionate), 2,2′-azobis(2-amidinopropane) hydrochloride, 4,4′-azobis-4-cyanovaleric acid, azobisisobutyronitrile, and 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile); and organic peroxides such as benzoyl peroxide, lauroyl peroxide, peracetic acid, di-t-butyl peroxide, and cumene hydroperoxide. Among these polymerization initiators, hydrogen peroxide and persulfates are preferred, and persulfates are most preferred. Any of these polymerization initiators may be used alone, or a mixture of two or more of these may be used.
- The amount of the polymerization initiator to be used in the polymerization reaction may be appropriately controlled depending on the amount of the monomer components to be used, and is not particularly limited. For example, the amount of the polymerization initiator is preferably not less than 0.001 parts by mass and not more than 20 parts by mass, more preferably not less than 0.005 parts by mass and not more than 15 parts by mass, and still more preferably not less than 0.01 parts by mass and not more than 10 parts by mass for 100 parts by mass of the monomers.
- In the method of producing the sulfonate group-containing copolymer of the present invention, a chain transfer agent is preferably used in addition to the polymerization initiator. The chain transfer agent to be used is not particularly limited as long as it is a compound that allows for control of the molecular weight. Known chain transfer agents in the art may be used. Specific examples of the chain transfer agent thiol chain transfer agents such as mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, octyl thioglycolate, octyl 3-mercaptopropionate, 2-mercaptoethanesulfonic acid, n-dodecyl mercaptan, octyl mercaptan, and butyl thioglycolate; halides such as carbon tetrachloride, methylene chloride, bromoform, and bromotrichloroethane; secondary alcohols such as isopropanol and glycerin; and lower oxides and their salts such as phosphorous acid, hypophosphorous acid, and their salts (sodium hypophosphate, potassium hypophosphate, etc.), sulfurous acid, hydrogen sulfurous acid, dithionous acid, metabisulfurous acid, and their salts (sodium hydrogen sulfite, potassium hydrogen sulfite, sodium dithionite, potassium dithionite, sodium metabisulfite, potassium metabisulfite, etc.). Any of these chain transfer agents may be used alone, or a mixture of two or more of these may be used.
- The amount of the chain transfer agent used in the method of producing the sulfonate group-containing copolymer of the present invention is 0.5 to 10 g relative to 1 mol of all the monomers. The chain transfer agent in such a proportion allows easy production of the sulfonate group-containing copolymer with a preferred molecular weight. The amount of the chain transfer agent used is preferably 1.0 to 7.0 g for 1 mol of all the monomers and more preferably 2.0 to 5.0 g for 1 mol of all the monomers.
- In the method of producing the sulfonate group-containing copolymer of the present invention, a reaction accelerator may be added for the purpose of reducing the amount of the initiator or the like to be used. Examples of the reaction accelerator include heavy metal ions. The term “heavy metal ions” herein is intended to include metals having a specific gravity of not less than 4 g/cm3. Preferred examples of the heavy metal ions include ions of iron, cobalt, manganese, chromium, molybdenum, tungsten, copper, silver, gold, lead, platinum, iridium, osmium, palladium, rhodium, and ruthenium. Any of these heavy metal ions may be used alone, or two or more of these may be used in combination. Among these, iron is more preferred. The ionic valency of the heavy metal ion is not particularly limited. For example, when iron is used as a heavy metal, the initiator may include iron ion in the Fe2+ form or Fe3+ form, or may contain iron in both forms.
- The state of the above heavy metal ion is not particularly limited as long as it is present in an ionic form. It is preferable to use a solution prepared by dissolving a heavy metal compound because of the easy handling. The heavy metal compound used in this case may be any compound containing a heavy metal ion desired to be contained in the initiator, and it may be determined depending on the initiator to be used. In cases where the heavy metal ion used is iron, preferred examples of the heavy metal compound to be used include Mohr's salt (Fe(NH4)2(SO4)2.6H2O), ferric sulfate heptahydrate, ferrous chloride, and ferric chloride. Furthermore, in cases where the heavy metal ion used is manganese, preferred examples of the heavy metal compound include manganese chloride. These heavy metal compounds are all water-soluble compounds. Therefore, it is possible to use them in the form of aqueous solutions, and consequently, the handleability is excellent. The solvents of the solutions of the heavy metal compounds dissolved thereto are not limited to water, and any solvent may be used as long as it does not interfere with the polymerization reaction and can dissolve the heavy metal compound in the production of hydrophobic group-containing copolymer of the present invention.
- Furthermore, the heavy metal ion content is preferably 0.1 to 10 ppm in the total mass of the polymerization reaction liquid at the time of the completion of the polymerization reaction. When the heavy metal ion content is not less than 0.1 ppm, the effect of the heavy metal ion is sufficiently exhibited. When the heavy metal ion content is not more than 10 ppm, the color of the polymer to be prepared can be further improved. Further, too much heavy metal ion content may cause soil of detergent builders when a product polymer is used as a detergent builder. The heavy metal ion content in the above range enables to sufficiently suppress such a problem.
- The phrase “at the time of the completion of the polymerization reaction” means the time point when the polymerization reaction has been practically completed in the polymerization reaction solution, and the desired polymer has been prepared. For example, in cases where the polymer formed as a result of polymerization in the polymerization reaction solution is to be neutralized with an alkaline component, the amount of the heavy metal ion is calculated based on the total mass of the polymerization reaction solution after neutralization. When it contains two or more kinds of heavy metal ions, the total amount of the heavy metal ions may be set in the above range.
- A combination of the initiator and the chain transfer agent to be used is most preferably a combination of one or more of persulfates and one or more of sulfites. In this case, the persulfate and the sulfite may be mixed in any ratio. Specifically, 0.3 to 8 parts by mass of the sulfite is preferably used for 1 part by mass of the persulfate. The lower limit of the amount of the sulfite is more preferably 0.5 parts by mass and most preferably 0.7 parts by mass for 1 part by mass of the persulfate. The upper limit of the amount of the sulfite is more preferably 7 parts by mass and most preferably 6 parts by mass for 1 part by mass of the persulfate. Not less than 0.3 parts by mass of the sulfite enables to reduce the total amount of the initiator used for reducing the molecular weight. Further, not more than 8 parts by mass of the sulfite enables to sufficiently suppress side reactions and sufficiently reduce impurities caused by the side reactions.
- The combination of a chain-transfer agent, a polymerization initiator, and a reaction accelerator is not particularly limited, and these may be selected from those listed above. Examples of the combination of a chain-transfer agent, a polymerization initiator, and a reaction accelerator include sodium hydrogen sulfite (SES)/hydrogen peroxide (H2O2), sodium hydrogen sulfite (SBS)/sodium persulfate (NaPS), sodium hydrogen sulfite (SBS)/Fe, sodium hydrogen sulfite (SBS)/hydrogen peroxide (H2O2)/Fe, sodium hydrogen sulfite (SBS)/sodium persulfate (NaPS)/Fe, sodium hydrogen sulfite (SBS)/sodium persulfate (NaPS)/hydrogen peroxide (H2O2), and sodium hydrogen sulfite (SBS)/oxygen/Fe. More preferred are sodium hydrogen sulfite (SBS)/sodium persulfate (NaPS) and sodium hydrogen sulfite (SBS)/sodium persulfate (NaPS)/Fe. Most preferred is sodium hydrogen sulfite (SBS)/sodium persulfate (NaPS)/Fe.
- In the method of producing the sulfonate group-containing copolymer of the present invention, a catalyst for decomposing a polymerization initiator or a reducing compound may be added to the reaction system during polymerization in addition to the above described polymerization initiator. Examples of the catalyst for decomposing a polymerization initiator include halogenated metals such as lithium chloride and lithium bromide; metal oxides such as titanium oxide and silicon dioxide; metal salts of inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, sulfuric acid, and nitric acid; carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, benzoic acid, and their esters and metal salts; and heterocyclic amines and their derivatives such as pyridine, indole, imidazole, and carbazole. Any of these decomposition catalysts may be used alone, or two or more of these may be used in combination.
- Examples of the reducing compound include organic metal compounds such as ferrocene; metal naphthenates such as iron naphthenate, copper naphthenate, nickel naphthenate, cobalt naphthenate, and manganese naphthenate; inorganic compounds capable of generating metal ions such as iron, copper, nickel, cobalt, and manganese; inorganic compounds such as boron trifluoride ether adducts, potassium permanganate, and perchloric acid; sulfur-containing compounds such as sulfur dioxide, sulfites, sulfates, bisulfites, thiosulfates, sulfoxylates, benzene sulfinic acid and their substituted compounds, and homologues of cyclic sulfinic acid such as p-toluene sulfinic acid; mercapto compounds such as octyl mercaptan, dodecyl mercaptan, mercapto ethanol, α-mercaptopropionic acid, thioglycolic acid, thiopropionic acid, sodium α-thiopropionate sulfopropylester, and sodium α-thiopropionate sulfoethylester; nitrogen-containing compounds such as hydrazine, β-hydroxyethylhydrazine, and hydroxylamine; aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, n-butylaldehyde, isobutylaldehyde, and isovalerianaldehyde; and ascorbic acid. Any of these reducing compounds may also be used alone, or two or more of these may be used in combination. The reducing compound such as mercapto compounds may be added as a chain transfer agent.
- The total amount of a chain transfer agent, an initiator, and a reaction accelerator to be used is preferably 2 to 20 g for 1 mol of all monomer components of the sulfonate group-containing monomer, the (poly)oxyalkylene monomer, the carboxyl group-containing monomer, and, if necessary, other monomers. When the total amount is in the above range, the sulfonate group-containing copolymer of the present invention can be efficiently produced. Further, a desired molecular weight distribution of the sulfonate group-containing copolymer can be obtained. The total amount is more preferably 2 to 15 g and still more preferably 3 to 10 g.
- The polymerization initiator and the chain transfer agent are continuously charged into a reactor by, for example, dropping or adding in portions. Furthermore, the chain-transfer agent may be charged into a reactor alone, or it may be mixed in advance with the monomers, solvents, or the like.
- Examples of the method of charging the monomer components, the polymerization initiator, and the like into a reactor in the copolymerization method include: a method in which all monomer components are charged into a reactor, and a polymerization initiator is subsequently charged into the reactor to carry out copolymerization; a method in which a portion of the monomer components is charged into a reactor, and the remaining portion of the monomer components and a polymerization initiator are subsequently charged into the reactor continuously or in steps (preferably continuously) to carry out copolymerization; a method in which a polymerization solvent is charged into a reactor, and the monomer components and a polymerization initiator are all subsequently charged into the reactor; and a method in which a portion of one of the monomers (for example, (poly)oxyalkylene monomer) is charged into a reactor, and a polymerization initiator and the remaining monomers are (preferably continuously) added to the reactor to carry out copolymerization. In particular, copolymerization is preferably carried out by sequential dropping a polymerization initiator and monomer components to a reactor because it is possible to obtain a copolymer with a narrow (sharp) molecular weight distribution, and the dispersibility of the copolymer is improved when it is used as a detergent builder.
- The copolymerization may be carried out by any method, and may be carried out by a commonly used method such as solution polymerization, bulk polymerization, suspension polymerization, or emulsion polymerization. Solution polymerization is preferred. As described above, the solvent used in this case is preferably water or a solvent mixture containing water in an amount of 50% by mass of the total amount of the solvent. Use of only water is suitable because the step of removing the solvent can be eliminated.
- The copolymerization may be carried out in a batch or continuously. Furthermore, known solvents may be used as solvents used if necessary in the copolymerization. Preferred examples of the solvents include water; alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol; glycerin; polyethylene glycol; aromatic or aliphatic hydrocarbons such as benzene, toluene, xylene, cyclohexane, and n-heptane; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; amides such as dimethylformamide; and ethers such as diethyl ether and dioxane. Any of these solvents may be used alone, or two or more of these may be used in combination. In particular, one or more solvents selected from the group consisting of water and C1-C4 lower alcohols are preferably used in view of the solubility of the monomer components and the resulting copolymer.
- In the method of producing the sulfonate group-containing copolymer of the present invention, an arbitrary chain transfer agent, pH regulator, or buffer may be used if needed.
- The temperature in the polymerization is preferably not less than 70° C., more preferably 75° C. to 110° C., and still more preferably 80° C. to 100° C. At a temperature in the polymerization within the above range, the amount of the remaining monomer components tends to reduce, and the anti-redeposition properties of the polymer tend to improve. The temperature in the polymerization is not necessarily kept constant all the time while the polymerization reaction progresses. For example, the polymerization may be started from room temperature; the temperature may be raised to the setting temperature for a proper temperature rising time or at a proper temperature raising rate; and the setting temperature may be kept. Alternatively, the polymerization temperature may be changed (raised or reduced) according to the method of dropping the monomer components, the initiator, or the like with a lapse of time while the polymerization reaction progresses.
- The polymerization time is not particularly limited, and preferably 30 to 420 min, more preferably 45 to 390 min, still more preferably 60 to 360 min, and most preferably 90 to 240 min. The term “polymerization time” herein means the time required to add the monomer.
- The pressure in the reaction system may be any of normal pressure (atmospheric pressure), reduced pressure, and increased pressure. From the viewpoint of the molecular weight of the polymer to be obtained, the polymerization is preferably performed under normal pressure, or the reaction system is sealed and the polymerization is performed under increased pressure. The polymerization is preferably performed under normal pressure (atmospheric pressure) from the viewpoint of equipment such as pressuring and depressurizing apparatuses, a pressure-resistant reaction container, and pipes. The reaction system may be under air atmosphere, and may preferably be under inert atmosphere. For example, the air in the system is preferably replaced with an inert gas such as nitrogen before the polymerization is started.
- The solid content concentration (that is, the concentration of polymer solids made of the monomers) in an aqueous solution at the end of the polymerization reaction in the polymerization reaction system is preferably not less than 35% by mass and more preferably 40% to 70% by mass. Such a high solid content concentration of not less than 35% by mass at the end of the polymerization reaction enables one-step polymerization at high concentration. In this case, for example, a condensation step which may be required in a conventional production method can be eliminated, so that the sulfonate group-containing copolymer composition can be efficiently obtained. Accordingly, as a result of significant improvement in production efficiency, the productivity of the sulfonate group-containing copolymer composition can be significantly improved and the production cost can be reduced.
- After the completion of the polymerization reaction, a suitable alkali component may be appropriately added for post treatment, if needed, and the degree of neutralization (final degree of neutralization) of the resulting sulfonate group-containing copolymer may be set within a predetermined range.
- The final degree of neutralization is not particularly limited. This is because the final degree of neutralization of the copolymer varies depending on intended use. Specifically, the copolymer does not need to be neutralized and may be in an acidic form when used as a detergent builder for weak acidic detergents, which are considered to be gentle to the skin, or the copolymer may be neutralized with an alkali component to a degree of neutralization of 90 mol % or higher in post treatment when used for neutral detergents or alkali detergents. Accordingly, the final degree of neutralization may be set to an extremely wide range of 1 to 100 mol %. In particular, the final degree of neutralization of the copolymer to be used as an acidic polymer composition is preferably 1 to 75 mol % and more preferably 5 to 70 mol %. The final degree of neutralization of the copolymer to be used as a neutral or alkaline polymer composition is preferably 70 to 99 mol % and more preferably 80 to 97 mol %. When the final degree of neutralization of the copolymer to be used as a neutral or alkaline polymer composition is 99 mol % or lower, coloring of the aqueous polymer solution can be suppressed.
- Examples of the alkali component include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, and organic amines such as ammonium, monoethanolamine, diethanolamine, and triethanolamine. The alkali components may be used alone, or a mixture of two or more of these may be used.
- The polymer composition of the present invention essentially contains the sulfonate group-containing copolymer of the present invention. In addition, the polymer composition may contain an unreacted sulfonate group-containing monomer, an unreacted (poly)oxyalkylene monomer, an unreacted carboxyl group-containing monomer, an unreacted polymerization initiator, a decomposed polymerization initiator, a binary copolymer of a sulfonate group-containing monomer and a carboxyl group-containing monomer, a hydrogen sulfite adduct, which is an impurity derived from the carboxyl group-containing monomer which remains unpolymerized although the above hydrogen sulfite and/or the compound capable of producing a hydrogen sulfite as a chain transfer agent is added thereto, and the like. Specific examples of the hydrogen sulfite adduct include 3-sulfopropionic acid (salts) and the like. The polymer composition of the present invention is prepared by polymerization of a sulfonate group-containing monomer that is a feature of the present invention, as an essential component, whereby generation of the homopolymer of the carboxyl group-containing monomer as a side product can be reduced. Therefore, the precipitation of the polymer can be significantly suppressed during washing under high hardness condition. Further, since generation of a homopolymer of the carboxyl group-containing monomer as a side product is suppressed, a liquid detergent containing the sulfonate group-containing copolymer composition has improved temporal stability (is suppressed from being phase-separated) as additional advantageous effects.
- For the amount of the unreacted (poly)oxyalkylene monomer, the unreacted sulfonate group-containing unsaturated monomer and the 3-sulfopropionic acid (salts) in the polymer composition, each monomer is preferably contained in an amount of less than 5% by mass, more preferably less than 3% by mass and still more preferably less than 2% by mass based on 100% by mass of the solid content of the polymer composition. For the amount of the polymer including the acid group-containing unsaturated monomer in the polymer composition, the polymer is preferably contained in an amount of less than 1% by mass and more preferably less than 0.5% by mass based on 100% by mass of the solid content of the polymer composition. For the amount of the unreacted carboxyl group-containing monomer in the polymer composition, the monomer is preferably contained in an amount of not more than 5000 mass ppm, more preferably not more than 1000 mass ppm, and most preferably not more than 100 mass ppm based on 100% by mass of the solid content of the polymer composition. The unreacted (poly)oxyalkylene monomer, the unreacted sulfonate group-containing unsaturated monomer, the unreacted carboxyl group-containing monomer and 3-sulfopropionic acid (salts) can be quantified by liquid chromatography under the following conditions.
- Measuring device: 8020 series (product of Tosoh Co., Ltd.)
Detector: RI detector, RI-8020 (product of Tosoh Co., Ltd.)
Column: CAPCELL PAK C1 UG120 (product of Shiseido Co., Ltd.) - Eluent: 10 mM di-Sodium hydrogen phosphate, 12-water (adjust pH to 7 by phosphoric acid)/acetonitrile=45/55 (volume ratio)
Flow velocity: 1.0 ml/min - Measuring device: L-7000 series (product of Hitachi Ltd.)
Detector: UV detector, L-7400 (product of Hitachi Ltd.)
Column: SHODEX RSpak DE-413 (product of Showa Denko K. K.) - Eluent: 0.1% phosphoric acid aqueous solution
Flow velocity: 1.0 ml/min - Measuring device: e2695 (product of Waters Co., Ltd.)
Detector: RI detector, 2414 (product of Waters Co., Ltd.)
Column: TSKgel ODS-100V×2 (product of Tosoh Co., Ltd.) - Eluent: 0.02M Potassium dihydrogenphosphate aqueous solution (pH 2.5)
Flow velocity: 0.7 ml/min - The polymer composition herein is not particularly limited, and is preferably prepared through no purification step for eliminating impurities in view of the production efficiency. Further, the polymer composition herein includes those obtained by diluting the resulting polymer composition with a small amount of water (adding approximately from 1% to 400% by mass of water based on the amount of the mixture obtained) after the polymerization step for easy handling.
- The polymer and the polymer composition of the present invention may be used as water treatment agents, fiber treatment agents, dispersants, or detergent builders (or detergent compositions). When used as detergent builders, the polymer and the polymer composition are added to various detergents used for, for example, clothing, dish washing, house cleaning, hair washing, body washing, tooth-brushing, and car-cleaning.
- The polymer composition of the present invention may be used for a water treatment agent. Such a water treatment agent may contain other compounding agents such as polymerized phosphoric acid salts, phosphonic acid salts, anti-corrosion agents, slime control agents, and chelating agents, if needed.
- The water treatment agent is useful for scale inhibition of cooling water circulation systems, boiler water circulation systems, seawater desalination plants, pulp digesters, black liquor condensing kettles, and the like. In addition, any suitable water-soluble polymer may be included as long as it does not affect the performance and the effects of the water treatment agent.
- The polymer composition of the present invention can be used for a fiber treating agent. The fiber treating agent contains the polymer composition of the present invention and at least one selected from the group consisting of dyeing agents, peroxides, and surfactants.
- The fiber treating agent contains preferably from 1% to 100% by weight, and more preferably from 5% to 100% by weight of the polymer composition of the present invention based on the total amount of the fiber treating agent. In addition, any suitable water-soluble polymer may be contained as long as it does not affect the performance or the effects of the fiber treating agent.
- An example of the composition of the fiber treating agent closer to the embodiment will be described below. The fiber treating agent can be used in steps of scouring, dyeing, bleaching, and soaping in fiber treatment. Examples of dyeing agents, peroxides, and surfactants include those usually used in the fiber treating agent.
- For the proportions of the polymer composition of the present invention and at least one selected from the group consisting of coloring agents, peroxides, and surfactants, a composition containing 0.1 to 100 parts by weight of at least one selected from the group consisting of coloring agents, peroxides, and surfactants for 1 part by weight of the polymer composition of the present invention in terms of pure fiber treating agent is preferably used as the fiber treating agent, for example, for improving whiteness and coloring fastness of fiber and prevent uneven coloring.
- The fiber treating agent is applicable to any optionally suitable fibers. Examples of the fibers include cellulose-based fibers such as cotton and hemp; synthetic fibers such as Nylon and polyester; animal fibers such as wool and silk; semi-synthetic fibers such as rayon; their fabrics; and their mixed spun products.
- In cases where the fiber treating agent is used in the scouring step, the polymer composition of the present invention is preferably blended with an alkaline agent and a surfactant. In cases where the fiber treating agent is used in the bleaching step, the polymer composition of the present invention is preferably blended with a peroxide and a silicic acid-based chemical such as sodium silicate as an alkaline bleach decomposition inhibitor.
- The polymer composition of the present invention may be used as an inorganic pigment dispersant. The inorganic pigment dispersant may be compounded, if necessary, with other components such as condensed phosphoric acid or its salt, phosphonic acid or phosphonate, and poly(vinyl alcohol).
- The inorganic pigment dispersant preferably contains the polymer composition of the present invention in an amount of 5% to 100% by weight based on the total amount of the inorganic pigment dispersant. The dispersant may contain an optionally suitable water-soluble polymer as long as the performance and the effects are not affected.
- The inorganic pigment dispersant exhibits its excellent performance when used as a dispersant of inorganic pigments such as heavy or light calcium carbonate and clay used for paper coating. For example, a small amount of the inorganic pigment dispersant is added to an inorganic pigment to disperse the pigment in water, whereby high-concentration inorganic pigment slurry such as high concentration calcium carbonate slurry with low viscosity, high fluidity, and good stability with time for these properties can be produced.
- The amount of the inorganic pigment dispersant used for dispersing the inorganic pigment is preferably 0.05 to 2.0 parts by weight for 100 parts by weight of the inorganic pigment. Use of the inorganic pigment dispersant in an amount within the above range achieves a satisfactory dispersing effect to provide effects appropriately for the added amount and also provides an economical advantage.
- The polymer composition of the present invention may be added to a detergent composition.
- The polymer composition of the present invention contains the above sulfonate group-containing copolymer, and the amount of the sulfonate group-containing copolymer contained in the detergent composition is not particularly limited. From the viewpoint of demonstrating high builder performance, the sulfonate group-containing copolymer is contained in an amount of preferably from 0.1% to 15% by mass, more preferably from 0.3% to 10% by mass, and still more preferably from 0.5% to 5% by mass based on the total amount of the detergent composition.
- The detergent composition used for detergents usually contains a surfactant or an additive to be used in detergents. The specific forms of the surfactant and additive are not particularly limited, and are appropriately selected based on common knowledge in the field of detergents. The detergent composition may be in the form of a powder or liquid.
- One or more surfactants selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants are used. When two or more of them are used in combination, the total amount of an anionic surfactant and a nonionic surfactant is preferably not less than 50% by mass, more preferably not less than 60% by mass, further more preferably not less than 70% by mass, and particularly preferably not less than 80% by mass based on the amount of all the surfactants.
- Suitable examples of anionic surfactants include alkylbenzene sulfonates, alkylether sulfates, alkenylether sulfates, alkyl sulfates, alkenyl sulfates, α-olefinsulfonates, α-sulfo fatty acid or α-sulfo fatty acid ester salts, alkane sulfonates, saturated fatty acid salts, unsaturated fatty acid salts, alkylether carboxylates, alkenylether carboxylates, amino acid-based surfactants, N-acylamino acid-based surfactants, alkyl phosphates or their salts, and alkenyl phosphates or their salts. An alkyl group and an alkenyl group in these anionic surfactants may have an alkyl side group such as a methyl side group.
- Suitable examples of nonionic surfactants include polyoxyalkylene alkyl ether, polyoxyalkylene alkenyl ether, polyoxyethylene alkyl phenyl ether, higher-fatty-acid alkanol amide or their alkylene oxide adducts, sucrose fatty acid esters, alkyl glycoxydes, fatty acid glycerin monoesters, and alkylamine oxides. An alkyl group and an alkenyl group in these nonionic surfactants may have an alkyl side group such as a methyl side group.
- Suitable examples of cationic surfactants include quaternary ammonium salts. Suitable examples of amphoteric surfactants include carboxyl-based amphoteric surfactants and sulfobetaine-based amphoteric surfactants. An alkyl group and an alkenyl group in these cationic surfactants and amphoteric surfactants may have an alkyl side group such as a methyl side group.
- The surfactant is blended usually from 10% to 60% by mass, preferably 15% to 50% by mass, more preferably from 20% to 45% by mass, and particularly preferably from 25% to 40% by mass in the total amount of the detergent composition. An excessively small amount of the surfactant may prevent demonstration of sufficient washing performance. An excessively large amount of the surfactant may lead to disadvantages in terms of cost.
- Suitable examples of additives include alkali builders, chelate builders, anti-redeposition agents for preventing redeposition of contaminants, such as sodium carboxymethylcellulose, soil inhibitors such as benzotriazole and ethylenethiourea, soil release agents, color migration inhibitors, softening agents, alkaline substances for pH adjustment, perfumes, solubilizing agents, fluorescent agents, coloring agents, foaming agents, foam stabilizers, lustering agents, bactericides, bleaching agents, bleaching assistants, enzymes, dyes, and solvents. Powder detergent compositions preferably contain zeolite.
- The detergent composition may contain other detergent builders in addition to the polymer composition of the present invention. The other detergent builder is not particularly limited. Examples of the other detergent builder include alkali builders such as carbonates, hydrogencarbonates, and silicates; chelate builders such as tripolyphosphates, pyrophosphates, Glauber's salt, nitrilotriacetates, ethylenediaminetetraacetate, citrates, a copolymer salt of (meth)acrylic acid, acrylic acid-maleic acid copolymers, fumarates, and zeolite; and carboxyl derivatives of polysaccharides such as carboxymethyl cellulose. Examples of counter salts used with the builder include alkali metals such as sodium and potassium, ammonium, and amine.
- The additive (s) and the other detergent builder are usually blended, in total, preferably from 0.1% to 50% by mass, more preferably from 0.2% to 40% by mass, still more preferably from 0.3% to 35% by mass, particularly preferably from 0.4% to 30% by mass, and most preferably from 0.5% to 20% by mass in 100% by mass of the detergent composition. If the total amount of the additive(s) and the other detergent builder is less than 0.1% by mass, detergent performance may not be sufficiently exhibited. If the total amount thereof is more than 50% by mass, economic efficiency may be reduced.
- It is understood that the concept of the “detergent composition” includes detergents used only for specific usages such as synthetic detergents of household detergents, detergents for industrial use such as detergents used in the textile industry, hard surface detergents, and bleaching detergents in which the performance delivered by one component is enhanced.
- When the detergent composition is in the form of a liquid, water is usually contained in an amount of preferably from 0.1% to 75% by mass, more preferably from 0.2% to 70% by mass, still more preferably from 0.5% to 65% by mass, further still more preferably from 0.7% to 60% by mass, particularly preferably from 1% to 55% by mass, and most preferably from 1.5% to 50% by mass based on the total amount of the liquid detergent composition.
- When the detergent composition is in the form of a liquid, the kaolin turbidity of the detergent composition is preferably not more than 200 mg/L, more preferably not more than 150 mg/L, still more preferably not more than 120 mg/L, particularly preferably not more than 100 mg/L, and most preferably not more than 50 mg/L.
- The amount of change (difference) between the kaolin turbidities when the polymer composition of the present invention is added to the liquid detergent composition as a detergent builder and when no polymer composition of the present invention is added to the liquid detergent composition as a detergent builder is preferably not more than 500 mg/L, more preferably not more than 400 mg/L, still more preferably not more than 300 mg/L, particularly preferably not more than 200 mg/L, and most preferably not more than 100 mg/L. The value of the kaolin turbidity is measured by the following method.
- A uniformly stirred sample (liquid detergent) is charged in a 50-mm square cell having a thickness of 10 mm, and bubbles are removed therefrom. Then, the sample is measured for turbidity (kaolin turbidity: mg/L) at 25° C. using an NDH2000 (trade name, turbidity meter) produced by Nippon Denshoku Industries Co., Ltd.
- Suitable examples of enzymes that can be blended with the detergent composition include proteases, lipases, and cellulases. Among these, proteases, alkali lipases, and alkali cellulases are preferable because these are highly active in alkali washing liquids.
- The amount of the enzyme is preferably not more than 5% by mass in 100% by mass of the detergent composition. If the amount of the enzyme is more than 5% by mass, the washing performance no longer improves, and disadvantages in cost may be caused.
- The detergent composition produces little salt precipitates and has a high washing effect even when used in an area where there is hard water with high concentrations of calcium ions and magnesium ions (for example, not less than 100 mg/L). The effect is particularly remarkable when the detergent composition contains an anion surfactant such as LAS.
- The sulfonate group-containing polymer of the present invention has the above features, and has anti-redeposition properties, particularly anti-redeposition properties against hydrophilic soil under high hardness condition. Accordingly, the polymer can be suitably used for materials of detergent additives or the like.
- Hereinafter, the present invention will be described in more detail using examples, but the present invention will not be limited to only these examples. Unless otherwise specified, “parts” means “parts by weight,” and “%” means “% by mass”.
- The weight average molecular weight Mw and number average molecular weight of the polymer of the present invention, and the solid content in the aqueous polymer solution were measured according to the following methods.
- Instrument: HLC-8320GPC, produced by Tosoh Co., Ltd.
- Column: SHODEX Asahipak GF-310-HQ, GF-710-HQ, GF-IG 7B, produced by Showa Denko
Column temperature: 40° C.
Flow rate: 0.5 mL/min
Working curve: Polyacrylic acid standard, produced by Sowa Kagaku
Elution solution: 0.1 N sodium acetate/acetonitrile=3/1 (ratio by mass) - The polymer composition (1.0 g of polymer composition+1.0 g of water) was oven dried at 130° C. for 1 hour under a nitrogen atmosphere. The solid content (%) and the volatile component (%) were calculated from the weight difference before and after drying.
- In evaluation of anti-redeposition properties under high hardness condition in the present invention, clay mentioned in the item (4) was used instead of carbon black as soil.
- (1) A cotton cloth obtained from Testfabrics, Inc. was cut into 5 cm×5 cm to prepare white clothes. Whiteness of each of the white clothes was previously measured as reflectance using colorimetry color difference meter SE6000 type produced by Nippon Denshoku Industries Co., Ltd.
(2) Pure water was added to calcium chloride dihydrate (5.0 g) to prepare hard water (17 kg).
(3) Pure water was added to polyoxyethylene (8) lauryl ether (4.0 g) to prepare an aqueous surfactant solution (100.0 g). The pH was controlled to 8.5 with sodium hydroxide.
(4) The temperature of a Terg-o-Tometer was set at 25° C. To a pot were added hard water (1 L), an aqueous surfactant solution (5 g), a 2% (solids content) aqueous polymer solution (1 g), and test powder 1 (class 11) (1 g) according to JIS Z 8901. The contents were stirred for 1 min at 100 rpm. Then, five white cloths were put into the solution, and the solution was stirred for 10 min at 100 rpm.
(5) The white cloths were wrung by hand. Hard water (1 L) at 25° C. was charged into the pot, and was stirred for 2 min at 100 rpm.
(6) Each of the white cloths was pressed with a filler cloth to be dried while smoothing wrinkles. The dried clothes were measured for whiteness again as reflectance with the above colorimetric difference meter.
(7) From the measurement results, the anti-redeposition performance was determined according to the following formula.
(8) Anti-redeposition performance (%)=(whiteness after washing)/(whiteness of original white cloth)×100
<Test for Compatibility with Liquid Detergents> - Detergents were prepared from the resulting novel copolymers according to the examples and the components listed below. Stirring was performed so that the components were uniformly dispersed. The turbidity at 25° C. was visually evaluated.
- The results were evaluated by the following three grades.
- Excellent: No separation, no precipitation and no white turbidity were visually observed
Good: White turbidity was slightly observed
Fair: White turbidity was observed
Detergent compositions
SFT-70H (SOFTANOL 70H, produced by NIPPON SHOKUBAI, polyoxyethylene alkyl ether): 11 g
NEOPELEX F-65 (produced by Kao Corporation, sodium dodecylbenzenesulfonate): 32 g - Novel copolymers and comparative copolymers obtained in the examples: 1.0 g of solid
Pure water: balance - A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (49.7 g) and Mohr's salt (0.010 g), and the temperature was raised to 85° C. while stirring. Then, 80% acrylic acid (112.5 g) (hereinafter, abbreviated as 80% AA), a 40% aqueous solution (54.9 g) (92 mmol) of sodium 3-allyloxy-2-hydroxypropanesulfonate (hereinafter, abbreviated as 40% HAPS), a 80% aqueous solution (90.0 g) of an isoprenol-ethylene oxide 10 mol adduct (hereinafter, abbreviated as 80% IPN10), 15% sodium persulfate (30.2 g) (hereinafter, abbreviated as 15% NaPS), 35% sodium hydrogen sulfite (12.9 g) (hereinafter, abbreviated as 35% SBS), and pure water (50.9 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 150 min for 40% HAPS, 90 min for 80% IPN10, 190 min for 15% NaPS, and 175 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled, and neutralized with 48% sodium hydroxide (89.1 g) (hereinafter, abbreviated as 48% NaOH). Thus, an aqueous copolymer solution (1) having a solid content concentration of 44% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (1)). The polymer (1) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (74.1 g) and Mohr's salt (0.010 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (121.5 g), 40% HAPS (65.9 g) (111 mmol), a 60% aqueous solution (102.0 g) of an isoprenol-ethylene oxide 25 mol adduct (hereinafter, abbreviated as 60% IPN25), 15% NaPS (20.6 g), and 35% SBS (11.0 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 150 min for 40% HAPS, 150 min for 60% IPN25, 190 min for 15% NaPS, and 175 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (95.7 g). Thus, an aqueous copolymer solution (2) having a solid content concentration of 44% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (2)). The polymer (2) was subjected to the compatibility test, and the compatibility was evaluated as “Good”.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (83.1 g) and Mohr's salt (0.013 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (198.0 g), 40% HAPS (25.9 g) (44 mmol), a 60% aqueous solution (31.1 g) of an isoprenol-ethylene oxide 50 mol adduct (hereinafter, abbreviated as 60% IPN50), 15% NaPS (30.1 g), and 35% SBS (10.3 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 150 min for 40% HAPS, 150 min for 60% IPN50, 190 min for 15% NaPS, and 175 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with pure water (56.3 g) and 48% NaOH (162.6 g). Thus, an aqueous copolymer solution (3) having a solid content concentration of 40% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (3)).
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (118.0 g) and Mohr's salt (0.012 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (157.5 g), 40% HAPS (54.9 g) (92 mmol), a 60% aqueous solution (60.0 g) of an isoprenol-ethylene oxide 50 mol adduct (hereinafter, abbreviated as 60% IPN50), 15% NaPS (37.3 g), and 35% SBS (12.5 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 150 min for 40% HAPS, 150 min for 60% IPN50, 190 min for 15% NaPS, and 175 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (126.6 g). Thus, an aqueous copolymer solution (4) having a solid content concentration of 40% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (4)).
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (75.0 g) and Mohr's salt (0.011 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (103.5 g), 40% HAPS (85.7 g) (144 mmol), 60% IPN50 (131.6 g), 15% NaPS (22.4 g), 35% SBS (9.2 g), and pure water (5.0 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 60 min for 40% HAPS, 100 min for 60% IPN50, 210 min for 15% NaPS, and 200 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with pure water (59.4 g) and 48% NaOH (56.6 g). Thus, an aqueous copolymer solution (5) having a solid content concentration of 40% and a final degree of neutralization of 70 mol % was prepared (the copolymer was referred to as polymer (5)). The polymer (5) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (116.5 g) and Mohr's salt (0.012 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (135.0 g), 40% HAPS (65.9 g) (111 mmol), 60% IPN50 (84.0 g), 15% NaPS (32.7 g), and 35% SBS (11.7 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 150 min for 40% HAPS, 150 min for 60% IPN50, 190 min for 15% NaPS, and 175 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (107.0 g). Thus, an aqueous copolymer solution (6) having a solid content concentration of 40% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (6)).
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (88.9 g) and Mohr's salt (0.014 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (135.0 g), 40% HAPS (75.1 g) (126 mmol), 60% IPN50 (150.0 g), 15% NaPS (23.5 g), 35% SBS (15.3 g), and pure water (10.0 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 60 min for 40% HAPS, 100 min for 60% IPN50, 210 min for 15% NaPS, and 200 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with pure water (62.4 g) and 48% NaOH (106.2 g). Thus, an aqueous copolymer solution (7) having a solid content concentration of 40% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (7)). The polymer (7) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (75.0 g) and Mohr's salt (0.011 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (112.5 g), 40% HAPS (50.1 g) (84 mmol), 60% IPN50 (120.0 g), 15% NaPS (22.8 g), 35% SBS (7.7 g), and pure water (5.0 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 60 min for 40% HAPS, 100 min for 60% IPN50, 210 min for 15% NaPS, and 200 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with pure water (56.5 g) and 48% NaOH (67.3 g). Thus, an aqueous copolymer solution (8) having a solid content concentration of 40% and a final degree of neutralization of 70 mol % was prepared (the copolymer was referred to as polymer (8)). The polymer (8) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (45.0 g), 60% IPN50 (60.0 g), and Mohr's salt (0.014 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (72.0 g), 40% HAPS (96.1 g) (162 mmol), 60% IPN50 (266.4 g), 15% NaPS (70.8 g), 35% SBS (10.3 g), and pure water (10.0 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 30 min for 40% HAPS, 90 min for 60% IPN50, 210 min for 15% NaPS, and 200 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (51.2 g). Thus, an aqueous copolymer solution (9) having a solid content concentration of 47% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (9)). The polymer (9) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (69.0 g) and Mohr's salt (0.011 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (103.5 g), 40% HAPS (25.0 g) (42 mmol), 60% IPN50 (147.0 g), 15% NaPS (20.5 g), 35% SBS (7.0 g), and pure water (4.6 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 90 min for 40% HAPS, 100 min for 60% IPN50, 210 min for 15% NaPS, and 200 min for 35% SBS and pure water. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with pure water (70.5 g) and 48% NaOH (64.3 g). Thus, an aqueous copolymer solution (10) having a solid content concentration of 40% and a final degree of neutralization of 70 mol % was prepared (the copolymer was referred to as polymer (10)). The polymer (10) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (69.6 g) and Mohr's salt (0.010 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (90.0 g), 48% NaOH (4.2 g), a 40% aqueous solution (74.1 g) (136 mmol) of 2-acrylamide-2-methylpropanesulfonic acid (hereinafter, abbreviated as 40% AMPS), 60% IPN50 (114.4 g), 15% NaPS (31.9 g), and 35% SBS (15.7 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA and 48% NaOH, 100 min for 40% AMPS and 60% IPN50, 200 min for 15% NaPS, and 210 min for 35% SBS. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (49.3 g) and pure water (42.8 g). Thus, an aqueous copolymer solution (11) having a solid content concentration of 40% and a final degree of neutralization of 90 mol % was prepared (the copolymer was referred to as polymer (11)). The polymer (11) was subjected to the compatibility test, and the compatibility was evaluated as “Good”.
- An aqueous copolymer solution (12) (the copolymer was referred to as polymer (12)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (12) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=2.2/70.7/90.1, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.7, the weight average molecular weight (Mw) of the copolymer was 42,000, the product (hereinafter, referred to as P×Mw) of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the copolymer was 154,000, and the product (hereinafter, referred to as P×Mw×n) of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the copolymer multiplied by the value n in the formula (2) was 7,700,000.
- An aqueous copolymer solution (13) (the copolymer was referred to as polymer (13)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (13) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=20/29/51, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.5, the weight average molecular weight Mw of the copolymer was 23,000, (P×Mw) was 33,400, and (P×Mw×n) was 1,670,000.
- An aqueous copolymer solution (14) (the copolymer was referred to as polymer (14)) was prepared by polymerizing the monomers and performing the post treatments as in Example 1 except that the proportions of the monomers were changed. The aqueous copolymer solution (14) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=11/34/55, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.1, the weight average molecular weight Mw of the copolymer was 36,000, (P×Mw) was 111,000, and (P×Mw×n) was 1,110,000.
- An aqueous copolymer solution (15) (the copolymer was referred to as polymer (15)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed. The aqueous copolymer solution (15) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=11/34/55, a solid content concentration of 44%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.1, the weight average molecular weight Mw of the copolymer was 44,000, (P×Mw) was 136,000, and (P×Mw×n) was 3,400,000.
- An aqueous copolymer solution (16) (the copolymer was referred to as polymer (16)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (16) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=38/21/41, a solid content concentration of 39%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 0.55, the weight average molecular weight Mw of the copolymer was 50,000, (P×Mw) was 27,600, and (P×Mw×n) was 1,380,000.
- An aqueous copolymer solution (17) (the copolymer was referred to as polymer (17)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (17) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=26/20/54, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 0.77, the weight average molecular weight Mw of the copolymer was 29,000, (P×Mw) was 22,300, and (P×Mw×n) was 1,110,000.
- An aqueous copolymer solution (18) (the copolymer was referred to as polymer (18)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (18) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=11/12/77, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.1, the weight average molecular weight Mw of the copolymer was 57,000, (P×Mw) was 62,200, and (P×Mw×n) was 3,110,000.
- An aqueous copolymer solution (19) (the copolymer was referred to as polymer (19)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (19) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=27/35/38, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.3, the weight average molecular weight Mw of the copolymer was 15,000, (P×Mw) was 19,400, and (P×Mw×n) was 972,000. The polymer (19) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- An aqueous copolymer solution (20) (the copolymer was referred to as polymer (20)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (20) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=16/34/50, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 2.1, the weight average molecular weight Mw of the copolymer was 12,000, (P×Mw) was 25,500, and (P×Mw×n) was 1,280,000. The polymer (20) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- An aqueous copolymer solution (21) (the copolymer was referred to as polymer (21)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (21) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=18/40/42, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 2.2, the weight average molecular weight Mw of the copolymer was 31,000, (P×Mw) was 68,900, and (P×Mw×n) was 3,440,000.
- An aqueous copolymer solution (22) (the copolymer was referred to as polymer (22)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (22) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=11/34/55, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.1, the weight average molecular weight Mw of the copolymer was 28,000, (P×Mw) was 86,500, and (P×Mw×n) was 4,330,000. The polymer (22) was subjected to the compatibility test, and the compatibility was evaluated as “Good”.
- An aqueous copolymer solution (23) (the copolymer was referred to as polymer (23)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (23) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=11/34/55, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.1, the weight average molecular weight Mw of the copolymer was 57,000, (P×Mw) was 176,000, and (P×Mw×n) was 8,810,000.
- An aqueous copolymer solution (24) (the copolymer was referred to as polymer (24)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (24) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=12/40/48, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 3.3, the weight average molecular weight Mw of the copolymer was 25,000, (P×Mw) was 83,300, and (P×Mw×n) was 4,170,000. The polymer (24) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- An aqueous copolymer solution (25) (the copolymer was referred to as polymer (25)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (25) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=13/52/35, a solid content concentration of 40%, and a final degree of neutralization of 70 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 4.0, the weight average molecular weight Mw of the copolymer was 36,000, (P×Mw) was 144,000, and (P×Mw×n) was 7,200,000.
- An aqueous copolymer solution (26) (the copolymer was referred to as polymer (26)) was prepared by polymerizing the monomers and performing the post treatments as in Example 10 except that the proportions of the monomers were changed. The aqueous copolymer solution (26) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=11/50/39, a solid content concentration of 40%, and a final degree of neutralization of 70 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 4.5, the weight average molecular weight Mw of the copolymer was 65,000, (P×Mw) was 295,000, and (P×Mw×n) was 14,800,000.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (46.2 g) and Mohr's salt (0.011 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (135.0 g), 40% HAPS (135.0 g) (227 mmol), IPN10 (54.0 g), 15% NaPS (36.6 g), and 35% SBS (26.1 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 90 min for 40% HAPS, 120 min for IPN10, 190 min for 15% NaPS, and 175 min for 35% SBS. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (106.3 g). Thus, a comparative aqueous copolymer solution (1) having a solid content concentration of 48% by weight and a final degree of neutralization of 94 mol % was prepared (the copolymer was referred to as comparative polymer (1)). The comparative polymer (1) was subjected to the compatibility test, and the compatibility was evaluated as “Fair”.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (80.0 g) and Mohr's salt (0.013 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (126.0 g), 40% HAPS (224.2 g) (377 mmol), an isoprenol-ethylene oxide 5 mol adduct (hereinafter, abbreviated as IPN5) (20.2 g), 15% NaPS (61.4 g), 35% SBS (8.4 g), and pure water (10.0 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 40 min for 40% HAPS, 90 min for IPN5, 190 min for 15% NaPS, and 120 min for 35% SBS and pure water. The solutions other than 35% SBS and pure water began to be added dropwise at the same time. Addition dropwise of the 35% SBS and the pure water was started 60 min after the addition dropwise of the 80% AA was started. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (84.4 g). Thus, a comparative aqueous copolymer solution (2) having a solid content concentration of 40% by weight and a final degree of neutralization of 90 mol % was prepared (the comparative copolymer was referred to as comparative polymer (2)). The comparative polymer (2) was subjected to the compatibility test, and the compatibility was evaluated as “Fair”.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (12.9 g) and Mohr's salt (0.012 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (180.0 g), 40% HAPS (138.5 g) (233 mmol), 60% IPN50 (36.9 g), 15% NaPS (30.2 g), and 35% SBS (32.2 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 150 min for 40% HAPS, 150 min for 60% IPN50, 190 min for 15% NaPS, and 175 min for 35% SBS. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (141.7 g). Thus, a comparative aqueous copolymer solution (3) having a solid content concentration of 48% by weight and a final degree of neutralization of 92 mol % was prepared (the comparative copolymer was referred to as comparative polymer (3)). The comparative polymer (3) was subjected to the compatibility test, and the compatibility was evaluated as “Fair”.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (80.3 g) and Mohr's salt (0.011 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (63.0 g), 40% HAPS (175.8 g) (295 mmol), 60% IPN50 (120.0 g), 15% NaPS (34.2 g), and 35% SBS (14.7 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for 80% AA, 150 min for 40% HAPS, 150 min for 60% IPN50, 190 min for 15% NaPS, and 175 min for 35% SBS. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after the addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (37.7 g). Thus, a comparative aqueous copolymer solution (4) having a solid content concentration of 40% by weight and a final degree of neutralization of 90 mol % was prepared (the comparative copolymer was referred to as comparative polymer (4)). The comparative polymer (4) was subjected to the compatibility test, and the compatibility was evaluated as “Excellent”.
- A comparative aqueous copolymer solution (5) (the comparative copolymer was referred to as comparative polymer (5)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 2 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (5) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=32/19/48, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 0.59, the weight average molecular weight Mw of the copolymer was 7,000, (P×Mw) was 4,160, and (P×Mw×n) was 20,800.
- A comparative aqueous copolymer solution (6) (the comparative copolymer was referred to as comparative polymer (6)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 2 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (6) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=10/20/70, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 2.0, the weight average molecular weight Mw of the copolymer was 12,000, (P×Mw) was 24,000, and (P×Mw×n) was 120,000. The comparative polymer (6) was subjected to the compatibility test, and the compatibility was evaluated as “Fair”.
- A 500 ml glass separable flask equipped with a reflux condenser and a stirrer was charged with pure water (85.3 g) and Mohr's salt (0.011 g), and the temperature was raised to 85° C. while stirring. Then, 80% AA (141.8 g), 40% HAPS (60.4 g) (1.02 mmol), 80% IPN10 (58.5 g), 15% NaPS (35.8 g), and 35% SBS (10.7 g) were added dropwise from different nozzles. The addition times for the respective solutions were 180 min for the 80% AA, 150 min for the 40% HAPS, 150 min for the 80% IPN10, 190 min for the 15% NaPS, and 175 min for the 35% SBS. All the solutions began to be added dropwise at the same time. The temperature of the content was kept at 85° C. until the addition dropwise of 80% AA was finished. Further, the temperature was kept the same for 30 min after addition dropwise of 80% AA was completed so that the reaction solution was aged, and the polymerization was completed. After completing the polymerization, the reaction solution was cooled and neutralized with 48% NaOH (113.0 g). Thus, an comparative aqueous copolymer solution (7) having a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=11/26/63, a solid content concentration of 44% and a final degree of neutralization of 90 mol % was prepared (the comparative copolymer was referred to as comparative polymer (7)). The comparative polymer (7) was subjected to the compatibility test, and the compatibility was evaluated as “Good”.
- A comparative aqueous copolymer solution (8) (the comparative copolymer was referred to as comparative polymer (8)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (8) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=32/19/49, a solid content concentration of 43%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 0.59, the weight average molecular weight Mw was 18,000, (P×Mw) was 10,700, and (P×Mw×n) was 107,000.
- A comparative aqueous copolymer solution (9) (the comparative copolymer was referred to as comparative polymer (9)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (9) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=21/20/59, a solid content concentration of 44%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.0, the weight average molecular weight Mw was 33,000, (P×Mw) was 31,400, and (P×Mw×n) was 314,000.
- A comparative aqueous copolymer solution (10) (the comparative copolymer was referred to as comparative polymer (10)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (10) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=34/34/32, a solid content concentration of 44%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.0, the weight average molecular weight Mw was 33,000, (P×Mw) was 33,000, and (P×Mw×n) was 330,000.
- A comparative aqueous copolymer solution (11) (the comparative copolymer was referred to as comparative polymer (11)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (11) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=19/20/61, a solid content concentration of 44%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.1, the weight average molecular weight Mw of the copolymer was 24,000, (P×Mw) was 25,300, and (P×Mw×n) was 253,000.
- A comparative aqueous copolymer solution (12) (the comparative copolymer was referred to as comparative polymer (12)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (12) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=17/24/59, a solid content concentration of 43%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.4, the weight average molecular weight Mw of the copolymer was 13,000, (P×Mw) was 18,400, and (P×Mw×n) was 184,000.
- A comparative aqueous copolymer solution (13) (the comparative copolymer was referred to as comparative polymer (13)) was prepared by polymerizing the monomers and performing the post treatments as in Comparative Example 7 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (13) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=10/40/50, a solid content concentration of 44%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 4.0, the weight average molecular weight Mw of the copolymer was 15,000, (P×Mw) was 60,000, and (P×Mw×n) was 600,000.
- A comparative aqueous copolymer solution (14) (the comparative copolymer was referred to as comparative polymer (14)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (14) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=32/19/49, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 0.59, the weight average molecular weight Mw of the copolymer was 11,000, (P×Mw) was 6,530, and (P×Mw×n) was 163,000.
- A comparative aqueous copolymer solution (15) (the comparative copolymer was referred to as comparative polymer (15)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (15) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=26/26/48, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.0, the weight average molecular weight Mw of the copolymer was 9,000, (P×Mw) was 9,000, and (P×Mw×n) was 225,000.
- A comparative aqueous copolymer solution (16) (the comparative copolymer was referred to as comparative polymer (16)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (16) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=32/32/36, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.0, the weight average molecular weight Mw of the copolymer was 22,000, (P×Mw) was 22,000, and (P×Mw×n) was 550,000.
- A comparative aqueous copolymer solution (17) (the comparative copolymer was referred to as comparative polymer (17)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (17) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=18/20/62, a solid content concentration of 44%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 1.1, the weight average molecular weight Mw of the copolymer was 23,000, (P×Mw) was 25,600, and (P×Mw×n) was 639,000.
- A comparative aqueous copolymer solution (18) (the comparative copolymer was referred to as comparative polymer (17)) was prepared by polymerizing the monomers and performing the post treatments as in Example 2 except that the proportions of the monomers were changed. The comparative aqueous copolymer solution (18) had a ratio by mass of a structural unit (a) derived from a sulfonate group-containing monomer (A) to a structural unit (b) derived from a (poly)oxyalkylene monomer (B) to a structural unit (c) derived from a carboxyl group-containing monomer (C) of (a)/(b)/(c)=10/20/70, a solid content concentration of 40%, and a final degree of neutralization of 90 mol %. The ratio by mass P of the structural unit (b) to the structural unit (a) of the copolymer was 2.0, the weight average molecular weight Mw of the copolymer was 9,000, (P×Mw) was 18,000, and (P×Mw×n) was 450,000.
- Table 1 shows monomer components, the proportions of the structural units (a), (b), and (c), the proportion of the structural unit (b) to the structural unit (a), the weight average molecular weight (Mw), the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw, the product of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the sulfonate group-containing copolymer multiplied by the value n in the formula (2), the results of evaluations of anti-redeposition properties of the polymers obtained in Examples and Comparative Examples and the results of test for compatibility with liquid detergents.
-
TABLE 1 Monomer component Proportion of Sulfonate Carboxyl each structural Structural Weight Anti- group- (Poly)oxy- group- unit (% by mass) unit (b)/ average redepo- containing alkylene containing Struc- Struc- Struc- Structural molecular (P) × sition monomer monomer monomer tural tural tural unit (a) weight (P) × (Mw) × properties Compat- (A) (B) (C) unit (a) unit (b) unit (c) (P) (Mw) (Mw) (n) (%) ibility Example 1 HAPS IPN10 AA 10 40 50 4.0 27,000 108,000 1,080,000 65.8 Excellent Example 2 HAPS IPN25 AA 12 34 54 2.8 32,000 90,700 2,270,000 66.8 Good Example 3 HAPS IPN50 AA 5 10 85 2.0 47,000 94,000 4,700,000 66.3 Fair Example 4 HAPS IPN50 AA 10 20 70 2.0 27,000 54,000 2,700,000 66.3 Fair Example 5 HAPS IPN50 AA 15 42 44 2.8 70,000 196,000 9,800,000 67.3 Excellent Example 6 HAPS IPN50 AA 12 28 60 2.3 23,000 53,700 2,680,000 68.1 Fair Example 7 HAPS IPN50 AA 11 40 49 3.6 42,000 153,000 7,640,000 67.0 Excellent Example 8 HAPS IPN50 AA 9 40 51 4.4 72,000 320,000 16,000,000 66.9 Excellent Example 9 HAPS IPN50 AA 13 64 23 4.9 44,000 217,000 10,800,000 65.5 Excellent Example 10 HAPS IPN50 AA 5 49 46 9.8 68,000 666,000 33,300,000 67.7 Excellent Example 11 AMPS IPN50 AA 16 41 43 2.6 70,000 179,000 8,970,000 64.9 Good Example 12 HAPS IPN50 AA 2 8 90 3.7 42,000 154,000 7,700,000 65.6 — Example 13 HAPS IPN50 AA 20 29 51 1.5 23,000 33,400 1,670,000 65.1 — Example 16 HAPS IPN50 AA 38 21 41 0.55 50,000 27,600 1,380,000 65.9 — Example 18 HAPS IPN50 AA 11 12 77 1.1 57,000 62,200 3,110,000 66.6 — Example 19 HAPS IPN50 AA 27 35 38 1.3 15,000 19,400 972,000 64.8 Excellent Example 20 HAPS IPN50 AA 16 34 50 2.1 12,000 25,500 1,280,000 65.4 Excellent Example 22 HAPS IPN50 AA 11 34 55 3.1 28,000 86,500 4,330,000 67.9 Good Example 23 HAPS IPN50 AA 11 34 55 3.1 57,000 176,000 8,810,000 67.4 — Example 24 HAPS IPN50 AA 12 40 48 3.3 25,000 83,300 4,170,000 66.7 Excellent Example 26 HAPS IPN50 AA 11 50 39 4.5 65,000 295,000 14,800,000 66.3 — Comparative HAPS IPN10 AA 22 26 52 1.2 20,000 23,600 236,000 63.7 Poor Example 1 Comparative HAPS IPN5 AA 38 10 52 0.26 67,000 17,600 88,200 62.0 Poor Example 2 Comparative HAPS IPN50 AA 22 10 68 0.45 15,000 6,820 341,000 63.9 Poor Example 3 Comparative HAPS IPN50 AA 32 40 28 1.3 15,000 18,800 938,000 62.9 Excellent Example 4 - The evaluation of anti-redeposition properties in the present invention is performed with detergent compositions that are intended for liquid detergents without zeolite.
- Zeolite is a water softener which catches metal ions such as calcium ions and magnesium ions contained in water to reduce hardness of water. Therefore, the tests are performed under a higher hardness condition than when a zeolite-containing detergent is used. Further, the tests are performed using dirt (test powder 1 (class 11 clay) according to JIS Z 8901) as typical hydrophilic particle soil. As a result, the evaluation of anti-redeposition properties shows that the polymer of the present invention has excellent anti-redeposition properties against hydrophilic particles under high hardness condition.
Claims (6)
1.-5. (canceled)
6. A sulfonate group-containing copolymer, comprising:
a structural unit (a) derived from a sulfonate group-containing monomer (A);
a structural unit (b) derived from a (poly)oxyalkylene monomer (B) represented by the following formula (1):
wherein R1 represents a hydrogen atom or a methyl group; R2 represents a direct bond, CH2, or CH2CH2; and X0 represents a structural unit represented by the following formula (2):
—Zn—OR0 (2)
—Zn—OR0 (2)
wherein Z may be the same or different and each represents a structural unit derived from a C2-C5 alkylene oxide; R0 represents hydrogen atom or a methyl group; and n is an integer of from 5 to 100; and
a structural unit (c) derived from a carboxyl group-containing monomer (C) that is at least one selected from the group consisting of (meth)acrylic acid, maleic acid, maleic anhydride, and salts thereof,
wherein the sulfonate group-containing copolymer comprises from 2% to 38% by mass of the structural unit (a), from 8% to 70% by mass of the structural unit (b), and from 20% to 90% by mass in an acid form equivalent of the structural unit (c) in 100% by mass of all the structural units constituting the sulfonate group-containing copolymer,
wherein the product (P×Mw×n) of the ratio by mass P of the structural unit (b) to the structural unit (a) multiplied by the weight average molecular weight Mw of the sulfonate group-containing copolymer multiplied by the value n in the formula (2) is from 950,000 to 33,300,000,
wherein the sulfonate group-containing monomer (A) is at least one of 2-acrylamide-2-methylpropanesulfonic acid and a compound represented by the following formula (3):
wherein R3 represents a hydrogen atom or a methyl group; R4 represents a direct bond, CH2, or CH2CH2; X and Y each represent a hydroxy group or SO3M where M represents a hydrogen atom, Li, Na, or K, and at least one of X and Y is SO3M,
wherein the sulfonate group-containing copolymer optionally comprises a structural unit (e) derived from a monomer (E) that is none of the monomer (A), the monomer (B), and the monomer (C) in an amount no more than 20% by mass based on 100% by mass of the structural units (a), (b), (c), and (e),
wherein the degree of neutralization of the sulfonate group-containing copolymer is 1 to 100 mol %, and.
wherein an anti-redeposition property exhibited by the sulfonate group-containing copolymer, evaluated as follows, is at least 64.8%:
<Evaluation of Anti-Redeposition Properties>
In evaluation of anti-redeposition properties under high hardness condition, clay is used in item (4) as soil
(1) A cotton cloth obtained from Testfabrics, Inc. is cut into 5 cm×5 cm to prepare white cloths and whiteness of each of the white clothes is previously measured as reflectance using colorimetry color difference meter SE6000 type produced by Nippon Denshoku Industries Co., Ltd.
(2) Pure water is added to calcium chloride dihydrate (5.0 g) to prepare hard water (17 kg)
(3) Pure water is added to polyoxyethylene (8) lauryl ether (4.0 g) to prepare an aqueous surfactant solution (100.0 g) and pH is controlled to 8.5 with sodium hydroxide.
(4) The temperature of a Terg-o-Tometer is set at 25° C., to a pot are added hard water (1 L), an aqueous surfactant solution (5 g), a 2% (solids content) aqueous polymer solution (1 g), and test powder 1 (class 11) (1 g) according to JIS Z 8901, the contents are stirred for 1 min at 100 rpm, five white cloths are put into the solution, and the solution is stirred for 10 min at 100 rpm
(5) The white cloths are wrung by hand, and hard water (1 L) at 25° C. is charged into the pot, and is stirred for 2 min at 100 rpm
(6) Each of the white cloths is pressed with a filler cloth to be dried while smoothing wrinkles, and the dried clothes are measured for whiteness again as reflectance with the above colorimetric difference meter
(7) From the measurement results, the anti-redeposition performance is determined according to formula
Anti-redeposition performance (%)=(whiteness after washing)/(whiteness of original white cloth)×100
Anti-redeposition performance (%)=(whiteness after washing)/(whiteness of original white cloth)×100
7. The sulfonate group-containing copolymer according to claim 6 ,
wherein the sulfonate group-containing copolymer has a weight average molecular weight Mw of from 20,000 to 200,000.
8. The sulfonate group-containing copolymer according to claim 6 ,
wherein the sulfonate group-containing copolymer has a ratio by mass P of the structural unit (b) to the structural unit (a) of from 1.2 to 20.
9. The sulfonate group-containing copolymer according to claim 6 , wherein the sulfonate group-containing copolymer comprises from 2% to 30% by mass of the structural unit (a).
10. The sulfonate group-containing copolymer according to claim 6 , wherein the sulfonate group-containing copolymer comprises 8% to 50% by mass of the structural unit (b).
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/985,996 US20200392270A1 (en) | 2014-09-25 | 2020-08-05 | Sulfonate group-containing polymer and method of producing the same |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2014/087389 WO2016045031A1 (en) | 2014-09-25 | 2014-09-25 | Sulfonate group-containing polymer and method of producing the same |
| US201715329135A | 2017-01-25 | 2017-01-25 | |
| US16/985,996 US20200392270A1 (en) | 2014-09-25 | 2020-08-05 | Sulfonate group-containing polymer and method of producing the same |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/329,135 Continuation US10766991B2 (en) | 2014-09-25 | 2014-09-25 | Sulfonate group-containing polymer and method of producing the same |
| PCT/CN2014/087389 Continuation WO2016045031A1 (en) | 2014-09-25 | 2014-09-25 | Sulfonate group-containing polymer and method of producing the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20200392270A1 true US20200392270A1 (en) | 2020-12-17 |
Family
ID=55580079
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/329,135 Active 2034-10-08 US10766991B2 (en) | 2014-09-25 | 2014-09-25 | Sulfonate group-containing polymer and method of producing the same |
| US16/985,996 Abandoned US20200392270A1 (en) | 2014-09-25 | 2020-08-05 | Sulfonate group-containing polymer and method of producing the same |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/329,135 Active 2034-10-08 US10766991B2 (en) | 2014-09-25 | 2014-09-25 | Sulfonate group-containing polymer and method of producing the same |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US10766991B2 (en) |
| JP (1) | JP6157653B2 (en) |
| DE (1) | DE112014006990T5 (en) |
| WO (1) | WO2016045031A1 (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6571171B2 (en) | 2014-09-25 | 2019-09-04 | ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company | Laundry detergent and cleaning composition containing sulfonic acid group-containing polymer |
| JP6157653B2 (en) | 2014-09-25 | 2017-07-05 | 株式会社日本触媒 | Sulfonic acid group-containing polymer and process for producing the same |
| BR112017024689B1 (en) | 2015-06-17 | 2022-04-12 | Clariant International Ltd | Water-soluble or water-swellable polymers, their production process, their use, process of cementing deep drilling using a cement slurry and polymeric mixture |
| JP7050784B2 (en) | 2016-12-12 | 2022-04-08 | クラリアント・インターナシヨナル・リミテツド | Use of bio-based polymers in cosmetic compositions, dermatological compositions or pharmaceutical compositions |
| WO2018108609A1 (en) | 2016-12-12 | 2018-06-21 | Clariant International Ltd | Polymer comprising certain level of bio-based carbon |
| US11542343B2 (en) | 2016-12-15 | 2023-01-03 | Clariant International Ltd | Water-soluble and/or water-swellable hybrid polymer |
| US11401362B2 (en) | 2016-12-15 | 2022-08-02 | Clariant International Ltd | Water-soluble and/or water-swellable hybrid polymer |
| EP3554643B1 (en) | 2016-12-15 | 2025-03-19 | Clariant International Ltd | Water-soluble and/or water-swellable hybrid polymer |
| EP3554646B1 (en) | 2016-12-15 | 2025-03-19 | Clariant International Ltd | Water-soluble and/or water-swellable hybrid polymer |
| CN114437294B (en) * | 2020-11-05 | 2023-04-11 | 中国石油化工股份有限公司 | Surface active polymer, preparation method thereof and application of surface active polymer as polymer oil displacement agent |
| JP7562433B2 (en) * | 2021-01-15 | 2024-10-07 | 株式会社日本触媒 | (Meth)acrylic acid copolymer |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09255740A (en) | 1996-03-26 | 1997-09-30 | Nof Corp | Terpolymer |
| JP4268346B2 (en) | 2000-05-26 | 2009-05-27 | 株式会社日本触媒 | Method for producing allyl ether polymer |
| US6451952B2 (en) | 2000-05-26 | 2002-09-17 | Nippon Shokubai Co., Ltd. | Production process for allyl ether-based polymer |
| US6998453B2 (en) | 2001-10-03 | 2006-02-14 | Nippon Shokubai Co., Ltd. | (Meth)acrylic acid type polymer and unsaturated polyalkylene glycol type copolymer, and methods for production thereof |
| JP4185382B2 (en) | 2002-06-20 | 2008-11-26 | 株式会社日本触媒 | Copolymer composition of (meth) acrylic acid monomer and unsaturated polyalkylene glycol monomer and method for producing the same |
| JP5478831B2 (en) | 2002-06-20 | 2014-04-23 | 株式会社日本触媒 | Copolymer composition of (meth) acrylic acid monomer and unsaturated polyalkylene glycol monomer and method for producing the same |
| WO2004024856A2 (en) | 2002-09-13 | 2004-03-25 | Nippon Shokubai Co., Ltd. | Liquid detergent builder and liquid detergent containing the same |
| JP4634022B2 (en) | 2002-09-13 | 2011-02-16 | 株式会社日本触媒 | Liquid detergent builder and liquid detergent |
| JP4417139B2 (en) | 2004-03-01 | 2010-02-17 | 三谷セキサン株式会社 | Noro reducing agent |
| WO2007089001A1 (en) * | 2006-01-31 | 2007-08-09 | Nippon Shokubai Co., Ltd. | (meth)acrylic acid-based copolymer, method for producing the same and detergent composition using the same |
| CA2734880A1 (en) | 2008-09-01 | 2010-03-04 | The Procter & Gamble Company | Laundry detergent or cleaning composition comprising a hydrophobic group-containing copolymer and process for the production thereof |
| EP2321396B1 (en) | 2008-09-01 | 2015-07-08 | The Procter and Gamble Company | Laundry detergent or cleaning composition comprising sulfonate group-containing copolymers |
| JP5558357B2 (en) | 2008-09-12 | 2014-07-23 | 株式会社日本触媒 | Method for producing sulfonic acid group-containing ether compound |
| JP5235615B2 (en) | 2008-11-07 | 2013-07-10 | 株式会社日本触媒 | Sulfonic acid group-containing copolymer and process for producing the same |
| JP5952825B2 (en) * | 2010-11-23 | 2016-07-13 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Copolymers containing carboxylic acid groups, sulfonic acid groups and polyalkylene oxide groups for use as anti-scale additives in detergents and detergents |
| WO2012105239A1 (en) | 2011-02-01 | 2012-08-09 | 株式会社日本触媒 | Hydraulic material dispersing agent and hydraulic material composition |
| EP2890774B1 (en) | 2012-08-31 | 2018-10-24 | Nippon Shokubai Co., Ltd. | Carboxyl group-containing polymer and composition containing the same |
| JP6157653B2 (en) | 2014-09-25 | 2017-07-05 | 株式会社日本触媒 | Sulfonic acid group-containing polymer and process for producing the same |
-
2014
- 2014-09-25 JP JP2015563069A patent/JP6157653B2/en active Active
- 2014-09-25 DE DE112014006990.6T patent/DE112014006990T5/en not_active Withdrawn
- 2014-09-25 WO PCT/CN2014/087389 patent/WO2016045031A1/en not_active Ceased
- 2014-09-25 US US15/329,135 patent/US10766991B2/en active Active
-
2020
- 2020-08-05 US US16/985,996 patent/US20200392270A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| DE112014006990T5 (en) | 2017-06-08 |
| US10766991B2 (en) | 2020-09-08 |
| US20170247487A1 (en) | 2017-08-31 |
| JP6157653B2 (en) | 2017-07-05 |
| JP2016535797A (en) | 2016-11-17 |
| WO2016045031A1 (en) | 2016-03-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10766991B2 (en) | Sulfonate group-containing polymer and method of producing the same | |
| JP5940630B2 (en) | Hydrophobic group-containing copolymer and method for producing the same | |
| JP5235615B2 (en) | Sulfonic acid group-containing copolymer and process for producing the same | |
| US9834632B2 (en) | Carboxyl group-containing polymer and composition containing the same | |
| JP5643427B2 (en) | Amphoteric polymer and process for producing the same | |
| US8586687B2 (en) | Polyalkylene glycol-based polymer and process for producing the same | |
| US9315645B2 (en) | Aqueous poly(meth)acrylic acid (salt) solution and process for preparing same | |
| JP2010209134A (en) | Polyoxyalkylene polymer and method of producing the same | |
| JP2012057095A (en) | Sulfonic acid group-containing polymer, sulfonic acid group-containing monomer, and method for producing them | |
| JP2010209132A (en) | Polyoxyalkylene polymer and method for producing the same | |
| US8809474B2 (en) | Carboxyl group-containing polymer composition | |
| JP5448754B2 (en) | Amino group-containing copolymer and process for producing the same | |
| JP5586144B2 (en) | Polyalkylene glycol copolymer, process for producing the same, and detergent composition comprising the same | |
| JP5646676B2 (en) | Sulfonic acid group-containing copolymer and production method thereof | |
| JP6786151B2 (en) | Hydrophobic group and polyalkylene glycol chain-containing copolymer and detergent composition | |
| JP6640786B2 (en) | Sulfonic acid group-containing polymer and method for producing the same | |
| JP6002198B2 (en) | NOVEL POLYMER AND PROCESS FOR PRODUCING THE SAME | |
| JP2012207068A (en) | Novel polymer and method of manufacturing the same | |
| JP6397633B2 (en) | POLY (METH) ACRYLIC ACID POLYMER AND PROCESS FOR PRODUCING THE SAME | |
| JP2012057093A (en) | Novel polyalkylene glycol-based polymer, its manufacturing method, and its application | |
| JP5756167B2 (en) | Cationic group-containing copolymer and method for producing the same | |
| JP2023181590A (en) | Multiester type polyalkylene oxide-containing monomer and polymer using the same | |
| JPWO2011118728A1 (en) | NOVEL COPOLYMER AND METHOD FOR PRODUCING THE SAME | |
| JP2012057092A (en) | Polyalkylene glycol-based polymer and its manufacturing method | |
| US20130023641A1 (en) | 2-methylene glutaric acid copolymer and method for producing same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |